hugetlbfs: export vma_kernel_pagsize to modules
[linux-flexiantxendom0.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
25
26 #include <linux/hugetlb.h>
27 #include "internal.h"
28
29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
32
33 static int max_hstate;
34 unsigned int default_hstate_idx;
35 struct hstate hstates[HUGE_MAX_HSTATE];
36
37 __initdata LIST_HEAD(huge_boot_pages);
38
39 /* for command line parsing */
40 static struct hstate * __initdata parsed_hstate;
41 static unsigned long __initdata default_hstate_max_huge_pages;
42 static unsigned long __initdata default_hstate_size;
43
44 #define for_each_hstate(h) \
45         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46
47 /*
48  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49  */
50 static DEFINE_SPINLOCK(hugetlb_lock);
51
52 /*
53  * Region tracking -- allows tracking of reservations and instantiated pages
54  *                    across the pages in a mapping.
55  *
56  * The region data structures are protected by a combination of the mmap_sem
57  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
58  * must either hold the mmap_sem for write, or the mmap_sem for read and
59  * the hugetlb_instantiation mutex:
60  *
61  *      down_write(&mm->mmap_sem);
62  * or
63  *      down_read(&mm->mmap_sem);
64  *      mutex_lock(&hugetlb_instantiation_mutex);
65  */
66 struct file_region {
67         struct list_head link;
68         long from;
69         long to;
70 };
71
72 static long region_add(struct list_head *head, long f, long t)
73 {
74         struct file_region *rg, *nrg, *trg;
75
76         /* Locate the region we are either in or before. */
77         list_for_each_entry(rg, head, link)
78                 if (f <= rg->to)
79                         break;
80
81         /* Round our left edge to the current segment if it encloses us. */
82         if (f > rg->from)
83                 f = rg->from;
84
85         /* Check for and consume any regions we now overlap with. */
86         nrg = rg;
87         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88                 if (&rg->link == head)
89                         break;
90                 if (rg->from > t)
91                         break;
92
93                 /* If this area reaches higher then extend our area to
94                  * include it completely.  If this is not the first area
95                  * which we intend to reuse, free it. */
96                 if (rg->to > t)
97                         t = rg->to;
98                 if (rg != nrg) {
99                         list_del(&rg->link);
100                         kfree(rg);
101                 }
102         }
103         nrg->from = f;
104         nrg->to = t;
105         return 0;
106 }
107
108 static long region_chg(struct list_head *head, long f, long t)
109 {
110         struct file_region *rg, *nrg;
111         long chg = 0;
112
113         /* Locate the region we are before or in. */
114         list_for_each_entry(rg, head, link)
115                 if (f <= rg->to)
116                         break;
117
118         /* If we are below the current region then a new region is required.
119          * Subtle, allocate a new region at the position but make it zero
120          * size such that we can guarantee to record the reservation. */
121         if (&rg->link == head || t < rg->from) {
122                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123                 if (!nrg)
124                         return -ENOMEM;
125                 nrg->from = f;
126                 nrg->to   = f;
127                 INIT_LIST_HEAD(&nrg->link);
128                 list_add(&nrg->link, rg->link.prev);
129
130                 return t - f;
131         }
132
133         /* Round our left edge to the current segment if it encloses us. */
134         if (f > rg->from)
135                 f = rg->from;
136         chg = t - f;
137
138         /* Check for and consume any regions we now overlap with. */
139         list_for_each_entry(rg, rg->link.prev, link) {
140                 if (&rg->link == head)
141                         break;
142                 if (rg->from > t)
143                         return chg;
144
145                 /* We overlap with this area, if it extends futher than
146                  * us then we must extend ourselves.  Account for its
147                  * existing reservation. */
148                 if (rg->to > t) {
149                         chg += rg->to - t;
150                         t = rg->to;
151                 }
152                 chg -= rg->to - rg->from;
153         }
154         return chg;
155 }
156
157 static long region_truncate(struct list_head *head, long end)
158 {
159         struct file_region *rg, *trg;
160         long chg = 0;
161
162         /* Locate the region we are either in or before. */
163         list_for_each_entry(rg, head, link)
164                 if (end <= rg->to)
165                         break;
166         if (&rg->link == head)
167                 return 0;
168
169         /* If we are in the middle of a region then adjust it. */
170         if (end > rg->from) {
171                 chg = rg->to - end;
172                 rg->to = end;
173                 rg = list_entry(rg->link.next, typeof(*rg), link);
174         }
175
176         /* Drop any remaining regions. */
177         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178                 if (&rg->link == head)
179                         break;
180                 chg += rg->to - rg->from;
181                 list_del(&rg->link);
182                 kfree(rg);
183         }
184         return chg;
185 }
186
187 static long region_count(struct list_head *head, long f, long t)
188 {
189         struct file_region *rg;
190         long chg = 0;
191
192         /* Locate each segment we overlap with, and count that overlap. */
193         list_for_each_entry(rg, head, link) {
194                 int seg_from;
195                 int seg_to;
196
197                 if (rg->to <= f)
198                         continue;
199                 if (rg->from >= t)
200                         break;
201
202                 seg_from = max(rg->from, f);
203                 seg_to = min(rg->to, t);
204
205                 chg += seg_to - seg_from;
206         }
207
208         return chg;
209 }
210
211 /*
212  * Convert the address within this vma to the page offset within
213  * the mapping, in pagecache page units; huge pages here.
214  */
215 static pgoff_t vma_hugecache_offset(struct hstate *h,
216                         struct vm_area_struct *vma, unsigned long address)
217 {
218         return ((address - vma->vm_start) >> huge_page_shift(h)) +
219                         (vma->vm_pgoff >> huge_page_order(h));
220 }
221
222 /*
223  * Return the size of the pages allocated when backing a VMA. In the majority
224  * cases this will be same size as used by the page table entries.
225  */
226 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
227 {
228         struct hstate *hstate;
229
230         if (!is_vm_hugetlb_page(vma))
231                 return PAGE_SIZE;
232
233         hstate = hstate_vma(vma);
234
235         return 1UL << (hstate->order + PAGE_SHIFT);
236 }
237 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
238
239 /*
240  * Return the page size being used by the MMU to back a VMA. In the majority
241  * of cases, the page size used by the kernel matches the MMU size. On
242  * architectures where it differs, an architecture-specific version of this
243  * function is required.
244  */
245 #ifndef vma_mmu_pagesize
246 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
247 {
248         return vma_kernel_pagesize(vma);
249 }
250 #endif
251
252 /*
253  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
254  * bits of the reservation map pointer, which are always clear due to
255  * alignment.
256  */
257 #define HPAGE_RESV_OWNER    (1UL << 0)
258 #define HPAGE_RESV_UNMAPPED (1UL << 1)
259 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
260
261 /*
262  * These helpers are used to track how many pages are reserved for
263  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
264  * is guaranteed to have their future faults succeed.
265  *
266  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
267  * the reserve counters are updated with the hugetlb_lock held. It is safe
268  * to reset the VMA at fork() time as it is not in use yet and there is no
269  * chance of the global counters getting corrupted as a result of the values.
270  *
271  * The private mapping reservation is represented in a subtly different
272  * manner to a shared mapping.  A shared mapping has a region map associated
273  * with the underlying file, this region map represents the backing file
274  * pages which have ever had a reservation assigned which this persists even
275  * after the page is instantiated.  A private mapping has a region map
276  * associated with the original mmap which is attached to all VMAs which
277  * reference it, this region map represents those offsets which have consumed
278  * reservation ie. where pages have been instantiated.
279  */
280 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
281 {
282         return (unsigned long)vma->vm_private_data;
283 }
284
285 static void set_vma_private_data(struct vm_area_struct *vma,
286                                                         unsigned long value)
287 {
288         vma->vm_private_data = (void *)value;
289 }
290
291 struct resv_map {
292         struct kref refs;
293         struct list_head regions;
294 };
295
296 static struct resv_map *resv_map_alloc(void)
297 {
298         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
299         if (!resv_map)
300                 return NULL;
301
302         kref_init(&resv_map->refs);
303         INIT_LIST_HEAD(&resv_map->regions);
304
305         return resv_map;
306 }
307
308 static void resv_map_release(struct kref *ref)
309 {
310         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
311
312         /* Clear out any active regions before we release the map. */
313         region_truncate(&resv_map->regions, 0);
314         kfree(resv_map);
315 }
316
317 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
318 {
319         VM_BUG_ON(!is_vm_hugetlb_page(vma));
320         if (!(vma->vm_flags & VM_MAYSHARE))
321                 return (struct resv_map *)(get_vma_private_data(vma) &
322                                                         ~HPAGE_RESV_MASK);
323         return NULL;
324 }
325
326 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
327 {
328         VM_BUG_ON(!is_vm_hugetlb_page(vma));
329         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
330
331         set_vma_private_data(vma, (get_vma_private_data(vma) &
332                                 HPAGE_RESV_MASK) | (unsigned long)map);
333 }
334
335 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
336 {
337         VM_BUG_ON(!is_vm_hugetlb_page(vma));
338         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
339
340         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
341 }
342
343 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
344 {
345         VM_BUG_ON(!is_vm_hugetlb_page(vma));
346
347         return (get_vma_private_data(vma) & flag) != 0;
348 }
349
350 /* Decrement the reserved pages in the hugepage pool by one */
351 static void decrement_hugepage_resv_vma(struct hstate *h,
352                         struct vm_area_struct *vma)
353 {
354         if (vma->vm_flags & VM_NORESERVE)
355                 return;
356
357         if (vma->vm_flags & VM_MAYSHARE) {
358                 /* Shared mappings always use reserves */
359                 h->resv_huge_pages--;
360         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
361                 /*
362                  * Only the process that called mmap() has reserves for
363                  * private mappings.
364                  */
365                 h->resv_huge_pages--;
366         }
367 }
368
369 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
371 {
372         VM_BUG_ON(!is_vm_hugetlb_page(vma));
373         if (!(vma->vm_flags & VM_MAYSHARE))
374                 vma->vm_private_data = (void *)0;
375 }
376
377 /* Returns true if the VMA has associated reserve pages */
378 static int vma_has_reserves(struct vm_area_struct *vma)
379 {
380         if (vma->vm_flags & VM_MAYSHARE)
381                 return 1;
382         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
383                 return 1;
384         return 0;
385 }
386
387 static void clear_gigantic_page(struct page *page,
388                         unsigned long addr, unsigned long sz)
389 {
390         int i;
391         struct page *p = page;
392
393         might_sleep();
394         for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
395                 cond_resched();
396                 clear_user_highpage(p, addr + i * PAGE_SIZE);
397         }
398 }
399 static void clear_huge_page(struct page *page,
400                         unsigned long addr, unsigned long sz)
401 {
402         int i;
403
404         if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
405                 clear_gigantic_page(page, addr, sz);
406                 return;
407         }
408
409         might_sleep();
410         for (i = 0; i < sz/PAGE_SIZE; i++) {
411                 cond_resched();
412                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
413         }
414 }
415
416 static void copy_gigantic_page(struct page *dst, struct page *src,
417                            unsigned long addr, struct vm_area_struct *vma)
418 {
419         int i;
420         struct hstate *h = hstate_vma(vma);
421         struct page *dst_base = dst;
422         struct page *src_base = src;
423         might_sleep();
424         for (i = 0; i < pages_per_huge_page(h); ) {
425                 cond_resched();
426                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
427
428                 i++;
429                 dst = mem_map_next(dst, dst_base, i);
430                 src = mem_map_next(src, src_base, i);
431         }
432 }
433 static void copy_huge_page(struct page *dst, struct page *src,
434                            unsigned long addr, struct vm_area_struct *vma)
435 {
436         int i;
437         struct hstate *h = hstate_vma(vma);
438
439         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
440                 copy_gigantic_page(dst, src, addr, vma);
441                 return;
442         }
443
444         might_sleep();
445         for (i = 0; i < pages_per_huge_page(h); i++) {
446                 cond_resched();
447                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
448         }
449 }
450
451 static void enqueue_huge_page(struct hstate *h, struct page *page)
452 {
453         int nid = page_to_nid(page);
454         list_add(&page->lru, &h->hugepage_freelists[nid]);
455         h->free_huge_pages++;
456         h->free_huge_pages_node[nid]++;
457 }
458
459 static struct page *dequeue_huge_page(struct hstate *h)
460 {
461         int nid;
462         struct page *page = NULL;
463
464         for (nid = 0; nid < MAX_NUMNODES; ++nid) {
465                 if (!list_empty(&h->hugepage_freelists[nid])) {
466                         page = list_entry(h->hugepage_freelists[nid].next,
467                                           struct page, lru);
468                         list_del(&page->lru);
469                         h->free_huge_pages--;
470                         h->free_huge_pages_node[nid]--;
471                         break;
472                 }
473         }
474         return page;
475 }
476
477 static struct page *dequeue_huge_page_vma(struct hstate *h,
478                                 struct vm_area_struct *vma,
479                                 unsigned long address, int avoid_reserve)
480 {
481         int nid;
482         struct page *page = NULL;
483         struct mempolicy *mpol;
484         nodemask_t *nodemask;
485         struct zonelist *zonelist = huge_zonelist(vma, address,
486                                         htlb_alloc_mask, &mpol, &nodemask);
487         struct zone *zone;
488         struct zoneref *z;
489
490         /*
491          * A child process with MAP_PRIVATE mappings created by their parent
492          * have no page reserves. This check ensures that reservations are
493          * not "stolen". The child may still get SIGKILLed
494          */
495         if (!vma_has_reserves(vma) &&
496                         h->free_huge_pages - h->resv_huge_pages == 0)
497                 return NULL;
498
499         /* If reserves cannot be used, ensure enough pages are in the pool */
500         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
501                 return NULL;
502
503         for_each_zone_zonelist_nodemask(zone, z, zonelist,
504                                                 MAX_NR_ZONES - 1, nodemask) {
505                 nid = zone_to_nid(zone);
506                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
507                     !list_empty(&h->hugepage_freelists[nid])) {
508                         page = list_entry(h->hugepage_freelists[nid].next,
509                                           struct page, lru);
510                         list_del(&page->lru);
511                         h->free_huge_pages--;
512                         h->free_huge_pages_node[nid]--;
513
514                         if (!avoid_reserve)
515                                 decrement_hugepage_resv_vma(h, vma);
516
517                         break;
518                 }
519         }
520         mpol_cond_put(mpol);
521         return page;
522 }
523
524 static void update_and_free_page(struct hstate *h, struct page *page)
525 {
526         int i;
527
528         VM_BUG_ON(h->order >= MAX_ORDER);
529
530         h->nr_huge_pages--;
531         h->nr_huge_pages_node[page_to_nid(page)]--;
532         for (i = 0; i < pages_per_huge_page(h); i++) {
533                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
534                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
535                                 1 << PG_private | 1<< PG_writeback);
536         }
537         set_compound_page_dtor(page, NULL);
538         set_page_refcounted(page);
539         arch_release_hugepage(page);
540         __free_pages(page, huge_page_order(h));
541 }
542
543 struct hstate *size_to_hstate(unsigned long size)
544 {
545         struct hstate *h;
546
547         for_each_hstate(h) {
548                 if (huge_page_size(h) == size)
549                         return h;
550         }
551         return NULL;
552 }
553
554 static void free_huge_page(struct page *page)
555 {
556         /*
557          * Can't pass hstate in here because it is called from the
558          * compound page destructor.
559          */
560         struct hstate *h = page_hstate(page);
561         int nid = page_to_nid(page);
562         struct address_space *mapping;
563
564         mapping = (struct address_space *) page_private(page);
565         set_page_private(page, 0);
566         BUG_ON(page_count(page));
567         INIT_LIST_HEAD(&page->lru);
568
569         spin_lock(&hugetlb_lock);
570         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
571                 update_and_free_page(h, page);
572                 h->surplus_huge_pages--;
573                 h->surplus_huge_pages_node[nid]--;
574         } else {
575                 enqueue_huge_page(h, page);
576         }
577         spin_unlock(&hugetlb_lock);
578         if (mapping)
579                 hugetlb_put_quota(mapping, 1);
580 }
581
582 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
583 {
584         set_compound_page_dtor(page, free_huge_page);
585         spin_lock(&hugetlb_lock);
586         h->nr_huge_pages++;
587         h->nr_huge_pages_node[nid]++;
588         spin_unlock(&hugetlb_lock);
589         put_page(page); /* free it into the hugepage allocator */
590 }
591
592 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
593 {
594         int i;
595         int nr_pages = 1 << order;
596         struct page *p = page + 1;
597
598         /* we rely on prep_new_huge_page to set the destructor */
599         set_compound_order(page, order);
600         __SetPageHead(page);
601         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
602                 __SetPageTail(p);
603                 p->first_page = page;
604         }
605 }
606
607 int PageHuge(struct page *page)
608 {
609         compound_page_dtor *dtor;
610
611         if (!PageCompound(page))
612                 return 0;
613
614         page = compound_head(page);
615         dtor = get_compound_page_dtor(page);
616
617         return dtor == free_huge_page;
618 }
619
620 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
621 {
622         struct page *page;
623
624         if (h->order >= MAX_ORDER)
625                 return NULL;
626
627         page = alloc_pages_exact_node(nid,
628                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
629                                                 __GFP_REPEAT|__GFP_NOWARN,
630                 huge_page_order(h));
631         if (page) {
632                 if (arch_prepare_hugepage(page)) {
633                         __free_pages(page, huge_page_order(h));
634                         return NULL;
635                 }
636                 prep_new_huge_page(h, page, nid);
637         }
638
639         return page;
640 }
641
642 /*
643  * Use a helper variable to find the next node and then
644  * copy it back to hugetlb_next_nid afterwards:
645  * otherwise there's a window in which a racer might
646  * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
647  * But we don't need to use a spin_lock here: it really
648  * doesn't matter if occasionally a racer chooses the
649  * same nid as we do.  Move nid forward in the mask even
650  * if we just successfully allocated a hugepage so that
651  * the next caller gets hugepages on the next node.
652  */
653 static int hstate_next_node(struct hstate *h)
654 {
655         int next_nid;
656         next_nid = next_node(h->hugetlb_next_nid, node_online_map);
657         if (next_nid == MAX_NUMNODES)
658                 next_nid = first_node(node_online_map);
659         h->hugetlb_next_nid = next_nid;
660         return next_nid;
661 }
662
663 static int alloc_fresh_huge_page(struct hstate *h)
664 {
665         struct page *page;
666         int start_nid;
667         int next_nid;
668         int ret = 0;
669
670         start_nid = h->hugetlb_next_nid;
671
672         do {
673                 page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
674                 if (page)
675                         ret = 1;
676                 next_nid = hstate_next_node(h);
677         } while (!page && h->hugetlb_next_nid != start_nid);
678
679         if (ret)
680                 count_vm_event(HTLB_BUDDY_PGALLOC);
681         else
682                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
683
684         return ret;
685 }
686
687 static struct page *alloc_buddy_huge_page(struct hstate *h,
688                         struct vm_area_struct *vma, unsigned long address)
689 {
690         struct page *page;
691         unsigned int nid;
692
693         if (h->order >= MAX_ORDER)
694                 return NULL;
695
696         /*
697          * Assume we will successfully allocate the surplus page to
698          * prevent racing processes from causing the surplus to exceed
699          * overcommit
700          *
701          * This however introduces a different race, where a process B
702          * tries to grow the static hugepage pool while alloc_pages() is
703          * called by process A. B will only examine the per-node
704          * counters in determining if surplus huge pages can be
705          * converted to normal huge pages in adjust_pool_surplus(). A
706          * won't be able to increment the per-node counter, until the
707          * lock is dropped by B, but B doesn't drop hugetlb_lock until
708          * no more huge pages can be converted from surplus to normal
709          * state (and doesn't try to convert again). Thus, we have a
710          * case where a surplus huge page exists, the pool is grown, and
711          * the surplus huge page still exists after, even though it
712          * should just have been converted to a normal huge page. This
713          * does not leak memory, though, as the hugepage will be freed
714          * once it is out of use. It also does not allow the counters to
715          * go out of whack in adjust_pool_surplus() as we don't modify
716          * the node values until we've gotten the hugepage and only the
717          * per-node value is checked there.
718          */
719         spin_lock(&hugetlb_lock);
720         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
721                 spin_unlock(&hugetlb_lock);
722                 return NULL;
723         } else {
724                 h->nr_huge_pages++;
725                 h->surplus_huge_pages++;
726         }
727         spin_unlock(&hugetlb_lock);
728
729         page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
730                                         __GFP_REPEAT|__GFP_NOWARN,
731                                         huge_page_order(h));
732
733         if (page && arch_prepare_hugepage(page)) {
734                 __free_pages(page, huge_page_order(h));
735                 return NULL;
736         }
737
738         spin_lock(&hugetlb_lock);
739         if (page) {
740                 /*
741                  * This page is now managed by the hugetlb allocator and has
742                  * no users -- drop the buddy allocator's reference.
743                  */
744                 put_page_testzero(page);
745                 VM_BUG_ON(page_count(page));
746                 nid = page_to_nid(page);
747                 set_compound_page_dtor(page, free_huge_page);
748                 /*
749                  * We incremented the global counters already
750                  */
751                 h->nr_huge_pages_node[nid]++;
752                 h->surplus_huge_pages_node[nid]++;
753                 __count_vm_event(HTLB_BUDDY_PGALLOC);
754         } else {
755                 h->nr_huge_pages--;
756                 h->surplus_huge_pages--;
757                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
758         }
759         spin_unlock(&hugetlb_lock);
760
761         return page;
762 }
763
764 /*
765  * Increase the hugetlb pool such that it can accomodate a reservation
766  * of size 'delta'.
767  */
768 static int gather_surplus_pages(struct hstate *h, int delta)
769 {
770         struct list_head surplus_list;
771         struct page *page, *tmp;
772         int ret, i;
773         int needed, allocated;
774
775         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
776         if (needed <= 0) {
777                 h->resv_huge_pages += delta;
778                 return 0;
779         }
780
781         allocated = 0;
782         INIT_LIST_HEAD(&surplus_list);
783
784         ret = -ENOMEM;
785 retry:
786         spin_unlock(&hugetlb_lock);
787         for (i = 0; i < needed; i++) {
788                 page = alloc_buddy_huge_page(h, NULL, 0);
789                 if (!page) {
790                         /*
791                          * We were not able to allocate enough pages to
792                          * satisfy the entire reservation so we free what
793                          * we've allocated so far.
794                          */
795                         spin_lock(&hugetlb_lock);
796                         needed = 0;
797                         goto free;
798                 }
799
800                 list_add(&page->lru, &surplus_list);
801         }
802         allocated += needed;
803
804         /*
805          * After retaking hugetlb_lock, we need to recalculate 'needed'
806          * because either resv_huge_pages or free_huge_pages may have changed.
807          */
808         spin_lock(&hugetlb_lock);
809         needed = (h->resv_huge_pages + delta) -
810                         (h->free_huge_pages + allocated);
811         if (needed > 0)
812                 goto retry;
813
814         /*
815          * The surplus_list now contains _at_least_ the number of extra pages
816          * needed to accomodate the reservation.  Add the appropriate number
817          * of pages to the hugetlb pool and free the extras back to the buddy
818          * allocator.  Commit the entire reservation here to prevent another
819          * process from stealing the pages as they are added to the pool but
820          * before they are reserved.
821          */
822         needed += allocated;
823         h->resv_huge_pages += delta;
824         ret = 0;
825 free:
826         /* Free the needed pages to the hugetlb pool */
827         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
828                 if ((--needed) < 0)
829                         break;
830                 list_del(&page->lru);
831                 enqueue_huge_page(h, page);
832         }
833
834         /* Free unnecessary surplus pages to the buddy allocator */
835         if (!list_empty(&surplus_list)) {
836                 spin_unlock(&hugetlb_lock);
837                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
838                         list_del(&page->lru);
839                         /*
840                          * The page has a reference count of zero already, so
841                          * call free_huge_page directly instead of using
842                          * put_page.  This must be done with hugetlb_lock
843                          * unlocked which is safe because free_huge_page takes
844                          * hugetlb_lock before deciding how to free the page.
845                          */
846                         free_huge_page(page);
847                 }
848                 spin_lock(&hugetlb_lock);
849         }
850
851         return ret;
852 }
853
854 /*
855  * When releasing a hugetlb pool reservation, any surplus pages that were
856  * allocated to satisfy the reservation must be explicitly freed if they were
857  * never used.
858  */
859 static void return_unused_surplus_pages(struct hstate *h,
860                                         unsigned long unused_resv_pages)
861 {
862         static int nid = -1;
863         struct page *page;
864         unsigned long nr_pages;
865
866         /*
867          * We want to release as many surplus pages as possible, spread
868          * evenly across all nodes. Iterate across all nodes until we
869          * can no longer free unreserved surplus pages. This occurs when
870          * the nodes with surplus pages have no free pages.
871          */
872         unsigned long remaining_iterations = nr_online_nodes;
873
874         /* Uncommit the reservation */
875         h->resv_huge_pages -= unused_resv_pages;
876
877         /* Cannot return gigantic pages currently */
878         if (h->order >= MAX_ORDER)
879                 return;
880
881         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
882
883         while (remaining_iterations-- && nr_pages) {
884                 nid = next_node(nid, node_online_map);
885                 if (nid == MAX_NUMNODES)
886                         nid = first_node(node_online_map);
887
888                 if (!h->surplus_huge_pages_node[nid])
889                         continue;
890
891                 if (!list_empty(&h->hugepage_freelists[nid])) {
892                         page = list_entry(h->hugepage_freelists[nid].next,
893                                           struct page, lru);
894                         list_del(&page->lru);
895                         update_and_free_page(h, page);
896                         h->free_huge_pages--;
897                         h->free_huge_pages_node[nid]--;
898                         h->surplus_huge_pages--;
899                         h->surplus_huge_pages_node[nid]--;
900                         nr_pages--;
901                         remaining_iterations = nr_online_nodes;
902                 }
903         }
904 }
905
906 /*
907  * Determine if the huge page at addr within the vma has an associated
908  * reservation.  Where it does not we will need to logically increase
909  * reservation and actually increase quota before an allocation can occur.
910  * Where any new reservation would be required the reservation change is
911  * prepared, but not committed.  Once the page has been quota'd allocated
912  * an instantiated the change should be committed via vma_commit_reservation.
913  * No action is required on failure.
914  */
915 static long vma_needs_reservation(struct hstate *h,
916                         struct vm_area_struct *vma, unsigned long addr)
917 {
918         struct address_space *mapping = vma->vm_file->f_mapping;
919         struct inode *inode = mapping->host;
920
921         if (vma->vm_flags & VM_MAYSHARE) {
922                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
923                 return region_chg(&inode->i_mapping->private_list,
924                                                         idx, idx + 1);
925
926         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
927                 return 1;
928
929         } else  {
930                 long err;
931                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
932                 struct resv_map *reservations = vma_resv_map(vma);
933
934                 err = region_chg(&reservations->regions, idx, idx + 1);
935                 if (err < 0)
936                         return err;
937                 return 0;
938         }
939 }
940 static void vma_commit_reservation(struct hstate *h,
941                         struct vm_area_struct *vma, unsigned long addr)
942 {
943         struct address_space *mapping = vma->vm_file->f_mapping;
944         struct inode *inode = mapping->host;
945
946         if (vma->vm_flags & VM_MAYSHARE) {
947                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
948                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
949
950         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
951                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
952                 struct resv_map *reservations = vma_resv_map(vma);
953
954                 /* Mark this page used in the map. */
955                 region_add(&reservations->regions, idx, idx + 1);
956         }
957 }
958
959 static struct page *alloc_huge_page(struct vm_area_struct *vma,
960                                     unsigned long addr, int avoid_reserve)
961 {
962         struct hstate *h = hstate_vma(vma);
963         struct page *page;
964         struct address_space *mapping = vma->vm_file->f_mapping;
965         struct inode *inode = mapping->host;
966         long chg;
967
968         /*
969          * Processes that did not create the mapping will have no reserves and
970          * will not have accounted against quota. Check that the quota can be
971          * made before satisfying the allocation
972          * MAP_NORESERVE mappings may also need pages and quota allocated
973          * if no reserve mapping overlaps.
974          */
975         chg = vma_needs_reservation(h, vma, addr);
976         if (chg < 0)
977                 return ERR_PTR(chg);
978         if (chg)
979                 if (hugetlb_get_quota(inode->i_mapping, chg))
980                         return ERR_PTR(-ENOSPC);
981
982         spin_lock(&hugetlb_lock);
983         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
984         spin_unlock(&hugetlb_lock);
985
986         if (!page) {
987                 page = alloc_buddy_huge_page(h, vma, addr);
988                 if (!page) {
989                         hugetlb_put_quota(inode->i_mapping, chg);
990                         return ERR_PTR(-VM_FAULT_OOM);
991                 }
992         }
993
994         set_page_refcounted(page);
995         set_page_private(page, (unsigned long) mapping);
996
997         vma_commit_reservation(h, vma, addr);
998
999         return page;
1000 }
1001
1002 int __weak alloc_bootmem_huge_page(struct hstate *h)
1003 {
1004         struct huge_bootmem_page *m;
1005         int nr_nodes = nodes_weight(node_online_map);
1006
1007         while (nr_nodes) {
1008                 void *addr;
1009
1010                 addr = __alloc_bootmem_node_nopanic(
1011                                 NODE_DATA(h->hugetlb_next_nid),
1012                                 huge_page_size(h), huge_page_size(h), 0);
1013
1014                 if (addr) {
1015                         /*
1016                          * Use the beginning of the huge page to store the
1017                          * huge_bootmem_page struct (until gather_bootmem
1018                          * puts them into the mem_map).
1019                          */
1020                         m = addr;
1021                         goto found;
1022                 }
1023                 hstate_next_node(h);
1024                 nr_nodes--;
1025         }
1026         return 0;
1027
1028 found:
1029         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1030         /* Put them into a private list first because mem_map is not up yet */
1031         list_add(&m->list, &huge_boot_pages);
1032         m->hstate = h;
1033         return 1;
1034 }
1035
1036 static void prep_compound_huge_page(struct page *page, int order)
1037 {
1038         if (unlikely(order > (MAX_ORDER - 1)))
1039                 prep_compound_gigantic_page(page, order);
1040         else
1041                 prep_compound_page(page, order);
1042 }
1043
1044 /* Put bootmem huge pages into the standard lists after mem_map is up */
1045 static void __init gather_bootmem_prealloc(void)
1046 {
1047         struct huge_bootmem_page *m;
1048
1049         list_for_each_entry(m, &huge_boot_pages, list) {
1050                 struct page *page = virt_to_page(m);
1051                 struct hstate *h = m->hstate;
1052                 __ClearPageReserved(page);
1053                 WARN_ON(page_count(page) != 1);
1054                 prep_compound_huge_page(page, h->order);
1055                 prep_new_huge_page(h, page, page_to_nid(page));
1056         }
1057 }
1058
1059 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1060 {
1061         unsigned long i;
1062
1063         for (i = 0; i < h->max_huge_pages; ++i) {
1064                 if (h->order >= MAX_ORDER) {
1065                         if (!alloc_bootmem_huge_page(h))
1066                                 break;
1067                 } else if (!alloc_fresh_huge_page(h))
1068                         break;
1069         }
1070         h->max_huge_pages = i;
1071 }
1072
1073 static void __init hugetlb_init_hstates(void)
1074 {
1075         struct hstate *h;
1076
1077         for_each_hstate(h) {
1078                 /* oversize hugepages were init'ed in early boot */
1079                 if (h->order < MAX_ORDER)
1080                         hugetlb_hstate_alloc_pages(h);
1081         }
1082 }
1083
1084 static char * __init memfmt(char *buf, unsigned long n)
1085 {
1086         if (n >= (1UL << 30))
1087                 sprintf(buf, "%lu GB", n >> 30);
1088         else if (n >= (1UL << 20))
1089                 sprintf(buf, "%lu MB", n >> 20);
1090         else
1091                 sprintf(buf, "%lu KB", n >> 10);
1092         return buf;
1093 }
1094
1095 static void __init report_hugepages(void)
1096 {
1097         struct hstate *h;
1098
1099         for_each_hstate(h) {
1100                 char buf[32];
1101                 printk(KERN_INFO "HugeTLB registered %s page size, "
1102                                  "pre-allocated %ld pages\n",
1103                         memfmt(buf, huge_page_size(h)),
1104                         h->free_huge_pages);
1105         }
1106 }
1107
1108 #ifdef CONFIG_HIGHMEM
1109 static void try_to_free_low(struct hstate *h, unsigned long count)
1110 {
1111         int i;
1112
1113         if (h->order >= MAX_ORDER)
1114                 return;
1115
1116         for (i = 0; i < MAX_NUMNODES; ++i) {
1117                 struct page *page, *next;
1118                 struct list_head *freel = &h->hugepage_freelists[i];
1119                 list_for_each_entry_safe(page, next, freel, lru) {
1120                         if (count >= h->nr_huge_pages)
1121                                 return;
1122                         if (PageHighMem(page))
1123                                 continue;
1124                         list_del(&page->lru);
1125                         update_and_free_page(h, page);
1126                         h->free_huge_pages--;
1127                         h->free_huge_pages_node[page_to_nid(page)]--;
1128                 }
1129         }
1130 }
1131 #else
1132 static inline void try_to_free_low(struct hstate *h, unsigned long count)
1133 {
1134 }
1135 #endif
1136
1137 /*
1138  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1139  * balanced by operating on them in a round-robin fashion.
1140  * Returns 1 if an adjustment was made.
1141  */
1142 static int adjust_pool_surplus(struct hstate *h, int delta)
1143 {
1144         static int prev_nid;
1145         int nid = prev_nid;
1146         int ret = 0;
1147
1148         VM_BUG_ON(delta != -1 && delta != 1);
1149         do {
1150                 nid = next_node(nid, node_online_map);
1151                 if (nid == MAX_NUMNODES)
1152                         nid = first_node(node_online_map);
1153
1154                 /* To shrink on this node, there must be a surplus page */
1155                 if (delta < 0 && !h->surplus_huge_pages_node[nid])
1156                         continue;
1157                 /* Surplus cannot exceed the total number of pages */
1158                 if (delta > 0 && h->surplus_huge_pages_node[nid] >=
1159                                                 h->nr_huge_pages_node[nid])
1160                         continue;
1161
1162                 h->surplus_huge_pages += delta;
1163                 h->surplus_huge_pages_node[nid] += delta;
1164                 ret = 1;
1165                 break;
1166         } while (nid != prev_nid);
1167
1168         prev_nid = nid;
1169         return ret;
1170 }
1171
1172 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1173 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
1174 {
1175         unsigned long min_count, ret;
1176
1177         if (h->order >= MAX_ORDER)
1178                 return h->max_huge_pages;
1179
1180         /*
1181          * Increase the pool size
1182          * First take pages out of surplus state.  Then make up the
1183          * remaining difference by allocating fresh huge pages.
1184          *
1185          * We might race with alloc_buddy_huge_page() here and be unable
1186          * to convert a surplus huge page to a normal huge page. That is
1187          * not critical, though, it just means the overall size of the
1188          * pool might be one hugepage larger than it needs to be, but
1189          * within all the constraints specified by the sysctls.
1190          */
1191         spin_lock(&hugetlb_lock);
1192         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1193                 if (!adjust_pool_surplus(h, -1))
1194                         break;
1195         }
1196
1197         while (count > persistent_huge_pages(h)) {
1198                 /*
1199                  * If this allocation races such that we no longer need the
1200                  * page, free_huge_page will handle it by freeing the page
1201                  * and reducing the surplus.
1202                  */
1203                 spin_unlock(&hugetlb_lock);
1204                 ret = alloc_fresh_huge_page(h);
1205                 spin_lock(&hugetlb_lock);
1206                 if (!ret)
1207                         goto out;
1208
1209         }
1210
1211         /*
1212          * Decrease the pool size
1213          * First return free pages to the buddy allocator (being careful
1214          * to keep enough around to satisfy reservations).  Then place
1215          * pages into surplus state as needed so the pool will shrink
1216          * to the desired size as pages become free.
1217          *
1218          * By placing pages into the surplus state independent of the
1219          * overcommit value, we are allowing the surplus pool size to
1220          * exceed overcommit. There are few sane options here. Since
1221          * alloc_buddy_huge_page() is checking the global counter,
1222          * though, we'll note that we're not allowed to exceed surplus
1223          * and won't grow the pool anywhere else. Not until one of the
1224          * sysctls are changed, or the surplus pages go out of use.
1225          */
1226         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1227         min_count = max(count, min_count);
1228         try_to_free_low(h, min_count);
1229         while (min_count < persistent_huge_pages(h)) {
1230                 struct page *page = dequeue_huge_page(h);
1231                 if (!page)
1232                         break;
1233                 update_and_free_page(h, page);
1234         }
1235         while (count < persistent_huge_pages(h)) {
1236                 if (!adjust_pool_surplus(h, 1))
1237                         break;
1238         }
1239 out:
1240         ret = persistent_huge_pages(h);
1241         spin_unlock(&hugetlb_lock);
1242         return ret;
1243 }
1244
1245 #define HSTATE_ATTR_RO(_name) \
1246         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1247
1248 #define HSTATE_ATTR(_name) \
1249         static struct kobj_attribute _name##_attr = \
1250                 __ATTR(_name, 0644, _name##_show, _name##_store)
1251
1252 static struct kobject *hugepages_kobj;
1253 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1254
1255 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1256 {
1257         int i;
1258         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1259                 if (hstate_kobjs[i] == kobj)
1260                         return &hstates[i];
1261         BUG();
1262         return NULL;
1263 }
1264
1265 static ssize_t nr_hugepages_show(struct kobject *kobj,
1266                                         struct kobj_attribute *attr, char *buf)
1267 {
1268         struct hstate *h = kobj_to_hstate(kobj);
1269         return sprintf(buf, "%lu\n", h->nr_huge_pages);
1270 }
1271 static ssize_t nr_hugepages_store(struct kobject *kobj,
1272                 struct kobj_attribute *attr, const char *buf, size_t count)
1273 {
1274         int err;
1275         unsigned long input;
1276         struct hstate *h = kobj_to_hstate(kobj);
1277
1278         err = strict_strtoul(buf, 10, &input);
1279         if (err)
1280                 return 0;
1281
1282         h->max_huge_pages = set_max_huge_pages(h, input);
1283
1284         return count;
1285 }
1286 HSTATE_ATTR(nr_hugepages);
1287
1288 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1289                                         struct kobj_attribute *attr, char *buf)
1290 {
1291         struct hstate *h = kobj_to_hstate(kobj);
1292         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1293 }
1294 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1295                 struct kobj_attribute *attr, const char *buf, size_t count)
1296 {
1297         int err;
1298         unsigned long input;
1299         struct hstate *h = kobj_to_hstate(kobj);
1300
1301         err = strict_strtoul(buf, 10, &input);
1302         if (err)
1303                 return 0;
1304
1305         spin_lock(&hugetlb_lock);
1306         h->nr_overcommit_huge_pages = input;
1307         spin_unlock(&hugetlb_lock);
1308
1309         return count;
1310 }
1311 HSTATE_ATTR(nr_overcommit_hugepages);
1312
1313 static ssize_t free_hugepages_show(struct kobject *kobj,
1314                                         struct kobj_attribute *attr, char *buf)
1315 {
1316         struct hstate *h = kobj_to_hstate(kobj);
1317         return sprintf(buf, "%lu\n", h->free_huge_pages);
1318 }
1319 HSTATE_ATTR_RO(free_hugepages);
1320
1321 static ssize_t resv_hugepages_show(struct kobject *kobj,
1322                                         struct kobj_attribute *attr, char *buf)
1323 {
1324         struct hstate *h = kobj_to_hstate(kobj);
1325         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1326 }
1327 HSTATE_ATTR_RO(resv_hugepages);
1328
1329 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1330                                         struct kobj_attribute *attr, char *buf)
1331 {
1332         struct hstate *h = kobj_to_hstate(kobj);
1333         return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1334 }
1335 HSTATE_ATTR_RO(surplus_hugepages);
1336
1337 static struct attribute *hstate_attrs[] = {
1338         &nr_hugepages_attr.attr,
1339         &nr_overcommit_hugepages_attr.attr,
1340         &free_hugepages_attr.attr,
1341         &resv_hugepages_attr.attr,
1342         &surplus_hugepages_attr.attr,
1343         NULL,
1344 };
1345
1346 static struct attribute_group hstate_attr_group = {
1347         .attrs = hstate_attrs,
1348 };
1349
1350 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1351 {
1352         int retval;
1353
1354         hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1355                                                         hugepages_kobj);
1356         if (!hstate_kobjs[h - hstates])
1357                 return -ENOMEM;
1358
1359         retval = sysfs_create_group(hstate_kobjs[h - hstates],
1360                                                         &hstate_attr_group);
1361         if (retval)
1362                 kobject_put(hstate_kobjs[h - hstates]);
1363
1364         return retval;
1365 }
1366
1367 static void __init hugetlb_sysfs_init(void)
1368 {
1369         struct hstate *h;
1370         int err;
1371
1372         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1373         if (!hugepages_kobj)
1374                 return;
1375
1376         for_each_hstate(h) {
1377                 err = hugetlb_sysfs_add_hstate(h);
1378                 if (err)
1379                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1380                                                                 h->name);
1381         }
1382 }
1383
1384 static void __exit hugetlb_exit(void)
1385 {
1386         struct hstate *h;
1387
1388         for_each_hstate(h) {
1389                 kobject_put(hstate_kobjs[h - hstates]);
1390         }
1391
1392         kobject_put(hugepages_kobj);
1393 }
1394 module_exit(hugetlb_exit);
1395
1396 static int __init hugetlb_init(void)
1397 {
1398         /* Some platform decide whether they support huge pages at boot
1399          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1400          * there is no such support
1401          */
1402         if (HPAGE_SHIFT == 0)
1403                 return 0;
1404
1405         if (!size_to_hstate(default_hstate_size)) {
1406                 default_hstate_size = HPAGE_SIZE;
1407                 if (!size_to_hstate(default_hstate_size))
1408                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1409         }
1410         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1411         if (default_hstate_max_huge_pages)
1412                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1413
1414         hugetlb_init_hstates();
1415
1416         gather_bootmem_prealloc();
1417
1418         report_hugepages();
1419
1420         hugetlb_sysfs_init();
1421
1422         return 0;
1423 }
1424 module_init(hugetlb_init);
1425
1426 /* Should be called on processing a hugepagesz=... option */
1427 void __init hugetlb_add_hstate(unsigned order)
1428 {
1429         struct hstate *h;
1430         unsigned long i;
1431
1432         if (size_to_hstate(PAGE_SIZE << order)) {
1433                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1434                 return;
1435         }
1436         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1437         BUG_ON(order == 0);
1438         h = &hstates[max_hstate++];
1439         h->order = order;
1440         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1441         h->nr_huge_pages = 0;
1442         h->free_huge_pages = 0;
1443         for (i = 0; i < MAX_NUMNODES; ++i)
1444                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1445         h->hugetlb_next_nid = first_node(node_online_map);
1446         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1447                                         huge_page_size(h)/1024);
1448
1449         parsed_hstate = h;
1450 }
1451
1452 static int __init hugetlb_nrpages_setup(char *s)
1453 {
1454         unsigned long *mhp;
1455         static unsigned long *last_mhp;
1456
1457         /*
1458          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1459          * so this hugepages= parameter goes to the "default hstate".
1460          */
1461         if (!max_hstate)
1462                 mhp = &default_hstate_max_huge_pages;
1463         else
1464                 mhp = &parsed_hstate->max_huge_pages;
1465
1466         if (mhp == last_mhp) {
1467                 printk(KERN_WARNING "hugepages= specified twice without "
1468                         "interleaving hugepagesz=, ignoring\n");
1469                 return 1;
1470         }
1471
1472         if (sscanf(s, "%lu", mhp) <= 0)
1473                 *mhp = 0;
1474
1475         /*
1476          * Global state is always initialized later in hugetlb_init.
1477          * But we need to allocate >= MAX_ORDER hstates here early to still
1478          * use the bootmem allocator.
1479          */
1480         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1481                 hugetlb_hstate_alloc_pages(parsed_hstate);
1482
1483         last_mhp = mhp;
1484
1485         return 1;
1486 }
1487 __setup("hugepages=", hugetlb_nrpages_setup);
1488
1489 static int __init hugetlb_default_setup(char *s)
1490 {
1491         default_hstate_size = memparse(s, &s);
1492         return 1;
1493 }
1494 __setup("default_hugepagesz=", hugetlb_default_setup);
1495
1496 static unsigned int cpuset_mems_nr(unsigned int *array)
1497 {
1498         int node;
1499         unsigned int nr = 0;
1500
1501         for_each_node_mask(node, cpuset_current_mems_allowed)
1502                 nr += array[node];
1503
1504         return nr;
1505 }
1506
1507 #ifdef CONFIG_SYSCTL
1508 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1509                            struct file *file, void __user *buffer,
1510                            size_t *length, loff_t *ppos)
1511 {
1512         struct hstate *h = &default_hstate;
1513         unsigned long tmp;
1514
1515         if (!write)
1516                 tmp = h->max_huge_pages;
1517
1518         table->data = &tmp;
1519         table->maxlen = sizeof(unsigned long);
1520         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1521
1522         if (write)
1523                 h->max_huge_pages = set_max_huge_pages(h, tmp);
1524
1525         return 0;
1526 }
1527
1528 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1529                         struct file *file, void __user *buffer,
1530                         size_t *length, loff_t *ppos)
1531 {
1532         proc_dointvec(table, write, file, buffer, length, ppos);
1533         if (hugepages_treat_as_movable)
1534                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1535         else
1536                 htlb_alloc_mask = GFP_HIGHUSER;
1537         return 0;
1538 }
1539
1540 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1541                         struct file *file, void __user *buffer,
1542                         size_t *length, loff_t *ppos)
1543 {
1544         struct hstate *h = &default_hstate;
1545         unsigned long tmp;
1546
1547         if (!write)
1548                 tmp = h->nr_overcommit_huge_pages;
1549
1550         table->data = &tmp;
1551         table->maxlen = sizeof(unsigned long);
1552         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1553
1554         if (write) {
1555                 spin_lock(&hugetlb_lock);
1556                 h->nr_overcommit_huge_pages = tmp;
1557                 spin_unlock(&hugetlb_lock);
1558         }
1559
1560         return 0;
1561 }
1562
1563 #endif /* CONFIG_SYSCTL */
1564
1565 void hugetlb_report_meminfo(struct seq_file *m)
1566 {
1567         struct hstate *h = &default_hstate;
1568         seq_printf(m,
1569                         "HugePages_Total:   %5lu\n"
1570                         "HugePages_Free:    %5lu\n"
1571                         "HugePages_Rsvd:    %5lu\n"
1572                         "HugePages_Surp:    %5lu\n"
1573                         "Hugepagesize:   %8lu kB\n",
1574                         h->nr_huge_pages,
1575                         h->free_huge_pages,
1576                         h->resv_huge_pages,
1577                         h->surplus_huge_pages,
1578                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1579 }
1580
1581 int hugetlb_report_node_meminfo(int nid, char *buf)
1582 {
1583         struct hstate *h = &default_hstate;
1584         return sprintf(buf,
1585                 "Node %d HugePages_Total: %5u\n"
1586                 "Node %d HugePages_Free:  %5u\n"
1587                 "Node %d HugePages_Surp:  %5u\n",
1588                 nid, h->nr_huge_pages_node[nid],
1589                 nid, h->free_huge_pages_node[nid],
1590                 nid, h->surplus_huge_pages_node[nid]);
1591 }
1592
1593 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1594 unsigned long hugetlb_total_pages(void)
1595 {
1596         struct hstate *h = &default_hstate;
1597         return h->nr_huge_pages * pages_per_huge_page(h);
1598 }
1599
1600 static int hugetlb_acct_memory(struct hstate *h, long delta)
1601 {
1602         int ret = -ENOMEM;
1603
1604         spin_lock(&hugetlb_lock);
1605         /*
1606          * When cpuset is configured, it breaks the strict hugetlb page
1607          * reservation as the accounting is done on a global variable. Such
1608          * reservation is completely rubbish in the presence of cpuset because
1609          * the reservation is not checked against page availability for the
1610          * current cpuset. Application can still potentially OOM'ed by kernel
1611          * with lack of free htlb page in cpuset that the task is in.
1612          * Attempt to enforce strict accounting with cpuset is almost
1613          * impossible (or too ugly) because cpuset is too fluid that
1614          * task or memory node can be dynamically moved between cpusets.
1615          *
1616          * The change of semantics for shared hugetlb mapping with cpuset is
1617          * undesirable. However, in order to preserve some of the semantics,
1618          * we fall back to check against current free page availability as
1619          * a best attempt and hopefully to minimize the impact of changing
1620          * semantics that cpuset has.
1621          */
1622         if (delta > 0) {
1623                 if (gather_surplus_pages(h, delta) < 0)
1624                         goto out;
1625
1626                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1627                         return_unused_surplus_pages(h, delta);
1628                         goto out;
1629                 }
1630         }
1631
1632         ret = 0;
1633         if (delta < 0)
1634                 return_unused_surplus_pages(h, (unsigned long) -delta);
1635
1636 out:
1637         spin_unlock(&hugetlb_lock);
1638         return ret;
1639 }
1640
1641 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1642 {
1643         struct resv_map *reservations = vma_resv_map(vma);
1644
1645         /*
1646          * This new VMA should share its siblings reservation map if present.
1647          * The VMA will only ever have a valid reservation map pointer where
1648          * it is being copied for another still existing VMA.  As that VMA
1649          * has a reference to the reservation map it cannot dissappear until
1650          * after this open call completes.  It is therefore safe to take a
1651          * new reference here without additional locking.
1652          */
1653         if (reservations)
1654                 kref_get(&reservations->refs);
1655 }
1656
1657 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1658 {
1659         struct hstate *h = hstate_vma(vma);
1660         struct resv_map *reservations = vma_resv_map(vma);
1661         unsigned long reserve;
1662         unsigned long start;
1663         unsigned long end;
1664
1665         if (reservations) {
1666                 start = vma_hugecache_offset(h, vma, vma->vm_start);
1667                 end = vma_hugecache_offset(h, vma, vma->vm_end);
1668
1669                 reserve = (end - start) -
1670                         region_count(&reservations->regions, start, end);
1671
1672                 kref_put(&reservations->refs, resv_map_release);
1673
1674                 if (reserve) {
1675                         hugetlb_acct_memory(h, -reserve);
1676                         hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1677                 }
1678         }
1679 }
1680
1681 /*
1682  * We cannot handle pagefaults against hugetlb pages at all.  They cause
1683  * handle_mm_fault() to try to instantiate regular-sized pages in the
1684  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1685  * this far.
1686  */
1687 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1688 {
1689         BUG();
1690         return 0;
1691 }
1692
1693 struct vm_operations_struct hugetlb_vm_ops = {
1694         .fault = hugetlb_vm_op_fault,
1695         .open = hugetlb_vm_op_open,
1696         .close = hugetlb_vm_op_close,
1697 };
1698
1699 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1700                                 int writable)
1701 {
1702         pte_t entry;
1703
1704         if (writable) {
1705                 entry =
1706                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1707         } else {
1708                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1709         }
1710         entry = pte_mkyoung(entry);
1711         entry = pte_mkhuge(entry);
1712
1713         return entry;
1714 }
1715
1716 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1717                                    unsigned long address, pte_t *ptep)
1718 {
1719         pte_t entry;
1720
1721         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1722         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1723                 update_mmu_cache(vma, address, entry);
1724         }
1725 }
1726
1727
1728 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1729                             struct vm_area_struct *vma)
1730 {
1731         pte_t *src_pte, *dst_pte, entry;
1732         struct page *ptepage;
1733         unsigned long addr;
1734         int cow;
1735         struct hstate *h = hstate_vma(vma);
1736         unsigned long sz = huge_page_size(h);
1737
1738         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1739
1740         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1741                 src_pte = huge_pte_offset(src, addr);
1742                 if (!src_pte)
1743                         continue;
1744                 dst_pte = huge_pte_alloc(dst, addr, sz);
1745                 if (!dst_pte)
1746                         goto nomem;
1747
1748                 /* If the pagetables are shared don't copy or take references */
1749                 if (dst_pte == src_pte)
1750                         continue;
1751
1752                 spin_lock(&dst->page_table_lock);
1753                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1754                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1755                         if (cow)
1756                                 huge_ptep_set_wrprotect(src, addr, src_pte);
1757                         entry = huge_ptep_get(src_pte);
1758                         ptepage = pte_page(entry);
1759                         get_page(ptepage);
1760                         set_huge_pte_at(dst, addr, dst_pte, entry);
1761                 }
1762                 spin_unlock(&src->page_table_lock);
1763                 spin_unlock(&dst->page_table_lock);
1764         }
1765         return 0;
1766
1767 nomem:
1768         return -ENOMEM;
1769 }
1770
1771 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1772                             unsigned long end, struct page *ref_page)
1773 {
1774         struct mm_struct *mm = vma->vm_mm;
1775         unsigned long address;
1776         pte_t *ptep;
1777         pte_t pte;
1778         struct page *page;
1779         struct page *tmp;
1780         struct hstate *h = hstate_vma(vma);
1781         unsigned long sz = huge_page_size(h);
1782
1783         /*
1784          * A page gathering list, protected by per file i_mmap_lock. The
1785          * lock is used to avoid list corruption from multiple unmapping
1786          * of the same page since we are using page->lru.
1787          */
1788         LIST_HEAD(page_list);
1789
1790         WARN_ON(!is_vm_hugetlb_page(vma));
1791         BUG_ON(start & ~huge_page_mask(h));
1792         BUG_ON(end & ~huge_page_mask(h));
1793
1794         mmu_notifier_invalidate_range_start(mm, start, end);
1795         spin_lock(&mm->page_table_lock);
1796         for (address = start; address < end; address += sz) {
1797                 ptep = huge_pte_offset(mm, address);
1798                 if (!ptep)
1799                         continue;
1800
1801                 if (huge_pmd_unshare(mm, &address, ptep))
1802                         continue;
1803
1804                 /*
1805                  * If a reference page is supplied, it is because a specific
1806                  * page is being unmapped, not a range. Ensure the page we
1807                  * are about to unmap is the actual page of interest.
1808                  */
1809                 if (ref_page) {
1810                         pte = huge_ptep_get(ptep);
1811                         if (huge_pte_none(pte))
1812                                 continue;
1813                         page = pte_page(pte);
1814                         if (page != ref_page)
1815                                 continue;
1816
1817                         /*
1818                          * Mark the VMA as having unmapped its page so that
1819                          * future faults in this VMA will fail rather than
1820                          * looking like data was lost
1821                          */
1822                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1823                 }
1824
1825                 pte = huge_ptep_get_and_clear(mm, address, ptep);
1826                 if (huge_pte_none(pte))
1827                         continue;
1828
1829                 page = pte_page(pte);
1830                 if (pte_dirty(pte))
1831                         set_page_dirty(page);
1832                 list_add(&page->lru, &page_list);
1833         }
1834         spin_unlock(&mm->page_table_lock);
1835         flush_tlb_range(vma, start, end);
1836         mmu_notifier_invalidate_range_end(mm, start, end);
1837         list_for_each_entry_safe(page, tmp, &page_list, lru) {
1838                 list_del(&page->lru);
1839                 put_page(page);
1840         }
1841 }
1842
1843 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1844                           unsigned long end, struct page *ref_page)
1845 {
1846         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1847         __unmap_hugepage_range(vma, start, end, ref_page);
1848         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1849 }
1850
1851 /*
1852  * This is called when the original mapper is failing to COW a MAP_PRIVATE
1853  * mappping it owns the reserve page for. The intention is to unmap the page
1854  * from other VMAs and let the children be SIGKILLed if they are faulting the
1855  * same region.
1856  */
1857 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1858                                 struct page *page, unsigned long address)
1859 {
1860         struct hstate *h = hstate_vma(vma);
1861         struct vm_area_struct *iter_vma;
1862         struct address_space *mapping;
1863         struct prio_tree_iter iter;
1864         pgoff_t pgoff;
1865
1866         /*
1867          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1868          * from page cache lookup which is in HPAGE_SIZE units.
1869          */
1870         address = address & huge_page_mask(h);
1871         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1872                 + (vma->vm_pgoff >> PAGE_SHIFT);
1873         mapping = (struct address_space *)page_private(page);
1874
1875         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1876                 /* Do not unmap the current VMA */
1877                 if (iter_vma == vma)
1878                         continue;
1879
1880                 /*
1881                  * Unmap the page from other VMAs without their own reserves.
1882                  * They get marked to be SIGKILLed if they fault in these
1883                  * areas. This is because a future no-page fault on this VMA
1884                  * could insert a zeroed page instead of the data existing
1885                  * from the time of fork. This would look like data corruption
1886                  */
1887                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1888                         unmap_hugepage_range(iter_vma,
1889                                 address, address + huge_page_size(h),
1890                                 page);
1891         }
1892
1893         return 1;
1894 }
1895
1896 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1897                         unsigned long address, pte_t *ptep, pte_t pte,
1898                         struct page *pagecache_page)
1899 {
1900         struct hstate *h = hstate_vma(vma);
1901         struct page *old_page, *new_page;
1902         int avoidcopy;
1903         int outside_reserve = 0;
1904
1905         old_page = pte_page(pte);
1906
1907 retry_avoidcopy:
1908         /* If no-one else is actually using this page, avoid the copy
1909          * and just make the page writable */
1910         avoidcopy = (page_count(old_page) == 1);
1911         if (avoidcopy) {
1912                 set_huge_ptep_writable(vma, address, ptep);
1913                 return 0;
1914         }
1915
1916         /*
1917          * If the process that created a MAP_PRIVATE mapping is about to
1918          * perform a COW due to a shared page count, attempt to satisfy
1919          * the allocation without using the existing reserves. The pagecache
1920          * page is used to determine if the reserve at this address was
1921          * consumed or not. If reserves were used, a partial faulted mapping
1922          * at the time of fork() could consume its reserves on COW instead
1923          * of the full address range.
1924          */
1925         if (!(vma->vm_flags & VM_MAYSHARE) &&
1926                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1927                         old_page != pagecache_page)
1928                 outside_reserve = 1;
1929
1930         page_cache_get(old_page);
1931         new_page = alloc_huge_page(vma, address, outside_reserve);
1932
1933         if (IS_ERR(new_page)) {
1934                 page_cache_release(old_page);
1935
1936                 /*
1937                  * If a process owning a MAP_PRIVATE mapping fails to COW,
1938                  * it is due to references held by a child and an insufficient
1939                  * huge page pool. To guarantee the original mappers
1940                  * reliability, unmap the page from child processes. The child
1941                  * may get SIGKILLed if it later faults.
1942                  */
1943                 if (outside_reserve) {
1944                         BUG_ON(huge_pte_none(pte));
1945                         if (unmap_ref_private(mm, vma, old_page, address)) {
1946                                 BUG_ON(page_count(old_page) != 1);
1947                                 BUG_ON(huge_pte_none(pte));
1948                                 goto retry_avoidcopy;
1949                         }
1950                         WARN_ON_ONCE(1);
1951                 }
1952
1953                 return -PTR_ERR(new_page);
1954         }
1955
1956         spin_unlock(&mm->page_table_lock);
1957         copy_huge_page(new_page, old_page, address, vma);
1958         __SetPageUptodate(new_page);
1959         spin_lock(&mm->page_table_lock);
1960
1961         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1962         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1963                 /* Break COW */
1964                 huge_ptep_clear_flush(vma, address, ptep);
1965                 set_huge_pte_at(mm, address, ptep,
1966                                 make_huge_pte(vma, new_page, 1));
1967                 /* Make the old page be freed below */
1968                 new_page = old_page;
1969         }
1970         page_cache_release(new_page);
1971         page_cache_release(old_page);
1972         return 0;
1973 }
1974
1975 /* Return the pagecache page at a given address within a VMA */
1976 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
1977                         struct vm_area_struct *vma, unsigned long address)
1978 {
1979         struct address_space *mapping;
1980         pgoff_t idx;
1981
1982         mapping = vma->vm_file->f_mapping;
1983         idx = vma_hugecache_offset(h, vma, address);
1984
1985         return find_lock_page(mapping, idx);
1986 }
1987
1988 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1989                         unsigned long address, pte_t *ptep, unsigned int flags)
1990 {
1991         struct hstate *h = hstate_vma(vma);
1992         int ret = VM_FAULT_SIGBUS;
1993         pgoff_t idx;
1994         unsigned long size;
1995         struct page *page;
1996         struct address_space *mapping;
1997         pte_t new_pte;
1998
1999         /*
2000          * Currently, we are forced to kill the process in the event the
2001          * original mapper has unmapped pages from the child due to a failed
2002          * COW. Warn that such a situation has occured as it may not be obvious
2003          */
2004         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2005                 printk(KERN_WARNING
2006                         "PID %d killed due to inadequate hugepage pool\n",
2007                         current->pid);
2008                 return ret;
2009         }
2010
2011         mapping = vma->vm_file->f_mapping;
2012         idx = vma_hugecache_offset(h, vma, address);
2013
2014         /*
2015          * Use page lock to guard against racing truncation
2016          * before we get page_table_lock.
2017          */
2018 retry:
2019         page = find_lock_page(mapping, idx);
2020         if (!page) {
2021                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2022                 if (idx >= size)
2023                         goto out;
2024                 page = alloc_huge_page(vma, address, 0);
2025                 if (IS_ERR(page)) {
2026                         ret = -PTR_ERR(page);
2027                         goto out;
2028                 }
2029                 clear_huge_page(page, address, huge_page_size(h));
2030                 __SetPageUptodate(page);
2031
2032                 if (vma->vm_flags & VM_MAYSHARE) {
2033                         int err;
2034                         struct inode *inode = mapping->host;
2035
2036                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2037                         if (err) {
2038                                 put_page(page);
2039                                 if (err == -EEXIST)
2040                                         goto retry;
2041                                 goto out;
2042                         }
2043
2044                         spin_lock(&inode->i_lock);
2045                         inode->i_blocks += blocks_per_huge_page(h);
2046                         spin_unlock(&inode->i_lock);
2047                 } else
2048                         lock_page(page);
2049         }
2050
2051         /*
2052          * If we are going to COW a private mapping later, we examine the
2053          * pending reservations for this page now. This will ensure that
2054          * any allocations necessary to record that reservation occur outside
2055          * the spinlock.
2056          */
2057         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2058                 if (vma_needs_reservation(h, vma, address) < 0) {
2059                         ret = VM_FAULT_OOM;
2060                         goto backout_unlocked;
2061                 }
2062
2063         spin_lock(&mm->page_table_lock);
2064         size = i_size_read(mapping->host) >> huge_page_shift(h);
2065         if (idx >= size)
2066                 goto backout;
2067
2068         ret = 0;
2069         if (!huge_pte_none(huge_ptep_get(ptep)))
2070                 goto backout;
2071
2072         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2073                                 && (vma->vm_flags & VM_SHARED)));
2074         set_huge_pte_at(mm, address, ptep, new_pte);
2075
2076         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2077                 /* Optimization, do the COW without a second fault */
2078                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2079         }
2080
2081         spin_unlock(&mm->page_table_lock);
2082         unlock_page(page);
2083 out:
2084         return ret;
2085
2086 backout:
2087         spin_unlock(&mm->page_table_lock);
2088 backout_unlocked:
2089         unlock_page(page);
2090         put_page(page);
2091         goto out;
2092 }
2093
2094 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2095                         unsigned long address, unsigned int flags)
2096 {
2097         pte_t *ptep;
2098         pte_t entry;
2099         int ret;
2100         struct page *pagecache_page = NULL;
2101         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2102         struct hstate *h = hstate_vma(vma);
2103
2104         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2105         if (!ptep)
2106                 return VM_FAULT_OOM;
2107
2108         /*
2109          * Serialize hugepage allocation and instantiation, so that we don't
2110          * get spurious allocation failures if two CPUs race to instantiate
2111          * the same page in the page cache.
2112          */
2113         mutex_lock(&hugetlb_instantiation_mutex);
2114         entry = huge_ptep_get(ptep);
2115         if (huge_pte_none(entry)) {
2116                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2117                 goto out_mutex;
2118         }
2119
2120         ret = 0;
2121
2122         /*
2123          * If we are going to COW the mapping later, we examine the pending
2124          * reservations for this page now. This will ensure that any
2125          * allocations necessary to record that reservation occur outside the
2126          * spinlock. For private mappings, we also lookup the pagecache
2127          * page now as it is used to determine if a reservation has been
2128          * consumed.
2129          */
2130         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2131                 if (vma_needs_reservation(h, vma, address) < 0) {
2132                         ret = VM_FAULT_OOM;
2133                         goto out_mutex;
2134                 }
2135
2136                 if (!(vma->vm_flags & VM_MAYSHARE))
2137                         pagecache_page = hugetlbfs_pagecache_page(h,
2138                                                                 vma, address);
2139         }
2140
2141         spin_lock(&mm->page_table_lock);
2142         /* Check for a racing update before calling hugetlb_cow */
2143         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2144                 goto out_page_table_lock;
2145
2146
2147         if (flags & FAULT_FLAG_WRITE) {
2148                 if (!pte_write(entry)) {
2149                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2150                                                         pagecache_page);
2151                         goto out_page_table_lock;
2152                 }
2153                 entry = pte_mkdirty(entry);
2154         }
2155         entry = pte_mkyoung(entry);
2156         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2157                                                 flags & FAULT_FLAG_WRITE))
2158                 update_mmu_cache(vma, address, entry);
2159
2160 out_page_table_lock:
2161         spin_unlock(&mm->page_table_lock);
2162
2163         if (pagecache_page) {
2164                 unlock_page(pagecache_page);
2165                 put_page(pagecache_page);
2166         }
2167
2168 out_mutex:
2169         mutex_unlock(&hugetlb_instantiation_mutex);
2170
2171         return ret;
2172 }
2173
2174 /* Can be overriden by architectures */
2175 __attribute__((weak)) struct page *
2176 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2177                pud_t *pud, int write)
2178 {
2179         BUG();
2180         return NULL;
2181 }
2182
2183 static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
2184 {
2185         if (!ptep || write || shared)
2186                 return 0;
2187         else
2188                 return huge_pte_none(huge_ptep_get(ptep));
2189 }
2190
2191 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2192                         struct page **pages, struct vm_area_struct **vmas,
2193                         unsigned long *position, int *length, int i,
2194                         int write)
2195 {
2196         unsigned long pfn_offset;
2197         unsigned long vaddr = *position;
2198         int remainder = *length;
2199         struct hstate *h = hstate_vma(vma);
2200         int zeropage_ok = 0;
2201         int shared = vma->vm_flags & VM_SHARED;
2202
2203         spin_lock(&mm->page_table_lock);
2204         while (vaddr < vma->vm_end && remainder) {
2205                 pte_t *pte;
2206                 struct page *page;
2207
2208                 /*
2209                  * Some archs (sparc64, sh*) have multiple pte_ts to
2210                  * each hugepage.  We have to make * sure we get the
2211                  * first, for the page indexing below to work.
2212                  */
2213                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2214                 if (huge_zeropage_ok(pte, write, shared))
2215                         zeropage_ok = 1;
2216
2217                 if (!pte ||
2218                     (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2219                     (write && !pte_write(huge_ptep_get(pte)))) {
2220                         int ret;
2221
2222                         spin_unlock(&mm->page_table_lock);
2223                         ret = hugetlb_fault(mm, vma, vaddr, write);
2224                         spin_lock(&mm->page_table_lock);
2225                         if (!(ret & VM_FAULT_ERROR))
2226                                 continue;
2227
2228                         remainder = 0;
2229                         if (!i)
2230                                 i = -EFAULT;
2231                         break;
2232                 }
2233
2234                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2235                 page = pte_page(huge_ptep_get(pte));
2236 same_page:
2237                 if (pages) {
2238                         if (zeropage_ok)
2239                                 pages[i] = ZERO_PAGE(0);
2240                         else
2241                                 pages[i] = mem_map_offset(page, pfn_offset);
2242                         get_page(pages[i]);
2243                 }
2244
2245                 if (vmas)
2246                         vmas[i] = vma;
2247
2248                 vaddr += PAGE_SIZE;
2249                 ++pfn_offset;
2250                 --remainder;
2251                 ++i;
2252                 if (vaddr < vma->vm_end && remainder &&
2253                                 pfn_offset < pages_per_huge_page(h)) {
2254                         /*
2255                          * We use pfn_offset to avoid touching the pageframes
2256                          * of this compound page.
2257                          */
2258                         goto same_page;
2259                 }
2260         }
2261         spin_unlock(&mm->page_table_lock);
2262         *length = remainder;
2263         *position = vaddr;
2264
2265         return i;
2266 }
2267
2268 void hugetlb_change_protection(struct vm_area_struct *vma,
2269                 unsigned long address, unsigned long end, pgprot_t newprot)
2270 {
2271         struct mm_struct *mm = vma->vm_mm;
2272         unsigned long start = address;
2273         pte_t *ptep;
2274         pte_t pte;
2275         struct hstate *h = hstate_vma(vma);
2276
2277         BUG_ON(address >= end);
2278         flush_cache_range(vma, address, end);
2279
2280         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2281         spin_lock(&mm->page_table_lock);
2282         for (; address < end; address += huge_page_size(h)) {
2283                 ptep = huge_pte_offset(mm, address);
2284                 if (!ptep)
2285                         continue;
2286                 if (huge_pmd_unshare(mm, &address, ptep))
2287                         continue;
2288                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2289                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2290                         pte = pte_mkhuge(pte_modify(pte, newprot));
2291                         set_huge_pte_at(mm, address, ptep, pte);
2292                 }
2293         }
2294         spin_unlock(&mm->page_table_lock);
2295         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2296
2297         flush_tlb_range(vma, start, end);
2298 }
2299
2300 int hugetlb_reserve_pages(struct inode *inode,
2301                                         long from, long to,
2302                                         struct vm_area_struct *vma,
2303                                         int acctflag)
2304 {
2305         long ret, chg;
2306         struct hstate *h = hstate_inode(inode);
2307
2308         /*
2309          * Only apply hugepage reservation if asked. At fault time, an
2310          * attempt will be made for VM_NORESERVE to allocate a page
2311          * and filesystem quota without using reserves
2312          */
2313         if (acctflag & VM_NORESERVE)
2314                 return 0;
2315
2316         /*
2317          * Shared mappings base their reservation on the number of pages that
2318          * are already allocated on behalf of the file. Private mappings need
2319          * to reserve the full area even if read-only as mprotect() may be
2320          * called to make the mapping read-write. Assume !vma is a shm mapping
2321          */
2322         if (!vma || vma->vm_flags & VM_MAYSHARE)
2323                 chg = region_chg(&inode->i_mapping->private_list, from, to);
2324         else {
2325                 struct resv_map *resv_map = resv_map_alloc();
2326                 if (!resv_map)
2327                         return -ENOMEM;
2328
2329                 chg = to - from;
2330
2331                 set_vma_resv_map(vma, resv_map);
2332                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2333         }
2334
2335         if (chg < 0)
2336                 return chg;
2337
2338         /* There must be enough filesystem quota for the mapping */
2339         if (hugetlb_get_quota(inode->i_mapping, chg))
2340                 return -ENOSPC;
2341
2342         /*
2343          * Check enough hugepages are available for the reservation.
2344          * Hand back the quota if there are not
2345          */
2346         ret = hugetlb_acct_memory(h, chg);
2347         if (ret < 0) {
2348                 hugetlb_put_quota(inode->i_mapping, chg);
2349                 return ret;
2350         }
2351
2352         /*
2353          * Account for the reservations made. Shared mappings record regions
2354          * that have reservations as they are shared by multiple VMAs.
2355          * When the last VMA disappears, the region map says how much
2356          * the reservation was and the page cache tells how much of
2357          * the reservation was consumed. Private mappings are per-VMA and
2358          * only the consumed reservations are tracked. When the VMA
2359          * disappears, the original reservation is the VMA size and the
2360          * consumed reservations are stored in the map. Hence, nothing
2361          * else has to be done for private mappings here
2362          */
2363         if (!vma || vma->vm_flags & VM_MAYSHARE)
2364                 region_add(&inode->i_mapping->private_list, from, to);
2365         return 0;
2366 }
2367
2368 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2369 {
2370         struct hstate *h = hstate_inode(inode);
2371         long chg = region_truncate(&inode->i_mapping->private_list, offset);
2372
2373         spin_lock(&inode->i_lock);
2374         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2375         spin_unlock(&inode->i_lock);
2376
2377         hugetlb_put_quota(inode->i_mapping, (chg - freed));
2378         hugetlb_acct_memory(h, -(chg - freed));
2379 }