UBUNTU: Ubuntu-2.6.38-12.51
[linux-flexiantxendom0-natty.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23         CONFIG_DEFAULT_SECURITY;
24
25 #if CONFIG_SECURITY_YAMA
26 extern int yama_ptrace_access_check(struct task_struct *child,
27                                     unsigned int mode);
28 extern int yama_path_link(struct dentry *old_dentry, struct path *new_dir,
29                           struct dentry *new_dentry);
30 extern int yama_inode_follow_link(struct dentry *dentry,
31                                   struct nameidata *nameidata);
32 extern void yama_task_free(struct task_struct *task);
33 extern int yama_task_prctl(int option, unsigned long arg2, unsigned long arg3,
34                            unsigned long arg4, unsigned long arg5);
35 #endif
36
37 /* things that live in capability.c */
38 extern void __init security_fixup_ops(struct security_operations *ops);
39
40 static struct security_operations *security_ops;
41 static struct security_operations default_security_ops = {
42         .name   = "default",
43 };
44
45 static inline int __init verify(struct security_operations *ops)
46 {
47         /* verify the security_operations structure exists */
48         if (!ops)
49                 return -EINVAL;
50         security_fixup_ops(ops);
51         return 0;
52 }
53
54 static void __init do_security_initcalls(void)
55 {
56         initcall_t *call;
57         call = __security_initcall_start;
58         while (call < __security_initcall_end) {
59                 (*call) ();
60                 call++;
61         }
62 }
63
64 /**
65  * security_init - initializes the security framework
66  *
67  * This should be called early in the kernel initialization sequence.
68  */
69 int __init security_init(void)
70 {
71         printk(KERN_INFO "Security Framework initialized\n");
72
73         security_fixup_ops(&default_security_ops);
74         security_ops = &default_security_ops;
75         do_security_initcalls();
76
77         return 0;
78 }
79
80 void reset_security_ops(void)
81 {
82         security_ops = &default_security_ops;
83 }
84
85 /* Save user chosen LSM */
86 static int __init choose_lsm(char *str)
87 {
88         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
89         return 1;
90 }
91 __setup("security=", choose_lsm);
92
93 /**
94  * security_module_enable - Load given security module on boot ?
95  * @ops: a pointer to the struct security_operations that is to be checked.
96  *
97  * Each LSM must pass this method before registering its own operations
98  * to avoid security registration races. This method may also be used
99  * to check if your LSM is currently loaded during kernel initialization.
100  *
101  * Return true if:
102  *      -The passed LSM is the one chosen by user at boot time,
103  *      -or the passed LSM is configured as the default and the user did not
104  *       choose an alternate LSM at boot time.
105  * Otherwise, return false.
106  */
107 int __init security_module_enable(struct security_operations *ops)
108 {
109         return !strcmp(ops->name, chosen_lsm);
110 }
111
112 /**
113  * register_security - registers a security framework with the kernel
114  * @ops: a pointer to the struct security_options that is to be registered
115  *
116  * This function allows a security module to register itself with the
117  * kernel security subsystem.  Some rudimentary checking is done on the @ops
118  * value passed to this function. You'll need to check first if your LSM
119  * is allowed to register its @ops by calling security_module_enable(@ops).
120  *
121  * If there is already a security module registered with the kernel,
122  * an error will be returned.  Otherwise %0 is returned on success.
123  */
124 int __init register_security(struct security_operations *ops)
125 {
126         if (verify(ops)) {
127                 printk(KERN_DEBUG "%s could not verify "
128                        "security_operations structure.\n", __func__);
129                 return -EINVAL;
130         }
131
132         if (security_ops != &default_security_ops)
133                 return -EAGAIN;
134
135         security_ops = ops;
136
137         return 0;
138 }
139
140 /* Security operations */
141
142 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
143 {
144 #if CONFIG_SECURITY_YAMA
145         int rc;
146         rc = yama_ptrace_access_check(child, mode);
147         if (rc || security_ops->ptrace_access_check == yama_ptrace_access_check)
148                 return rc;
149 #endif
150         return security_ops->ptrace_access_check(child, mode);
151 }
152
153 int security_ptrace_traceme(struct task_struct *parent)
154 {
155         return security_ops->ptrace_traceme(parent);
156 }
157
158 int security_capget(struct task_struct *target,
159                      kernel_cap_t *effective,
160                      kernel_cap_t *inheritable,
161                      kernel_cap_t *permitted)
162 {
163         return security_ops->capget(target, effective, inheritable, permitted);
164 }
165
166 int security_capset(struct cred *new, const struct cred *old,
167                     const kernel_cap_t *effective,
168                     const kernel_cap_t *inheritable,
169                     const kernel_cap_t *permitted)
170 {
171         return security_ops->capset(new, old,
172                                     effective, inheritable, permitted);
173 }
174
175 int security_capable(const struct cred *cred, int cap)
176 {
177         return security_ops->capable(current, cred, cap, SECURITY_CAP_AUDIT);
178 }
179
180 int security_real_capable(struct task_struct *tsk, int cap)
181 {
182         const struct cred *cred;
183         int ret;
184
185         cred = get_task_cred(tsk);
186         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
187         put_cred(cred);
188         return ret;
189 }
190
191 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
192 {
193         const struct cred *cred;
194         int ret;
195
196         cred = get_task_cred(tsk);
197         ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
198         put_cred(cred);
199         return ret;
200 }
201
202 int security_sysctl(struct ctl_table *table, int op)
203 {
204         return security_ops->sysctl(table, op);
205 }
206
207 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
208 {
209         return security_ops->quotactl(cmds, type, id, sb);
210 }
211
212 int security_quota_on(struct dentry *dentry)
213 {
214         return security_ops->quota_on(dentry);
215 }
216
217 int security_syslog(int type)
218 {
219         return security_ops->syslog(type);
220 }
221
222 int security_settime(struct timespec *ts, struct timezone *tz)
223 {
224         return security_ops->settime(ts, tz);
225 }
226
227 int security_vm_enough_memory(long pages)
228 {
229         WARN_ON(current->mm == NULL);
230         return security_ops->vm_enough_memory(current->mm, pages);
231 }
232
233 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
234 {
235         WARN_ON(mm == NULL);
236         return security_ops->vm_enough_memory(mm, pages);
237 }
238
239 int security_vm_enough_memory_kern(long pages)
240 {
241         /* If current->mm is a kernel thread then we will pass NULL,
242            for this specific case that is fine */
243         return security_ops->vm_enough_memory(current->mm, pages);
244 }
245
246 int security_bprm_set_creds(struct linux_binprm *bprm)
247 {
248         return security_ops->bprm_set_creds(bprm);
249 }
250
251 int security_bprm_check(struct linux_binprm *bprm)
252 {
253         int ret;
254
255         ret = security_ops->bprm_check_security(bprm);
256         if (ret)
257                 return ret;
258         return ima_bprm_check(bprm);
259 }
260
261 void security_bprm_committing_creds(struct linux_binprm *bprm)
262 {
263         security_ops->bprm_committing_creds(bprm);
264 }
265
266 void security_bprm_committed_creds(struct linux_binprm *bprm)
267 {
268         security_ops->bprm_committed_creds(bprm);
269 }
270
271 int security_bprm_secureexec(struct linux_binprm *bprm)
272 {
273         return security_ops->bprm_secureexec(bprm);
274 }
275
276 int security_sb_alloc(struct super_block *sb)
277 {
278         return security_ops->sb_alloc_security(sb);
279 }
280
281 void security_sb_free(struct super_block *sb)
282 {
283         security_ops->sb_free_security(sb);
284 }
285
286 int security_sb_copy_data(char *orig, char *copy)
287 {
288         return security_ops->sb_copy_data(orig, copy);
289 }
290 EXPORT_SYMBOL(security_sb_copy_data);
291
292 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
293 {
294         return security_ops->sb_kern_mount(sb, flags, data);
295 }
296
297 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
298 {
299         return security_ops->sb_show_options(m, sb);
300 }
301
302 int security_sb_statfs(struct dentry *dentry)
303 {
304         return security_ops->sb_statfs(dentry);
305 }
306
307 int security_sb_mount(char *dev_name, struct path *path,
308                        char *type, unsigned long flags, void *data)
309 {
310         return security_ops->sb_mount(dev_name, path, type, flags, data);
311 }
312
313 int security_sb_umount(struct vfsmount *mnt, int flags)
314 {
315         return security_ops->sb_umount(mnt, flags);
316 }
317
318 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
319 {
320         return security_ops->sb_pivotroot(old_path, new_path);
321 }
322
323 int security_sb_set_mnt_opts(struct super_block *sb,
324                                 struct security_mnt_opts *opts)
325 {
326         return security_ops->sb_set_mnt_opts(sb, opts);
327 }
328 EXPORT_SYMBOL(security_sb_set_mnt_opts);
329
330 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
331                                 struct super_block *newsb)
332 {
333         security_ops->sb_clone_mnt_opts(oldsb, newsb);
334 }
335 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
336
337 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
338 {
339         return security_ops->sb_parse_opts_str(options, opts);
340 }
341 EXPORT_SYMBOL(security_sb_parse_opts_str);
342
343 int security_inode_alloc(struct inode *inode)
344 {
345         inode->i_security = NULL;
346         return security_ops->inode_alloc_security(inode);
347 }
348
349 void security_inode_free(struct inode *inode)
350 {
351         ima_inode_free(inode);
352         security_ops->inode_free_security(inode);
353 }
354
355 int security_inode_init_security(struct inode *inode, struct inode *dir,
356                                   char **name, void **value, size_t *len)
357 {
358         if (unlikely(IS_PRIVATE(inode)))
359                 return -EOPNOTSUPP;
360         return security_ops->inode_init_security(inode, dir, name, value, len);
361 }
362 EXPORT_SYMBOL(security_inode_init_security);
363
364 #ifdef CONFIG_SECURITY_PATH
365 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
366                         unsigned int dev)
367 {
368         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
369                 return 0;
370         return security_ops->path_mknod(dir, dentry, mode, dev);
371 }
372 EXPORT_SYMBOL(security_path_mknod);
373
374 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
375 {
376         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
377                 return 0;
378         return security_ops->path_mkdir(dir, dentry, mode);
379 }
380 EXPORT_SYMBOL(security_path_mkdir);
381
382 int security_path_rmdir(struct path *dir, struct dentry *dentry)
383 {
384         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
385                 return 0;
386         return security_ops->path_rmdir(dir, dentry);
387 }
388 EXPORT_SYMBOL(security_path_rmdir);
389
390 int security_path_unlink(struct path *dir, struct dentry *dentry)
391 {
392         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
393                 return 0;
394         return security_ops->path_unlink(dir, dentry);
395 }
396 EXPORT_SYMBOL(security_path_unlink);
397
398 int security_path_symlink(struct path *dir, struct dentry *dentry,
399                           const char *old_name)
400 {
401         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
402                 return 0;
403         return security_ops->path_symlink(dir, dentry, old_name);
404 }
405 EXPORT_SYMBOL(security_path_symlink);
406
407 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
408                        struct dentry *new_dentry)
409 {
410         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
411                 return 0;
412 #if CONFIG_SECURITY_YAMA
413         int rc = yama_path_link(old_dentry, new_dir, new_dentry);
414         if (rc || security_ops->path_link == yama_path_link)
415                 return rc;
416 #endif
417         return security_ops->path_link(old_dentry, new_dir, new_dentry);
418 }
419 EXPORT_SYMBOL(security_path_link);
420
421 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
422                          struct path *new_dir, struct dentry *new_dentry)
423 {
424         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
425                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
426                 return 0;
427         return security_ops->path_rename(old_dir, old_dentry, new_dir,
428                                          new_dentry);
429 }
430 EXPORT_SYMBOL(security_path_rename);
431
432 int security_path_truncate(struct path *path)
433 {
434         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
435                 return 0;
436         return security_ops->path_truncate(path);
437 }
438 EXPORT_SYMBOL(security_path_truncate);
439
440 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
441                         mode_t mode)
442 {
443         if (unlikely(IS_PRIVATE(dentry->d_inode)))
444                 return 0;
445         return security_ops->path_chmod(dentry, mnt, mode);
446 }
447 EXPORT_SYMBOL(security_path_chmod);
448
449 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
450 {
451         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
452                 return 0;
453         return security_ops->path_chown(path, uid, gid);
454 }
455 EXPORT_SYMBOL(security_path_chown);
456
457 int security_path_chroot(struct path *path)
458 {
459         return security_ops->path_chroot(path);
460 }
461 #endif
462
463 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
464 {
465         if (unlikely(IS_PRIVATE(dir)))
466                 return 0;
467         return security_ops->inode_create(dir, dentry, mode);
468 }
469 EXPORT_SYMBOL_GPL(security_inode_create);
470
471 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
472                          struct dentry *new_dentry)
473 {
474         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
475                 return 0;
476         return security_ops->inode_link(old_dentry, dir, new_dentry);
477 }
478
479 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
480 {
481         if (unlikely(IS_PRIVATE(dentry->d_inode)))
482                 return 0;
483         return security_ops->inode_unlink(dir, dentry);
484 }
485
486 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
487                             const char *old_name)
488 {
489         if (unlikely(IS_PRIVATE(dir)))
490                 return 0;
491         return security_ops->inode_symlink(dir, dentry, old_name);
492 }
493
494 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
495 {
496         if (unlikely(IS_PRIVATE(dir)))
497                 return 0;
498         return security_ops->inode_mkdir(dir, dentry, mode);
499 }
500 EXPORT_SYMBOL_GPL(security_inode_mkdir);
501
502 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
503 {
504         if (unlikely(IS_PRIVATE(dentry->d_inode)))
505                 return 0;
506         return security_ops->inode_rmdir(dir, dentry);
507 }
508
509 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
510 {
511         if (unlikely(IS_PRIVATE(dir)))
512                 return 0;
513         return security_ops->inode_mknod(dir, dentry, mode, dev);
514 }
515
516 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
517                            struct inode *new_dir, struct dentry *new_dentry)
518 {
519         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
520             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
521                 return 0;
522         return security_ops->inode_rename(old_dir, old_dentry,
523                                            new_dir, new_dentry);
524 }
525
526 int security_inode_readlink(struct dentry *dentry)
527 {
528         if (unlikely(IS_PRIVATE(dentry->d_inode)))
529                 return 0;
530         return security_ops->inode_readlink(dentry);
531 }
532 EXPORT_SYMBOL(security_inode_readlink);
533
534 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
535 {
536         if (unlikely(IS_PRIVATE(dentry->d_inode)))
537                 return 0;
538 #if CONFIG_SECURITY_YAMA
539         int rc = yama_inode_follow_link(dentry, nd);
540         if (rc || security_ops->inode_follow_link == yama_inode_follow_link)
541                 return rc;
542 #endif
543         return security_ops->inode_follow_link(dentry, nd);
544 }
545
546 int security_inode_permission(struct inode *inode, int mask)
547 {
548         if (unlikely(IS_PRIVATE(inode)))
549                 return 0;
550         return security_ops->inode_permission(inode, mask);
551 }
552 EXPORT_SYMBOL(security_inode_permission);
553
554 int security_inode_exec_permission(struct inode *inode, unsigned int flags)
555 {
556         if (unlikely(IS_PRIVATE(inode)))
557                 return 0;
558         if (flags)
559                 return -ECHILD;
560         return security_ops->inode_permission(inode, MAY_EXEC);
561 }
562
563 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
564 {
565         if (unlikely(IS_PRIVATE(dentry->d_inode)))
566                 return 0;
567         return security_ops->inode_setattr(dentry, attr);
568 }
569 EXPORT_SYMBOL_GPL(security_inode_setattr);
570
571 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
572 {
573         if (unlikely(IS_PRIVATE(dentry->d_inode)))
574                 return 0;
575         return security_ops->inode_getattr(mnt, dentry);
576 }
577
578 int security_inode_setxattr(struct dentry *dentry, const char *name,
579                             const void *value, size_t size, int flags)
580 {
581         if (unlikely(IS_PRIVATE(dentry->d_inode)))
582                 return 0;
583         return security_ops->inode_setxattr(dentry, name, value, size, flags);
584 }
585
586 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
587                                   const void *value, size_t size, int flags)
588 {
589         if (unlikely(IS_PRIVATE(dentry->d_inode)))
590                 return;
591         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
592 }
593
594 int security_inode_getxattr(struct dentry *dentry, const char *name)
595 {
596         if (unlikely(IS_PRIVATE(dentry->d_inode)))
597                 return 0;
598         return security_ops->inode_getxattr(dentry, name);
599 }
600
601 int security_inode_listxattr(struct dentry *dentry)
602 {
603         if (unlikely(IS_PRIVATE(dentry->d_inode)))
604                 return 0;
605         return security_ops->inode_listxattr(dentry);
606 }
607
608 int security_inode_removexattr(struct dentry *dentry, const char *name)
609 {
610         if (unlikely(IS_PRIVATE(dentry->d_inode)))
611                 return 0;
612         return security_ops->inode_removexattr(dentry, name);
613 }
614
615 int security_inode_need_killpriv(struct dentry *dentry)
616 {
617         return security_ops->inode_need_killpriv(dentry);
618 }
619
620 int security_inode_killpriv(struct dentry *dentry)
621 {
622         return security_ops->inode_killpriv(dentry);
623 }
624
625 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
626 {
627         if (unlikely(IS_PRIVATE(inode)))
628                 return -EOPNOTSUPP;
629         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
630 }
631
632 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
633 {
634         if (unlikely(IS_PRIVATE(inode)))
635                 return -EOPNOTSUPP;
636         return security_ops->inode_setsecurity(inode, name, value, size, flags);
637 }
638
639 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
640 {
641         if (unlikely(IS_PRIVATE(inode)))
642                 return 0;
643         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
644 }
645
646 void security_inode_getsecid(const struct inode *inode, u32 *secid)
647 {
648         security_ops->inode_getsecid(inode, secid);
649 }
650
651 int security_file_permission(struct file *file, int mask)
652 {
653         int ret;
654
655         ret = security_ops->file_permission(file, mask);
656         if (ret)
657                 return ret;
658
659         return fsnotify_perm(file, mask);
660 }
661 EXPORT_SYMBOL(security_file_permission);
662
663 int security_file_alloc(struct file *file)
664 {
665         return security_ops->file_alloc_security(file);
666 }
667
668 void security_file_free(struct file *file)
669 {
670         security_ops->file_free_security(file);
671 }
672
673 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
674 {
675         return security_ops->file_ioctl(file, cmd, arg);
676 }
677
678 int security_file_mmap(struct file *file, unsigned long reqprot,
679                         unsigned long prot, unsigned long flags,
680                         unsigned long addr, unsigned long addr_only)
681 {
682         int ret;
683
684         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
685         if (ret)
686                 return ret;
687         return ima_file_mmap(file, prot);
688 }
689 EXPORT_SYMBOL(security_file_mmap);
690
691 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
692                             unsigned long prot)
693 {
694         return security_ops->file_mprotect(vma, reqprot, prot);
695 }
696
697 int security_file_lock(struct file *file, unsigned int cmd)
698 {
699         return security_ops->file_lock(file, cmd);
700 }
701
702 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
703 {
704         return security_ops->file_fcntl(file, cmd, arg);
705 }
706
707 int security_file_set_fowner(struct file *file)
708 {
709         return security_ops->file_set_fowner(file);
710 }
711
712 int security_file_send_sigiotask(struct task_struct *tsk,
713                                   struct fown_struct *fown, int sig)
714 {
715         return security_ops->file_send_sigiotask(tsk, fown, sig);
716 }
717
718 int security_file_receive(struct file *file)
719 {
720         return security_ops->file_receive(file);
721 }
722
723 int security_dentry_open(struct file *file, const struct cred *cred)
724 {
725         int ret;
726
727         ret = security_ops->dentry_open(file, cred);
728         if (ret)
729                 return ret;
730
731         return fsnotify_perm(file, MAY_OPEN);
732 }
733
734 int security_task_create(unsigned long clone_flags)
735 {
736         return security_ops->task_create(clone_flags);
737 }
738
739 void security_task_free(struct task_struct *task)
740 {
741 #if CONFIG_SECURITY_YAMA
742         yama_task_free(task);
743         if (security_ops->task_free == yama_task_free)
744                 return;
745 #endif
746         security_ops->task_free(task);
747 }
748
749 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
750 {
751         return security_ops->cred_alloc_blank(cred, gfp);
752 }
753
754 void security_cred_free(struct cred *cred)
755 {
756         security_ops->cred_free(cred);
757 }
758
759 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
760 {
761         return security_ops->cred_prepare(new, old, gfp);
762 }
763
764 void security_transfer_creds(struct cred *new, const struct cred *old)
765 {
766         security_ops->cred_transfer(new, old);
767 }
768
769 int security_kernel_act_as(struct cred *new, u32 secid)
770 {
771         return security_ops->kernel_act_as(new, secid);
772 }
773
774 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
775 {
776         return security_ops->kernel_create_files_as(new, inode);
777 }
778
779 int security_kernel_module_request(char *kmod_name)
780 {
781         return security_ops->kernel_module_request(kmod_name);
782 }
783
784 int security_task_fix_setuid(struct cred *new, const struct cred *old,
785                              int flags)
786 {
787         return security_ops->task_fix_setuid(new, old, flags);
788 }
789
790 int security_task_setpgid(struct task_struct *p, pid_t pgid)
791 {
792         return security_ops->task_setpgid(p, pgid);
793 }
794
795 int security_task_getpgid(struct task_struct *p)
796 {
797         return security_ops->task_getpgid(p);
798 }
799
800 int security_task_getsid(struct task_struct *p)
801 {
802         return security_ops->task_getsid(p);
803 }
804
805 void security_task_getsecid(struct task_struct *p, u32 *secid)
806 {
807         security_ops->task_getsecid(p, secid);
808 }
809 EXPORT_SYMBOL(security_task_getsecid);
810
811 int security_task_setnice(struct task_struct *p, int nice)
812 {
813         return security_ops->task_setnice(p, nice);
814 }
815
816 int security_task_setioprio(struct task_struct *p, int ioprio)
817 {
818         return security_ops->task_setioprio(p, ioprio);
819 }
820
821 int security_task_getioprio(struct task_struct *p)
822 {
823         return security_ops->task_getioprio(p);
824 }
825
826 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
827                 struct rlimit *new_rlim)
828 {
829         return security_ops->task_setrlimit(p, resource, new_rlim);
830 }
831
832 int security_task_setscheduler(struct task_struct *p)
833 {
834         return security_ops->task_setscheduler(p);
835 }
836
837 int security_task_getscheduler(struct task_struct *p)
838 {
839         return security_ops->task_getscheduler(p);
840 }
841
842 int security_task_movememory(struct task_struct *p)
843 {
844         return security_ops->task_movememory(p);
845 }
846
847 int security_task_kill(struct task_struct *p, struct siginfo *info,
848                         int sig, u32 secid)
849 {
850         return security_ops->task_kill(p, info, sig, secid);
851 }
852
853 int security_task_wait(struct task_struct *p)
854 {
855         return security_ops->task_wait(p);
856 }
857
858 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
859                          unsigned long arg4, unsigned long arg5)
860 {
861 #if CONFIG_SECURITY_YAMA
862         int rc;
863         rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
864         if (rc != -ENOSYS || security_ops->task_prctl == yama_task_prctl)
865                 return rc;
866 #endif
867         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
868 }
869
870 void security_task_to_inode(struct task_struct *p, struct inode *inode)
871 {
872         security_ops->task_to_inode(p, inode);
873 }
874
875 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
876 {
877         return security_ops->ipc_permission(ipcp, flag);
878 }
879
880 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
881 {
882         security_ops->ipc_getsecid(ipcp, secid);
883 }
884
885 int security_msg_msg_alloc(struct msg_msg *msg)
886 {
887         return security_ops->msg_msg_alloc_security(msg);
888 }
889
890 void security_msg_msg_free(struct msg_msg *msg)
891 {
892         security_ops->msg_msg_free_security(msg);
893 }
894
895 int security_msg_queue_alloc(struct msg_queue *msq)
896 {
897         return security_ops->msg_queue_alloc_security(msq);
898 }
899
900 void security_msg_queue_free(struct msg_queue *msq)
901 {
902         security_ops->msg_queue_free_security(msq);
903 }
904
905 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
906 {
907         return security_ops->msg_queue_associate(msq, msqflg);
908 }
909
910 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
911 {
912         return security_ops->msg_queue_msgctl(msq, cmd);
913 }
914
915 int security_msg_queue_msgsnd(struct msg_queue *msq,
916                                struct msg_msg *msg, int msqflg)
917 {
918         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
919 }
920
921 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
922                                struct task_struct *target, long type, int mode)
923 {
924         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
925 }
926
927 int security_shm_alloc(struct shmid_kernel *shp)
928 {
929         return security_ops->shm_alloc_security(shp);
930 }
931
932 void security_shm_free(struct shmid_kernel *shp)
933 {
934         security_ops->shm_free_security(shp);
935 }
936
937 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
938 {
939         return security_ops->shm_associate(shp, shmflg);
940 }
941
942 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
943 {
944         return security_ops->shm_shmctl(shp, cmd);
945 }
946
947 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
948 {
949         return security_ops->shm_shmat(shp, shmaddr, shmflg);
950 }
951
952 int security_sem_alloc(struct sem_array *sma)
953 {
954         return security_ops->sem_alloc_security(sma);
955 }
956
957 void security_sem_free(struct sem_array *sma)
958 {
959         security_ops->sem_free_security(sma);
960 }
961
962 int security_sem_associate(struct sem_array *sma, int semflg)
963 {
964         return security_ops->sem_associate(sma, semflg);
965 }
966
967 int security_sem_semctl(struct sem_array *sma, int cmd)
968 {
969         return security_ops->sem_semctl(sma, cmd);
970 }
971
972 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
973                         unsigned nsops, int alter)
974 {
975         return security_ops->sem_semop(sma, sops, nsops, alter);
976 }
977
978 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
979 {
980         if (unlikely(inode && IS_PRIVATE(inode)))
981                 return;
982         security_ops->d_instantiate(dentry, inode);
983 }
984 EXPORT_SYMBOL(security_d_instantiate);
985
986 int security_getprocattr(struct task_struct *p, char *name, char **value)
987 {
988         return security_ops->getprocattr(p, name, value);
989 }
990
991 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
992 {
993         return security_ops->setprocattr(p, name, value, size);
994 }
995
996 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
997 {
998         return security_ops->netlink_send(sk, skb);
999 }
1000
1001 int security_netlink_recv(struct sk_buff *skb, int cap)
1002 {
1003         return security_ops->netlink_recv(skb, cap);
1004 }
1005 EXPORT_SYMBOL(security_netlink_recv);
1006
1007 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1008 {
1009         return security_ops->secid_to_secctx(secid, secdata, seclen);
1010 }
1011 EXPORT_SYMBOL(security_secid_to_secctx);
1012
1013 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1014 {
1015         return security_ops->secctx_to_secid(secdata, seclen, secid);
1016 }
1017 EXPORT_SYMBOL(security_secctx_to_secid);
1018
1019 void security_release_secctx(char *secdata, u32 seclen)
1020 {
1021         security_ops->release_secctx(secdata, seclen);
1022 }
1023 EXPORT_SYMBOL(security_release_secctx);
1024
1025 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1026 {
1027         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1028 }
1029 EXPORT_SYMBOL(security_inode_notifysecctx);
1030
1031 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1032 {
1033         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1034 }
1035 EXPORT_SYMBOL(security_inode_setsecctx);
1036
1037 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1038 {
1039         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1040 }
1041 EXPORT_SYMBOL(security_inode_getsecctx);
1042
1043 #ifdef CONFIG_SECURITY_NETWORK
1044
1045 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1046 {
1047         return security_ops->unix_stream_connect(sock, other, newsk);
1048 }
1049 EXPORT_SYMBOL(security_unix_stream_connect);
1050
1051 int security_unix_may_send(struct socket *sock,  struct socket *other)
1052 {
1053         return security_ops->unix_may_send(sock, other);
1054 }
1055 EXPORT_SYMBOL(security_unix_may_send);
1056
1057 int security_socket_create(int family, int type, int protocol, int kern)
1058 {
1059         return security_ops->socket_create(family, type, protocol, kern);
1060 }
1061
1062 int security_socket_post_create(struct socket *sock, int family,
1063                                 int type, int protocol, int kern)
1064 {
1065         return security_ops->socket_post_create(sock, family, type,
1066                                                 protocol, kern);
1067 }
1068
1069 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1070 {
1071         return security_ops->socket_bind(sock, address, addrlen);
1072 }
1073
1074 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1075 {
1076         return security_ops->socket_connect(sock, address, addrlen);
1077 }
1078
1079 int security_socket_listen(struct socket *sock, int backlog)
1080 {
1081         return security_ops->socket_listen(sock, backlog);
1082 }
1083
1084 int security_socket_accept(struct socket *sock, struct socket *newsock)
1085 {
1086         return security_ops->socket_accept(sock, newsock);
1087 }
1088
1089 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1090 {
1091         return security_ops->socket_sendmsg(sock, msg, size);
1092 }
1093
1094 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1095                             int size, int flags)
1096 {
1097         return security_ops->socket_recvmsg(sock, msg, size, flags);
1098 }
1099
1100 int security_socket_getsockname(struct socket *sock)
1101 {
1102         return security_ops->socket_getsockname(sock);
1103 }
1104
1105 int security_socket_getpeername(struct socket *sock)
1106 {
1107         return security_ops->socket_getpeername(sock);
1108 }
1109
1110 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1111 {
1112         return security_ops->socket_getsockopt(sock, level, optname);
1113 }
1114
1115 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1116 {
1117         return security_ops->socket_setsockopt(sock, level, optname);
1118 }
1119
1120 int security_socket_shutdown(struct socket *sock, int how)
1121 {
1122         return security_ops->socket_shutdown(sock, how);
1123 }
1124
1125 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1126 {
1127         return security_ops->socket_sock_rcv_skb(sk, skb);
1128 }
1129 EXPORT_SYMBOL(security_sock_rcv_skb);
1130
1131 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1132                                       int __user *optlen, unsigned len)
1133 {
1134         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1135 }
1136
1137 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1138 {
1139         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1140 }
1141 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1142
1143 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1144 {
1145         return security_ops->sk_alloc_security(sk, family, priority);
1146 }
1147
1148 void security_sk_free(struct sock *sk)
1149 {
1150         security_ops->sk_free_security(sk);
1151 }
1152
1153 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1154 {
1155         security_ops->sk_clone_security(sk, newsk);
1156 }
1157
1158 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1159 {
1160         security_ops->sk_getsecid(sk, &fl->secid);
1161 }
1162 EXPORT_SYMBOL(security_sk_classify_flow);
1163
1164 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1165 {
1166         security_ops->req_classify_flow(req, fl);
1167 }
1168 EXPORT_SYMBOL(security_req_classify_flow);
1169
1170 void security_sock_graft(struct sock *sk, struct socket *parent)
1171 {
1172         security_ops->sock_graft(sk, parent);
1173 }
1174 EXPORT_SYMBOL(security_sock_graft);
1175
1176 int security_inet_conn_request(struct sock *sk,
1177                         struct sk_buff *skb, struct request_sock *req)
1178 {
1179         return security_ops->inet_conn_request(sk, skb, req);
1180 }
1181 EXPORT_SYMBOL(security_inet_conn_request);
1182
1183 void security_inet_csk_clone(struct sock *newsk,
1184                         const struct request_sock *req)
1185 {
1186         security_ops->inet_csk_clone(newsk, req);
1187 }
1188
1189 void security_inet_conn_established(struct sock *sk,
1190                         struct sk_buff *skb)
1191 {
1192         security_ops->inet_conn_established(sk, skb);
1193 }
1194
1195 int security_secmark_relabel_packet(u32 secid)
1196 {
1197         return security_ops->secmark_relabel_packet(secid);
1198 }
1199 EXPORT_SYMBOL(security_secmark_relabel_packet);
1200
1201 void security_secmark_refcount_inc(void)
1202 {
1203         security_ops->secmark_refcount_inc();
1204 }
1205 EXPORT_SYMBOL(security_secmark_refcount_inc);
1206
1207 void security_secmark_refcount_dec(void)
1208 {
1209         security_ops->secmark_refcount_dec();
1210 }
1211 EXPORT_SYMBOL(security_secmark_refcount_dec);
1212
1213 int security_tun_dev_create(void)
1214 {
1215         return security_ops->tun_dev_create();
1216 }
1217 EXPORT_SYMBOL(security_tun_dev_create);
1218
1219 void security_tun_dev_post_create(struct sock *sk)
1220 {
1221         return security_ops->tun_dev_post_create(sk);
1222 }
1223 EXPORT_SYMBOL(security_tun_dev_post_create);
1224
1225 int security_tun_dev_attach(struct sock *sk)
1226 {
1227         return security_ops->tun_dev_attach(sk);
1228 }
1229 EXPORT_SYMBOL(security_tun_dev_attach);
1230
1231 #endif  /* CONFIG_SECURITY_NETWORK */
1232
1233 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1234
1235 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1236 {
1237         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1238 }
1239 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1240
1241 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1242                               struct xfrm_sec_ctx **new_ctxp)
1243 {
1244         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1245 }
1246
1247 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1248 {
1249         security_ops->xfrm_policy_free_security(ctx);
1250 }
1251 EXPORT_SYMBOL(security_xfrm_policy_free);
1252
1253 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1254 {
1255         return security_ops->xfrm_policy_delete_security(ctx);
1256 }
1257
1258 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1259 {
1260         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1261 }
1262 EXPORT_SYMBOL(security_xfrm_state_alloc);
1263
1264 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1265                                       struct xfrm_sec_ctx *polsec, u32 secid)
1266 {
1267         if (!polsec)
1268                 return 0;
1269         /*
1270          * We want the context to be taken from secid which is usually
1271          * from the sock.
1272          */
1273         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1274 }
1275
1276 int security_xfrm_state_delete(struct xfrm_state *x)
1277 {
1278         return security_ops->xfrm_state_delete_security(x);
1279 }
1280 EXPORT_SYMBOL(security_xfrm_state_delete);
1281
1282 void security_xfrm_state_free(struct xfrm_state *x)
1283 {
1284         security_ops->xfrm_state_free_security(x);
1285 }
1286
1287 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1288 {
1289         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1290 }
1291
1292 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1293                                        struct xfrm_policy *xp, struct flowi *fl)
1294 {
1295         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1296 }
1297
1298 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1299 {
1300         return security_ops->xfrm_decode_session(skb, secid, 1);
1301 }
1302
1303 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1304 {
1305         int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1306
1307         BUG_ON(rc);
1308 }
1309 EXPORT_SYMBOL(security_skb_classify_flow);
1310
1311 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1312
1313 #ifdef CONFIG_KEYS
1314
1315 int security_key_alloc(struct key *key, const struct cred *cred,
1316                        unsigned long flags)
1317 {
1318         return security_ops->key_alloc(key, cred, flags);
1319 }
1320
1321 void security_key_free(struct key *key)
1322 {
1323         security_ops->key_free(key);
1324 }
1325
1326 int security_key_permission(key_ref_t key_ref,
1327                             const struct cred *cred, key_perm_t perm)
1328 {
1329         return security_ops->key_permission(key_ref, cred, perm);
1330 }
1331
1332 int security_key_getsecurity(struct key *key, char **_buffer)
1333 {
1334         return security_ops->key_getsecurity(key, _buffer);
1335 }
1336
1337 #endif  /* CONFIG_KEYS */
1338
1339 #ifdef CONFIG_AUDIT
1340
1341 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1342 {
1343         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1344 }
1345
1346 int security_audit_rule_known(struct audit_krule *krule)
1347 {
1348         return security_ops->audit_rule_known(krule);
1349 }
1350
1351 void security_audit_rule_free(void *lsmrule)
1352 {
1353         security_ops->audit_rule_free(lsmrule);
1354 }
1355
1356 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1357                               struct audit_context *actx)
1358 {
1359         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1360 }
1361
1362 #endif /* CONFIG_AUDIT */