Update to 3.4-final.
[linux-flexiantxendom0-3.2.10.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100                                         1;
101 #else
102                                         2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107         randomize_va_space = 0;
108         return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120         zero_pfn = page_to_pfn(ZERO_PAGE(0));
121         return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 void sync_mm_rss(struct mm_struct *mm)
129 {
130         int i;
131
132         for (i = 0; i < NR_MM_COUNTERS; i++) {
133                 if (current->rss_stat.count[i]) {
134                         add_mm_counter(mm, i, current->rss_stat.count[i]);
135                         current->rss_stat.count[i] = 0;
136                 }
137         }
138         current->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143         struct task_struct *task = current;
144
145         if (likely(task->mm == mm))
146                 task->rss_stat.count[member] += val;
147         else
148                 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH  (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157         if (unlikely(task != current))
158                 return;
159         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160                 sync_mm_rss(task->mm);
161 }
162 #else /* SPLIT_RSS_COUNTING */
163
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 }
170
171 #endif /* SPLIT_RSS_COUNTING */
172
173 #ifdef HAVE_GENERIC_MMU_GATHER
174
175 static int tlb_next_batch(struct mmu_gather *tlb)
176 {
177         struct mmu_gather_batch *batch;
178
179         batch = tlb->active;
180         if (batch->next) {
181                 tlb->active = batch->next;
182                 return 1;
183         }
184
185         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186         if (!batch)
187                 return 0;
188
189         batch->next = NULL;
190         batch->nr   = 0;
191         batch->max  = MAX_GATHER_BATCH;
192
193         tlb->active->next = batch;
194         tlb->active = batch;
195
196         return 1;
197 }
198
199 /* tlb_gather_mmu
200  *      Called to initialize an (on-stack) mmu_gather structure for page-table
201  *      tear-down from @mm. The @fullmm argument is used when @mm is without
202  *      users and we're going to destroy the full address space (exit/execve).
203  */
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205 {
206         tlb->mm = mm;
207
208         tlb->fullmm     = fullmm;
209         tlb->need_flush = 0;
210         tlb->fast_mode  = (num_possible_cpus() == 1);
211         tlb->local.next = NULL;
212         tlb->local.nr   = 0;
213         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
214         tlb->active     = &tlb->local;
215
216 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
217         tlb->batch = NULL;
218 #endif
219 }
220
221 void tlb_flush_mmu(struct mmu_gather *tlb)
222 {
223         struct mmu_gather_batch *batch;
224
225         if (!tlb->need_flush)
226                 return;
227         tlb->need_flush = 0;
228         tlb_flush(tlb);
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230         tlb_table_flush(tlb);
231 #endif
232
233         if (tlb_fast_mode(tlb))
234                 return;
235
236         for (batch = &tlb->local; batch; batch = batch->next) {
237                 free_pages_and_swap_cache(batch->pages, batch->nr);
238                 batch->nr = 0;
239         }
240         tlb->active = &tlb->local;
241 }
242
243 /* tlb_finish_mmu
244  *      Called at the end of the shootdown operation to free up any resources
245  *      that were required.
246  */
247 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
248 {
249         struct mmu_gather_batch *batch, *next;
250
251         tlb_flush_mmu(tlb);
252
253         /* keep the page table cache within bounds */
254         check_pgt_cache();
255
256         for (batch = tlb->local.next; batch; batch = next) {
257                 next = batch->next;
258                 free_pages((unsigned long)batch, 0);
259         }
260         tlb->local.next = NULL;
261 }
262
263 /* __tlb_remove_page
264  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
265  *      handling the additional races in SMP caused by other CPUs caching valid
266  *      mappings in their TLBs. Returns the number of free page slots left.
267  *      When out of page slots we must call tlb_flush_mmu().
268  */
269 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
270 {
271         struct mmu_gather_batch *batch;
272
273         VM_BUG_ON(!tlb->need_flush);
274
275         if (tlb_fast_mode(tlb)) {
276                 free_page_and_swap_cache(page);
277                 return 1; /* avoid calling tlb_flush_mmu() */
278         }
279
280         batch = tlb->active;
281         batch->pages[batch->nr++] = page;
282         if (batch->nr == batch->max) {
283                 if (!tlb_next_batch(tlb))
284                         return 0;
285                 batch = tlb->active;
286         }
287         VM_BUG_ON(batch->nr > batch->max);
288
289         return batch->max - batch->nr;
290 }
291
292 #endif /* HAVE_GENERIC_MMU_GATHER */
293
294 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
295
296 /*
297  * See the comment near struct mmu_table_batch.
298  */
299
300 static void tlb_remove_table_smp_sync(void *arg)
301 {
302         /* Simply deliver the interrupt */
303 }
304
305 static void tlb_remove_table_one(void *table)
306 {
307         /*
308          * This isn't an RCU grace period and hence the page-tables cannot be
309          * assumed to be actually RCU-freed.
310          *
311          * It is however sufficient for software page-table walkers that rely on
312          * IRQ disabling. See the comment near struct mmu_table_batch.
313          */
314         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
315         __tlb_remove_table(table);
316 }
317
318 static void tlb_remove_table_rcu(struct rcu_head *head)
319 {
320         struct mmu_table_batch *batch;
321         int i;
322
323         batch = container_of(head, struct mmu_table_batch, rcu);
324
325         for (i = 0; i < batch->nr; i++)
326                 __tlb_remove_table(batch->tables[i]);
327
328         free_page((unsigned long)batch);
329 }
330
331 void tlb_table_flush(struct mmu_gather *tlb)
332 {
333         struct mmu_table_batch **batch = &tlb->batch;
334
335         if (*batch) {
336                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
337                 *batch = NULL;
338         }
339 }
340
341 void tlb_remove_table(struct mmu_gather *tlb, void *table)
342 {
343         struct mmu_table_batch **batch = &tlb->batch;
344
345         tlb->need_flush = 1;
346
347         /*
348          * When there's less then two users of this mm there cannot be a
349          * concurrent page-table walk.
350          */
351         if (atomic_read(&tlb->mm->mm_users) < 2) {
352                 __tlb_remove_table(table);
353                 return;
354         }
355
356         if (*batch == NULL) {
357                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
358                 if (*batch == NULL) {
359                         tlb_remove_table_one(table);
360                         return;
361                 }
362                 (*batch)->nr = 0;
363         }
364         (*batch)->tables[(*batch)->nr++] = table;
365         if ((*batch)->nr == MAX_TABLE_BATCH)
366                 tlb_table_flush(tlb);
367 }
368
369 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
370
371 /*
372  * If a p?d_bad entry is found while walking page tables, report
373  * the error, before resetting entry to p?d_none.  Usually (but
374  * very seldom) called out from the p?d_none_or_clear_bad macros.
375  */
376
377 void pgd_clear_bad(pgd_t *pgd)
378 {
379         pgd_ERROR(*pgd);
380         pgd_clear(pgd);
381 }
382
383 void pud_clear_bad(pud_t *pud)
384 {
385         pud_ERROR(*pud);
386         pud_clear(pud);
387 }
388
389 void pmd_clear_bad(pmd_t *pmd)
390 {
391         pmd_ERROR(*pmd);
392         pmd_clear(pmd);
393 }
394
395 /*
396  * Note: this doesn't free the actual pages themselves. That
397  * has been handled earlier when unmapping all the memory regions.
398  */
399 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
400                            unsigned long addr)
401 {
402         pgtable_t token = pmd_pgtable(*pmd);
403         pmd_clear(pmd);
404         pte_free_tlb(tlb, token, addr);
405         tlb->mm->nr_ptes--;
406 }
407
408 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
409                                 unsigned long addr, unsigned long end,
410                                 unsigned long floor, unsigned long ceiling)
411 {
412         pmd_t *pmd;
413         unsigned long next;
414         unsigned long start;
415
416         start = addr;
417         pmd = pmd_offset(pud, addr);
418         do {
419                 next = pmd_addr_end(addr, end);
420                 if (pmd_none_or_clear_bad(pmd))
421                         continue;
422                 free_pte_range(tlb, pmd, addr);
423         } while (pmd++, addr = next, addr != end);
424
425         start &= PUD_MASK;
426         if (start < floor)
427                 return;
428         if (ceiling) {
429                 ceiling &= PUD_MASK;
430                 if (!ceiling)
431                         return;
432         }
433         if (end - 1 > ceiling - 1)
434                 return;
435
436         pmd = pmd_offset(pud, start);
437         pud_clear(pud);
438         pmd_free_tlb(tlb, pmd, start);
439 }
440
441 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
442                                 unsigned long addr, unsigned long end,
443                                 unsigned long floor, unsigned long ceiling)
444 {
445         pud_t *pud;
446         unsigned long next;
447         unsigned long start;
448
449         start = addr;
450         pud = pud_offset(pgd, addr);
451         do {
452                 next = pud_addr_end(addr, end);
453                 if (pud_none_or_clear_bad(pud))
454                         continue;
455                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
456         } while (pud++, addr = next, addr != end);
457
458         start &= PGDIR_MASK;
459         if (start < floor)
460                 return;
461         if (ceiling) {
462                 ceiling &= PGDIR_MASK;
463                 if (!ceiling)
464                         return;
465         }
466         if (end - 1 > ceiling - 1)
467                 return;
468
469         pud = pud_offset(pgd, start);
470         pgd_clear(pgd);
471         pud_free_tlb(tlb, pud, start);
472 }
473
474 /*
475  * This function frees user-level page tables of a process.
476  *
477  * Must be called with pagetable lock held.
478  */
479 void free_pgd_range(struct mmu_gather *tlb,
480                         unsigned long addr, unsigned long end,
481                         unsigned long floor, unsigned long ceiling)
482 {
483         pgd_t *pgd;
484         unsigned long next;
485
486         /*
487          * The next few lines have given us lots of grief...
488          *
489          * Why are we testing PMD* at this top level?  Because often
490          * there will be no work to do at all, and we'd prefer not to
491          * go all the way down to the bottom just to discover that.
492          *
493          * Why all these "- 1"s?  Because 0 represents both the bottom
494          * of the address space and the top of it (using -1 for the
495          * top wouldn't help much: the masks would do the wrong thing).
496          * The rule is that addr 0 and floor 0 refer to the bottom of
497          * the address space, but end 0 and ceiling 0 refer to the top
498          * Comparisons need to use "end - 1" and "ceiling - 1" (though
499          * that end 0 case should be mythical).
500          *
501          * Wherever addr is brought up or ceiling brought down, we must
502          * be careful to reject "the opposite 0" before it confuses the
503          * subsequent tests.  But what about where end is brought down
504          * by PMD_SIZE below? no, end can't go down to 0 there.
505          *
506          * Whereas we round start (addr) and ceiling down, by different
507          * masks at different levels, in order to test whether a table
508          * now has no other vmas using it, so can be freed, we don't
509          * bother to round floor or end up - the tests don't need that.
510          */
511
512         addr &= PMD_MASK;
513         if (addr < floor) {
514                 addr += PMD_SIZE;
515                 if (!addr)
516                         return;
517         }
518         if (ceiling) {
519                 ceiling &= PMD_MASK;
520                 if (!ceiling)
521                         return;
522         }
523         if (end - 1 > ceiling - 1)
524                 end -= PMD_SIZE;
525         if (addr > end - 1)
526                 return;
527
528         pgd = pgd_offset(tlb->mm, addr);
529         do {
530                 next = pgd_addr_end(addr, end);
531                 if (pgd_none_or_clear_bad(pgd))
532                         continue;
533                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
534         } while (pgd++, addr = next, addr != end);
535 }
536
537 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
538                 unsigned long floor, unsigned long ceiling)
539 {
540         while (vma) {
541                 struct vm_area_struct *next = vma->vm_next;
542                 unsigned long addr = vma->vm_start;
543
544                 /*
545                  * Hide vma from rmap and truncate_pagecache before freeing
546                  * pgtables
547                  */
548                 unlink_anon_vmas(vma);
549                 unlink_file_vma(vma);
550
551                 if (is_vm_hugetlb_page(vma)) {
552                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
553                                 floor, next? next->vm_start: ceiling);
554                 } else {
555                         /*
556                          * Optimization: gather nearby vmas into one call down
557                          */
558                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
559                                && !is_vm_hugetlb_page(next)) {
560                                 vma = next;
561                                 next = vma->vm_next;
562                                 unlink_anon_vmas(vma);
563                                 unlink_file_vma(vma);
564                         }
565                         free_pgd_range(tlb, addr, vma->vm_end,
566                                 floor, next? next->vm_start: ceiling);
567                 }
568                 vma = next;
569         }
570 }
571
572 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
573                 pmd_t *pmd, unsigned long address)
574 {
575         pgtable_t new = pte_alloc_one(mm, address);
576         int wait_split_huge_page;
577         if (!new)
578                 return -ENOMEM;
579
580         /*
581          * Ensure all pte setup (eg. pte page lock and page clearing) are
582          * visible before the pte is made visible to other CPUs by being
583          * put into page tables.
584          *
585          * The other side of the story is the pointer chasing in the page
586          * table walking code (when walking the page table without locking;
587          * ie. most of the time). Fortunately, these data accesses consist
588          * of a chain of data-dependent loads, meaning most CPUs (alpha
589          * being the notable exception) will already guarantee loads are
590          * seen in-order. See the alpha page table accessors for the
591          * smp_read_barrier_depends() barriers in page table walking code.
592          */
593         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
594
595         spin_lock(&mm->page_table_lock);
596         wait_split_huge_page = 0;
597         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
598                 mm->nr_ptes++;
599                 pmd_populate(mm, pmd, new);
600                 new = NULL;
601         } else if (unlikely(pmd_trans_splitting(*pmd)))
602                 wait_split_huge_page = 1;
603         spin_unlock(&mm->page_table_lock);
604         if (new)
605                 pte_free(mm, new);
606         if (wait_split_huge_page)
607                 wait_split_huge_page(vma->anon_vma, pmd);
608         return 0;
609 }
610
611 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
612 {
613         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
614         if (!new)
615                 return -ENOMEM;
616
617         smp_wmb(); /* See comment in __pte_alloc */
618
619         spin_lock(&init_mm.page_table_lock);
620         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
621                 pmd_populate_kernel(&init_mm, pmd, new);
622                 new = NULL;
623         } else
624                 VM_BUG_ON(pmd_trans_splitting(*pmd));
625         spin_unlock(&init_mm.page_table_lock);
626         if (new)
627                 pte_free_kernel(&init_mm, new);
628         return 0;
629 }
630
631 static inline void init_rss_vec(int *rss)
632 {
633         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
634 }
635
636 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
637 {
638         int i;
639
640         if (current->mm == mm)
641                 sync_mm_rss(mm);
642         for (i = 0; i < NR_MM_COUNTERS; i++)
643                 if (rss[i])
644                         add_mm_counter(mm, i, rss[i]);
645 }
646
647 /*
648  * This function is called to print an error when a bad pte
649  * is found. For example, we might have a PFN-mapped pte in
650  * a region that doesn't allow it.
651  *
652  * The calling function must still handle the error.
653  */
654 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
655                           pte_t pte, struct page *page)
656 {
657         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
658         pud_t *pud = pud_offset(pgd, addr);
659         pmd_t *pmd = pmd_offset(pud, addr);
660         struct address_space *mapping;
661         pgoff_t index;
662         static unsigned long resume;
663         static unsigned long nr_shown;
664         static unsigned long nr_unshown;
665
666         /*
667          * Allow a burst of 60 reports, then keep quiet for that minute;
668          * or allow a steady drip of one report per second.
669          */
670         if (nr_shown == 60) {
671                 if (time_before(jiffies, resume)) {
672                         nr_unshown++;
673                         return;
674                 }
675                 if (nr_unshown) {
676                         printk(KERN_ALERT
677                                 "BUG: Bad page map: %lu messages suppressed\n",
678                                 nr_unshown);
679                         nr_unshown = 0;
680                 }
681                 nr_shown = 0;
682         }
683         if (nr_shown++ == 0)
684                 resume = jiffies + 60 * HZ;
685
686         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
687         index = linear_page_index(vma, addr);
688
689         printk(KERN_ALERT
690                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
691                 current->comm,
692                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
693         if (page)
694                 dump_page(page);
695         printk(KERN_ALERT
696                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
697                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
698         /*
699          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
700          */
701         if (vma->vm_ops)
702                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
703                                 (unsigned long)vma->vm_ops->fault);
704         if (vma->vm_file && vma->vm_file->f_op)
705                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
706                                 (unsigned long)vma->vm_file->f_op->mmap);
707         dump_stack();
708         add_taint(TAINT_BAD_PAGE);
709 }
710
711 static inline int is_cow_mapping(vm_flags_t flags)
712 {
713         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
714 }
715
716 #ifndef is_zero_pfn
717 static inline int is_zero_pfn(unsigned long pfn)
718 {
719         return pfn == zero_pfn;
720 }
721 #endif
722
723 #ifndef my_zero_pfn
724 static inline unsigned long my_zero_pfn(unsigned long addr)
725 {
726         return zero_pfn;
727 }
728 #endif
729
730 /*
731  * vm_normal_page -- This function gets the "struct page" associated with a pte.
732  *
733  * "Special" mappings do not wish to be associated with a "struct page" (either
734  * it doesn't exist, or it exists but they don't want to touch it). In this
735  * case, NULL is returned here. "Normal" mappings do have a struct page.
736  *
737  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
738  * pte bit, in which case this function is trivial. Secondly, an architecture
739  * may not have a spare pte bit, which requires a more complicated scheme,
740  * described below.
741  *
742  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
743  * special mapping (even if there are underlying and valid "struct pages").
744  * COWed pages of a VM_PFNMAP are always normal.
745  *
746  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
747  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
748  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
749  * mapping will always honor the rule
750  *
751  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
752  *
753  * And for normal mappings this is false.
754  *
755  * This restricts such mappings to be a linear translation from virtual address
756  * to pfn. To get around this restriction, we allow arbitrary mappings so long
757  * as the vma is not a COW mapping; in that case, we know that all ptes are
758  * special (because none can have been COWed).
759  *
760  *
761  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
762  *
763  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
764  * page" backing, however the difference is that _all_ pages with a struct
765  * page (that is, those where pfn_valid is true) are refcounted and considered
766  * normal pages by the VM. The disadvantage is that pages are refcounted
767  * (which can be slower and simply not an option for some PFNMAP users). The
768  * advantage is that we don't have to follow the strict linearity rule of
769  * PFNMAP mappings in order to support COWable mappings.
770  *
771  */
772 #ifdef __HAVE_ARCH_PTE_SPECIAL
773 # define HAVE_PTE_SPECIAL 1
774 #else
775 # define HAVE_PTE_SPECIAL 0
776 #endif
777 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
778                                 pte_t pte)
779 {
780         unsigned long pfn = pte_pfn(pte);
781
782 #if defined(CONFIG_XEN) && defined(CONFIG_X86)
783         /* XEN: Covers user-space grant mappings (even of local pages). */
784         if (unlikely(vma->vm_flags & VM_FOREIGN))
785                 return NULL;
786 #endif
787
788         if (HAVE_PTE_SPECIAL) {
789                 if (likely(!pte_special(pte)))
790                         goto check_pfn;
791                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
792                         return NULL;
793                 if (!is_zero_pfn(pfn))
794                         print_bad_pte(vma, addr, pte, NULL);
795                 return NULL;
796         }
797
798         /* !HAVE_PTE_SPECIAL case follows: */
799
800         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
801                 if (vma->vm_flags & VM_MIXEDMAP) {
802                         if (!pfn_valid(pfn))
803                                 return NULL;
804                         goto out;
805                 } else {
806                         unsigned long off;
807                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
808                         if (pfn == vma->vm_pgoff + off)
809                                 return NULL;
810                         if (!is_cow_mapping(vma->vm_flags))
811                                 return NULL;
812                 }
813         }
814
815         if (is_zero_pfn(pfn))
816                 return NULL;
817 check_pfn:
818         if (unlikely(pfn > highest_memmap_pfn)) {
819 #ifdef CONFIG_XEN
820                 if (!(vma->vm_flags & VM_RESERVED))
821 #endif
822                 print_bad_pte(vma, addr, pte, NULL);
823                 return NULL;
824         }
825
826         /*
827          * NOTE! We still have PageReserved() pages in the page tables.
828          * eg. VDSO mappings can cause them to exist.
829          */
830 out:
831         return pfn_to_page(pfn);
832 }
833
834 /*
835  * copy one vm_area from one task to the other. Assumes the page tables
836  * already present in the new task to be cleared in the whole range
837  * covered by this vma.
838  */
839
840 static inline unsigned long
841 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
842                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
843                 unsigned long addr, int *rss)
844 {
845         unsigned long vm_flags = vma->vm_flags;
846         pte_t pte = *src_pte;
847         struct page *page;
848
849         /* pte contains position in swap or file, so copy. */
850         if (unlikely(!pte_present(pte))) {
851                 if (!pte_file(pte)) {
852                         swp_entry_t entry = pte_to_swp_entry(pte);
853
854                         if (swap_duplicate(entry) < 0)
855                                 return entry.val;
856
857                         /* make sure dst_mm is on swapoff's mmlist. */
858                         if (unlikely(list_empty(&dst_mm->mmlist))) {
859                                 spin_lock(&mmlist_lock);
860                                 if (list_empty(&dst_mm->mmlist))
861                                         list_add(&dst_mm->mmlist,
862                                                  &src_mm->mmlist);
863                                 spin_unlock(&mmlist_lock);
864                         }
865                         if (likely(!non_swap_entry(entry)))
866                                 rss[MM_SWAPENTS]++;
867                         else if (is_migration_entry(entry)) {
868                                 page = migration_entry_to_page(entry);
869
870                                 if (PageAnon(page))
871                                         rss[MM_ANONPAGES]++;
872                                 else
873                                         rss[MM_FILEPAGES]++;
874
875                                 if (is_write_migration_entry(entry) &&
876                                     is_cow_mapping(vm_flags)) {
877                                         /*
878                                          * COW mappings require pages in both
879                                          * parent and child to be set to read.
880                                          */
881                                         make_migration_entry_read(&entry);
882                                         pte = swp_entry_to_pte(entry);
883                                         set_pte_at(src_mm, addr, src_pte, pte);
884                                 }
885                         }
886                 }
887                 goto out_set_pte;
888         }
889
890         /*
891          * If it's a COW mapping, write protect it both
892          * in the parent and the child
893          */
894         if (is_cow_mapping(vm_flags)) {
895                 ptep_set_wrprotect(src_mm, addr, src_pte);
896                 pte = pte_wrprotect(pte);
897         }
898
899         /*
900          * If it's a shared mapping, mark it clean in
901          * the child
902          */
903         if (vm_flags & VM_SHARED)
904                 pte = pte_mkclean(pte);
905         pte = pte_mkold(pte);
906
907         page = vm_normal_page(vma, addr, pte);
908         if (page) {
909                 get_page(page);
910                 page_dup_rmap(page);
911                 if (PageAnon(page))
912                         rss[MM_ANONPAGES]++;
913                 else
914                         rss[MM_FILEPAGES]++;
915         }
916
917 out_set_pte:
918         set_pte_at(dst_mm, addr, dst_pte, pte);
919         return 0;
920 }
921
922 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
923                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
924                    unsigned long addr, unsigned long end)
925 {
926         pte_t *orig_src_pte, *orig_dst_pte;
927         pte_t *src_pte, *dst_pte;
928         spinlock_t *src_ptl, *dst_ptl;
929         int progress = 0;
930         int rss[NR_MM_COUNTERS];
931         swp_entry_t entry = (swp_entry_t){0};
932
933 again:
934         init_rss_vec(rss);
935
936         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
937         if (!dst_pte)
938                 return -ENOMEM;
939         src_pte = pte_offset_map(src_pmd, addr);
940         src_ptl = pte_lockptr(src_mm, src_pmd);
941         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
942         orig_src_pte = src_pte;
943         orig_dst_pte = dst_pte;
944         arch_enter_lazy_mmu_mode();
945
946         do {
947                 /*
948                  * We are holding two locks at this point - either of them
949                  * could generate latencies in another task on another CPU.
950                  */
951                 if (progress >= 32) {
952                         progress = 0;
953                         if (need_resched() ||
954                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
955                                 break;
956                 }
957                 if (pte_none(*src_pte)) {
958                         progress++;
959                         continue;
960                 }
961                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
962                                                         vma, addr, rss);
963                 if (entry.val)
964                         break;
965                 progress += 8;
966         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
967
968         arch_leave_lazy_mmu_mode();
969         spin_unlock(src_ptl);
970         pte_unmap(orig_src_pte);
971         add_mm_rss_vec(dst_mm, rss);
972         pte_unmap_unlock(orig_dst_pte, dst_ptl);
973         cond_resched();
974
975         if (entry.val) {
976                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
977                         return -ENOMEM;
978                 progress = 0;
979         }
980         if (addr != end)
981                 goto again;
982         return 0;
983 }
984
985 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
986                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
987                 unsigned long addr, unsigned long end)
988 {
989         pmd_t *src_pmd, *dst_pmd;
990         unsigned long next;
991
992         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
993         if (!dst_pmd)
994                 return -ENOMEM;
995         src_pmd = pmd_offset(src_pud, addr);
996         do {
997                 next = pmd_addr_end(addr, end);
998                 if (pmd_trans_huge(*src_pmd)) {
999                         int err;
1000                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1001                         err = copy_huge_pmd(dst_mm, src_mm,
1002                                             dst_pmd, src_pmd, addr, vma);
1003                         if (err == -ENOMEM)
1004                                 return -ENOMEM;
1005                         if (!err)
1006                                 continue;
1007                         /* fall through */
1008                 }
1009                 if (pmd_none_or_clear_bad(src_pmd))
1010                         continue;
1011                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1012                                                 vma, addr, next))
1013                         return -ENOMEM;
1014         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1015         return 0;
1016 }
1017
1018 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1019                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1020                 unsigned long addr, unsigned long end)
1021 {
1022         pud_t *src_pud, *dst_pud;
1023         unsigned long next;
1024
1025         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1026         if (!dst_pud)
1027                 return -ENOMEM;
1028         src_pud = pud_offset(src_pgd, addr);
1029         do {
1030                 next = pud_addr_end(addr, end);
1031                 if (pud_none_or_clear_bad(src_pud))
1032                         continue;
1033                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1034                                                 vma, addr, next))
1035                         return -ENOMEM;
1036         } while (dst_pud++, src_pud++, addr = next, addr != end);
1037         return 0;
1038 }
1039
1040 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1041                 struct vm_area_struct *vma)
1042 {
1043         pgd_t *src_pgd, *dst_pgd;
1044         unsigned long next;
1045         unsigned long addr = vma->vm_start;
1046         unsigned long end = vma->vm_end;
1047         int ret;
1048
1049         /*
1050          * Don't copy ptes where a page fault will fill them correctly.
1051          * Fork becomes much lighter when there are big shared or private
1052          * readonly mappings. The tradeoff is that copy_page_range is more
1053          * efficient than faulting.
1054          */
1055         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1056                 if (!vma->anon_vma)
1057                         return 0;
1058         }
1059
1060         if (is_vm_hugetlb_page(vma))
1061                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1062
1063         if (unlikely(is_pfn_mapping(vma))) {
1064                 /*
1065                  * We do not free on error cases below as remove_vma
1066                  * gets called on error from higher level routine
1067                  */
1068                 ret = track_pfn_vma_copy(vma);
1069                 if (ret)
1070                         return ret;
1071         }
1072
1073         /*
1074          * We need to invalidate the secondary MMU mappings only when
1075          * there could be a permission downgrade on the ptes of the
1076          * parent mm. And a permission downgrade will only happen if
1077          * is_cow_mapping() returns true.
1078          */
1079         if (is_cow_mapping(vma->vm_flags))
1080                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1081
1082         ret = 0;
1083         dst_pgd = pgd_offset(dst_mm, addr);
1084         src_pgd = pgd_offset(src_mm, addr);
1085         do {
1086                 next = pgd_addr_end(addr, end);
1087                 if (pgd_none_or_clear_bad(src_pgd))
1088                         continue;
1089                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1090                                             vma, addr, next))) {
1091                         ret = -ENOMEM;
1092                         break;
1093                 }
1094         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1095
1096         if (is_cow_mapping(vma->vm_flags))
1097                 mmu_notifier_invalidate_range_end(src_mm,
1098                                                   vma->vm_start, end);
1099         return ret;
1100 }
1101
1102 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1103                                 struct vm_area_struct *vma, pmd_t *pmd,
1104                                 unsigned long addr, unsigned long end,
1105                                 struct zap_details *details)
1106 {
1107         struct mm_struct *mm = tlb->mm;
1108         int force_flush = 0;
1109         int rss[NR_MM_COUNTERS];
1110         spinlock_t *ptl;
1111         pte_t *start_pte;
1112         pte_t *pte;
1113
1114 again:
1115         init_rss_vec(rss);
1116         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1117         pte = start_pte;
1118         arch_enter_lazy_mmu_mode();
1119         do {
1120                 pte_t ptent = *pte;
1121                 if (pte_none(ptent)) {
1122                         continue;
1123                 }
1124
1125                 if (pte_present(ptent)) {
1126                         struct page *page;
1127
1128                         page = vm_normal_page(vma, addr, ptent);
1129                         if (unlikely(details) && page) {
1130                                 /*
1131                                  * unmap_shared_mapping_pages() wants to
1132                                  * invalidate cache without truncating:
1133                                  * unmap shared but keep private pages.
1134                                  */
1135                                 if (details->check_mapping &&
1136                                     details->check_mapping != page->mapping)
1137                                         continue;
1138                                 /*
1139                                  * Each page->index must be checked when
1140                                  * invalidating or truncating nonlinear.
1141                                  */
1142                                 if (details->nonlinear_vma &&
1143                                     (page->index < details->first_index ||
1144                                      page->index > details->last_index))
1145                                         continue;
1146                         }
1147 #ifdef CONFIG_XEN
1148                         if (unlikely(vma->vm_ops && vma->vm_ops->zap_pte))
1149                                 ptent = vma->vm_ops->zap_pte(vma, addr, pte,
1150                                                              tlb->fullmm);
1151                         else
1152 #endif
1153                                 ptent = ptep_get_and_clear_full(mm, addr, pte,
1154                                                                 tlb->fullmm);
1155                         tlb_remove_tlb_entry(tlb, pte, addr);
1156                         if (unlikely(!page))
1157                                 continue;
1158                         if (unlikely(details) && details->nonlinear_vma
1159                             && linear_page_index(details->nonlinear_vma,
1160                                                 addr) != page->index)
1161                                 set_pte_at(mm, addr, pte,
1162                                            pgoff_to_pte(page->index));
1163                         if (PageAnon(page))
1164                                 rss[MM_ANONPAGES]--;
1165                         else {
1166                                 if (pte_dirty(ptent))
1167                                         set_page_dirty(page);
1168                                 if (pte_young(ptent) &&
1169                                     likely(!VM_SequentialReadHint(vma)))
1170                                         mark_page_accessed(page);
1171                                 rss[MM_FILEPAGES]--;
1172                         }
1173                         page_remove_rmap(page);
1174                         if (unlikely(page_mapcount(page) < 0))
1175                                 print_bad_pte(vma, addr, ptent, page);
1176                         force_flush = !__tlb_remove_page(tlb, page);
1177                         if (force_flush)
1178                                 break;
1179                         continue;
1180                 }
1181                 /*
1182                  * If details->check_mapping, we leave swap entries;
1183                  * if details->nonlinear_vma, we leave file entries.
1184                  */
1185                 if (unlikely(details))
1186                         continue;
1187                 if (pte_file(ptent)) {
1188                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1189                                 print_bad_pte(vma, addr, ptent, NULL);
1190                 } else {
1191                         swp_entry_t entry = pte_to_swp_entry(ptent);
1192
1193                         if (!non_swap_entry(entry))
1194                                 rss[MM_SWAPENTS]--;
1195                         else if (is_migration_entry(entry)) {
1196                                 struct page *page;
1197
1198                                 page = migration_entry_to_page(entry);
1199
1200                                 if (PageAnon(page))
1201                                         rss[MM_ANONPAGES]--;
1202                                 else
1203                                         rss[MM_FILEPAGES]--;
1204                         }
1205                         if (unlikely(!free_swap_and_cache(entry)))
1206                                 print_bad_pte(vma, addr, ptent, NULL);
1207                 }
1208                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1209         } while (pte++, addr += PAGE_SIZE, addr != end);
1210
1211         add_mm_rss_vec(mm, rss);
1212         arch_leave_lazy_mmu_mode();
1213         pte_unmap_unlock(start_pte, ptl);
1214
1215         /*
1216          * mmu_gather ran out of room to batch pages, we break out of
1217          * the PTE lock to avoid doing the potential expensive TLB invalidate
1218          * and page-free while holding it.
1219          */
1220         if (force_flush) {
1221                 force_flush = 0;
1222                 tlb_flush_mmu(tlb);
1223                 if (addr != end)
1224                         goto again;
1225         }
1226
1227         return addr;
1228 }
1229
1230 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1231                                 struct vm_area_struct *vma, pud_t *pud,
1232                                 unsigned long addr, unsigned long end,
1233                                 struct zap_details *details)
1234 {
1235         pmd_t *pmd;
1236         unsigned long next;
1237
1238         pmd = pmd_offset(pud, addr);
1239         do {
1240                 next = pmd_addr_end(addr, end);
1241                 if (pmd_trans_huge(*pmd)) {
1242                         if (next - addr != HPAGE_PMD_SIZE) {
1243                                 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1244                                 split_huge_page_pmd(vma->vm_mm, pmd);
1245                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1246                                 goto next;
1247                         /* fall through */
1248                 }
1249                 /*
1250                  * Here there can be other concurrent MADV_DONTNEED or
1251                  * trans huge page faults running, and if the pmd is
1252                  * none or trans huge it can change under us. This is
1253                  * because MADV_DONTNEED holds the mmap_sem in read
1254                  * mode.
1255                  */
1256                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1257                         goto next;
1258                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1259 next:
1260                 cond_resched();
1261         } while (pmd++, addr = next, addr != end);
1262
1263         return addr;
1264 }
1265
1266 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1267                                 struct vm_area_struct *vma, pgd_t *pgd,
1268                                 unsigned long addr, unsigned long end,
1269                                 struct zap_details *details)
1270 {
1271         pud_t *pud;
1272         unsigned long next;
1273
1274         pud = pud_offset(pgd, addr);
1275         do {
1276                 next = pud_addr_end(addr, end);
1277                 if (pud_none_or_clear_bad(pud))
1278                         continue;
1279                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1280         } while (pud++, addr = next, addr != end);
1281
1282         return addr;
1283 }
1284
1285 static void unmap_page_range(struct mmu_gather *tlb,
1286                              struct vm_area_struct *vma,
1287                              unsigned long addr, unsigned long end,
1288                              struct zap_details *details)
1289 {
1290         pgd_t *pgd;
1291         unsigned long next;
1292
1293         if (details && !details->check_mapping && !details->nonlinear_vma)
1294                 details = NULL;
1295
1296         BUG_ON(addr >= end);
1297         mem_cgroup_uncharge_start();
1298         tlb_start_vma(tlb, vma);
1299         pgd = pgd_offset(vma->vm_mm, addr);
1300         do {
1301                 next = pgd_addr_end(addr, end);
1302                 if (pgd_none_or_clear_bad(pgd))
1303                         continue;
1304                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1305         } while (pgd++, addr = next, addr != end);
1306         tlb_end_vma(tlb, vma);
1307         mem_cgroup_uncharge_end();
1308 }
1309
1310
1311 static void unmap_single_vma(struct mmu_gather *tlb,
1312                 struct vm_area_struct *vma, unsigned long start_addr,
1313                 unsigned long end_addr, unsigned long *nr_accounted,
1314                 struct zap_details *details)
1315 {
1316         unsigned long start = max(vma->vm_start, start_addr);
1317         unsigned long end;
1318
1319         if (start >= vma->vm_end)
1320                 return;
1321         end = min(vma->vm_end, end_addr);
1322         if (end <= vma->vm_start)
1323                 return;
1324
1325         if (vma->vm_flags & VM_ACCOUNT)
1326                 *nr_accounted += (end - start) >> PAGE_SHIFT;
1327
1328         if (unlikely(is_pfn_mapping(vma)))
1329                 untrack_pfn_vma(vma, 0, 0);
1330
1331         if (start != end) {
1332                 if (unlikely(is_vm_hugetlb_page(vma))) {
1333                         /*
1334                          * It is undesirable to test vma->vm_file as it
1335                          * should be non-null for valid hugetlb area.
1336                          * However, vm_file will be NULL in the error
1337                          * cleanup path of do_mmap_pgoff. When
1338                          * hugetlbfs ->mmap method fails,
1339                          * do_mmap_pgoff() nullifies vma->vm_file
1340                          * before calling this function to clean up.
1341                          * Since no pte has actually been setup, it is
1342                          * safe to do nothing in this case.
1343                          */
1344                         if (vma->vm_file)
1345                                 unmap_hugepage_range(vma, start, end, NULL);
1346                 } else
1347                         unmap_page_range(tlb, vma, start, end, details);
1348         }
1349 }
1350
1351 /**
1352  * unmap_vmas - unmap a range of memory covered by a list of vma's
1353  * @tlb: address of the caller's struct mmu_gather
1354  * @vma: the starting vma
1355  * @start_addr: virtual address at which to start unmapping
1356  * @end_addr: virtual address at which to end unmapping
1357  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1358  * @details: details of nonlinear truncation or shared cache invalidation
1359  *
1360  * Unmap all pages in the vma list.
1361  *
1362  * Only addresses between `start' and `end' will be unmapped.
1363  *
1364  * The VMA list must be sorted in ascending virtual address order.
1365  *
1366  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1367  * range after unmap_vmas() returns.  So the only responsibility here is to
1368  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1369  * drops the lock and schedules.
1370  */
1371 void unmap_vmas(struct mmu_gather *tlb,
1372                 struct vm_area_struct *vma, unsigned long start_addr,
1373                 unsigned long end_addr, unsigned long *nr_accounted,
1374                 struct zap_details *details)
1375 {
1376         struct mm_struct *mm = vma->vm_mm;
1377
1378         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1379         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1380                 unmap_single_vma(tlb, vma, start_addr, end_addr, nr_accounted,
1381                                  details);
1382         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1383 }
1384
1385 /**
1386  * zap_page_range - remove user pages in a given range
1387  * @vma: vm_area_struct holding the applicable pages
1388  * @address: starting address of pages to zap
1389  * @size: number of bytes to zap
1390  * @details: details of nonlinear truncation or shared cache invalidation
1391  *
1392  * Caller must protect the VMA list
1393  */
1394 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1395                 unsigned long size, struct zap_details *details)
1396 {
1397         struct mm_struct *mm = vma->vm_mm;
1398         struct mmu_gather tlb;
1399         unsigned long end = address + size;
1400         unsigned long nr_accounted = 0;
1401
1402         lru_add_drain();
1403         tlb_gather_mmu(&tlb, mm, 0);
1404         update_hiwater_rss(mm);
1405         unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1406         tlb_finish_mmu(&tlb, address, end);
1407 }
1408 EXPORT_SYMBOL(zap_page_range);
1409
1410 /**
1411  * zap_page_range_single - remove user pages in a given range
1412  * @vma: vm_area_struct holding the applicable pages
1413  * @address: starting address of pages to zap
1414  * @size: number of bytes to zap
1415  * @details: details of nonlinear truncation or shared cache invalidation
1416  *
1417  * The range must fit into one VMA.
1418  */
1419 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1420                 unsigned long size, struct zap_details *details)
1421 {
1422         struct mm_struct *mm = vma->vm_mm;
1423         struct mmu_gather tlb;
1424         unsigned long end = address + size;
1425         unsigned long nr_accounted = 0;
1426
1427         lru_add_drain();
1428         tlb_gather_mmu(&tlb, mm, 0);
1429         update_hiwater_rss(mm);
1430         mmu_notifier_invalidate_range_start(mm, address, end);
1431         unmap_single_vma(&tlb, vma, address, end, &nr_accounted, details);
1432         mmu_notifier_invalidate_range_end(mm, address, end);
1433         tlb_finish_mmu(&tlb, address, end);
1434 }
1435
1436 /**
1437  * zap_vma_ptes - remove ptes mapping the vma
1438  * @vma: vm_area_struct holding ptes to be zapped
1439  * @address: starting address of pages to zap
1440  * @size: number of bytes to zap
1441  *
1442  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1443  *
1444  * The entire address range must be fully contained within the vma.
1445  *
1446  * Returns 0 if successful.
1447  */
1448 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1449                 unsigned long size)
1450 {
1451         if (address < vma->vm_start || address + size > vma->vm_end ||
1452                         !(vma->vm_flags & VM_PFNMAP))
1453                 return -1;
1454         zap_page_range_single(vma, address, size, NULL);
1455         return 0;
1456 }
1457 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1458
1459 /**
1460  * follow_page - look up a page descriptor from a user-virtual address
1461  * @vma: vm_area_struct mapping @address
1462  * @address: virtual address to look up
1463  * @flags: flags modifying lookup behaviour
1464  *
1465  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1466  *
1467  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1468  * an error pointer if there is a mapping to something not represented
1469  * by a page descriptor (see also vm_normal_page()).
1470  */
1471 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1472                         unsigned int flags)
1473 {
1474         pgd_t *pgd;
1475         pud_t *pud;
1476         pmd_t *pmd;
1477         pte_t *ptep, pte;
1478         spinlock_t *ptl;
1479         struct page *page;
1480         struct mm_struct *mm = vma->vm_mm;
1481
1482         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1483         if (!IS_ERR(page)) {
1484                 BUG_ON(flags & FOLL_GET);
1485                 goto out;
1486         }
1487
1488         page = NULL;
1489         pgd = pgd_offset(mm, address);
1490         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1491                 goto no_page_table;
1492
1493         pud = pud_offset(pgd, address);
1494         if (pud_none(*pud))
1495                 goto no_page_table;
1496         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1497                 BUG_ON(flags & FOLL_GET);
1498                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1499                 goto out;
1500         }
1501         if (unlikely(pud_bad(*pud)))
1502                 goto no_page_table;
1503
1504         pmd = pmd_offset(pud, address);
1505         if (pmd_none(*pmd))
1506                 goto no_page_table;
1507         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1508                 BUG_ON(flags & FOLL_GET);
1509                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1510                 goto out;
1511         }
1512         if (pmd_trans_huge(*pmd)) {
1513                 if (flags & FOLL_SPLIT) {
1514                         split_huge_page_pmd(mm, pmd);
1515                         goto split_fallthrough;
1516                 }
1517                 spin_lock(&mm->page_table_lock);
1518                 if (likely(pmd_trans_huge(*pmd))) {
1519                         if (unlikely(pmd_trans_splitting(*pmd))) {
1520                                 spin_unlock(&mm->page_table_lock);
1521                                 wait_split_huge_page(vma->anon_vma, pmd);
1522                         } else {
1523                                 page = follow_trans_huge_pmd(mm, address,
1524                                                              pmd, flags);
1525                                 spin_unlock(&mm->page_table_lock);
1526                                 goto out;
1527                         }
1528                 } else
1529                         spin_unlock(&mm->page_table_lock);
1530                 /* fall through */
1531         }
1532 split_fallthrough:
1533         if (unlikely(pmd_bad(*pmd)))
1534                 goto no_page_table;
1535
1536         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1537
1538         pte = *ptep;
1539         if (!pte_present(pte))
1540                 goto no_page;
1541         if ((flags & FOLL_WRITE) && !pte_write(pte))
1542                 goto unlock;
1543
1544         page = vm_normal_page(vma, address, pte);
1545         if (unlikely(!page)) {
1546                 if ((flags & FOLL_DUMP) ||
1547                     !is_zero_pfn(pte_pfn(pte)))
1548                         goto bad_page;
1549                 page = pte_page(pte);
1550         }
1551
1552         if (flags & FOLL_GET)
1553                 get_page_foll(page);
1554         if (flags & FOLL_TOUCH) {
1555                 if ((flags & FOLL_WRITE) &&
1556                     !pte_dirty(pte) && !PageDirty(page))
1557                         set_page_dirty(page);
1558                 /*
1559                  * pte_mkyoung() would be more correct here, but atomic care
1560                  * is needed to avoid losing the dirty bit: it is easier to use
1561                  * mark_page_accessed().
1562                  */
1563                 mark_page_accessed(page);
1564         }
1565         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1566                 /*
1567                  * The preliminary mapping check is mainly to avoid the
1568                  * pointless overhead of lock_page on the ZERO_PAGE
1569                  * which might bounce very badly if there is contention.
1570                  *
1571                  * If the page is already locked, we don't need to
1572                  * handle it now - vmscan will handle it later if and
1573                  * when it attempts to reclaim the page.
1574                  */
1575                 if (page->mapping && trylock_page(page)) {
1576                         lru_add_drain();  /* push cached pages to LRU */
1577                         /*
1578                          * Because we lock page here and migration is
1579                          * blocked by the pte's page reference, we need
1580                          * only check for file-cache page truncation.
1581                          */
1582                         if (page->mapping)
1583                                 mlock_vma_page(page);
1584                         unlock_page(page);
1585                 }
1586         }
1587 unlock:
1588         pte_unmap_unlock(ptep, ptl);
1589 out:
1590         return page;
1591
1592 bad_page:
1593         pte_unmap_unlock(ptep, ptl);
1594         return ERR_PTR(-EFAULT);
1595
1596 no_page:
1597         pte_unmap_unlock(ptep, ptl);
1598         if (!pte_none(pte))
1599                 return page;
1600
1601 no_page_table:
1602         /*
1603          * When core dumping an enormous anonymous area that nobody
1604          * has touched so far, we don't want to allocate unnecessary pages or
1605          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1606          * then get_dump_page() will return NULL to leave a hole in the dump.
1607          * But we can only make this optimization where a hole would surely
1608          * be zero-filled if handle_mm_fault() actually did handle it.
1609          */
1610         if ((flags & FOLL_DUMP) &&
1611             (!vma->vm_ops || !vma->vm_ops->fault))
1612                 return ERR_PTR(-EFAULT);
1613         return page;
1614 }
1615
1616 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1617 {
1618         return stack_guard_page_start(vma, addr) ||
1619                stack_guard_page_end(vma, addr+PAGE_SIZE);
1620 }
1621
1622 /**
1623  * __get_user_pages() - pin user pages in memory
1624  * @tsk:        task_struct of target task
1625  * @mm:         mm_struct of target mm
1626  * @start:      starting user address
1627  * @nr_pages:   number of pages from start to pin
1628  * @gup_flags:  flags modifying pin behaviour
1629  * @pages:      array that receives pointers to the pages pinned.
1630  *              Should be at least nr_pages long. Or NULL, if caller
1631  *              only intends to ensure the pages are faulted in.
1632  * @vmas:       array of pointers to vmas corresponding to each page.
1633  *              Or NULL if the caller does not require them.
1634  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1635  *
1636  * Returns number of pages pinned. This may be fewer than the number
1637  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1638  * were pinned, returns -errno. Each page returned must be released
1639  * with a put_page() call when it is finished with. vmas will only
1640  * remain valid while mmap_sem is held.
1641  *
1642  * Must be called with mmap_sem held for read or write.
1643  *
1644  * __get_user_pages walks a process's page tables and takes a reference to
1645  * each struct page that each user address corresponds to at a given
1646  * instant. That is, it takes the page that would be accessed if a user
1647  * thread accesses the given user virtual address at that instant.
1648  *
1649  * This does not guarantee that the page exists in the user mappings when
1650  * __get_user_pages returns, and there may even be a completely different
1651  * page there in some cases (eg. if mmapped pagecache has been invalidated
1652  * and subsequently re faulted). However it does guarantee that the page
1653  * won't be freed completely. And mostly callers simply care that the page
1654  * contains data that was valid *at some point in time*. Typically, an IO
1655  * or similar operation cannot guarantee anything stronger anyway because
1656  * locks can't be held over the syscall boundary.
1657  *
1658  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1659  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1660  * appropriate) must be called after the page is finished with, and
1661  * before put_page is called.
1662  *
1663  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1664  * or mmap_sem contention, and if waiting is needed to pin all pages,
1665  * *@nonblocking will be set to 0.
1666  *
1667  * In most cases, get_user_pages or get_user_pages_fast should be used
1668  * instead of __get_user_pages. __get_user_pages should be used only if
1669  * you need some special @gup_flags.
1670  */
1671 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1672                      unsigned long start, int nr_pages, unsigned int gup_flags,
1673                      struct page **pages, struct vm_area_struct **vmas,
1674                      int *nonblocking)
1675 {
1676         int i;
1677         unsigned long vm_flags;
1678
1679         if (nr_pages <= 0)
1680                 return 0;
1681
1682         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1683
1684         /* 
1685          * Require read or write permissions.
1686          * If FOLL_FORCE is set, we only require the "MAY" flags.
1687          */
1688         vm_flags  = (gup_flags & FOLL_WRITE) ?
1689                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1690         vm_flags &= (gup_flags & FOLL_FORCE) ?
1691                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1692         i = 0;
1693
1694         do {
1695                 struct vm_area_struct *vma;
1696
1697                 vma = find_extend_vma(mm, start);
1698                 if (!vma && in_gate_area(mm, start)) {
1699                         unsigned long pg = start & PAGE_MASK;
1700                         pgd_t *pgd;
1701                         pud_t *pud;
1702                         pmd_t *pmd;
1703                         pte_t *pte;
1704
1705                         /* user gate pages are read-only */
1706                         if (gup_flags & FOLL_WRITE)
1707                                 return i ? : -EFAULT;
1708                         if (pg > TASK_SIZE)
1709                                 pgd = pgd_offset_k(pg);
1710                         else
1711                                 pgd = pgd_offset_gate(mm, pg);
1712                         BUG_ON(pgd_none(*pgd));
1713                         pud = pud_offset(pgd, pg);
1714                         BUG_ON(pud_none(*pud));
1715                         pmd = pmd_offset(pud, pg);
1716                         if (pmd_none(*pmd))
1717                                 return i ? : -EFAULT;
1718                         VM_BUG_ON(pmd_trans_huge(*pmd));
1719                         pte = pte_offset_map(pmd, pg);
1720                         if (pte_none(*pte)) {
1721                                 pte_unmap(pte);
1722                                 return i ? : -EFAULT;
1723                         }
1724                         vma = get_gate_vma(mm);
1725                         if (pages) {
1726                                 struct page *page;
1727
1728                                 page = vm_normal_page(vma, start, *pte);
1729                                 if (!page) {
1730                                         if (!(gup_flags & FOLL_DUMP) &&
1731                                              is_zero_pfn(pte_pfn(*pte)))
1732                                                 page = pte_page(*pte);
1733                                         else {
1734                                                 pte_unmap(pte);
1735                                                 return i ? : -EFAULT;
1736                                         }
1737                                 }
1738                                 pages[i] = page;
1739                                 get_page(page);
1740                         }
1741                         pte_unmap(pte);
1742                         goto next_page;
1743                 }
1744
1745 #ifdef CONFIG_XEN
1746                 if (vma && (vma->vm_flags & VM_FOREIGN)) {
1747                         struct vm_foreign_map *foreign_map =
1748                                 vma->vm_private_data;
1749                         struct page **map = foreign_map->map;
1750                         int offset = (start - vma->vm_start) >> PAGE_SHIFT;
1751                         if (map[offset] != NULL) {
1752                                 if (pages) {
1753                                         struct page *page = map[offset];
1754
1755                                         pages[i] = page;
1756                                         get_page(page);
1757                                 }
1758                                 if (vmas)
1759                                         vmas[i] = vma;
1760                                 i++;
1761                                 start += PAGE_SIZE;
1762                                 nr_pages--;
1763                                 continue;
1764                         }
1765                 }
1766 #endif
1767                 if (!vma ||
1768                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1769                     !(vm_flags & vma->vm_flags))
1770                         return i ? : -EFAULT;
1771
1772                 if (is_vm_hugetlb_page(vma)) {
1773                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1774                                         &start, &nr_pages, i, gup_flags);
1775                         continue;
1776                 }
1777
1778                 do {
1779                         struct page *page;
1780                         unsigned int foll_flags = gup_flags;
1781
1782                         /*
1783                          * If we have a pending SIGKILL, don't keep faulting
1784                          * pages and potentially allocating memory.
1785                          */
1786                         if (unlikely(fatal_signal_pending(current)))
1787                                 return i ? i : -ERESTARTSYS;
1788
1789                         cond_resched();
1790                         while (!(page = follow_page(vma, start, foll_flags))) {
1791                                 int ret;
1792                                 unsigned int fault_flags = 0;
1793
1794                                 /* For mlock, just skip the stack guard page. */
1795                                 if (foll_flags & FOLL_MLOCK) {
1796                                         if (stack_guard_page(vma, start))
1797                                                 goto next_page;
1798                                 }
1799                                 if (foll_flags & FOLL_WRITE)
1800                                         fault_flags |= FAULT_FLAG_WRITE;
1801                                 if (nonblocking)
1802                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1803                                 if (foll_flags & FOLL_NOWAIT)
1804                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1805
1806                                 ret = handle_mm_fault(mm, vma, start,
1807                                                         fault_flags);
1808
1809                                 if (ret & VM_FAULT_ERROR) {
1810                                         if (ret & VM_FAULT_OOM)
1811                                                 return i ? i : -ENOMEM;
1812                                         if (ret & (VM_FAULT_HWPOISON |
1813                                                    VM_FAULT_HWPOISON_LARGE)) {
1814                                                 if (i)
1815                                                         return i;
1816                                                 else if (gup_flags & FOLL_HWPOISON)
1817                                                         return -EHWPOISON;
1818                                                 else
1819                                                         return -EFAULT;
1820                                         }
1821                                         if (ret & VM_FAULT_SIGBUS)
1822                                                 return i ? i : -EFAULT;
1823                                         BUG();
1824                                 }
1825
1826                                 if (tsk) {
1827                                         if (ret & VM_FAULT_MAJOR)
1828                                                 tsk->maj_flt++;
1829                                         else
1830                                                 tsk->min_flt++;
1831                                 }
1832
1833                                 if (ret & VM_FAULT_RETRY) {
1834                                         if (nonblocking)
1835                                                 *nonblocking = 0;
1836                                         return i;
1837                                 }
1838
1839                                 /*
1840                                  * The VM_FAULT_WRITE bit tells us that
1841                                  * do_wp_page has broken COW when necessary,
1842                                  * even if maybe_mkwrite decided not to set
1843                                  * pte_write. We can thus safely do subsequent
1844                                  * page lookups as if they were reads. But only
1845                                  * do so when looping for pte_write is futile:
1846                                  * in some cases userspace may also be wanting
1847                                  * to write to the gotten user page, which a
1848                                  * read fault here might prevent (a readonly
1849                                  * page might get reCOWed by userspace write).
1850                                  */
1851                                 if ((ret & VM_FAULT_WRITE) &&
1852                                     !(vma->vm_flags & VM_WRITE))
1853                                         foll_flags &= ~FOLL_WRITE;
1854
1855                                 cond_resched();
1856                         }
1857                         if (IS_ERR(page))
1858                                 return i ? i : PTR_ERR(page);
1859                         if (pages) {
1860                                 pages[i] = page;
1861
1862                                 flush_anon_page(vma, page, start);
1863                                 flush_dcache_page(page);
1864                         }
1865 next_page:
1866                         if (vmas)
1867                                 vmas[i] = vma;
1868                         i++;
1869                         start += PAGE_SIZE;
1870                         nr_pages--;
1871                 } while (nr_pages && start < vma->vm_end);
1872         } while (nr_pages);
1873         return i;
1874 }
1875 EXPORT_SYMBOL(__get_user_pages);
1876
1877 /*
1878  * fixup_user_fault() - manually resolve a user page fault
1879  * @tsk:        the task_struct to use for page fault accounting, or
1880  *              NULL if faults are not to be recorded.
1881  * @mm:         mm_struct of target mm
1882  * @address:    user address
1883  * @fault_flags:flags to pass down to handle_mm_fault()
1884  *
1885  * This is meant to be called in the specific scenario where for locking reasons
1886  * we try to access user memory in atomic context (within a pagefault_disable()
1887  * section), this returns -EFAULT, and we want to resolve the user fault before
1888  * trying again.
1889  *
1890  * Typically this is meant to be used by the futex code.
1891  *
1892  * The main difference with get_user_pages() is that this function will
1893  * unconditionally call handle_mm_fault() which will in turn perform all the
1894  * necessary SW fixup of the dirty and young bits in the PTE, while
1895  * handle_mm_fault() only guarantees to update these in the struct page.
1896  *
1897  * This is important for some architectures where those bits also gate the
1898  * access permission to the page because they are maintained in software.  On
1899  * such architectures, gup() will not be enough to make a subsequent access
1900  * succeed.
1901  *
1902  * This should be called with the mm_sem held for read.
1903  */
1904 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1905                      unsigned long address, unsigned int fault_flags)
1906 {
1907         struct vm_area_struct *vma;
1908         int ret;
1909
1910         vma = find_extend_vma(mm, address);
1911         if (!vma || address < vma->vm_start)
1912                 return -EFAULT;
1913
1914         ret = handle_mm_fault(mm, vma, address, fault_flags);
1915         if (ret & VM_FAULT_ERROR) {
1916                 if (ret & VM_FAULT_OOM)
1917                         return -ENOMEM;
1918                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1919                         return -EHWPOISON;
1920                 if (ret & VM_FAULT_SIGBUS)
1921                         return -EFAULT;
1922                 BUG();
1923         }
1924         if (tsk) {
1925                 if (ret & VM_FAULT_MAJOR)
1926                         tsk->maj_flt++;
1927                 else
1928                         tsk->min_flt++;
1929         }
1930         return 0;
1931 }
1932
1933 /*
1934  * get_user_pages() - pin user pages in memory
1935  * @tsk:        the task_struct to use for page fault accounting, or
1936  *              NULL if faults are not to be recorded.
1937  * @mm:         mm_struct of target mm
1938  * @start:      starting user address
1939  * @nr_pages:   number of pages from start to pin
1940  * @write:      whether pages will be written to by the caller
1941  * @force:      whether to force write access even if user mapping is
1942  *              readonly. This will result in the page being COWed even
1943  *              in MAP_SHARED mappings. You do not want this.
1944  * @pages:      array that receives pointers to the pages pinned.
1945  *              Should be at least nr_pages long. Or NULL, if caller
1946  *              only intends to ensure the pages are faulted in.
1947  * @vmas:       array of pointers to vmas corresponding to each page.
1948  *              Or NULL if the caller does not require them.
1949  *
1950  * Returns number of pages pinned. This may be fewer than the number
1951  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1952  * were pinned, returns -errno. Each page returned must be released
1953  * with a put_page() call when it is finished with. vmas will only
1954  * remain valid while mmap_sem is held.
1955  *
1956  * Must be called with mmap_sem held for read or write.
1957  *
1958  * get_user_pages walks a process's page tables and takes a reference to
1959  * each struct page that each user address corresponds to at a given
1960  * instant. That is, it takes the page that would be accessed if a user
1961  * thread accesses the given user virtual address at that instant.
1962  *
1963  * This does not guarantee that the page exists in the user mappings when
1964  * get_user_pages returns, and there may even be a completely different
1965  * page there in some cases (eg. if mmapped pagecache has been invalidated
1966  * and subsequently re faulted). However it does guarantee that the page
1967  * won't be freed completely. And mostly callers simply care that the page
1968  * contains data that was valid *at some point in time*. Typically, an IO
1969  * or similar operation cannot guarantee anything stronger anyway because
1970  * locks can't be held over the syscall boundary.
1971  *
1972  * If write=0, the page must not be written to. If the page is written to,
1973  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1974  * after the page is finished with, and before put_page is called.
1975  *
1976  * get_user_pages is typically used for fewer-copy IO operations, to get a
1977  * handle on the memory by some means other than accesses via the user virtual
1978  * addresses. The pages may be submitted for DMA to devices or accessed via
1979  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1980  * use the correct cache flushing APIs.
1981  *
1982  * See also get_user_pages_fast, for performance critical applications.
1983  */
1984 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1985                 unsigned long start, int nr_pages, int write, int force,
1986                 struct page **pages, struct vm_area_struct **vmas)
1987 {
1988         int flags = FOLL_TOUCH;
1989
1990         if (pages)
1991                 flags |= FOLL_GET;
1992         if (write)
1993                 flags |= FOLL_WRITE;
1994         if (force)
1995                 flags |= FOLL_FORCE;
1996
1997         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1998                                 NULL);
1999 }
2000 EXPORT_SYMBOL(get_user_pages);
2001
2002 /**
2003  * get_dump_page() - pin user page in memory while writing it to core dump
2004  * @addr: user address
2005  *
2006  * Returns struct page pointer of user page pinned for dump,
2007  * to be freed afterwards by page_cache_release() or put_page().
2008  *
2009  * Returns NULL on any kind of failure - a hole must then be inserted into
2010  * the corefile, to preserve alignment with its headers; and also returns
2011  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2012  * allowing a hole to be left in the corefile to save diskspace.
2013  *
2014  * Called without mmap_sem, but after all other threads have been killed.
2015  */
2016 #ifdef CONFIG_ELF_CORE
2017 struct page *get_dump_page(unsigned long addr)
2018 {
2019         struct vm_area_struct *vma;
2020         struct page *page;
2021
2022         if (__get_user_pages(current, current->mm, addr, 1,
2023                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2024                              NULL) < 1)
2025                 return NULL;
2026         flush_cache_page(vma, addr, page_to_pfn(page));
2027         return page;
2028 }
2029 #endif /* CONFIG_ELF_CORE */
2030
2031 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2032                         spinlock_t **ptl)
2033 {
2034         pgd_t * pgd = pgd_offset(mm, addr);
2035         pud_t * pud = pud_alloc(mm, pgd, addr);
2036         if (pud) {
2037                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2038                 if (pmd) {
2039                         VM_BUG_ON(pmd_trans_huge(*pmd));
2040                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2041                 }
2042         }
2043         return NULL;
2044 }
2045
2046 /*
2047  * This is the old fallback for page remapping.
2048  *
2049  * For historical reasons, it only allows reserved pages. Only
2050  * old drivers should use this, and they needed to mark their
2051  * pages reserved for the old functions anyway.
2052  */
2053 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2054                         struct page *page, pgprot_t prot)
2055 {
2056         struct mm_struct *mm = vma->vm_mm;
2057         int retval;
2058         pte_t *pte;
2059         spinlock_t *ptl;
2060
2061         retval = -EINVAL;
2062         if (PageAnon(page))
2063                 goto out;
2064         retval = -ENOMEM;
2065         flush_dcache_page(page);
2066         pte = get_locked_pte(mm, addr, &ptl);
2067         if (!pte)
2068                 goto out;
2069         retval = -EBUSY;
2070         if (!pte_none(*pte))
2071                 goto out_unlock;
2072
2073         /* Ok, finally just insert the thing.. */
2074         get_page(page);
2075         inc_mm_counter_fast(mm, MM_FILEPAGES);
2076         page_add_file_rmap(page);
2077         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2078
2079         retval = 0;
2080         pte_unmap_unlock(pte, ptl);
2081         return retval;
2082 out_unlock:
2083         pte_unmap_unlock(pte, ptl);
2084 out:
2085         return retval;
2086 }
2087
2088 /**
2089  * vm_insert_page - insert single page into user vma
2090  * @vma: user vma to map to
2091  * @addr: target user address of this page
2092  * @page: source kernel page
2093  *
2094  * This allows drivers to insert individual pages they've allocated
2095  * into a user vma.
2096  *
2097  * The page has to be a nice clean _individual_ kernel allocation.
2098  * If you allocate a compound page, you need to have marked it as
2099  * such (__GFP_COMP), or manually just split the page up yourself
2100  * (see split_page()).
2101  *
2102  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2103  * took an arbitrary page protection parameter. This doesn't allow
2104  * that. Your vma protection will have to be set up correctly, which
2105  * means that if you want a shared writable mapping, you'd better
2106  * ask for a shared writable mapping!
2107  *
2108  * The page does not need to be reserved.
2109  */
2110 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2111                         struct page *page)
2112 {
2113         if (addr < vma->vm_start || addr >= vma->vm_end)
2114                 return -EFAULT;
2115         if (!page_count(page))
2116                 return -EINVAL;
2117         vma->vm_flags |= VM_INSERTPAGE;
2118         return insert_page(vma, addr, page, vma->vm_page_prot);
2119 }
2120 EXPORT_SYMBOL(vm_insert_page);
2121
2122 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2123                         unsigned long pfn, pgprot_t prot)
2124 {
2125         struct mm_struct *mm = vma->vm_mm;
2126         int retval;
2127         pte_t *pte, entry;
2128         spinlock_t *ptl;
2129
2130         retval = -ENOMEM;
2131         pte = get_locked_pte(mm, addr, &ptl);
2132         if (!pte)
2133                 goto out;
2134         retval = -EBUSY;
2135         if (!pte_none(*pte))
2136                 goto out_unlock;
2137
2138         /* Ok, finally just insert the thing.. */
2139         entry = pte_mkspecial(pfn_pte(pfn, prot));
2140         set_pte_at(mm, addr, pte, entry);
2141         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2142
2143         retval = 0;
2144 out_unlock:
2145         pte_unmap_unlock(pte, ptl);
2146 out:
2147         return retval;
2148 }
2149
2150 /**
2151  * vm_insert_pfn - insert single pfn into user vma
2152  * @vma: user vma to map to
2153  * @addr: target user address of this page
2154  * @pfn: source kernel pfn
2155  *
2156  * Similar to vm_inert_page, this allows drivers to insert individual pages
2157  * they've allocated into a user vma. Same comments apply.
2158  *
2159  * This function should only be called from a vm_ops->fault handler, and
2160  * in that case the handler should return NULL.
2161  *
2162  * vma cannot be a COW mapping.
2163  *
2164  * As this is called only for pages that do not currently exist, we
2165  * do not need to flush old virtual caches or the TLB.
2166  */
2167 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2168                         unsigned long pfn)
2169 {
2170         int ret;
2171         pgprot_t pgprot = vma->vm_page_prot;
2172         /*
2173          * Technically, architectures with pte_special can avoid all these
2174          * restrictions (same for remap_pfn_range).  However we would like
2175          * consistency in testing and feature parity among all, so we should
2176          * try to keep these invariants in place for everybody.
2177          */
2178         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2179         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2180                                                 (VM_PFNMAP|VM_MIXEDMAP));
2181         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2182         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2183
2184         if (addr < vma->vm_start || addr >= vma->vm_end)
2185                 return -EFAULT;
2186         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2187                 return -EINVAL;
2188
2189         ret = insert_pfn(vma, addr, pfn, pgprot);
2190
2191         if (ret)
2192                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2193
2194         return ret;
2195 }
2196 EXPORT_SYMBOL(vm_insert_pfn);
2197
2198 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2199                         unsigned long pfn)
2200 {
2201         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2202
2203         if (addr < vma->vm_start || addr >= vma->vm_end)
2204                 return -EFAULT;
2205
2206         /*
2207          * If we don't have pte special, then we have to use the pfn_valid()
2208          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2209          * refcount the page if pfn_valid is true (hence insert_page rather
2210          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2211          * without pte special, it would there be refcounted as a normal page.
2212          */
2213         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2214                 struct page *page;
2215
2216                 page = pfn_to_page(pfn);
2217                 return insert_page(vma, addr, page, vma->vm_page_prot);
2218         }
2219         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2220 }
2221 EXPORT_SYMBOL(vm_insert_mixed);
2222
2223 /*
2224  * maps a range of physical memory into the requested pages. the old
2225  * mappings are removed. any references to nonexistent pages results
2226  * in null mappings (currently treated as "copy-on-access")
2227  */
2228 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2229                         unsigned long addr, unsigned long end,
2230                         unsigned long pfn, pgprot_t prot)
2231 {
2232         pte_t *pte;
2233         spinlock_t *ptl;
2234
2235         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2236         if (!pte)
2237                 return -ENOMEM;
2238         arch_enter_lazy_mmu_mode();
2239         do {
2240                 BUG_ON(!pte_none(*pte));
2241                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2242                 pfn++;
2243         } while (pte++, addr += PAGE_SIZE, addr != end);
2244         arch_leave_lazy_mmu_mode();
2245         pte_unmap_unlock(pte - 1, ptl);
2246         return 0;
2247 }
2248
2249 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2250                         unsigned long addr, unsigned long end,
2251                         unsigned long pfn, pgprot_t prot)
2252 {
2253         pmd_t *pmd;
2254         unsigned long next;
2255
2256         pfn -= addr >> PAGE_SHIFT;
2257         pmd = pmd_alloc(mm, pud, addr);
2258         if (!pmd)
2259                 return -ENOMEM;
2260         VM_BUG_ON(pmd_trans_huge(*pmd));
2261         do {
2262                 next = pmd_addr_end(addr, end);
2263                 if (remap_pte_range(mm, pmd, addr, next,
2264                                 pfn + (addr >> PAGE_SHIFT), prot))
2265                         return -ENOMEM;
2266         } while (pmd++, addr = next, addr != end);
2267         return 0;
2268 }
2269
2270 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2271                         unsigned long addr, unsigned long end,
2272                         unsigned long pfn, pgprot_t prot)
2273 {
2274         pud_t *pud;
2275         unsigned long next;
2276
2277         pfn -= addr >> PAGE_SHIFT;
2278         pud = pud_alloc(mm, pgd, addr);
2279         if (!pud)
2280                 return -ENOMEM;
2281         do {
2282                 next = pud_addr_end(addr, end);
2283                 if (remap_pmd_range(mm, pud, addr, next,
2284                                 pfn + (addr >> PAGE_SHIFT), prot))
2285                         return -ENOMEM;
2286         } while (pud++, addr = next, addr != end);
2287         return 0;
2288 }
2289
2290 /**
2291  * remap_pfn_range - remap kernel memory to userspace
2292  * @vma: user vma to map to
2293  * @addr: target user address to start at
2294  * @pfn: physical address of kernel memory
2295  * @size: size of map area
2296  * @prot: page protection flags for this mapping
2297  *
2298  *  Note: this is only safe if the mm semaphore is held when called.
2299  */
2300 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2301                     unsigned long pfn, unsigned long size, pgprot_t prot)
2302 {
2303         pgd_t *pgd;
2304         unsigned long next;
2305         unsigned long end = addr + PAGE_ALIGN(size);
2306         struct mm_struct *mm = vma->vm_mm;
2307         int err;
2308
2309         /*
2310          * Physically remapped pages are special. Tell the
2311          * rest of the world about it:
2312          *   VM_IO tells people not to look at these pages
2313          *      (accesses can have side effects).
2314          *   VM_RESERVED is specified all over the place, because
2315          *      in 2.4 it kept swapout's vma scan off this vma; but
2316          *      in 2.6 the LRU scan won't even find its pages, so this
2317          *      flag means no more than count its pages in reserved_vm,
2318          *      and omit it from core dump, even when VM_IO turned off.
2319          *   VM_PFNMAP tells the core MM that the base pages are just
2320          *      raw PFN mappings, and do not have a "struct page" associated
2321          *      with them.
2322          *
2323          * There's a horrible special case to handle copy-on-write
2324          * behaviour that some programs depend on. We mark the "original"
2325          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2326          */
2327         if (addr == vma->vm_start && end == vma->vm_end) {
2328                 vma->vm_pgoff = pfn;
2329                 vma->vm_flags |= VM_PFN_AT_MMAP;
2330         } else if (is_cow_mapping(vma->vm_flags))
2331                 return -EINVAL;
2332
2333         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2334
2335         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2336         if (err) {
2337                 /*
2338                  * To indicate that track_pfn related cleanup is not
2339                  * needed from higher level routine calling unmap_vmas
2340                  */
2341                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2342                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2343                 return -EINVAL;
2344         }
2345
2346         BUG_ON(addr >= end);
2347         pfn -= addr >> PAGE_SHIFT;
2348         pgd = pgd_offset(mm, addr);
2349         flush_cache_range(vma, addr, end);
2350         do {
2351                 next = pgd_addr_end(addr, end);
2352                 err = remap_pud_range(mm, pgd, addr, next,
2353                                 pfn + (addr >> PAGE_SHIFT), prot);
2354                 if (err)
2355                         break;
2356         } while (pgd++, addr = next, addr != end);
2357
2358         if (err)
2359                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2360
2361         return err;
2362 }
2363 EXPORT_SYMBOL(remap_pfn_range);
2364
2365 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2366                                      unsigned long addr, unsigned long end,
2367                                      pte_fn_t fn, void *data)
2368 {
2369         pte_t *pte;
2370         int err;
2371         pgtable_t token;
2372         spinlock_t *uninitialized_var(ptl);
2373
2374         pte = (mm == &init_mm) ?
2375                 pte_alloc_kernel(pmd, addr) :
2376                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2377         if (!pte)
2378                 return -ENOMEM;
2379
2380         BUG_ON(pmd_huge(*pmd));
2381
2382         arch_enter_lazy_mmu_mode();
2383
2384         token = pmd_pgtable(*pmd);
2385
2386         do {
2387                 err = fn(pte++, token, addr, data);
2388                 if (err)
2389                         break;
2390         } while (addr += PAGE_SIZE, addr != end);
2391
2392         arch_leave_lazy_mmu_mode();
2393
2394         if (mm != &init_mm)
2395                 pte_unmap_unlock(pte-1, ptl);
2396         return err;
2397 }
2398
2399 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2400                                      unsigned long addr, unsigned long end,
2401                                      pte_fn_t fn, void *data)
2402 {
2403         pmd_t *pmd;
2404         unsigned long next;
2405         int err;
2406
2407         BUG_ON(pud_huge(*pud));
2408
2409         pmd = pmd_alloc(mm, pud, addr);
2410         if (!pmd)
2411                 return -ENOMEM;
2412         do {
2413                 next = pmd_addr_end(addr, end);
2414                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2415                 if (err)
2416                         break;
2417         } while (pmd++, addr = next, addr != end);
2418         return err;
2419 }
2420
2421 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2422                                      unsigned long addr, unsigned long end,
2423                                      pte_fn_t fn, void *data)
2424 {
2425         pud_t *pud;
2426         unsigned long next;
2427         int err;
2428
2429         pud = pud_alloc(mm, pgd, addr);
2430         if (!pud)
2431                 return -ENOMEM;
2432         do {
2433                 next = pud_addr_end(addr, end);
2434                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2435                 if (err)
2436                         break;
2437         } while (pud++, addr = next, addr != end);
2438         return err;
2439 }
2440
2441 /*
2442  * Scan a region of virtual memory, filling in page tables as necessary
2443  * and calling a provided function on each leaf page table.
2444  */
2445 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2446                         unsigned long size, pte_fn_t fn, void *data)
2447 {
2448         pgd_t *pgd;
2449         unsigned long next;
2450         unsigned long end = addr + size;
2451         int err;
2452
2453 #ifdef CONFIG_XEN
2454         if (!mm)
2455                 mm = &init_mm;
2456 #endif
2457         BUG_ON(addr >= end);
2458         pgd = pgd_offset(mm, addr);
2459         do {
2460                 next = pgd_addr_end(addr, end);
2461                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2462                 if (err)
2463                         break;
2464         } while (pgd++, addr = next, addr != end);
2465
2466         return err;
2467 }
2468 EXPORT_SYMBOL_GPL(apply_to_page_range);
2469
2470 /*
2471  * handle_pte_fault chooses page fault handler according to an entry
2472  * which was read non-atomically.  Before making any commitment, on
2473  * those architectures or configurations (e.g. i386 with PAE) which
2474  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2475  * must check under lock before unmapping the pte and proceeding
2476  * (but do_wp_page is only called after already making such a check;
2477  * and do_anonymous_page can safely check later on).
2478  */
2479 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2480                                 pte_t *page_table, pte_t orig_pte)
2481 {
2482         int same = 1;
2483 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2484         if (sizeof(pte_t) > sizeof(unsigned long)) {
2485                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2486                 spin_lock(ptl);
2487                 same = pte_same(*page_table, orig_pte);
2488                 spin_unlock(ptl);
2489         }
2490 #endif
2491         pte_unmap(page_table);
2492         return same;
2493 }
2494
2495 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2496 {
2497         /*
2498          * If the source page was a PFN mapping, we don't have
2499          * a "struct page" for it. We do a best-effort copy by
2500          * just copying from the original user address. If that
2501          * fails, we just zero-fill it. Live with it.
2502          */
2503         if (unlikely(!src)) {
2504                 void *kaddr = kmap_atomic(dst);
2505                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2506
2507                 /*
2508                  * This really shouldn't fail, because the page is there
2509                  * in the page tables. But it might just be unreadable,
2510                  * in which case we just give up and fill the result with
2511                  * zeroes.
2512                  */
2513                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2514                         clear_page(kaddr);
2515                 kunmap_atomic(kaddr);
2516                 flush_dcache_page(dst);
2517         } else
2518                 copy_user_highpage(dst, src, va, vma);
2519 }
2520
2521 /*
2522  * This routine handles present pages, when users try to write
2523  * to a shared page. It is done by copying the page to a new address
2524  * and decrementing the shared-page counter for the old page.
2525  *
2526  * Note that this routine assumes that the protection checks have been
2527  * done by the caller (the low-level page fault routine in most cases).
2528  * Thus we can safely just mark it writable once we've done any necessary
2529  * COW.
2530  *
2531  * We also mark the page dirty at this point even though the page will
2532  * change only once the write actually happens. This avoids a few races,
2533  * and potentially makes it more efficient.
2534  *
2535  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2536  * but allow concurrent faults), with pte both mapped and locked.
2537  * We return with mmap_sem still held, but pte unmapped and unlocked.
2538  */
2539 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2540                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2541                 spinlock_t *ptl, pte_t orig_pte)
2542         __releases(ptl)
2543 {
2544         struct page *old_page, *new_page;
2545         pte_t entry;
2546         int ret = 0;
2547         int page_mkwrite = 0;
2548         struct page *dirty_page = NULL;
2549
2550         old_page = vm_normal_page(vma, address, orig_pte);
2551         if (!old_page) {
2552                 /*
2553                  * VM_MIXEDMAP !pfn_valid() case
2554                  *
2555                  * We should not cow pages in a shared writeable mapping.
2556                  * Just mark the pages writable as we can't do any dirty
2557                  * accounting on raw pfn maps.
2558                  */
2559                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2560                                      (VM_WRITE|VM_SHARED))
2561                         goto reuse;
2562                 goto gotten;
2563         }
2564
2565         /*
2566          * Take out anonymous pages first, anonymous shared vmas are
2567          * not dirty accountable.
2568          */
2569         if (PageAnon(old_page) && !PageKsm(old_page)) {
2570                 if (!trylock_page(old_page)) {
2571                         page_cache_get(old_page);
2572                         pte_unmap_unlock(page_table, ptl);
2573                         lock_page(old_page);
2574                         page_table = pte_offset_map_lock(mm, pmd, address,
2575                                                          &ptl);
2576                         if (!pte_same(*page_table, orig_pte)) {
2577                                 unlock_page(old_page);
2578                                 goto unlock;
2579                         }
2580                         page_cache_release(old_page);
2581                 }
2582                 if (reuse_swap_page(old_page)) {
2583                         /*
2584                          * The page is all ours.  Move it to our anon_vma so
2585                          * the rmap code will not search our parent or siblings.
2586                          * Protected against the rmap code by the page lock.
2587                          */
2588                         page_move_anon_rmap(old_page, vma, address);
2589                         unlock_page(old_page);
2590                         goto reuse;
2591                 }
2592                 unlock_page(old_page);
2593         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2594                                         (VM_WRITE|VM_SHARED))) {
2595                 /*
2596                  * Only catch write-faults on shared writable pages,
2597                  * read-only shared pages can get COWed by
2598                  * get_user_pages(.write=1, .force=1).
2599                  */
2600                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2601                         struct vm_fault vmf;
2602                         int tmp;
2603
2604                         vmf.virtual_address = (void __user *)(address &
2605                                                                 PAGE_MASK);
2606                         vmf.pgoff = old_page->index;
2607                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2608                         vmf.page = old_page;
2609
2610                         /*
2611                          * Notify the address space that the page is about to
2612                          * become writable so that it can prohibit this or wait
2613                          * for the page to get into an appropriate state.
2614                          *
2615                          * We do this without the lock held, so that it can
2616                          * sleep if it needs to.
2617                          */
2618                         page_cache_get(old_page);
2619                         pte_unmap_unlock(page_table, ptl);
2620
2621                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2622                         if (unlikely(tmp &
2623                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2624                                 ret = tmp;
2625                                 goto unwritable_page;
2626                         }
2627                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2628                                 lock_page(old_page);
2629                                 if (!old_page->mapping) {
2630                                         ret = 0; /* retry the fault */
2631                                         unlock_page(old_page);
2632                                         goto unwritable_page;
2633                                 }
2634                         } else
2635                                 VM_BUG_ON(!PageLocked(old_page));
2636
2637                         /*
2638                          * Since we dropped the lock we need to revalidate
2639                          * the PTE as someone else may have changed it.  If
2640                          * they did, we just return, as we can count on the
2641                          * MMU to tell us if they didn't also make it writable.
2642                          */
2643                         page_table = pte_offset_map_lock(mm, pmd, address,
2644                                                          &ptl);
2645                         if (!pte_same(*page_table, orig_pte)) {
2646                                 unlock_page(old_page);
2647                                 goto unlock;
2648                         }
2649
2650                         page_mkwrite = 1;
2651                 }
2652                 dirty_page = old_page;
2653                 get_page(dirty_page);
2654
2655 reuse:
2656                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2657                 entry = pte_mkyoung(orig_pte);
2658                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2659                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2660                         update_mmu_cache(vma, address, page_table);
2661                 pte_unmap_unlock(page_table, ptl);
2662                 ret |= VM_FAULT_WRITE;
2663
2664                 if (!dirty_page)
2665                         return ret;
2666
2667                 /*
2668                  * Yes, Virginia, this is actually required to prevent a race
2669                  * with clear_page_dirty_for_io() from clearing the page dirty
2670                  * bit after it clear all dirty ptes, but before a racing
2671                  * do_wp_page installs a dirty pte.
2672                  *
2673                  * __do_fault is protected similarly.
2674                  */
2675                 if (!page_mkwrite) {
2676                         wait_on_page_locked(dirty_page);
2677                         set_page_dirty_balance(dirty_page, page_mkwrite);
2678                 }
2679                 put_page(dirty_page);
2680                 if (page_mkwrite) {
2681                         struct address_space *mapping = dirty_page->mapping;
2682
2683                         set_page_dirty(dirty_page);
2684                         unlock_page(dirty_page);
2685                         page_cache_release(dirty_page);
2686                         if (mapping)    {
2687                                 /*
2688                                  * Some device drivers do not set page.mapping
2689                                  * but still dirty their pages
2690                                  */
2691                                 balance_dirty_pages_ratelimited(mapping);
2692                         }
2693                 }
2694
2695                 /* file_update_time outside page_lock */
2696                 if (vma->vm_file)
2697                         file_update_time(vma->vm_file);
2698
2699                 return ret;
2700         }
2701
2702         /*
2703          * Ok, we need to copy. Oh, well..
2704          */
2705         page_cache_get(old_page);
2706 gotten:
2707         pte_unmap_unlock(page_table, ptl);
2708
2709         if (unlikely(anon_vma_prepare(vma)))
2710                 goto oom;
2711
2712         if (is_zero_pfn(pte_pfn(orig_pte))) {
2713                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2714                 if (!new_page)
2715                         goto oom;
2716         } else {
2717                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2718                 if (!new_page)
2719                         goto oom;
2720                 cow_user_page(new_page, old_page, address, vma);
2721         }
2722         __SetPageUptodate(new_page);
2723
2724         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2725                 goto oom_free_new;
2726
2727         /*
2728          * Re-check the pte - we dropped the lock
2729          */
2730         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2731         if (likely(pte_same(*page_table, orig_pte))) {
2732                 if (old_page) {
2733                         if (!PageAnon(old_page)) {
2734                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2735                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2736                         }
2737                 } else
2738                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2739                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2740                 entry = mk_pte(new_page, vma->vm_page_prot);
2741                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2742                 /*
2743                  * Clear the pte entry and flush it first, before updating the
2744                  * pte with the new entry. This will avoid a race condition
2745                  * seen in the presence of one thread doing SMC and another
2746                  * thread doing COW.
2747                  */
2748                 ptep_clear_flush(vma, address, page_table);
2749                 page_add_new_anon_rmap(new_page, vma, address);
2750                 /*
2751                  * We call the notify macro here because, when using secondary
2752                  * mmu page tables (such as kvm shadow page tables), we want the
2753                  * new page to be mapped directly into the secondary page table.
2754                  */
2755                 set_pte_at_notify(mm, address, page_table, entry);
2756                 update_mmu_cache(vma, address, page_table);
2757                 if (old_page) {
2758                         /*
2759                          * Only after switching the pte to the new page may
2760                          * we remove the mapcount here. Otherwise another
2761                          * process may come and find the rmap count decremented
2762                          * before the pte is switched to the new page, and
2763                          * "reuse" the old page writing into it while our pte
2764                          * here still points into it and can be read by other
2765                          * threads.
2766                          *
2767                          * The critical issue is to order this
2768                          * page_remove_rmap with the ptp_clear_flush above.
2769                          * Those stores are ordered by (if nothing else,)
2770                          * the barrier present in the atomic_add_negative
2771                          * in page_remove_rmap.
2772                          *
2773                          * Then the TLB flush in ptep_clear_flush ensures that
2774                          * no process can access the old page before the
2775                          * decremented mapcount is visible. And the old page
2776                          * cannot be reused until after the decremented
2777                          * mapcount is visible. So transitively, TLBs to
2778                          * old page will be flushed before it can be reused.
2779                          */
2780                         page_remove_rmap(old_page);
2781                 }
2782
2783                 /* Free the old page.. */
2784                 new_page = old_page;
2785                 ret |= VM_FAULT_WRITE;
2786         } else
2787                 mem_cgroup_uncharge_page(new_page);
2788
2789         if (new_page)
2790                 page_cache_release(new_page);
2791 unlock:
2792         pte_unmap_unlock(page_table, ptl);
2793         if (old_page) {
2794                 /*
2795                  * Don't let another task, with possibly unlocked vma,
2796                  * keep the mlocked page.
2797                  */
2798                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2799                         lock_page(old_page);    /* LRU manipulation */
2800                         munlock_vma_page(old_page);
2801                         unlock_page(old_page);
2802                 }
2803                 page_cache_release(old_page);
2804         }
2805         return ret;
2806 oom_free_new:
2807         page_cache_release(new_page);
2808 oom:
2809         if (old_page) {
2810                 if (page_mkwrite) {
2811                         unlock_page(old_page);
2812                         page_cache_release(old_page);
2813                 }
2814                 page_cache_release(old_page);
2815         }
2816         return VM_FAULT_OOM;
2817
2818 unwritable_page:
2819         page_cache_release(old_page);
2820         return ret;
2821 }
2822
2823 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2824                 unsigned long start_addr, unsigned long end_addr,
2825                 struct zap_details *details)
2826 {
2827         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2828 }
2829
2830 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2831                                             struct zap_details *details)
2832 {
2833         struct vm_area_struct *vma;
2834         struct prio_tree_iter iter;
2835         pgoff_t vba, vea, zba, zea;
2836
2837         vma_prio_tree_foreach(vma, &iter, root,
2838                         details->first_index, details->last_index) {
2839
2840                 vba = vma->vm_pgoff;
2841                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2842                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2843                 zba = details->first_index;
2844                 if (zba < vba)
2845                         zba = vba;
2846                 zea = details->last_index;
2847                 if (zea > vea)
2848                         zea = vea;
2849
2850                 unmap_mapping_range_vma(vma,
2851                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2852                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2853                                 details);
2854         }
2855 }
2856
2857 static inline void unmap_mapping_range_list(struct list_head *head,
2858                                             struct zap_details *details)
2859 {
2860         struct vm_area_struct *vma;
2861
2862         /*
2863          * In nonlinear VMAs there is no correspondence between virtual address
2864          * offset and file offset.  So we must perform an exhaustive search
2865          * across *all* the pages in each nonlinear VMA, not just the pages
2866          * whose virtual address lies outside the file truncation point.
2867          */
2868         list_for_each_entry(vma, head, shared.vm_set.list) {
2869                 details->nonlinear_vma = vma;
2870                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2871         }
2872 }
2873
2874 /**
2875  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2876  * @mapping: the address space containing mmaps to be unmapped.
2877  * @holebegin: byte in first page to unmap, relative to the start of
2878  * the underlying file.  This will be rounded down to a PAGE_SIZE
2879  * boundary.  Note that this is different from truncate_pagecache(), which
2880  * must keep the partial page.  In contrast, we must get rid of
2881  * partial pages.
2882  * @holelen: size of prospective hole in bytes.  This will be rounded
2883  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2884  * end of the file.
2885  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2886  * but 0 when invalidating pagecache, don't throw away private data.
2887  */
2888 void unmap_mapping_range(struct address_space *mapping,
2889                 loff_t const holebegin, loff_t const holelen, int even_cows)
2890 {
2891         struct zap_details details;
2892         pgoff_t hba = holebegin >> PAGE_SHIFT;
2893         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2894
2895         /* Check for overflow. */
2896         if (sizeof(holelen) > sizeof(hlen)) {
2897                 long long holeend =
2898                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2899                 if (holeend & ~(long long)ULONG_MAX)
2900                         hlen = ULONG_MAX - hba + 1;
2901         }
2902
2903         details.check_mapping = even_cows? NULL: mapping;
2904         details.nonlinear_vma = NULL;
2905         details.first_index = hba;
2906         details.last_index = hba + hlen - 1;
2907         if (details.last_index < details.first_index)
2908                 details.last_index = ULONG_MAX;
2909
2910
2911         mutex_lock(&mapping->i_mmap_mutex);
2912         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2913                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2914         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2915                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2916         mutex_unlock(&mapping->i_mmap_mutex);
2917 }
2918 EXPORT_SYMBOL(unmap_mapping_range);
2919
2920 /*
2921  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2922  * but allow concurrent faults), and pte mapped but not yet locked.
2923  * We return with mmap_sem still held, but pte unmapped and unlocked.
2924  */
2925 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2926                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2927                 unsigned int flags, pte_t orig_pte)
2928 {
2929         spinlock_t *ptl;
2930         struct page *page, *swapcache = NULL;
2931         swp_entry_t entry;
2932         pte_t pte;
2933         int locked;
2934         struct mem_cgroup *ptr;
2935         int exclusive = 0;
2936         int ret = 0;
2937
2938         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2939                 goto out;
2940
2941         entry = pte_to_swp_entry(orig_pte);
2942         if (unlikely(non_swap_entry(entry))) {
2943                 if (is_migration_entry(entry)) {
2944                         migration_entry_wait(mm, pmd, address);
2945                 } else if (is_hwpoison_entry(entry)) {
2946                         ret = VM_FAULT_HWPOISON;
2947                 } else {
2948                         print_bad_pte(vma, address, orig_pte, NULL);
2949                         ret = VM_FAULT_SIGBUS;
2950                 }
2951                 goto out;
2952         }
2953         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2954         page = lookup_swap_cache(entry);
2955         if (!page) {
2956                 grab_swap_token(mm); /* Contend for token _before_ read-in */
2957                 page = swapin_readahead(entry,
2958                                         GFP_HIGHUSER_MOVABLE, vma, address);
2959                 if (!page) {
2960                         /*
2961                          * Back out if somebody else faulted in this pte
2962                          * while we released the pte lock.
2963                          */
2964                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2965                         if (likely(pte_same(*page_table, orig_pte)))
2966                                 ret = VM_FAULT_OOM;
2967                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2968                         goto unlock;
2969                 }
2970
2971                 /* Had to read the page from swap area: Major fault */
2972                 ret = VM_FAULT_MAJOR;
2973                 count_vm_event(PGMAJFAULT);
2974                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2975         } else if (PageHWPoison(page)) {
2976                 /*
2977                  * hwpoisoned dirty swapcache pages are kept for killing
2978                  * owner processes (which may be unknown at hwpoison time)
2979                  */
2980                 ret = VM_FAULT_HWPOISON;
2981                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2982                 goto out_release;
2983         }
2984
2985         locked = lock_page_or_retry(page, mm, flags);
2986         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2987         if (!locked) {
2988                 ret |= VM_FAULT_RETRY;
2989                 goto out_release;
2990         }
2991
2992         /*
2993          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2994          * release the swapcache from under us.  The page pin, and pte_same
2995          * test below, are not enough to exclude that.  Even if it is still
2996          * swapcache, we need to check that the page's swap has not changed.
2997          */
2998         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2999                 goto out_page;
3000
3001         if (ksm_might_need_to_copy(page, vma, address)) {
3002                 swapcache = page;
3003                 page = ksm_does_need_to_copy(page, vma, address);
3004
3005                 if (unlikely(!page)) {
3006                         ret = VM_FAULT_OOM;
3007                         page = swapcache;
3008                         swapcache = NULL;
3009                         goto out_page;
3010                 }
3011         }
3012
3013         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3014                 ret = VM_FAULT_OOM;
3015                 goto out_page;
3016         }
3017
3018         /*
3019          * Back out if somebody else already faulted in this pte.
3020          */
3021         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3022         if (unlikely(!pte_same(*page_table, orig_pte)))
3023                 goto out_nomap;
3024
3025         if (unlikely(!PageUptodate(page))) {
3026                 ret = VM_FAULT_SIGBUS;
3027                 goto out_nomap;
3028         }
3029
3030         /*
3031          * The page isn't present yet, go ahead with the fault.
3032          *
3033          * Be careful about the sequence of operations here.
3034          * To get its accounting right, reuse_swap_page() must be called
3035          * while the page is counted on swap but not yet in mapcount i.e.
3036          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3037          * must be called after the swap_free(), or it will never succeed.
3038          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3039          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3040          * in page->private. In this case, a record in swap_cgroup  is silently
3041          * discarded at swap_free().
3042          */
3043
3044         inc_mm_counter_fast(mm, MM_ANONPAGES);
3045         dec_mm_counter_fast(mm, MM_SWAPENTS);
3046         pte = mk_pte(page, vma->vm_page_prot);
3047         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3048                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3049                 flags &= ~FAULT_FLAG_WRITE;
3050                 ret |= VM_FAULT_WRITE;
3051                 exclusive = 1;
3052         }
3053         flush_icache_page(vma, page);
3054         set_pte_at(mm, address, page_table, pte);
3055         do_page_add_anon_rmap(page, vma, address, exclusive);
3056         /* It's better to call commit-charge after rmap is established */
3057         mem_cgroup_commit_charge_swapin(page, ptr);
3058
3059         swap_free(entry);
3060         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3061                 try_to_free_swap(page);
3062         unlock_page(page);
3063         if (swapcache) {
3064                 /*
3065                  * Hold the lock to avoid the swap entry to be reused
3066                  * until we take the PT lock for the pte_same() check
3067                  * (to avoid false positives from pte_same). For
3068                  * further safety release the lock after the swap_free
3069                  * so that the swap count won't change under a
3070                  * parallel locked swapcache.
3071                  */
3072                 unlock_page(swapcache);
3073                 page_cache_release(swapcache);
3074         }
3075
3076         if (flags & FAULT_FLAG_WRITE) {
3077                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3078                 if (ret & VM_FAULT_ERROR)
3079                         ret &= VM_FAULT_ERROR;
3080                 goto out;
3081         }
3082
3083         /* No need to invalidate - it was non-present before */
3084         update_mmu_cache(vma, address, page_table);
3085 unlock:
3086         pte_unmap_unlock(page_table, ptl);
3087 out:
3088         return ret;
3089 out_nomap:
3090         mem_cgroup_cancel_charge_swapin(ptr);
3091         pte_unmap_unlock(page_table, ptl);
3092 out_page:
3093         unlock_page(page);
3094 out_release:
3095         page_cache_release(page);
3096         if (swapcache) {
3097                 unlock_page(swapcache);
3098                 page_cache_release(swapcache);
3099         }
3100         return ret;
3101 }
3102
3103 /*
3104  * This is like a special single-page "expand_{down|up}wards()",
3105  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3106  * doesn't hit another vma.
3107  */
3108 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3109 {
3110         address &= PAGE_MASK;
3111         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3112                 struct vm_area_struct *prev = vma->vm_prev;
3113
3114                 /*
3115                  * Is there a mapping abutting this one below?
3116                  *
3117                  * That's only ok if it's the same stack mapping
3118                  * that has gotten split..
3119                  */
3120                 if (prev && prev->vm_end == address)
3121                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3122
3123                 expand_downwards(vma, address - PAGE_SIZE);
3124         }
3125         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3126                 struct vm_area_struct *next = vma->vm_next;
3127
3128                 /* As VM_GROWSDOWN but s/below/above/ */
3129                 if (next && next->vm_start == address + PAGE_SIZE)
3130                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3131
3132                 expand_upwards(vma, address + PAGE_SIZE);
3133         }
3134         return 0;
3135 }
3136
3137 /*
3138  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3139  * but allow concurrent faults), and pte mapped but not yet locked.
3140  * We return with mmap_sem still held, but pte unmapped and unlocked.
3141  */
3142 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3143                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3144                 unsigned int flags)
3145 {
3146         struct page *page;
3147         spinlock_t *ptl;
3148         pte_t entry;
3149
3150         pte_unmap(page_table);
3151
3152         /* Check if we need to add a guard page to the stack */
3153         if (check_stack_guard_page(vma, address) < 0)
3154                 return VM_FAULT_SIGBUS;
3155
3156         /* Use the zero-page for reads */
3157         if (!(flags & FAULT_FLAG_WRITE)) {
3158                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3159                                                 vma->vm_page_prot));
3160                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3161                 if (!pte_none(*page_table))
3162                         goto unlock;
3163                 goto setpte;
3164         }
3165
3166         /* Allocate our own private page. */
3167         if (unlikely(anon_vma_prepare(vma)))
3168                 goto oom;
3169         page = alloc_zeroed_user_highpage_movable(vma, address);
3170         if (!page)
3171                 goto oom;
3172         __SetPageUptodate(page);
3173
3174         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3175                 goto oom_free_page;
3176
3177         entry = mk_pte(page, vma->vm_page_prot);
3178         if (vma->vm_flags & VM_WRITE)
3179                 entry = pte_mkwrite(pte_mkdirty(entry));
3180
3181         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3182         if (!pte_none(*page_table))
3183                 goto release;
3184
3185         inc_mm_counter_fast(mm, MM_ANONPAGES);
3186         page_add_new_anon_rmap(page, vma, address);
3187 setpte:
3188         set_pte_at(mm, address, page_table, entry);
3189
3190         /* No need to invalidate - it was non-present before */
3191         update_mmu_cache(vma, address, page_table);
3192 unlock:
3193         pte_unmap_unlock(page_table, ptl);
3194         return 0;
3195 release:
3196         mem_cgroup_uncharge_page(page);
3197         page_cache_release(page);
3198         goto unlock;
3199 oom_free_page:
3200         page_cache_release(page);
3201 oom:
3202         return VM_FAULT_OOM;
3203 }
3204
3205 /*
3206  * __do_fault() tries to create a new page mapping. It aggressively
3207  * tries to share with existing pages, but makes a separate copy if
3208  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3209  * the next page fault.
3210  *
3211  * As this is called only for pages that do not currently exist, we
3212  * do not need to flush old virtual caches or the TLB.
3213  *
3214  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3215  * but allow concurrent faults), and pte neither mapped nor locked.
3216  * We return with mmap_sem still held, but pte unmapped and unlocked.
3217  */
3218 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3219                 unsigned long address, pmd_t *pmd,
3220                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3221 {
3222         pte_t *page_table;
3223         spinlock_t *ptl;
3224         struct page *page;
3225         struct page *cow_page;
3226         pte_t entry;
3227         int anon = 0;
3228         struct page *dirty_page = NULL;
3229         struct vm_fault vmf;
3230         int ret;
3231         int page_mkwrite = 0;
3232
3233         /*
3234          * If we do COW later, allocate page befor taking lock_page()
3235          * on the file cache page. This will reduce lock holding time.
3236          */
3237         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3238
3239                 if (unlikely(anon_vma_prepare(vma)))
3240                         return VM_FAULT_OOM;
3241
3242                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3243                 if (!cow_page)
3244                         return VM_FAULT_OOM;
3245
3246                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3247                         page_cache_release(cow_page);
3248                         return VM_FAULT_OOM;
3249                 }
3250         } else
3251                 cow_page = NULL;
3252
3253         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3254         vmf.pgoff = pgoff;
3255         vmf.flags = flags;
3256         vmf.page = NULL;
3257
3258         ret = vma->vm_ops->fault(vma, &vmf);
3259         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3260                             VM_FAULT_RETRY)))
3261                 goto uncharge_out;
3262
3263         if (unlikely(PageHWPoison(vmf.page))) {
3264                 if (ret & VM_FAULT_LOCKED)
3265                         unlock_page(vmf.page);
3266                 ret = VM_FAULT_HWPOISON;
3267                 goto uncharge_out;
3268         }
3269
3270         /*
3271          * For consistency in subsequent calls, make the faulted page always
3272          * locked.
3273          */
3274         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3275                 lock_page(vmf.page);
3276         else
3277                 VM_BUG_ON(!PageLocked(vmf.page));
3278
3279         /*
3280          * Should we do an early C-O-W break?
3281          */
3282         page = vmf.page;
3283         if (flags & FAULT_FLAG_WRITE) {
3284                 if (!(vma->vm_flags & VM_SHARED)) {
3285                         page = cow_page;
3286                         anon = 1;
3287                         copy_user_highpage(page, vmf.page, address, vma);
3288                         __SetPageUptodate(page);
3289                 } else {
3290                         /*
3291                          * If the page will be shareable, see if the backing
3292                          * address space wants to know that the page is about
3293                          * to become writable
3294                          */
3295                         if (vma->vm_ops->page_mkwrite) {
3296                                 int tmp;
3297
3298                                 unlock_page(page);
3299                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3300                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3301                                 if (unlikely(tmp &
3302                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3303                                         ret = tmp;
3304                                         goto unwritable_page;
3305                                 }
3306                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3307                                         lock_page(page);
3308                                         if (!page->mapping) {
3309                                                 ret = 0; /* retry the fault */
3310                                                 unlock_page(page);
3311                                                 goto unwritable_page;
3312                                         }
3313                                 } else
3314                                         VM_BUG_ON(!PageLocked(page));
3315                                 page_mkwrite = 1;
3316                         }
3317                 }
3318
3319         }
3320
3321         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3322
3323         /*
3324          * This silly early PAGE_DIRTY setting removes a race
3325          * due to the bad i386 page protection. But it's valid
3326          * for other architectures too.
3327          *
3328          * Note that if FAULT_FLAG_WRITE is set, we either now have
3329          * an exclusive copy of the page, or this is a shared mapping,
3330          * so we can make it writable and dirty to avoid having to
3331          * handle that later.
3332          */
3333         /* Only go through if we didn't race with anybody else... */
3334         if (likely(pte_same(*page_table, orig_pte))) {
3335                 flush_icache_page(vma, page);
3336                 entry = mk_pte(page, vma->vm_page_prot);
3337                 if (flags & FAULT_FLAG_WRITE)
3338                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3339                 if (anon) {
3340                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3341                         page_add_new_anon_rmap(page, vma, address);
3342                 } else {
3343                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3344                         page_add_file_rmap(page);
3345                         if (flags & FAULT_FLAG_WRITE) {
3346                                 dirty_page = page;
3347                                 get_page(dirty_page);
3348                         }
3349                 }
3350                 set_pte_at(mm, address, page_table, entry);
3351
3352                 /* no need to invalidate: a not-present page won't be cached */
3353                 update_mmu_cache(vma, address, page_table);
3354         } else {
3355                 if (cow_page)
3356                         mem_cgroup_uncharge_page(cow_page);
3357                 if (anon)
3358                         page_cache_release(page);
3359                 else
3360                         anon = 1; /* no anon but release faulted_page */
3361         }
3362
3363         pte_unmap_unlock(page_table, ptl);
3364
3365         if (dirty_page) {
3366                 struct address_space *mapping = page->mapping;
3367
3368                 if (set_page_dirty(dirty_page))
3369                         page_mkwrite = 1;
3370                 unlock_page(dirty_page);
3371                 put_page(dirty_page);
3372                 if (page_mkwrite && mapping) {
3373                         /*
3374                          * Some device drivers do not set page.mapping but still
3375                          * dirty their pages
3376                          */
3377                         balance_dirty_pages_ratelimited(mapping);
3378                 }
3379
3380                 /* file_update_time outside page_lock */
3381                 if (vma->vm_file)
3382                         file_update_time(vma->vm_file);
3383         } else {
3384                 unlock_page(vmf.page);
3385                 if (anon)
3386                         page_cache_release(vmf.page);
3387         }
3388
3389         return ret;
3390
3391 unwritable_page:
3392         page_cache_release(page);
3393         return ret;
3394 uncharge_out:
3395         /* fs's fault handler get error */
3396         if (cow_page) {
3397                 mem_cgroup_uncharge_page(cow_page);
3398                 page_cache_release(cow_page);
3399         }
3400         return ret;
3401 }
3402
3403 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3404                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3405                 unsigned int flags, pte_t orig_pte)
3406 {
3407         pgoff_t pgoff = (((address & PAGE_MASK)
3408                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3409
3410         pte_unmap(page_table);
3411         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3412 }
3413
3414 /*
3415  * Fault of a previously existing named mapping. Repopulate the pte
3416  * from the encoded file_pte if possible. This enables swappable
3417  * nonlinear vmas.
3418  *
3419  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3420  * but allow concurrent faults), and pte mapped but not yet locked.
3421  * We return with mmap_sem still held, but pte unmapped and unlocked.
3422  */
3423 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3424                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3425                 unsigned int flags, pte_t orig_pte)
3426 {
3427         pgoff_t pgoff;
3428
3429         flags |= FAULT_FLAG_NONLINEAR;
3430
3431         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3432                 return 0;
3433
3434         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3435                 /*
3436                  * Page table corrupted: show pte and kill process.
3437                  */
3438                 print_bad_pte(vma, address, orig_pte, NULL);
3439                 return VM_FAULT_SIGBUS;
3440         }
3441
3442         pgoff = pte_to_pgoff(orig_pte);
3443         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3444 }
3445
3446 /*
3447  * These routines also need to handle stuff like marking pages dirty
3448  * and/or accessed for architectures that don't do it in hardware (most
3449  * RISC architectures).  The early dirtying is also good on the i386.
3450  *
3451  * There is also a hook called "update_mmu_cache()" that architectures
3452  * with external mmu caches can use to update those (ie the Sparc or
3453  * PowerPC hashed page tables that act as extended TLBs).
3454  *
3455  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3456  * but allow concurrent faults), and pte mapped but not yet locked.
3457  * We return with mmap_sem still held, but pte unmapped and unlocked.
3458  */
3459 int handle_pte_fault(struct mm_struct *mm,
3460                      struct vm_area_struct *vma, unsigned long address,
3461                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3462 {
3463         pte_t entry;
3464         spinlock_t *ptl;
3465
3466         entry = *pte;
3467         if (!pte_present(entry)) {
3468                 if (pte_none(entry)) {
3469                         if (vma->vm_ops) {
3470                                 if (likely(vma->vm_ops->fault))
3471                                         return do_linear_fault(mm, vma, address,
3472                                                 pte, pmd, flags, entry);
3473                         }
3474                         return do_anonymous_page(mm, vma, address,
3475                                                  pte, pmd, flags);
3476                 }
3477                 if (pte_file(entry))
3478                         return do_nonlinear_fault(mm, vma, address,
3479                                         pte, pmd, flags, entry);
3480                 return do_swap_page(mm, vma, address,
3481                                         pte, pmd, flags, entry);
3482         }
3483
3484         ptl = pte_lockptr(mm, pmd);
3485         spin_lock(ptl);
3486         if (unlikely(!pte_same(*pte, entry)))
3487                 goto unlock;
3488         if (flags & FAULT_FLAG_WRITE) {
3489                 if (!pte_write(entry))
3490                         return do_wp_page(mm, vma, address,
3491                                         pte, pmd, ptl, entry);
3492                 entry = pte_mkdirty(entry);
3493         }
3494         entry = pte_mkyoung(entry);
3495         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3496                 update_mmu_cache(vma, address, pte);
3497         } else {
3498                 /*
3499                  * This is needed only for protection faults but the arch code
3500                  * is not yet telling us if this is a protection fault or not.
3501                  * This still avoids useless tlb flushes for .text page faults
3502                  * with threads.
3503                  */
3504                 if (flags & FAULT_FLAG_WRITE)
3505                         flush_tlb_fix_spurious_fault(vma, address);
3506         }
3507 unlock:
3508         pte_unmap_unlock(pte, ptl);
3509         return 0;
3510 }
3511
3512 /*
3513  * By the time we get here, we already hold the mm semaphore
3514  */
3515 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3516                 unsigned long address, unsigned int flags)
3517 {
3518         pgd_t *pgd;
3519         pud_t *pud;
3520         pmd_t *pmd;
3521         pte_t *pte;
3522
3523         __set_current_state(TASK_RUNNING);
3524
3525         count_vm_event(PGFAULT);
3526         mem_cgroup_count_vm_event(mm, PGFAULT);
3527
3528         /* do counter updates before entering really critical section. */
3529         check_sync_rss_stat(current);
3530
3531         if (unlikely(is_vm_hugetlb_page(vma)))
3532                 return hugetlb_fault(mm, vma, address, flags);
3533
3534         pgd = pgd_offset(mm, address);
3535         pud = pud_alloc(mm, pgd, address);
3536         if (!pud)
3537                 return VM_FAULT_OOM;
3538         pmd = pmd_alloc(mm, pud, address);
3539         if (!pmd)
3540                 return VM_FAULT_OOM;
3541         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3542                 if (!vma->vm_ops)
3543                         return do_huge_pmd_anonymous_page(mm, vma, address,
3544                                                           pmd, flags);
3545         } else {
3546                 pmd_t orig_pmd = *pmd;
3547                 barrier();
3548                 if (pmd_trans_huge(orig_pmd)) {
3549                         if (flags & FAULT_FLAG_WRITE &&
3550                             !pmd_write(orig_pmd) &&
3551                             !pmd_trans_splitting(orig_pmd))
3552                                 return do_huge_pmd_wp_page(mm, vma, address,
3553                                                            pmd, orig_pmd);
3554                         return 0;
3555                 }
3556         }
3557
3558         /*
3559          * Use __pte_alloc instead of pte_alloc_map, because we can't
3560          * run pte_offset_map on the pmd, if an huge pmd could
3561          * materialize from under us from a different thread.
3562          */
3563         if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3564                 return VM_FAULT_OOM;
3565         /* if an huge pmd materialized from under us just retry later */
3566         if (unlikely(pmd_trans_huge(*pmd)))
3567                 return 0;
3568         /*
3569          * A regular pmd is established and it can't morph into a huge pmd
3570          * from under us anymore at this point because we hold the mmap_sem
3571          * read mode and khugepaged takes it in write mode. So now it's
3572          * safe to run pte_offset_map().
3573          */
3574         pte = pte_offset_map(pmd, address);
3575
3576         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3577 }
3578
3579 #ifndef __PAGETABLE_PUD_FOLDED
3580 /*
3581  * Allocate page upper directory.
3582  * We've already handled the fast-path in-line.
3583  */
3584 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3585 {
3586         pud_t *new = pud_alloc_one(mm, address);
3587         if (!new)
3588                 return -ENOMEM;
3589
3590         smp_wmb(); /* See comment in __pte_alloc */
3591
3592         spin_lock(&mm->page_table_lock);
3593         if (pgd_present(*pgd))          /* Another has populated it */
3594                 pud_free(mm, new);
3595         else
3596                 pgd_populate(mm, pgd, new);
3597         spin_unlock(&mm->page_table_lock);
3598         return 0;
3599 }
3600 #endif /* __PAGETABLE_PUD_FOLDED */
3601
3602 #ifndef __PAGETABLE_PMD_FOLDED
3603 /*
3604  * Allocate page middle directory.
3605  * We've already handled the fast-path in-line.
3606  */
3607 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3608 {
3609         pmd_t *new = pmd_alloc_one(mm, address);
3610         if (!new)
3611                 return -ENOMEM;
3612
3613         smp_wmb(); /* See comment in __pte_alloc */
3614
3615         spin_lock(&mm->page_table_lock);
3616 #ifndef __ARCH_HAS_4LEVEL_HACK
3617         if (pud_present(*pud))          /* Another has populated it */
3618                 pmd_free(mm, new);
3619         else
3620                 pud_populate(mm, pud, new);
3621 #else
3622         if (pgd_present(*pud))          /* Another has populated it */
3623                 pmd_free(mm, new);
3624         else
3625                 pgd_populate(mm, pud, new);
3626 #endif /* __ARCH_HAS_4LEVEL_HACK */
3627         spin_unlock(&mm->page_table_lock);
3628         return 0;
3629 }
3630 #endif /* __PAGETABLE_PMD_FOLDED */
3631
3632 int make_pages_present(unsigned long addr, unsigned long end)
3633 {
3634         int ret, len, write;
3635         struct vm_area_struct * vma;
3636
3637         vma = find_vma(current->mm, addr);
3638         if (!vma)
3639                 return -ENOMEM;
3640         /*
3641          * We want to touch writable mappings with a write fault in order
3642          * to break COW, except for shared mappings because these don't COW
3643          * and we would not want to dirty them for nothing.
3644          */
3645         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3646         BUG_ON(addr >= end);
3647         BUG_ON(end > vma->vm_end);
3648         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3649         ret = get_user_pages(current, current->mm, addr,
3650                         len, write, 0, NULL, NULL);
3651         if (ret < 0)
3652                 return ret;
3653         return ret == len ? 0 : -EFAULT;
3654 }
3655
3656 #if !defined(__HAVE_ARCH_GATE_AREA)
3657
3658 #if defined(AT_SYSINFO_EHDR)
3659 static struct vm_area_struct gate_vma;
3660
3661 static int __init gate_vma_init(void)
3662 {
3663         gate_vma.vm_mm = NULL;
3664         gate_vma.vm_start = FIXADDR_USER_START;
3665         gate_vma.vm_end = FIXADDR_USER_END;
3666         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3667         gate_vma.vm_page_prot = __P101;
3668
3669         return 0;
3670 }
3671 __initcall(gate_vma_init);
3672 #endif
3673
3674 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3675 {
3676 #ifdef AT_SYSINFO_EHDR
3677         return &gate_vma;
3678 #else
3679         return NULL;
3680 #endif
3681 }
3682
3683 int in_gate_area_no_mm(unsigned long addr)
3684 {
3685 #ifdef AT_SYSINFO_EHDR
3686         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3687                 return 1;
3688 #endif
3689         return 0;
3690 }
3691
3692 #endif  /* __HAVE_ARCH_GATE_AREA */
3693
3694 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3695                 pte_t **ptepp, spinlock_t **ptlp)
3696 {
3697         pgd_t *pgd;
3698         pud_t *pud;
3699         pmd_t *pmd;
3700         pte_t *ptep;
3701
3702         pgd = pgd_offset(mm, address);
3703         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3704                 goto out;
3705
3706         pud = pud_offset(pgd, address);
3707         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3708                 goto out;
3709
3710         pmd = pmd_offset(pud, address);
3711         VM_BUG_ON(pmd_trans_huge(*pmd));
3712         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3713                 goto out;
3714
3715         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3716         if (pmd_huge(*pmd))
3717                 goto out;
3718
3719         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3720         if (!ptep)
3721                 goto out;
3722         if (!pte_present(*ptep))
3723                 goto unlock;
3724         *ptepp = ptep;
3725         return 0;
3726 unlock:
3727         pte_unmap_unlock(ptep, *ptlp);
3728 out:
3729         return -EINVAL;
3730 }
3731
3732 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3733                              pte_t **ptepp, spinlock_t **ptlp)
3734 {
3735         int res;
3736
3737         /* (void) is needed to make gcc happy */
3738         (void) __cond_lock(*ptlp,
3739                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3740         return res;
3741 }
3742
3743 /**
3744  * follow_pfn - look up PFN at a user virtual address
3745  * @vma: memory mapping
3746  * @address: user virtual address
3747  * @pfn: location to store found PFN
3748  *
3749  * Only IO mappings and raw PFN mappings are allowed.
3750  *
3751  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3752  */
3753 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3754         unsigned long *pfn)
3755 {
3756         int ret = -EINVAL;
3757         spinlock_t *ptl;
3758         pte_t *ptep;
3759
3760         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3761                 return ret;
3762
3763         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3764         if (ret)
3765                 return ret;
3766         *pfn = pte_pfn(*ptep);
3767         pte_unmap_unlock(ptep, ptl);
3768         return 0;
3769 }
3770 EXPORT_SYMBOL(follow_pfn);
3771
3772 #ifdef CONFIG_HAVE_IOREMAP_PROT
3773 int follow_phys(struct vm_area_struct *vma,
3774                 unsigned long address, unsigned int flags,
3775                 unsigned long *prot, resource_size_t *phys)
3776 {
3777         int ret = -EINVAL;
3778         pte_t *ptep, pte;
3779         spinlock_t *ptl;
3780
3781         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3782                 goto out;
3783
3784         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3785                 goto out;
3786         pte = *ptep;
3787
3788         if ((flags & FOLL_WRITE) && !pte_write(pte))
3789                 goto unlock;
3790
3791         *prot = pgprot_val(pte_pgprot(pte));
3792         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3793
3794         ret = 0;
3795 unlock:
3796         pte_unmap_unlock(ptep, ptl);
3797 out:
3798         return ret;
3799 }
3800
3801 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3802                         void *buf, int len, int write)
3803 {
3804         resource_size_t phys_addr;
3805         unsigned long prot = 0;
3806         void __iomem *maddr;
3807         int offset = addr & (PAGE_SIZE-1);
3808
3809         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3810                 return -EINVAL;
3811
3812         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3813         if (write)
3814                 memcpy_toio(maddr + offset, buf, len);
3815         else
3816                 memcpy_fromio(buf, maddr + offset, len);
3817         iounmap(maddr);
3818
3819         return len;
3820 }
3821 #endif
3822
3823 /*
3824  * Access another process' address space as given in mm.  If non-NULL, use the
3825  * given task for page fault accounting.
3826  */
3827 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3828                 unsigned long addr, void *buf, int len, int write)
3829 {
3830         struct vm_area_struct *vma;
3831         void *old_buf = buf;
3832
3833         down_read(&mm->mmap_sem);
3834         /* ignore errors, just check how much was successfully transferred */
3835         while (len) {
3836                 int bytes, ret, offset;
3837                 void *maddr;
3838                 struct page *page = NULL;
3839
3840                 ret = get_user_pages(tsk, mm, addr, 1,
3841                                 write, 1, &page, &vma);
3842                 if (ret <= 0) {
3843                         /*
3844                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3845                          * we can access using slightly different code.
3846                          */
3847 #ifdef CONFIG_HAVE_IOREMAP_PROT
3848                         vma = find_vma(mm, addr);
3849                         if (!vma || vma->vm_start > addr)
3850                                 break;
3851                         if (vma->vm_ops && vma->vm_ops->access)
3852                                 ret = vma->vm_ops->access(vma, addr, buf,
3853                                                           len, write);
3854                         if (ret <= 0)
3855 #endif
3856                                 break;
3857                         bytes = ret;
3858                 } else {
3859                         bytes = len;
3860                         offset = addr & (PAGE_SIZE-1);
3861                         if (bytes > PAGE_SIZE-offset)
3862                                 bytes = PAGE_SIZE-offset;
3863
3864                         maddr = kmap(page);
3865                         if (write) {
3866                                 copy_to_user_page(vma, page, addr,
3867                                                   maddr + offset, buf, bytes);
3868                                 set_page_dirty_lock(page);
3869                         } else {
3870                                 copy_from_user_page(vma, page, addr,
3871                                                     buf, maddr + offset, bytes);
3872                         }
3873                         kunmap(page);
3874                         page_cache_release(page);
3875                 }
3876                 len -= bytes;
3877                 buf += bytes;
3878                 addr += bytes;
3879         }
3880         up_read(&mm->mmap_sem);
3881
3882         return buf - old_buf;
3883 }
3884
3885 /**
3886  * access_remote_vm - access another process' address space
3887  * @mm:         the mm_struct of the target address space
3888  * @addr:       start address to access
3889  * @buf:        source or destination buffer
3890  * @len:        number of bytes to transfer
3891  * @write:      whether the access is a write
3892  *
3893  * The caller must hold a reference on @mm.
3894  */
3895 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3896                 void *buf, int len, int write)
3897 {
3898         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3899 }
3900
3901 /*
3902  * Access another process' address space.
3903  * Source/target buffer must be kernel space,
3904  * Do not walk the page table directly, use get_user_pages
3905  */
3906 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3907                 void *buf, int len, int write)
3908 {
3909         struct mm_struct *mm;
3910         int ret;
3911
3912         mm = get_task_mm(tsk);
3913         if (!mm)
3914                 return 0;
3915
3916         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3917         mmput(mm);
3918
3919         return ret;
3920 }
3921
3922 /*
3923  * Print the name of a VMA.
3924  */
3925 void print_vma_addr(char *prefix, unsigned long ip)
3926 {
3927         struct mm_struct *mm = current->mm;
3928         struct vm_area_struct *vma;
3929
3930         /*
3931          * Do not print if we are in atomic
3932          * contexts (in exception stacks, etc.):
3933          */
3934         if (preempt_count())
3935                 return;
3936
3937         down_read(&mm->mmap_sem);
3938         vma = find_vma(mm, ip);
3939         if (vma && vma->vm_file) {
3940                 struct file *f = vma->vm_file;
3941                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3942                 if (buf) {
3943                         char *p, *s;
3944
3945                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3946                         if (IS_ERR(p))
3947                                 p = "?";
3948                         s = strrchr(p, '/');
3949                         if (s)
3950                                 p = s+1;
3951                         printk("%s%s[%lx+%lx]", prefix, p,
3952                                         vma->vm_start,
3953                                         vma->vm_end - vma->vm_start);
3954                         free_page((unsigned long)buf);
3955                 }
3956         }
3957         up_read(&current->mm->mmap_sem);
3958 }
3959
3960 #ifdef CONFIG_PROVE_LOCKING
3961 void might_fault(void)
3962 {
3963         /*
3964          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3965          * holding the mmap_sem, this is safe because kernel memory doesn't
3966          * get paged out, therefore we'll never actually fault, and the
3967          * below annotations will generate false positives.
3968          */
3969         if (segment_eq(get_fs(), KERNEL_DS))
3970                 return;
3971
3972         might_sleep();
3973         /*
3974          * it would be nicer only to annotate paths which are not under
3975          * pagefault_disable, however that requires a larger audit and
3976          * providing helpers like get_user_atomic.
3977          */
3978         if (!in_atomic() && current->mm)
3979                 might_lock_read(&current->mm->mmap_sem);
3980 }
3981 EXPORT_SYMBOL(might_fault);
3982 #endif
3983
3984 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3985 static void clear_gigantic_page(struct page *page,
3986                                 unsigned long addr,
3987                                 unsigned int pages_per_huge_page)
3988 {
3989         int i;
3990         struct page *p = page;
3991
3992         might_sleep();
3993         for (i = 0; i < pages_per_huge_page;
3994              i++, p = mem_map_next(p, page, i)) {
3995                 cond_resched();
3996                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3997         }
3998 }
3999 void clear_huge_page(struct page *page,
4000                      unsigned long addr, unsigned int pages_per_huge_page)
4001 {
4002         int i;
4003
4004         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4005                 clear_gigantic_page(page, addr, pages_per_huge_page);
4006                 return;
4007         }
4008
4009         might_sleep();
4010         for (i = 0; i < pages_per_huge_page; i++) {
4011                 cond_resched();
4012                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4013         }
4014 }
4015
4016 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4017                                     unsigned long addr,
4018                                     struct vm_area_struct *vma,
4019                                     unsigned int pages_per_huge_page)
4020 {
4021         int i;
4022         struct page *dst_base = dst;
4023         struct page *src_base = src;
4024
4025         for (i = 0; i < pages_per_huge_page; ) {
4026                 cond_resched();
4027                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4028
4029                 i++;
4030                 dst = mem_map_next(dst, dst_base, i);
4031                 src = mem_map_next(src, src_base, i);
4032         }
4033 }
4034
4035 void copy_user_huge_page(struct page *dst, struct page *src,
4036                          unsigned long addr, struct vm_area_struct *vma,
4037                          unsigned int pages_per_huge_page)
4038 {
4039         int i;
4040
4041         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4042                 copy_user_gigantic_page(dst, src, addr, vma,
4043                                         pages_per_huge_page);
4044                 return;
4045         }
4046
4047         might_sleep();
4048         for (i = 0; i < pages_per_huge_page; i++) {
4049                 cond_resched();
4050                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4051         }
4052 }
4053 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */