mm: Convert i_mmap_lock to a mutex
[linux-flexiantxendom0-3.2.10.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100                                         1;
101 #else
102                                         2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107         randomize_va_space = 0;
108         return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120         zero_pfn = page_to_pfn(ZERO_PAGE(0));
121         return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130         int i;
131
132         for (i = 0; i < NR_MM_COUNTERS; i++) {
133                 if (task->rss_stat.count[i]) {
134                         add_mm_counter(mm, i, task->rss_stat.count[i]);
135                         task->rss_stat.count[i] = 0;
136                 }
137         }
138         task->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143         struct task_struct *task = current;
144
145         if (likely(task->mm == mm))
146                 task->rss_stat.count[member] += val;
147         else
148                 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH  (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157         if (unlikely(task != current))
158                 return;
159         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160                 __sync_task_rss_stat(task, task->mm);
161 }
162
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165         long val = 0;
166
167         /*
168          * Don't use task->mm here...for avoiding to use task_get_mm()..
169          * The caller must guarantee task->mm is not invalid.
170          */
171         val = atomic_long_read(&mm->rss_stat.count[member]);
172         /*
173          * counter is updated in asynchronous manner and may go to minus.
174          * But it's never be expected number for users.
175          */
176         if (val < 0)
177                 return 0;
178         return (unsigned long)val;
179 }
180
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183         __sync_task_rss_stat(task, mm);
184 }
185 #else
186
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193
194 #endif
195
196 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
197
198 /*
199  * See the comment near struct mmu_table_batch.
200  */
201
202 static void tlb_remove_table_smp_sync(void *arg)
203 {
204         /* Simply deliver the interrupt */
205 }
206
207 static void tlb_remove_table_one(void *table)
208 {
209         /*
210          * This isn't an RCU grace period and hence the page-tables cannot be
211          * assumed to be actually RCU-freed.
212          *
213          * It is however sufficient for software page-table walkers that rely on
214          * IRQ disabling. See the comment near struct mmu_table_batch.
215          */
216         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
217         __tlb_remove_table(table);
218 }
219
220 static void tlb_remove_table_rcu(struct rcu_head *head)
221 {
222         struct mmu_table_batch *batch;
223         int i;
224
225         batch = container_of(head, struct mmu_table_batch, rcu);
226
227         for (i = 0; i < batch->nr; i++)
228                 __tlb_remove_table(batch->tables[i]);
229
230         free_page((unsigned long)batch);
231 }
232
233 void tlb_table_flush(struct mmu_gather *tlb)
234 {
235         struct mmu_table_batch **batch = &tlb->batch;
236
237         if (*batch) {
238                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
239                 *batch = NULL;
240         }
241 }
242
243 void tlb_remove_table(struct mmu_gather *tlb, void *table)
244 {
245         struct mmu_table_batch **batch = &tlb->batch;
246
247         tlb->need_flush = 1;
248
249         /*
250          * When there's less then two users of this mm there cannot be a
251          * concurrent page-table walk.
252          */
253         if (atomic_read(&tlb->mm->mm_users) < 2) {
254                 __tlb_remove_table(table);
255                 return;
256         }
257
258         if (*batch == NULL) {
259                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
260                 if (*batch == NULL) {
261                         tlb_remove_table_one(table);
262                         return;
263                 }
264                 (*batch)->nr = 0;
265         }
266         (*batch)->tables[(*batch)->nr++] = table;
267         if ((*batch)->nr == MAX_TABLE_BATCH)
268                 tlb_table_flush(tlb);
269 }
270
271 #endif
272
273 /*
274  * If a p?d_bad entry is found while walking page tables, report
275  * the error, before resetting entry to p?d_none.  Usually (but
276  * very seldom) called out from the p?d_none_or_clear_bad macros.
277  */
278
279 void pgd_clear_bad(pgd_t *pgd)
280 {
281         pgd_ERROR(*pgd);
282         pgd_clear(pgd);
283 }
284
285 void pud_clear_bad(pud_t *pud)
286 {
287         pud_ERROR(*pud);
288         pud_clear(pud);
289 }
290
291 void pmd_clear_bad(pmd_t *pmd)
292 {
293         pmd_ERROR(*pmd);
294         pmd_clear(pmd);
295 }
296
297 /*
298  * Note: this doesn't free the actual pages themselves. That
299  * has been handled earlier when unmapping all the memory regions.
300  */
301 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
302                            unsigned long addr)
303 {
304         pgtable_t token = pmd_pgtable(*pmd);
305         pmd_clear(pmd);
306         pte_free_tlb(tlb, token, addr);
307         tlb->mm->nr_ptes--;
308 }
309
310 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
311                                 unsigned long addr, unsigned long end,
312                                 unsigned long floor, unsigned long ceiling)
313 {
314         pmd_t *pmd;
315         unsigned long next;
316         unsigned long start;
317
318         start = addr;
319         pmd = pmd_offset(pud, addr);
320         do {
321                 next = pmd_addr_end(addr, end);
322                 if (pmd_none_or_clear_bad(pmd))
323                         continue;
324                 free_pte_range(tlb, pmd, addr);
325         } while (pmd++, addr = next, addr != end);
326
327         start &= PUD_MASK;
328         if (start < floor)
329                 return;
330         if (ceiling) {
331                 ceiling &= PUD_MASK;
332                 if (!ceiling)
333                         return;
334         }
335         if (end - 1 > ceiling - 1)
336                 return;
337
338         pmd = pmd_offset(pud, start);
339         pud_clear(pud);
340         pmd_free_tlb(tlb, pmd, start);
341 }
342
343 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
344                                 unsigned long addr, unsigned long end,
345                                 unsigned long floor, unsigned long ceiling)
346 {
347         pud_t *pud;
348         unsigned long next;
349         unsigned long start;
350
351         start = addr;
352         pud = pud_offset(pgd, addr);
353         do {
354                 next = pud_addr_end(addr, end);
355                 if (pud_none_or_clear_bad(pud))
356                         continue;
357                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
358         } while (pud++, addr = next, addr != end);
359
360         start &= PGDIR_MASK;
361         if (start < floor)
362                 return;
363         if (ceiling) {
364                 ceiling &= PGDIR_MASK;
365                 if (!ceiling)
366                         return;
367         }
368         if (end - 1 > ceiling - 1)
369                 return;
370
371         pud = pud_offset(pgd, start);
372         pgd_clear(pgd);
373         pud_free_tlb(tlb, pud, start);
374 }
375
376 /*
377  * This function frees user-level page tables of a process.
378  *
379  * Must be called with pagetable lock held.
380  */
381 void free_pgd_range(struct mmu_gather *tlb,
382                         unsigned long addr, unsigned long end,
383                         unsigned long floor, unsigned long ceiling)
384 {
385         pgd_t *pgd;
386         unsigned long next;
387
388         /*
389          * The next few lines have given us lots of grief...
390          *
391          * Why are we testing PMD* at this top level?  Because often
392          * there will be no work to do at all, and we'd prefer not to
393          * go all the way down to the bottom just to discover that.
394          *
395          * Why all these "- 1"s?  Because 0 represents both the bottom
396          * of the address space and the top of it (using -1 for the
397          * top wouldn't help much: the masks would do the wrong thing).
398          * The rule is that addr 0 and floor 0 refer to the bottom of
399          * the address space, but end 0 and ceiling 0 refer to the top
400          * Comparisons need to use "end - 1" and "ceiling - 1" (though
401          * that end 0 case should be mythical).
402          *
403          * Wherever addr is brought up or ceiling brought down, we must
404          * be careful to reject "the opposite 0" before it confuses the
405          * subsequent tests.  But what about where end is brought down
406          * by PMD_SIZE below? no, end can't go down to 0 there.
407          *
408          * Whereas we round start (addr) and ceiling down, by different
409          * masks at different levels, in order to test whether a table
410          * now has no other vmas using it, so can be freed, we don't
411          * bother to round floor or end up - the tests don't need that.
412          */
413
414         addr &= PMD_MASK;
415         if (addr < floor) {
416                 addr += PMD_SIZE;
417                 if (!addr)
418                         return;
419         }
420         if (ceiling) {
421                 ceiling &= PMD_MASK;
422                 if (!ceiling)
423                         return;
424         }
425         if (end - 1 > ceiling - 1)
426                 end -= PMD_SIZE;
427         if (addr > end - 1)
428                 return;
429
430         pgd = pgd_offset(tlb->mm, addr);
431         do {
432                 next = pgd_addr_end(addr, end);
433                 if (pgd_none_or_clear_bad(pgd))
434                         continue;
435                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
436         } while (pgd++, addr = next, addr != end);
437 }
438
439 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
440                 unsigned long floor, unsigned long ceiling)
441 {
442         while (vma) {
443                 struct vm_area_struct *next = vma->vm_next;
444                 unsigned long addr = vma->vm_start;
445
446                 /*
447                  * Hide vma from rmap and truncate_pagecache before freeing
448                  * pgtables
449                  */
450                 unlink_anon_vmas(vma);
451                 unlink_file_vma(vma);
452
453                 if (is_vm_hugetlb_page(vma)) {
454                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
455                                 floor, next? next->vm_start: ceiling);
456                 } else {
457                         /*
458                          * Optimization: gather nearby vmas into one call down
459                          */
460                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
461                                && !is_vm_hugetlb_page(next)) {
462                                 vma = next;
463                                 next = vma->vm_next;
464                                 unlink_anon_vmas(vma);
465                                 unlink_file_vma(vma);
466                         }
467                         free_pgd_range(tlb, addr, vma->vm_end,
468                                 floor, next? next->vm_start: ceiling);
469                 }
470                 vma = next;
471         }
472 }
473
474 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
475                 pmd_t *pmd, unsigned long address)
476 {
477         pgtable_t new = pte_alloc_one(mm, address);
478         int wait_split_huge_page;
479         if (!new)
480                 return -ENOMEM;
481
482         /*
483          * Ensure all pte setup (eg. pte page lock and page clearing) are
484          * visible before the pte is made visible to other CPUs by being
485          * put into page tables.
486          *
487          * The other side of the story is the pointer chasing in the page
488          * table walking code (when walking the page table without locking;
489          * ie. most of the time). Fortunately, these data accesses consist
490          * of a chain of data-dependent loads, meaning most CPUs (alpha
491          * being the notable exception) will already guarantee loads are
492          * seen in-order. See the alpha page table accessors for the
493          * smp_read_barrier_depends() barriers in page table walking code.
494          */
495         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
496
497         spin_lock(&mm->page_table_lock);
498         wait_split_huge_page = 0;
499         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
500                 mm->nr_ptes++;
501                 pmd_populate(mm, pmd, new);
502                 new = NULL;
503         } else if (unlikely(pmd_trans_splitting(*pmd)))
504                 wait_split_huge_page = 1;
505         spin_unlock(&mm->page_table_lock);
506         if (new)
507                 pte_free(mm, new);
508         if (wait_split_huge_page)
509                 wait_split_huge_page(vma->anon_vma, pmd);
510         return 0;
511 }
512
513 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
514 {
515         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
516         if (!new)
517                 return -ENOMEM;
518
519         smp_wmb(); /* See comment in __pte_alloc */
520
521         spin_lock(&init_mm.page_table_lock);
522         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
523                 pmd_populate_kernel(&init_mm, pmd, new);
524                 new = NULL;
525         } else
526                 VM_BUG_ON(pmd_trans_splitting(*pmd));
527         spin_unlock(&init_mm.page_table_lock);
528         if (new)
529                 pte_free_kernel(&init_mm, new);
530         return 0;
531 }
532
533 static inline void init_rss_vec(int *rss)
534 {
535         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
536 }
537
538 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
539 {
540         int i;
541
542         if (current->mm == mm)
543                 sync_mm_rss(current, mm);
544         for (i = 0; i < NR_MM_COUNTERS; i++)
545                 if (rss[i])
546                         add_mm_counter(mm, i, rss[i]);
547 }
548
549 /*
550  * This function is called to print an error when a bad pte
551  * is found. For example, we might have a PFN-mapped pte in
552  * a region that doesn't allow it.
553  *
554  * The calling function must still handle the error.
555  */
556 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
557                           pte_t pte, struct page *page)
558 {
559         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
560         pud_t *pud = pud_offset(pgd, addr);
561         pmd_t *pmd = pmd_offset(pud, addr);
562         struct address_space *mapping;
563         pgoff_t index;
564         static unsigned long resume;
565         static unsigned long nr_shown;
566         static unsigned long nr_unshown;
567
568         /*
569          * Allow a burst of 60 reports, then keep quiet for that minute;
570          * or allow a steady drip of one report per second.
571          */
572         if (nr_shown == 60) {
573                 if (time_before(jiffies, resume)) {
574                         nr_unshown++;
575                         return;
576                 }
577                 if (nr_unshown) {
578                         printk(KERN_ALERT
579                                 "BUG: Bad page map: %lu messages suppressed\n",
580                                 nr_unshown);
581                         nr_unshown = 0;
582                 }
583                 nr_shown = 0;
584         }
585         if (nr_shown++ == 0)
586                 resume = jiffies + 60 * HZ;
587
588         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
589         index = linear_page_index(vma, addr);
590
591         printk(KERN_ALERT
592                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
593                 current->comm,
594                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
595         if (page)
596                 dump_page(page);
597         printk(KERN_ALERT
598                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
599                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
600         /*
601          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
602          */
603         if (vma->vm_ops)
604                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
605                                 (unsigned long)vma->vm_ops->fault);
606         if (vma->vm_file && vma->vm_file->f_op)
607                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
608                                 (unsigned long)vma->vm_file->f_op->mmap);
609         dump_stack();
610         add_taint(TAINT_BAD_PAGE);
611 }
612
613 static inline int is_cow_mapping(unsigned int flags)
614 {
615         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
616 }
617
618 #ifndef is_zero_pfn
619 static inline int is_zero_pfn(unsigned long pfn)
620 {
621         return pfn == zero_pfn;
622 }
623 #endif
624
625 #ifndef my_zero_pfn
626 static inline unsigned long my_zero_pfn(unsigned long addr)
627 {
628         return zero_pfn;
629 }
630 #endif
631
632 /*
633  * vm_normal_page -- This function gets the "struct page" associated with a pte.
634  *
635  * "Special" mappings do not wish to be associated with a "struct page" (either
636  * it doesn't exist, or it exists but they don't want to touch it). In this
637  * case, NULL is returned here. "Normal" mappings do have a struct page.
638  *
639  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
640  * pte bit, in which case this function is trivial. Secondly, an architecture
641  * may not have a spare pte bit, which requires a more complicated scheme,
642  * described below.
643  *
644  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
645  * special mapping (even if there are underlying and valid "struct pages").
646  * COWed pages of a VM_PFNMAP are always normal.
647  *
648  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
649  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
650  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
651  * mapping will always honor the rule
652  *
653  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
654  *
655  * And for normal mappings this is false.
656  *
657  * This restricts such mappings to be a linear translation from virtual address
658  * to pfn. To get around this restriction, we allow arbitrary mappings so long
659  * as the vma is not a COW mapping; in that case, we know that all ptes are
660  * special (because none can have been COWed).
661  *
662  *
663  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
664  *
665  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
666  * page" backing, however the difference is that _all_ pages with a struct
667  * page (that is, those where pfn_valid is true) are refcounted and considered
668  * normal pages by the VM. The disadvantage is that pages are refcounted
669  * (which can be slower and simply not an option for some PFNMAP users). The
670  * advantage is that we don't have to follow the strict linearity rule of
671  * PFNMAP mappings in order to support COWable mappings.
672  *
673  */
674 #ifdef __HAVE_ARCH_PTE_SPECIAL
675 # define HAVE_PTE_SPECIAL 1
676 #else
677 # define HAVE_PTE_SPECIAL 0
678 #endif
679 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
680                                 pte_t pte)
681 {
682         unsigned long pfn = pte_pfn(pte);
683
684         if (HAVE_PTE_SPECIAL) {
685                 if (likely(!pte_special(pte)))
686                         goto check_pfn;
687                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
688                         return NULL;
689                 if (!is_zero_pfn(pfn))
690                         print_bad_pte(vma, addr, pte, NULL);
691                 return NULL;
692         }
693
694         /* !HAVE_PTE_SPECIAL case follows: */
695
696         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
697                 if (vma->vm_flags & VM_MIXEDMAP) {
698                         if (!pfn_valid(pfn))
699                                 return NULL;
700                         goto out;
701                 } else {
702                         unsigned long off;
703                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
704                         if (pfn == vma->vm_pgoff + off)
705                                 return NULL;
706                         if (!is_cow_mapping(vma->vm_flags))
707                                 return NULL;
708                 }
709         }
710
711         if (is_zero_pfn(pfn))
712                 return NULL;
713 check_pfn:
714         if (unlikely(pfn > highest_memmap_pfn)) {
715                 print_bad_pte(vma, addr, pte, NULL);
716                 return NULL;
717         }
718
719         /*
720          * NOTE! We still have PageReserved() pages in the page tables.
721          * eg. VDSO mappings can cause them to exist.
722          */
723 out:
724         return pfn_to_page(pfn);
725 }
726
727 /*
728  * copy one vm_area from one task to the other. Assumes the page tables
729  * already present in the new task to be cleared in the whole range
730  * covered by this vma.
731  */
732
733 static inline unsigned long
734 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
735                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
736                 unsigned long addr, int *rss)
737 {
738         unsigned long vm_flags = vma->vm_flags;
739         pte_t pte = *src_pte;
740         struct page *page;
741
742         /* pte contains position in swap or file, so copy. */
743         if (unlikely(!pte_present(pte))) {
744                 if (!pte_file(pte)) {
745                         swp_entry_t entry = pte_to_swp_entry(pte);
746
747                         if (swap_duplicate(entry) < 0)
748                                 return entry.val;
749
750                         /* make sure dst_mm is on swapoff's mmlist. */
751                         if (unlikely(list_empty(&dst_mm->mmlist))) {
752                                 spin_lock(&mmlist_lock);
753                                 if (list_empty(&dst_mm->mmlist))
754                                         list_add(&dst_mm->mmlist,
755                                                  &src_mm->mmlist);
756                                 spin_unlock(&mmlist_lock);
757                         }
758                         if (likely(!non_swap_entry(entry)))
759                                 rss[MM_SWAPENTS]++;
760                         else if (is_write_migration_entry(entry) &&
761                                         is_cow_mapping(vm_flags)) {
762                                 /*
763                                  * COW mappings require pages in both parent
764                                  * and child to be set to read.
765                                  */
766                                 make_migration_entry_read(&entry);
767                                 pte = swp_entry_to_pte(entry);
768                                 set_pte_at(src_mm, addr, src_pte, pte);
769                         }
770                 }
771                 goto out_set_pte;
772         }
773
774         /*
775          * If it's a COW mapping, write protect it both
776          * in the parent and the child
777          */
778         if (is_cow_mapping(vm_flags)) {
779                 ptep_set_wrprotect(src_mm, addr, src_pte);
780                 pte = pte_wrprotect(pte);
781         }
782
783         /*
784          * If it's a shared mapping, mark it clean in
785          * the child
786          */
787         if (vm_flags & VM_SHARED)
788                 pte = pte_mkclean(pte);
789         pte = pte_mkold(pte);
790
791         page = vm_normal_page(vma, addr, pte);
792         if (page) {
793                 get_page(page);
794                 page_dup_rmap(page);
795                 if (PageAnon(page))
796                         rss[MM_ANONPAGES]++;
797                 else
798                         rss[MM_FILEPAGES]++;
799         }
800
801 out_set_pte:
802         set_pte_at(dst_mm, addr, dst_pte, pte);
803         return 0;
804 }
805
806 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
807                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
808                    unsigned long addr, unsigned long end)
809 {
810         pte_t *orig_src_pte, *orig_dst_pte;
811         pte_t *src_pte, *dst_pte;
812         spinlock_t *src_ptl, *dst_ptl;
813         int progress = 0;
814         int rss[NR_MM_COUNTERS];
815         swp_entry_t entry = (swp_entry_t){0};
816
817 again:
818         init_rss_vec(rss);
819
820         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
821         if (!dst_pte)
822                 return -ENOMEM;
823         src_pte = pte_offset_map(src_pmd, addr);
824         src_ptl = pte_lockptr(src_mm, src_pmd);
825         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
826         orig_src_pte = src_pte;
827         orig_dst_pte = dst_pte;
828         arch_enter_lazy_mmu_mode();
829
830         do {
831                 /*
832                  * We are holding two locks at this point - either of them
833                  * could generate latencies in another task on another CPU.
834                  */
835                 if (progress >= 32) {
836                         progress = 0;
837                         if (need_resched() ||
838                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
839                                 break;
840                 }
841                 if (pte_none(*src_pte)) {
842                         progress++;
843                         continue;
844                 }
845                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
846                                                         vma, addr, rss);
847                 if (entry.val)
848                         break;
849                 progress += 8;
850         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
851
852         arch_leave_lazy_mmu_mode();
853         spin_unlock(src_ptl);
854         pte_unmap(orig_src_pte);
855         add_mm_rss_vec(dst_mm, rss);
856         pte_unmap_unlock(orig_dst_pte, dst_ptl);
857         cond_resched();
858
859         if (entry.val) {
860                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
861                         return -ENOMEM;
862                 progress = 0;
863         }
864         if (addr != end)
865                 goto again;
866         return 0;
867 }
868
869 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
870                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
871                 unsigned long addr, unsigned long end)
872 {
873         pmd_t *src_pmd, *dst_pmd;
874         unsigned long next;
875
876         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
877         if (!dst_pmd)
878                 return -ENOMEM;
879         src_pmd = pmd_offset(src_pud, addr);
880         do {
881                 next = pmd_addr_end(addr, end);
882                 if (pmd_trans_huge(*src_pmd)) {
883                         int err;
884                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
885                         err = copy_huge_pmd(dst_mm, src_mm,
886                                             dst_pmd, src_pmd, addr, vma);
887                         if (err == -ENOMEM)
888                                 return -ENOMEM;
889                         if (!err)
890                                 continue;
891                         /* fall through */
892                 }
893                 if (pmd_none_or_clear_bad(src_pmd))
894                         continue;
895                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
896                                                 vma, addr, next))
897                         return -ENOMEM;
898         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
899         return 0;
900 }
901
902 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
903                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
904                 unsigned long addr, unsigned long end)
905 {
906         pud_t *src_pud, *dst_pud;
907         unsigned long next;
908
909         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
910         if (!dst_pud)
911                 return -ENOMEM;
912         src_pud = pud_offset(src_pgd, addr);
913         do {
914                 next = pud_addr_end(addr, end);
915                 if (pud_none_or_clear_bad(src_pud))
916                         continue;
917                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
918                                                 vma, addr, next))
919                         return -ENOMEM;
920         } while (dst_pud++, src_pud++, addr = next, addr != end);
921         return 0;
922 }
923
924 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
925                 struct vm_area_struct *vma)
926 {
927         pgd_t *src_pgd, *dst_pgd;
928         unsigned long next;
929         unsigned long addr = vma->vm_start;
930         unsigned long end = vma->vm_end;
931         int ret;
932
933         /*
934          * Don't copy ptes where a page fault will fill them correctly.
935          * Fork becomes much lighter when there are big shared or private
936          * readonly mappings. The tradeoff is that copy_page_range is more
937          * efficient than faulting.
938          */
939         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
940                 if (!vma->anon_vma)
941                         return 0;
942         }
943
944         if (is_vm_hugetlb_page(vma))
945                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
946
947         if (unlikely(is_pfn_mapping(vma))) {
948                 /*
949                  * We do not free on error cases below as remove_vma
950                  * gets called on error from higher level routine
951                  */
952                 ret = track_pfn_vma_copy(vma);
953                 if (ret)
954                         return ret;
955         }
956
957         /*
958          * We need to invalidate the secondary MMU mappings only when
959          * there could be a permission downgrade on the ptes of the
960          * parent mm. And a permission downgrade will only happen if
961          * is_cow_mapping() returns true.
962          */
963         if (is_cow_mapping(vma->vm_flags))
964                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
965
966         ret = 0;
967         dst_pgd = pgd_offset(dst_mm, addr);
968         src_pgd = pgd_offset(src_mm, addr);
969         do {
970                 next = pgd_addr_end(addr, end);
971                 if (pgd_none_or_clear_bad(src_pgd))
972                         continue;
973                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
974                                             vma, addr, next))) {
975                         ret = -ENOMEM;
976                         break;
977                 }
978         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
979
980         if (is_cow_mapping(vma->vm_flags))
981                 mmu_notifier_invalidate_range_end(src_mm,
982                                                   vma->vm_start, end);
983         return ret;
984 }
985
986 static unsigned long zap_pte_range(struct mmu_gather *tlb,
987                                 struct vm_area_struct *vma, pmd_t *pmd,
988                                 unsigned long addr, unsigned long end,
989                                 struct zap_details *details)
990 {
991         struct mm_struct *mm = tlb->mm;
992         int force_flush = 0;
993         int rss[NR_MM_COUNTERS];
994         spinlock_t *ptl;
995         pte_t *pte;
996
997 again:
998         init_rss_vec(rss);
999         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1000         arch_enter_lazy_mmu_mode();
1001         do {
1002                 pte_t ptent = *pte;
1003                 if (pte_none(ptent)) {
1004                         continue;
1005                 }
1006
1007                 if (pte_present(ptent)) {
1008                         struct page *page;
1009
1010                         page = vm_normal_page(vma, addr, ptent);
1011                         if (unlikely(details) && page) {
1012                                 /*
1013                                  * unmap_shared_mapping_pages() wants to
1014                                  * invalidate cache without truncating:
1015                                  * unmap shared but keep private pages.
1016                                  */
1017                                 if (details->check_mapping &&
1018                                     details->check_mapping != page->mapping)
1019                                         continue;
1020                                 /*
1021                                  * Each page->index must be checked when
1022                                  * invalidating or truncating nonlinear.
1023                                  */
1024                                 if (details->nonlinear_vma &&
1025                                     (page->index < details->first_index ||
1026                                      page->index > details->last_index))
1027                                         continue;
1028                         }
1029                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1030                                                         tlb->fullmm);
1031                         tlb_remove_tlb_entry(tlb, pte, addr);
1032                         if (unlikely(!page))
1033                                 continue;
1034                         if (unlikely(details) && details->nonlinear_vma
1035                             && linear_page_index(details->nonlinear_vma,
1036                                                 addr) != page->index)
1037                                 set_pte_at(mm, addr, pte,
1038                                            pgoff_to_pte(page->index));
1039                         if (PageAnon(page))
1040                                 rss[MM_ANONPAGES]--;
1041                         else {
1042                                 if (pte_dirty(ptent))
1043                                         set_page_dirty(page);
1044                                 if (pte_young(ptent) &&
1045                                     likely(!VM_SequentialReadHint(vma)))
1046                                         mark_page_accessed(page);
1047                                 rss[MM_FILEPAGES]--;
1048                         }
1049                         page_remove_rmap(page);
1050                         if (unlikely(page_mapcount(page) < 0))
1051                                 print_bad_pte(vma, addr, ptent, page);
1052                         force_flush = !__tlb_remove_page(tlb, page);
1053                         if (force_flush)
1054                                 break;
1055                         continue;
1056                 }
1057                 /*
1058                  * If details->check_mapping, we leave swap entries;
1059                  * if details->nonlinear_vma, we leave file entries.
1060                  */
1061                 if (unlikely(details))
1062                         continue;
1063                 if (pte_file(ptent)) {
1064                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1065                                 print_bad_pte(vma, addr, ptent, NULL);
1066                 } else {
1067                         swp_entry_t entry = pte_to_swp_entry(ptent);
1068
1069                         if (!non_swap_entry(entry))
1070                                 rss[MM_SWAPENTS]--;
1071                         if (unlikely(!free_swap_and_cache(entry)))
1072                                 print_bad_pte(vma, addr, ptent, NULL);
1073                 }
1074                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1075         } while (pte++, addr += PAGE_SIZE, addr != end);
1076
1077         add_mm_rss_vec(mm, rss);
1078         arch_leave_lazy_mmu_mode();
1079         pte_unmap_unlock(pte - 1, ptl);
1080
1081         /*
1082          * mmu_gather ran out of room to batch pages, we break out of
1083          * the PTE lock to avoid doing the potential expensive TLB invalidate
1084          * and page-free while holding it.
1085          */
1086         if (force_flush) {
1087                 force_flush = 0;
1088                 tlb_flush_mmu(tlb);
1089                 if (addr != end)
1090                         goto again;
1091         }
1092
1093         return addr;
1094 }
1095
1096 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1097                                 struct vm_area_struct *vma, pud_t *pud,
1098                                 unsigned long addr, unsigned long end,
1099                                 struct zap_details *details)
1100 {
1101         pmd_t *pmd;
1102         unsigned long next;
1103
1104         pmd = pmd_offset(pud, addr);
1105         do {
1106                 next = pmd_addr_end(addr, end);
1107                 if (pmd_trans_huge(*pmd)) {
1108                         if (next-addr != HPAGE_PMD_SIZE) {
1109                                 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1110                                 split_huge_page_pmd(vma->vm_mm, pmd);
1111                         } else if (zap_huge_pmd(tlb, vma, pmd))
1112                                 continue;
1113                         /* fall through */
1114                 }
1115                 if (pmd_none_or_clear_bad(pmd))
1116                         continue;
1117                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1118                 cond_resched();
1119         } while (pmd++, addr = next, addr != end);
1120
1121         return addr;
1122 }
1123
1124 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1125                                 struct vm_area_struct *vma, pgd_t *pgd,
1126                                 unsigned long addr, unsigned long end,
1127                                 struct zap_details *details)
1128 {
1129         pud_t *pud;
1130         unsigned long next;
1131
1132         pud = pud_offset(pgd, addr);
1133         do {
1134                 next = pud_addr_end(addr, end);
1135                 if (pud_none_or_clear_bad(pud))
1136                         continue;
1137                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1138         } while (pud++, addr = next, addr != end);
1139
1140         return addr;
1141 }
1142
1143 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1144                                 struct vm_area_struct *vma,
1145                                 unsigned long addr, unsigned long end,
1146                                 struct zap_details *details)
1147 {
1148         pgd_t *pgd;
1149         unsigned long next;
1150
1151         if (details && !details->check_mapping && !details->nonlinear_vma)
1152                 details = NULL;
1153
1154         BUG_ON(addr >= end);
1155         mem_cgroup_uncharge_start();
1156         tlb_start_vma(tlb, vma);
1157         pgd = pgd_offset(vma->vm_mm, addr);
1158         do {
1159                 next = pgd_addr_end(addr, end);
1160                 if (pgd_none_or_clear_bad(pgd))
1161                         continue;
1162                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1163         } while (pgd++, addr = next, addr != end);
1164         tlb_end_vma(tlb, vma);
1165         mem_cgroup_uncharge_end();
1166
1167         return addr;
1168 }
1169
1170 #ifdef CONFIG_PREEMPT
1171 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1172 #else
1173 /* No preempt: go for improved straight-line efficiency */
1174 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1175 #endif
1176
1177 /**
1178  * unmap_vmas - unmap a range of memory covered by a list of vma's
1179  * @tlbp: address of the caller's struct mmu_gather
1180  * @vma: the starting vma
1181  * @start_addr: virtual address at which to start unmapping
1182  * @end_addr: virtual address at which to end unmapping
1183  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1184  * @details: details of nonlinear truncation or shared cache invalidation
1185  *
1186  * Returns the end address of the unmapping (restart addr if interrupted).
1187  *
1188  * Unmap all pages in the vma list.
1189  *
1190  * We aim to not hold locks for too long (for scheduling latency reasons).
1191  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
1192  * return the ending mmu_gather to the caller.
1193  *
1194  * Only addresses between `start' and `end' will be unmapped.
1195  *
1196  * The VMA list must be sorted in ascending virtual address order.
1197  *
1198  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1199  * range after unmap_vmas() returns.  So the only responsibility here is to
1200  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1201  * drops the lock and schedules.
1202  */
1203 unsigned long unmap_vmas(struct mmu_gather *tlb,
1204                 struct vm_area_struct *vma, unsigned long start_addr,
1205                 unsigned long end_addr, unsigned long *nr_accounted,
1206                 struct zap_details *details)
1207 {
1208         unsigned long start = start_addr;
1209         struct mm_struct *mm = vma->vm_mm;
1210
1211         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1212         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1213                 unsigned long end;
1214
1215                 start = max(vma->vm_start, start_addr);
1216                 if (start >= vma->vm_end)
1217                         continue;
1218                 end = min(vma->vm_end, end_addr);
1219                 if (end <= vma->vm_start)
1220                         continue;
1221
1222                 if (vma->vm_flags & VM_ACCOUNT)
1223                         *nr_accounted += (end - start) >> PAGE_SHIFT;
1224
1225                 if (unlikely(is_pfn_mapping(vma)))
1226                         untrack_pfn_vma(vma, 0, 0);
1227
1228                 while (start != end) {
1229                         if (unlikely(is_vm_hugetlb_page(vma))) {
1230                                 /*
1231                                  * It is undesirable to test vma->vm_file as it
1232                                  * should be non-null for valid hugetlb area.
1233                                  * However, vm_file will be NULL in the error
1234                                  * cleanup path of do_mmap_pgoff. When
1235                                  * hugetlbfs ->mmap method fails,
1236                                  * do_mmap_pgoff() nullifies vma->vm_file
1237                                  * before calling this function to clean up.
1238                                  * Since no pte has actually been setup, it is
1239                                  * safe to do nothing in this case.
1240                                  */
1241                                 if (vma->vm_file)
1242                                         unmap_hugepage_range(vma, start, end, NULL);
1243
1244                                 start = end;
1245                         } else
1246                                 start = unmap_page_range(tlb, vma, start, end, details);
1247                 }
1248         }
1249
1250         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1251         return start;   /* which is now the end (or restart) address */
1252 }
1253
1254 /**
1255  * zap_page_range - remove user pages in a given range
1256  * @vma: vm_area_struct holding the applicable pages
1257  * @address: starting address of pages to zap
1258  * @size: number of bytes to zap
1259  * @details: details of nonlinear truncation or shared cache invalidation
1260  */
1261 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1262                 unsigned long size, struct zap_details *details)
1263 {
1264         struct mm_struct *mm = vma->vm_mm;
1265         struct mmu_gather tlb;
1266         unsigned long end = address + size;
1267         unsigned long nr_accounted = 0;
1268
1269         lru_add_drain();
1270         tlb_gather_mmu(&tlb, mm, 0);
1271         update_hiwater_rss(mm);
1272         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1273         tlb_finish_mmu(&tlb, address, end);
1274         return end;
1275 }
1276
1277 /**
1278  * zap_vma_ptes - remove ptes mapping the vma
1279  * @vma: vm_area_struct holding ptes to be zapped
1280  * @address: starting address of pages to zap
1281  * @size: number of bytes to zap
1282  *
1283  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1284  *
1285  * The entire address range must be fully contained within the vma.
1286  *
1287  * Returns 0 if successful.
1288  */
1289 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1290                 unsigned long size)
1291 {
1292         if (address < vma->vm_start || address + size > vma->vm_end ||
1293                         !(vma->vm_flags & VM_PFNMAP))
1294                 return -1;
1295         zap_page_range(vma, address, size, NULL);
1296         return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1299
1300 /**
1301  * follow_page - look up a page descriptor from a user-virtual address
1302  * @vma: vm_area_struct mapping @address
1303  * @address: virtual address to look up
1304  * @flags: flags modifying lookup behaviour
1305  *
1306  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1307  *
1308  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1309  * an error pointer if there is a mapping to something not represented
1310  * by a page descriptor (see also vm_normal_page()).
1311  */
1312 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1313                         unsigned int flags)
1314 {
1315         pgd_t *pgd;
1316         pud_t *pud;
1317         pmd_t *pmd;
1318         pte_t *ptep, pte;
1319         spinlock_t *ptl;
1320         struct page *page;
1321         struct mm_struct *mm = vma->vm_mm;
1322
1323         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1324         if (!IS_ERR(page)) {
1325                 BUG_ON(flags & FOLL_GET);
1326                 goto out;
1327         }
1328
1329         page = NULL;
1330         pgd = pgd_offset(mm, address);
1331         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1332                 goto no_page_table;
1333
1334         pud = pud_offset(pgd, address);
1335         if (pud_none(*pud))
1336                 goto no_page_table;
1337         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1338                 BUG_ON(flags & FOLL_GET);
1339                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1340                 goto out;
1341         }
1342         if (unlikely(pud_bad(*pud)))
1343                 goto no_page_table;
1344
1345         pmd = pmd_offset(pud, address);
1346         if (pmd_none(*pmd))
1347                 goto no_page_table;
1348         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1349                 BUG_ON(flags & FOLL_GET);
1350                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1351                 goto out;
1352         }
1353         if (pmd_trans_huge(*pmd)) {
1354                 if (flags & FOLL_SPLIT) {
1355                         split_huge_page_pmd(mm, pmd);
1356                         goto split_fallthrough;
1357                 }
1358                 spin_lock(&mm->page_table_lock);
1359                 if (likely(pmd_trans_huge(*pmd))) {
1360                         if (unlikely(pmd_trans_splitting(*pmd))) {
1361                                 spin_unlock(&mm->page_table_lock);
1362                                 wait_split_huge_page(vma->anon_vma, pmd);
1363                         } else {
1364                                 page = follow_trans_huge_pmd(mm, address,
1365                                                              pmd, flags);
1366                                 spin_unlock(&mm->page_table_lock);
1367                                 goto out;
1368                         }
1369                 } else
1370                         spin_unlock(&mm->page_table_lock);
1371                 /* fall through */
1372         }
1373 split_fallthrough:
1374         if (unlikely(pmd_bad(*pmd)))
1375                 goto no_page_table;
1376
1377         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1378
1379         pte = *ptep;
1380         if (!pte_present(pte))
1381                 goto no_page;
1382         if ((flags & FOLL_WRITE) && !pte_write(pte))
1383                 goto unlock;
1384
1385         page = vm_normal_page(vma, address, pte);
1386         if (unlikely(!page)) {
1387                 if ((flags & FOLL_DUMP) ||
1388                     !is_zero_pfn(pte_pfn(pte)))
1389                         goto bad_page;
1390                 page = pte_page(pte);
1391         }
1392
1393         if (flags & FOLL_GET)
1394                 get_page(page);
1395         if (flags & FOLL_TOUCH) {
1396                 if ((flags & FOLL_WRITE) &&
1397                     !pte_dirty(pte) && !PageDirty(page))
1398                         set_page_dirty(page);
1399                 /*
1400                  * pte_mkyoung() would be more correct here, but atomic care
1401                  * is needed to avoid losing the dirty bit: it is easier to use
1402                  * mark_page_accessed().
1403                  */
1404                 mark_page_accessed(page);
1405         }
1406         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1407                 /*
1408                  * The preliminary mapping check is mainly to avoid the
1409                  * pointless overhead of lock_page on the ZERO_PAGE
1410                  * which might bounce very badly if there is contention.
1411                  *
1412                  * If the page is already locked, we don't need to
1413                  * handle it now - vmscan will handle it later if and
1414                  * when it attempts to reclaim the page.
1415                  */
1416                 if (page->mapping && trylock_page(page)) {
1417                         lru_add_drain();  /* push cached pages to LRU */
1418                         /*
1419                          * Because we lock page here and migration is
1420                          * blocked by the pte's page reference, we need
1421                          * only check for file-cache page truncation.
1422                          */
1423                         if (page->mapping)
1424                                 mlock_vma_page(page);
1425                         unlock_page(page);
1426                 }
1427         }
1428 unlock:
1429         pte_unmap_unlock(ptep, ptl);
1430 out:
1431         return page;
1432
1433 bad_page:
1434         pte_unmap_unlock(ptep, ptl);
1435         return ERR_PTR(-EFAULT);
1436
1437 no_page:
1438         pte_unmap_unlock(ptep, ptl);
1439         if (!pte_none(pte))
1440                 return page;
1441
1442 no_page_table:
1443         /*
1444          * When core dumping an enormous anonymous area that nobody
1445          * has touched so far, we don't want to allocate unnecessary pages or
1446          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1447          * then get_dump_page() will return NULL to leave a hole in the dump.
1448          * But we can only make this optimization where a hole would surely
1449          * be zero-filled if handle_mm_fault() actually did handle it.
1450          */
1451         if ((flags & FOLL_DUMP) &&
1452             (!vma->vm_ops || !vma->vm_ops->fault))
1453                 return ERR_PTR(-EFAULT);
1454         return page;
1455 }
1456
1457 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1458 {
1459         return stack_guard_page_start(vma, addr) ||
1460                stack_guard_page_end(vma, addr+PAGE_SIZE);
1461 }
1462
1463 /**
1464  * __get_user_pages() - pin user pages in memory
1465  * @tsk:        task_struct of target task
1466  * @mm:         mm_struct of target mm
1467  * @start:      starting user address
1468  * @nr_pages:   number of pages from start to pin
1469  * @gup_flags:  flags modifying pin behaviour
1470  * @pages:      array that receives pointers to the pages pinned.
1471  *              Should be at least nr_pages long. Or NULL, if caller
1472  *              only intends to ensure the pages are faulted in.
1473  * @vmas:       array of pointers to vmas corresponding to each page.
1474  *              Or NULL if the caller does not require them.
1475  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1476  *
1477  * Returns number of pages pinned. This may be fewer than the number
1478  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1479  * were pinned, returns -errno. Each page returned must be released
1480  * with a put_page() call when it is finished with. vmas will only
1481  * remain valid while mmap_sem is held.
1482  *
1483  * Must be called with mmap_sem held for read or write.
1484  *
1485  * __get_user_pages walks a process's page tables and takes a reference to
1486  * each struct page that each user address corresponds to at a given
1487  * instant. That is, it takes the page that would be accessed if a user
1488  * thread accesses the given user virtual address at that instant.
1489  *
1490  * This does not guarantee that the page exists in the user mappings when
1491  * __get_user_pages returns, and there may even be a completely different
1492  * page there in some cases (eg. if mmapped pagecache has been invalidated
1493  * and subsequently re faulted). However it does guarantee that the page
1494  * won't be freed completely. And mostly callers simply care that the page
1495  * contains data that was valid *at some point in time*. Typically, an IO
1496  * or similar operation cannot guarantee anything stronger anyway because
1497  * locks can't be held over the syscall boundary.
1498  *
1499  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1500  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1501  * appropriate) must be called after the page is finished with, and
1502  * before put_page is called.
1503  *
1504  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1505  * or mmap_sem contention, and if waiting is needed to pin all pages,
1506  * *@nonblocking will be set to 0.
1507  *
1508  * In most cases, get_user_pages or get_user_pages_fast should be used
1509  * instead of __get_user_pages. __get_user_pages should be used only if
1510  * you need some special @gup_flags.
1511  */
1512 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1513                      unsigned long start, int nr_pages, unsigned int gup_flags,
1514                      struct page **pages, struct vm_area_struct **vmas,
1515                      int *nonblocking)
1516 {
1517         int i;
1518         unsigned long vm_flags;
1519
1520         if (nr_pages <= 0)
1521                 return 0;
1522
1523         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1524
1525         /* 
1526          * Require read or write permissions.
1527          * If FOLL_FORCE is set, we only require the "MAY" flags.
1528          */
1529         vm_flags  = (gup_flags & FOLL_WRITE) ?
1530                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1531         vm_flags &= (gup_flags & FOLL_FORCE) ?
1532                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1533         i = 0;
1534
1535         do {
1536                 struct vm_area_struct *vma;
1537
1538                 vma = find_extend_vma(mm, start);
1539                 if (!vma && in_gate_area(mm, start)) {
1540                         unsigned long pg = start & PAGE_MASK;
1541                         pgd_t *pgd;
1542                         pud_t *pud;
1543                         pmd_t *pmd;
1544                         pte_t *pte;
1545
1546                         /* user gate pages are read-only */
1547                         if (gup_flags & FOLL_WRITE)
1548                                 return i ? : -EFAULT;
1549                         if (pg > TASK_SIZE)
1550                                 pgd = pgd_offset_k(pg);
1551                         else
1552                                 pgd = pgd_offset_gate(mm, pg);
1553                         BUG_ON(pgd_none(*pgd));
1554                         pud = pud_offset(pgd, pg);
1555                         BUG_ON(pud_none(*pud));
1556                         pmd = pmd_offset(pud, pg);
1557                         if (pmd_none(*pmd))
1558                                 return i ? : -EFAULT;
1559                         VM_BUG_ON(pmd_trans_huge(*pmd));
1560                         pte = pte_offset_map(pmd, pg);
1561                         if (pte_none(*pte)) {
1562                                 pte_unmap(pte);
1563                                 return i ? : -EFAULT;
1564                         }
1565                         vma = get_gate_vma(mm);
1566                         if (pages) {
1567                                 struct page *page;
1568
1569                                 page = vm_normal_page(vma, start, *pte);
1570                                 if (!page) {
1571                                         if (!(gup_flags & FOLL_DUMP) &&
1572                                              is_zero_pfn(pte_pfn(*pte)))
1573                                                 page = pte_page(*pte);
1574                                         else {
1575                                                 pte_unmap(pte);
1576                                                 return i ? : -EFAULT;
1577                                         }
1578                                 }
1579                                 pages[i] = page;
1580                                 get_page(page);
1581                         }
1582                         pte_unmap(pte);
1583                         goto next_page;
1584                 }
1585
1586                 if (!vma ||
1587                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1588                     !(vm_flags & vma->vm_flags))
1589                         return i ? : -EFAULT;
1590
1591                 if (is_vm_hugetlb_page(vma)) {
1592                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1593                                         &start, &nr_pages, i, gup_flags);
1594                         continue;
1595                 }
1596
1597                 do {
1598                         struct page *page;
1599                         unsigned int foll_flags = gup_flags;
1600
1601                         /*
1602                          * If we have a pending SIGKILL, don't keep faulting
1603                          * pages and potentially allocating memory.
1604                          */
1605                         if (unlikely(fatal_signal_pending(current)))
1606                                 return i ? i : -ERESTARTSYS;
1607
1608                         cond_resched();
1609                         while (!(page = follow_page(vma, start, foll_flags))) {
1610                                 int ret;
1611                                 unsigned int fault_flags = 0;
1612
1613                                 /* For mlock, just skip the stack guard page. */
1614                                 if (foll_flags & FOLL_MLOCK) {
1615                                         if (stack_guard_page(vma, start))
1616                                                 goto next_page;
1617                                 }
1618                                 if (foll_flags & FOLL_WRITE)
1619                                         fault_flags |= FAULT_FLAG_WRITE;
1620                                 if (nonblocking)
1621                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1622                                 if (foll_flags & FOLL_NOWAIT)
1623                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1624
1625                                 ret = handle_mm_fault(mm, vma, start,
1626                                                         fault_flags);
1627
1628                                 if (ret & VM_FAULT_ERROR) {
1629                                         if (ret & VM_FAULT_OOM)
1630                                                 return i ? i : -ENOMEM;
1631                                         if (ret & (VM_FAULT_HWPOISON |
1632                                                    VM_FAULT_HWPOISON_LARGE)) {
1633                                                 if (i)
1634                                                         return i;
1635                                                 else if (gup_flags & FOLL_HWPOISON)
1636                                                         return -EHWPOISON;
1637                                                 else
1638                                                         return -EFAULT;
1639                                         }
1640                                         if (ret & VM_FAULT_SIGBUS)
1641                                                 return i ? i : -EFAULT;
1642                                         BUG();
1643                                 }
1644
1645                                 if (tsk) {
1646                                         if (ret & VM_FAULT_MAJOR)
1647                                                 tsk->maj_flt++;
1648                                         else
1649                                                 tsk->min_flt++;
1650                                 }
1651
1652                                 if (ret & VM_FAULT_RETRY) {
1653                                         if (nonblocking)
1654                                                 *nonblocking = 0;
1655                                         return i;
1656                                 }
1657
1658                                 /*
1659                                  * The VM_FAULT_WRITE bit tells us that
1660                                  * do_wp_page has broken COW when necessary,
1661                                  * even if maybe_mkwrite decided not to set
1662                                  * pte_write. We can thus safely do subsequent
1663                                  * page lookups as if they were reads. But only
1664                                  * do so when looping for pte_write is futile:
1665                                  * in some cases userspace may also be wanting
1666                                  * to write to the gotten user page, which a
1667                                  * read fault here might prevent (a readonly
1668                                  * page might get reCOWed by userspace write).
1669                                  */
1670                                 if ((ret & VM_FAULT_WRITE) &&
1671                                     !(vma->vm_flags & VM_WRITE))
1672                                         foll_flags &= ~FOLL_WRITE;
1673
1674                                 cond_resched();
1675                         }
1676                         if (IS_ERR(page))
1677                                 return i ? i : PTR_ERR(page);
1678                         if (pages) {
1679                                 pages[i] = page;
1680
1681                                 flush_anon_page(vma, page, start);
1682                                 flush_dcache_page(page);
1683                         }
1684 next_page:
1685                         if (vmas)
1686                                 vmas[i] = vma;
1687                         i++;
1688                         start += PAGE_SIZE;
1689                         nr_pages--;
1690                 } while (nr_pages && start < vma->vm_end);
1691         } while (nr_pages);
1692         return i;
1693 }
1694 EXPORT_SYMBOL(__get_user_pages);
1695
1696 /**
1697  * get_user_pages() - pin user pages in memory
1698  * @tsk:        the task_struct to use for page fault accounting, or
1699  *              NULL if faults are not to be recorded.
1700  * @mm:         mm_struct of target mm
1701  * @start:      starting user address
1702  * @nr_pages:   number of pages from start to pin
1703  * @write:      whether pages will be written to by the caller
1704  * @force:      whether to force write access even if user mapping is
1705  *              readonly. This will result in the page being COWed even
1706  *              in MAP_SHARED mappings. You do not want this.
1707  * @pages:      array that receives pointers to the pages pinned.
1708  *              Should be at least nr_pages long. Or NULL, if caller
1709  *              only intends to ensure the pages are faulted in.
1710  * @vmas:       array of pointers to vmas corresponding to each page.
1711  *              Or NULL if the caller does not require them.
1712  *
1713  * Returns number of pages pinned. This may be fewer than the number
1714  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1715  * were pinned, returns -errno. Each page returned must be released
1716  * with a put_page() call when it is finished with. vmas will only
1717  * remain valid while mmap_sem is held.
1718  *
1719  * Must be called with mmap_sem held for read or write.
1720  *
1721  * get_user_pages walks a process's page tables and takes a reference to
1722  * each struct page that each user address corresponds to at a given
1723  * instant. That is, it takes the page that would be accessed if a user
1724  * thread accesses the given user virtual address at that instant.
1725  *
1726  * This does not guarantee that the page exists in the user mappings when
1727  * get_user_pages returns, and there may even be a completely different
1728  * page there in some cases (eg. if mmapped pagecache has been invalidated
1729  * and subsequently re faulted). However it does guarantee that the page
1730  * won't be freed completely. And mostly callers simply care that the page
1731  * contains data that was valid *at some point in time*. Typically, an IO
1732  * or similar operation cannot guarantee anything stronger anyway because
1733  * locks can't be held over the syscall boundary.
1734  *
1735  * If write=0, the page must not be written to. If the page is written to,
1736  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1737  * after the page is finished with, and before put_page is called.
1738  *
1739  * get_user_pages is typically used for fewer-copy IO operations, to get a
1740  * handle on the memory by some means other than accesses via the user virtual
1741  * addresses. The pages may be submitted for DMA to devices or accessed via
1742  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1743  * use the correct cache flushing APIs.
1744  *
1745  * See also get_user_pages_fast, for performance critical applications.
1746  */
1747 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1748                 unsigned long start, int nr_pages, int write, int force,
1749                 struct page **pages, struct vm_area_struct **vmas)
1750 {
1751         int flags = FOLL_TOUCH;
1752
1753         if (pages)
1754                 flags |= FOLL_GET;
1755         if (write)
1756                 flags |= FOLL_WRITE;
1757         if (force)
1758                 flags |= FOLL_FORCE;
1759
1760         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1761                                 NULL);
1762 }
1763 EXPORT_SYMBOL(get_user_pages);
1764
1765 /**
1766  * get_dump_page() - pin user page in memory while writing it to core dump
1767  * @addr: user address
1768  *
1769  * Returns struct page pointer of user page pinned for dump,
1770  * to be freed afterwards by page_cache_release() or put_page().
1771  *
1772  * Returns NULL on any kind of failure - a hole must then be inserted into
1773  * the corefile, to preserve alignment with its headers; and also returns
1774  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1775  * allowing a hole to be left in the corefile to save diskspace.
1776  *
1777  * Called without mmap_sem, but after all other threads have been killed.
1778  */
1779 #ifdef CONFIG_ELF_CORE
1780 struct page *get_dump_page(unsigned long addr)
1781 {
1782         struct vm_area_struct *vma;
1783         struct page *page;
1784
1785         if (__get_user_pages(current, current->mm, addr, 1,
1786                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1787                              NULL) < 1)
1788                 return NULL;
1789         flush_cache_page(vma, addr, page_to_pfn(page));
1790         return page;
1791 }
1792 #endif /* CONFIG_ELF_CORE */
1793
1794 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1795                         spinlock_t **ptl)
1796 {
1797         pgd_t * pgd = pgd_offset(mm, addr);
1798         pud_t * pud = pud_alloc(mm, pgd, addr);
1799         if (pud) {
1800                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1801                 if (pmd) {
1802                         VM_BUG_ON(pmd_trans_huge(*pmd));
1803                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1804                 }
1805         }
1806         return NULL;
1807 }
1808
1809 /*
1810  * This is the old fallback for page remapping.
1811  *
1812  * For historical reasons, it only allows reserved pages. Only
1813  * old drivers should use this, and they needed to mark their
1814  * pages reserved for the old functions anyway.
1815  */
1816 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1817                         struct page *page, pgprot_t prot)
1818 {
1819         struct mm_struct *mm = vma->vm_mm;
1820         int retval;
1821         pte_t *pte;
1822         spinlock_t *ptl;
1823
1824         retval = -EINVAL;
1825         if (PageAnon(page))
1826                 goto out;
1827         retval = -ENOMEM;
1828         flush_dcache_page(page);
1829         pte = get_locked_pte(mm, addr, &ptl);
1830         if (!pte)
1831                 goto out;
1832         retval = -EBUSY;
1833         if (!pte_none(*pte))
1834                 goto out_unlock;
1835
1836         /* Ok, finally just insert the thing.. */
1837         get_page(page);
1838         inc_mm_counter_fast(mm, MM_FILEPAGES);
1839         page_add_file_rmap(page);
1840         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1841
1842         retval = 0;
1843         pte_unmap_unlock(pte, ptl);
1844         return retval;
1845 out_unlock:
1846         pte_unmap_unlock(pte, ptl);
1847 out:
1848         return retval;
1849 }
1850
1851 /**
1852  * vm_insert_page - insert single page into user vma
1853  * @vma: user vma to map to
1854  * @addr: target user address of this page
1855  * @page: source kernel page
1856  *
1857  * This allows drivers to insert individual pages they've allocated
1858  * into a user vma.
1859  *
1860  * The page has to be a nice clean _individual_ kernel allocation.
1861  * If you allocate a compound page, you need to have marked it as
1862  * such (__GFP_COMP), or manually just split the page up yourself
1863  * (see split_page()).
1864  *
1865  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1866  * took an arbitrary page protection parameter. This doesn't allow
1867  * that. Your vma protection will have to be set up correctly, which
1868  * means that if you want a shared writable mapping, you'd better
1869  * ask for a shared writable mapping!
1870  *
1871  * The page does not need to be reserved.
1872  */
1873 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1874                         struct page *page)
1875 {
1876         if (addr < vma->vm_start || addr >= vma->vm_end)
1877                 return -EFAULT;
1878         if (!page_count(page))
1879                 return -EINVAL;
1880         vma->vm_flags |= VM_INSERTPAGE;
1881         return insert_page(vma, addr, page, vma->vm_page_prot);
1882 }
1883 EXPORT_SYMBOL(vm_insert_page);
1884
1885 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1886                         unsigned long pfn, pgprot_t prot)
1887 {
1888         struct mm_struct *mm = vma->vm_mm;
1889         int retval;
1890         pte_t *pte, entry;
1891         spinlock_t *ptl;
1892
1893         retval = -ENOMEM;
1894         pte = get_locked_pte(mm, addr, &ptl);
1895         if (!pte)
1896                 goto out;
1897         retval = -EBUSY;
1898         if (!pte_none(*pte))
1899                 goto out_unlock;
1900
1901         /* Ok, finally just insert the thing.. */
1902         entry = pte_mkspecial(pfn_pte(pfn, prot));
1903         set_pte_at(mm, addr, pte, entry);
1904         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1905
1906         retval = 0;
1907 out_unlock:
1908         pte_unmap_unlock(pte, ptl);
1909 out:
1910         return retval;
1911 }
1912
1913 /**
1914  * vm_insert_pfn - insert single pfn into user vma
1915  * @vma: user vma to map to
1916  * @addr: target user address of this page
1917  * @pfn: source kernel pfn
1918  *
1919  * Similar to vm_inert_page, this allows drivers to insert individual pages
1920  * they've allocated into a user vma. Same comments apply.
1921  *
1922  * This function should only be called from a vm_ops->fault handler, and
1923  * in that case the handler should return NULL.
1924  *
1925  * vma cannot be a COW mapping.
1926  *
1927  * As this is called only for pages that do not currently exist, we
1928  * do not need to flush old virtual caches or the TLB.
1929  */
1930 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1931                         unsigned long pfn)
1932 {
1933         int ret;
1934         pgprot_t pgprot = vma->vm_page_prot;
1935         /*
1936          * Technically, architectures with pte_special can avoid all these
1937          * restrictions (same for remap_pfn_range).  However we would like
1938          * consistency in testing and feature parity among all, so we should
1939          * try to keep these invariants in place for everybody.
1940          */
1941         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1942         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1943                                                 (VM_PFNMAP|VM_MIXEDMAP));
1944         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1945         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1946
1947         if (addr < vma->vm_start || addr >= vma->vm_end)
1948                 return -EFAULT;
1949         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1950                 return -EINVAL;
1951
1952         ret = insert_pfn(vma, addr, pfn, pgprot);
1953
1954         if (ret)
1955                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1956
1957         return ret;
1958 }
1959 EXPORT_SYMBOL(vm_insert_pfn);
1960
1961 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1962                         unsigned long pfn)
1963 {
1964         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1965
1966         if (addr < vma->vm_start || addr >= vma->vm_end)
1967                 return -EFAULT;
1968
1969         /*
1970          * If we don't have pte special, then we have to use the pfn_valid()
1971          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1972          * refcount the page if pfn_valid is true (hence insert_page rather
1973          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1974          * without pte special, it would there be refcounted as a normal page.
1975          */
1976         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1977                 struct page *page;
1978
1979                 page = pfn_to_page(pfn);
1980                 return insert_page(vma, addr, page, vma->vm_page_prot);
1981         }
1982         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1983 }
1984 EXPORT_SYMBOL(vm_insert_mixed);
1985
1986 /*
1987  * maps a range of physical memory into the requested pages. the old
1988  * mappings are removed. any references to nonexistent pages results
1989  * in null mappings (currently treated as "copy-on-access")
1990  */
1991 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1992                         unsigned long addr, unsigned long end,
1993                         unsigned long pfn, pgprot_t prot)
1994 {
1995         pte_t *pte;
1996         spinlock_t *ptl;
1997
1998         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1999         if (!pte)
2000                 return -ENOMEM;
2001         arch_enter_lazy_mmu_mode();
2002         do {
2003                 BUG_ON(!pte_none(*pte));
2004                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2005                 pfn++;
2006         } while (pte++, addr += PAGE_SIZE, addr != end);
2007         arch_leave_lazy_mmu_mode();
2008         pte_unmap_unlock(pte - 1, ptl);
2009         return 0;
2010 }
2011
2012 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2013                         unsigned long addr, unsigned long end,
2014                         unsigned long pfn, pgprot_t prot)
2015 {
2016         pmd_t *pmd;
2017         unsigned long next;
2018
2019         pfn -= addr >> PAGE_SHIFT;
2020         pmd = pmd_alloc(mm, pud, addr);
2021         if (!pmd)
2022                 return -ENOMEM;
2023         VM_BUG_ON(pmd_trans_huge(*pmd));
2024         do {
2025                 next = pmd_addr_end(addr, end);
2026                 if (remap_pte_range(mm, pmd, addr, next,
2027                                 pfn + (addr >> PAGE_SHIFT), prot))
2028                         return -ENOMEM;
2029         } while (pmd++, addr = next, addr != end);
2030         return 0;
2031 }
2032
2033 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2034                         unsigned long addr, unsigned long end,
2035                         unsigned long pfn, pgprot_t prot)
2036 {
2037         pud_t *pud;
2038         unsigned long next;
2039
2040         pfn -= addr >> PAGE_SHIFT;
2041         pud = pud_alloc(mm, pgd, addr);
2042         if (!pud)
2043                 return -ENOMEM;
2044         do {
2045                 next = pud_addr_end(addr, end);
2046                 if (remap_pmd_range(mm, pud, addr, next,
2047                                 pfn + (addr >> PAGE_SHIFT), prot))
2048                         return -ENOMEM;
2049         } while (pud++, addr = next, addr != end);
2050         return 0;
2051 }
2052
2053 /**
2054  * remap_pfn_range - remap kernel memory to userspace
2055  * @vma: user vma to map to
2056  * @addr: target user address to start at
2057  * @pfn: physical address of kernel memory
2058  * @size: size of map area
2059  * @prot: page protection flags for this mapping
2060  *
2061  *  Note: this is only safe if the mm semaphore is held when called.
2062  */
2063 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2064                     unsigned long pfn, unsigned long size, pgprot_t prot)
2065 {
2066         pgd_t *pgd;
2067         unsigned long next;
2068         unsigned long end = addr + PAGE_ALIGN(size);
2069         struct mm_struct *mm = vma->vm_mm;
2070         int err;
2071
2072         /*
2073          * Physically remapped pages are special. Tell the
2074          * rest of the world about it:
2075          *   VM_IO tells people not to look at these pages
2076          *      (accesses can have side effects).
2077          *   VM_RESERVED is specified all over the place, because
2078          *      in 2.4 it kept swapout's vma scan off this vma; but
2079          *      in 2.6 the LRU scan won't even find its pages, so this
2080          *      flag means no more than count its pages in reserved_vm,
2081          *      and omit it from core dump, even when VM_IO turned off.
2082          *   VM_PFNMAP tells the core MM that the base pages are just
2083          *      raw PFN mappings, and do not have a "struct page" associated
2084          *      with them.
2085          *
2086          * There's a horrible special case to handle copy-on-write
2087          * behaviour that some programs depend on. We mark the "original"
2088          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2089          */
2090         if (addr == vma->vm_start && end == vma->vm_end) {
2091                 vma->vm_pgoff = pfn;
2092                 vma->vm_flags |= VM_PFN_AT_MMAP;
2093         } else if (is_cow_mapping(vma->vm_flags))
2094                 return -EINVAL;
2095
2096         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2097
2098         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2099         if (err) {
2100                 /*
2101                  * To indicate that track_pfn related cleanup is not
2102                  * needed from higher level routine calling unmap_vmas
2103                  */
2104                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2105                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2106                 return -EINVAL;
2107         }
2108
2109         BUG_ON(addr >= end);
2110         pfn -= addr >> PAGE_SHIFT;
2111         pgd = pgd_offset(mm, addr);
2112         flush_cache_range(vma, addr, end);
2113         do {
2114                 next = pgd_addr_end(addr, end);
2115                 err = remap_pud_range(mm, pgd, addr, next,
2116                                 pfn + (addr >> PAGE_SHIFT), prot);
2117                 if (err)
2118                         break;
2119         } while (pgd++, addr = next, addr != end);
2120
2121         if (err)
2122                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2123
2124         return err;
2125 }
2126 EXPORT_SYMBOL(remap_pfn_range);
2127
2128 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2129                                      unsigned long addr, unsigned long end,
2130                                      pte_fn_t fn, void *data)
2131 {
2132         pte_t *pte;
2133         int err;
2134         pgtable_t token;
2135         spinlock_t *uninitialized_var(ptl);
2136
2137         pte = (mm == &init_mm) ?
2138                 pte_alloc_kernel(pmd, addr) :
2139                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2140         if (!pte)
2141                 return -ENOMEM;
2142
2143         BUG_ON(pmd_huge(*pmd));
2144
2145         arch_enter_lazy_mmu_mode();
2146
2147         token = pmd_pgtable(*pmd);
2148
2149         do {
2150                 err = fn(pte++, token, addr, data);
2151                 if (err)
2152                         break;
2153         } while (addr += PAGE_SIZE, addr != end);
2154
2155         arch_leave_lazy_mmu_mode();
2156
2157         if (mm != &init_mm)
2158                 pte_unmap_unlock(pte-1, ptl);
2159         return err;
2160 }
2161
2162 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2163                                      unsigned long addr, unsigned long end,
2164                                      pte_fn_t fn, void *data)
2165 {
2166         pmd_t *pmd;
2167         unsigned long next;
2168         int err;
2169
2170         BUG_ON(pud_huge(*pud));
2171
2172         pmd = pmd_alloc(mm, pud, addr);
2173         if (!pmd)
2174                 return -ENOMEM;
2175         do {
2176                 next = pmd_addr_end(addr, end);
2177                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2178                 if (err)
2179                         break;
2180         } while (pmd++, addr = next, addr != end);
2181         return err;
2182 }
2183
2184 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2185                                      unsigned long addr, unsigned long end,
2186                                      pte_fn_t fn, void *data)
2187 {
2188         pud_t *pud;
2189         unsigned long next;
2190         int err;
2191
2192         pud = pud_alloc(mm, pgd, addr);
2193         if (!pud)
2194                 return -ENOMEM;
2195         do {
2196                 next = pud_addr_end(addr, end);
2197                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2198                 if (err)
2199                         break;
2200         } while (pud++, addr = next, addr != end);
2201         return err;
2202 }
2203
2204 /*
2205  * Scan a region of virtual memory, filling in page tables as necessary
2206  * and calling a provided function on each leaf page table.
2207  */
2208 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2209                         unsigned long size, pte_fn_t fn, void *data)
2210 {
2211         pgd_t *pgd;
2212         unsigned long next;
2213         unsigned long end = addr + size;
2214         int err;
2215
2216         BUG_ON(addr >= end);
2217         pgd = pgd_offset(mm, addr);
2218         do {
2219                 next = pgd_addr_end(addr, end);
2220                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2221                 if (err)
2222                         break;
2223         } while (pgd++, addr = next, addr != end);
2224
2225         return err;
2226 }
2227 EXPORT_SYMBOL_GPL(apply_to_page_range);
2228
2229 /*
2230  * handle_pte_fault chooses page fault handler according to an entry
2231  * which was read non-atomically.  Before making any commitment, on
2232  * those architectures or configurations (e.g. i386 with PAE) which
2233  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2234  * must check under lock before unmapping the pte and proceeding
2235  * (but do_wp_page is only called after already making such a check;
2236  * and do_anonymous_page can safely check later on).
2237  */
2238 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2239                                 pte_t *page_table, pte_t orig_pte)
2240 {
2241         int same = 1;
2242 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2243         if (sizeof(pte_t) > sizeof(unsigned long)) {
2244                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2245                 spin_lock(ptl);
2246                 same = pte_same(*page_table, orig_pte);
2247                 spin_unlock(ptl);
2248         }
2249 #endif
2250         pte_unmap(page_table);
2251         return same;
2252 }
2253
2254 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2255 {
2256         /*
2257          * If the source page was a PFN mapping, we don't have
2258          * a "struct page" for it. We do a best-effort copy by
2259          * just copying from the original user address. If that
2260          * fails, we just zero-fill it. Live with it.
2261          */
2262         if (unlikely(!src)) {
2263                 void *kaddr = kmap_atomic(dst, KM_USER0);
2264                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2265
2266                 /*
2267                  * This really shouldn't fail, because the page is there
2268                  * in the page tables. But it might just be unreadable,
2269                  * in which case we just give up and fill the result with
2270                  * zeroes.
2271                  */
2272                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2273                         clear_page(kaddr);
2274                 kunmap_atomic(kaddr, KM_USER0);
2275                 flush_dcache_page(dst);
2276         } else
2277                 copy_user_highpage(dst, src, va, vma);
2278 }
2279
2280 /*
2281  * This routine handles present pages, when users try to write
2282  * to a shared page. It is done by copying the page to a new address
2283  * and decrementing the shared-page counter for the old page.
2284  *
2285  * Note that this routine assumes that the protection checks have been
2286  * done by the caller (the low-level page fault routine in most cases).
2287  * Thus we can safely just mark it writable once we've done any necessary
2288  * COW.
2289  *
2290  * We also mark the page dirty at this point even though the page will
2291  * change only once the write actually happens. This avoids a few races,
2292  * and potentially makes it more efficient.
2293  *
2294  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2295  * but allow concurrent faults), with pte both mapped and locked.
2296  * We return with mmap_sem still held, but pte unmapped and unlocked.
2297  */
2298 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2299                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2300                 spinlock_t *ptl, pte_t orig_pte)
2301         __releases(ptl)
2302 {
2303         struct page *old_page, *new_page;
2304         pte_t entry;
2305         int ret = 0;
2306         int page_mkwrite = 0;
2307         struct page *dirty_page = NULL;
2308
2309         old_page = vm_normal_page(vma, address, orig_pte);
2310         if (!old_page) {
2311                 /*
2312                  * VM_MIXEDMAP !pfn_valid() case
2313                  *
2314                  * We should not cow pages in a shared writeable mapping.
2315                  * Just mark the pages writable as we can't do any dirty
2316                  * accounting on raw pfn maps.
2317                  */
2318                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2319                                      (VM_WRITE|VM_SHARED))
2320                         goto reuse;
2321                 goto gotten;
2322         }
2323
2324         /*
2325          * Take out anonymous pages first, anonymous shared vmas are
2326          * not dirty accountable.
2327          */
2328         if (PageAnon(old_page) && !PageKsm(old_page)) {
2329                 if (!trylock_page(old_page)) {
2330                         page_cache_get(old_page);
2331                         pte_unmap_unlock(page_table, ptl);
2332                         lock_page(old_page);
2333                         page_table = pte_offset_map_lock(mm, pmd, address,
2334                                                          &ptl);
2335                         if (!pte_same(*page_table, orig_pte)) {
2336                                 unlock_page(old_page);
2337                                 goto unlock;
2338                         }
2339                         page_cache_release(old_page);
2340                 }
2341                 if (reuse_swap_page(old_page)) {
2342                         /*
2343                          * The page is all ours.  Move it to our anon_vma so
2344                          * the rmap code will not search our parent or siblings.
2345                          * Protected against the rmap code by the page lock.
2346                          */
2347                         page_move_anon_rmap(old_page, vma, address);
2348                         unlock_page(old_page);
2349                         goto reuse;
2350                 }
2351                 unlock_page(old_page);
2352         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2353                                         (VM_WRITE|VM_SHARED))) {
2354                 /*
2355                  * Only catch write-faults on shared writable pages,
2356                  * read-only shared pages can get COWed by
2357                  * get_user_pages(.write=1, .force=1).
2358                  */
2359                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2360                         struct vm_fault vmf;
2361                         int tmp;
2362
2363                         vmf.virtual_address = (void __user *)(address &
2364                                                                 PAGE_MASK);
2365                         vmf.pgoff = old_page->index;
2366                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2367                         vmf.page = old_page;
2368
2369                         /*
2370                          * Notify the address space that the page is about to
2371                          * become writable so that it can prohibit this or wait
2372                          * for the page to get into an appropriate state.
2373                          *
2374                          * We do this without the lock held, so that it can
2375                          * sleep if it needs to.
2376                          */
2377                         page_cache_get(old_page);
2378                         pte_unmap_unlock(page_table, ptl);
2379
2380                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2381                         if (unlikely(tmp &
2382                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2383                                 ret = tmp;
2384                                 goto unwritable_page;
2385                         }
2386                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2387                                 lock_page(old_page);
2388                                 if (!old_page->mapping) {
2389                                         ret = 0; /* retry the fault */
2390                                         unlock_page(old_page);
2391                                         goto unwritable_page;
2392                                 }
2393                         } else
2394                                 VM_BUG_ON(!PageLocked(old_page));
2395
2396                         /*
2397                          * Since we dropped the lock we need to revalidate
2398                          * the PTE as someone else may have changed it.  If
2399                          * they did, we just return, as we can count on the
2400                          * MMU to tell us if they didn't also make it writable.
2401                          */
2402                         page_table = pte_offset_map_lock(mm, pmd, address,
2403                                                          &ptl);
2404                         if (!pte_same(*page_table, orig_pte)) {
2405                                 unlock_page(old_page);
2406                                 goto unlock;
2407                         }
2408
2409                         page_mkwrite = 1;
2410                 }
2411                 dirty_page = old_page;
2412                 get_page(dirty_page);
2413
2414 reuse:
2415                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2416                 entry = pte_mkyoung(orig_pte);
2417                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2418                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2419                         update_mmu_cache(vma, address, page_table);
2420                 pte_unmap_unlock(page_table, ptl);
2421                 ret |= VM_FAULT_WRITE;
2422
2423                 if (!dirty_page)
2424                         return ret;
2425
2426                 /*
2427                  * Yes, Virginia, this is actually required to prevent a race
2428                  * with clear_page_dirty_for_io() from clearing the page dirty
2429                  * bit after it clear all dirty ptes, but before a racing
2430                  * do_wp_page installs a dirty pte.
2431                  *
2432                  * __do_fault is protected similarly.
2433                  */
2434                 if (!page_mkwrite) {
2435                         wait_on_page_locked(dirty_page);
2436                         set_page_dirty_balance(dirty_page, page_mkwrite);
2437                 }
2438                 put_page(dirty_page);
2439                 if (page_mkwrite) {
2440                         struct address_space *mapping = dirty_page->mapping;
2441
2442                         set_page_dirty(dirty_page);
2443                         unlock_page(dirty_page);
2444                         page_cache_release(dirty_page);
2445                         if (mapping)    {
2446                                 /*
2447                                  * Some device drivers do not set page.mapping
2448                                  * but still dirty their pages
2449                                  */
2450                                 balance_dirty_pages_ratelimited(mapping);
2451                         }
2452                 }
2453
2454                 /* file_update_time outside page_lock */
2455                 if (vma->vm_file)
2456                         file_update_time(vma->vm_file);
2457
2458                 return ret;
2459         }
2460
2461         /*
2462          * Ok, we need to copy. Oh, well..
2463          */
2464         page_cache_get(old_page);
2465 gotten:
2466         pte_unmap_unlock(page_table, ptl);
2467
2468         if (unlikely(anon_vma_prepare(vma)))
2469                 goto oom;
2470
2471         if (is_zero_pfn(pte_pfn(orig_pte))) {
2472                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2473                 if (!new_page)
2474                         goto oom;
2475         } else {
2476                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2477                 if (!new_page)
2478                         goto oom;
2479                 cow_user_page(new_page, old_page, address, vma);
2480         }
2481         __SetPageUptodate(new_page);
2482
2483         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2484                 goto oom_free_new;
2485
2486         /*
2487          * Re-check the pte - we dropped the lock
2488          */
2489         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2490         if (likely(pte_same(*page_table, orig_pte))) {
2491                 if (old_page) {
2492                         if (!PageAnon(old_page)) {
2493                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2494                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2495                         }
2496                 } else
2497                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2498                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2499                 entry = mk_pte(new_page, vma->vm_page_prot);
2500                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2501                 /*
2502                  * Clear the pte entry and flush it first, before updating the
2503                  * pte with the new entry. This will avoid a race condition
2504                  * seen in the presence of one thread doing SMC and another
2505                  * thread doing COW.
2506                  */
2507                 ptep_clear_flush(vma, address, page_table);
2508                 page_add_new_anon_rmap(new_page, vma, address);
2509                 /*
2510                  * We call the notify macro here because, when using secondary
2511                  * mmu page tables (such as kvm shadow page tables), we want the
2512                  * new page to be mapped directly into the secondary page table.
2513                  */
2514                 set_pte_at_notify(mm, address, page_table, entry);
2515                 update_mmu_cache(vma, address, page_table);
2516                 if (old_page) {
2517                         /*
2518                          * Only after switching the pte to the new page may
2519                          * we remove the mapcount here. Otherwise another
2520                          * process may come and find the rmap count decremented
2521                          * before the pte is switched to the new page, and
2522                          * "reuse" the old page writing into it while our pte
2523                          * here still points into it and can be read by other
2524                          * threads.
2525                          *
2526                          * The critical issue is to order this
2527                          * page_remove_rmap with the ptp_clear_flush above.
2528                          * Those stores are ordered by (if nothing else,)
2529                          * the barrier present in the atomic_add_negative
2530                          * in page_remove_rmap.
2531                          *
2532                          * Then the TLB flush in ptep_clear_flush ensures that
2533                          * no process can access the old page before the
2534                          * decremented mapcount is visible. And the old page
2535                          * cannot be reused until after the decremented
2536                          * mapcount is visible. So transitively, TLBs to
2537                          * old page will be flushed before it can be reused.
2538                          */
2539                         page_remove_rmap(old_page);
2540                 }
2541
2542                 /* Free the old page.. */
2543                 new_page = old_page;
2544                 ret |= VM_FAULT_WRITE;
2545         } else
2546                 mem_cgroup_uncharge_page(new_page);
2547
2548         if (new_page)
2549                 page_cache_release(new_page);
2550 unlock:
2551         pte_unmap_unlock(page_table, ptl);
2552         if (old_page) {
2553                 /*
2554                  * Don't let another task, with possibly unlocked vma,
2555                  * keep the mlocked page.
2556                  */
2557                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2558                         lock_page(old_page);    /* LRU manipulation */
2559                         munlock_vma_page(old_page);
2560                         unlock_page(old_page);
2561                 }
2562                 page_cache_release(old_page);
2563         }
2564         return ret;
2565 oom_free_new:
2566         page_cache_release(new_page);
2567 oom:
2568         if (old_page) {
2569                 if (page_mkwrite) {
2570                         unlock_page(old_page);
2571                         page_cache_release(old_page);
2572                 }
2573                 page_cache_release(old_page);
2574         }
2575         return VM_FAULT_OOM;
2576
2577 unwritable_page:
2578         page_cache_release(old_page);
2579         return ret;
2580 }
2581
2582 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2583                 unsigned long start_addr, unsigned long end_addr,
2584                 struct zap_details *details)
2585 {
2586         zap_page_range(vma, start_addr, end_addr - start_addr, details);
2587 }
2588
2589 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2590                                             struct zap_details *details)
2591 {
2592         struct vm_area_struct *vma;
2593         struct prio_tree_iter iter;
2594         pgoff_t vba, vea, zba, zea;
2595
2596         vma_prio_tree_foreach(vma, &iter, root,
2597                         details->first_index, details->last_index) {
2598
2599                 vba = vma->vm_pgoff;
2600                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2601                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2602                 zba = details->first_index;
2603                 if (zba < vba)
2604                         zba = vba;
2605                 zea = details->last_index;
2606                 if (zea > vea)
2607                         zea = vea;
2608
2609                 unmap_mapping_range_vma(vma,
2610                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2611                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2612                                 details);
2613         }
2614 }
2615
2616 static inline void unmap_mapping_range_list(struct list_head *head,
2617                                             struct zap_details *details)
2618 {
2619         struct vm_area_struct *vma;
2620
2621         /*
2622          * In nonlinear VMAs there is no correspondence between virtual address
2623          * offset and file offset.  So we must perform an exhaustive search
2624          * across *all* the pages in each nonlinear VMA, not just the pages
2625          * whose virtual address lies outside the file truncation point.
2626          */
2627         list_for_each_entry(vma, head, shared.vm_set.list) {
2628                 details->nonlinear_vma = vma;
2629                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2630         }
2631 }
2632
2633 /**
2634  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2635  * @mapping: the address space containing mmaps to be unmapped.
2636  * @holebegin: byte in first page to unmap, relative to the start of
2637  * the underlying file.  This will be rounded down to a PAGE_SIZE
2638  * boundary.  Note that this is different from truncate_pagecache(), which
2639  * must keep the partial page.  In contrast, we must get rid of
2640  * partial pages.
2641  * @holelen: size of prospective hole in bytes.  This will be rounded
2642  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2643  * end of the file.
2644  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2645  * but 0 when invalidating pagecache, don't throw away private data.
2646  */
2647 void unmap_mapping_range(struct address_space *mapping,
2648                 loff_t const holebegin, loff_t const holelen, int even_cows)
2649 {
2650         struct zap_details details;
2651         pgoff_t hba = holebegin >> PAGE_SHIFT;
2652         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2653
2654         /* Check for overflow. */
2655         if (sizeof(holelen) > sizeof(hlen)) {
2656                 long long holeend =
2657                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2658                 if (holeend & ~(long long)ULONG_MAX)
2659                         hlen = ULONG_MAX - hba + 1;
2660         }
2661
2662         details.check_mapping = even_cows? NULL: mapping;
2663         details.nonlinear_vma = NULL;
2664         details.first_index = hba;
2665         details.last_index = hba + hlen - 1;
2666         if (details.last_index < details.first_index)
2667                 details.last_index = ULONG_MAX;
2668
2669
2670         mutex_lock(&mapping->i_mmap_mutex);
2671         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2672                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2673         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2674                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2675         mutex_unlock(&mapping->i_mmap_mutex);
2676 }
2677 EXPORT_SYMBOL(unmap_mapping_range);
2678
2679 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2680 {
2681         struct address_space *mapping = inode->i_mapping;
2682
2683         /*
2684          * If the underlying filesystem is not going to provide
2685          * a way to truncate a range of blocks (punch a hole) -
2686          * we should return failure right now.
2687          */
2688         if (!inode->i_op->truncate_range)
2689                 return -ENOSYS;
2690
2691         mutex_lock(&inode->i_mutex);
2692         down_write(&inode->i_alloc_sem);
2693         unmap_mapping_range(mapping, offset, (end - offset), 1);
2694         truncate_inode_pages_range(mapping, offset, end);
2695         unmap_mapping_range(mapping, offset, (end - offset), 1);
2696         inode->i_op->truncate_range(inode, offset, end);
2697         up_write(&inode->i_alloc_sem);
2698         mutex_unlock(&inode->i_mutex);
2699
2700         return 0;
2701 }
2702
2703 /*
2704  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2705  * but allow concurrent faults), and pte mapped but not yet locked.
2706  * We return with mmap_sem still held, but pte unmapped and unlocked.
2707  */
2708 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2709                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2710                 unsigned int flags, pte_t orig_pte)
2711 {
2712         spinlock_t *ptl;
2713         struct page *page, *swapcache = NULL;
2714         swp_entry_t entry;
2715         pte_t pte;
2716         int locked;
2717         struct mem_cgroup *ptr;
2718         int exclusive = 0;
2719         int ret = 0;
2720
2721         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2722                 goto out;
2723
2724         entry = pte_to_swp_entry(orig_pte);
2725         if (unlikely(non_swap_entry(entry))) {
2726                 if (is_migration_entry(entry)) {
2727                         migration_entry_wait(mm, pmd, address);
2728                 } else if (is_hwpoison_entry(entry)) {
2729                         ret = VM_FAULT_HWPOISON;
2730                 } else {
2731                         print_bad_pte(vma, address, orig_pte, NULL);
2732                         ret = VM_FAULT_SIGBUS;
2733                 }
2734                 goto out;
2735         }
2736         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2737         page = lookup_swap_cache(entry);
2738         if (!page) {
2739                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2740                 page = swapin_readahead(entry,
2741                                         GFP_HIGHUSER_MOVABLE, vma, address);
2742                 if (!page) {
2743                         /*
2744                          * Back out if somebody else faulted in this pte
2745                          * while we released the pte lock.
2746                          */
2747                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2748                         if (likely(pte_same(*page_table, orig_pte)))
2749                                 ret = VM_FAULT_OOM;
2750                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2751                         goto unlock;
2752                 }
2753
2754                 /* Had to read the page from swap area: Major fault */
2755                 ret = VM_FAULT_MAJOR;
2756                 count_vm_event(PGMAJFAULT);
2757         } else if (PageHWPoison(page)) {
2758                 /*
2759                  * hwpoisoned dirty swapcache pages are kept for killing
2760                  * owner processes (which may be unknown at hwpoison time)
2761                  */
2762                 ret = VM_FAULT_HWPOISON;
2763                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2764                 goto out_release;
2765         }
2766
2767         locked = lock_page_or_retry(page, mm, flags);
2768         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2769         if (!locked) {
2770                 ret |= VM_FAULT_RETRY;
2771                 goto out_release;
2772         }
2773
2774         /*
2775          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2776          * release the swapcache from under us.  The page pin, and pte_same
2777          * test below, are not enough to exclude that.  Even if it is still
2778          * swapcache, we need to check that the page's swap has not changed.
2779          */
2780         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2781                 goto out_page;
2782
2783         if (ksm_might_need_to_copy(page, vma, address)) {
2784                 swapcache = page;
2785                 page = ksm_does_need_to_copy(page, vma, address);
2786
2787                 if (unlikely(!page)) {
2788                         ret = VM_FAULT_OOM;
2789                         page = swapcache;
2790                         swapcache = NULL;
2791                         goto out_page;
2792                 }
2793         }
2794
2795         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2796                 ret = VM_FAULT_OOM;
2797                 goto out_page;
2798         }
2799
2800         /*
2801          * Back out if somebody else already faulted in this pte.
2802          */
2803         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2804         if (unlikely(!pte_same(*page_table, orig_pte)))
2805                 goto out_nomap;
2806
2807         if (unlikely(!PageUptodate(page))) {
2808                 ret = VM_FAULT_SIGBUS;
2809                 goto out_nomap;
2810         }
2811
2812         /*
2813          * The page isn't present yet, go ahead with the fault.
2814          *
2815          * Be careful about the sequence of operations here.
2816          * To get its accounting right, reuse_swap_page() must be called
2817          * while the page is counted on swap but not yet in mapcount i.e.
2818          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2819          * must be called after the swap_free(), or it will never succeed.
2820          * Because delete_from_swap_page() may be called by reuse_swap_page(),
2821          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2822          * in page->private. In this case, a record in swap_cgroup  is silently
2823          * discarded at swap_free().
2824          */
2825
2826         inc_mm_counter_fast(mm, MM_ANONPAGES);
2827         dec_mm_counter_fast(mm, MM_SWAPENTS);
2828         pte = mk_pte(page, vma->vm_page_prot);
2829         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2830                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2831                 flags &= ~FAULT_FLAG_WRITE;
2832                 ret |= VM_FAULT_WRITE;
2833                 exclusive = 1;
2834         }
2835         flush_icache_page(vma, page);
2836         set_pte_at(mm, address, page_table, pte);
2837         do_page_add_anon_rmap(page, vma, address, exclusive);
2838         /* It's better to call commit-charge after rmap is established */
2839         mem_cgroup_commit_charge_swapin(page, ptr);
2840
2841         swap_free(entry);
2842         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2843                 try_to_free_swap(page);
2844         unlock_page(page);
2845         if (swapcache) {
2846                 /*
2847                  * Hold the lock to avoid the swap entry to be reused
2848                  * until we take the PT lock for the pte_same() check
2849                  * (to avoid false positives from pte_same). For
2850                  * further safety release the lock after the swap_free
2851                  * so that the swap count won't change under a
2852                  * parallel locked swapcache.
2853                  */
2854                 unlock_page(swapcache);
2855                 page_cache_release(swapcache);
2856         }
2857
2858         if (flags & FAULT_FLAG_WRITE) {
2859                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2860                 if (ret & VM_FAULT_ERROR)
2861                         ret &= VM_FAULT_ERROR;
2862                 goto out;
2863         }
2864
2865         /* No need to invalidate - it was non-present before */
2866         update_mmu_cache(vma, address, page_table);
2867 unlock:
2868         pte_unmap_unlock(page_table, ptl);
2869 out:
2870         return ret;
2871 out_nomap:
2872         mem_cgroup_cancel_charge_swapin(ptr);
2873         pte_unmap_unlock(page_table, ptl);
2874 out_page:
2875         unlock_page(page);
2876 out_release:
2877         page_cache_release(page);
2878         if (swapcache) {
2879                 unlock_page(swapcache);
2880                 page_cache_release(swapcache);
2881         }
2882         return ret;
2883 }
2884
2885 /*
2886  * This is like a special single-page "expand_{down|up}wards()",
2887  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2888  * doesn't hit another vma.
2889  */
2890 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2891 {
2892         address &= PAGE_MASK;
2893         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2894                 struct vm_area_struct *prev = vma->vm_prev;
2895
2896                 /*
2897                  * Is there a mapping abutting this one below?
2898                  *
2899                  * That's only ok if it's the same stack mapping
2900                  * that has gotten split..
2901                  */
2902                 if (prev && prev->vm_end == address)
2903                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2904
2905                 expand_downwards(vma, address - PAGE_SIZE);
2906         }
2907         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2908                 struct vm_area_struct *next = vma->vm_next;
2909
2910                 /* As VM_GROWSDOWN but s/below/above/ */
2911                 if (next && next->vm_start == address + PAGE_SIZE)
2912                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2913
2914                 expand_upwards(vma, address + PAGE_SIZE);
2915         }
2916         return 0;
2917 }
2918
2919 /*
2920  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2921  * but allow concurrent faults), and pte mapped but not yet locked.
2922  * We return with mmap_sem still held, but pte unmapped and unlocked.
2923  */
2924 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2925                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2926                 unsigned int flags)
2927 {
2928         struct page *page;
2929         spinlock_t *ptl;
2930         pte_t entry;
2931
2932         pte_unmap(page_table);
2933
2934         /* Check if we need to add a guard page to the stack */
2935         if (check_stack_guard_page(vma, address) < 0)
2936                 return VM_FAULT_SIGBUS;
2937
2938         /* Use the zero-page for reads */
2939         if (!(flags & FAULT_FLAG_WRITE)) {
2940                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2941                                                 vma->vm_page_prot));
2942                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2943                 if (!pte_none(*page_table))
2944                         goto unlock;
2945                 goto setpte;
2946         }
2947
2948         /* Allocate our own private page. */
2949         if (unlikely(anon_vma_prepare(vma)))
2950                 goto oom;
2951         page = alloc_zeroed_user_highpage_movable(vma, address);
2952         if (!page)
2953                 goto oom;
2954         __SetPageUptodate(page);
2955
2956         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2957                 goto oom_free_page;
2958
2959         entry = mk_pte(page, vma->vm_page_prot);
2960         if (vma->vm_flags & VM_WRITE)
2961                 entry = pte_mkwrite(pte_mkdirty(entry));
2962
2963         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2964         if (!pte_none(*page_table))
2965                 goto release;
2966
2967         inc_mm_counter_fast(mm, MM_ANONPAGES);
2968         page_add_new_anon_rmap(page, vma, address);
2969 setpte:
2970         set_pte_at(mm, address, page_table, entry);
2971
2972         /* No need to invalidate - it was non-present before */
2973         update_mmu_cache(vma, address, page_table);
2974 unlock:
2975         pte_unmap_unlock(page_table, ptl);
2976         return 0;
2977 release:
2978         mem_cgroup_uncharge_page(page);
2979         page_cache_release(page);
2980         goto unlock;
2981 oom_free_page:
2982         page_cache_release(page);
2983 oom:
2984         return VM_FAULT_OOM;
2985 }
2986
2987 /*
2988  * __do_fault() tries to create a new page mapping. It aggressively
2989  * tries to share with existing pages, but makes a separate copy if
2990  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2991  * the next page fault.
2992  *
2993  * As this is called only for pages that do not currently exist, we
2994  * do not need to flush old virtual caches or the TLB.
2995  *
2996  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2997  * but allow concurrent faults), and pte neither mapped nor locked.
2998  * We return with mmap_sem still held, but pte unmapped and unlocked.
2999  */
3000 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3001                 unsigned long address, pmd_t *pmd,
3002                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3003 {
3004         pte_t *page_table;
3005         spinlock_t *ptl;
3006         struct page *page;
3007         pte_t entry;
3008         int anon = 0;
3009         int charged = 0;
3010         struct page *dirty_page = NULL;
3011         struct vm_fault vmf;
3012         int ret;
3013         int page_mkwrite = 0;
3014
3015         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3016         vmf.pgoff = pgoff;
3017         vmf.flags = flags;
3018         vmf.page = NULL;
3019
3020         ret = vma->vm_ops->fault(vma, &vmf);
3021         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3022                             VM_FAULT_RETRY)))
3023                 return ret;
3024
3025         if (unlikely(PageHWPoison(vmf.page))) {
3026                 if (ret & VM_FAULT_LOCKED)
3027                         unlock_page(vmf.page);
3028                 return VM_FAULT_HWPOISON;
3029         }
3030
3031         /*
3032          * For consistency in subsequent calls, make the faulted page always
3033          * locked.
3034          */
3035         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3036                 lock_page(vmf.page);
3037         else
3038                 VM_BUG_ON(!PageLocked(vmf.page));
3039
3040         /*
3041          * Should we do an early C-O-W break?
3042          */
3043         page = vmf.page;
3044         if (flags & FAULT_FLAG_WRITE) {
3045                 if (!(vma->vm_flags & VM_SHARED)) {
3046                         anon = 1;
3047                         if (unlikely(anon_vma_prepare(vma))) {
3048                                 ret = VM_FAULT_OOM;
3049                                 goto out;
3050                         }
3051                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3052                                                 vma, address);
3053                         if (!page) {
3054                                 ret = VM_FAULT_OOM;
3055                                 goto out;
3056                         }
3057                         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3058                                 ret = VM_FAULT_OOM;
3059                                 page_cache_release(page);
3060                                 goto out;
3061                         }
3062                         charged = 1;
3063                         copy_user_highpage(page, vmf.page, address, vma);
3064                         __SetPageUptodate(page);
3065                 } else {
3066                         /*
3067                          * If the page will be shareable, see if the backing
3068                          * address space wants to know that the page is about
3069                          * to become writable
3070                          */
3071                         if (vma->vm_ops->page_mkwrite) {
3072                                 int tmp;
3073
3074                                 unlock_page(page);
3075                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3076                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3077                                 if (unlikely(tmp &
3078                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3079                                         ret = tmp;
3080                                         goto unwritable_page;
3081                                 }
3082                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3083                                         lock_page(page);
3084                                         if (!page->mapping) {
3085                                                 ret = 0; /* retry the fault */
3086                                                 unlock_page(page);
3087                                                 goto unwritable_page;
3088                                         }
3089                                 } else
3090                                         VM_BUG_ON(!PageLocked(page));
3091                                 page_mkwrite = 1;
3092                         }
3093                 }
3094
3095         }
3096
3097         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3098
3099         /*
3100          * This silly early PAGE_DIRTY setting removes a race
3101          * due to the bad i386 page protection. But it's valid
3102          * for other architectures too.
3103          *
3104          * Note that if FAULT_FLAG_WRITE is set, we either now have
3105          * an exclusive copy of the page, or this is a shared mapping,
3106          * so we can make it writable and dirty to avoid having to
3107          * handle that later.
3108          */
3109         /* Only go through if we didn't race with anybody else... */
3110         if (likely(pte_same(*page_table, orig_pte))) {
3111                 flush_icache_page(vma, page);
3112                 entry = mk_pte(page, vma->vm_page_prot);
3113                 if (flags & FAULT_FLAG_WRITE)
3114                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3115                 if (anon) {
3116                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3117                         page_add_new_anon_rmap(page, vma, address);
3118                 } else {
3119                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3120                         page_add_file_rmap(page);
3121                         if (flags & FAULT_FLAG_WRITE) {
3122                                 dirty_page = page;
3123                                 get_page(dirty_page);
3124                         }
3125                 }
3126                 set_pte_at(mm, address, page_table, entry);
3127
3128                 /* no need to invalidate: a not-present page won't be cached */
3129                 update_mmu_cache(vma, address, page_table);
3130         } else {
3131                 if (charged)
3132                         mem_cgroup_uncharge_page(page);
3133                 if (anon)
3134                         page_cache_release(page);
3135                 else
3136                         anon = 1; /* no anon but release faulted_page */
3137         }
3138
3139         pte_unmap_unlock(page_table, ptl);
3140
3141 out:
3142         if (dirty_page) {
3143                 struct address_space *mapping = page->mapping;
3144
3145                 if (set_page_dirty(dirty_page))
3146                         page_mkwrite = 1;
3147                 unlock_page(dirty_page);
3148                 put_page(dirty_page);
3149                 if (page_mkwrite && mapping) {
3150                         /*
3151                          * Some device drivers do not set page.mapping but still
3152                          * dirty their pages
3153                          */
3154                         balance_dirty_pages_ratelimited(mapping);
3155                 }
3156
3157                 /* file_update_time outside page_lock */
3158                 if (vma->vm_file)
3159                         file_update_time(vma->vm_file);
3160         } else {
3161                 unlock_page(vmf.page);
3162                 if (anon)
3163                         page_cache_release(vmf.page);
3164         }
3165
3166         return ret;
3167
3168 unwritable_page:
3169         page_cache_release(page);
3170         return ret;
3171 }
3172
3173 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3174                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3175                 unsigned int flags, pte_t orig_pte)
3176 {
3177         pgoff_t pgoff = (((address & PAGE_MASK)
3178                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3179
3180         pte_unmap(page_table);
3181         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3182 }
3183
3184 /*
3185  * Fault of a previously existing named mapping. Repopulate the pte
3186  * from the encoded file_pte if possible. This enables swappable
3187  * nonlinear vmas.
3188  *
3189  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3190  * but allow concurrent faults), and pte mapped but not yet locked.
3191  * We return with mmap_sem still held, but pte unmapped and unlocked.
3192  */
3193 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3194                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3195                 unsigned int flags, pte_t orig_pte)
3196 {
3197         pgoff_t pgoff;
3198
3199         flags |= FAULT_FLAG_NONLINEAR;
3200
3201         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3202                 return 0;
3203
3204         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3205                 /*
3206                  * Page table corrupted: show pte and kill process.
3207                  */
3208                 print_bad_pte(vma, address, orig_pte, NULL);
3209                 return VM_FAULT_SIGBUS;
3210         }
3211
3212         pgoff = pte_to_pgoff(orig_pte);
3213         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3214 }
3215
3216 /*
3217  * These routines also need to handle stuff like marking pages dirty
3218  * and/or accessed for architectures that don't do it in hardware (most
3219  * RISC architectures).  The early dirtying is also good on the i386.
3220  *
3221  * There is also a hook called "update_mmu_cache()" that architectures
3222  * with external mmu caches can use to update those (ie the Sparc or
3223  * PowerPC hashed page tables that act as extended TLBs).
3224  *
3225  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3226  * but allow concurrent faults), and pte mapped but not yet locked.
3227  * We return with mmap_sem still held, but pte unmapped and unlocked.
3228  */
3229 int handle_pte_fault(struct mm_struct *mm,
3230                      struct vm_area_struct *vma, unsigned long address,
3231                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3232 {
3233         pte_t entry;
3234         spinlock_t *ptl;
3235
3236         entry = *pte;
3237         if (!pte_present(entry)) {
3238                 if (pte_none(entry)) {
3239                         if (vma->vm_ops) {
3240                                 if (likely(vma->vm_ops->fault))
3241                                         return do_linear_fault(mm, vma, address,
3242                                                 pte, pmd, flags, entry);
3243                         }
3244                         return do_anonymous_page(mm, vma, address,
3245                                                  pte, pmd, flags);
3246                 }
3247                 if (pte_file(entry))
3248                         return do_nonlinear_fault(mm, vma, address,
3249                                         pte, pmd, flags, entry);
3250                 return do_swap_page(mm, vma, address,
3251                                         pte, pmd, flags, entry);
3252         }
3253
3254         ptl = pte_lockptr(mm, pmd);
3255         spin_lock(ptl);
3256         if (unlikely(!pte_same(*pte, entry)))
3257                 goto unlock;
3258         if (flags & FAULT_FLAG_WRITE) {
3259                 if (!pte_write(entry))
3260                         return do_wp_page(mm, vma, address,
3261                                         pte, pmd, ptl, entry);
3262                 entry = pte_mkdirty(entry);
3263         }
3264         entry = pte_mkyoung(entry);
3265         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3266                 update_mmu_cache(vma, address, pte);
3267         } else {
3268                 /*
3269                  * This is needed only for protection faults but the arch code
3270                  * is not yet telling us if this is a protection fault or not.
3271                  * This still avoids useless tlb flushes for .text page faults
3272                  * with threads.
3273                  */
3274                 if (flags & FAULT_FLAG_WRITE)
3275                         flush_tlb_fix_spurious_fault(vma, address);
3276         }
3277 unlock:
3278         pte_unmap_unlock(pte, ptl);
3279         return 0;
3280 }
3281
3282 /*
3283  * By the time we get here, we already hold the mm semaphore
3284  */
3285 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3286                 unsigned long address, unsigned int flags)
3287 {
3288         pgd_t *pgd;
3289         pud_t *pud;
3290         pmd_t *pmd;
3291         pte_t *pte;
3292
3293         __set_current_state(TASK_RUNNING);
3294
3295         count_vm_event(PGFAULT);
3296
3297         /* do counter updates before entering really critical section. */
3298         check_sync_rss_stat(current);
3299
3300         if (unlikely(is_vm_hugetlb_page(vma)))
3301                 return hugetlb_fault(mm, vma, address, flags);
3302
3303         pgd = pgd_offset(mm, address);
3304         pud = pud_alloc(mm, pgd, address);
3305         if (!pud)
3306                 return VM_FAULT_OOM;
3307         pmd = pmd_alloc(mm, pud, address);
3308         if (!pmd)
3309                 return VM_FAULT_OOM;
3310         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3311                 if (!vma->vm_ops)
3312                         return do_huge_pmd_anonymous_page(mm, vma, address,
3313                                                           pmd, flags);
3314         } else {
3315                 pmd_t orig_pmd = *pmd;
3316                 barrier();
3317                 if (pmd_trans_huge(orig_pmd)) {
3318                         if (flags & FAULT_FLAG_WRITE &&
3319                             !pmd_write(orig_pmd) &&
3320                             !pmd_trans_splitting(orig_pmd))
3321                                 return do_huge_pmd_wp_page(mm, vma, address,
3322                                                            pmd, orig_pmd);
3323                         return 0;
3324                 }
3325         }
3326
3327         /*
3328          * Use __pte_alloc instead of pte_alloc_map, because we can't
3329          * run pte_offset_map on the pmd, if an huge pmd could
3330          * materialize from under us from a different thread.
3331          */
3332         if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3333                 return VM_FAULT_OOM;
3334         /* if an huge pmd materialized from under us just retry later */
3335         if (unlikely(pmd_trans_huge(*pmd)))
3336                 return 0;
3337         /*
3338          * A regular pmd is established and it can't morph into a huge pmd
3339          * from under us anymore at this point because we hold the mmap_sem
3340          * read mode and khugepaged takes it in write mode. So now it's
3341          * safe to run pte_offset_map().
3342          */
3343         pte = pte_offset_map(pmd, address);
3344
3345         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3346 }
3347
3348 #ifndef __PAGETABLE_PUD_FOLDED
3349 /*
3350  * Allocate page upper directory.
3351  * We've already handled the fast-path in-line.
3352  */
3353 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3354 {
3355         pud_t *new = pud_alloc_one(mm, address);
3356         if (!new)
3357                 return -ENOMEM;
3358
3359         smp_wmb(); /* See comment in __pte_alloc */
3360
3361         spin_lock(&mm->page_table_lock);
3362         if (pgd_present(*pgd))          /* Another has populated it */
3363                 pud_free(mm, new);
3364         else
3365                 pgd_populate(mm, pgd, new);
3366         spin_unlock(&mm->page_table_lock);
3367         return 0;
3368 }
3369 #endif /* __PAGETABLE_PUD_FOLDED */
3370
3371 #ifndef __PAGETABLE_PMD_FOLDED
3372 /*
3373  * Allocate page middle directory.
3374  * We've already handled the fast-path in-line.
3375  */
3376 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3377 {
3378         pmd_t *new = pmd_alloc_one(mm, address);
3379         if (!new)
3380                 return -ENOMEM;
3381
3382         smp_wmb(); /* See comment in __pte_alloc */
3383
3384         spin_lock(&mm->page_table_lock);
3385 #ifndef __ARCH_HAS_4LEVEL_HACK
3386         if (pud_present(*pud))          /* Another has populated it */
3387                 pmd_free(mm, new);
3388         else
3389                 pud_populate(mm, pud, new);
3390 #else
3391         if (pgd_present(*pud))          /* Another has populated it */
3392                 pmd_free(mm, new);
3393         else
3394                 pgd_populate(mm, pud, new);
3395 #endif /* __ARCH_HAS_4LEVEL_HACK */
3396         spin_unlock(&mm->page_table_lock);
3397         return 0;
3398 }
3399 #endif /* __PAGETABLE_PMD_FOLDED */
3400
3401 int make_pages_present(unsigned long addr, unsigned long end)
3402 {
3403         int ret, len, write;
3404         struct vm_area_struct * vma;
3405
3406         vma = find_vma(current->mm, addr);
3407         if (!vma)
3408                 return -ENOMEM;
3409         /*
3410          * We want to touch writable mappings with a write fault in order
3411          * to break COW, except for shared mappings because these don't COW
3412          * and we would not want to dirty them for nothing.
3413          */
3414         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3415         BUG_ON(addr >= end);
3416         BUG_ON(end > vma->vm_end);
3417         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3418         ret = get_user_pages(current, current->mm, addr,
3419                         len, write, 0, NULL, NULL);
3420         if (ret < 0)
3421                 return ret;
3422         return ret == len ? 0 : -EFAULT;
3423 }
3424
3425 #if !defined(__HAVE_ARCH_GATE_AREA)
3426
3427 #if defined(AT_SYSINFO_EHDR)
3428 static struct vm_area_struct gate_vma;
3429
3430 static int __init gate_vma_init(void)
3431 {
3432         gate_vma.vm_mm = NULL;
3433         gate_vma.vm_start = FIXADDR_USER_START;
3434         gate_vma.vm_end = FIXADDR_USER_END;
3435         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3436         gate_vma.vm_page_prot = __P101;
3437         /*
3438          * Make sure the vDSO gets into every core dump.
3439          * Dumping its contents makes post-mortem fully interpretable later
3440          * without matching up the same kernel and hardware config to see
3441          * what PC values meant.
3442          */
3443         gate_vma.vm_flags |= VM_ALWAYSDUMP;
3444         return 0;
3445 }
3446 __initcall(gate_vma_init);
3447 #endif
3448
3449 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3450 {
3451 #ifdef AT_SYSINFO_EHDR
3452         return &gate_vma;
3453 #else
3454         return NULL;
3455 #endif
3456 }
3457
3458 int in_gate_area_no_mm(unsigned long addr)
3459 {
3460 #ifdef AT_SYSINFO_EHDR
3461         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3462                 return 1;
3463 #endif
3464         return 0;
3465 }
3466
3467 #endif  /* __HAVE_ARCH_GATE_AREA */
3468
3469 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3470                 pte_t **ptepp, spinlock_t **ptlp)
3471 {
3472         pgd_t *pgd;
3473         pud_t *pud;
3474         pmd_t *pmd;
3475         pte_t *ptep;
3476
3477         pgd = pgd_offset(mm, address);
3478         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3479                 goto out;
3480
3481         pud = pud_offset(pgd, address);
3482         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3483                 goto out;
3484
3485         pmd = pmd_offset(pud, address);
3486         VM_BUG_ON(pmd_trans_huge(*pmd));
3487         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3488                 goto out;
3489
3490         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3491         if (pmd_huge(*pmd))
3492                 goto out;
3493
3494         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3495         if (!ptep)
3496                 goto out;
3497         if (!pte_present(*ptep))
3498                 goto unlock;
3499         *ptepp = ptep;
3500         return 0;
3501 unlock:
3502         pte_unmap_unlock(ptep, *ptlp);
3503 out:
3504         return -EINVAL;
3505 }
3506
3507 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3508                              pte_t **ptepp, spinlock_t **ptlp)
3509 {
3510         int res;
3511
3512         /* (void) is needed to make gcc happy */
3513         (void) __cond_lock(*ptlp,
3514                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3515         return res;
3516 }
3517
3518 /**
3519  * follow_pfn - look up PFN at a user virtual address
3520  * @vma: memory mapping
3521  * @address: user virtual address
3522  * @pfn: location to store found PFN
3523  *
3524  * Only IO mappings and raw PFN mappings are allowed.
3525  *
3526  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3527  */
3528 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3529         unsigned long *pfn)
3530 {
3531         int ret = -EINVAL;
3532         spinlock_t *ptl;
3533         pte_t *ptep;
3534
3535         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3536                 return ret;
3537
3538         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3539         if (ret)
3540                 return ret;
3541         *pfn = pte_pfn(*ptep);
3542         pte_unmap_unlock(ptep, ptl);
3543         return 0;
3544 }
3545 EXPORT_SYMBOL(follow_pfn);
3546
3547 #ifdef CONFIG_HAVE_IOREMAP_PROT
3548 int follow_phys(struct vm_area_struct *vma,
3549                 unsigned long address, unsigned int flags,
3550                 unsigned long *prot, resource_size_t *phys)
3551 {
3552         int ret = -EINVAL;
3553         pte_t *ptep, pte;
3554         spinlock_t *ptl;
3555
3556         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3557                 goto out;
3558
3559         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3560                 goto out;
3561         pte = *ptep;
3562
3563         if ((flags & FOLL_WRITE) && !pte_write(pte))
3564                 goto unlock;
3565
3566         *prot = pgprot_val(pte_pgprot(pte));
3567         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3568
3569         ret = 0;
3570 unlock:
3571         pte_unmap_unlock(ptep, ptl);
3572 out:
3573         return ret;
3574 }
3575
3576 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3577                         void *buf, int len, int write)
3578 {
3579         resource_size_t phys_addr;
3580         unsigned long prot = 0;
3581         void __iomem *maddr;
3582         int offset = addr & (PAGE_SIZE-1);
3583
3584         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3585                 return -EINVAL;
3586
3587         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3588         if (write)
3589                 memcpy_toio(maddr + offset, buf, len);
3590         else
3591                 memcpy_fromio(buf, maddr + offset, len);
3592         iounmap(maddr);
3593
3594         return len;
3595 }
3596 #endif
3597
3598 /*
3599  * Access another process' address space as given in mm.  If non-NULL, use the
3600  * given task for page fault accounting.
3601  */
3602 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3603                 unsigned long addr, void *buf, int len, int write)
3604 {
3605         struct vm_area_struct *vma;
3606         void *old_buf = buf;
3607
3608         down_read(&mm->mmap_sem);
3609         /* ignore errors, just check how much was successfully transferred */
3610         while (len) {
3611                 int bytes, ret, offset;
3612                 void *maddr;
3613                 struct page *page = NULL;
3614
3615                 ret = get_user_pages(tsk, mm, addr, 1,
3616                                 write, 1, &page, &vma);
3617                 if (ret <= 0) {
3618                         /*
3619                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3620                          * we can access using slightly different code.
3621                          */
3622 #ifdef CONFIG_HAVE_IOREMAP_PROT
3623                         vma = find_vma(mm, addr);
3624                         if (!vma || vma->vm_start > addr)
3625                                 break;
3626                         if (vma->vm_ops && vma->vm_ops->access)
3627                                 ret = vma->vm_ops->access(vma, addr, buf,
3628                                                           len, write);
3629                         if (ret <= 0)
3630 #endif
3631                                 break;
3632                         bytes = ret;
3633                 } else {
3634                         bytes = len;
3635                         offset = addr & (PAGE_SIZE-1);
3636                         if (bytes > PAGE_SIZE-offset)
3637                                 bytes = PAGE_SIZE-offset;
3638
3639                         maddr = kmap(page);
3640                         if (write) {
3641                                 copy_to_user_page(vma, page, addr,
3642                                                   maddr + offset, buf, bytes);
3643                                 set_page_dirty_lock(page);
3644                         } else {
3645                                 copy_from_user_page(vma, page, addr,
3646                                                     buf, maddr + offset, bytes);
3647                         }
3648                         kunmap(page);
3649                         page_cache_release(page);
3650                 }
3651                 len -= bytes;
3652                 buf += bytes;
3653                 addr += bytes;
3654         }
3655         up_read(&mm->mmap_sem);
3656
3657         return buf - old_buf;
3658 }
3659
3660 /**
3661  * access_remote_vm - access another process' address space
3662  * @mm:         the mm_struct of the target address space
3663  * @addr:       start address to access
3664  * @buf:        source or destination buffer
3665  * @len:        number of bytes to transfer
3666  * @write:      whether the access is a write
3667  *
3668  * The caller must hold a reference on @mm.
3669  */
3670 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3671                 void *buf, int len, int write)
3672 {
3673         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3674 }
3675
3676 /*
3677  * Access another process' address space.
3678  * Source/target buffer must be kernel space,
3679  * Do not walk the page table directly, use get_user_pages
3680  */
3681 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3682                 void *buf, int len, int write)
3683 {
3684         struct mm_struct *mm;
3685         int ret;
3686
3687         mm = get_task_mm(tsk);
3688         if (!mm)
3689                 return 0;
3690
3691         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3692         mmput(mm);
3693
3694         return ret;
3695 }
3696
3697 /*
3698  * Print the name of a VMA.
3699  */
3700 void print_vma_addr(char *prefix, unsigned long ip)
3701 {
3702         struct mm_struct *mm = current->mm;
3703         struct vm_area_struct *vma;
3704
3705         /*
3706          * Do not print if we are in atomic
3707          * contexts (in exception stacks, etc.):
3708          */
3709         if (preempt_count())
3710                 return;
3711
3712         down_read(&mm->mmap_sem);
3713         vma = find_vma(mm, ip);
3714         if (vma && vma->vm_file) {
3715                 struct file *f = vma->vm_file;
3716                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3717                 if (buf) {
3718                         char *p, *s;
3719
3720                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3721                         if (IS_ERR(p))
3722                                 p = "?";
3723                         s = strrchr(p, '/');
3724                         if (s)
3725                                 p = s+1;
3726                         printk("%s%s[%lx+%lx]", prefix, p,
3727                                         vma->vm_start,
3728                                         vma->vm_end - vma->vm_start);
3729                         free_page((unsigned long)buf);
3730                 }
3731         }
3732         up_read(&current->mm->mmap_sem);
3733 }
3734
3735 #ifdef CONFIG_PROVE_LOCKING
3736 void might_fault(void)
3737 {
3738         /*
3739          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3740          * holding the mmap_sem, this is safe because kernel memory doesn't
3741          * get paged out, therefore we'll never actually fault, and the
3742          * below annotations will generate false positives.
3743          */
3744         if (segment_eq(get_fs(), KERNEL_DS))
3745                 return;
3746
3747         might_sleep();
3748         /*
3749          * it would be nicer only to annotate paths which are not under
3750          * pagefault_disable, however that requires a larger audit and
3751          * providing helpers like get_user_atomic.
3752          */
3753         if (!in_atomic() && current->mm)
3754                 might_lock_read(&current->mm->mmap_sem);
3755 }
3756 EXPORT_SYMBOL(might_fault);
3757 #endif
3758
3759 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3760 static void clear_gigantic_page(struct page *page,
3761                                 unsigned long addr,
3762                                 unsigned int pages_per_huge_page)
3763 {
3764         int i;
3765         struct page *p = page;
3766
3767         might_sleep();
3768         for (i = 0; i < pages_per_huge_page;
3769              i++, p = mem_map_next(p, page, i)) {
3770                 cond_resched();
3771                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3772         }
3773 }
3774 void clear_huge_page(struct page *page,
3775                      unsigned long addr, unsigned int pages_per_huge_page)
3776 {
3777         int i;
3778
3779         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3780                 clear_gigantic_page(page, addr, pages_per_huge_page);
3781                 return;
3782         }
3783
3784         might_sleep();
3785         for (i = 0; i < pages_per_huge_page; i++) {
3786                 cond_resched();
3787                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3788         }
3789 }
3790
3791 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3792                                     unsigned long addr,
3793                                     struct vm_area_struct *vma,
3794                                     unsigned int pages_per_huge_page)
3795 {
3796         int i;
3797         struct page *dst_base = dst;
3798         struct page *src_base = src;
3799
3800         for (i = 0; i < pages_per_huge_page; ) {
3801                 cond_resched();
3802                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3803
3804                 i++;
3805                 dst = mem_map_next(dst, dst_base, i);
3806                 src = mem_map_next(src, src_base, i);
3807         }
3808 }
3809
3810 void copy_user_huge_page(struct page *dst, struct page *src,
3811                          unsigned long addr, struct vm_area_struct *vma,
3812                          unsigned int pages_per_huge_page)
3813 {
3814         int i;
3815
3816         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3817                 copy_user_gigantic_page(dst, src, addr, vma,
3818                                         pages_per_huge_page);
3819                 return;
3820         }
3821
3822         might_sleep();
3823         for (i = 0; i < pages_per_huge_page; i++) {
3824                 cond_resched();
3825                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3826         }
3827 }
3828 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */