UBUNTU: SAUCE: Yama: check PTRACE using thread group leader
[linux-flexiantxendom0-natty.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23         CONFIG_DEFAULT_SECURITY;
24
25 #if CONFIG_SECURITY_YAMA
26 extern int yama_ptrace_access_check(struct task_struct *child,
27                                     unsigned int mode);
28 extern int yama_path_link(struct dentry *old_dentry, struct path *new_dir,
29                           struct dentry *new_dentry);
30 extern int yama_inode_follow_link(struct dentry *dentry,
31                                   struct nameidata *nameidata);
32 extern void yama_task_free(struct task_struct *task);
33 extern int yama_task_prctl(int option, unsigned long arg2, unsigned long arg3,
34                            unsigned long arg4, unsigned long arg5);
35 #endif
36
37 /* things that live in capability.c */
38 extern void __init security_fixup_ops(struct security_operations *ops);
39
40 static struct security_operations *security_ops;
41 static struct security_operations default_security_ops = {
42         .name   = "default",
43 };
44
45 static inline int __init verify(struct security_operations *ops)
46 {
47         /* verify the security_operations structure exists */
48         if (!ops)
49                 return -EINVAL;
50         security_fixup_ops(ops);
51         return 0;
52 }
53
54 static void __init do_security_initcalls(void)
55 {
56         initcall_t *call;
57         call = __security_initcall_start;
58         while (call < __security_initcall_end) {
59                 (*call) ();
60                 call++;
61         }
62 }
63
64 /**
65  * security_init - initializes the security framework
66  *
67  * This should be called early in the kernel initialization sequence.
68  */
69 int __init security_init(void)
70 {
71         printk(KERN_INFO "Security Framework initialized\n");
72
73         security_fixup_ops(&default_security_ops);
74         security_ops = &default_security_ops;
75         do_security_initcalls();
76
77         return 0;
78 }
79
80 void reset_security_ops(void)
81 {
82         security_ops = &default_security_ops;
83 }
84
85 /* Save user chosen LSM */
86 static int __init choose_lsm(char *str)
87 {
88         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
89         return 1;
90 }
91 __setup("security=", choose_lsm);
92
93 /**
94  * security_module_enable - Load given security module on boot ?
95  * @ops: a pointer to the struct security_operations that is to be checked.
96  *
97  * Each LSM must pass this method before registering its own operations
98  * to avoid security registration races. This method may also be used
99  * to check if your LSM is currently loaded during kernel initialization.
100  *
101  * Return true if:
102  *      -The passed LSM is the one chosen by user at boot time,
103  *      -or the passed LSM is configured as the default and the user did not
104  *       choose an alternate LSM at boot time.
105  * Otherwise, return false.
106  */
107 int __init security_module_enable(struct security_operations *ops)
108 {
109         return !strcmp(ops->name, chosen_lsm);
110 }
111
112 /**
113  * register_security - registers a security framework with the kernel
114  * @ops: a pointer to the struct security_options that is to be registered
115  *
116  * This function allows a security module to register itself with the
117  * kernel security subsystem.  Some rudimentary checking is done on the @ops
118  * value passed to this function. You'll need to check first if your LSM
119  * is allowed to register its @ops by calling security_module_enable(@ops).
120  *
121  * If there is already a security module registered with the kernel,
122  * an error will be returned.  Otherwise %0 is returned on success.
123  */
124 int __init register_security(struct security_operations *ops)
125 {
126         if (verify(ops)) {
127                 printk(KERN_DEBUG "%s could not verify "
128                        "security_operations structure.\n", __func__);
129                 return -EINVAL;
130         }
131
132         if (security_ops != &default_security_ops)
133                 return -EAGAIN;
134
135         security_ops = ops;
136
137         return 0;
138 }
139
140 /* Security operations */
141
142 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
143 {
144 #if CONFIG_SECURITY_YAMA
145         int rc;
146         rc = yama_ptrace_access_check(child, mode);
147         if (rc || security_ops->ptrace_access_check == yama_ptrace_access_check)
148                 return rc;
149 #endif
150         return security_ops->ptrace_access_check(child, mode);
151 }
152
153 int security_ptrace_traceme(struct task_struct *parent)
154 {
155         return security_ops->ptrace_traceme(parent);
156 }
157
158 int security_capget(struct task_struct *target,
159                      kernel_cap_t *effective,
160                      kernel_cap_t *inheritable,
161                      kernel_cap_t *permitted)
162 {
163         return security_ops->capget(target, effective, inheritable, permitted);
164 }
165
166 int security_capset(struct cred *new, const struct cred *old,
167                     const kernel_cap_t *effective,
168                     const kernel_cap_t *inheritable,
169                     const kernel_cap_t *permitted)
170 {
171         return security_ops->capset(new, old,
172                                     effective, inheritable, permitted);
173 }
174
175 int security_capable(const struct cred *cred, int cap)
176 {
177         return security_ops->capable(current, cred, cap, SECURITY_CAP_AUDIT);
178 }
179
180 int security_real_capable(struct task_struct *tsk, int cap)
181 {
182         const struct cred *cred;
183         int ret;
184
185         cred = get_task_cred(tsk);
186         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
187         put_cred(cred);
188         return ret;
189 }
190
191 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
192 {
193         const struct cred *cred;
194         int ret;
195
196         cred = get_task_cred(tsk);
197         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
198         put_cred(cred);
199         return ret;
200 }
201
202 int security_sysctl(struct ctl_table *table, int op)
203 {
204         return security_ops->sysctl(table, op);
205 }
206
207 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
208 {
209         return security_ops->quotactl(cmds, type, id, sb);
210 }
211
212 int security_quota_on(struct dentry *dentry)
213 {
214         return security_ops->quota_on(dentry);
215 }
216
217 int security_syslog(int type)
218 {
219         return security_ops->syslog(type);
220 }
221
222 int security_settime(struct timespec *ts, struct timezone *tz)
223 {
224         return security_ops->settime(ts, tz);
225 }
226
227 int security_vm_enough_memory(long pages)
228 {
229         WARN_ON(current->mm == NULL);
230         return security_ops->vm_enough_memory(current->mm, pages);
231 }
232
233 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
234 {
235         WARN_ON(mm == NULL);
236         return security_ops->vm_enough_memory(mm, pages);
237 }
238
239 int security_vm_enough_memory_kern(long pages)
240 {
241         /* If current->mm is a kernel thread then we will pass NULL,
242            for this specific case that is fine */
243         return security_ops->vm_enough_memory(current->mm, pages);
244 }
245
246 int security_bprm_set_creds(struct linux_binprm *bprm)
247 {
248         return security_ops->bprm_set_creds(bprm);
249 }
250
251 int security_bprm_check(struct linux_binprm *bprm)
252 {
253         int ret;
254
255         ret = security_ops->bprm_check_security(bprm);
256         if (ret)
257                 return ret;
258         return ima_bprm_check(bprm);
259 }
260
261 void security_bprm_committing_creds(struct linux_binprm *bprm)
262 {
263         security_ops->bprm_committing_creds(bprm);
264 }
265
266 void security_bprm_committed_creds(struct linux_binprm *bprm)
267 {
268         security_ops->bprm_committed_creds(bprm);
269 }
270
271 int security_bprm_secureexec(struct linux_binprm *bprm)
272 {
273         return security_ops->bprm_secureexec(bprm);
274 }
275
276 int security_sb_alloc(struct super_block *sb)
277 {
278         return security_ops->sb_alloc_security(sb);
279 }
280
281 void security_sb_free(struct super_block *sb)
282 {
283         security_ops->sb_free_security(sb);
284 }
285
286 int security_sb_copy_data(char *orig, char *copy)
287 {
288         return security_ops->sb_copy_data(orig, copy);
289 }
290 EXPORT_SYMBOL(security_sb_copy_data);
291
292 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
293 {
294         return security_ops->sb_kern_mount(sb, flags, data);
295 }
296
297 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
298 {
299         return security_ops->sb_show_options(m, sb);
300 }
301
302 int security_sb_statfs(struct dentry *dentry)
303 {
304         return security_ops->sb_statfs(dentry);
305 }
306
307 int security_sb_mount(char *dev_name, struct path *path,
308                        char *type, unsigned long flags, void *data)
309 {
310         return security_ops->sb_mount(dev_name, path, type, flags, data);
311 }
312
313 int security_sb_umount(struct vfsmount *mnt, int flags)
314 {
315         return security_ops->sb_umount(mnt, flags);
316 }
317
318 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
319 {
320         return security_ops->sb_pivotroot(old_path, new_path);
321 }
322
323 int security_sb_set_mnt_opts(struct super_block *sb,
324                                 struct security_mnt_opts *opts)
325 {
326         return security_ops->sb_set_mnt_opts(sb, opts);
327 }
328 EXPORT_SYMBOL(security_sb_set_mnt_opts);
329
330 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
331                                 struct super_block *newsb)
332 {
333         security_ops->sb_clone_mnt_opts(oldsb, newsb);
334 }
335 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
336
337 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
338 {
339         return security_ops->sb_parse_opts_str(options, opts);
340 }
341 EXPORT_SYMBOL(security_sb_parse_opts_str);
342
343 int security_inode_alloc(struct inode *inode)
344 {
345         inode->i_security = NULL;
346         return security_ops->inode_alloc_security(inode);
347 }
348
349 void security_inode_free(struct inode *inode)
350 {
351         ima_inode_free(inode);
352         security_ops->inode_free_security(inode);
353 }
354
355 int security_inode_init_security(struct inode *inode, struct inode *dir,
356                                   char **name, void **value, size_t *len)
357 {
358         if (unlikely(IS_PRIVATE(inode)))
359                 return -EOPNOTSUPP;
360         return security_ops->inode_init_security(inode, dir, name, value, len);
361 }
362 EXPORT_SYMBOL(security_inode_init_security);
363
364 #ifdef CONFIG_SECURITY_PATH
365 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
366                         unsigned int dev)
367 {
368         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
369                 return 0;
370         return security_ops->path_mknod(dir, dentry, mode, dev);
371 }
372 EXPORT_SYMBOL(security_path_mknod);
373
374 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
375 {
376         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
377                 return 0;
378         return security_ops->path_mkdir(dir, dentry, mode);
379 }
380
381 int security_path_rmdir(struct path *dir, struct dentry *dentry)
382 {
383         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
384                 return 0;
385         return security_ops->path_rmdir(dir, dentry);
386 }
387
388 int security_path_unlink(struct path *dir, struct dentry *dentry)
389 {
390         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
391                 return 0;
392         return security_ops->path_unlink(dir, dentry);
393 }
394
395 int security_path_symlink(struct path *dir, struct dentry *dentry,
396                           const char *old_name)
397 {
398         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
399                 return 0;
400         return security_ops->path_symlink(dir, dentry, old_name);
401 }
402
403 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
404                        struct dentry *new_dentry)
405 {
406         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
407                 return 0;
408 #if CONFIG_SECURITY_YAMA
409         int rc = yama_path_link(old_dentry, new_dir, new_dentry);
410         if (rc || security_ops->path_link == yama_path_link)
411                 return rc;
412 #endif
413         return security_ops->path_link(old_dentry, new_dir, new_dentry);
414 }
415
416 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
417                          struct path *new_dir, struct dentry *new_dentry)
418 {
419         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
420                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
421                 return 0;
422         return security_ops->path_rename(old_dir, old_dentry, new_dir,
423                                          new_dentry);
424 }
425
426 int security_path_truncate(struct path *path)
427 {
428         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
429                 return 0;
430         return security_ops->path_truncate(path);
431 }
432
433 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
434                         mode_t mode)
435 {
436         if (unlikely(IS_PRIVATE(dentry->d_inode)))
437                 return 0;
438         return security_ops->path_chmod(dentry, mnt, mode);
439 }
440
441 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
442 {
443         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
444                 return 0;
445         return security_ops->path_chown(path, uid, gid);
446 }
447
448 int security_path_chroot(struct path *path)
449 {
450         return security_ops->path_chroot(path);
451 }
452 #endif
453
454 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
455 {
456         if (unlikely(IS_PRIVATE(dir)))
457                 return 0;
458         return security_ops->inode_create(dir, dentry, mode);
459 }
460 EXPORT_SYMBOL_GPL(security_inode_create);
461
462 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
463                          struct dentry *new_dentry)
464 {
465         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
466                 return 0;
467         return security_ops->inode_link(old_dentry, dir, new_dentry);
468 }
469
470 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
471 {
472         if (unlikely(IS_PRIVATE(dentry->d_inode)))
473                 return 0;
474         return security_ops->inode_unlink(dir, dentry);
475 }
476
477 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
478                             const char *old_name)
479 {
480         if (unlikely(IS_PRIVATE(dir)))
481                 return 0;
482         return security_ops->inode_symlink(dir, dentry, old_name);
483 }
484
485 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
486 {
487         if (unlikely(IS_PRIVATE(dir)))
488                 return 0;
489         return security_ops->inode_mkdir(dir, dentry, mode);
490 }
491 EXPORT_SYMBOL_GPL(security_inode_mkdir);
492
493 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
494 {
495         if (unlikely(IS_PRIVATE(dentry->d_inode)))
496                 return 0;
497         return security_ops->inode_rmdir(dir, dentry);
498 }
499
500 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
501 {
502         if (unlikely(IS_PRIVATE(dir)))
503                 return 0;
504         return security_ops->inode_mknod(dir, dentry, mode, dev);
505 }
506
507 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
508                            struct inode *new_dir, struct dentry *new_dentry)
509 {
510         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
511             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
512                 return 0;
513         return security_ops->inode_rename(old_dir, old_dentry,
514                                            new_dir, new_dentry);
515 }
516
517 int security_inode_readlink(struct dentry *dentry)
518 {
519         if (unlikely(IS_PRIVATE(dentry->d_inode)))
520                 return 0;
521         return security_ops->inode_readlink(dentry);
522 }
523
524 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
525 {
526         if (unlikely(IS_PRIVATE(dentry->d_inode)))
527                 return 0;
528 #if CONFIG_SECURITY_YAMA
529         int rc = yama_inode_follow_link(dentry, nd);
530         if (rc || security_ops->inode_follow_link == yama_inode_follow_link)
531                 return rc;
532 #endif
533         return security_ops->inode_follow_link(dentry, nd);
534 }
535
536 int security_inode_permission(struct inode *inode, int mask)
537 {
538         if (unlikely(IS_PRIVATE(inode)))
539                 return 0;
540         return security_ops->inode_permission(inode, mask);
541 }
542
543 int security_inode_exec_permission(struct inode *inode, unsigned int flags)
544 {
545         if (unlikely(IS_PRIVATE(inode)))
546                 return 0;
547         if (flags)
548                 return -ECHILD;
549         return security_ops->inode_permission(inode, MAY_EXEC);
550 }
551
552 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
553 {
554         if (unlikely(IS_PRIVATE(dentry->d_inode)))
555                 return 0;
556         return security_ops->inode_setattr(dentry, attr);
557 }
558 EXPORT_SYMBOL_GPL(security_inode_setattr);
559
560 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
561 {
562         if (unlikely(IS_PRIVATE(dentry->d_inode)))
563                 return 0;
564         return security_ops->inode_getattr(mnt, dentry);
565 }
566
567 int security_inode_setxattr(struct dentry *dentry, const char *name,
568                             const void *value, size_t size, int flags)
569 {
570         if (unlikely(IS_PRIVATE(dentry->d_inode)))
571                 return 0;
572         return security_ops->inode_setxattr(dentry, name, value, size, flags);
573 }
574
575 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
576                                   const void *value, size_t size, int flags)
577 {
578         if (unlikely(IS_PRIVATE(dentry->d_inode)))
579                 return;
580         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
581 }
582
583 int security_inode_getxattr(struct dentry *dentry, const char *name)
584 {
585         if (unlikely(IS_PRIVATE(dentry->d_inode)))
586                 return 0;
587         return security_ops->inode_getxattr(dentry, name);
588 }
589
590 int security_inode_listxattr(struct dentry *dentry)
591 {
592         if (unlikely(IS_PRIVATE(dentry->d_inode)))
593                 return 0;
594         return security_ops->inode_listxattr(dentry);
595 }
596
597 int security_inode_removexattr(struct dentry *dentry, const char *name)
598 {
599         if (unlikely(IS_PRIVATE(dentry->d_inode)))
600                 return 0;
601         return security_ops->inode_removexattr(dentry, name);
602 }
603
604 int security_inode_need_killpriv(struct dentry *dentry)
605 {
606         return security_ops->inode_need_killpriv(dentry);
607 }
608
609 int security_inode_killpriv(struct dentry *dentry)
610 {
611         return security_ops->inode_killpriv(dentry);
612 }
613
614 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
615 {
616         if (unlikely(IS_PRIVATE(inode)))
617                 return -EOPNOTSUPP;
618         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
619 }
620
621 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
622 {
623         if (unlikely(IS_PRIVATE(inode)))
624                 return -EOPNOTSUPP;
625         return security_ops->inode_setsecurity(inode, name, value, size, flags);
626 }
627
628 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
629 {
630         if (unlikely(IS_PRIVATE(inode)))
631                 return 0;
632         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
633 }
634
635 void security_inode_getsecid(const struct inode *inode, u32 *secid)
636 {
637         security_ops->inode_getsecid(inode, secid);
638 }
639
640 int security_file_permission(struct file *file, int mask)
641 {
642         int ret;
643
644         ret = security_ops->file_permission(file, mask);
645         if (ret)
646                 return ret;
647
648         return fsnotify_perm(file, mask);
649 }
650
651 int security_file_alloc(struct file *file)
652 {
653         return security_ops->file_alloc_security(file);
654 }
655
656 void security_file_free(struct file *file)
657 {
658         security_ops->file_free_security(file);
659 }
660
661 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
662 {
663         return security_ops->file_ioctl(file, cmd, arg);
664 }
665
666 int security_file_mmap(struct file *file, unsigned long reqprot,
667                         unsigned long prot, unsigned long flags,
668                         unsigned long addr, unsigned long addr_only)
669 {
670         int ret;
671
672         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
673         if (ret)
674                 return ret;
675         return ima_file_mmap(file, prot);
676 }
677
678 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
679                             unsigned long prot)
680 {
681         return security_ops->file_mprotect(vma, reqprot, prot);
682 }
683
684 int security_file_lock(struct file *file, unsigned int cmd)
685 {
686         return security_ops->file_lock(file, cmd);
687 }
688
689 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
690 {
691         return security_ops->file_fcntl(file, cmd, arg);
692 }
693
694 int security_file_set_fowner(struct file *file)
695 {
696         return security_ops->file_set_fowner(file);
697 }
698
699 int security_file_send_sigiotask(struct task_struct *tsk,
700                                   struct fown_struct *fown, int sig)
701 {
702         return security_ops->file_send_sigiotask(tsk, fown, sig);
703 }
704
705 int security_file_receive(struct file *file)
706 {
707         return security_ops->file_receive(file);
708 }
709
710 int security_dentry_open(struct file *file, const struct cred *cred)
711 {
712         int ret;
713
714         ret = security_ops->dentry_open(file, cred);
715         if (ret)
716                 return ret;
717
718         return fsnotify_perm(file, MAY_OPEN);
719 }
720
721 int security_task_create(unsigned long clone_flags)
722 {
723         return security_ops->task_create(clone_flags);
724 }
725
726 void security_task_free(struct task_struct *task)
727 {
728 #if CONFIG_SECURITY_YAMA
729         yama_task_free(task);
730         if (security_ops->task_free == yama_task_free)
731                 return;
732 #endif
733         security_ops->task_free(task);
734 }
735
736 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
737 {
738         return security_ops->cred_alloc_blank(cred, gfp);
739 }
740
741 void security_cred_free(struct cred *cred)
742 {
743         security_ops->cred_free(cred);
744 }
745
746 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
747 {
748         return security_ops->cred_prepare(new, old, gfp);
749 }
750
751 void security_transfer_creds(struct cred *new, const struct cred *old)
752 {
753         security_ops->cred_transfer(new, old);
754 }
755
756 int security_kernel_act_as(struct cred *new, u32 secid)
757 {
758         return security_ops->kernel_act_as(new, secid);
759 }
760
761 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
762 {
763         return security_ops->kernel_create_files_as(new, inode);
764 }
765
766 int security_kernel_module_request(char *kmod_name)
767 {
768         return security_ops->kernel_module_request(kmod_name);
769 }
770
771 int security_task_fix_setuid(struct cred *new, const struct cred *old,
772                              int flags)
773 {
774         return security_ops->task_fix_setuid(new, old, flags);
775 }
776
777 int security_task_setpgid(struct task_struct *p, pid_t pgid)
778 {
779         return security_ops->task_setpgid(p, pgid);
780 }
781
782 int security_task_getpgid(struct task_struct *p)
783 {
784         return security_ops->task_getpgid(p);
785 }
786
787 int security_task_getsid(struct task_struct *p)
788 {
789         return security_ops->task_getsid(p);
790 }
791
792 void security_task_getsecid(struct task_struct *p, u32 *secid)
793 {
794         security_ops->task_getsecid(p, secid);
795 }
796 EXPORT_SYMBOL(security_task_getsecid);
797
798 int security_task_setnice(struct task_struct *p, int nice)
799 {
800         return security_ops->task_setnice(p, nice);
801 }
802
803 int security_task_setioprio(struct task_struct *p, int ioprio)
804 {
805         return security_ops->task_setioprio(p, ioprio);
806 }
807
808 int security_task_getioprio(struct task_struct *p)
809 {
810         return security_ops->task_getioprio(p);
811 }
812
813 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
814                 struct rlimit *new_rlim)
815 {
816         return security_ops->task_setrlimit(p, resource, new_rlim);
817 }
818
819 int security_task_setscheduler(struct task_struct *p)
820 {
821         return security_ops->task_setscheduler(p);
822 }
823
824 int security_task_getscheduler(struct task_struct *p)
825 {
826         return security_ops->task_getscheduler(p);
827 }
828
829 int security_task_movememory(struct task_struct *p)
830 {
831         return security_ops->task_movememory(p);
832 }
833
834 int security_task_kill(struct task_struct *p, struct siginfo *info,
835                         int sig, u32 secid)
836 {
837         return security_ops->task_kill(p, info, sig, secid);
838 }
839
840 int security_task_wait(struct task_struct *p)
841 {
842         return security_ops->task_wait(p);
843 }
844
845 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
846                          unsigned long arg4, unsigned long arg5)
847 {
848 #if CONFIG_SECURITY_YAMA
849         int rc;
850         rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
851         if (rc != -ENOSYS || security_ops->task_prctl == yama_task_prctl)
852                 return rc;
853 #endif
854         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
855 }
856
857 void security_task_to_inode(struct task_struct *p, struct inode *inode)
858 {
859         security_ops->task_to_inode(p, inode);
860 }
861
862 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
863 {
864         return security_ops->ipc_permission(ipcp, flag);
865 }
866
867 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
868 {
869         security_ops->ipc_getsecid(ipcp, secid);
870 }
871
872 int security_msg_msg_alloc(struct msg_msg *msg)
873 {
874         return security_ops->msg_msg_alloc_security(msg);
875 }
876
877 void security_msg_msg_free(struct msg_msg *msg)
878 {
879         security_ops->msg_msg_free_security(msg);
880 }
881
882 int security_msg_queue_alloc(struct msg_queue *msq)
883 {
884         return security_ops->msg_queue_alloc_security(msq);
885 }
886
887 void security_msg_queue_free(struct msg_queue *msq)
888 {
889         security_ops->msg_queue_free_security(msq);
890 }
891
892 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
893 {
894         return security_ops->msg_queue_associate(msq, msqflg);
895 }
896
897 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
898 {
899         return security_ops->msg_queue_msgctl(msq, cmd);
900 }
901
902 int security_msg_queue_msgsnd(struct msg_queue *msq,
903                                struct msg_msg *msg, int msqflg)
904 {
905         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
906 }
907
908 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
909                                struct task_struct *target, long type, int mode)
910 {
911         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
912 }
913
914 int security_shm_alloc(struct shmid_kernel *shp)
915 {
916         return security_ops->shm_alloc_security(shp);
917 }
918
919 void security_shm_free(struct shmid_kernel *shp)
920 {
921         security_ops->shm_free_security(shp);
922 }
923
924 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
925 {
926         return security_ops->shm_associate(shp, shmflg);
927 }
928
929 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
930 {
931         return security_ops->shm_shmctl(shp, cmd);
932 }
933
934 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
935 {
936         return security_ops->shm_shmat(shp, shmaddr, shmflg);
937 }
938
939 int security_sem_alloc(struct sem_array *sma)
940 {
941         return security_ops->sem_alloc_security(sma);
942 }
943
944 void security_sem_free(struct sem_array *sma)
945 {
946         security_ops->sem_free_security(sma);
947 }
948
949 int security_sem_associate(struct sem_array *sma, int semflg)
950 {
951         return security_ops->sem_associate(sma, semflg);
952 }
953
954 int security_sem_semctl(struct sem_array *sma, int cmd)
955 {
956         return security_ops->sem_semctl(sma, cmd);
957 }
958
959 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
960                         unsigned nsops, int alter)
961 {
962         return security_ops->sem_semop(sma, sops, nsops, alter);
963 }
964
965 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
966 {
967         if (unlikely(inode && IS_PRIVATE(inode)))
968                 return;
969         security_ops->d_instantiate(dentry, inode);
970 }
971 EXPORT_SYMBOL(security_d_instantiate);
972
973 int security_getprocattr(struct task_struct *p, char *name, char **value)
974 {
975         return security_ops->getprocattr(p, name, value);
976 }
977
978 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
979 {
980         return security_ops->setprocattr(p, name, value, size);
981 }
982
983 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
984 {
985         return security_ops->netlink_send(sk, skb);
986 }
987
988 int security_netlink_recv(struct sk_buff *skb, int cap)
989 {
990         return security_ops->netlink_recv(skb, cap);
991 }
992 EXPORT_SYMBOL(security_netlink_recv);
993
994 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
995 {
996         return security_ops->secid_to_secctx(secid, secdata, seclen);
997 }
998 EXPORT_SYMBOL(security_secid_to_secctx);
999
1000 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1001 {
1002         return security_ops->secctx_to_secid(secdata, seclen, secid);
1003 }
1004 EXPORT_SYMBOL(security_secctx_to_secid);
1005
1006 void security_release_secctx(char *secdata, u32 seclen)
1007 {
1008         security_ops->release_secctx(secdata, seclen);
1009 }
1010 EXPORT_SYMBOL(security_release_secctx);
1011
1012 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1013 {
1014         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1015 }
1016 EXPORT_SYMBOL(security_inode_notifysecctx);
1017
1018 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1019 {
1020         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1021 }
1022 EXPORT_SYMBOL(security_inode_setsecctx);
1023
1024 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1025 {
1026         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1027 }
1028 EXPORT_SYMBOL(security_inode_getsecctx);
1029
1030 #ifdef CONFIG_SECURITY_NETWORK
1031
1032 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1033 {
1034         return security_ops->unix_stream_connect(sock, other, newsk);
1035 }
1036 EXPORT_SYMBOL(security_unix_stream_connect);
1037
1038 int security_unix_may_send(struct socket *sock,  struct socket *other)
1039 {
1040         return security_ops->unix_may_send(sock, other);
1041 }
1042 EXPORT_SYMBOL(security_unix_may_send);
1043
1044 int security_socket_create(int family, int type, int protocol, int kern)
1045 {
1046         return security_ops->socket_create(family, type, protocol, kern);
1047 }
1048
1049 int security_socket_post_create(struct socket *sock, int family,
1050                                 int type, int protocol, int kern)
1051 {
1052         return security_ops->socket_post_create(sock, family, type,
1053                                                 protocol, kern);
1054 }
1055
1056 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1057 {
1058         return security_ops->socket_bind(sock, address, addrlen);
1059 }
1060
1061 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1062 {
1063         return security_ops->socket_connect(sock, address, addrlen);
1064 }
1065
1066 int security_socket_listen(struct socket *sock, int backlog)
1067 {
1068         return security_ops->socket_listen(sock, backlog);
1069 }
1070
1071 int security_socket_accept(struct socket *sock, struct socket *newsock)
1072 {
1073         return security_ops->socket_accept(sock, newsock);
1074 }
1075
1076 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1077 {
1078         return security_ops->socket_sendmsg(sock, msg, size);
1079 }
1080
1081 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1082                             int size, int flags)
1083 {
1084         return security_ops->socket_recvmsg(sock, msg, size, flags);
1085 }
1086
1087 int security_socket_getsockname(struct socket *sock)
1088 {
1089         return security_ops->socket_getsockname(sock);
1090 }
1091
1092 int security_socket_getpeername(struct socket *sock)
1093 {
1094         return security_ops->socket_getpeername(sock);
1095 }
1096
1097 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1098 {
1099         return security_ops->socket_getsockopt(sock, level, optname);
1100 }
1101
1102 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1103 {
1104         return security_ops->socket_setsockopt(sock, level, optname);
1105 }
1106
1107 int security_socket_shutdown(struct socket *sock, int how)
1108 {
1109         return security_ops->socket_shutdown(sock, how);
1110 }
1111
1112 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1113 {
1114         return security_ops->socket_sock_rcv_skb(sk, skb);
1115 }
1116 EXPORT_SYMBOL(security_sock_rcv_skb);
1117
1118 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1119                                       int __user *optlen, unsigned len)
1120 {
1121         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1122 }
1123
1124 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1125 {
1126         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1127 }
1128 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1129
1130 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1131 {
1132         return security_ops->sk_alloc_security(sk, family, priority);
1133 }
1134
1135 void security_sk_free(struct sock *sk)
1136 {
1137         security_ops->sk_free_security(sk);
1138 }
1139
1140 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1141 {
1142         security_ops->sk_clone_security(sk, newsk);
1143 }
1144
1145 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1146 {
1147         security_ops->sk_getsecid(sk, &fl->secid);
1148 }
1149 EXPORT_SYMBOL(security_sk_classify_flow);
1150
1151 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1152 {
1153         security_ops->req_classify_flow(req, fl);
1154 }
1155 EXPORT_SYMBOL(security_req_classify_flow);
1156
1157 void security_sock_graft(struct sock *sk, struct socket *parent)
1158 {
1159         security_ops->sock_graft(sk, parent);
1160 }
1161 EXPORT_SYMBOL(security_sock_graft);
1162
1163 int security_inet_conn_request(struct sock *sk,
1164                         struct sk_buff *skb, struct request_sock *req)
1165 {
1166         return security_ops->inet_conn_request(sk, skb, req);
1167 }
1168 EXPORT_SYMBOL(security_inet_conn_request);
1169
1170 void security_inet_csk_clone(struct sock *newsk,
1171                         const struct request_sock *req)
1172 {
1173         security_ops->inet_csk_clone(newsk, req);
1174 }
1175
1176 void security_inet_conn_established(struct sock *sk,
1177                         struct sk_buff *skb)
1178 {
1179         security_ops->inet_conn_established(sk, skb);
1180 }
1181
1182 int security_secmark_relabel_packet(u32 secid)
1183 {
1184         return security_ops->secmark_relabel_packet(secid);
1185 }
1186 EXPORT_SYMBOL(security_secmark_relabel_packet);
1187
1188 void security_secmark_refcount_inc(void)
1189 {
1190         security_ops->secmark_refcount_inc();
1191 }
1192 EXPORT_SYMBOL(security_secmark_refcount_inc);
1193
1194 void security_secmark_refcount_dec(void)
1195 {
1196         security_ops->secmark_refcount_dec();
1197 }
1198 EXPORT_SYMBOL(security_secmark_refcount_dec);
1199
1200 int security_tun_dev_create(void)
1201 {
1202         return security_ops->tun_dev_create();
1203 }
1204 EXPORT_SYMBOL(security_tun_dev_create);
1205
1206 void security_tun_dev_post_create(struct sock *sk)
1207 {
1208         return security_ops->tun_dev_post_create(sk);
1209 }
1210 EXPORT_SYMBOL(security_tun_dev_post_create);
1211
1212 int security_tun_dev_attach(struct sock *sk)
1213 {
1214         return security_ops->tun_dev_attach(sk);
1215 }
1216 EXPORT_SYMBOL(security_tun_dev_attach);
1217
1218 #endif  /* CONFIG_SECURITY_NETWORK */
1219
1220 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1221
1222 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1223 {
1224         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1225 }
1226 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1227
1228 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1229                               struct xfrm_sec_ctx **new_ctxp)
1230 {
1231         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1232 }
1233
1234 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1235 {
1236         security_ops->xfrm_policy_free_security(ctx);
1237 }
1238 EXPORT_SYMBOL(security_xfrm_policy_free);
1239
1240 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1241 {
1242         return security_ops->xfrm_policy_delete_security(ctx);
1243 }
1244
1245 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1246 {
1247         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1248 }
1249 EXPORT_SYMBOL(security_xfrm_state_alloc);
1250
1251 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1252                                       struct xfrm_sec_ctx *polsec, u32 secid)
1253 {
1254         if (!polsec)
1255                 return 0;
1256         /*
1257          * We want the context to be taken from secid which is usually
1258          * from the sock.
1259          */
1260         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1261 }
1262
1263 int security_xfrm_state_delete(struct xfrm_state *x)
1264 {
1265         return security_ops->xfrm_state_delete_security(x);
1266 }
1267 EXPORT_SYMBOL(security_xfrm_state_delete);
1268
1269 void security_xfrm_state_free(struct xfrm_state *x)
1270 {
1271         security_ops->xfrm_state_free_security(x);
1272 }
1273
1274 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1275 {
1276         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1277 }
1278
1279 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1280                                        struct xfrm_policy *xp, struct flowi *fl)
1281 {
1282         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1283 }
1284
1285 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1286 {
1287         return security_ops->xfrm_decode_session(skb, secid, 1);
1288 }
1289
1290 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1291 {
1292         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1293
1294         BUG_ON(rc);
1295 }
1296 EXPORT_SYMBOL(security_skb_classify_flow);
1297
1298 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1299
1300 #ifdef CONFIG_KEYS
1301
1302 int security_key_alloc(struct key *key, const struct cred *cred,
1303                        unsigned long flags)
1304 {
1305         return security_ops->key_alloc(key, cred, flags);
1306 }
1307
1308 void security_key_free(struct key *key)
1309 {
1310         security_ops->key_free(key);
1311 }
1312
1313 int security_key_permission(key_ref_t key_ref,
1314                             const struct cred *cred, key_perm_t perm)
1315 {
1316         return security_ops->key_permission(key_ref, cred, perm);
1317 }
1318
1319 int security_key_getsecurity(struct key *key, char **_buffer)
1320 {
1321         return security_ops->key_getsecurity(key, _buffer);
1322 }
1323
1324 #endif  /* CONFIG_KEYS */
1325
1326 #ifdef CONFIG_AUDIT
1327
1328 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1329 {
1330         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1331 }
1332
1333 int security_audit_rule_known(struct audit_krule *krule)
1334 {
1335         return security_ops->audit_rule_known(krule);
1336 }
1337
1338 void security_audit_rule_free(void *lsmrule)
1339 {
1340         security_ops->audit_rule_free(lsmrule);
1341 }
1342
1343 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1344                               struct audit_context *actx)
1345 {
1346         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1347 }
1348
1349 #endif /* CONFIG_AUDIT */