md/raid1: avoid reading from known bad blocks.
[linux-flexiantxendom0.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
59
60 #ifndef MODULE
61 static void autostart_arrays(int part);
62 #endif
63
64 static LIST_HEAD(pers_list);
65 static DEFINE_SPINLOCK(pers_lock);
66
67 static void md_print_devices(void);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72
73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
74
75 /*
76  * Default number of read corrections we'll attempt on an rdev
77  * before ejecting it from the array. We divide the read error
78  * count by 2 for every hour elapsed between read errors.
79  */
80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
81 /*
82  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83  * is 1000 KB/sec, so the extra system load does not show up that much.
84  * Increase it if you want to have more _guaranteed_ speed. Note that
85  * the RAID driver will use the maximum available bandwidth if the IO
86  * subsystem is idle. There is also an 'absolute maximum' reconstruction
87  * speed limit - in case reconstruction slows down your system despite
88  * idle IO detection.
89  *
90  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91  * or /sys/block/mdX/md/sync_speed_{min,max}
92  */
93
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
97 {
98         return mddev->sync_speed_min ?
99                 mddev->sync_speed_min : sysctl_speed_limit_min;
100 }
101
102 static inline int speed_max(mddev_t *mddev)
103 {
104         return mddev->sync_speed_max ?
105                 mddev->sync_speed_max : sysctl_speed_limit_max;
106 }
107
108 static struct ctl_table_header *raid_table_header;
109
110 static ctl_table raid_table[] = {
111         {
112                 .procname       = "speed_limit_min",
113                 .data           = &sysctl_speed_limit_min,
114                 .maxlen         = sizeof(int),
115                 .mode           = S_IRUGO|S_IWUSR,
116                 .proc_handler   = proc_dointvec,
117         },
118         {
119                 .procname       = "speed_limit_max",
120                 .data           = &sysctl_speed_limit_max,
121                 .maxlen         = sizeof(int),
122                 .mode           = S_IRUGO|S_IWUSR,
123                 .proc_handler   = proc_dointvec,
124         },
125         { }
126 };
127
128 static ctl_table raid_dir_table[] = {
129         {
130                 .procname       = "raid",
131                 .maxlen         = 0,
132                 .mode           = S_IRUGO|S_IXUGO,
133                 .child          = raid_table,
134         },
135         { }
136 };
137
138 static ctl_table raid_root_table[] = {
139         {
140                 .procname       = "dev",
141                 .maxlen         = 0,
142                 .mode           = 0555,
143                 .child          = raid_dir_table,
144         },
145         {  }
146 };
147
148 static const struct block_device_operations md_fops;
149
150 static int start_readonly;
151
152 /* bio_clone_mddev
153  * like bio_clone, but with a local bio set
154  */
155
156 static void mddev_bio_destructor(struct bio *bio)
157 {
158         mddev_t *mddev, **mddevp;
159
160         mddevp = (void*)bio;
161         mddev = mddevp[-1];
162
163         bio_free(bio, mddev->bio_set);
164 }
165
166 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
167                             mddev_t *mddev)
168 {
169         struct bio *b;
170         mddev_t **mddevp;
171
172         if (!mddev || !mddev->bio_set)
173                 return bio_alloc(gfp_mask, nr_iovecs);
174
175         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
176                              mddev->bio_set);
177         if (!b)
178                 return NULL;
179         mddevp = (void*)b;
180         mddevp[-1] = mddev;
181         b->bi_destructor = mddev_bio_destructor;
182         return b;
183 }
184 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
185
186 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
187                             mddev_t *mddev)
188 {
189         struct bio *b;
190         mddev_t **mddevp;
191
192         if (!mddev || !mddev->bio_set)
193                 return bio_clone(bio, gfp_mask);
194
195         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
196                              mddev->bio_set);
197         if (!b)
198                 return NULL;
199         mddevp = (void*)b;
200         mddevp[-1] = mddev;
201         b->bi_destructor = mddev_bio_destructor;
202         __bio_clone(b, bio);
203         if (bio_integrity(bio)) {
204                 int ret;
205
206                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
207
208                 if (ret < 0) {
209                         bio_put(b);
210                         return NULL;
211                 }
212         }
213
214         return b;
215 }
216 EXPORT_SYMBOL_GPL(bio_clone_mddev);
217
218 void md_trim_bio(struct bio *bio, int offset, int size)
219 {
220         /* 'bio' is a cloned bio which we need to trim to match
221          * the given offset and size.
222          * This requires adjusting bi_sector, bi_size, and bi_io_vec
223          */
224         int i;
225         struct bio_vec *bvec;
226         int sofar = 0;
227
228         size <<= 9;
229         if (offset == 0 && size == bio->bi_size)
230                 return;
231
232         bio->bi_sector += offset;
233         bio->bi_size = size;
234         offset <<= 9;
235         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
236
237         while (bio->bi_idx < bio->bi_vcnt &&
238                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
239                 /* remove this whole bio_vec */
240                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
241                 bio->bi_idx++;
242         }
243         if (bio->bi_idx < bio->bi_vcnt) {
244                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
245                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
246         }
247         /* avoid any complications with bi_idx being non-zero*/
248         if (bio->bi_idx) {
249                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
250                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
251                 bio->bi_vcnt -= bio->bi_idx;
252                 bio->bi_idx = 0;
253         }
254         /* Make sure vcnt and last bv are not too big */
255         bio_for_each_segment(bvec, bio, i) {
256                 if (sofar + bvec->bv_len > size)
257                         bvec->bv_len = size - sofar;
258                 if (bvec->bv_len == 0) {
259                         bio->bi_vcnt = i;
260                         break;
261                 }
262                 sofar += bvec->bv_len;
263         }
264 }
265 EXPORT_SYMBOL_GPL(md_trim_bio);
266
267 /*
268  * We have a system wide 'event count' that is incremented
269  * on any 'interesting' event, and readers of /proc/mdstat
270  * can use 'poll' or 'select' to find out when the event
271  * count increases.
272  *
273  * Events are:
274  *  start array, stop array, error, add device, remove device,
275  *  start build, activate spare
276  */
277 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
278 static atomic_t md_event_count;
279 void md_new_event(mddev_t *mddev)
280 {
281         atomic_inc(&md_event_count);
282         wake_up(&md_event_waiters);
283 }
284 EXPORT_SYMBOL_GPL(md_new_event);
285
286 /* Alternate version that can be called from interrupts
287  * when calling sysfs_notify isn't needed.
288  */
289 static void md_new_event_inintr(mddev_t *mddev)
290 {
291         atomic_inc(&md_event_count);
292         wake_up(&md_event_waiters);
293 }
294
295 /*
296  * Enables to iterate over all existing md arrays
297  * all_mddevs_lock protects this list.
298  */
299 static LIST_HEAD(all_mddevs);
300 static DEFINE_SPINLOCK(all_mddevs_lock);
301
302
303 /*
304  * iterates through all used mddevs in the system.
305  * We take care to grab the all_mddevs_lock whenever navigating
306  * the list, and to always hold a refcount when unlocked.
307  * Any code which breaks out of this loop while own
308  * a reference to the current mddev and must mddev_put it.
309  */
310 #define for_each_mddev(mddev,tmp)                                       \
311                                                                         \
312         for (({ spin_lock(&all_mddevs_lock);                            \
313                 tmp = all_mddevs.next;                                  \
314                 mddev = NULL;});                                        \
315              ({ if (tmp != &all_mddevs)                                 \
316                         mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
317                 spin_unlock(&all_mddevs_lock);                          \
318                 if (mddev) mddev_put(mddev);                            \
319                 mddev = list_entry(tmp, mddev_t, all_mddevs);           \
320                 tmp != &all_mddevs;});                                  \
321              ({ spin_lock(&all_mddevs_lock);                            \
322                 tmp = tmp->next;})                                      \
323                 )
324
325
326 /* Rather than calling directly into the personality make_request function,
327  * IO requests come here first so that we can check if the device is
328  * being suspended pending a reconfiguration.
329  * We hold a refcount over the call to ->make_request.  By the time that
330  * call has finished, the bio has been linked into some internal structure
331  * and so is visible to ->quiesce(), so we don't need the refcount any more.
332  */
333 static int md_make_request(struct request_queue *q, struct bio *bio)
334 {
335         const int rw = bio_data_dir(bio);
336         mddev_t *mddev = q->queuedata;
337         int rv;
338         int cpu;
339         unsigned int sectors;
340
341         if (mddev == NULL || mddev->pers == NULL
342             || !mddev->ready) {
343                 bio_io_error(bio);
344                 return 0;
345         }
346         smp_rmb(); /* Ensure implications of  'active' are visible */
347         rcu_read_lock();
348         if (mddev->suspended) {
349                 DEFINE_WAIT(__wait);
350                 for (;;) {
351                         prepare_to_wait(&mddev->sb_wait, &__wait,
352                                         TASK_UNINTERRUPTIBLE);
353                         if (!mddev->suspended)
354                                 break;
355                         rcu_read_unlock();
356                         schedule();
357                         rcu_read_lock();
358                 }
359                 finish_wait(&mddev->sb_wait, &__wait);
360         }
361         atomic_inc(&mddev->active_io);
362         rcu_read_unlock();
363
364         /*
365          * save the sectors now since our bio can
366          * go away inside make_request
367          */
368         sectors = bio_sectors(bio);
369         rv = mddev->pers->make_request(mddev, bio);
370
371         cpu = part_stat_lock();
372         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
373         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
374         part_stat_unlock();
375
376         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
377                 wake_up(&mddev->sb_wait);
378
379         return rv;
380 }
381
382 /* mddev_suspend makes sure no new requests are submitted
383  * to the device, and that any requests that have been submitted
384  * are completely handled.
385  * Once ->stop is called and completes, the module will be completely
386  * unused.
387  */
388 void mddev_suspend(mddev_t *mddev)
389 {
390         BUG_ON(mddev->suspended);
391         mddev->suspended = 1;
392         synchronize_rcu();
393         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
394         mddev->pers->quiesce(mddev, 1);
395 }
396 EXPORT_SYMBOL_GPL(mddev_suspend);
397
398 void mddev_resume(mddev_t *mddev)
399 {
400         mddev->suspended = 0;
401         wake_up(&mddev->sb_wait);
402         mddev->pers->quiesce(mddev, 0);
403
404         md_wakeup_thread(mddev->thread);
405         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
406 }
407 EXPORT_SYMBOL_GPL(mddev_resume);
408
409 int mddev_congested(mddev_t *mddev, int bits)
410 {
411         return mddev->suspended;
412 }
413 EXPORT_SYMBOL(mddev_congested);
414
415 /*
416  * Generic flush handling for md
417  */
418
419 static void md_end_flush(struct bio *bio, int err)
420 {
421         mdk_rdev_t *rdev = bio->bi_private;
422         mddev_t *mddev = rdev->mddev;
423
424         rdev_dec_pending(rdev, mddev);
425
426         if (atomic_dec_and_test(&mddev->flush_pending)) {
427                 /* The pre-request flush has finished */
428                 queue_work(md_wq, &mddev->flush_work);
429         }
430         bio_put(bio);
431 }
432
433 static void md_submit_flush_data(struct work_struct *ws);
434
435 static void submit_flushes(struct work_struct *ws)
436 {
437         mddev_t *mddev = container_of(ws, mddev_t, flush_work);
438         mdk_rdev_t *rdev;
439
440         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
441         atomic_set(&mddev->flush_pending, 1);
442         rcu_read_lock();
443         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
444                 if (rdev->raid_disk >= 0 &&
445                     !test_bit(Faulty, &rdev->flags)) {
446                         /* Take two references, one is dropped
447                          * when request finishes, one after
448                          * we reclaim rcu_read_lock
449                          */
450                         struct bio *bi;
451                         atomic_inc(&rdev->nr_pending);
452                         atomic_inc(&rdev->nr_pending);
453                         rcu_read_unlock();
454                         bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
455                         bi->bi_end_io = md_end_flush;
456                         bi->bi_private = rdev;
457                         bi->bi_bdev = rdev->bdev;
458                         atomic_inc(&mddev->flush_pending);
459                         submit_bio(WRITE_FLUSH, bi);
460                         rcu_read_lock();
461                         rdev_dec_pending(rdev, mddev);
462                 }
463         rcu_read_unlock();
464         if (atomic_dec_and_test(&mddev->flush_pending))
465                 queue_work(md_wq, &mddev->flush_work);
466 }
467
468 static void md_submit_flush_data(struct work_struct *ws)
469 {
470         mddev_t *mddev = container_of(ws, mddev_t, flush_work);
471         struct bio *bio = mddev->flush_bio;
472
473         if (bio->bi_size == 0)
474                 /* an empty barrier - all done */
475                 bio_endio(bio, 0);
476         else {
477                 bio->bi_rw &= ~REQ_FLUSH;
478                 if (mddev->pers->make_request(mddev, bio))
479                         generic_make_request(bio);
480         }
481
482         mddev->flush_bio = NULL;
483         wake_up(&mddev->sb_wait);
484 }
485
486 void md_flush_request(mddev_t *mddev, struct bio *bio)
487 {
488         spin_lock_irq(&mddev->write_lock);
489         wait_event_lock_irq(mddev->sb_wait,
490                             !mddev->flush_bio,
491                             mddev->write_lock, /*nothing*/);
492         mddev->flush_bio = bio;
493         spin_unlock_irq(&mddev->write_lock);
494
495         INIT_WORK(&mddev->flush_work, submit_flushes);
496         queue_work(md_wq, &mddev->flush_work);
497 }
498 EXPORT_SYMBOL(md_flush_request);
499
500 /* Support for plugging.
501  * This mirrors the plugging support in request_queue, but does not
502  * require having a whole queue or request structures.
503  * We allocate an md_plug_cb for each md device and each thread it gets
504  * plugged on.  This links tot the private plug_handle structure in the
505  * personality data where we keep a count of the number of outstanding
506  * plugs so other code can see if a plug is active.
507  */
508 struct md_plug_cb {
509         struct blk_plug_cb cb;
510         mddev_t *mddev;
511 };
512
513 static void plugger_unplug(struct blk_plug_cb *cb)
514 {
515         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
516         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
517                 md_wakeup_thread(mdcb->mddev->thread);
518         kfree(mdcb);
519 }
520
521 /* Check that an unplug wakeup will come shortly.
522  * If not, wakeup the md thread immediately
523  */
524 int mddev_check_plugged(mddev_t *mddev)
525 {
526         struct blk_plug *plug = current->plug;
527         struct md_plug_cb *mdcb;
528
529         if (!plug)
530                 return 0;
531
532         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
533                 if (mdcb->cb.callback == plugger_unplug &&
534                     mdcb->mddev == mddev) {
535                         /* Already on the list, move to top */
536                         if (mdcb != list_first_entry(&plug->cb_list,
537                                                     struct md_plug_cb,
538                                                     cb.list))
539                                 list_move(&mdcb->cb.list, &plug->cb_list);
540                         return 1;
541                 }
542         }
543         /* Not currently on the callback list */
544         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
545         if (!mdcb)
546                 return 0;
547
548         mdcb->mddev = mddev;
549         mdcb->cb.callback = plugger_unplug;
550         atomic_inc(&mddev->plug_cnt);
551         list_add(&mdcb->cb.list, &plug->cb_list);
552         return 1;
553 }
554 EXPORT_SYMBOL_GPL(mddev_check_plugged);
555
556 static inline mddev_t *mddev_get(mddev_t *mddev)
557 {
558         atomic_inc(&mddev->active);
559         return mddev;
560 }
561
562 static void mddev_delayed_delete(struct work_struct *ws);
563
564 static void mddev_put(mddev_t *mddev)
565 {
566         struct bio_set *bs = NULL;
567
568         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
569                 return;
570         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
571             mddev->ctime == 0 && !mddev->hold_active) {
572                 /* Array is not configured at all, and not held active,
573                  * so destroy it */
574                 list_del(&mddev->all_mddevs);
575                 bs = mddev->bio_set;
576                 mddev->bio_set = NULL;
577                 if (mddev->gendisk) {
578                         /* We did a probe so need to clean up.  Call
579                          * queue_work inside the spinlock so that
580                          * flush_workqueue() after mddev_find will
581                          * succeed in waiting for the work to be done.
582                          */
583                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
584                         queue_work(md_misc_wq, &mddev->del_work);
585                 } else
586                         kfree(mddev);
587         }
588         spin_unlock(&all_mddevs_lock);
589         if (bs)
590                 bioset_free(bs);
591 }
592
593 void mddev_init(mddev_t *mddev)
594 {
595         mutex_init(&mddev->open_mutex);
596         mutex_init(&mddev->reconfig_mutex);
597         mutex_init(&mddev->bitmap_info.mutex);
598         INIT_LIST_HEAD(&mddev->disks);
599         INIT_LIST_HEAD(&mddev->all_mddevs);
600         init_timer(&mddev->safemode_timer);
601         atomic_set(&mddev->active, 1);
602         atomic_set(&mddev->openers, 0);
603         atomic_set(&mddev->active_io, 0);
604         atomic_set(&mddev->plug_cnt, 0);
605         spin_lock_init(&mddev->write_lock);
606         atomic_set(&mddev->flush_pending, 0);
607         init_waitqueue_head(&mddev->sb_wait);
608         init_waitqueue_head(&mddev->recovery_wait);
609         mddev->reshape_position = MaxSector;
610         mddev->resync_min = 0;
611         mddev->resync_max = MaxSector;
612         mddev->level = LEVEL_NONE;
613 }
614 EXPORT_SYMBOL_GPL(mddev_init);
615
616 static mddev_t * mddev_find(dev_t unit)
617 {
618         mddev_t *mddev, *new = NULL;
619
620         if (unit && MAJOR(unit) != MD_MAJOR)
621                 unit &= ~((1<<MdpMinorShift)-1);
622
623  retry:
624         spin_lock(&all_mddevs_lock);
625
626         if (unit) {
627                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
628                         if (mddev->unit == unit) {
629                                 mddev_get(mddev);
630                                 spin_unlock(&all_mddevs_lock);
631                                 kfree(new);
632                                 return mddev;
633                         }
634
635                 if (new) {
636                         list_add(&new->all_mddevs, &all_mddevs);
637                         spin_unlock(&all_mddevs_lock);
638                         new->hold_active = UNTIL_IOCTL;
639                         return new;
640                 }
641         } else if (new) {
642                 /* find an unused unit number */
643                 static int next_minor = 512;
644                 int start = next_minor;
645                 int is_free = 0;
646                 int dev = 0;
647                 while (!is_free) {
648                         dev = MKDEV(MD_MAJOR, next_minor);
649                         next_minor++;
650                         if (next_minor > MINORMASK)
651                                 next_minor = 0;
652                         if (next_minor == start) {
653                                 /* Oh dear, all in use. */
654                                 spin_unlock(&all_mddevs_lock);
655                                 kfree(new);
656                                 return NULL;
657                         }
658                                 
659                         is_free = 1;
660                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
661                                 if (mddev->unit == dev) {
662                                         is_free = 0;
663                                         break;
664                                 }
665                 }
666                 new->unit = dev;
667                 new->md_minor = MINOR(dev);
668                 new->hold_active = UNTIL_STOP;
669                 list_add(&new->all_mddevs, &all_mddevs);
670                 spin_unlock(&all_mddevs_lock);
671                 return new;
672         }
673         spin_unlock(&all_mddevs_lock);
674
675         new = kzalloc(sizeof(*new), GFP_KERNEL);
676         if (!new)
677                 return NULL;
678
679         new->unit = unit;
680         if (MAJOR(unit) == MD_MAJOR)
681                 new->md_minor = MINOR(unit);
682         else
683                 new->md_minor = MINOR(unit) >> MdpMinorShift;
684
685         mddev_init(new);
686
687         goto retry;
688 }
689
690 static inline int mddev_lock(mddev_t * mddev)
691 {
692         return mutex_lock_interruptible(&mddev->reconfig_mutex);
693 }
694
695 static inline int mddev_is_locked(mddev_t *mddev)
696 {
697         return mutex_is_locked(&mddev->reconfig_mutex);
698 }
699
700 static inline int mddev_trylock(mddev_t * mddev)
701 {
702         return mutex_trylock(&mddev->reconfig_mutex);
703 }
704
705 static struct attribute_group md_redundancy_group;
706
707 static void mddev_unlock(mddev_t * mddev)
708 {
709         if (mddev->to_remove) {
710                 /* These cannot be removed under reconfig_mutex as
711                  * an access to the files will try to take reconfig_mutex
712                  * while holding the file unremovable, which leads to
713                  * a deadlock.
714                  * So hold set sysfs_active while the remove in happeing,
715                  * and anything else which might set ->to_remove or my
716                  * otherwise change the sysfs namespace will fail with
717                  * -EBUSY if sysfs_active is still set.
718                  * We set sysfs_active under reconfig_mutex and elsewhere
719                  * test it under the same mutex to ensure its correct value
720                  * is seen.
721                  */
722                 struct attribute_group *to_remove = mddev->to_remove;
723                 mddev->to_remove = NULL;
724                 mddev->sysfs_active = 1;
725                 mutex_unlock(&mddev->reconfig_mutex);
726
727                 if (mddev->kobj.sd) {
728                         if (to_remove != &md_redundancy_group)
729                                 sysfs_remove_group(&mddev->kobj, to_remove);
730                         if (mddev->pers == NULL ||
731                             mddev->pers->sync_request == NULL) {
732                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
733                                 if (mddev->sysfs_action)
734                                         sysfs_put(mddev->sysfs_action);
735                                 mddev->sysfs_action = NULL;
736                         }
737                 }
738                 mddev->sysfs_active = 0;
739         } else
740                 mutex_unlock(&mddev->reconfig_mutex);
741
742         md_wakeup_thread(mddev->thread);
743 }
744
745 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
746 {
747         mdk_rdev_t *rdev;
748
749         list_for_each_entry(rdev, &mddev->disks, same_set)
750                 if (rdev->desc_nr == nr)
751                         return rdev;
752
753         return NULL;
754 }
755
756 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
757 {
758         mdk_rdev_t *rdev;
759
760         list_for_each_entry(rdev, &mddev->disks, same_set)
761                 if (rdev->bdev->bd_dev == dev)
762                         return rdev;
763
764         return NULL;
765 }
766
767 static struct mdk_personality *find_pers(int level, char *clevel)
768 {
769         struct mdk_personality *pers;
770         list_for_each_entry(pers, &pers_list, list) {
771                 if (level != LEVEL_NONE && pers->level == level)
772                         return pers;
773                 if (strcmp(pers->name, clevel)==0)
774                         return pers;
775         }
776         return NULL;
777 }
778
779 /* return the offset of the super block in 512byte sectors */
780 static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
781 {
782         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
783         return MD_NEW_SIZE_SECTORS(num_sectors);
784 }
785
786 static int alloc_disk_sb(mdk_rdev_t * rdev)
787 {
788         if (rdev->sb_page)
789                 MD_BUG();
790
791         rdev->sb_page = alloc_page(GFP_KERNEL);
792         if (!rdev->sb_page) {
793                 printk(KERN_ALERT "md: out of memory.\n");
794                 return -ENOMEM;
795         }
796
797         return 0;
798 }
799
800 static void free_disk_sb(mdk_rdev_t * rdev)
801 {
802         if (rdev->sb_page) {
803                 put_page(rdev->sb_page);
804                 rdev->sb_loaded = 0;
805                 rdev->sb_page = NULL;
806                 rdev->sb_start = 0;
807                 rdev->sectors = 0;
808         }
809         if (rdev->bb_page) {
810                 put_page(rdev->bb_page);
811                 rdev->bb_page = NULL;
812         }
813 }
814
815
816 static void super_written(struct bio *bio, int error)
817 {
818         mdk_rdev_t *rdev = bio->bi_private;
819         mddev_t *mddev = rdev->mddev;
820
821         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
822                 printk("md: super_written gets error=%d, uptodate=%d\n",
823                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
824                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
825                 md_error(mddev, rdev);
826         }
827
828         if (atomic_dec_and_test(&mddev->pending_writes))
829                 wake_up(&mddev->sb_wait);
830         bio_put(bio);
831 }
832
833 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
834                    sector_t sector, int size, struct page *page)
835 {
836         /* write first size bytes of page to sector of rdev
837          * Increment mddev->pending_writes before returning
838          * and decrement it on completion, waking up sb_wait
839          * if zero is reached.
840          * If an error occurred, call md_error
841          */
842         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
843
844         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
845         bio->bi_sector = sector;
846         bio_add_page(bio, page, size, 0);
847         bio->bi_private = rdev;
848         bio->bi_end_io = super_written;
849
850         atomic_inc(&mddev->pending_writes);
851         submit_bio(REQ_WRITE | REQ_SYNC | REQ_FLUSH | REQ_FUA, bio);
852 }
853
854 void md_super_wait(mddev_t *mddev)
855 {
856         /* wait for all superblock writes that were scheduled to complete */
857         DEFINE_WAIT(wq);
858         for(;;) {
859                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
860                 if (atomic_read(&mddev->pending_writes)==0)
861                         break;
862                 schedule();
863         }
864         finish_wait(&mddev->sb_wait, &wq);
865 }
866
867 static void bi_complete(struct bio *bio, int error)
868 {
869         complete((struct completion*)bio->bi_private);
870 }
871
872 int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
873                  struct page *page, int rw, bool metadata_op)
874 {
875         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
876         struct completion event;
877         int ret;
878
879         rw |= REQ_SYNC;
880
881         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
882                 rdev->meta_bdev : rdev->bdev;
883         if (metadata_op)
884                 bio->bi_sector = sector + rdev->sb_start;
885         else
886                 bio->bi_sector = sector + rdev->data_offset;
887         bio_add_page(bio, page, size, 0);
888         init_completion(&event);
889         bio->bi_private = &event;
890         bio->bi_end_io = bi_complete;
891         submit_bio(rw, bio);
892         wait_for_completion(&event);
893
894         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
895         bio_put(bio);
896         return ret;
897 }
898 EXPORT_SYMBOL_GPL(sync_page_io);
899
900 static int read_disk_sb(mdk_rdev_t * rdev, int size)
901 {
902         char b[BDEVNAME_SIZE];
903         if (!rdev->sb_page) {
904                 MD_BUG();
905                 return -EINVAL;
906         }
907         if (rdev->sb_loaded)
908                 return 0;
909
910
911         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
912                 goto fail;
913         rdev->sb_loaded = 1;
914         return 0;
915
916 fail:
917         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
918                 bdevname(rdev->bdev,b));
919         return -EINVAL;
920 }
921
922 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
923 {
924         return  sb1->set_uuid0 == sb2->set_uuid0 &&
925                 sb1->set_uuid1 == sb2->set_uuid1 &&
926                 sb1->set_uuid2 == sb2->set_uuid2 &&
927                 sb1->set_uuid3 == sb2->set_uuid3;
928 }
929
930 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
931 {
932         int ret;
933         mdp_super_t *tmp1, *tmp2;
934
935         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
936         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
937
938         if (!tmp1 || !tmp2) {
939                 ret = 0;
940                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
941                 goto abort;
942         }
943
944         *tmp1 = *sb1;
945         *tmp2 = *sb2;
946
947         /*
948          * nr_disks is not constant
949          */
950         tmp1->nr_disks = 0;
951         tmp2->nr_disks = 0;
952
953         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
954 abort:
955         kfree(tmp1);
956         kfree(tmp2);
957         return ret;
958 }
959
960
961 static u32 md_csum_fold(u32 csum)
962 {
963         csum = (csum & 0xffff) + (csum >> 16);
964         return (csum & 0xffff) + (csum >> 16);
965 }
966
967 static unsigned int calc_sb_csum(mdp_super_t * sb)
968 {
969         u64 newcsum = 0;
970         u32 *sb32 = (u32*)sb;
971         int i;
972         unsigned int disk_csum, csum;
973
974         disk_csum = sb->sb_csum;
975         sb->sb_csum = 0;
976
977         for (i = 0; i < MD_SB_BYTES/4 ; i++)
978                 newcsum += sb32[i];
979         csum = (newcsum & 0xffffffff) + (newcsum>>32);
980
981
982 #ifdef CONFIG_ALPHA
983         /* This used to use csum_partial, which was wrong for several
984          * reasons including that different results are returned on
985          * different architectures.  It isn't critical that we get exactly
986          * the same return value as before (we always csum_fold before
987          * testing, and that removes any differences).  However as we
988          * know that csum_partial always returned a 16bit value on
989          * alphas, do a fold to maximise conformity to previous behaviour.
990          */
991         sb->sb_csum = md_csum_fold(disk_csum);
992 #else
993         sb->sb_csum = disk_csum;
994 #endif
995         return csum;
996 }
997
998
999 /*
1000  * Handle superblock details.
1001  * We want to be able to handle multiple superblock formats
1002  * so we have a common interface to them all, and an array of
1003  * different handlers.
1004  * We rely on user-space to write the initial superblock, and support
1005  * reading and updating of superblocks.
1006  * Interface methods are:
1007  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
1008  *      loads and validates a superblock on dev.
1009  *      if refdev != NULL, compare superblocks on both devices
1010  *    Return:
1011  *      0 - dev has a superblock that is compatible with refdev
1012  *      1 - dev has a superblock that is compatible and newer than refdev
1013  *          so dev should be used as the refdev in future
1014  *     -EINVAL superblock incompatible or invalid
1015  *     -othererror e.g. -EIO
1016  *
1017  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
1018  *      Verify that dev is acceptable into mddev.
1019  *       The first time, mddev->raid_disks will be 0, and data from
1020  *       dev should be merged in.  Subsequent calls check that dev
1021  *       is new enough.  Return 0 or -EINVAL
1022  *
1023  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
1024  *     Update the superblock for rdev with data in mddev
1025  *     This does not write to disc.
1026  *
1027  */
1028
1029 struct super_type  {
1030         char                *name;
1031         struct module       *owner;
1032         int                 (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
1033                                           int minor_version);
1034         int                 (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
1035         void                (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
1036         unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
1037                                                 sector_t num_sectors);
1038 };
1039
1040 /*
1041  * Check that the given mddev has no bitmap.
1042  *
1043  * This function is called from the run method of all personalities that do not
1044  * support bitmaps. It prints an error message and returns non-zero if mddev
1045  * has a bitmap. Otherwise, it returns 0.
1046  *
1047  */
1048 int md_check_no_bitmap(mddev_t *mddev)
1049 {
1050         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1051                 return 0;
1052         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1053                 mdname(mddev), mddev->pers->name);
1054         return 1;
1055 }
1056 EXPORT_SYMBOL(md_check_no_bitmap);
1057
1058 /*
1059  * load_super for 0.90.0 
1060  */
1061 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1062 {
1063         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1064         mdp_super_t *sb;
1065         int ret;
1066
1067         /*
1068          * Calculate the position of the superblock (512byte sectors),
1069          * it's at the end of the disk.
1070          *
1071          * It also happens to be a multiple of 4Kb.
1072          */
1073         rdev->sb_start = calc_dev_sboffset(rdev);
1074
1075         ret = read_disk_sb(rdev, MD_SB_BYTES);
1076         if (ret) return ret;
1077
1078         ret = -EINVAL;
1079
1080         bdevname(rdev->bdev, b);
1081         sb = page_address(rdev->sb_page);
1082
1083         if (sb->md_magic != MD_SB_MAGIC) {
1084                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1085                        b);
1086                 goto abort;
1087         }
1088
1089         if (sb->major_version != 0 ||
1090             sb->minor_version < 90 ||
1091             sb->minor_version > 91) {
1092                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1093                         sb->major_version, sb->minor_version,
1094                         b);
1095                 goto abort;
1096         }
1097
1098         if (sb->raid_disks <= 0)
1099                 goto abort;
1100
1101         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1102                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1103                         b);
1104                 goto abort;
1105         }
1106
1107         rdev->preferred_minor = sb->md_minor;
1108         rdev->data_offset = 0;
1109         rdev->sb_size = MD_SB_BYTES;
1110         rdev->badblocks.shift = -1;
1111
1112         if (sb->level == LEVEL_MULTIPATH)
1113                 rdev->desc_nr = -1;
1114         else
1115                 rdev->desc_nr = sb->this_disk.number;
1116
1117         if (!refdev) {
1118                 ret = 1;
1119         } else {
1120                 __u64 ev1, ev2;
1121                 mdp_super_t *refsb = page_address(refdev->sb_page);
1122                 if (!uuid_equal(refsb, sb)) {
1123                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1124                                 b, bdevname(refdev->bdev,b2));
1125                         goto abort;
1126                 }
1127                 if (!sb_equal(refsb, sb)) {
1128                         printk(KERN_WARNING "md: %s has same UUID"
1129                                " but different superblock to %s\n",
1130                                b, bdevname(refdev->bdev, b2));
1131                         goto abort;
1132                 }
1133                 ev1 = md_event(sb);
1134                 ev2 = md_event(refsb);
1135                 if (ev1 > ev2)
1136                         ret = 1;
1137                 else 
1138                         ret = 0;
1139         }
1140         rdev->sectors = rdev->sb_start;
1141
1142         if (rdev->sectors < sb->size * 2 && sb->level > 1)
1143                 /* "this cannot possibly happen" ... */
1144                 ret = -EINVAL;
1145
1146  abort:
1147         return ret;
1148 }
1149
1150 /*
1151  * validate_super for 0.90.0
1152  */
1153 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1154 {
1155         mdp_disk_t *desc;
1156         mdp_super_t *sb = page_address(rdev->sb_page);
1157         __u64 ev1 = md_event(sb);
1158
1159         rdev->raid_disk = -1;
1160         clear_bit(Faulty, &rdev->flags);
1161         clear_bit(In_sync, &rdev->flags);
1162         clear_bit(WriteMostly, &rdev->flags);
1163
1164         if (mddev->raid_disks == 0) {
1165                 mddev->major_version = 0;
1166                 mddev->minor_version = sb->minor_version;
1167                 mddev->patch_version = sb->patch_version;
1168                 mddev->external = 0;
1169                 mddev->chunk_sectors = sb->chunk_size >> 9;
1170                 mddev->ctime = sb->ctime;
1171                 mddev->utime = sb->utime;
1172                 mddev->level = sb->level;
1173                 mddev->clevel[0] = 0;
1174                 mddev->layout = sb->layout;
1175                 mddev->raid_disks = sb->raid_disks;
1176                 mddev->dev_sectors = sb->size * 2;
1177                 mddev->events = ev1;
1178                 mddev->bitmap_info.offset = 0;
1179                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1180
1181                 if (mddev->minor_version >= 91) {
1182                         mddev->reshape_position = sb->reshape_position;
1183                         mddev->delta_disks = sb->delta_disks;
1184                         mddev->new_level = sb->new_level;
1185                         mddev->new_layout = sb->new_layout;
1186                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1187                 } else {
1188                         mddev->reshape_position = MaxSector;
1189                         mddev->delta_disks = 0;
1190                         mddev->new_level = mddev->level;
1191                         mddev->new_layout = mddev->layout;
1192                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1193                 }
1194
1195                 if (sb->state & (1<<MD_SB_CLEAN))
1196                         mddev->recovery_cp = MaxSector;
1197                 else {
1198                         if (sb->events_hi == sb->cp_events_hi && 
1199                                 sb->events_lo == sb->cp_events_lo) {
1200                                 mddev->recovery_cp = sb->recovery_cp;
1201                         } else
1202                                 mddev->recovery_cp = 0;
1203                 }
1204
1205                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1206                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1207                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1208                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1209
1210                 mddev->max_disks = MD_SB_DISKS;
1211
1212                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1213                     mddev->bitmap_info.file == NULL)
1214                         mddev->bitmap_info.offset =
1215                                 mddev->bitmap_info.default_offset;
1216
1217         } else if (mddev->pers == NULL) {
1218                 /* Insist on good event counter while assembling, except
1219                  * for spares (which don't need an event count) */
1220                 ++ev1;
1221                 if (sb->disks[rdev->desc_nr].state & (
1222                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1223                         if (ev1 < mddev->events) 
1224                                 return -EINVAL;
1225         } else if (mddev->bitmap) {
1226                 /* if adding to array with a bitmap, then we can accept an
1227                  * older device ... but not too old.
1228                  */
1229                 if (ev1 < mddev->bitmap->events_cleared)
1230                         return 0;
1231         } else {
1232                 if (ev1 < mddev->events)
1233                         /* just a hot-add of a new device, leave raid_disk at -1 */
1234                         return 0;
1235         }
1236
1237         if (mddev->level != LEVEL_MULTIPATH) {
1238                 desc = sb->disks + rdev->desc_nr;
1239
1240                 if (desc->state & (1<<MD_DISK_FAULTY))
1241                         set_bit(Faulty, &rdev->flags);
1242                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1243                             desc->raid_disk < mddev->raid_disks */) {
1244                         set_bit(In_sync, &rdev->flags);
1245                         rdev->raid_disk = desc->raid_disk;
1246                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1247                         /* active but not in sync implies recovery up to
1248                          * reshape position.  We don't know exactly where
1249                          * that is, so set to zero for now */
1250                         if (mddev->minor_version >= 91) {
1251                                 rdev->recovery_offset = 0;
1252                                 rdev->raid_disk = desc->raid_disk;
1253                         }
1254                 }
1255                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1256                         set_bit(WriteMostly, &rdev->flags);
1257         } else /* MULTIPATH are always insync */
1258                 set_bit(In_sync, &rdev->flags);
1259         return 0;
1260 }
1261
1262 /*
1263  * sync_super for 0.90.0
1264  */
1265 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1266 {
1267         mdp_super_t *sb;
1268         mdk_rdev_t *rdev2;
1269         int next_spare = mddev->raid_disks;
1270
1271
1272         /* make rdev->sb match mddev data..
1273          *
1274          * 1/ zero out disks
1275          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1276          * 3/ any empty disks < next_spare become removed
1277          *
1278          * disks[0] gets initialised to REMOVED because
1279          * we cannot be sure from other fields if it has
1280          * been initialised or not.
1281          */
1282         int i;
1283         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1284
1285         rdev->sb_size = MD_SB_BYTES;
1286
1287         sb = page_address(rdev->sb_page);
1288
1289         memset(sb, 0, sizeof(*sb));
1290
1291         sb->md_magic = MD_SB_MAGIC;
1292         sb->major_version = mddev->major_version;
1293         sb->patch_version = mddev->patch_version;
1294         sb->gvalid_words  = 0; /* ignored */
1295         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1296         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1297         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1298         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1299
1300         sb->ctime = mddev->ctime;
1301         sb->level = mddev->level;
1302         sb->size = mddev->dev_sectors / 2;
1303         sb->raid_disks = mddev->raid_disks;
1304         sb->md_minor = mddev->md_minor;
1305         sb->not_persistent = 0;
1306         sb->utime = mddev->utime;
1307         sb->state = 0;
1308         sb->events_hi = (mddev->events>>32);
1309         sb->events_lo = (u32)mddev->events;
1310
1311         if (mddev->reshape_position == MaxSector)
1312                 sb->minor_version = 90;
1313         else {
1314                 sb->minor_version = 91;
1315                 sb->reshape_position = mddev->reshape_position;
1316                 sb->new_level = mddev->new_level;
1317                 sb->delta_disks = mddev->delta_disks;
1318                 sb->new_layout = mddev->new_layout;
1319                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1320         }
1321         mddev->minor_version = sb->minor_version;
1322         if (mddev->in_sync)
1323         {
1324                 sb->recovery_cp = mddev->recovery_cp;
1325                 sb->cp_events_hi = (mddev->events>>32);
1326                 sb->cp_events_lo = (u32)mddev->events;
1327                 if (mddev->recovery_cp == MaxSector)
1328                         sb->state = (1<< MD_SB_CLEAN);
1329         } else
1330                 sb->recovery_cp = 0;
1331
1332         sb->layout = mddev->layout;
1333         sb->chunk_size = mddev->chunk_sectors << 9;
1334
1335         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1336                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1337
1338         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1339         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1340                 mdp_disk_t *d;
1341                 int desc_nr;
1342                 int is_active = test_bit(In_sync, &rdev2->flags);
1343
1344                 if (rdev2->raid_disk >= 0 &&
1345                     sb->minor_version >= 91)
1346                         /* we have nowhere to store the recovery_offset,
1347                          * but if it is not below the reshape_position,
1348                          * we can piggy-back on that.
1349                          */
1350                         is_active = 1;
1351                 if (rdev2->raid_disk < 0 ||
1352                     test_bit(Faulty, &rdev2->flags))
1353                         is_active = 0;
1354                 if (is_active)
1355                         desc_nr = rdev2->raid_disk;
1356                 else
1357                         desc_nr = next_spare++;
1358                 rdev2->desc_nr = desc_nr;
1359                 d = &sb->disks[rdev2->desc_nr];
1360                 nr_disks++;
1361                 d->number = rdev2->desc_nr;
1362                 d->major = MAJOR(rdev2->bdev->bd_dev);
1363                 d->minor = MINOR(rdev2->bdev->bd_dev);
1364                 if (is_active)
1365                         d->raid_disk = rdev2->raid_disk;
1366                 else
1367                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1368                 if (test_bit(Faulty, &rdev2->flags))
1369                         d->state = (1<<MD_DISK_FAULTY);
1370                 else if (is_active) {
1371                         d->state = (1<<MD_DISK_ACTIVE);
1372                         if (test_bit(In_sync, &rdev2->flags))
1373                                 d->state |= (1<<MD_DISK_SYNC);
1374                         active++;
1375                         working++;
1376                 } else {
1377                         d->state = 0;
1378                         spare++;
1379                         working++;
1380                 }
1381                 if (test_bit(WriteMostly, &rdev2->flags))
1382                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1383         }
1384         /* now set the "removed" and "faulty" bits on any missing devices */
1385         for (i=0 ; i < mddev->raid_disks ; i++) {
1386                 mdp_disk_t *d = &sb->disks[i];
1387                 if (d->state == 0 && d->number == 0) {
1388                         d->number = i;
1389                         d->raid_disk = i;
1390                         d->state = (1<<MD_DISK_REMOVED);
1391                         d->state |= (1<<MD_DISK_FAULTY);
1392                         failed++;
1393                 }
1394         }
1395         sb->nr_disks = nr_disks;
1396         sb->active_disks = active;
1397         sb->working_disks = working;
1398         sb->failed_disks = failed;
1399         sb->spare_disks = spare;
1400
1401         sb->this_disk = sb->disks[rdev->desc_nr];
1402         sb->sb_csum = calc_sb_csum(sb);
1403 }
1404
1405 /*
1406  * rdev_size_change for 0.90.0
1407  */
1408 static unsigned long long
1409 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1410 {
1411         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1412                 return 0; /* component must fit device */
1413         if (rdev->mddev->bitmap_info.offset)
1414                 return 0; /* can't move bitmap */
1415         rdev->sb_start = calc_dev_sboffset(rdev);
1416         if (!num_sectors || num_sectors > rdev->sb_start)
1417                 num_sectors = rdev->sb_start;
1418         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1419                        rdev->sb_page);
1420         md_super_wait(rdev->mddev);
1421         return num_sectors;
1422 }
1423
1424
1425 /*
1426  * version 1 superblock
1427  */
1428
1429 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1430 {
1431         __le32 disk_csum;
1432         u32 csum;
1433         unsigned long long newcsum;
1434         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1435         __le32 *isuper = (__le32*)sb;
1436         int i;
1437
1438         disk_csum = sb->sb_csum;
1439         sb->sb_csum = 0;
1440         newcsum = 0;
1441         for (i=0; size>=4; size -= 4 )
1442                 newcsum += le32_to_cpu(*isuper++);
1443
1444         if (size == 2)
1445                 newcsum += le16_to_cpu(*(__le16*) isuper);
1446
1447         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1448         sb->sb_csum = disk_csum;
1449         return cpu_to_le32(csum);
1450 }
1451
1452 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1453                             int acknowledged);
1454 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1455 {
1456         struct mdp_superblock_1 *sb;
1457         int ret;
1458         sector_t sb_start;
1459         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1460         int bmask;
1461
1462         /*
1463          * Calculate the position of the superblock in 512byte sectors.
1464          * It is always aligned to a 4K boundary and
1465          * depeding on minor_version, it can be:
1466          * 0: At least 8K, but less than 12K, from end of device
1467          * 1: At start of device
1468          * 2: 4K from start of device.
1469          */
1470         switch(minor_version) {
1471         case 0:
1472                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1473                 sb_start -= 8*2;
1474                 sb_start &= ~(sector_t)(4*2-1);
1475                 break;
1476         case 1:
1477                 sb_start = 0;
1478                 break;
1479         case 2:
1480                 sb_start = 8;
1481                 break;
1482         default:
1483                 return -EINVAL;
1484         }
1485         rdev->sb_start = sb_start;
1486
1487         /* superblock is rarely larger than 1K, but it can be larger,
1488          * and it is safe to read 4k, so we do that
1489          */
1490         ret = read_disk_sb(rdev, 4096);
1491         if (ret) return ret;
1492
1493
1494         sb = page_address(rdev->sb_page);
1495
1496         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1497             sb->major_version != cpu_to_le32(1) ||
1498             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1499             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1500             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1501                 return -EINVAL;
1502
1503         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1504                 printk("md: invalid superblock checksum on %s\n",
1505                         bdevname(rdev->bdev,b));
1506                 return -EINVAL;
1507         }
1508         if (le64_to_cpu(sb->data_size) < 10) {
1509                 printk("md: data_size too small on %s\n",
1510                        bdevname(rdev->bdev,b));
1511                 return -EINVAL;
1512         }
1513
1514         rdev->preferred_minor = 0xffff;
1515         rdev->data_offset = le64_to_cpu(sb->data_offset);
1516         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1517
1518         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1519         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1520         if (rdev->sb_size & bmask)
1521                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1522
1523         if (minor_version
1524             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1525                 return -EINVAL;
1526
1527         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1528                 rdev->desc_nr = -1;
1529         else
1530                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1531
1532         if (!rdev->bb_page) {
1533                 rdev->bb_page = alloc_page(GFP_KERNEL);
1534                 if (!rdev->bb_page)
1535                         return -ENOMEM;
1536         }
1537         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1538             rdev->badblocks.count == 0) {
1539                 /* need to load the bad block list.
1540                  * Currently we limit it to one page.
1541                  */
1542                 s32 offset;
1543                 sector_t bb_sector;
1544                 u64 *bbp;
1545                 int i;
1546                 int sectors = le16_to_cpu(sb->bblog_size);
1547                 if (sectors > (PAGE_SIZE / 512))
1548                         return -EINVAL;
1549                 offset = le32_to_cpu(sb->bblog_offset);
1550                 if (offset == 0)
1551                         return -EINVAL;
1552                 bb_sector = (long long)offset;
1553                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1554                                   rdev->bb_page, READ, true))
1555                         return -EIO;
1556                 bbp = (u64 *)page_address(rdev->bb_page);
1557                 rdev->badblocks.shift = sb->bblog_shift;
1558                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1559                         u64 bb = le64_to_cpu(*bbp);
1560                         int count = bb & (0x3ff);
1561                         u64 sector = bb >> 10;
1562                         sector <<= sb->bblog_shift;
1563                         count <<= sb->bblog_shift;
1564                         if (bb + 1 == 0)
1565                                 break;
1566                         if (md_set_badblocks(&rdev->badblocks,
1567                                              sector, count, 1) == 0)
1568                                 return -EINVAL;
1569                 }
1570         } else if (sb->bblog_offset == 0)
1571                 rdev->badblocks.shift = -1;
1572
1573         if (!refdev) {
1574                 ret = 1;
1575         } else {
1576                 __u64 ev1, ev2;
1577                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1578
1579                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1580                     sb->level != refsb->level ||
1581                     sb->layout != refsb->layout ||
1582                     sb->chunksize != refsb->chunksize) {
1583                         printk(KERN_WARNING "md: %s has strangely different"
1584                                 " superblock to %s\n",
1585                                 bdevname(rdev->bdev,b),
1586                                 bdevname(refdev->bdev,b2));
1587                         return -EINVAL;
1588                 }
1589                 ev1 = le64_to_cpu(sb->events);
1590                 ev2 = le64_to_cpu(refsb->events);
1591
1592                 if (ev1 > ev2)
1593                         ret = 1;
1594                 else
1595                         ret = 0;
1596         }
1597         if (minor_version)
1598                 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1599                         le64_to_cpu(sb->data_offset);
1600         else
1601                 rdev->sectors = rdev->sb_start;
1602         if (rdev->sectors < le64_to_cpu(sb->data_size))
1603                 return -EINVAL;
1604         rdev->sectors = le64_to_cpu(sb->data_size);
1605         if (le64_to_cpu(sb->size) > rdev->sectors)
1606                 return -EINVAL;
1607         return ret;
1608 }
1609
1610 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1611 {
1612         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1613         __u64 ev1 = le64_to_cpu(sb->events);
1614
1615         rdev->raid_disk = -1;
1616         clear_bit(Faulty, &rdev->flags);
1617         clear_bit(In_sync, &rdev->flags);
1618         clear_bit(WriteMostly, &rdev->flags);
1619
1620         if (mddev->raid_disks == 0) {
1621                 mddev->major_version = 1;
1622                 mddev->patch_version = 0;
1623                 mddev->external = 0;
1624                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1625                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1626                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1627                 mddev->level = le32_to_cpu(sb->level);
1628                 mddev->clevel[0] = 0;
1629                 mddev->layout = le32_to_cpu(sb->layout);
1630                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1631                 mddev->dev_sectors = le64_to_cpu(sb->size);
1632                 mddev->events = ev1;
1633                 mddev->bitmap_info.offset = 0;
1634                 mddev->bitmap_info.default_offset = 1024 >> 9;
1635                 
1636                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1637                 memcpy(mddev->uuid, sb->set_uuid, 16);
1638
1639                 mddev->max_disks =  (4096-256)/2;
1640
1641                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1642                     mddev->bitmap_info.file == NULL )
1643                         mddev->bitmap_info.offset =
1644                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1645
1646                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1647                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1648                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1649                         mddev->new_level = le32_to_cpu(sb->new_level);
1650                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1651                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1652                 } else {
1653                         mddev->reshape_position = MaxSector;
1654                         mddev->delta_disks = 0;
1655                         mddev->new_level = mddev->level;
1656                         mddev->new_layout = mddev->layout;
1657                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1658                 }
1659
1660         } else if (mddev->pers == NULL) {
1661                 /* Insist of good event counter while assembling, except for
1662                  * spares (which don't need an event count) */
1663                 ++ev1;
1664                 if (rdev->desc_nr >= 0 &&
1665                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1666                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1667                         if (ev1 < mddev->events)
1668                                 return -EINVAL;
1669         } else if (mddev->bitmap) {
1670                 /* If adding to array with a bitmap, then we can accept an
1671                  * older device, but not too old.
1672                  */
1673                 if (ev1 < mddev->bitmap->events_cleared)
1674                         return 0;
1675         } else {
1676                 if (ev1 < mddev->events)
1677                         /* just a hot-add of a new device, leave raid_disk at -1 */
1678                         return 0;
1679         }
1680         if (mddev->level != LEVEL_MULTIPATH) {
1681                 int role;
1682                 if (rdev->desc_nr < 0 ||
1683                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1684                         role = 0xffff;
1685                         rdev->desc_nr = -1;
1686                 } else
1687                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1688                 switch(role) {
1689                 case 0xffff: /* spare */
1690                         break;
1691                 case 0xfffe: /* faulty */
1692                         set_bit(Faulty, &rdev->flags);
1693                         break;
1694                 default:
1695                         if ((le32_to_cpu(sb->feature_map) &
1696                              MD_FEATURE_RECOVERY_OFFSET))
1697                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1698                         else
1699                                 set_bit(In_sync, &rdev->flags);
1700                         rdev->raid_disk = role;
1701                         break;
1702                 }
1703                 if (sb->devflags & WriteMostly1)
1704                         set_bit(WriteMostly, &rdev->flags);
1705         } else /* MULTIPATH are always insync */
1706                 set_bit(In_sync, &rdev->flags);
1707
1708         return 0;
1709 }
1710
1711 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1712 {
1713         struct mdp_superblock_1 *sb;
1714         mdk_rdev_t *rdev2;
1715         int max_dev, i;
1716         /* make rdev->sb match mddev and rdev data. */
1717
1718         sb = page_address(rdev->sb_page);
1719
1720         sb->feature_map = 0;
1721         sb->pad0 = 0;
1722         sb->recovery_offset = cpu_to_le64(0);
1723         memset(sb->pad1, 0, sizeof(sb->pad1));
1724         memset(sb->pad3, 0, sizeof(sb->pad3));
1725
1726         sb->utime = cpu_to_le64((__u64)mddev->utime);
1727         sb->events = cpu_to_le64(mddev->events);
1728         if (mddev->in_sync)
1729                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1730         else
1731                 sb->resync_offset = cpu_to_le64(0);
1732
1733         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1734
1735         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1736         sb->size = cpu_to_le64(mddev->dev_sectors);
1737         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1738         sb->level = cpu_to_le32(mddev->level);
1739         sb->layout = cpu_to_le32(mddev->layout);
1740
1741         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1742                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1743                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1744         }
1745
1746         if (rdev->raid_disk >= 0 &&
1747             !test_bit(In_sync, &rdev->flags)) {
1748                 sb->feature_map |=
1749                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1750                 sb->recovery_offset =
1751                         cpu_to_le64(rdev->recovery_offset);
1752         }
1753
1754         if (mddev->reshape_position != MaxSector) {
1755                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1756                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1757                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1758                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1759                 sb->new_level = cpu_to_le32(mddev->new_level);
1760                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1761         }
1762
1763         if (rdev->badblocks.count == 0)
1764                 /* Nothing to do for bad blocks*/ ;
1765         else if (sb->bblog_offset == 0)
1766                 /* Cannot record bad blocks on this device */
1767                 md_error(mddev, rdev);
1768         else {
1769                 struct badblocks *bb = &rdev->badblocks;
1770                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1771                 u64 *p = bb->page;
1772                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1773                 if (bb->changed) {
1774                         unsigned seq;
1775
1776 retry:
1777                         seq = read_seqbegin(&bb->lock);
1778
1779                         memset(bbp, 0xff, PAGE_SIZE);
1780
1781                         for (i = 0 ; i < bb->count ; i++) {
1782                                 u64 internal_bb = *p++;
1783                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1784                                                 | BB_LEN(internal_bb));
1785                                 *bbp++ = cpu_to_le64(store_bb);
1786                         }
1787                         if (read_seqretry(&bb->lock, seq))
1788                                 goto retry;
1789
1790                         bb->sector = (rdev->sb_start +
1791                                       (int)le32_to_cpu(sb->bblog_offset));
1792                         bb->size = le16_to_cpu(sb->bblog_size);
1793                         bb->changed = 0;
1794                 }
1795         }
1796
1797         max_dev = 0;
1798         list_for_each_entry(rdev2, &mddev->disks, same_set)
1799                 if (rdev2->desc_nr+1 > max_dev)
1800                         max_dev = rdev2->desc_nr+1;
1801
1802         if (max_dev > le32_to_cpu(sb->max_dev)) {
1803                 int bmask;
1804                 sb->max_dev = cpu_to_le32(max_dev);
1805                 rdev->sb_size = max_dev * 2 + 256;
1806                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1807                 if (rdev->sb_size & bmask)
1808                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1809         } else
1810                 max_dev = le32_to_cpu(sb->max_dev);
1811
1812         for (i=0; i<max_dev;i++)
1813                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1814         
1815         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1816                 i = rdev2->desc_nr;
1817                 if (test_bit(Faulty, &rdev2->flags))
1818                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1819                 else if (test_bit(In_sync, &rdev2->flags))
1820                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1821                 else if (rdev2->raid_disk >= 0)
1822                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1823                 else
1824                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1825         }
1826
1827         sb->sb_csum = calc_sb_1_csum(sb);
1828 }
1829
1830 static unsigned long long
1831 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1832 {
1833         struct mdp_superblock_1 *sb;
1834         sector_t max_sectors;
1835         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1836                 return 0; /* component must fit device */
1837         if (rdev->sb_start < rdev->data_offset) {
1838                 /* minor versions 1 and 2; superblock before data */
1839                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1840                 max_sectors -= rdev->data_offset;
1841                 if (!num_sectors || num_sectors > max_sectors)
1842                         num_sectors = max_sectors;
1843         } else if (rdev->mddev->bitmap_info.offset) {
1844                 /* minor version 0 with bitmap we can't move */
1845                 return 0;
1846         } else {
1847                 /* minor version 0; superblock after data */
1848                 sector_t sb_start;
1849                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1850                 sb_start &= ~(sector_t)(4*2 - 1);
1851                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1852                 if (!num_sectors || num_sectors > max_sectors)
1853                         num_sectors = max_sectors;
1854                 rdev->sb_start = sb_start;
1855         }
1856         sb = page_address(rdev->sb_page);
1857         sb->data_size = cpu_to_le64(num_sectors);
1858         sb->super_offset = rdev->sb_start;
1859         sb->sb_csum = calc_sb_1_csum(sb);
1860         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1861                        rdev->sb_page);
1862         md_super_wait(rdev->mddev);
1863         return num_sectors;
1864 }
1865
1866 static struct super_type super_types[] = {
1867         [0] = {
1868                 .name   = "0.90.0",
1869                 .owner  = THIS_MODULE,
1870                 .load_super         = super_90_load,
1871                 .validate_super     = super_90_validate,
1872                 .sync_super         = super_90_sync,
1873                 .rdev_size_change   = super_90_rdev_size_change,
1874         },
1875         [1] = {
1876                 .name   = "md-1",
1877                 .owner  = THIS_MODULE,
1878                 .load_super         = super_1_load,
1879                 .validate_super     = super_1_validate,
1880                 .sync_super         = super_1_sync,
1881                 .rdev_size_change   = super_1_rdev_size_change,
1882         },
1883 };
1884
1885 static void sync_super(mddev_t *mddev, mdk_rdev_t *rdev)
1886 {
1887         if (mddev->sync_super) {
1888                 mddev->sync_super(mddev, rdev);
1889                 return;
1890         }
1891
1892         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1893
1894         super_types[mddev->major_version].sync_super(mddev, rdev);
1895 }
1896
1897 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1898 {
1899         mdk_rdev_t *rdev, *rdev2;
1900
1901         rcu_read_lock();
1902         rdev_for_each_rcu(rdev, mddev1)
1903                 rdev_for_each_rcu(rdev2, mddev2)
1904                         if (rdev->bdev->bd_contains ==
1905                             rdev2->bdev->bd_contains) {
1906                                 rcu_read_unlock();
1907                                 return 1;
1908                         }
1909         rcu_read_unlock();
1910         return 0;
1911 }
1912
1913 static LIST_HEAD(pending_raid_disks);
1914
1915 /*
1916  * Try to register data integrity profile for an mddev
1917  *
1918  * This is called when an array is started and after a disk has been kicked
1919  * from the array. It only succeeds if all working and active component devices
1920  * are integrity capable with matching profiles.
1921  */
1922 int md_integrity_register(mddev_t *mddev)
1923 {
1924         mdk_rdev_t *rdev, *reference = NULL;
1925
1926         if (list_empty(&mddev->disks))
1927                 return 0; /* nothing to do */
1928         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1929                 return 0; /* shouldn't register, or already is */
1930         list_for_each_entry(rdev, &mddev->disks, same_set) {
1931                 /* skip spares and non-functional disks */
1932                 if (test_bit(Faulty, &rdev->flags))
1933                         continue;
1934                 if (rdev->raid_disk < 0)
1935                         continue;
1936                 if (!reference) {
1937                         /* Use the first rdev as the reference */
1938                         reference = rdev;
1939                         continue;
1940                 }
1941                 /* does this rdev's profile match the reference profile? */
1942                 if (blk_integrity_compare(reference->bdev->bd_disk,
1943                                 rdev->bdev->bd_disk) < 0)
1944                         return -EINVAL;
1945         }
1946         if (!reference || !bdev_get_integrity(reference->bdev))
1947                 return 0;
1948         /*
1949          * All component devices are integrity capable and have matching
1950          * profiles, register the common profile for the md device.
1951          */
1952         if (blk_integrity_register(mddev->gendisk,
1953                         bdev_get_integrity(reference->bdev)) != 0) {
1954                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1955                         mdname(mddev));
1956                 return -EINVAL;
1957         }
1958         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1959         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1960                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1961                        mdname(mddev));
1962                 return -EINVAL;
1963         }
1964         return 0;
1965 }
1966 EXPORT_SYMBOL(md_integrity_register);
1967
1968 /* Disable data integrity if non-capable/non-matching disk is being added */
1969 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1970 {
1971         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1972         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1973
1974         if (!bi_mddev) /* nothing to do */
1975                 return;
1976         if (rdev->raid_disk < 0) /* skip spares */
1977                 return;
1978         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1979                                              rdev->bdev->bd_disk) >= 0)
1980                 return;
1981         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1982         blk_integrity_unregister(mddev->gendisk);
1983 }
1984 EXPORT_SYMBOL(md_integrity_add_rdev);
1985
1986 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1987 {
1988         char b[BDEVNAME_SIZE];
1989         struct kobject *ko;
1990         char *s;
1991         int err;
1992
1993         if (rdev->mddev) {
1994                 MD_BUG();
1995                 return -EINVAL;
1996         }
1997
1998         /* prevent duplicates */
1999         if (find_rdev(mddev, rdev->bdev->bd_dev))
2000                 return -EEXIST;
2001
2002         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2003         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2004                         rdev->sectors < mddev->dev_sectors)) {
2005                 if (mddev->pers) {
2006                         /* Cannot change size, so fail
2007                          * If mddev->level <= 0, then we don't care
2008                          * about aligning sizes (e.g. linear)
2009                          */
2010                         if (mddev->level > 0)
2011                                 return -ENOSPC;
2012                 } else
2013                         mddev->dev_sectors = rdev->sectors;
2014         }
2015
2016         /* Verify rdev->desc_nr is unique.
2017          * If it is -1, assign a free number, else
2018          * check number is not in use
2019          */
2020         if (rdev->desc_nr < 0) {
2021                 int choice = 0;
2022                 if (mddev->pers) choice = mddev->raid_disks;
2023                 while (find_rdev_nr(mddev, choice))
2024                         choice++;
2025                 rdev->desc_nr = choice;
2026         } else {
2027                 if (find_rdev_nr(mddev, rdev->desc_nr))
2028                         return -EBUSY;
2029         }
2030         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2031                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2032                        mdname(mddev), mddev->max_disks);
2033                 return -EBUSY;
2034         }
2035         bdevname(rdev->bdev,b);
2036         while ( (s=strchr(b, '/')) != NULL)
2037                 *s = '!';
2038
2039         rdev->mddev = mddev;
2040         printk(KERN_INFO "md: bind<%s>\n", b);
2041
2042         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2043                 goto fail;
2044
2045         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2046         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2047                 /* failure here is OK */;
2048         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2049
2050         list_add_rcu(&rdev->same_set, &mddev->disks);
2051         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2052
2053         /* May as well allow recovery to be retried once */
2054         mddev->recovery_disabled++;
2055
2056         return 0;
2057
2058  fail:
2059         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2060                b, mdname(mddev));
2061         return err;
2062 }
2063
2064 static void md_delayed_delete(struct work_struct *ws)
2065 {
2066         mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
2067         kobject_del(&rdev->kobj);
2068         kobject_put(&rdev->kobj);
2069 }
2070
2071 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
2072 {
2073         char b[BDEVNAME_SIZE];
2074         if (!rdev->mddev) {
2075                 MD_BUG();
2076                 return;
2077         }
2078         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2079         list_del_rcu(&rdev->same_set);
2080         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2081         rdev->mddev = NULL;
2082         sysfs_remove_link(&rdev->kobj, "block");
2083         sysfs_put(rdev->sysfs_state);
2084         rdev->sysfs_state = NULL;
2085         kfree(rdev->badblocks.page);
2086         rdev->badblocks.count = 0;
2087         rdev->badblocks.page = NULL;
2088         /* We need to delay this, otherwise we can deadlock when
2089          * writing to 'remove' to "dev/state".  We also need
2090          * to delay it due to rcu usage.
2091          */
2092         synchronize_rcu();
2093         INIT_WORK(&rdev->del_work, md_delayed_delete);
2094         kobject_get(&rdev->kobj);
2095         queue_work(md_misc_wq, &rdev->del_work);
2096 }
2097
2098 /*
2099  * prevent the device from being mounted, repartitioned or
2100  * otherwise reused by a RAID array (or any other kernel
2101  * subsystem), by bd_claiming the device.
2102  */
2103 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
2104 {
2105         int err = 0;
2106         struct block_device *bdev;
2107         char b[BDEVNAME_SIZE];
2108
2109         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2110                                  shared ? (mdk_rdev_t *)lock_rdev : rdev);
2111         if (IS_ERR(bdev)) {
2112                 printk(KERN_ERR "md: could not open %s.\n",
2113                         __bdevname(dev, b));
2114                 return PTR_ERR(bdev);
2115         }
2116         rdev->bdev = bdev;
2117         return err;
2118 }
2119
2120 static void unlock_rdev(mdk_rdev_t *rdev)
2121 {
2122         struct block_device *bdev = rdev->bdev;
2123         rdev->bdev = NULL;
2124         if (!bdev)
2125                 MD_BUG();
2126         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2127 }
2128
2129 void md_autodetect_dev(dev_t dev);
2130
2131 static void export_rdev(mdk_rdev_t * rdev)
2132 {
2133         char b[BDEVNAME_SIZE];
2134         printk(KERN_INFO "md: export_rdev(%s)\n",
2135                 bdevname(rdev->bdev,b));
2136         if (rdev->mddev)
2137                 MD_BUG();
2138         free_disk_sb(rdev);
2139 #ifndef MODULE
2140         if (test_bit(AutoDetected, &rdev->flags))
2141                 md_autodetect_dev(rdev->bdev->bd_dev);
2142 #endif
2143         unlock_rdev(rdev);
2144         kobject_put(&rdev->kobj);
2145 }
2146
2147 static void kick_rdev_from_array(mdk_rdev_t * rdev)
2148 {
2149         unbind_rdev_from_array(rdev);
2150         export_rdev(rdev);
2151 }
2152
2153 static void export_array(mddev_t *mddev)
2154 {
2155         mdk_rdev_t *rdev, *tmp;
2156
2157         rdev_for_each(rdev, tmp, mddev) {
2158                 if (!rdev->mddev) {
2159                         MD_BUG();
2160                         continue;
2161                 }
2162                 kick_rdev_from_array(rdev);
2163         }
2164         if (!list_empty(&mddev->disks))
2165                 MD_BUG();
2166         mddev->raid_disks = 0;
2167         mddev->major_version = 0;
2168 }
2169
2170 static void print_desc(mdp_disk_t *desc)
2171 {
2172         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2173                 desc->major,desc->minor,desc->raid_disk,desc->state);
2174 }
2175
2176 static void print_sb_90(mdp_super_t *sb)
2177 {
2178         int i;
2179
2180         printk(KERN_INFO 
2181                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2182                 sb->major_version, sb->minor_version, sb->patch_version,
2183                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2184                 sb->ctime);
2185         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2186                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2187                 sb->md_minor, sb->layout, sb->chunk_size);
2188         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2189                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2190                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2191                 sb->failed_disks, sb->spare_disks,
2192                 sb->sb_csum, (unsigned long)sb->events_lo);
2193
2194         printk(KERN_INFO);
2195         for (i = 0; i < MD_SB_DISKS; i++) {
2196                 mdp_disk_t *desc;
2197
2198                 desc = sb->disks + i;
2199                 if (desc->number || desc->major || desc->minor ||
2200                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2201                         printk("     D %2d: ", i);
2202                         print_desc(desc);
2203                 }
2204         }
2205         printk(KERN_INFO "md:     THIS: ");
2206         print_desc(&sb->this_disk);
2207 }
2208
2209 static void print_sb_1(struct mdp_superblock_1 *sb)
2210 {
2211         __u8 *uuid;
2212
2213         uuid = sb->set_uuid;
2214         printk(KERN_INFO
2215                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2216                "md:    Name: \"%s\" CT:%llu\n",
2217                 le32_to_cpu(sb->major_version),
2218                 le32_to_cpu(sb->feature_map),
2219                 uuid,
2220                 sb->set_name,
2221                 (unsigned long long)le64_to_cpu(sb->ctime)
2222                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2223
2224         uuid = sb->device_uuid;
2225         printk(KERN_INFO
2226                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2227                         " RO:%llu\n"
2228                "md:     Dev:%08x UUID: %pU\n"
2229                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2230                "md:         (MaxDev:%u) \n",
2231                 le32_to_cpu(sb->level),
2232                 (unsigned long long)le64_to_cpu(sb->size),
2233                 le32_to_cpu(sb->raid_disks),
2234                 le32_to_cpu(sb->layout),
2235                 le32_to_cpu(sb->chunksize),
2236                 (unsigned long long)le64_to_cpu(sb->data_offset),
2237                 (unsigned long long)le64_to_cpu(sb->data_size),
2238                 (unsigned long long)le64_to_cpu(sb->super_offset),
2239                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2240                 le32_to_cpu(sb->dev_number),
2241                 uuid,
2242                 sb->devflags,
2243                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2244                 (unsigned long long)le64_to_cpu(sb->events),
2245                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2246                 le32_to_cpu(sb->sb_csum),
2247                 le32_to_cpu(sb->max_dev)
2248                 );
2249 }
2250
2251 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2252 {
2253         char b[BDEVNAME_SIZE];
2254         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2255                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2256                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2257                 rdev->desc_nr);
2258         if (rdev->sb_loaded) {
2259                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2260                 switch (major_version) {
2261                 case 0:
2262                         print_sb_90(page_address(rdev->sb_page));
2263                         break;
2264                 case 1:
2265                         print_sb_1(page_address(rdev->sb_page));
2266                         break;
2267                 }
2268         } else
2269                 printk(KERN_INFO "md: no rdev superblock!\n");
2270 }
2271
2272 static void md_print_devices(void)
2273 {
2274         struct list_head *tmp;
2275         mdk_rdev_t *rdev;
2276         mddev_t *mddev;
2277         char b[BDEVNAME_SIZE];
2278
2279         printk("\n");
2280         printk("md:     **********************************\n");
2281         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2282         printk("md:     **********************************\n");
2283         for_each_mddev(mddev, tmp) {
2284
2285                 if (mddev->bitmap)
2286                         bitmap_print_sb(mddev->bitmap);
2287                 else
2288                         printk("%s: ", mdname(mddev));
2289                 list_for_each_entry(rdev, &mddev->disks, same_set)
2290                         printk("<%s>", bdevname(rdev->bdev,b));
2291                 printk("\n");
2292
2293                 list_for_each_entry(rdev, &mddev->disks, same_set)
2294                         print_rdev(rdev, mddev->major_version);
2295         }
2296         printk("md:     **********************************\n");
2297         printk("\n");
2298 }
2299
2300
2301 static void sync_sbs(mddev_t * mddev, int nospares)
2302 {
2303         /* Update each superblock (in-memory image), but
2304          * if we are allowed to, skip spares which already
2305          * have the right event counter, or have one earlier
2306          * (which would mean they aren't being marked as dirty
2307          * with the rest of the array)
2308          */
2309         mdk_rdev_t *rdev;
2310         list_for_each_entry(rdev, &mddev->disks, same_set) {
2311                 if (rdev->sb_events == mddev->events ||
2312                     (nospares &&
2313                      rdev->raid_disk < 0 &&
2314                      rdev->sb_events+1 == mddev->events)) {
2315                         /* Don't update this superblock */
2316                         rdev->sb_loaded = 2;
2317                 } else {
2318                         sync_super(mddev, rdev);
2319                         rdev->sb_loaded = 1;
2320                 }
2321         }
2322 }
2323
2324 static void md_update_sb(mddev_t * mddev, int force_change)
2325 {
2326         mdk_rdev_t *rdev;
2327         int sync_req;
2328         int nospares = 0;
2329         int any_badblocks_changed = 0;
2330
2331 repeat:
2332         /* First make sure individual recovery_offsets are correct */
2333         list_for_each_entry(rdev, &mddev->disks, same_set) {
2334                 if (rdev->raid_disk >= 0 &&
2335                     mddev->delta_disks >= 0 &&
2336                     !test_bit(In_sync, &rdev->flags) &&
2337                     mddev->curr_resync_completed > rdev->recovery_offset)
2338                                 rdev->recovery_offset = mddev->curr_resync_completed;
2339
2340         }       
2341         if (!mddev->persistent) {
2342                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2343                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2344                 if (!mddev->external)
2345                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2346                 wake_up(&mddev->sb_wait);
2347                 return;
2348         }
2349
2350         spin_lock_irq(&mddev->write_lock);
2351
2352         mddev->utime = get_seconds();
2353
2354         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2355                 force_change = 1;
2356         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2357                 /* just a clean<-> dirty transition, possibly leave spares alone,
2358                  * though if events isn't the right even/odd, we will have to do
2359                  * spares after all
2360                  */
2361                 nospares = 1;
2362         if (force_change)
2363                 nospares = 0;
2364         if (mddev->degraded)
2365                 /* If the array is degraded, then skipping spares is both
2366                  * dangerous and fairly pointless.
2367                  * Dangerous because a device that was removed from the array
2368                  * might have a event_count that still looks up-to-date,
2369                  * so it can be re-added without a resync.
2370                  * Pointless because if there are any spares to skip,
2371                  * then a recovery will happen and soon that array won't
2372                  * be degraded any more and the spare can go back to sleep then.
2373                  */
2374                 nospares = 0;
2375
2376         sync_req = mddev->in_sync;
2377
2378         /* If this is just a dirty<->clean transition, and the array is clean
2379          * and 'events' is odd, we can roll back to the previous clean state */
2380         if (nospares
2381             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2382             && mddev->can_decrease_events
2383             && mddev->events != 1) {
2384                 mddev->events--;
2385                 mddev->can_decrease_events = 0;
2386         } else {
2387                 /* otherwise we have to go forward and ... */
2388                 mddev->events ++;
2389                 mddev->can_decrease_events = nospares;
2390         }
2391
2392         if (!mddev->events) {
2393                 /*
2394                  * oops, this 64-bit counter should never wrap.
2395                  * Either we are in around ~1 trillion A.C., assuming
2396                  * 1 reboot per second, or we have a bug:
2397                  */
2398                 MD_BUG();
2399                 mddev->events --;
2400         }
2401
2402         list_for_each_entry(rdev, &mddev->disks, same_set)
2403                 if (rdev->badblocks.changed)
2404                         any_badblocks_changed++;
2405
2406         sync_sbs(mddev, nospares);
2407         spin_unlock_irq(&mddev->write_lock);
2408
2409         dprintk(KERN_INFO 
2410                 "md: updating %s RAID superblock on device (in sync %d)\n",
2411                 mdname(mddev),mddev->in_sync);
2412
2413         bitmap_update_sb(mddev->bitmap);
2414         list_for_each_entry(rdev, &mddev->disks, same_set) {
2415                 char b[BDEVNAME_SIZE];
2416                 dprintk(KERN_INFO "md: ");
2417                 if (rdev->sb_loaded != 1)
2418                         continue; /* no noise on spare devices */
2419                 if (test_bit(Faulty, &rdev->flags))
2420                         dprintk("(skipping faulty ");
2421
2422                 dprintk("%s ", bdevname(rdev->bdev,b));
2423                 if (!test_bit(Faulty, &rdev->flags)) {
2424                         md_super_write(mddev,rdev,
2425                                        rdev->sb_start, rdev->sb_size,
2426                                        rdev->sb_page);
2427                         dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2428                                 bdevname(rdev->bdev,b),
2429                                 (unsigned long long)rdev->sb_start);
2430                         rdev->sb_events = mddev->events;
2431                         if (rdev->badblocks.size) {
2432                                 md_super_write(mddev, rdev,
2433                                                rdev->badblocks.sector,
2434                                                rdev->badblocks.size << 9,
2435                                                rdev->bb_page);
2436                                 rdev->badblocks.size = 0;
2437                         }
2438
2439                 } else
2440                         dprintk(")\n");
2441                 if (mddev->level == LEVEL_MULTIPATH)
2442                         /* only need to write one superblock... */
2443                         break;
2444         }
2445         md_super_wait(mddev);
2446         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2447
2448         spin_lock_irq(&mddev->write_lock);
2449         if (mddev->in_sync != sync_req ||
2450             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2451                 /* have to write it out again */
2452                 spin_unlock_irq(&mddev->write_lock);
2453                 goto repeat;
2454         }
2455         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2456         spin_unlock_irq(&mddev->write_lock);
2457         wake_up(&mddev->sb_wait);
2458         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2459                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2460
2461         if (any_badblocks_changed)
2462                 list_for_each_entry(rdev, &mddev->disks, same_set)
2463                         md_ack_all_badblocks(&rdev->badblocks);
2464 }
2465
2466 /* words written to sysfs files may, or may not, be \n terminated.
2467  * We want to accept with case. For this we use cmd_match.
2468  */
2469 static int cmd_match(const char *cmd, const char *str)
2470 {
2471         /* See if cmd, written into a sysfs file, matches
2472          * str.  They must either be the same, or cmd can
2473          * have a trailing newline
2474          */
2475         while (*cmd && *str && *cmd == *str) {
2476                 cmd++;
2477                 str++;
2478         }
2479         if (*cmd == '\n')
2480                 cmd++;
2481         if (*str || *cmd)
2482                 return 0;
2483         return 1;
2484 }
2485
2486 struct rdev_sysfs_entry {
2487         struct attribute attr;
2488         ssize_t (*show)(mdk_rdev_t *, char *);
2489         ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2490 };
2491
2492 static ssize_t
2493 state_show(mdk_rdev_t *rdev, char *page)
2494 {
2495         char *sep = "";
2496         size_t len = 0;
2497
2498         if (test_bit(Faulty, &rdev->flags)) {
2499                 len+= sprintf(page+len, "%sfaulty",sep);
2500                 sep = ",";
2501         }
2502         if (test_bit(In_sync, &rdev->flags)) {
2503                 len += sprintf(page+len, "%sin_sync",sep);
2504                 sep = ",";
2505         }
2506         if (test_bit(WriteMostly, &rdev->flags)) {
2507                 len += sprintf(page+len, "%swrite_mostly",sep);
2508                 sep = ",";
2509         }
2510         if (test_bit(Blocked, &rdev->flags)) {
2511                 len += sprintf(page+len, "%sblocked", sep);
2512                 sep = ",";
2513         }
2514         if (!test_bit(Faulty, &rdev->flags) &&
2515             !test_bit(In_sync, &rdev->flags)) {
2516                 len += sprintf(page+len, "%sspare", sep);
2517                 sep = ",";
2518         }
2519         return len+sprintf(page+len, "\n");
2520 }
2521
2522 static ssize_t
2523 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2524 {
2525         /* can write
2526          *  faulty  - simulates and error
2527          *  remove  - disconnects the device
2528          *  writemostly - sets write_mostly
2529          *  -writemostly - clears write_mostly
2530          *  blocked - sets the Blocked flag
2531          *  -blocked - clears the Blocked flag
2532          *  insync - sets Insync providing device isn't active
2533          */
2534         int err = -EINVAL;
2535         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2536                 md_error(rdev->mddev, rdev);
2537                 err = 0;
2538         } else if (cmd_match(buf, "remove")) {
2539                 if (rdev->raid_disk >= 0)
2540                         err = -EBUSY;
2541                 else {
2542                         mddev_t *mddev = rdev->mddev;
2543                         kick_rdev_from_array(rdev);
2544                         if (mddev->pers)
2545                                 md_update_sb(mddev, 1);
2546                         md_new_event(mddev);
2547                         err = 0;
2548                 }
2549         } else if (cmd_match(buf, "writemostly")) {
2550                 set_bit(WriteMostly, &rdev->flags);
2551                 err = 0;
2552         } else if (cmd_match(buf, "-writemostly")) {
2553                 clear_bit(WriteMostly, &rdev->flags);
2554                 err = 0;
2555         } else if (cmd_match(buf, "blocked")) {
2556                 set_bit(Blocked, &rdev->flags);
2557                 err = 0;
2558         } else if (cmd_match(buf, "-blocked")) {
2559                 clear_bit(Blocked, &rdev->flags);
2560                 wake_up(&rdev->blocked_wait);
2561                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2562                 md_wakeup_thread(rdev->mddev->thread);
2563
2564                 err = 0;
2565         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2566                 set_bit(In_sync, &rdev->flags);
2567                 err = 0;
2568         }
2569         if (!err)
2570                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2571         return err ? err : len;
2572 }
2573 static struct rdev_sysfs_entry rdev_state =
2574 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2575
2576 static ssize_t
2577 errors_show(mdk_rdev_t *rdev, char *page)
2578 {
2579         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2580 }
2581
2582 static ssize_t
2583 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2584 {
2585         char *e;
2586         unsigned long n = simple_strtoul(buf, &e, 10);
2587         if (*buf && (*e == 0 || *e == '\n')) {
2588                 atomic_set(&rdev->corrected_errors, n);
2589                 return len;
2590         }
2591         return -EINVAL;
2592 }
2593 static struct rdev_sysfs_entry rdev_errors =
2594 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2595
2596 static ssize_t
2597 slot_show(mdk_rdev_t *rdev, char *page)
2598 {
2599         if (rdev->raid_disk < 0)
2600                 return sprintf(page, "none\n");
2601         else
2602                 return sprintf(page, "%d\n", rdev->raid_disk);
2603 }
2604
2605 static ssize_t
2606 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2607 {
2608         char *e;
2609         int err;
2610         int slot = simple_strtoul(buf, &e, 10);
2611         if (strncmp(buf, "none", 4)==0)
2612                 slot = -1;
2613         else if (e==buf || (*e && *e!= '\n'))
2614                 return -EINVAL;
2615         if (rdev->mddev->pers && slot == -1) {
2616                 /* Setting 'slot' on an active array requires also
2617                  * updating the 'rd%d' link, and communicating
2618                  * with the personality with ->hot_*_disk.
2619                  * For now we only support removing
2620                  * failed/spare devices.  This normally happens automatically,
2621                  * but not when the metadata is externally managed.
2622                  */
2623                 if (rdev->raid_disk == -1)
2624                         return -EEXIST;
2625                 /* personality does all needed checks */
2626                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2627                         return -EINVAL;
2628                 err = rdev->mddev->pers->
2629                         hot_remove_disk(rdev->mddev, rdev->raid_disk);
2630                 if (err)
2631                         return err;
2632                 sysfs_unlink_rdev(rdev->mddev, rdev);
2633                 rdev->raid_disk = -1;
2634                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2635                 md_wakeup_thread(rdev->mddev->thread);
2636         } else if (rdev->mddev->pers) {
2637                 mdk_rdev_t *rdev2;
2638                 /* Activating a spare .. or possibly reactivating
2639                  * if we ever get bitmaps working here.
2640                  */
2641
2642                 if (rdev->raid_disk != -1)
2643                         return -EBUSY;
2644
2645                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2646                         return -EBUSY;
2647
2648                 if (rdev->mddev->pers->hot_add_disk == NULL)
2649                         return -EINVAL;
2650
2651                 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2652                         if (rdev2->raid_disk == slot)
2653                                 return -EEXIST;
2654
2655                 if (slot >= rdev->mddev->raid_disks &&
2656                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2657                         return -ENOSPC;
2658
2659                 rdev->raid_disk = slot;
2660                 if (test_bit(In_sync, &rdev->flags))
2661                         rdev->saved_raid_disk = slot;
2662                 else
2663                         rdev->saved_raid_disk = -1;
2664                 err = rdev->mddev->pers->
2665                         hot_add_disk(rdev->mddev, rdev);
2666                 if (err) {
2667                         rdev->raid_disk = -1;
2668                         return err;
2669                 } else
2670                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2671                 if (sysfs_link_rdev(rdev->mddev, rdev))
2672                         /* failure here is OK */;
2673                 /* don't wakeup anyone, leave that to userspace. */
2674         } else {
2675                 if (slot >= rdev->mddev->raid_disks &&
2676                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2677                         return -ENOSPC;
2678                 rdev->raid_disk = slot;
2679                 /* assume it is working */
2680                 clear_bit(Faulty, &rdev->flags);
2681                 clear_bit(WriteMostly, &rdev->flags);
2682                 set_bit(In_sync, &rdev->flags);
2683                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2684         }
2685         return len;
2686 }
2687
2688
2689 static struct rdev_sysfs_entry rdev_slot =
2690 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2691
2692 static ssize_t
2693 offset_show(mdk_rdev_t *rdev, char *page)
2694 {
2695         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2696 }
2697
2698 static ssize_t
2699 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2700 {
2701         char *e;
2702         unsigned long long offset = simple_strtoull(buf, &e, 10);
2703         if (e==buf || (*e && *e != '\n'))
2704                 return -EINVAL;
2705         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2706                 return -EBUSY;
2707         if (rdev->sectors && rdev->mddev->external)
2708                 /* Must set offset before size, so overlap checks
2709                  * can be sane */
2710                 return -EBUSY;
2711         rdev->data_offset = offset;
2712         return len;
2713 }
2714
2715 static struct rdev_sysfs_entry rdev_offset =
2716 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2717
2718 static ssize_t
2719 rdev_size_show(mdk_rdev_t *rdev, char *page)
2720 {
2721         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2722 }
2723
2724 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2725 {
2726         /* check if two start/length pairs overlap */
2727         if (s1+l1 <= s2)
2728                 return 0;
2729         if (s2+l2 <= s1)
2730                 return 0;
2731         return 1;
2732 }
2733
2734 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2735 {
2736         unsigned long long blocks;
2737         sector_t new;
2738
2739         if (strict_strtoull(buf, 10, &blocks) < 0)
2740                 return -EINVAL;
2741
2742         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2743                 return -EINVAL; /* sector conversion overflow */
2744
2745         new = blocks * 2;
2746         if (new != blocks * 2)
2747                 return -EINVAL; /* unsigned long long to sector_t overflow */
2748
2749         *sectors = new;
2750         return 0;
2751 }
2752
2753 static ssize_t
2754 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2755 {
2756         mddev_t *my_mddev = rdev->mddev;
2757         sector_t oldsectors = rdev->sectors;
2758         sector_t sectors;
2759
2760         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2761                 return -EINVAL;
2762         if (my_mddev->pers && rdev->raid_disk >= 0) {
2763                 if (my_mddev->persistent) {
2764                         sectors = super_types[my_mddev->major_version].
2765                                 rdev_size_change(rdev, sectors);
2766                         if (!sectors)
2767                                 return -EBUSY;
2768                 } else if (!sectors)
2769                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2770                                 rdev->data_offset;
2771         }
2772         if (sectors < my_mddev->dev_sectors)
2773                 return -EINVAL; /* component must fit device */
2774
2775         rdev->sectors = sectors;
2776         if (sectors > oldsectors && my_mddev->external) {
2777                 /* need to check that all other rdevs with the same ->bdev
2778                  * do not overlap.  We need to unlock the mddev to avoid
2779                  * a deadlock.  We have already changed rdev->sectors, and if
2780                  * we have to change it back, we will have the lock again.
2781                  */
2782                 mddev_t *mddev;
2783                 int overlap = 0;
2784                 struct list_head *tmp;
2785
2786                 mddev_unlock(my_mddev);
2787                 for_each_mddev(mddev, tmp) {
2788                         mdk_rdev_t *rdev2;
2789
2790                         mddev_lock(mddev);
2791                         list_for_each_entry(rdev2, &mddev->disks, same_set)
2792                                 if (rdev->bdev == rdev2->bdev &&
2793                                     rdev != rdev2 &&
2794                                     overlaps(rdev->data_offset, rdev->sectors,
2795                                              rdev2->data_offset,
2796                                              rdev2->sectors)) {
2797                                         overlap = 1;
2798                                         break;
2799                                 }
2800                         mddev_unlock(mddev);
2801                         if (overlap) {
2802                                 mddev_put(mddev);
2803                                 break;
2804                         }
2805                 }
2806                 mddev_lock(my_mddev);
2807                 if (overlap) {
2808                         /* Someone else could have slipped in a size
2809                          * change here, but doing so is just silly.
2810                          * We put oldsectors back because we *know* it is
2811                          * safe, and trust userspace not to race with
2812                          * itself
2813                          */
2814                         rdev->sectors = oldsectors;
2815                         return -EBUSY;
2816                 }
2817         }
2818         return len;
2819 }
2820
2821 static struct rdev_sysfs_entry rdev_size =
2822 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2823
2824
2825 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2826 {
2827         unsigned long long recovery_start = rdev->recovery_offset;
2828
2829         if (test_bit(In_sync, &rdev->flags) ||
2830             recovery_start == MaxSector)
2831                 return sprintf(page, "none\n");
2832
2833         return sprintf(page, "%llu\n", recovery_start);
2834 }
2835
2836 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2837 {
2838         unsigned long long recovery_start;
2839
2840         if (cmd_match(buf, "none"))
2841                 recovery_start = MaxSector;
2842         else if (strict_strtoull(buf, 10, &recovery_start))
2843                 return -EINVAL;
2844
2845         if (rdev->mddev->pers &&
2846             rdev->raid_disk >= 0)
2847                 return -EBUSY;
2848
2849         rdev->recovery_offset = recovery_start;
2850         if (recovery_start == MaxSector)
2851                 set_bit(In_sync, &rdev->flags);
2852         else
2853                 clear_bit(In_sync, &rdev->flags);
2854         return len;
2855 }
2856
2857 static struct rdev_sysfs_entry rdev_recovery_start =
2858 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2859
2860
2861 static ssize_t
2862 badblocks_show(struct badblocks *bb, char *page, int unack);
2863 static ssize_t
2864 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2865
2866 static ssize_t bb_show(mdk_rdev_t *rdev, char *page)
2867 {
2868         return badblocks_show(&rdev->badblocks, page, 0);
2869 }
2870 static ssize_t bb_store(mdk_rdev_t *rdev, const char *page, size_t len)
2871 {
2872         return badblocks_store(&rdev->badblocks, page, len, 0);
2873 }
2874 static struct rdev_sysfs_entry rdev_bad_blocks =
2875 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2876
2877
2878 static ssize_t ubb_show(mdk_rdev_t *rdev, char *page)
2879 {
2880         return badblocks_show(&rdev->badblocks, page, 1);
2881 }
2882 static ssize_t ubb_store(mdk_rdev_t *rdev, const char *page, size_t len)
2883 {
2884         return badblocks_store(&rdev->badblocks, page, len, 1);
2885 }
2886 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2887 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2888
2889 static struct attribute *rdev_default_attrs[] = {
2890         &rdev_state.attr,
2891         &rdev_errors.attr,
2892         &rdev_slot.attr,
2893         &rdev_offset.attr,
2894         &rdev_size.attr,
2895         &rdev_recovery_start.attr,
2896         &rdev_bad_blocks.attr,
2897         &rdev_unack_bad_blocks.attr,
2898         NULL,
2899 };
2900 static ssize_t
2901 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2902 {
2903         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2904         mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2905         mddev_t *mddev = rdev->mddev;
2906         ssize_t rv;
2907
2908         if (!entry->show)
2909                 return -EIO;
2910
2911         rv = mddev ? mddev_lock(mddev) : -EBUSY;
2912         if (!rv) {
2913                 if (rdev->mddev == NULL)
2914                         rv = -EBUSY;
2915                 else
2916                         rv = entry->show(rdev, page);
2917                 mddev_unlock(mddev);
2918         }
2919         return rv;
2920 }
2921
2922 static ssize_t
2923 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2924               const char *page, size_t length)
2925 {
2926         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2927         mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2928         ssize_t rv;
2929         mddev_t *mddev = rdev->mddev;
2930
2931         if (!entry->store)
2932                 return -EIO;
2933         if (!capable(CAP_SYS_ADMIN))
2934                 return -EACCES;
2935         rv = mddev ? mddev_lock(mddev): -EBUSY;
2936         if (!rv) {
2937                 if (rdev->mddev == NULL)
2938                         rv = -EBUSY;
2939                 else
2940                         rv = entry->store(rdev, page, length);
2941                 mddev_unlock(mddev);
2942         }
2943         return rv;
2944 }
2945
2946 static void rdev_free(struct kobject *ko)
2947 {
2948         mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2949         kfree(rdev);
2950 }
2951 static const struct sysfs_ops rdev_sysfs_ops = {
2952         .show           = rdev_attr_show,
2953         .store          = rdev_attr_store,
2954 };
2955 static struct kobj_type rdev_ktype = {
2956         .release        = rdev_free,
2957         .sysfs_ops      = &rdev_sysfs_ops,
2958         .default_attrs  = rdev_default_attrs,
2959 };
2960
2961 int md_rdev_init(mdk_rdev_t *rdev)
2962 {
2963         rdev->desc_nr = -1;
2964         rdev->saved_raid_disk = -1;
2965         rdev->raid_disk = -1;
2966         rdev->flags = 0;
2967         rdev->data_offset = 0;
2968         rdev->sb_events = 0;
2969         rdev->last_read_error.tv_sec  = 0;
2970         rdev->last_read_error.tv_nsec = 0;
2971         rdev->sb_loaded = 0;
2972         rdev->bb_page = NULL;
2973         atomic_set(&rdev->nr_pending, 0);
2974         atomic_set(&rdev->read_errors, 0);
2975         atomic_set(&rdev->corrected_errors, 0);
2976
2977         INIT_LIST_HEAD(&rdev->same_set);
2978         init_waitqueue_head(&rdev->blocked_wait);
2979
2980         /* Add space to store bad block list.
2981          * This reserves the space even on arrays where it cannot
2982          * be used - I wonder if that matters
2983          */
2984         rdev->badblocks.count = 0;
2985         rdev->badblocks.shift = 0;
2986         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
2987         seqlock_init(&rdev->badblocks.lock);
2988         if (rdev->badblocks.page == NULL)
2989                 return -ENOMEM;
2990
2991         return 0;
2992 }
2993 EXPORT_SYMBOL_GPL(md_rdev_init);
2994 /*
2995  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2996  *
2997  * mark the device faulty if:
2998  *
2999  *   - the device is nonexistent (zero size)
3000  *   - the device has no valid superblock
3001  *
3002  * a faulty rdev _never_ has rdev->sb set.
3003  */
3004 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
3005 {
3006         char b[BDEVNAME_SIZE];
3007         int err;
3008         mdk_rdev_t *rdev;
3009         sector_t size;
3010
3011         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3012         if (!rdev) {
3013                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3014                 return ERR_PTR(-ENOMEM);
3015         }
3016
3017         err = md_rdev_init(rdev);
3018         if (err)
3019                 goto abort_free;
3020         err = alloc_disk_sb(rdev);
3021         if (err)
3022                 goto abort_free;
3023
3024         err = lock_rdev(rdev, newdev, super_format == -2);
3025         if (err)
3026                 goto abort_free;
3027
3028         kobject_init(&rdev->kobj, &rdev_ktype);
3029
3030         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3031         if (!size) {
3032                 printk(KERN_WARNING 
3033                         "md: %s has zero or unknown size, marking faulty!\n",
3034                         bdevname(rdev->bdev,b));
3035                 err = -EINVAL;
3036                 goto abort_free;
3037         }
3038
3039         if (super_format >= 0) {
3040                 err = super_types[super_format].
3041                         load_super(rdev, NULL, super_minor);
3042                 if (err == -EINVAL) {
3043                         printk(KERN_WARNING
3044                                 "md: %s does not have a valid v%d.%d "
3045                                "superblock, not importing!\n",
3046                                 bdevname(rdev->bdev,b),
3047                                super_format, super_minor);
3048                         goto abort_free;
3049                 }
3050                 if (err < 0) {
3051                         printk(KERN_WARNING 
3052                                 "md: could not read %s's sb, not importing!\n",
3053                                 bdevname(rdev->bdev,b));
3054                         goto abort_free;
3055                 }
3056         }
3057         if (super_format == -1)
3058                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3059                 rdev->badblocks.shift = -1;
3060
3061         return rdev;
3062
3063 abort_free:
3064         if (rdev->bdev)
3065                 unlock_rdev(rdev);
3066         free_disk_sb(rdev);
3067         kfree(rdev->badblocks.page);
3068         kfree(rdev);
3069         return ERR_PTR(err);
3070 }
3071
3072 /*
3073  * Check a full RAID array for plausibility
3074  */
3075
3076
3077 static void analyze_sbs(mddev_t * mddev)
3078 {
3079         int i;
3080         mdk_rdev_t *rdev, *freshest, *tmp;
3081         char b[BDEVNAME_SIZE];
3082
3083         freshest = NULL;
3084         rdev_for_each(rdev, tmp, mddev)
3085                 switch (super_types[mddev->major_version].
3086                         load_super(rdev, freshest, mddev->minor_version)) {
3087                 case 1:
3088                         freshest = rdev;
3089                         break;
3090                 case 0:
3091                         break;
3092                 default:
3093                         printk( KERN_ERR \
3094                                 "md: fatal superblock inconsistency in %s"
3095                                 " -- removing from array\n", 
3096                                 bdevname(rdev->bdev,b));
3097                         kick_rdev_from_array(rdev);
3098                 }
3099
3100
3101         super_types[mddev->major_version].
3102                 validate_super(mddev, freshest);
3103
3104         i = 0;
3105         rdev_for_each(rdev, tmp, mddev) {
3106                 if (mddev->max_disks &&
3107                     (rdev->desc_nr >= mddev->max_disks ||
3108                      i > mddev->max_disks)) {
3109                         printk(KERN_WARNING
3110                                "md: %s: %s: only %d devices permitted\n",
3111                                mdname(mddev), bdevname(rdev->bdev, b),
3112                                mddev->max_disks);
3113                         kick_rdev_from_array(rdev);
3114                         continue;
3115                 }
3116                 if (rdev != freshest)
3117                         if (super_types[mddev->major_version].
3118                             validate_super(mddev, rdev)) {
3119                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3120                                         " from array!\n",
3121                                         bdevname(rdev->bdev,b));
3122                                 kick_rdev_from_array(rdev);
3123                                 continue;
3124                         }
3125                 if (mddev->level == LEVEL_MULTIPATH) {
3126                         rdev->desc_nr = i++;
3127                         rdev->raid_disk = rdev->desc_nr;
3128                         set_bit(In_sync, &rdev->flags);
3129                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3130                         rdev->raid_disk = -1;
3131                         clear_bit(In_sync, &rdev->flags);
3132                 }
3133         }
3134 }
3135
3136 /* Read a fixed-point number.
3137  * Numbers in sysfs attributes should be in "standard" units where
3138  * possible, so time should be in seconds.
3139  * However we internally use a a much smaller unit such as 
3140  * milliseconds or jiffies.
3141  * This function takes a decimal number with a possible fractional
3142  * component, and produces an integer which is the result of
3143  * multiplying that number by 10^'scale'.
3144  * all without any floating-point arithmetic.
3145  */
3146 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3147 {
3148         unsigned long result = 0;
3149         long decimals = -1;
3150         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3151                 if (*cp == '.')
3152                         decimals = 0;
3153                 else if (decimals < scale) {
3154                         unsigned int value;
3155                         value = *cp - '0';
3156                         result = result * 10 + value;
3157                         if (decimals >= 0)
3158                                 decimals++;
3159                 }
3160                 cp++;
3161         }
3162         if (*cp == '\n')
3163                 cp++;
3164         if (*cp)
3165                 return -EINVAL;
3166         if (decimals < 0)
3167                 decimals = 0;
3168         while (decimals < scale) {
3169                 result *= 10;
3170                 decimals ++;
3171         }
3172         *res = result;
3173         return 0;
3174 }
3175
3176
3177 static void md_safemode_timeout(unsigned long data);
3178
3179 static ssize_t
3180 safe_delay_show(mddev_t *mddev, char *page)
3181 {
3182         int msec = (mddev->safemode_delay*1000)/HZ;
3183         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3184 }
3185 static ssize_t
3186 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
3187 {
3188         unsigned long msec;
3189
3190         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3191                 return -EINVAL;
3192         if (msec == 0)
3193                 mddev->safemode_delay = 0;
3194         else {
3195                 unsigned long old_delay = mddev->safemode_delay;
3196                 mddev->safemode_delay = (msec*HZ)/1000;
3197                 if (mddev->safemode_delay == 0)
3198                         mddev->safemode_delay = 1;
3199                 if (mddev->safemode_delay < old_delay)
3200                         md_safemode_timeout((unsigned long)mddev);
3201         }
3202         return len;
3203 }
3204 static struct md_sysfs_entry md_safe_delay =
3205 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3206
3207 static ssize_t
3208 level_show(mddev_t *mddev, char *page)
3209 {
3210         struct mdk_personality *p = mddev->pers;
3211         if (p)
3212                 return sprintf(page, "%s\n", p->name);
3213         else if (mddev->clevel[0])
3214                 return sprintf(page, "%s\n", mddev->clevel);
3215         else if (mddev->level != LEVEL_NONE)
3216                 return sprintf(page, "%d\n", mddev->level);
3217         else
3218                 return 0;
3219 }
3220
3221 static ssize_t
3222 level_store(mddev_t *mddev, const char *buf, size_t len)
3223 {
3224         char clevel[16];
3225         ssize_t rv = len;
3226         struct mdk_personality *pers;
3227         long level;
3228         void *priv;
3229         mdk_rdev_t *rdev;
3230
3231         if (mddev->pers == NULL) {
3232                 if (len == 0)
3233                         return 0;
3234                 if (len >= sizeof(mddev->clevel))
3235                         return -ENOSPC;
3236                 strncpy(mddev->clevel, buf, len);
3237                 if (mddev->clevel[len-1] == '\n')
3238                         len--;
3239                 mddev->clevel[len] = 0;
3240                 mddev->level = LEVEL_NONE;
3241                 return rv;
3242         }
3243
3244         /* request to change the personality.  Need to ensure:
3245          *  - array is not engaged in resync/recovery/reshape
3246          *  - old personality can be suspended
3247          *  - new personality will access other array.
3248          */
3249
3250         if (mddev->sync_thread ||
3251             mddev->reshape_position != MaxSector ||
3252             mddev->sysfs_active)
3253                 return -EBUSY;
3254
3255         if (!mddev->pers->quiesce) {
3256                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3257                        mdname(mddev), mddev->pers->name);
3258                 return -EINVAL;
3259         }
3260
3261         /* Now find the new personality */
3262         if (len == 0 || len >= sizeof(clevel))
3263                 return -EINVAL;
3264         strncpy(clevel, buf, len);
3265         if (clevel[len-1] == '\n')
3266                 len--;
3267         clevel[len] = 0;
3268         if (strict_strtol(clevel, 10, &level))
3269                 level = LEVEL_NONE;
3270
3271         if (request_module("md-%s", clevel) != 0)
3272                 request_module("md-level-%s", clevel);
3273         spin_lock(&pers_lock);
3274         pers = find_pers(level, clevel);
3275         if (!pers || !try_module_get(pers->owner)) {
3276                 spin_unlock(&pers_lock);
3277                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3278                 return -EINVAL;
3279         }
3280         spin_unlock(&pers_lock);
3281
3282         if (pers == mddev->pers) {
3283                 /* Nothing to do! */
3284                 module_put(pers->owner);
3285                 return rv;
3286         }
3287         if (!pers->takeover) {
3288                 module_put(pers->owner);
3289                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3290                        mdname(mddev), clevel);
3291                 return -EINVAL;
3292         }
3293
3294         list_for_each_entry(rdev, &mddev->disks, same_set)
3295                 rdev->new_raid_disk = rdev->raid_disk;
3296
3297         /* ->takeover must set new_* and/or delta_disks
3298          * if it succeeds, and may set them when it fails.
3299          */
3300         priv = pers->takeover(mddev);
3301         if (IS_ERR(priv)) {
3302                 mddev->new_level = mddev->level;
3303                 mddev->new_layout = mddev->layout;
3304                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3305                 mddev->raid_disks -= mddev->delta_disks;
3306                 mddev->delta_disks = 0;
3307                 module_put(pers->owner);
3308                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3309                        mdname(mddev), clevel);
3310                 return PTR_ERR(priv);
3311         }
3312
3313         /* Looks like we have a winner */
3314         mddev_suspend(mddev);
3315         mddev->pers->stop(mddev);
3316         
3317         if (mddev->pers->sync_request == NULL &&
3318             pers->sync_request != NULL) {
3319                 /* need to add the md_redundancy_group */
3320                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3321                         printk(KERN_WARNING
3322                                "md: cannot register extra attributes for %s\n",
3323                                mdname(mddev));
3324                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3325         }               
3326         if (mddev->pers->sync_request != NULL &&
3327             pers->sync_request == NULL) {
3328                 /* need to remove the md_redundancy_group */
3329                 if (mddev->to_remove == NULL)
3330                         mddev->to_remove = &md_redundancy_group;
3331         }
3332
3333         if (mddev->pers->sync_request == NULL &&
3334             mddev->external) {
3335                 /* We are converting from a no-redundancy array
3336                  * to a redundancy array and metadata is managed
3337                  * externally so we need to be sure that writes
3338                  * won't block due to a need to transition
3339                  *      clean->dirty
3340                  * until external management is started.
3341                  */
3342                 mddev->in_sync = 0;
3343                 mddev->safemode_delay = 0;
3344                 mddev->safemode = 0;
3345         }
3346
3347         list_for_each_entry(rdev, &mddev->disks, same_set) {
3348                 if (rdev->raid_disk < 0)
3349                         continue;
3350                 if (rdev->new_raid_disk >= mddev->raid_disks)
3351                         rdev->new_raid_disk = -1;
3352                 if (rdev->new_raid_disk == rdev->raid_disk)
3353                         continue;
3354                 sysfs_unlink_rdev(mddev, rdev);
3355         }
3356         list_for_each_entry(rdev, &mddev->disks, same_set) {
3357                 if (rdev->raid_disk < 0)
3358                         continue;
3359                 if (rdev->new_raid_disk == rdev->raid_disk)
3360                         continue;
3361                 rdev->raid_disk = rdev->new_raid_disk;
3362                 if (rdev->raid_disk < 0)
3363                         clear_bit(In_sync, &rdev->flags);
3364                 else {
3365                         if (sysfs_link_rdev(mddev, rdev))
3366                                 printk(KERN_WARNING "md: cannot register rd%d"
3367                                        " for %s after level change\n",
3368                                        rdev->raid_disk, mdname(mddev));
3369                 }
3370         }
3371
3372         module_put(mddev->pers->owner);
3373         mddev->pers = pers;
3374         mddev->private = priv;
3375         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3376         mddev->level = mddev->new_level;
3377         mddev->layout = mddev->new_layout;
3378         mddev->chunk_sectors = mddev->new_chunk_sectors;
3379         mddev->delta_disks = 0;
3380         mddev->degraded = 0;
3381         if (mddev->pers->sync_request == NULL) {
3382                 /* this is now an array without redundancy, so
3383                  * it must always be in_sync
3384                  */
3385                 mddev->in_sync = 1;
3386                 del_timer_sync(&mddev->safemode_timer);
3387         }
3388         pers->run(mddev);
3389         mddev_resume(mddev);
3390         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3391         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3392         md_wakeup_thread(mddev->thread);
3393         sysfs_notify(&mddev->kobj, NULL, "level");
3394         md_new_event(mddev);
3395         return rv;
3396 }
3397
3398 static struct md_sysfs_entry md_level =
3399 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3400
3401
3402 static ssize_t
3403 layout_show(mddev_t *mddev, char *page)
3404 {
3405         /* just a number, not meaningful for all levels */
3406         if (mddev->reshape_position != MaxSector &&
3407             mddev->layout != mddev->new_layout)
3408                 return sprintf(page, "%d (%d)\n",
3409                                mddev->new_layout, mddev->layout);
3410         return sprintf(page, "%d\n", mddev->layout);
3411 }
3412
3413 static ssize_t
3414 layout_store(mddev_t *mddev, const char *buf, size_t len)
3415 {
3416         char *e;
3417         unsigned long n = simple_strtoul(buf, &e, 10);
3418
3419         if (!*buf || (*e && *e != '\n'))
3420                 return -EINVAL;
3421
3422         if (mddev->pers) {
3423                 int err;
3424                 if (mddev->pers->check_reshape == NULL)
3425                         return -EBUSY;
3426                 mddev->new_layout = n;
3427                 err = mddev->pers->check_reshape(mddev);
3428                 if (err) {
3429                         mddev->new_layout = mddev->layout;
3430                         return err;
3431                 }
3432         } else {
3433                 mddev->new_layout = n;
3434                 if (mddev->reshape_position == MaxSector)
3435                         mddev->layout = n;
3436         }
3437         return len;
3438 }
3439 static struct md_sysfs_entry md_layout =
3440 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3441
3442
3443 static ssize_t
3444 raid_disks_show(mddev_t *mddev, char *page)
3445 {
3446         if (mddev->raid_disks == 0)
3447                 return 0;
3448         if (mddev->reshape_position != MaxSector &&
3449             mddev->delta_disks != 0)
3450                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3451                                mddev->raid_disks - mddev->delta_disks);
3452         return sprintf(page, "%d\n", mddev->raid_disks);
3453 }
3454
3455 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3456
3457 static ssize_t
3458 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3459 {
3460         char *e;
3461         int rv = 0;
3462         unsigned long n = simple_strtoul(buf, &e, 10);
3463
3464         if (!*buf || (*e && *e != '\n'))
3465                 return -EINVAL;
3466
3467         if (mddev->pers)
3468                 rv = update_raid_disks(mddev, n);
3469         else if (mddev->reshape_position != MaxSector) {
3470                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3471                 mddev->delta_disks = n - olddisks;
3472                 mddev->raid_disks = n;
3473         } else
3474                 mddev->raid_disks = n;
3475         return rv ? rv : len;
3476 }
3477 static struct md_sysfs_entry md_raid_disks =
3478 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3479
3480 static ssize_t
3481 chunk_size_show(mddev_t *mddev, char *page)
3482 {
3483         if (mddev->reshape_position != MaxSector &&
3484             mddev->chunk_sectors != mddev->new_chunk_sectors)
3485                 return sprintf(page, "%d (%d)\n",
3486                                mddev->new_chunk_sectors << 9,
3487                                mddev->chunk_sectors << 9);
3488         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3489 }
3490
3491 static ssize_t
3492 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3493 {
3494         char *e;
3495         unsigned long n = simple_strtoul(buf, &e, 10);
3496
3497         if (!*buf || (*e && *e != '\n'))
3498                 return -EINVAL;
3499
3500         if (mddev->pers) {
3501                 int err;
3502                 if (mddev->pers->check_reshape == NULL)
3503                         return -EBUSY;
3504                 mddev->new_chunk_sectors = n >> 9;
3505                 err = mddev->pers->check_reshape(mddev);
3506                 if (err) {
3507                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3508                         return err;
3509                 }
3510         } else {
3511                 mddev->new_chunk_sectors = n >> 9;
3512                 if (mddev->reshape_position == MaxSector)
3513                         mddev->chunk_sectors = n >> 9;
3514         }
3515         return len;
3516 }
3517 static struct md_sysfs_entry md_chunk_size =
3518 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3519
3520 static ssize_t
3521 resync_start_show(mddev_t *mddev, char *page)
3522 {
3523         if (mddev->recovery_cp == MaxSector)
3524                 return sprintf(page, "none\n");
3525         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3526 }
3527
3528 static ssize_t
3529 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3530 {
3531         char *e;
3532         unsigned long long n = simple_strtoull(buf, &e, 10);
3533
3534         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3535                 return -EBUSY;
3536         if (cmd_match(buf, "none"))
3537                 n = MaxSector;
3538         else if (!*buf || (*e && *e != '\n'))
3539                 return -EINVAL;
3540
3541         mddev->recovery_cp = n;
3542         return len;
3543 }
3544 static struct md_sysfs_entry md_resync_start =
3545 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3546
3547 /*
3548  * The array state can be:
3549  *
3550  * clear
3551  *     No devices, no size, no level
3552  *     Equivalent to STOP_ARRAY ioctl
3553  * inactive
3554  *     May have some settings, but array is not active
3555  *        all IO results in error
3556  *     When written, doesn't tear down array, but just stops it
3557  * suspended (not supported yet)
3558  *     All IO requests will block. The array can be reconfigured.
3559  *     Writing this, if accepted, will block until array is quiescent
3560  * readonly
3561  *     no resync can happen.  no superblocks get written.
3562  *     write requests fail
3563  * read-auto
3564  *     like readonly, but behaves like 'clean' on a write request.
3565  *
3566  * clean - no pending writes, but otherwise active.
3567  *     When written to inactive array, starts without resync
3568  *     If a write request arrives then
3569  *       if metadata is known, mark 'dirty' and switch to 'active'.
3570  *       if not known, block and switch to write-pending
3571  *     If written to an active array that has pending writes, then fails.
3572  * active
3573  *     fully active: IO and resync can be happening.
3574  *     When written to inactive array, starts with resync
3575  *
3576  * write-pending
3577  *     clean, but writes are blocked waiting for 'active' to be written.
3578  *
3579  * active-idle
3580  *     like active, but no writes have been seen for a while (100msec).
3581  *
3582  */
3583 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3584                    write_pending, active_idle, bad_word};
3585 static char *array_states[] = {
3586         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3587         "write-pending", "active-idle", NULL };
3588
3589 static int match_word(const char *word, char **list)
3590 {
3591         int n;
3592         for (n=0; list[n]; n++)
3593                 if (cmd_match(word, list[n]))
3594                         break;
3595         return n;
3596 }
3597
3598 static ssize_t
3599 array_state_show(mddev_t *mddev, char *page)
3600 {
3601         enum array_state st = inactive;
3602
3603         if (mddev->pers)
3604                 switch(mddev->ro) {
3605                 case 1:
3606                         st = readonly;
3607                         break;
3608                 case 2:
3609                         st = read_auto;
3610                         break;
3611                 case 0:
3612                         if (mddev->in_sync)
3613                                 st = clean;
3614                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3615                                 st = write_pending;
3616                         else if (mddev->safemode)
3617                                 st = active_idle;
3618                         else
3619                                 st = active;
3620                 }
3621         else {
3622                 if (list_empty(&mddev->disks) &&
3623                     mddev->raid_disks == 0 &&
3624                     mddev->dev_sectors == 0)
3625                         st = clear;
3626                 else
3627                         st = inactive;
3628         }
3629         return sprintf(page, "%s\n", array_states[st]);
3630 }
3631
3632 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3633 static int md_set_readonly(mddev_t * mddev, int is_open);
3634 static int do_md_run(mddev_t * mddev);
3635 static int restart_array(mddev_t *mddev);
3636
3637 static ssize_t
3638 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3639 {
3640         int err = -EINVAL;
3641         enum array_state st = match_word(buf, array_states);
3642         switch(st) {
3643         case bad_word:
3644                 break;
3645         case clear:
3646                 /* stopping an active array */
3647                 if (atomic_read(&mddev->openers) > 0)
3648                         return -EBUSY;
3649                 err = do_md_stop(mddev, 0, 0);
3650                 break;
3651         case inactive:
3652                 /* stopping an active array */
3653                 if (mddev->pers) {
3654                         if (atomic_read(&mddev->openers) > 0)
3655                                 return -EBUSY;
3656                         err = do_md_stop(mddev, 2, 0);
3657                 } else
3658                         err = 0; /* already inactive */
3659                 break;
3660         case suspended:
3661                 break; /* not supported yet */
3662         case readonly:
3663                 if (mddev->pers)
3664                         err = md_set_readonly(mddev, 0);
3665                 else {
3666                         mddev->ro = 1;
3667                         set_disk_ro(mddev->gendisk, 1);
3668                         err = do_md_run(mddev);
3669                 }
3670                 break;
3671         case read_auto:
3672                 if (mddev->pers) {
3673                         if (mddev->ro == 0)
3674                                 err = md_set_readonly(mddev, 0);
3675                         else if (mddev->ro == 1)
3676                                 err = restart_array(mddev);
3677                         if (err == 0) {
3678                                 mddev->ro = 2;
3679                                 set_disk_ro(mddev->gendisk, 0);
3680                         }
3681                 } else {
3682                         mddev->ro = 2;
3683                         err = do_md_run(mddev);
3684                 }
3685                 break;
3686         case clean:
3687                 if (mddev->pers) {
3688                         restart_array(mddev);
3689                         spin_lock_irq(&mddev->write_lock);
3690                         if (atomic_read(&mddev->writes_pending) == 0) {
3691                                 if (mddev->in_sync == 0) {
3692                                         mddev->in_sync = 1;
3693                                         if (mddev->safemode == 1)
3694                                                 mddev->safemode = 0;
3695                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3696                                 }
3697                                 err = 0;
3698                         } else
3699                                 err = -EBUSY;
3700                         spin_unlock_irq(&mddev->write_lock);
3701                 } else
3702                         err = -EINVAL;
3703                 break;
3704         case active:
3705                 if (mddev->pers) {
3706                         restart_array(mddev);
3707                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3708                         wake_up(&mddev->sb_wait);
3709                         err = 0;
3710                 } else {
3711                         mddev->ro = 0;
3712                         set_disk_ro(mddev->gendisk, 0);
3713                         err = do_md_run(mddev);
3714                 }
3715                 break;
3716         case write_pending:
3717         case active_idle:
3718                 /* these cannot be set */
3719                 break;
3720         }
3721         if (err)
3722                 return err;
3723         else {
3724                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3725                 return len;
3726         }
3727 }
3728 static struct md_sysfs_entry md_array_state =
3729 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3730
3731 static ssize_t
3732 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3733         return sprintf(page, "%d\n",
3734                        atomic_read(&mddev->max_corr_read_errors));
3735 }
3736
3737 static ssize_t
3738 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3739 {
3740         char *e;
3741         unsigned long n = simple_strtoul(buf, &e, 10);
3742
3743         if (*buf && (*e == 0 || *e == '\n')) {
3744                 atomic_set(&mddev->max_corr_read_errors, n);
3745                 return len;
3746         }
3747         return -EINVAL;
3748 }
3749
3750 static struct md_sysfs_entry max_corr_read_errors =
3751 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3752         max_corrected_read_errors_store);
3753
3754 static ssize_t
3755 null_show(mddev_t *mddev, char *page)
3756 {
3757         return -EINVAL;
3758 }
3759
3760 static ssize_t
3761 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3762 {
3763         /* buf must be %d:%d\n? giving major and minor numbers */
3764         /* The new device is added to the array.
3765          * If the array has a persistent superblock, we read the
3766          * superblock to initialise info and check validity.
3767          * Otherwise, only checking done is that in bind_rdev_to_array,
3768          * which mainly checks size.
3769          */
3770         char *e;
3771         int major = simple_strtoul(buf, &e, 10);
3772         int minor;
3773         dev_t dev;
3774         mdk_rdev_t *rdev;
3775         int err;
3776
3777         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3778                 return -EINVAL;
3779         minor = simple_strtoul(e+1, &e, 10);
3780         if (*e && *e != '\n')
3781                 return -EINVAL;
3782         dev = MKDEV(major, minor);
3783         if (major != MAJOR(dev) ||
3784             minor != MINOR(dev))
3785                 return -EOVERFLOW;
3786
3787
3788         if (mddev->persistent) {
3789                 rdev = md_import_device(dev, mddev->major_version,
3790                                         mddev->minor_version);
3791                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3792                         mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3793                                                        mdk_rdev_t, same_set);
3794                         err = super_types[mddev->major_version]
3795                                 .load_super(rdev, rdev0, mddev->minor_version);
3796                         if (err < 0)
3797                                 goto out;
3798                 }
3799         } else if (mddev->external)
3800                 rdev = md_import_device(dev, -2, -1);
3801         else
3802                 rdev = md_import_device(dev, -1, -1);
3803
3804         if (IS_ERR(rdev))
3805                 return PTR_ERR(rdev);
3806         err = bind_rdev_to_array(rdev, mddev);
3807  out:
3808         if (err)
3809                 export_rdev(rdev);
3810         return err ? err : len;
3811 }
3812
3813 static struct md_sysfs_entry md_new_device =
3814 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3815
3816 static ssize_t
3817 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3818 {
3819         char *end;
3820         unsigned long chunk, end_chunk;
3821
3822         if (!mddev->bitmap)
3823                 goto out;
3824         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3825         while (*buf) {
3826                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3827                 if (buf == end) break;
3828                 if (*end == '-') { /* range */
3829                         buf = end + 1;
3830                         end_chunk = simple_strtoul(buf, &end, 0);
3831                         if (buf == end) break;
3832                 }
3833                 if (*end && !isspace(*end)) break;
3834                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3835                 buf = skip_spaces(end);
3836         }
3837         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3838 out:
3839         return len;
3840 }
3841
3842 static struct md_sysfs_entry md_bitmap =
3843 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3844
3845 static ssize_t
3846 size_show(mddev_t *mddev, char *page)
3847 {
3848         return sprintf(page, "%llu\n",
3849                 (unsigned long long)mddev->dev_sectors / 2);
3850 }
3851
3852 static int update_size(mddev_t *mddev, sector_t num_sectors);
3853
3854 static ssize_t
3855 size_store(mddev_t *mddev, const char *buf, size_t len)
3856 {
3857         /* If array is inactive, we can reduce the component size, but
3858          * not increase it (except from 0).
3859          * If array is active, we can try an on-line resize
3860          */
3861         sector_t sectors;
3862         int err = strict_blocks_to_sectors(buf, &sectors);
3863
3864         if (err < 0)
3865                 return err;
3866         if (mddev->pers) {
3867                 err = update_size(mddev, sectors);
3868                 md_update_sb(mddev, 1);
3869         } else {
3870                 if (mddev->dev_sectors == 0 ||
3871                     mddev->dev_sectors > sectors)
3872                         mddev->dev_sectors = sectors;
3873                 else
3874                         err = -ENOSPC;
3875         }
3876         return err ? err : len;
3877 }
3878
3879 static struct md_sysfs_entry md_size =
3880 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3881
3882
3883 /* Metdata version.
3884  * This is one of
3885  *   'none' for arrays with no metadata (good luck...)
3886  *   'external' for arrays with externally managed metadata,
3887  * or N.M for internally known formats
3888  */
3889 static ssize_t
3890 metadata_show(mddev_t *mddev, char *page)
3891 {
3892         if (mddev->persistent)
3893                 return sprintf(page, "%d.%d\n",
3894                                mddev->major_version, mddev->minor_version);
3895         else if (mddev->external)
3896                 return sprintf(page, "external:%s\n", mddev->metadata_type);
3897         else
3898                 return sprintf(page, "none\n");
3899 }
3900
3901 static ssize_t
3902 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3903 {
3904         int major, minor;
3905         char *e;
3906         /* Changing the details of 'external' metadata is
3907          * always permitted.  Otherwise there must be
3908          * no devices attached to the array.
3909          */
3910         if (mddev->external && strncmp(buf, "external:", 9) == 0)
3911                 ;
3912         else if (!list_empty(&mddev->disks))
3913                 return -EBUSY;
3914
3915         if (cmd_match(buf, "none")) {
3916                 mddev->persistent = 0;
3917                 mddev->external = 0;
3918                 mddev->major_version = 0;
3919                 mddev->minor_version = 90;
3920                 return len;
3921         }
3922         if (strncmp(buf, "external:", 9) == 0) {
3923                 size_t namelen = len-9;
3924                 if (namelen >= sizeof(mddev->metadata_type))
3925                         namelen = sizeof(mddev->metadata_type)-1;
3926                 strncpy(mddev->metadata_type, buf+9, namelen);
3927                 mddev->metadata_type[namelen] = 0;
3928                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3929                         mddev->metadata_type[--namelen] = 0;
3930                 mddev->persistent = 0;
3931                 mddev->external = 1;
3932                 mddev->major_version = 0;
3933                 mddev->minor_version = 90;
3934                 return len;
3935         }
3936         major = simple_strtoul(buf, &e, 10);
3937         if (e==buf || *e != '.')
3938                 return -EINVAL;
3939         buf = e+1;
3940         minor = simple_strtoul(buf, &e, 10);
3941         if (e==buf || (*e && *e != '\n') )
3942                 return -EINVAL;
3943         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3944                 return -ENOENT;
3945         mddev->major_version = major;
3946         mddev->minor_version = minor;
3947         mddev->persistent = 1;
3948         mddev->external = 0;
3949         return len;
3950 }
3951
3952 static struct md_sysfs_entry md_metadata =
3953 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3954
3955 static ssize_t
3956 action_show(mddev_t *mddev, char *page)
3957 {
3958         char *type = "idle";
3959         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3960                 type = "frozen";
3961         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3962             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3963                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3964                         type = "reshape";
3965                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3966                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3967                                 type = "resync";
3968                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3969                                 type = "check";
3970                         else
3971                                 type = "repair";
3972                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3973                         type = "recover";
3974         }
3975         return sprintf(page, "%s\n", type);
3976 }
3977
3978 static void reap_sync_thread(mddev_t *mddev);
3979
3980 static ssize_t
3981 action_store(mddev_t *mddev, const char *page, size_t len)
3982 {
3983         if (!mddev->pers || !mddev->pers->sync_request)
3984                 return -EINVAL;
3985
3986         if (cmd_match(page, "frozen"))
3987                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3988         else
3989                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3990
3991         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3992                 if (mddev->sync_thread) {
3993                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3994                         reap_sync_thread(mddev);
3995                 }
3996         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3997                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3998                 return -EBUSY;
3999         else if (cmd_match(page, "resync"))
4000                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4001         else if (cmd_match(page, "recover")) {
4002                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4003                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4004         } else if (cmd_match(page, "reshape")) {
4005                 int err;
4006                 if (mddev->pers->start_reshape == NULL)
4007                         return -EINVAL;
4008                 err = mddev->pers->start_reshape(mddev);
4009                 if (err)
4010                         return err;
4011                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4012         } else {
4013                 if (cmd_match(page, "check"))
4014                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4015                 else if (!cmd_match(page, "repair"))
4016                         return -EINVAL;
4017                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4018                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4019         }
4020         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4021         md_wakeup_thread(mddev->thread);
4022         sysfs_notify_dirent_safe(mddev->sysfs_action);
4023         return len;
4024 }
4025
4026 static ssize_t
4027 mismatch_cnt_show(mddev_t *mddev, char *page)
4028 {
4029         return sprintf(page, "%llu\n",
4030                        (unsigned long long) mddev->resync_mismatches);
4031 }
4032
4033 static struct md_sysfs_entry md_scan_mode =
4034 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4035
4036
4037 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4038
4039 static ssize_t
4040 sync_min_show(mddev_t *mddev, char *page)
4041 {
4042         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4043                        mddev->sync_speed_min ? "local": "system");
4044 }
4045
4046 static ssize_t
4047 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
4048 {
4049         int min;
4050         char *e;
4051         if (strncmp(buf, "system", 6)==0) {
4052                 mddev->sync_speed_min = 0;
4053                 return len;
4054         }
4055         min = simple_strtoul(buf, &e, 10);
4056         if (buf == e || (*e && *e != '\n') || min <= 0)
4057                 return -EINVAL;
4058         mddev->sync_speed_min = min;
4059         return len;
4060 }
4061
4062 static struct md_sysfs_entry md_sync_min =
4063 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4064
4065 static ssize_t
4066 sync_max_show(mddev_t *mddev, char *page)
4067 {
4068         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4069                        mddev->sync_speed_max ? "local": "system");
4070 }
4071
4072 static ssize_t
4073 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
4074 {
4075         int max;
4076         char *e;
4077         if (strncmp(buf, "system", 6)==0) {
4078                 mddev->sync_speed_max = 0;
4079                 return len;
4080         }
4081         max = simple_strtoul(buf, &e, 10);
4082         if (buf == e || (*e && *e != '\n') || max <= 0)
4083                 return -EINVAL;
4084         mddev->sync_speed_max = max;
4085         return len;
4086 }
4087
4088 static struct md_sysfs_entry md_sync_max =
4089 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4090
4091 static ssize_t
4092 degraded_show(mddev_t *mddev, char *page)
4093 {
4094         return sprintf(page, "%d\n", mddev->degraded);
4095 }
4096 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4097
4098 static ssize_t
4099 sync_force_parallel_show(mddev_t *mddev, char *page)
4100 {
4101         return sprintf(page, "%d\n", mddev->parallel_resync);
4102 }
4103
4104 static ssize_t
4105 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
4106 {
4107         long n;
4108
4109         if (strict_strtol(buf, 10, &n))
4110                 return -EINVAL;
4111
4112         if (n != 0 && n != 1)
4113                 return -EINVAL;
4114
4115         mddev->parallel_resync = n;
4116
4117         if (mddev->sync_thread)
4118                 wake_up(&resync_wait);
4119
4120         return len;
4121 }
4122
4123 /* force parallel resync, even with shared block devices */
4124 static struct md_sysfs_entry md_sync_force_parallel =
4125 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4126        sync_force_parallel_show, sync_force_parallel_store);
4127
4128 static ssize_t
4129 sync_speed_show(mddev_t *mddev, char *page)
4130 {
4131         unsigned long resync, dt, db;
4132         if (mddev->curr_resync == 0)
4133                 return sprintf(page, "none\n");
4134         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4135         dt = (jiffies - mddev->resync_mark) / HZ;
4136         if (!dt) dt++;
4137         db = resync - mddev->resync_mark_cnt;
4138         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4139 }
4140
4141 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4142
4143 static ssize_t
4144 sync_completed_show(mddev_t *mddev, char *page)
4145 {
4146         unsigned long long max_sectors, resync;
4147
4148         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4149                 return sprintf(page, "none\n");
4150
4151         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4152                 max_sectors = mddev->resync_max_sectors;
4153         else
4154                 max_sectors = mddev->dev_sectors;
4155
4156         resync = mddev->curr_resync_completed;
4157         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4158 }
4159
4160 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4161
4162 static ssize_t
4163 min_sync_show(mddev_t *mddev, char *page)
4164 {
4165         return sprintf(page, "%llu\n",
4166                        (unsigned long long)mddev->resync_min);
4167 }
4168 static ssize_t
4169 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
4170 {
4171         unsigned long long min;
4172         if (strict_strtoull(buf, 10, &min))
4173                 return -EINVAL;
4174         if (min > mddev->resync_max)
4175                 return -EINVAL;
4176         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4177                 return -EBUSY;
4178
4179         /* Must be a multiple of chunk_size */
4180         if (mddev->chunk_sectors) {
4181                 sector_t temp = min;
4182                 if (sector_div(temp, mddev->chunk_sectors))
4183                         return -EINVAL;
4184         }
4185         mddev->resync_min = min;
4186
4187         return len;
4188 }
4189
4190 static struct md_sysfs_entry md_min_sync =
4191 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4192
4193 static ssize_t
4194 max_sync_show(mddev_t *mddev, char *page)
4195 {
4196         if (mddev->resync_max == MaxSector)
4197                 return sprintf(page, "max\n");
4198         else
4199                 return sprintf(page, "%llu\n",
4200                                (unsigned long long)mddev->resync_max);
4201 }
4202 static ssize_t
4203 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
4204 {
4205         if (strncmp(buf, "max", 3) == 0)
4206                 mddev->resync_max = MaxSector;
4207         else {
4208                 unsigned long long max;
4209                 if (strict_strtoull(buf, 10, &max))
4210                         return -EINVAL;
4211                 if (max < mddev->resync_min)
4212                         return -EINVAL;
4213                 if (max < mddev->resync_max &&
4214                     mddev->ro == 0 &&
4215                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4216                         return -EBUSY;
4217
4218                 /* Must be a multiple of chunk_size */
4219                 if (mddev->chunk_sectors) {
4220                         sector_t temp = max;
4221                         if (sector_div(temp, mddev->chunk_sectors))
4222                                 return -EINVAL;
4223                 }
4224                 mddev->resync_max = max;
4225         }
4226         wake_up(&mddev->recovery_wait);
4227         return len;
4228 }
4229
4230 static struct md_sysfs_entry md_max_sync =
4231 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4232
4233 static ssize_t
4234 suspend_lo_show(mddev_t *mddev, char *page)
4235 {
4236         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4237 }
4238
4239 static ssize_t
4240 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4241 {
4242         char *e;
4243         unsigned long long new = simple_strtoull(buf, &e, 10);
4244         unsigned long long old = mddev->suspend_lo;
4245
4246         if (mddev->pers == NULL || 
4247             mddev->pers->quiesce == NULL)
4248                 return -EINVAL;
4249         if (buf == e || (*e && *e != '\n'))
4250                 return -EINVAL;
4251
4252         mddev->suspend_lo = new;
4253         if (new >= old)
4254                 /* Shrinking suspended region */
4255                 mddev->pers->quiesce(mddev, 2);
4256         else {
4257                 /* Expanding suspended region - need to wait */
4258                 mddev->pers->quiesce(mddev, 1);
4259                 mddev->pers->quiesce(mddev, 0);
4260         }
4261         return len;
4262 }
4263 static struct md_sysfs_entry md_suspend_lo =
4264 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4265
4266
4267 static ssize_t
4268 suspend_hi_show(mddev_t *mddev, char *page)
4269 {
4270         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4271 }
4272
4273 static ssize_t
4274 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4275 {
4276         char *e;
4277         unsigned long long new = simple_strtoull(buf, &e, 10);
4278         unsigned long long old = mddev->suspend_hi;
4279
4280         if (mddev->pers == NULL ||
4281             mddev->pers->quiesce == NULL)
4282                 return -EINVAL;
4283         if (buf == e || (*e && *e != '\n'))
4284                 return -EINVAL;
4285
4286         mddev->suspend_hi = new;
4287         if (new <= old)
4288                 /* Shrinking suspended region */
4289                 mddev->pers->quiesce(mddev, 2);
4290         else {
4291                 /* Expanding suspended region - need to wait */
4292                 mddev->pers->quiesce(mddev, 1);
4293                 mddev->pers->quiesce(mddev, 0);
4294         }
4295         return len;
4296 }
4297 static struct md_sysfs_entry md_suspend_hi =
4298 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4299
4300 static ssize_t
4301 reshape_position_show(mddev_t *mddev, char *page)
4302 {
4303         if (mddev->reshape_position != MaxSector)
4304                 return sprintf(page, "%llu\n",
4305                                (unsigned long long)mddev->reshape_position);
4306         strcpy(page, "none\n");
4307         return 5;
4308 }
4309
4310 static ssize_t
4311 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4312 {
4313         char *e;
4314         unsigned long long new = simple_strtoull(buf, &e, 10);
4315         if (mddev->pers)
4316                 return -EBUSY;
4317         if (buf == e || (*e && *e != '\n'))
4318                 return -EINVAL;
4319         mddev->reshape_position = new;
4320         mddev->delta_disks = 0;
4321         mddev->new_level = mddev->level;
4322         mddev->new_layout = mddev->layout;
4323         mddev->new_chunk_sectors = mddev->chunk_sectors;
4324         return len;
4325 }
4326
4327 static struct md_sysfs_entry md_reshape_position =
4328 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4329        reshape_position_store);
4330
4331 static ssize_t
4332 array_size_show(mddev_t *mddev, char *page)
4333 {
4334         if (mddev->external_size)
4335                 return sprintf(page, "%llu\n",
4336                                (unsigned long long)mddev->array_sectors/2);
4337         else
4338                 return sprintf(page, "default\n");
4339 }
4340
4341 static ssize_t
4342 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4343 {
4344         sector_t sectors;
4345
4346         if (strncmp(buf, "default", 7) == 0) {
4347                 if (mddev->pers)
4348                         sectors = mddev->pers->size(mddev, 0, 0);
4349                 else
4350                         sectors = mddev->array_sectors;
4351
4352                 mddev->external_size = 0;
4353         } else {
4354                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4355                         return -EINVAL;
4356                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4357                         return -E2BIG;
4358
4359                 mddev->external_size = 1;
4360         }
4361
4362         mddev->array_sectors = sectors;
4363         if (mddev->pers) {
4364                 set_capacity(mddev->gendisk, mddev->array_sectors);
4365                 revalidate_disk(mddev->gendisk);
4366         }
4367         return len;
4368 }
4369
4370 static struct md_sysfs_entry md_array_size =
4371 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4372        array_size_store);
4373
4374 static struct attribute *md_default_attrs[] = {
4375         &md_level.attr,
4376         &md_layout.attr,
4377         &md_raid_disks.attr,
4378         &md_chunk_size.attr,
4379         &md_size.attr,
4380         &md_resync_start.attr,
4381         &md_metadata.attr,
4382         &md_new_device.attr,
4383         &md_safe_delay.attr,
4384         &md_array_state.attr,
4385         &md_reshape_position.attr,
4386         &md_array_size.attr,
4387         &max_corr_read_errors.attr,
4388         NULL,
4389 };
4390
4391 static struct attribute *md_redundancy_attrs[] = {
4392         &md_scan_mode.attr,
4393         &md_mismatches.attr,
4394         &md_sync_min.attr,
4395         &md_sync_max.attr,
4396         &md_sync_speed.attr,
4397         &md_sync_force_parallel.attr,
4398         &md_sync_completed.attr,
4399         &md_min_sync.attr,
4400         &md_max_sync.attr,
4401         &md_suspend_lo.attr,
4402         &md_suspend_hi.attr,
4403         &md_bitmap.attr,
4404         &md_degraded.attr,
4405         NULL,
4406 };
4407 static struct attribute_group md_redundancy_group = {
4408         .name = NULL,
4409         .attrs = md_redundancy_attrs,
4410 };
4411
4412
4413 static ssize_t
4414 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4415 {
4416         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4417         mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4418         ssize_t rv;
4419
4420         if (!entry->show)
4421                 return -EIO;
4422         rv = mddev_lock(mddev);
4423         if (!rv) {
4424                 rv = entry->show(mddev, page);
4425                 mddev_unlock(mddev);
4426         }
4427         return rv;
4428 }
4429
4430 static ssize_t
4431 md_attr_store(struct kobject *kobj, struct attribute *attr,
4432               const char *page, size_t length)
4433 {
4434         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4435         mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4436         ssize_t rv;
4437
4438         if (!entry->store)
4439                 return -EIO;
4440         if (!capable(CAP_SYS_ADMIN))
4441                 return -EACCES;
4442         rv = mddev_lock(mddev);
4443         if (mddev->hold_active == UNTIL_IOCTL)
4444                 mddev->hold_active = 0;
4445         if (!rv) {
4446                 rv = entry->store(mddev, page, length);
4447                 mddev_unlock(mddev);
4448         }
4449         return rv;
4450 }
4451
4452 static void md_free(struct kobject *ko)
4453 {
4454         mddev_t *mddev = container_of(ko, mddev_t, kobj);
4455
4456         if (mddev->sysfs_state)
4457                 sysfs_put(mddev->sysfs_state);
4458
4459         if (mddev->gendisk) {
4460                 del_gendisk(mddev->gendisk);
4461                 put_disk(mddev->gendisk);
4462         }
4463         if (mddev->queue)
4464                 blk_cleanup_queue(mddev->queue);
4465
4466         kfree(mddev);
4467 }
4468
4469 static const struct sysfs_ops md_sysfs_ops = {
4470         .show   = md_attr_show,
4471         .store  = md_attr_store,
4472 };
4473 static struct kobj_type md_ktype = {
4474         .release        = md_free,
4475         .sysfs_ops      = &md_sysfs_ops,
4476         .default_attrs  = md_default_attrs,
4477 };
4478
4479 int mdp_major = 0;
4480
4481 static void mddev_delayed_delete(struct work_struct *ws)
4482 {
4483         mddev_t *mddev = container_of(ws, mddev_t, del_work);
4484
4485         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4486         kobject_del(&mddev->kobj);
4487         kobject_put(&mddev->kobj);
4488 }
4489
4490 static int md_alloc(dev_t dev, char *name)
4491 {
4492         static DEFINE_MUTEX(disks_mutex);
4493         mddev_t *mddev = mddev_find(dev);
4494         struct gendisk *disk;
4495         int partitioned;
4496         int shift;
4497         int unit;
4498         int error;
4499
4500         if (!mddev)
4501                 return -ENODEV;
4502
4503         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4504         shift = partitioned ? MdpMinorShift : 0;
4505         unit = MINOR(mddev->unit) >> shift;
4506
4507         /* wait for any previous instance of this device to be
4508          * completely removed (mddev_delayed_delete).
4509          */
4510         flush_workqueue(md_misc_wq);
4511
4512         mutex_lock(&disks_mutex);
4513         error = -EEXIST;
4514         if (mddev->gendisk)
4515                 goto abort;
4516
4517         if (name) {
4518                 /* Need to ensure that 'name' is not a duplicate.
4519                  */
4520                 mddev_t *mddev2;
4521                 spin_lock(&all_mddevs_lock);
4522
4523                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4524                         if (mddev2->gendisk &&
4525                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4526                                 spin_unlock(&all_mddevs_lock);
4527                                 goto abort;
4528                         }
4529                 spin_unlock(&all_mddevs_lock);
4530         }
4531
4532         error = -ENOMEM;
4533         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4534         if (!mddev->queue)
4535                 goto abort;
4536         mddev->queue->queuedata = mddev;
4537
4538         blk_queue_make_request(mddev->queue, md_make_request);
4539
4540         disk = alloc_disk(1 << shift);
4541         if (!disk) {
4542                 blk_cleanup_queue(mddev->queue);
4543                 mddev->queue = NULL;
4544                 goto abort;
4545         }
4546         disk->major = MAJOR(mddev->unit);
4547         disk->first_minor = unit << shift;
4548         if (name)
4549                 strcpy(disk->disk_name, name);
4550         else if (partitioned)
4551                 sprintf(disk->disk_name, "md_d%d", unit);
4552         else
4553                 sprintf(disk->disk_name, "md%d", unit);
4554         disk->fops = &md_fops;
4555         disk->private_data = mddev;
4556         disk->queue = mddev->queue;
4557         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4558         /* Allow extended partitions.  This makes the
4559          * 'mdp' device redundant, but we can't really
4560          * remove it now.
4561          */
4562         disk->flags |= GENHD_FL_EXT_DEVT;
4563         mddev->gendisk = disk;
4564         /* As soon as we call add_disk(), another thread could get
4565          * through to md_open, so make sure it doesn't get too far
4566          */
4567         mutex_lock(&mddev->open_mutex);
4568         add_disk(disk);
4569
4570         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4571                                      &disk_to_dev(disk)->kobj, "%s", "md");
4572         if (error) {
4573                 /* This isn't possible, but as kobject_init_and_add is marked
4574                  * __must_check, we must do something with the result
4575                  */
4576                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4577                        disk->disk_name);
4578                 error = 0;
4579         }
4580         if (mddev->kobj.sd &&
4581             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4582                 printk(KERN_DEBUG "pointless warning\n");
4583         mutex_unlock(&mddev->open_mutex);
4584  abort:
4585         mutex_unlock(&disks_mutex);
4586         if (!error && mddev->kobj.sd) {
4587                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4588                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4589         }
4590         mddev_put(mddev);
4591         return error;
4592 }
4593
4594 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4595 {
4596         md_alloc(dev, NULL);
4597         return NULL;
4598 }
4599
4600 static int add_named_array(const char *val, struct kernel_param *kp)
4601 {
4602         /* val must be "md_*" where * is not all digits.
4603          * We allocate an array with a large free minor number, and
4604          * set the name to val.  val must not already be an active name.
4605          */
4606         int len = strlen(val);
4607         char buf[DISK_NAME_LEN];
4608
4609         while (len && val[len-1] == '\n')
4610                 len--;
4611         if (len >= DISK_NAME_LEN)
4612                 return -E2BIG;
4613         strlcpy(buf, val, len+1);
4614         if (strncmp(buf, "md_", 3) != 0)
4615                 return -EINVAL;
4616         return md_alloc(0, buf);
4617 }
4618
4619 static void md_safemode_timeout(unsigned long data)
4620 {
4621         mddev_t *mddev = (mddev_t *) data;
4622
4623         if (!atomic_read(&mddev->writes_pending)) {
4624                 mddev->safemode = 1;
4625                 if (mddev->external)
4626                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4627         }
4628         md_wakeup_thread(mddev->thread);
4629 }
4630
4631 static int start_dirty_degraded;
4632
4633 int md_run(mddev_t *mddev)
4634 {
4635         int err;
4636         mdk_rdev_t *rdev;
4637         struct mdk_personality *pers;
4638
4639         if (list_empty(&mddev->disks))
4640                 /* cannot run an array with no devices.. */
4641                 return -EINVAL;
4642
4643         if (mddev->pers)
4644                 return -EBUSY;
4645         /* Cannot run until previous stop completes properly */
4646         if (mddev->sysfs_active)
4647                 return -EBUSY;
4648
4649         /*
4650          * Analyze all RAID superblock(s)
4651          */
4652         if (!mddev->raid_disks) {
4653                 if (!mddev->persistent)
4654                         return -EINVAL;
4655                 analyze_sbs(mddev);
4656         }
4657
4658         if (mddev->level != LEVEL_NONE)
4659                 request_module("md-level-%d", mddev->level);
4660         else if (mddev->clevel[0])
4661                 request_module("md-%s", mddev->clevel);
4662
4663         /*
4664          * Drop all container device buffers, from now on
4665          * the only valid external interface is through the md
4666          * device.
4667          */
4668         list_for_each_entry(rdev, &mddev->disks, same_set) {
4669                 if (test_bit(Faulty, &rdev->flags))
4670                         continue;
4671                 sync_blockdev(rdev->bdev);
4672                 invalidate_bdev(rdev->bdev);
4673
4674                 /* perform some consistency tests on the device.
4675                  * We don't want the data to overlap the metadata,
4676                  * Internal Bitmap issues have been handled elsewhere.
4677                  */
4678                 if (rdev->meta_bdev) {
4679                         /* Nothing to check */;
4680                 } else if (rdev->data_offset < rdev->sb_start) {
4681                         if (mddev->dev_sectors &&
4682                             rdev->data_offset + mddev->dev_sectors
4683                             > rdev->sb_start) {
4684                                 printk("md: %s: data overlaps metadata\n",
4685                                        mdname(mddev));
4686                                 return -EINVAL;
4687                         }
4688                 } else {
4689                         if (rdev->sb_start + rdev->sb_size/512
4690                             > rdev->data_offset) {
4691                                 printk("md: %s: metadata overlaps data\n",
4692                                        mdname(mddev));
4693                                 return -EINVAL;
4694                         }
4695                 }
4696                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4697         }
4698
4699         if (mddev->bio_set == NULL)
4700                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4701                                                sizeof(mddev_t *));
4702
4703         spin_lock(&pers_lock);
4704         pers = find_pers(mddev->level, mddev->clevel);
4705         if (!pers || !try_module_get(pers->owner)) {
4706                 spin_unlock(&pers_lock);
4707                 if (mddev->level != LEVEL_NONE)
4708                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4709                                mddev->level);
4710                 else
4711                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4712                                mddev->clevel);
4713                 return -EINVAL;
4714         }
4715         mddev->pers = pers;
4716         spin_unlock(&pers_lock);
4717         if (mddev->level != pers->level) {
4718                 mddev->level = pers->level;
4719                 mddev->new_level = pers->level;
4720         }
4721         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4722
4723         if (mddev->reshape_position != MaxSector &&
4724             pers->start_reshape == NULL) {
4725                 /* This personality cannot handle reshaping... */
4726                 mddev->pers = NULL;
4727                 module_put(pers->owner);
4728                 return -EINVAL;
4729         }
4730
4731         if (pers->sync_request) {
4732                 /* Warn if this is a potentially silly
4733                  * configuration.
4734                  */
4735                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4736                 mdk_rdev_t *rdev2;
4737                 int warned = 0;
4738
4739                 list_for_each_entry(rdev, &mddev->disks, same_set)
4740                         list_for_each_entry(rdev2, &mddev->disks, same_set) {
4741                                 if (rdev < rdev2 &&
4742                                     rdev->bdev->bd_contains ==
4743                                     rdev2->bdev->bd_contains) {
4744                                         printk(KERN_WARNING
4745                                                "%s: WARNING: %s appears to be"
4746                                                " on the same physical disk as"
4747                                                " %s.\n",
4748                                                mdname(mddev),
4749                                                bdevname(rdev->bdev,b),
4750                                                bdevname(rdev2->bdev,b2));
4751                                         warned = 1;
4752                                 }
4753                         }
4754
4755                 if (warned)
4756                         printk(KERN_WARNING
4757                                "True protection against single-disk"
4758                                " failure might be compromised.\n");
4759         }
4760
4761         mddev->recovery = 0;
4762         /* may be over-ridden by personality */
4763         mddev->resync_max_sectors = mddev->dev_sectors;
4764
4765         mddev->ok_start_degraded = start_dirty_degraded;
4766
4767         if (start_readonly && mddev->ro == 0)
4768                 mddev->ro = 2; /* read-only, but switch on first write */
4769
4770         err = mddev->pers->run(mddev);
4771         if (err)
4772                 printk(KERN_ERR "md: pers->run() failed ...\n");
4773         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4774                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4775                           " but 'external_size' not in effect?\n", __func__);
4776                 printk(KERN_ERR
4777                        "md: invalid array_size %llu > default size %llu\n",
4778                        (unsigned long long)mddev->array_sectors / 2,
4779                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4780                 err = -EINVAL;
4781                 mddev->pers->stop(mddev);
4782         }
4783         if (err == 0 && mddev->pers->sync_request) {
4784                 err = bitmap_create(mddev);
4785                 if (err) {
4786                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4787                                mdname(mddev), err);
4788                         mddev->pers->stop(mddev);
4789                 }
4790         }
4791         if (err) {
4792                 module_put(mddev->pers->owner);
4793                 mddev->pers = NULL;
4794                 bitmap_destroy(mddev);
4795                 return err;
4796         }
4797         if (mddev->pers->sync_request) {
4798                 if (mddev->kobj.sd &&
4799                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4800                         printk(KERN_WARNING
4801                                "md: cannot register extra attributes for %s\n",
4802                                mdname(mddev));
4803                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4804         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4805                 mddev->ro = 0;
4806
4807         atomic_set(&mddev->writes_pending,0);
4808         atomic_set(&mddev->max_corr_read_errors,
4809                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4810         mddev->safemode = 0;
4811         mddev->safemode_timer.function = md_safemode_timeout;
4812         mddev->safemode_timer.data = (unsigned long) mddev;
4813         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4814         mddev->in_sync = 1;
4815         smp_wmb();
4816         mddev->ready = 1;
4817         list_for_each_entry(rdev, &mddev->disks, same_set)
4818                 if (rdev->raid_disk >= 0)
4819                         if (sysfs_link_rdev(mddev, rdev))
4820                                 /* failure here is OK */;
4821         
4822         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4823         
4824         if (mddev->flags)
4825                 md_update_sb(mddev, 0);
4826
4827         md_new_event(mddev);
4828         sysfs_notify_dirent_safe(mddev->sysfs_state);
4829         sysfs_notify_dirent_safe(mddev->sysfs_action);
4830         sysfs_notify(&mddev->kobj, NULL, "degraded");
4831         return 0;
4832 }
4833 EXPORT_SYMBOL_GPL(md_run);
4834
4835 static int do_md_run(mddev_t *mddev)
4836 {
4837         int err;
4838
4839         err = md_run(mddev);
4840         if (err)
4841                 goto out;
4842         err = bitmap_load(mddev);
4843         if (err) {
4844                 bitmap_destroy(mddev);
4845                 goto out;
4846         }
4847
4848         md_wakeup_thread(mddev->thread);
4849         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4850
4851         set_capacity(mddev->gendisk, mddev->array_sectors);
4852         revalidate_disk(mddev->gendisk);
4853         mddev->changed = 1;
4854         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4855 out:
4856         return err;
4857 }
4858
4859 static int restart_array(mddev_t *mddev)
4860 {
4861         struct gendisk *disk = mddev->gendisk;
4862
4863         /* Complain if it has no devices */
4864         if (list_empty(&mddev->disks))
4865                 return -ENXIO;
4866         if (!mddev->pers)
4867                 return -EINVAL;
4868         if (!mddev->ro)
4869                 return -EBUSY;
4870         mddev->safemode = 0;
4871         mddev->ro = 0;
4872         set_disk_ro(disk, 0);
4873         printk(KERN_INFO "md: %s switched to read-write mode.\n",
4874                 mdname(mddev));
4875         /* Kick recovery or resync if necessary */
4876         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4877         md_wakeup_thread(mddev->thread);
4878         md_wakeup_thread(mddev->sync_thread);
4879         sysfs_notify_dirent_safe(mddev->sysfs_state);
4880         return 0;
4881 }
4882
4883 /* similar to deny_write_access, but accounts for our holding a reference
4884  * to the file ourselves */
4885 static int deny_bitmap_write_access(struct file * file)
4886 {
4887         struct inode *inode = file->f_mapping->host;
4888
4889         spin_lock(&inode->i_lock);
4890         if (atomic_read(&inode->i_writecount) > 1) {
4891                 spin_unlock(&inode->i_lock);
4892                 return -ETXTBSY;
4893         }
4894         atomic_set(&inode->i_writecount, -1);
4895         spin_unlock(&inode->i_lock);
4896
4897         return 0;
4898 }
4899
4900 void restore_bitmap_write_access(struct file *file)
4901 {
4902         struct inode *inode = file->f_mapping->host;
4903
4904         spin_lock(&inode->i_lock);
4905         atomic_set(&inode->i_writecount, 1);
4906         spin_unlock(&inode->i_lock);
4907 }
4908
4909 static void md_clean(mddev_t *mddev)
4910 {
4911         mddev->array_sectors = 0;
4912         mddev->external_size = 0;
4913         mddev->dev_sectors = 0;
4914         mddev->raid_disks = 0;
4915         mddev->recovery_cp = 0;
4916         mddev->resync_min = 0;
4917         mddev->resync_max = MaxSector;
4918         mddev->reshape_position = MaxSector;
4919         mddev->external = 0;
4920         mddev->persistent = 0;
4921         mddev->level = LEVEL_NONE;
4922         mddev->clevel[0] = 0;
4923         mddev->flags = 0;
4924         mddev->ro = 0;
4925         mddev->metadata_type[0] = 0;
4926         mddev->chunk_sectors = 0;
4927         mddev->ctime = mddev->utime = 0;
4928         mddev->layout = 0;
4929         mddev->max_disks = 0;
4930         mddev->events = 0;
4931         mddev->can_decrease_events = 0;
4932         mddev->delta_disks = 0;
4933         mddev->new_level = LEVEL_NONE;
4934         mddev->new_layout = 0;
4935         mddev->new_chunk_sectors = 0;
4936         mddev->curr_resync = 0;
4937         mddev->resync_mismatches = 0;
4938         mddev->suspend_lo = mddev->suspend_hi = 0;
4939         mddev->sync_speed_min = mddev->sync_speed_max = 0;
4940         mddev->recovery = 0;
4941         mddev->in_sync = 0;
4942         mddev->changed = 0;
4943         mddev->degraded = 0;
4944         mddev->safemode = 0;
4945         mddev->bitmap_info.offset = 0;
4946         mddev->bitmap_info.default_offset = 0;
4947         mddev->bitmap_info.chunksize = 0;
4948         mddev->bitmap_info.daemon_sleep = 0;
4949         mddev->bitmap_info.max_write_behind = 0;
4950 }
4951
4952 static void __md_stop_writes(mddev_t *mddev)
4953 {
4954         if (mddev->sync_thread) {
4955                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4956                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4957                 reap_sync_thread(mddev);
4958         }
4959
4960         del_timer_sync(&mddev->safemode_timer);
4961
4962         bitmap_flush(mddev);
4963         md_super_wait(mddev);
4964
4965         if (!mddev->in_sync || mddev->flags) {
4966                 /* mark array as shutdown cleanly */
4967                 mddev->in_sync = 1;
4968                 md_update_sb(mddev, 1);
4969         }
4970 }
4971
4972 void md_stop_writes(mddev_t *mddev)
4973 {
4974         mddev_lock(mddev);
4975         __md_stop_writes(mddev);
4976         mddev_unlock(mddev);
4977 }
4978 EXPORT_SYMBOL_GPL(md_stop_writes);
4979
4980 void md_stop(mddev_t *mddev)
4981 {
4982         mddev->ready = 0;
4983         mddev->pers->stop(mddev);
4984         if (mddev->pers->sync_request && mddev->to_remove == NULL)
4985                 mddev->to_remove = &md_redundancy_group;
4986         module_put(mddev->pers->owner);
4987         mddev->pers = NULL;
4988         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4989 }
4990 EXPORT_SYMBOL_GPL(md_stop);
4991
4992 static int md_set_readonly(mddev_t *mddev, int is_open)
4993 {
4994         int err = 0;
4995         mutex_lock(&mddev->open_mutex);
4996         if (atomic_read(&mddev->openers) > is_open) {
4997                 printk("md: %s still in use.\n",mdname(mddev));
4998                 err = -EBUSY;
4999                 goto out;
5000         }
5001         if (mddev->pers) {
5002                 __md_stop_writes(mddev);
5003
5004                 err  = -ENXIO;
5005                 if (mddev->ro==1)
5006                         goto out;
5007                 mddev->ro = 1;
5008                 set_disk_ro(mddev->gendisk, 1);
5009                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5010                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5011                 err = 0;        
5012         }
5013 out:
5014         mutex_unlock(&mddev->open_mutex);
5015         return err;
5016 }
5017
5018 /* mode:
5019  *   0 - completely stop and dis-assemble array
5020  *   2 - stop but do not disassemble array
5021  */
5022 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
5023 {
5024         struct gendisk *disk = mddev->gendisk;
5025         mdk_rdev_t *rdev;
5026
5027         mutex_lock(&mddev->open_mutex);
5028         if (atomic_read(&mddev->openers) > is_open ||
5029             mddev->sysfs_active) {
5030                 printk("md: %s still in use.\n",mdname(mddev));
5031                 mutex_unlock(&mddev->open_mutex);
5032                 return -EBUSY;
5033         }
5034
5035         if (mddev->pers) {
5036                 if (mddev->ro)
5037                         set_disk_ro(disk, 0);
5038
5039                 __md_stop_writes(mddev);
5040                 md_stop(mddev);
5041                 mddev->queue->merge_bvec_fn = NULL;
5042                 mddev->queue->backing_dev_info.congested_fn = NULL;
5043
5044                 /* tell userspace to handle 'inactive' */
5045                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5046
5047                 list_for_each_entry(rdev, &mddev->disks, same_set)
5048                         if (rdev->raid_disk >= 0)
5049                                 sysfs_unlink_rdev(mddev, rdev);
5050
5051                 set_capacity(disk, 0);
5052                 mutex_unlock(&mddev->open_mutex);
5053                 mddev->changed = 1;
5054                 revalidate_disk(disk);
5055
5056                 if (mddev->ro)
5057                         mddev->ro = 0;
5058         } else
5059                 mutex_unlock(&mddev->open_mutex);
5060         /*
5061          * Free resources if final stop
5062          */
5063         if (mode == 0) {
5064                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5065
5066                 bitmap_destroy(mddev);
5067                 if (mddev->bitmap_info.file) {
5068                         restore_bitmap_write_access(mddev->bitmap_info.file);
5069                         fput(mddev->bitmap_info.file);
5070                         mddev->bitmap_info.file = NULL;
5071                 }
5072                 mddev->bitmap_info.offset = 0;
5073
5074                 export_array(mddev);
5075
5076                 md_clean(mddev);
5077                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5078                 if (mddev->hold_active == UNTIL_STOP)
5079                         mddev->hold_active = 0;
5080         }
5081         blk_integrity_unregister(disk);
5082         md_new_event(mddev);
5083         sysfs_notify_dirent_safe(mddev->sysfs_state);
5084         return 0;
5085 }
5086
5087 #ifndef MODULE
5088 static void autorun_array(mddev_t *mddev)
5089 {
5090         mdk_rdev_t *rdev;
5091         int err;
5092
5093         if (list_empty(&mddev->disks))
5094                 return;
5095
5096         printk(KERN_INFO "md: running: ");
5097
5098         list_for_each_entry(rdev, &mddev->disks, same_set) {
5099                 char b[BDEVNAME_SIZE];
5100                 printk("<%s>", bdevname(rdev->bdev,b));
5101         }
5102         printk("\n");
5103
5104         err = do_md_run(mddev);
5105         if (err) {
5106                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5107                 do_md_stop(mddev, 0, 0);
5108         }
5109 }
5110
5111 /*
5112  * lets try to run arrays based on all disks that have arrived
5113  * until now. (those are in pending_raid_disks)
5114  *
5115  * the method: pick the first pending disk, collect all disks with
5116  * the same UUID, remove all from the pending list and put them into
5117  * the 'same_array' list. Then order this list based on superblock
5118  * update time (freshest comes first), kick out 'old' disks and
5119  * compare superblocks. If everything's fine then run it.
5120  *
5121  * If "unit" is allocated, then bump its reference count
5122  */
5123 static void autorun_devices(int part)
5124 {
5125         mdk_rdev_t *rdev0, *rdev, *tmp;
5126         mddev_t *mddev;
5127         char b[BDEVNAME_SIZE];
5128
5129         printk(KERN_INFO "md: autorun ...\n");
5130         while (!list_empty(&pending_raid_disks)) {
5131                 int unit;
5132                 dev_t dev;
5133                 LIST_HEAD(candidates);
5134                 rdev0 = list_entry(pending_raid_disks.next,
5135                                          mdk_rdev_t, same_set);
5136
5137                 printk(KERN_INFO "md: considering %s ...\n",
5138                         bdevname(rdev0->bdev,b));
5139                 INIT_LIST_HEAD(&candidates);
5140                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5141                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5142                                 printk(KERN_INFO "md:  adding %s ...\n",
5143                                         bdevname(rdev->bdev,b));
5144                                 list_move(&rdev->same_set, &candidates);
5145                         }
5146                 /*
5147                  * now we have a set of devices, with all of them having
5148                  * mostly sane superblocks. It's time to allocate the
5149                  * mddev.
5150                  */
5151                 if (part) {
5152                         dev = MKDEV(mdp_major,
5153                                     rdev0->preferred_minor << MdpMinorShift);
5154                         unit = MINOR(dev) >> MdpMinorShift;
5155                 } else {
5156                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5157                         unit = MINOR(dev);
5158                 }
5159                 if (rdev0->preferred_minor != unit) {
5160                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5161                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5162                         break;
5163                 }
5164
5165                 md_probe(dev, NULL, NULL);
5166                 mddev = mddev_find(dev);
5167                 if (!mddev || !mddev->gendisk) {
5168                         if (mddev)
5169                                 mddev_put(mddev);
5170                         printk(KERN_ERR
5171                                 "md: cannot allocate memory for md drive.\n");
5172                         break;
5173                 }
5174                 if (mddev_lock(mddev)) 
5175                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5176                                mdname(mddev));
5177                 else if (mddev->raid_disks || mddev->major_version
5178                          || !list_empty(&mddev->disks)) {
5179                         printk(KERN_WARNING 
5180                                 "md: %s already running, cannot run %s\n",
5181                                 mdname(mddev), bdevname(rdev0->bdev,b));
5182                         mddev_unlock(mddev);
5183                 } else {
5184                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5185                         mddev->persistent = 1;
5186                         rdev_for_each_list(rdev, tmp, &candidates) {
5187                                 list_del_init(&rdev->same_set);
5188                                 if (bind_rdev_to_array(rdev, mddev))
5189                                         export_rdev(rdev);
5190                         }
5191                         autorun_array(mddev);
5192                         mddev_unlock(mddev);
5193                 }
5194                 /* on success, candidates will be empty, on error
5195                  * it won't...
5196                  */
5197                 rdev_for_each_list(rdev, tmp, &candidates) {
5198                         list_del_init(&rdev->same_set);
5199                         export_rdev(rdev);
5200                 }
5201                 mddev_put(mddev);
5202         }
5203         printk(KERN_INFO "md: ... autorun DONE.\n");
5204 }
5205 #endif /* !MODULE */
5206
5207 static int get_version(void __user * arg)
5208 {
5209         mdu_version_t ver;
5210
5211         ver.major = MD_MAJOR_VERSION;
5212         ver.minor = MD_MINOR_VERSION;
5213         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5214
5215         if (copy_to_user(arg, &ver, sizeof(ver)))
5216                 return -EFAULT;
5217
5218         return 0;
5219 }
5220
5221 static int get_array_info(mddev_t * mddev, void __user * arg)
5222 {
5223         mdu_array_info_t info;
5224         int nr,working,insync,failed,spare;
5225         mdk_rdev_t *rdev;
5226
5227         nr=working=insync=failed=spare=0;
5228         list_for_each_entry(rdev, &mddev->disks, same_set) {
5229                 nr++;
5230                 if (test_bit(Faulty, &rdev->flags))
5231                         failed++;
5232                 else {
5233                         working++;
5234                         if (test_bit(In_sync, &rdev->flags))
5235                                 insync++;       
5236                         else
5237                                 spare++;
5238                 }
5239         }
5240
5241         info.major_version = mddev->major_version;
5242         info.minor_version = mddev->minor_version;
5243         info.patch_version = MD_PATCHLEVEL_VERSION;
5244         info.ctime         = mddev->ctime;
5245         info.level         = mddev->level;
5246         info.size          = mddev->dev_sectors / 2;
5247         if (info.size != mddev->dev_sectors / 2) /* overflow */
5248                 info.size = -1;
5249         info.nr_disks      = nr;
5250         info.raid_disks    = mddev->raid_disks;
5251         info.md_minor      = mddev->md_minor;
5252         info.not_persistent= !mddev->persistent;
5253
5254         info.utime         = mddev->utime;
5255         info.state         = 0;
5256         if (mddev->in_sync)
5257                 info.state = (1<<MD_SB_CLEAN);
5258         if (mddev->bitmap && mddev->bitmap_info.offset)
5259                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5260         info.active_disks  = insync;
5261         info.working_disks = working;
5262         info.failed_disks  = failed;
5263         info.spare_disks   = spare;
5264
5265         info.layout        = mddev->layout;
5266         info.chunk_size    = mddev->chunk_sectors << 9;
5267
5268         if (copy_to_user(arg, &info, sizeof(info)))
5269                 return -EFAULT;
5270
5271         return 0;
5272 }
5273
5274 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5275 {
5276         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5277         char *ptr, *buf = NULL;
5278         int err = -ENOMEM;
5279
5280         if (md_allow_write(mddev))
5281                 file = kmalloc(sizeof(*file), GFP_NOIO);
5282         else
5283                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5284
5285         if (!file)
5286                 goto out;
5287
5288         /* bitmap disabled, zero the first byte and copy out */
5289         if (!mddev->bitmap || !mddev->bitmap->file) {
5290                 file->pathname[0] = '\0';
5291                 goto copy_out;
5292         }
5293
5294         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5295         if (!buf)
5296                 goto out;
5297
5298         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5299         if (IS_ERR(ptr))
5300                 goto out;
5301
5302         strcpy(file->pathname, ptr);
5303
5304 copy_out:
5305         err = 0;
5306         if (copy_to_user(arg, file, sizeof(*file)))
5307                 err = -EFAULT;
5308 out:
5309         kfree(buf);
5310         kfree(file);
5311         return err;
5312 }
5313
5314 static int get_disk_info(mddev_t * mddev, void __user * arg)
5315 {
5316         mdu_disk_info_t info;
5317         mdk_rdev_t *rdev;
5318
5319         if (copy_from_user(&info, arg, sizeof(info)))
5320                 return -EFAULT;
5321
5322         rdev = find_rdev_nr(mddev, info.number);
5323         if (rdev) {
5324                 info.major = MAJOR(rdev->bdev->bd_dev);
5325                 info.minor = MINOR(rdev->bdev->bd_dev);
5326                 info.raid_disk = rdev->raid_disk;
5327                 info.state = 0;
5328                 if (test_bit(Faulty, &rdev->flags))
5329                         info.state |= (1<<MD_DISK_FAULTY);
5330                 else if (test_bit(In_sync, &rdev->flags)) {
5331                         info.state |= (1<<MD_DISK_ACTIVE);
5332                         info.state |= (1<<MD_DISK_SYNC);
5333                 }
5334                 if (test_bit(WriteMostly, &rdev->flags))
5335                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5336         } else {
5337                 info.major = info.minor = 0;
5338                 info.raid_disk = -1;
5339                 info.state = (1<<MD_DISK_REMOVED);
5340         }
5341
5342         if (copy_to_user(arg, &info, sizeof(info)))
5343                 return -EFAULT;
5344
5345         return 0;
5346 }
5347
5348 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5349 {
5350         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5351         mdk_rdev_t *rdev;
5352         dev_t dev = MKDEV(info->major,info->minor);
5353
5354         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5355                 return -EOVERFLOW;
5356
5357         if (!mddev->raid_disks) {
5358                 int err;
5359                 /* expecting a device which has a superblock */
5360                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5361                 if (IS_ERR(rdev)) {
5362                         printk(KERN_WARNING 
5363                                 "md: md_import_device returned %ld\n",
5364                                 PTR_ERR(rdev));
5365                         return PTR_ERR(rdev);
5366                 }
5367                 if (!list_empty(&mddev->disks)) {
5368                         mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5369                                                         mdk_rdev_t, same_set);
5370                         err = super_types[mddev->major_version]
5371                                 .load_super(rdev, rdev0, mddev->minor_version);
5372                         if (err < 0) {
5373                                 printk(KERN_WARNING 
5374                                         "md: %s has different UUID to %s\n",
5375                                         bdevname(rdev->bdev,b), 
5376                                         bdevname(rdev0->bdev,b2));
5377                                 export_rdev(rdev);
5378                                 return -EINVAL;
5379                         }
5380                 }
5381                 err = bind_rdev_to_array(rdev, mddev);
5382                 if (err)
5383                         export_rdev(rdev);
5384                 return err;
5385         }
5386
5387         /*
5388          * add_new_disk can be used once the array is assembled
5389          * to add "hot spares".  They must already have a superblock
5390          * written
5391          */
5392         if (mddev->pers) {
5393                 int err;
5394                 if (!mddev->pers->hot_add_disk) {
5395                         printk(KERN_WARNING 
5396                                 "%s: personality does not support diskops!\n",
5397                                mdname(mddev));
5398                         return -EINVAL;
5399                 }
5400                 if (mddev->persistent)
5401                         rdev = md_import_device(dev, mddev->major_version,
5402                                                 mddev->minor_version);
5403                 else
5404                         rdev = md_import_device(dev, -1, -1);
5405                 if (IS_ERR(rdev)) {
5406                         printk(KERN_WARNING 
5407                                 "md: md_import_device returned %ld\n",
5408                                 PTR_ERR(rdev));
5409                         return PTR_ERR(rdev);
5410                 }
5411                 /* set saved_raid_disk if appropriate */
5412                 if (!mddev->persistent) {
5413                         if (info->state & (1<<MD_DISK_SYNC)  &&
5414                             info->raid_disk < mddev->raid_disks) {
5415                                 rdev->raid_disk = info->raid_disk;
5416                                 set_bit(In_sync, &rdev->flags);
5417                         } else
5418                                 rdev->raid_disk = -1;
5419                 } else
5420                         super_types[mddev->major_version].
5421                                 validate_super(mddev, rdev);
5422                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5423                     (!test_bit(In_sync, &rdev->flags) ||
5424                      rdev->raid_disk != info->raid_disk)) {
5425                         /* This was a hot-add request, but events doesn't
5426                          * match, so reject it.
5427                          */
5428                         export_rdev(rdev);
5429                         return -EINVAL;
5430                 }
5431
5432                 if (test_bit(In_sync, &rdev->flags))
5433                         rdev->saved_raid_disk = rdev->raid_disk;
5434                 else
5435                         rdev->saved_raid_disk = -1;
5436
5437                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5438                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5439                         set_bit(WriteMostly, &rdev->flags);
5440                 else
5441                         clear_bit(WriteMostly, &rdev->flags);
5442
5443                 rdev->raid_disk = -1;
5444                 err = bind_rdev_to_array(rdev, mddev);
5445                 if (!err && !mddev->pers->hot_remove_disk) {
5446                         /* If there is hot_add_disk but no hot_remove_disk
5447                          * then added disks for geometry changes,
5448                          * and should be added immediately.
5449                          */
5450                         super_types[mddev->major_version].
5451                                 validate_super(mddev, rdev);
5452                         err = mddev->pers->hot_add_disk(mddev, rdev);
5453                         if (err)
5454                                 unbind_rdev_from_array(rdev);
5455                 }
5456                 if (err)
5457                         export_rdev(rdev);
5458                 else
5459                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5460
5461                 md_update_sb(mddev, 1);
5462                 if (mddev->degraded)
5463                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5464                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5465                 if (!err)
5466                         md_new_event(mddev);
5467                 md_wakeup_thread(mddev->thread);
5468                 return err;
5469         }
5470
5471         /* otherwise, add_new_disk is only allowed
5472          * for major_version==0 superblocks
5473          */
5474         if (mddev->major_version != 0) {
5475                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5476                        mdname(mddev));
5477                 return -EINVAL;
5478         }
5479
5480         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5481                 int err;
5482                 rdev = md_import_device(dev, -1, 0);
5483                 if (IS_ERR(rdev)) {
5484                         printk(KERN_WARNING 
5485                                 "md: error, md_import_device() returned %ld\n",
5486                                 PTR_ERR(rdev));
5487                         return PTR_ERR(rdev);
5488                 }
5489                 rdev->desc_nr = info->number;
5490                 if (info->raid_disk < mddev->raid_disks)
5491                         rdev->raid_disk = info->raid_disk;
5492                 else
5493                         rdev->raid_disk = -1;
5494
5495                 if (rdev->raid_disk < mddev->raid_disks)
5496                         if (info->state & (1<<MD_DISK_SYNC))
5497                                 set_bit(In_sync, &rdev->flags);
5498
5499                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5500                         set_bit(WriteMostly, &rdev->flags);
5501
5502                 if (!mddev->persistent) {
5503                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5504                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5505                 } else
5506                         rdev->sb_start = calc_dev_sboffset(rdev);
5507                 rdev->sectors = rdev->sb_start;
5508
5509                 err = bind_rdev_to_array(rdev, mddev);
5510                 if (err) {
5511                         export_rdev(rdev);
5512                         return err;
5513                 }
5514         }
5515
5516         return 0;
5517 }
5518
5519 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5520 {
5521         char b[BDEVNAME_SIZE];
5522         mdk_rdev_t *rdev;
5523
5524         rdev = find_rdev(mddev, dev);
5525         if (!rdev)
5526                 return -ENXIO;
5527
5528         if (rdev->raid_disk >= 0)
5529                 goto busy;
5530
5531         kick_rdev_from_array(rdev);
5532         md_update_sb(mddev, 1);
5533         md_new_event(mddev);
5534
5535         return 0;
5536 busy:
5537         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5538                 bdevname(rdev->bdev,b), mdname(mddev));
5539         return -EBUSY;
5540 }
5541
5542 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5543 {
5544         char b[BDEVNAME_SIZE];
5545         int err;
5546         mdk_rdev_t *rdev;
5547
5548         if (!mddev->pers)
5549                 return -ENODEV;
5550
5551         if (mddev->major_version != 0) {
5552                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5553                         " version-0 superblocks.\n",
5554                         mdname(mddev));
5555                 return -EINVAL;
5556         }
5557         if (!mddev->pers->hot_add_disk) {
5558                 printk(KERN_WARNING 
5559                         "%s: personality does not support diskops!\n",
5560                         mdname(mddev));
5561                 return -EINVAL;
5562         }
5563
5564         rdev = md_import_device(dev, -1, 0);
5565         if (IS_ERR(rdev)) {
5566                 printk(KERN_WARNING 
5567                         "md: error, md_import_device() returned %ld\n",
5568                         PTR_ERR(rdev));
5569                 return -EINVAL;
5570         }
5571
5572         if (mddev->persistent)
5573                 rdev->sb_start = calc_dev_sboffset(rdev);
5574         else
5575                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5576
5577         rdev->sectors = rdev->sb_start;
5578
5579         if (test_bit(Faulty, &rdev->flags)) {
5580                 printk(KERN_WARNING 
5581                         "md: can not hot-add faulty %s disk to %s!\n",
5582                         bdevname(rdev->bdev,b), mdname(mddev));
5583                 err = -EINVAL;
5584                 goto abort_export;
5585         }
5586         clear_bit(In_sync, &rdev->flags);
5587         rdev->desc_nr = -1;
5588         rdev->saved_raid_disk = -1;
5589         err = bind_rdev_to_array(rdev, mddev);
5590         if (err)
5591                 goto abort_export;
5592
5593         /*
5594          * The rest should better be atomic, we can have disk failures
5595          * noticed in interrupt contexts ...
5596          */
5597
5598         rdev->raid_disk = -1;
5599
5600         md_update_sb(mddev, 1);
5601
5602         /*
5603          * Kick recovery, maybe this spare has to be added to the
5604          * array immediately.
5605          */
5606         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5607         md_wakeup_thread(mddev->thread);
5608         md_new_event(mddev);
5609         return 0;
5610
5611 abort_export:
5612         export_rdev(rdev);
5613         return err;
5614 }
5615
5616 static int set_bitmap_file(mddev_t *mddev, int fd)
5617 {
5618         int err;
5619
5620         if (mddev->pers) {
5621                 if (!mddev->pers->quiesce)
5622                         return -EBUSY;
5623                 if (mddev->recovery || mddev->sync_thread)
5624                         return -EBUSY;
5625                 /* we should be able to change the bitmap.. */
5626         }
5627
5628
5629         if (fd >= 0) {
5630                 if (mddev->bitmap)
5631                         return -EEXIST; /* cannot add when bitmap is present */
5632                 mddev->bitmap_info.file = fget(fd);
5633
5634                 if (mddev->bitmap_info.file == NULL) {
5635                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5636                                mdname(mddev));
5637                         return -EBADF;
5638                 }
5639
5640                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5641                 if (err) {
5642                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5643                                mdname(mddev));
5644                         fput(mddev->bitmap_info.file);
5645                         mddev->bitmap_info.file = NULL;
5646                         return err;
5647                 }
5648                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5649         } else if (mddev->bitmap == NULL)
5650                 return -ENOENT; /* cannot remove what isn't there */
5651         err = 0;
5652         if (mddev->pers) {
5653                 mddev->pers->quiesce(mddev, 1);
5654                 if (fd >= 0) {
5655                         err = bitmap_create(mddev);
5656                         if (!err)
5657                                 err = bitmap_load(mddev);
5658                 }
5659                 if (fd < 0 || err) {
5660                         bitmap_destroy(mddev);
5661                         fd = -1; /* make sure to put the file */
5662                 }
5663                 mddev->pers->quiesce(mddev, 0);
5664         }
5665         if (fd < 0) {
5666                 if (mddev->bitmap_info.file) {
5667                         restore_bitmap_write_access(mddev->bitmap_info.file);
5668                         fput(mddev->bitmap_info.file);
5669                 }
5670                 mddev->bitmap_info.file = NULL;
5671         }
5672
5673         return err;
5674 }
5675
5676 /*
5677  * set_array_info is used two different ways
5678  * The original usage is when creating a new array.
5679  * In this usage, raid_disks is > 0 and it together with
5680  *  level, size, not_persistent,layout,chunksize determine the
5681  *  shape of the array.
5682  *  This will always create an array with a type-0.90.0 superblock.
5683  * The newer usage is when assembling an array.
5684  *  In this case raid_disks will be 0, and the major_version field is
5685  *  use to determine which style super-blocks are to be found on the devices.
5686  *  The minor and patch _version numbers are also kept incase the
5687  *  super_block handler wishes to interpret them.
5688  */
5689 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5690 {
5691
5692         if (info->raid_disks == 0) {
5693                 /* just setting version number for superblock loading */
5694                 if (info->major_version < 0 ||
5695                     info->major_version >= ARRAY_SIZE(super_types) ||
5696                     super_types[info->major_version].name == NULL) {
5697                         /* maybe try to auto-load a module? */
5698                         printk(KERN_INFO 
5699                                 "md: superblock version %d not known\n",
5700                                 info->major_version);
5701                         return -EINVAL;
5702                 }
5703                 mddev->major_version = info->major_version;
5704                 mddev->minor_version = info->minor_version;
5705                 mddev->patch_version = info->patch_version;
5706                 mddev->persistent = !info->not_persistent;
5707                 /* ensure mddev_put doesn't delete this now that there
5708                  * is some minimal configuration.
5709                  */
5710                 mddev->ctime         = get_seconds();
5711                 return 0;
5712         }
5713         mddev->major_version = MD_MAJOR_VERSION;
5714         mddev->minor_version = MD_MINOR_VERSION;
5715         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5716         mddev->ctime         = get_seconds();
5717
5718         mddev->level         = info->level;
5719         mddev->clevel[0]     = 0;
5720         mddev->dev_sectors   = 2 * (sector_t)info->size;
5721         mddev->raid_disks    = info->raid_disks;
5722         /* don't set md_minor, it is determined by which /dev/md* was
5723          * openned
5724          */
5725         if (info->state & (1<<MD_SB_CLEAN))
5726                 mddev->recovery_cp = MaxSector;
5727         else
5728                 mddev->recovery_cp = 0;
5729         mddev->persistent    = ! info->not_persistent;
5730         mddev->external      = 0;
5731
5732         mddev->layout        = info->layout;
5733         mddev->chunk_sectors = info->chunk_size >> 9;
5734
5735         mddev->max_disks     = MD_SB_DISKS;
5736
5737         if (mddev->persistent)
5738                 mddev->flags         = 0;
5739         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5740
5741         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5742         mddev->bitmap_info.offset = 0;
5743
5744         mddev->reshape_position = MaxSector;
5745
5746         /*
5747          * Generate a 128 bit UUID
5748          */
5749         get_random_bytes(mddev->uuid, 16);
5750
5751         mddev->new_level = mddev->level;
5752         mddev->new_chunk_sectors = mddev->chunk_sectors;
5753         mddev->new_layout = mddev->layout;
5754         mddev->delta_disks = 0;
5755
5756         return 0;
5757 }
5758
5759 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5760 {
5761         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5762
5763         if (mddev->external_size)
5764                 return;
5765
5766         mddev->array_sectors = array_sectors;
5767 }
5768 EXPORT_SYMBOL(md_set_array_sectors);
5769
5770 static int update_size(mddev_t *mddev, sector_t num_sectors)
5771 {
5772         mdk_rdev_t *rdev;
5773         int rv;
5774         int fit = (num_sectors == 0);
5775
5776         if (mddev->pers->resize == NULL)
5777                 return -EINVAL;
5778         /* The "num_sectors" is the number of sectors of each device that
5779          * is used.  This can only make sense for arrays with redundancy.
5780          * linear and raid0 always use whatever space is available. We can only
5781          * consider changing this number if no resync or reconstruction is
5782          * happening, and if the new size is acceptable. It must fit before the
5783          * sb_start or, if that is <data_offset, it must fit before the size
5784          * of each device.  If num_sectors is zero, we find the largest size
5785          * that fits.
5786          */
5787         if (mddev->sync_thread)
5788                 return -EBUSY;
5789         if (mddev->bitmap)
5790                 /* Sorry, cannot grow a bitmap yet, just remove it,
5791                  * grow, and re-add.
5792                  */
5793                 return -EBUSY;
5794         list_for_each_entry(rdev, &mddev->disks, same_set) {
5795                 sector_t avail = rdev->sectors;
5796
5797                 if (fit && (num_sectors == 0 || num_sectors > avail))
5798                         num_sectors = avail;
5799                 if (avail < num_sectors)
5800                         return -ENOSPC;
5801         }
5802         rv = mddev->pers->resize(mddev, num_sectors);
5803         if (!rv)
5804                 revalidate_disk(mddev->gendisk);
5805         return rv;
5806 }
5807
5808 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5809 {
5810         int rv;
5811         /* change the number of raid disks */
5812         if (mddev->pers->check_reshape == NULL)
5813                 return -EINVAL;
5814         if (raid_disks <= 0 ||
5815             (mddev->max_disks && raid_disks >= mddev->max_disks))
5816                 return -EINVAL;
5817         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5818                 return -EBUSY;
5819         mddev->delta_disks = raid_disks - mddev->raid_disks;
5820
5821         rv = mddev->pers->check_reshape(mddev);
5822         if (rv < 0)
5823                 mddev->delta_disks = 0;
5824         return rv;
5825 }
5826
5827
5828 /*
5829  * update_array_info is used to change the configuration of an
5830  * on-line array.
5831  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5832  * fields in the info are checked against the array.
5833  * Any differences that cannot be handled will cause an error.
5834  * Normally, only one change can be managed at a time.
5835  */
5836 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5837 {
5838         int rv = 0;
5839         int cnt = 0;
5840         int state = 0;
5841
5842         /* calculate expected state,ignoring low bits */
5843         if (mddev->bitmap && mddev->bitmap_info.offset)
5844                 state |= (1 << MD_SB_BITMAP_PRESENT);
5845
5846         if (mddev->major_version != info->major_version ||
5847             mddev->minor_version != info->minor_version ||
5848 /*          mddev->patch_version != info->patch_version || */
5849             mddev->ctime         != info->ctime         ||
5850             mddev->level         != info->level         ||
5851 /*          mddev->layout        != info->layout        || */
5852             !mddev->persistent   != info->not_persistent||
5853             mddev->chunk_sectors != info->chunk_size >> 9 ||
5854             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5855             ((state^info->state) & 0xfffffe00)
5856                 )
5857                 return -EINVAL;
5858         /* Check there is only one change */
5859         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5860                 cnt++;
5861         if (mddev->raid_disks != info->raid_disks)
5862                 cnt++;
5863         if (mddev->layout != info->layout)
5864                 cnt++;
5865         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5866                 cnt++;
5867         if (cnt == 0)
5868                 return 0;
5869         if (cnt > 1)
5870                 return -EINVAL;
5871
5872         if (mddev->layout != info->layout) {
5873                 /* Change layout
5874                  * we don't need to do anything at the md level, the
5875                  * personality will take care of it all.
5876                  */
5877                 if (mddev->pers->check_reshape == NULL)
5878                         return -EINVAL;
5879                 else {
5880                         mddev->new_layout = info->layout;
5881                         rv = mddev->pers->check_reshape(mddev);
5882                         if (rv)
5883                                 mddev->new_layout = mddev->layout;
5884                         return rv;
5885                 }
5886         }
5887         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5888                 rv = update_size(mddev, (sector_t)info->size * 2);
5889
5890         if (mddev->raid_disks    != info->raid_disks)
5891                 rv = update_raid_disks(mddev, info->raid_disks);
5892
5893         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5894                 if (mddev->pers->quiesce == NULL)
5895                         return -EINVAL;
5896                 if (mddev->recovery || mddev->sync_thread)
5897                         return -EBUSY;
5898                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5899                         /* add the bitmap */
5900                         if (mddev->bitmap)
5901                                 return -EEXIST;
5902                         if (mddev->bitmap_info.default_offset == 0)
5903                                 return -EINVAL;
5904                         mddev->bitmap_info.offset =
5905                                 mddev->bitmap_info.default_offset;
5906                         mddev->pers->quiesce(mddev, 1);
5907                         rv = bitmap_create(mddev);
5908                         if (!rv)
5909                                 rv = bitmap_load(mddev);
5910                         if (rv)
5911                                 bitmap_destroy(mddev);
5912                         mddev->pers->quiesce(mddev, 0);
5913                 } else {
5914                         /* remove the bitmap */
5915                         if (!mddev->bitmap)
5916                                 return -ENOENT;
5917                         if (mddev->bitmap->file)
5918                                 return -EINVAL;
5919                         mddev->pers->quiesce(mddev, 1);
5920                         bitmap_destroy(mddev);
5921                         mddev->pers->quiesce(mddev, 0);
5922                         mddev->bitmap_info.offset = 0;
5923                 }
5924         }
5925         md_update_sb(mddev, 1);
5926         return rv;
5927 }
5928
5929 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5930 {
5931         mdk_rdev_t *rdev;
5932
5933         if (mddev->pers == NULL)
5934                 return -ENODEV;
5935
5936         rdev = find_rdev(mddev, dev);
5937         if (!rdev)
5938                 return -ENODEV;
5939
5940         md_error(mddev, rdev);
5941         return 0;
5942 }
5943
5944 /*
5945  * We have a problem here : there is no easy way to give a CHS
5946  * virtual geometry. We currently pretend that we have a 2 heads
5947  * 4 sectors (with a BIG number of cylinders...). This drives
5948  * dosfs just mad... ;-)
5949  */
5950 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5951 {
5952         mddev_t *mddev = bdev->bd_disk->private_data;
5953
5954         geo->heads = 2;
5955         geo->sectors = 4;
5956         geo->cylinders = mddev->array_sectors / 8;
5957         return 0;
5958 }
5959
5960 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5961                         unsigned int cmd, unsigned long arg)
5962 {
5963         int err = 0;
5964         void __user *argp = (void __user *)arg;
5965         mddev_t *mddev = NULL;
5966         int ro;
5967
5968         if (!capable(CAP_SYS_ADMIN))
5969                 return -EACCES;
5970
5971         /*
5972          * Commands dealing with the RAID driver but not any
5973          * particular array:
5974          */
5975         switch (cmd)
5976         {
5977                 case RAID_VERSION:
5978                         err = get_version(argp);
5979                         goto done;
5980
5981                 case PRINT_RAID_DEBUG:
5982                         err = 0;
5983                         md_print_devices();
5984                         goto done;
5985
5986 #ifndef MODULE
5987                 case RAID_AUTORUN:
5988                         err = 0;
5989                         autostart_arrays(arg);
5990                         goto done;
5991 #endif
5992                 default:;
5993         }
5994
5995         /*
5996          * Commands creating/starting a new array:
5997          */
5998
5999         mddev = bdev->bd_disk->private_data;
6000
6001         if (!mddev) {
6002                 BUG();
6003                 goto abort;
6004         }
6005
6006         err = mddev_lock(mddev);
6007         if (err) {
6008                 printk(KERN_INFO 
6009                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6010                         err, cmd);
6011                 goto abort;
6012         }
6013
6014         switch (cmd)
6015         {
6016                 case SET_ARRAY_INFO:
6017                         {
6018                                 mdu_array_info_t info;
6019                                 if (!arg)
6020                                         memset(&info, 0, sizeof(info));
6021                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6022                                         err = -EFAULT;
6023                                         goto abort_unlock;
6024                                 }
6025                                 if (mddev->pers) {
6026                                         err = update_array_info(mddev, &info);
6027                                         if (err) {
6028                                                 printk(KERN_WARNING "md: couldn't update"
6029                                                        " array info. %d\n", err);
6030                                                 goto abort_unlock;
6031                                         }
6032                                         goto done_unlock;
6033                                 }
6034                                 if (!list_empty(&mddev->disks)) {
6035                                         printk(KERN_WARNING
6036                                                "md: array %s already has disks!\n",
6037                                                mdname(mddev));
6038                                         err = -EBUSY;
6039                                         goto abort_unlock;
6040                                 }
6041                                 if (mddev->raid_disks) {
6042                                         printk(KERN_WARNING
6043                                                "md: array %s already initialised!\n",
6044                                                mdname(mddev));
6045                                         err = -EBUSY;
6046                                         goto abort_unlock;
6047                                 }
6048                                 err = set_array_info(mddev, &info);
6049                                 if (err) {
6050                                         printk(KERN_WARNING "md: couldn't set"
6051                                                " array info. %d\n", err);
6052                                         goto abort_unlock;
6053                                 }
6054                         }
6055                         goto done_unlock;
6056
6057                 default:;
6058         }
6059
6060         /*
6061          * Commands querying/configuring an existing array:
6062          */
6063         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6064          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6065         if ((!mddev->raid_disks && !mddev->external)
6066             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6067             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6068             && cmd != GET_BITMAP_FILE) {
6069                 err = -ENODEV;
6070                 goto abort_unlock;
6071         }
6072
6073         /*
6074          * Commands even a read-only array can execute:
6075          */
6076         switch (cmd)
6077         {
6078                 case GET_ARRAY_INFO:
6079                         err = get_array_info(mddev, argp);
6080                         goto done_unlock;
6081
6082                 case GET_BITMAP_FILE:
6083                         err = get_bitmap_file(mddev, argp);
6084                         goto done_unlock;
6085
6086                 case GET_DISK_INFO:
6087                         err = get_disk_info(mddev, argp);
6088                         goto done_unlock;
6089
6090                 case RESTART_ARRAY_RW:
6091                         err = restart_array(mddev);
6092                         goto done_unlock;
6093
6094                 case STOP_ARRAY:
6095                         err = do_md_stop(mddev, 0, 1);
6096                         goto done_unlock;
6097
6098                 case STOP_ARRAY_RO:
6099                         err = md_set_readonly(mddev, 1);
6100                         goto done_unlock;
6101
6102                 case BLKROSET:
6103                         if (get_user(ro, (int __user *)(arg))) {
6104                                 err = -EFAULT;
6105                                 goto done_unlock;
6106                         }
6107                         err = -EINVAL;
6108
6109                         /* if the bdev is going readonly the value of mddev->ro
6110                          * does not matter, no writes are coming
6111                          */
6112                         if (ro)
6113                                 goto done_unlock;
6114
6115                         /* are we are already prepared for writes? */
6116                         if (mddev->ro != 1)
6117                                 goto done_unlock;
6118
6119                         /* transitioning to readauto need only happen for
6120                          * arrays that call md_write_start
6121                          */
6122                         if (mddev->pers) {
6123                                 err = restart_array(mddev);
6124                                 if (err == 0) {
6125                                         mddev->ro = 2;
6126                                         set_disk_ro(mddev->gendisk, 0);
6127                                 }
6128                         }
6129                         goto done_unlock;
6130         }
6131
6132         /*
6133          * The remaining ioctls are changing the state of the
6134          * superblock, so we do not allow them on read-only arrays.
6135          * However non-MD ioctls (e.g. get-size) will still come through
6136          * here and hit the 'default' below, so only disallow
6137          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6138          */
6139         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6140                 if (mddev->ro == 2) {
6141                         mddev->ro = 0;
6142                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6143                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6144                         md_wakeup_thread(mddev->thread);
6145                 } else {
6146                         err = -EROFS;
6147                         goto abort_unlock;
6148                 }
6149         }
6150
6151         switch (cmd)
6152         {
6153                 case ADD_NEW_DISK:
6154                 {
6155                         mdu_disk_info_t info;
6156                         if (copy_from_user(&info, argp, sizeof(info)))
6157                                 err = -EFAULT;
6158                         else
6159                                 err = add_new_disk(mddev, &info);
6160                         goto done_unlock;
6161                 }
6162
6163                 case HOT_REMOVE_DISK:
6164                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6165                         goto done_unlock;
6166
6167                 case HOT_ADD_DISK:
6168                         err = hot_add_disk(mddev, new_decode_dev(arg));
6169                         goto done_unlock;
6170
6171                 case SET_DISK_FAULTY:
6172                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6173                         goto done_unlock;
6174
6175                 case RUN_ARRAY:
6176                         err = do_md_run(mddev);
6177                         goto done_unlock;
6178
6179                 case SET_BITMAP_FILE:
6180                         err = set_bitmap_file(mddev, (int)arg);
6181                         goto done_unlock;
6182
6183                 default:
6184                         err = -EINVAL;
6185                         goto abort_unlock;
6186         }
6187
6188 done_unlock:
6189 abort_unlock:
6190         if (mddev->hold_active == UNTIL_IOCTL &&
6191             err != -EINVAL)
6192                 mddev->hold_active = 0;
6193         mddev_unlock(mddev);
6194
6195         return err;
6196 done:
6197         if (err)
6198                 MD_BUG();
6199 abort:
6200         return err;
6201 }
6202 #ifdef CONFIG_COMPAT
6203 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6204                     unsigned int cmd, unsigned long arg)
6205 {
6206         switch (cmd) {
6207         case HOT_REMOVE_DISK:
6208         case HOT_ADD_DISK:
6209         case SET_DISK_FAULTY:
6210         case SET_BITMAP_FILE:
6211                 /* These take in integer arg, do not convert */
6212                 break;
6213         default:
6214                 arg = (unsigned long)compat_ptr(arg);
6215                 break;
6216         }
6217
6218         return md_ioctl(bdev, mode, cmd, arg);
6219 }
6220 #endif /* CONFIG_COMPAT */
6221
6222 static int md_open(struct block_device *bdev, fmode_t mode)
6223 {
6224         /*
6225          * Succeed if we can lock the mddev, which confirms that
6226          * it isn't being stopped right now.
6227          */
6228         mddev_t *mddev = mddev_find(bdev->bd_dev);
6229         int err;
6230
6231         if (mddev->gendisk != bdev->bd_disk) {
6232                 /* we are racing with mddev_put which is discarding this
6233                  * bd_disk.
6234                  */
6235                 mddev_put(mddev);
6236                 /* Wait until bdev->bd_disk is definitely gone */
6237                 flush_workqueue(md_misc_wq);
6238                 /* Then retry the open from the top */
6239                 return -ERESTARTSYS;
6240         }
6241         BUG_ON(mddev != bdev->bd_disk->private_data);
6242
6243         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6244                 goto out;
6245
6246         err = 0;
6247         atomic_inc(&mddev->openers);
6248         mutex_unlock(&mddev->open_mutex);
6249
6250         check_disk_change(bdev);
6251  out:
6252         return err;
6253 }
6254
6255 static int md_release(struct gendisk *disk, fmode_t mode)
6256 {
6257         mddev_t *mddev = disk->private_data;
6258
6259         BUG_ON(!mddev);
6260         atomic_dec(&mddev->openers);
6261         mddev_put(mddev);
6262
6263         return 0;
6264 }
6265
6266 static int md_media_changed(struct gendisk *disk)
6267 {
6268         mddev_t *mddev = disk->private_data;
6269
6270         return mddev->changed;
6271 }
6272
6273 static int md_revalidate(struct gendisk *disk)
6274 {
6275         mddev_t *mddev = disk->private_data;
6276
6277         mddev->changed = 0;
6278         return 0;
6279 }
6280 static const struct block_device_operations md_fops =
6281 {
6282         .owner          = THIS_MODULE,
6283         .open           = md_open,
6284         .release        = md_release,
6285         .ioctl          = md_ioctl,
6286 #ifdef CONFIG_COMPAT
6287         .compat_ioctl   = md_compat_ioctl,
6288 #endif
6289         .getgeo         = md_getgeo,
6290         .media_changed  = md_media_changed,
6291         .revalidate_disk= md_revalidate,
6292 };
6293
6294 static int md_thread(void * arg)
6295 {
6296         mdk_thread_t *thread = arg;
6297
6298         /*
6299          * md_thread is a 'system-thread', it's priority should be very
6300          * high. We avoid resource deadlocks individually in each
6301          * raid personality. (RAID5 does preallocation) We also use RR and
6302          * the very same RT priority as kswapd, thus we will never get
6303          * into a priority inversion deadlock.
6304          *
6305          * we definitely have to have equal or higher priority than
6306          * bdflush, otherwise bdflush will deadlock if there are too
6307          * many dirty RAID5 blocks.
6308          */
6309
6310         allow_signal(SIGKILL);
6311         while (!kthread_should_stop()) {
6312
6313                 /* We need to wait INTERRUPTIBLE so that
6314                  * we don't add to the load-average.
6315                  * That means we need to be sure no signals are
6316                  * pending
6317                  */
6318                 if (signal_pending(current))
6319                         flush_signals(current);
6320
6321                 wait_event_interruptible_timeout
6322                         (thread->wqueue,
6323                          test_bit(THREAD_WAKEUP, &thread->flags)
6324                          || kthread_should_stop(),
6325                          thread->timeout);
6326
6327                 clear_bit(THREAD_WAKEUP, &thread->flags);
6328                 if (!kthread_should_stop())
6329                         thread->run(thread->mddev);
6330         }
6331
6332         return 0;
6333 }
6334
6335 void md_wakeup_thread(mdk_thread_t *thread)
6336 {
6337         if (thread) {
6338                 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6339                 set_bit(THREAD_WAKEUP, &thread->flags);
6340                 wake_up(&thread->wqueue);
6341         }
6342 }
6343
6344 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6345                                  const char *name)
6346 {
6347         mdk_thread_t *thread;
6348
6349         thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6350         if (!thread)
6351                 return NULL;
6352
6353         init_waitqueue_head(&thread->wqueue);
6354
6355         thread->run = run;
6356         thread->mddev = mddev;
6357         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6358         thread->tsk = kthread_run(md_thread, thread,
6359                                   "%s_%s",
6360                                   mdname(thread->mddev),
6361                                   name ?: mddev->pers->name);
6362         if (IS_ERR(thread->tsk)) {
6363                 kfree(thread);
6364                 return NULL;
6365         }
6366         return thread;
6367 }
6368
6369 void md_unregister_thread(mdk_thread_t *thread)
6370 {
6371         if (!thread)
6372                 return;
6373         dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6374
6375         kthread_stop(thread->tsk);
6376         kfree(thread);
6377 }
6378
6379 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6380 {
6381         if (!mddev) {
6382                 MD_BUG();
6383                 return;
6384         }
6385
6386         if (!rdev || test_bit(Faulty, &rdev->flags))
6387                 return;
6388
6389         if (mddev->external)
6390                 set_bit(Blocked, &rdev->flags);
6391 /*
6392         dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6393                 mdname(mddev),
6394                 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6395                 __builtin_return_address(0),__builtin_return_address(1),
6396                 __builtin_return_address(2),__builtin_return_address(3));
6397 */
6398         if (!mddev->pers)
6399                 return;
6400         if (!mddev->pers->error_handler)
6401                 return;
6402         mddev->pers->error_handler(mddev,rdev);
6403         if (mddev->degraded)
6404                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6405         sysfs_notify_dirent_safe(rdev->sysfs_state);
6406         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6407         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6408         md_wakeup_thread(mddev->thread);
6409         if (mddev->event_work.func)
6410                 queue_work(md_misc_wq, &mddev->event_work);
6411         md_new_event_inintr(mddev);
6412 }
6413
6414 /* seq_file implementation /proc/mdstat */
6415
6416 static void status_unused(struct seq_file *seq)
6417 {
6418         int i = 0;
6419         mdk_rdev_t *rdev;
6420
6421         seq_printf(seq, "unused devices: ");
6422
6423         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6424                 char b[BDEVNAME_SIZE];
6425                 i++;
6426                 seq_printf(seq, "%s ",
6427                               bdevname(rdev->bdev,b));
6428         }
6429         if (!i)
6430                 seq_printf(seq, "<none>");
6431
6432         seq_printf(seq, "\n");
6433 }
6434
6435
6436 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6437 {
6438         sector_t max_sectors, resync, res;
6439         unsigned long dt, db;
6440         sector_t rt;
6441         int scale;
6442         unsigned int per_milli;
6443
6444         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6445
6446         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6447                 max_sectors = mddev->resync_max_sectors;
6448         else
6449                 max_sectors = mddev->dev_sectors;
6450
6451         /*
6452          * Should not happen.
6453          */
6454         if (!max_sectors) {
6455                 MD_BUG();
6456                 return;
6457         }
6458         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6459          * in a sector_t, and (max_sectors>>scale) will fit in a
6460          * u32, as those are the requirements for sector_div.
6461          * Thus 'scale' must be at least 10
6462          */
6463         scale = 10;
6464         if (sizeof(sector_t) > sizeof(unsigned long)) {
6465                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6466                         scale++;
6467         }
6468         res = (resync>>scale)*1000;
6469         sector_div(res, (u32)((max_sectors>>scale)+1));
6470
6471         per_milli = res;
6472         {
6473                 int i, x = per_milli/50, y = 20-x;
6474                 seq_printf(seq, "[");
6475                 for (i = 0; i < x; i++)
6476                         seq_printf(seq, "=");
6477                 seq_printf(seq, ">");
6478                 for (i = 0; i < y; i++)
6479                         seq_printf(seq, ".");
6480                 seq_printf(seq, "] ");
6481         }
6482         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6483                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6484                     "reshape" :
6485                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6486                      "check" :
6487                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6488                       "resync" : "recovery"))),
6489                    per_milli/10, per_milli % 10,
6490                    (unsigned long long) resync/2,
6491                    (unsigned long long) max_sectors/2);
6492
6493         /*
6494          * dt: time from mark until now
6495          * db: blocks written from mark until now
6496          * rt: remaining time
6497          *
6498          * rt is a sector_t, so could be 32bit or 64bit.
6499          * So we divide before multiply in case it is 32bit and close
6500          * to the limit.
6501          * We scale the divisor (db) by 32 to avoid losing precision
6502          * near the end of resync when the number of remaining sectors
6503          * is close to 'db'.
6504          * We then divide rt by 32 after multiplying by db to compensate.
6505          * The '+1' avoids division by zero if db is very small.
6506          */
6507         dt = ((jiffies - mddev->resync_mark) / HZ);
6508         if (!dt) dt++;
6509         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6510                 - mddev->resync_mark_cnt;
6511
6512         rt = max_sectors - resync;    /* number of remaining sectors */
6513         sector_div(rt, db/32+1);
6514         rt *= dt;
6515         rt >>= 5;
6516
6517         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6518                    ((unsigned long)rt % 60)/6);
6519
6520         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6521 }
6522
6523 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6524 {
6525         struct list_head *tmp;
6526         loff_t l = *pos;
6527         mddev_t *mddev;
6528
6529         if (l >= 0x10000)
6530                 return NULL;
6531         if (!l--)
6532                 /* header */
6533                 return (void*)1;
6534
6535         spin_lock(&all_mddevs_lock);
6536         list_for_each(tmp,&all_mddevs)
6537                 if (!l--) {
6538                         mddev = list_entry(tmp, mddev_t, all_mddevs);
6539                         mddev_get(mddev);
6540                         spin_unlock(&all_mddevs_lock);
6541                         return mddev;
6542                 }
6543         spin_unlock(&all_mddevs_lock);
6544         if (!l--)
6545                 return (void*)2;/* tail */
6546         return NULL;
6547 }
6548
6549 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6550 {
6551         struct list_head *tmp;
6552         mddev_t *next_mddev, *mddev = v;
6553         
6554         ++*pos;
6555         if (v == (void*)2)
6556                 return NULL;
6557
6558         spin_lock(&all_mddevs_lock);
6559         if (v == (void*)1)
6560                 tmp = all_mddevs.next;
6561         else
6562                 tmp = mddev->all_mddevs.next;
6563         if (tmp != &all_mddevs)
6564                 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6565         else {
6566                 next_mddev = (void*)2;
6567                 *pos = 0x10000;
6568         }               
6569         spin_unlock(&all_mddevs_lock);
6570
6571         if (v != (void*)1)
6572                 mddev_put(mddev);
6573         return next_mddev;
6574
6575 }
6576
6577 static void md_seq_stop(struct seq_file *seq, void *v)
6578 {
6579         mddev_t *mddev = v;
6580
6581         if (mddev && v != (void*)1 && v != (void*)2)
6582                 mddev_put(mddev);
6583 }
6584
6585 struct mdstat_info {
6586         int event;
6587 };
6588
6589 static int md_seq_show(struct seq_file *seq, void *v)
6590 {
6591         mddev_t *mddev = v;
6592         sector_t sectors;
6593         mdk_rdev_t *rdev;
6594         struct mdstat_info *mi = seq->private;
6595         struct bitmap *bitmap;
6596
6597         if (v == (void*)1) {
6598                 struct mdk_personality *pers;
6599                 seq_printf(seq, "Personalities : ");
6600                 spin_lock(&pers_lock);
6601                 list_for_each_entry(pers, &pers_list, list)
6602                         seq_printf(seq, "[%s] ", pers->name);
6603
6604                 spin_unlock(&pers_lock);
6605                 seq_printf(seq, "\n");
6606                 mi->event = atomic_read(&md_event_count);
6607                 return 0;
6608         }
6609         if (v == (void*)2) {
6610                 status_unused(seq);
6611                 return 0;
6612         }
6613
6614         if (mddev_lock(mddev) < 0)
6615                 return -EINTR;
6616
6617         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6618                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6619                                                 mddev->pers ? "" : "in");
6620                 if (mddev->pers) {
6621                         if (mddev->ro==1)
6622                                 seq_printf(seq, " (read-only)");
6623                         if (mddev->ro==2)
6624                                 seq_printf(seq, " (auto-read-only)");
6625                         seq_printf(seq, " %s", mddev->pers->name);
6626                 }
6627
6628                 sectors = 0;
6629                 list_for_each_entry(rdev, &mddev->disks, same_set) {
6630                         char b[BDEVNAME_SIZE];
6631                         seq_printf(seq, " %s[%d]",
6632                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6633                         if (test_bit(WriteMostly, &rdev->flags))
6634                                 seq_printf(seq, "(W)");
6635                         if (test_bit(Faulty, &rdev->flags)) {
6636                                 seq_printf(seq, "(F)");
6637                                 continue;
6638                         } else if (rdev->raid_disk < 0)
6639                                 seq_printf(seq, "(S)"); /* spare */
6640                         sectors += rdev->sectors;
6641                 }
6642
6643                 if (!list_empty(&mddev->disks)) {
6644                         if (mddev->pers)
6645                                 seq_printf(seq, "\n      %llu blocks",
6646                                            (unsigned long long)
6647                                            mddev->array_sectors / 2);
6648                         else
6649                                 seq_printf(seq, "\n      %llu blocks",
6650                                            (unsigned long long)sectors / 2);
6651                 }
6652                 if (mddev->persistent) {
6653                         if (mddev->major_version != 0 ||
6654                             mddev->minor_version != 90) {
6655                                 seq_printf(seq," super %d.%d",
6656                                            mddev->major_version,
6657                                            mddev->minor_version);
6658                         }
6659                 } else if (mddev->external)
6660                         seq_printf(seq, " super external:%s",
6661                                    mddev->metadata_type);
6662                 else
6663                         seq_printf(seq, " super non-persistent");
6664
6665                 if (mddev->pers) {
6666                         mddev->pers->status(seq, mddev);
6667                         seq_printf(seq, "\n      ");
6668                         if (mddev->pers->sync_request) {
6669                                 if (mddev->curr_resync > 2) {
6670                                         status_resync(seq, mddev);
6671                                         seq_printf(seq, "\n      ");
6672                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6673                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6674                                 else if (mddev->recovery_cp < MaxSector)
6675                                         seq_printf(seq, "\tresync=PENDING\n      ");
6676                         }
6677                 } else
6678                         seq_printf(seq, "\n       ");
6679
6680                 if ((bitmap = mddev->bitmap)) {
6681                         unsigned long chunk_kb;
6682                         unsigned long flags;
6683                         spin_lock_irqsave(&bitmap->lock, flags);
6684                         chunk_kb = mddev->bitmap_info.chunksize >> 10;
6685                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6686                                 "%lu%s chunk",
6687                                 bitmap->pages - bitmap->missing_pages,
6688                                 bitmap->pages,
6689                                 (bitmap->pages - bitmap->missing_pages)
6690                                         << (PAGE_SHIFT - 10),
6691                                 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6692                                 chunk_kb ? "KB" : "B");
6693                         if (bitmap->file) {
6694                                 seq_printf(seq, ", file: ");
6695                                 seq_path(seq, &bitmap->file->f_path, " \t\n");
6696                         }
6697
6698                         seq_printf(seq, "\n");
6699                         spin_unlock_irqrestore(&bitmap->lock, flags);
6700                 }
6701
6702                 seq_printf(seq, "\n");
6703         }
6704         mddev_unlock(mddev);
6705         
6706         return 0;
6707 }
6708
6709 static const struct seq_operations md_seq_ops = {
6710         .start  = md_seq_start,
6711         .next   = md_seq_next,
6712         .stop   = md_seq_stop,
6713         .show   = md_seq_show,
6714 };
6715
6716 static int md_seq_open(struct inode *inode, struct file *file)
6717 {
6718         int error;
6719         struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6720         if (mi == NULL)
6721                 return -ENOMEM;
6722
6723         error = seq_open(file, &md_seq_ops);
6724         if (error)
6725                 kfree(mi);
6726         else {
6727                 struct seq_file *p = file->private_data;
6728                 p->private = mi;
6729                 mi->event = atomic_read(&md_event_count);
6730         }
6731         return error;
6732 }
6733
6734 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6735 {
6736         struct seq_file *m = filp->private_data;
6737         struct mdstat_info *mi = m->private;
6738         int mask;
6739
6740         poll_wait(filp, &md_event_waiters, wait);
6741
6742         /* always allow read */
6743         mask = POLLIN | POLLRDNORM;
6744
6745         if (mi->event != atomic_read(&md_event_count))
6746                 mask |= POLLERR | POLLPRI;
6747         return mask;
6748 }
6749
6750 static const struct file_operations md_seq_fops = {
6751         .owner          = THIS_MODULE,
6752         .open           = md_seq_open,
6753         .read           = seq_read,
6754         .llseek         = seq_lseek,
6755         .release        = seq_release_private,
6756         .poll           = mdstat_poll,
6757 };
6758
6759 int register_md_personality(struct mdk_personality *p)
6760 {
6761         spin_lock(&pers_lock);
6762         list_add_tail(&p->list, &pers_list);
6763         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6764         spin_unlock(&pers_lock);
6765         return 0;
6766 }
6767
6768 int unregister_md_personality(struct mdk_personality *p)
6769 {
6770         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6771         spin_lock(&pers_lock);
6772         list_del_init(&p->list);
6773         spin_unlock(&pers_lock);
6774         return 0;
6775 }
6776
6777 static int is_mddev_idle(mddev_t *mddev, int init)
6778 {
6779         mdk_rdev_t * rdev;
6780         int idle;
6781         int curr_events;
6782
6783         idle = 1;
6784         rcu_read_lock();
6785         rdev_for_each_rcu(rdev, mddev) {
6786                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6787                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6788                               (int)part_stat_read(&disk->part0, sectors[1]) -
6789                               atomic_read(&disk->sync_io);
6790                 /* sync IO will cause sync_io to increase before the disk_stats
6791                  * as sync_io is counted when a request starts, and
6792                  * disk_stats is counted when it completes.
6793                  * So resync activity will cause curr_events to be smaller than
6794                  * when there was no such activity.
6795                  * non-sync IO will cause disk_stat to increase without
6796                  * increasing sync_io so curr_events will (eventually)
6797                  * be larger than it was before.  Once it becomes
6798                  * substantially larger, the test below will cause
6799                  * the array to appear non-idle, and resync will slow
6800                  * down.
6801                  * If there is a lot of outstanding resync activity when
6802                  * we set last_event to curr_events, then all that activity
6803                  * completing might cause the array to appear non-idle
6804                  * and resync will be slowed down even though there might
6805                  * not have been non-resync activity.  This will only
6806                  * happen once though.  'last_events' will soon reflect
6807                  * the state where there is little or no outstanding
6808                  * resync requests, and further resync activity will
6809                  * always make curr_events less than last_events.
6810                  *
6811                  */
6812                 if (init || curr_events - rdev->last_events > 64) {
6813                         rdev->last_events = curr_events;
6814                         idle = 0;
6815                 }
6816         }
6817         rcu_read_unlock();
6818         return idle;
6819 }
6820
6821 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6822 {
6823         /* another "blocks" (512byte) blocks have been synced */
6824         atomic_sub(blocks, &mddev->recovery_active);
6825         wake_up(&mddev->recovery_wait);
6826         if (!ok) {
6827                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6828                 md_wakeup_thread(mddev->thread);
6829                 // stop recovery, signal do_sync ....
6830         }
6831 }
6832
6833
6834 /* md_write_start(mddev, bi)
6835  * If we need to update some array metadata (e.g. 'active' flag
6836  * in superblock) before writing, schedule a superblock update
6837  * and wait for it to complete.
6838  */
6839 void md_write_start(mddev_t *mddev, struct bio *bi)
6840 {
6841         int did_change = 0;
6842         if (bio_data_dir(bi) != WRITE)
6843                 return;
6844
6845         BUG_ON(mddev->ro == 1);
6846         if (mddev->ro == 2) {
6847                 /* need to switch to read/write */
6848                 mddev->ro = 0;
6849                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6850                 md_wakeup_thread(mddev->thread);
6851                 md_wakeup_thread(mddev->sync_thread);
6852                 did_change = 1;
6853         }
6854         atomic_inc(&mddev->writes_pending);
6855         if (mddev->safemode == 1)
6856                 mddev->safemode = 0;
6857         if (mddev->in_sync) {
6858                 spin_lock_irq(&mddev->write_lock);
6859                 if (mddev->in_sync) {
6860                         mddev->in_sync = 0;
6861                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6862                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
6863                         md_wakeup_thread(mddev->thread);
6864                         did_change = 1;
6865                 }
6866                 spin_unlock_irq(&mddev->write_lock);
6867         }
6868         if (did_change)
6869                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6870         wait_event(mddev->sb_wait,
6871                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6872 }
6873
6874 void md_write_end(mddev_t *mddev)
6875 {
6876         if (atomic_dec_and_test(&mddev->writes_pending)) {
6877                 if (mddev->safemode == 2)
6878                         md_wakeup_thread(mddev->thread);
6879                 else if (mddev->safemode_delay)
6880                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6881         }
6882 }
6883
6884 /* md_allow_write(mddev)
6885  * Calling this ensures that the array is marked 'active' so that writes
6886  * may proceed without blocking.  It is important to call this before
6887  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6888  * Must be called with mddev_lock held.
6889  *
6890  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6891  * is dropped, so return -EAGAIN after notifying userspace.
6892  */
6893 int md_allow_write(mddev_t *mddev)
6894 {
6895         if (!mddev->pers)
6896                 return 0;
6897         if (mddev->ro)
6898                 return 0;
6899         if (!mddev->pers->sync_request)
6900                 return 0;
6901
6902         spin_lock_irq(&mddev->write_lock);
6903         if (mddev->in_sync) {
6904                 mddev->in_sync = 0;
6905                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6906                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6907                 if (mddev->safemode_delay &&
6908                     mddev->safemode == 0)
6909                         mddev->safemode = 1;
6910                 spin_unlock_irq(&mddev->write_lock);
6911                 md_update_sb(mddev, 0);
6912                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6913         } else
6914                 spin_unlock_irq(&mddev->write_lock);
6915
6916         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6917                 return -EAGAIN;
6918         else
6919                 return 0;
6920 }
6921 EXPORT_SYMBOL_GPL(md_allow_write);
6922
6923 #define SYNC_MARKS      10
6924 #define SYNC_MARK_STEP  (3*HZ)
6925 void md_do_sync(mddev_t *mddev)
6926 {
6927         mddev_t *mddev2;
6928         unsigned int currspeed = 0,
6929                  window;
6930         sector_t max_sectors,j, io_sectors;
6931         unsigned long mark[SYNC_MARKS];
6932         sector_t mark_cnt[SYNC_MARKS];
6933         int last_mark,m;
6934         struct list_head *tmp;
6935         sector_t last_check;
6936         int skipped = 0;
6937         mdk_rdev_t *rdev;
6938         char *desc;
6939
6940         /* just incase thread restarts... */
6941         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6942                 return;
6943         if (mddev->ro) /* never try to sync a read-only array */
6944                 return;
6945
6946         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6947                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6948                         desc = "data-check";
6949                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6950                         desc = "requested-resync";
6951                 else
6952                         desc = "resync";
6953         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6954                 desc = "reshape";
6955         else
6956                 desc = "recovery";
6957
6958         /* we overload curr_resync somewhat here.
6959          * 0 == not engaged in resync at all
6960          * 2 == checking that there is no conflict with another sync
6961          * 1 == like 2, but have yielded to allow conflicting resync to
6962          *              commense
6963          * other == active in resync - this many blocks
6964          *
6965          * Before starting a resync we must have set curr_resync to
6966          * 2, and then checked that every "conflicting" array has curr_resync
6967          * less than ours.  When we find one that is the same or higher
6968          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
6969          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6970          * This will mean we have to start checking from the beginning again.
6971          *
6972          */
6973
6974         do {
6975                 mddev->curr_resync = 2;
6976
6977         try_again:
6978                 if (kthread_should_stop())
6979                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6980
6981                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6982                         goto skip;
6983                 for_each_mddev(mddev2, tmp) {
6984                         if (mddev2 == mddev)
6985                                 continue;
6986                         if (!mddev->parallel_resync
6987                         &&  mddev2->curr_resync
6988                         &&  match_mddev_units(mddev, mddev2)) {
6989                                 DEFINE_WAIT(wq);
6990                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
6991                                         /* arbitrarily yield */
6992                                         mddev->curr_resync = 1;
6993                                         wake_up(&resync_wait);
6994                                 }
6995                                 if (mddev > mddev2 && mddev->curr_resync == 1)
6996                                         /* no need to wait here, we can wait the next
6997                                          * time 'round when curr_resync == 2
6998                                          */
6999                                         continue;
7000                                 /* We need to wait 'interruptible' so as not to
7001                                  * contribute to the load average, and not to
7002                                  * be caught by 'softlockup'
7003                                  */
7004                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7005                                 if (!kthread_should_stop() &&
7006                                     mddev2->curr_resync >= mddev->curr_resync) {
7007                                         printk(KERN_INFO "md: delaying %s of %s"
7008                                                " until %s has finished (they"
7009                                                " share one or more physical units)\n",
7010                                                desc, mdname(mddev), mdname(mddev2));
7011                                         mddev_put(mddev2);
7012                                         if (signal_pending(current))
7013                                                 flush_signals(current);
7014                                         schedule();
7015                                         finish_wait(&resync_wait, &wq);
7016                                         goto try_again;
7017                                 }
7018                                 finish_wait(&resync_wait, &wq);
7019                         }
7020                 }
7021         } while (mddev->curr_resync < 2);
7022
7023         j = 0;
7024         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7025                 /* resync follows the size requested by the personality,
7026                  * which defaults to physical size, but can be virtual size
7027                  */
7028                 max_sectors = mddev->resync_max_sectors;
7029                 mddev->resync_mismatches = 0;
7030                 /* we don't use the checkpoint if there's a bitmap */
7031                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7032                         j = mddev->resync_min;
7033                 else if (!mddev->bitmap)
7034                         j = mddev->recovery_cp;
7035
7036         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7037                 max_sectors = mddev->dev_sectors;
7038         else {
7039                 /* recovery follows the physical size of devices */
7040                 max_sectors = mddev->dev_sectors;
7041                 j = MaxSector;
7042                 rcu_read_lock();
7043                 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7044                         if (rdev->raid_disk >= 0 &&
7045                             !test_bit(Faulty, &rdev->flags) &&
7046                             !test_bit(In_sync, &rdev->flags) &&
7047                             rdev->recovery_offset < j)
7048                                 j = rdev->recovery_offset;
7049                 rcu_read_unlock();
7050         }
7051
7052         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7053         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7054                 " %d KB/sec/disk.\n", speed_min(mddev));
7055         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7056                "(but not more than %d KB/sec) for %s.\n",
7057                speed_max(mddev), desc);
7058
7059         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7060
7061         io_sectors = 0;
7062         for (m = 0; m < SYNC_MARKS; m++) {
7063                 mark[m] = jiffies;
7064                 mark_cnt[m] = io_sectors;
7065         }
7066         last_mark = 0;
7067         mddev->resync_mark = mark[last_mark];
7068         mddev->resync_mark_cnt = mark_cnt[last_mark];
7069
7070         /*
7071          * Tune reconstruction:
7072          */
7073         window = 32*(PAGE_SIZE/512);
7074         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7075                 window/2, (unsigned long long)max_sectors/2);
7076
7077         atomic_set(&mddev->recovery_active, 0);
7078         last_check = 0;
7079
7080         if (j>2) {
7081                 printk(KERN_INFO 
7082                        "md: resuming %s of %s from checkpoint.\n",
7083                        desc, mdname(mddev));
7084                 mddev->curr_resync = j;
7085         }
7086         mddev->curr_resync_completed = j;
7087
7088         while (j < max_sectors) {
7089                 sector_t sectors;
7090
7091                 skipped = 0;
7092
7093                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7094                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7095                       (mddev->curr_resync - mddev->curr_resync_completed)
7096                       > (max_sectors >> 4)) ||
7097                      (j - mddev->curr_resync_completed)*2
7098                      >= mddev->resync_max - mddev->curr_resync_completed
7099                             )) {
7100                         /* time to update curr_resync_completed */
7101                         wait_event(mddev->recovery_wait,
7102                                    atomic_read(&mddev->recovery_active) == 0);
7103                         mddev->curr_resync_completed = j;
7104                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7105                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7106                 }
7107
7108                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7109                         /* As this condition is controlled by user-space,
7110                          * we can block indefinitely, so use '_interruptible'
7111                          * to avoid triggering warnings.
7112                          */
7113                         flush_signals(current); /* just in case */
7114                         wait_event_interruptible(mddev->recovery_wait,
7115                                                  mddev->resync_max > j
7116                                                  || kthread_should_stop());
7117                 }
7118
7119                 if (kthread_should_stop())
7120                         goto interrupted;
7121
7122                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7123                                                   currspeed < speed_min(mddev));
7124                 if (sectors == 0) {
7125                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7126                         goto out;
7127                 }
7128
7129                 if (!skipped) { /* actual IO requested */
7130                         io_sectors += sectors;
7131                         atomic_add(sectors, &mddev->recovery_active);
7132                 }
7133
7134                 j += sectors;
7135                 if (j>1) mddev->curr_resync = j;
7136                 mddev->curr_mark_cnt = io_sectors;
7137                 if (last_check == 0)
7138                         /* this is the earliers that rebuilt will be
7139                          * visible in /proc/mdstat
7140                          */
7141                         md_new_event(mddev);
7142
7143                 if (last_check + window > io_sectors || j == max_sectors)
7144                         continue;
7145
7146                 last_check = io_sectors;
7147
7148                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7149                         break;
7150
7151         repeat:
7152                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7153                         /* step marks */
7154                         int next = (last_mark+1) % SYNC_MARKS;
7155
7156                         mddev->resync_mark = mark[next];
7157                         mddev->resync_mark_cnt = mark_cnt[next];
7158                         mark[next] = jiffies;
7159                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7160                         last_mark = next;
7161                 }
7162
7163
7164                 if (kthread_should_stop())
7165                         goto interrupted;
7166
7167
7168                 /*
7169                  * this loop exits only if either when we are slower than
7170                  * the 'hard' speed limit, or the system was IO-idle for
7171                  * a jiffy.
7172                  * the system might be non-idle CPU-wise, but we only care
7173                  * about not overloading the IO subsystem. (things like an
7174                  * e2fsck being done on the RAID array should execute fast)
7175                  */
7176                 cond_resched();
7177
7178                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7179                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7180
7181                 if (currspeed > speed_min(mddev)) {
7182                         if ((currspeed > speed_max(mddev)) ||
7183                                         !is_mddev_idle(mddev, 0)) {
7184                                 msleep(500);
7185                                 goto repeat;
7186                         }
7187                 }
7188         }
7189         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7190         /*
7191          * this also signals 'finished resyncing' to md_stop
7192          */
7193  out:
7194         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7195
7196         /* tell personality that we are finished */
7197         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7198
7199         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7200             mddev->curr_resync > 2) {
7201                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7202                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7203                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7204                                         printk(KERN_INFO
7205                                                "md: checkpointing %s of %s.\n",
7206                                                desc, mdname(mddev));
7207                                         mddev->recovery_cp = mddev->curr_resync;
7208                                 }
7209                         } else
7210                                 mddev->recovery_cp = MaxSector;
7211                 } else {
7212                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7213                                 mddev->curr_resync = MaxSector;
7214                         rcu_read_lock();
7215                         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7216                                 if (rdev->raid_disk >= 0 &&
7217                                     mddev->delta_disks >= 0 &&
7218                                     !test_bit(Faulty, &rdev->flags) &&
7219                                     !test_bit(In_sync, &rdev->flags) &&
7220                                     rdev->recovery_offset < mddev->curr_resync)
7221                                         rdev->recovery_offset = mddev->curr_resync;
7222                         rcu_read_unlock();
7223                 }
7224         }
7225         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7226
7227  skip:
7228         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7229                 /* We completed so min/max setting can be forgotten if used. */
7230                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7231                         mddev->resync_min = 0;
7232                 mddev->resync_max = MaxSector;
7233         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7234                 mddev->resync_min = mddev->curr_resync_completed;
7235         mddev->curr_resync = 0;
7236         wake_up(&resync_wait);
7237         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7238         md_wakeup_thread(mddev->thread);
7239         return;
7240
7241  interrupted:
7242         /*
7243          * got a signal, exit.
7244          */
7245         printk(KERN_INFO
7246                "md: md_do_sync() got signal ... exiting\n");
7247         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7248         goto out;
7249
7250 }
7251 EXPORT_SYMBOL_GPL(md_do_sync);
7252
7253 static int remove_and_add_spares(mddev_t *mddev)
7254 {
7255         mdk_rdev_t *rdev;
7256         int spares = 0;
7257
7258         mddev->curr_resync_completed = 0;
7259
7260         list_for_each_entry(rdev, &mddev->disks, same_set)
7261                 if (rdev->raid_disk >= 0 &&
7262                     !test_bit(Blocked, &rdev->flags) &&
7263                     (test_bit(Faulty, &rdev->flags) ||
7264                      ! test_bit(In_sync, &rdev->flags)) &&
7265                     atomic_read(&rdev->nr_pending)==0) {
7266                         if (mddev->pers->hot_remove_disk(
7267                                     mddev, rdev->raid_disk)==0) {
7268                                 sysfs_unlink_rdev(mddev, rdev);
7269                                 rdev->raid_disk = -1;
7270                         }
7271                 }
7272
7273         if (mddev->degraded) {
7274                 list_for_each_entry(rdev, &mddev->disks, same_set) {
7275                         if (rdev->raid_disk >= 0 &&
7276                             !test_bit(In_sync, &rdev->flags) &&
7277                             !test_bit(Faulty, &rdev->flags) &&
7278                             !test_bit(Blocked, &rdev->flags))
7279                                 spares++;
7280                         if (rdev->raid_disk < 0
7281                             && !test_bit(Faulty, &rdev->flags)) {
7282                                 rdev->recovery_offset = 0;
7283                                 if (mddev->pers->
7284                                     hot_add_disk(mddev, rdev) == 0) {
7285                                         if (sysfs_link_rdev(mddev, rdev))
7286                                                 /* failure here is OK */;
7287                                         spares++;
7288                                         md_new_event(mddev);
7289                                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7290                                 } else
7291                                         break;
7292                         }
7293                 }
7294         }
7295         return spares;
7296 }
7297
7298 static void reap_sync_thread(mddev_t *mddev)
7299 {
7300         mdk_rdev_t *rdev;
7301
7302         /* resync has finished, collect result */
7303         md_unregister_thread(mddev->sync_thread);
7304         mddev->sync_thread = NULL;
7305         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7306             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7307                 /* success...*/
7308                 /* activate any spares */
7309                 if (mddev->pers->spare_active(mddev))
7310                         sysfs_notify(&mddev->kobj, NULL,
7311                                      "degraded");
7312         }
7313         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7314             mddev->pers->finish_reshape)
7315                 mddev->pers->finish_reshape(mddev);
7316         md_update_sb(mddev, 1);
7317
7318         /* if array is no-longer degraded, then any saved_raid_disk
7319          * information must be scrapped
7320          */
7321         if (!mddev->degraded)
7322                 list_for_each_entry(rdev, &mddev->disks, same_set)
7323                         rdev->saved_raid_disk = -1;
7324
7325         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7326         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7327         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7328         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7329         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7330         /* flag recovery needed just to double check */
7331         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7332         sysfs_notify_dirent_safe(mddev->sysfs_action);
7333         md_new_event(mddev);
7334         if (mddev->event_work.func)
7335                 queue_work(md_misc_wq, &mddev->event_work);
7336 }
7337
7338 /*
7339  * This routine is regularly called by all per-raid-array threads to
7340  * deal with generic issues like resync and super-block update.
7341  * Raid personalities that don't have a thread (linear/raid0) do not
7342  * need this as they never do any recovery or update the superblock.
7343  *
7344  * It does not do any resync itself, but rather "forks" off other threads
7345  * to do that as needed.
7346  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7347  * "->recovery" and create a thread at ->sync_thread.
7348  * When the thread finishes it sets MD_RECOVERY_DONE
7349  * and wakeups up this thread which will reap the thread and finish up.
7350  * This thread also removes any faulty devices (with nr_pending == 0).
7351  *
7352  * The overall approach is:
7353  *  1/ if the superblock needs updating, update it.
7354  *  2/ If a recovery thread is running, don't do anything else.
7355  *  3/ If recovery has finished, clean up, possibly marking spares active.
7356  *  4/ If there are any faulty devices, remove them.
7357  *  5/ If array is degraded, try to add spares devices
7358  *  6/ If array has spares or is not in-sync, start a resync thread.
7359  */
7360 void md_check_recovery(mddev_t *mddev)
7361 {
7362         if (mddev->suspended)
7363                 return;
7364
7365         if (mddev->bitmap)
7366                 bitmap_daemon_work(mddev);
7367
7368         if (signal_pending(current)) {
7369                 if (mddev->pers->sync_request && !mddev->external) {
7370                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7371                                mdname(mddev));
7372                         mddev->safemode = 2;
7373                 }
7374                 flush_signals(current);
7375         }
7376
7377         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7378                 return;
7379         if ( ! (
7380                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7381                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7382                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7383                 (mddev->external == 0 && mddev->safemode == 1) ||
7384                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7385                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7386                 ))
7387                 return;
7388
7389         if (mddev_trylock(mddev)) {
7390                 int spares = 0;
7391
7392                 if (mddev->ro) {
7393                         /* Only thing we do on a ro array is remove
7394                          * failed devices.
7395                          */
7396                         mdk_rdev_t *rdev;
7397                         list_for_each_entry(rdev, &mddev->disks, same_set)
7398                                 if (rdev->raid_disk >= 0 &&
7399                                     !test_bit(Blocked, &rdev->flags) &&
7400                                     test_bit(Faulty, &rdev->flags) &&
7401                                     atomic_read(&rdev->nr_pending)==0) {
7402                                         if (mddev->pers->hot_remove_disk(
7403                                                     mddev, rdev->raid_disk)==0) {
7404                                                 sysfs_unlink_rdev(mddev, rdev);
7405                                                 rdev->raid_disk = -1;
7406                                         }
7407                                 }
7408                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7409                         goto unlock;
7410                 }
7411
7412                 if (!mddev->external) {
7413                         int did_change = 0;
7414                         spin_lock_irq(&mddev->write_lock);
7415                         if (mddev->safemode &&
7416                             !atomic_read(&mddev->writes_pending) &&
7417                             !mddev->in_sync &&
7418                             mddev->recovery_cp == MaxSector) {
7419                                 mddev->in_sync = 1;
7420                                 did_change = 1;
7421                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7422                         }
7423                         if (mddev->safemode == 1)
7424                                 mddev->safemode = 0;
7425                         spin_unlock_irq(&mddev->write_lock);
7426                         if (did_change)
7427                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7428                 }
7429
7430                 if (mddev->flags)
7431                         md_update_sb(mddev, 0);
7432
7433                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7434                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7435                         /* resync/recovery still happening */
7436                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7437                         goto unlock;
7438                 }
7439                 if (mddev->sync_thread) {
7440                         reap_sync_thread(mddev);
7441                         goto unlock;
7442                 }
7443                 /* Set RUNNING before clearing NEEDED to avoid
7444                  * any transients in the value of "sync_action".
7445                  */
7446                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7447                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7448                 /* Clear some bits that don't mean anything, but
7449                  * might be left set
7450                  */
7451                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7452                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7453
7454                 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7455                         goto unlock;
7456                 /* no recovery is running.
7457                  * remove any failed drives, then
7458                  * add spares if possible.
7459                  * Spare are also removed and re-added, to allow
7460                  * the personality to fail the re-add.
7461                  */
7462
7463                 if (mddev->reshape_position != MaxSector) {
7464                         if (mddev->pers->check_reshape == NULL ||
7465                             mddev->pers->check_reshape(mddev) != 0)
7466                                 /* Cannot proceed */
7467                                 goto unlock;
7468                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7469                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7470                 } else if ((spares = remove_and_add_spares(mddev))) {
7471                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7472                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7473                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7474                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7475                 } else if (mddev->recovery_cp < MaxSector) {
7476                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7477                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7478                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7479                         /* nothing to be done ... */
7480                         goto unlock;
7481
7482                 if (mddev->pers->sync_request) {
7483                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7484                                 /* We are adding a device or devices to an array
7485                                  * which has the bitmap stored on all devices.
7486                                  * So make sure all bitmap pages get written
7487                                  */
7488                                 bitmap_write_all(mddev->bitmap);
7489                         }
7490                         mddev->sync_thread = md_register_thread(md_do_sync,
7491                                                                 mddev,
7492                                                                 "resync");
7493                         if (!mddev->sync_thread) {
7494                                 printk(KERN_ERR "%s: could not start resync"
7495                                         " thread...\n", 
7496                                         mdname(mddev));
7497                                 /* leave the spares where they are, it shouldn't hurt */
7498                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7499                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7500                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7501                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7502                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7503                         } else
7504                                 md_wakeup_thread(mddev->sync_thread);
7505                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7506                         md_new_event(mddev);
7507                 }
7508         unlock:
7509                 if (!mddev->sync_thread) {
7510                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7511                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7512                                                &mddev->recovery))
7513                                 if (mddev->sysfs_action)
7514                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7515                 }
7516                 mddev_unlock(mddev);
7517         }
7518 }
7519
7520 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7521 {
7522         sysfs_notify_dirent_safe(rdev->sysfs_state);
7523         wait_event_timeout(rdev->blocked_wait,
7524                            !test_bit(Blocked, &rdev->flags),
7525                            msecs_to_jiffies(5000));
7526         rdev_dec_pending(rdev, mddev);
7527 }
7528 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7529
7530
7531 /* Bad block management.
7532  * We can record which blocks on each device are 'bad' and so just
7533  * fail those blocks, or that stripe, rather than the whole device.
7534  * Entries in the bad-block table are 64bits wide.  This comprises:
7535  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7536  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7537  *  A 'shift' can be set so that larger blocks are tracked and
7538  *  consequently larger devices can be covered.
7539  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7540  *
7541  * Locking of the bad-block table uses a seqlock so md_is_badblock
7542  * might need to retry if it is very unlucky.
7543  * We will sometimes want to check for bad blocks in a bi_end_io function,
7544  * so we use the write_seqlock_irq variant.
7545  *
7546  * When looking for a bad block we specify a range and want to
7547  * know if any block in the range is bad.  So we binary-search
7548  * to the last range that starts at-or-before the given endpoint,
7549  * (or "before the sector after the target range")
7550  * then see if it ends after the given start.
7551  * We return
7552  *  0 if there are no known bad blocks in the range
7553  *  1 if there are known bad block which are all acknowledged
7554  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7555  * plus the start/length of the first bad section we overlap.
7556  */
7557 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7558                    sector_t *first_bad, int *bad_sectors)
7559 {
7560         int hi;
7561         int lo = 0;
7562         u64 *p = bb->page;
7563         int rv = 0;
7564         sector_t target = s + sectors;
7565         unsigned seq;
7566
7567         if (bb->shift > 0) {
7568                 /* round the start down, and the end up */
7569                 s >>= bb->shift;
7570                 target += (1<<bb->shift) - 1;
7571                 target >>= bb->shift;
7572                 sectors = target - s;
7573         }
7574         /* 'target' is now the first block after the bad range */
7575
7576 retry:
7577         seq = read_seqbegin(&bb->lock);
7578
7579         hi = bb->count;
7580
7581         /* Binary search between lo and hi for 'target'
7582          * i.e. for the last range that starts before 'target'
7583          */
7584         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7585          * are known not to be the last range before target.
7586          * VARIANT: hi-lo is the number of possible
7587          * ranges, and decreases until it reaches 1
7588          */
7589         while (hi - lo > 1) {
7590                 int mid = (lo + hi) / 2;
7591                 sector_t a = BB_OFFSET(p[mid]);
7592                 if (a < target)
7593                         /* This could still be the one, earlier ranges
7594                          * could not. */
7595                         lo = mid;
7596                 else
7597                         /* This and later ranges are definitely out. */
7598                         hi = mid;
7599         }
7600         /* 'lo' might be the last that started before target, but 'hi' isn't */
7601         if (hi > lo) {
7602                 /* need to check all range that end after 's' to see if
7603                  * any are unacknowledged.
7604                  */
7605                 while (lo >= 0 &&
7606                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7607                         if (BB_OFFSET(p[lo]) < target) {
7608                                 /* starts before the end, and finishes after
7609                                  * the start, so they must overlap
7610                                  */
7611                                 if (rv != -1 && BB_ACK(p[lo]))
7612                                         rv = 1;
7613                                 else
7614                                         rv = -1;
7615                                 *first_bad = BB_OFFSET(p[lo]);
7616                                 *bad_sectors = BB_LEN(p[lo]);
7617                         }
7618                         lo--;
7619                 }
7620         }
7621
7622         if (read_seqretry(&bb->lock, seq))
7623                 goto retry;
7624
7625         return rv;
7626 }
7627 EXPORT_SYMBOL_GPL(md_is_badblock);
7628
7629 /*
7630  * Add a range of bad blocks to the table.
7631  * This might extend the table, or might contract it
7632  * if two adjacent ranges can be merged.
7633  * We binary-search to find the 'insertion' point, then
7634  * decide how best to handle it.
7635  */
7636 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7637                             int acknowledged)
7638 {
7639         u64 *p;
7640         int lo, hi;
7641         int rv = 1;
7642
7643         if (bb->shift < 0)
7644                 /* badblocks are disabled */
7645                 return 0;
7646
7647         if (bb->shift) {
7648                 /* round the start down, and the end up */
7649                 sector_t next = s + sectors;
7650                 s >>= bb->shift;
7651                 next += (1<<bb->shift) - 1;
7652                 next >>= bb->shift;
7653                 sectors = next - s;
7654         }
7655
7656         write_seqlock_irq(&bb->lock);
7657
7658         p = bb->page;
7659         lo = 0;
7660         hi = bb->count;
7661         /* Find the last range that starts at-or-before 's' */
7662         while (hi - lo > 1) {
7663                 int mid = (lo + hi) / 2;
7664                 sector_t a = BB_OFFSET(p[mid]);
7665                 if (a <= s)
7666                         lo = mid;
7667                 else
7668                         hi = mid;
7669         }
7670         if (hi > lo && BB_OFFSET(p[lo]) > s)
7671                 hi = lo;
7672
7673         if (hi > lo) {
7674                 /* we found a range that might merge with the start
7675                  * of our new range
7676                  */
7677                 sector_t a = BB_OFFSET(p[lo]);
7678                 sector_t e = a + BB_LEN(p[lo]);
7679                 int ack = BB_ACK(p[lo]);
7680                 if (e >= s) {
7681                         /* Yes, we can merge with a previous range */
7682                         if (s == a && s + sectors >= e)
7683                                 /* new range covers old */
7684                                 ack = acknowledged;
7685                         else
7686                                 ack = ack && acknowledged;
7687
7688                         if (e < s + sectors)
7689                                 e = s + sectors;
7690                         if (e - a <= BB_MAX_LEN) {
7691                                 p[lo] = BB_MAKE(a, e-a, ack);
7692                                 s = e;
7693                         } else {
7694                                 /* does not all fit in one range,
7695                                  * make p[lo] maximal
7696                                  */
7697                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7698                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7699                                 s = a + BB_MAX_LEN;
7700                         }
7701                         sectors = e - s;
7702                 }
7703         }
7704         if (sectors && hi < bb->count) {
7705                 /* 'hi' points to the first range that starts after 's'.
7706                  * Maybe we can merge with the start of that range */
7707                 sector_t a = BB_OFFSET(p[hi]);
7708                 sector_t e = a + BB_LEN(p[hi]);
7709                 int ack = BB_ACK(p[hi]);
7710                 if (a <= s + sectors) {
7711                         /* merging is possible */
7712                         if (e <= s + sectors) {
7713                                 /* full overlap */
7714                                 e = s + sectors;
7715                                 ack = acknowledged;
7716                         } else
7717                                 ack = ack && acknowledged;
7718
7719                         a = s;
7720                         if (e - a <= BB_MAX_LEN) {
7721                                 p[hi] = BB_MAKE(a, e-a, ack);
7722                                 s = e;
7723                         } else {
7724                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7725                                 s = a + BB_MAX_LEN;
7726                         }
7727                         sectors = e - s;
7728                         lo = hi;
7729                         hi++;
7730                 }
7731         }
7732         if (sectors == 0 && hi < bb->count) {
7733                 /* we might be able to combine lo and hi */
7734                 /* Note: 's' is at the end of 'lo' */
7735                 sector_t a = BB_OFFSET(p[hi]);
7736                 int lolen = BB_LEN(p[lo]);
7737                 int hilen = BB_LEN(p[hi]);
7738                 int newlen = lolen + hilen - (s - a);
7739                 if (s >= a && newlen < BB_MAX_LEN) {
7740                         /* yes, we can combine them */
7741                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7742                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7743                         memmove(p + hi, p + hi + 1,
7744                                 (bb->count - hi - 1) * 8);
7745                         bb->count--;
7746                 }
7747         }
7748         while (sectors) {
7749                 /* didn't merge (it all).
7750                  * Need to add a range just before 'hi' */
7751                 if (bb->count >= MD_MAX_BADBLOCKS) {
7752                         /* No room for more */
7753                         rv = 0;
7754                         break;
7755                 } else {
7756                         int this_sectors = sectors;
7757                         memmove(p + hi + 1, p + hi,
7758                                 (bb->count - hi) * 8);
7759                         bb->count++;
7760
7761                         if (this_sectors > BB_MAX_LEN)
7762                                 this_sectors = BB_MAX_LEN;
7763                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7764                         sectors -= this_sectors;
7765                         s += this_sectors;
7766                 }
7767         }
7768
7769         bb->changed = 1;
7770         write_sequnlock_irq(&bb->lock);
7771
7772         return rv;
7773 }
7774
7775 int rdev_set_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors,
7776                        int acknowledged)
7777 {
7778         int rv = md_set_badblocks(&rdev->badblocks,
7779                                   s + rdev->data_offset, sectors, acknowledged);
7780         if (rv) {
7781                 /* Make sure they get written out promptly */
7782                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7783                 md_wakeup_thread(rdev->mddev->thread);
7784         }
7785         return rv;
7786 }
7787 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7788
7789 /*
7790  * Remove a range of bad blocks from the table.
7791  * This may involve extending the table if we spilt a region,
7792  * but it must not fail.  So if the table becomes full, we just
7793  * drop the remove request.
7794  */
7795 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7796 {
7797         u64 *p;
7798         int lo, hi;
7799         sector_t target = s + sectors;
7800         int rv = 0;
7801
7802         if (bb->shift > 0) {
7803                 /* When clearing we round the start up and the end down.
7804                  * This should not matter as the shift should align with
7805                  * the block size and no rounding should ever be needed.
7806                  * However it is better the think a block is bad when it
7807                  * isn't than to think a block is not bad when it is.
7808                  */
7809                 s += (1<<bb->shift) - 1;
7810                 s >>= bb->shift;
7811                 target >>= bb->shift;
7812                 sectors = target - s;
7813         }
7814
7815         write_seqlock_irq(&bb->lock);
7816
7817         p = bb->page;
7818         lo = 0;
7819         hi = bb->count;
7820         /* Find the last range that starts before 'target' */
7821         while (hi - lo > 1) {
7822                 int mid = (lo + hi) / 2;
7823                 sector_t a = BB_OFFSET(p[mid]);
7824                 if (a < target)
7825                         lo = mid;
7826                 else
7827                         hi = mid;
7828         }
7829         if (hi > lo) {
7830                 /* p[lo] is the last range that could overlap the
7831                  * current range.  Earlier ranges could also overlap,
7832                  * but only this one can overlap the end of the range.
7833                  */
7834                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7835                         /* Partial overlap, leave the tail of this range */
7836                         int ack = BB_ACK(p[lo]);
7837                         sector_t a = BB_OFFSET(p[lo]);
7838                         sector_t end = a + BB_LEN(p[lo]);
7839
7840                         if (a < s) {
7841                                 /* we need to split this range */
7842                                 if (bb->count >= MD_MAX_BADBLOCKS) {
7843                                         rv = 0;
7844                                         goto out;
7845                                 }
7846                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7847                                 bb->count++;
7848                                 p[lo] = BB_MAKE(a, s-a, ack);
7849                                 lo++;
7850                         }
7851                         p[lo] = BB_MAKE(target, end - target, ack);
7852                         /* there is no longer an overlap */
7853                         hi = lo;
7854                         lo--;
7855                 }
7856                 while (lo >= 0 &&
7857                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7858                         /* This range does overlap */
7859                         if (BB_OFFSET(p[lo]) < s) {
7860                                 /* Keep the early parts of this range. */
7861                                 int ack = BB_ACK(p[lo]);
7862                                 sector_t start = BB_OFFSET(p[lo]);
7863                                 p[lo] = BB_MAKE(start, s - start, ack);
7864                                 /* now low doesn't overlap, so.. */
7865                                 break;
7866                         }
7867                         lo--;
7868                 }
7869                 /* 'lo' is strictly before, 'hi' is strictly after,
7870                  * anything between needs to be discarded
7871                  */
7872                 if (hi - lo > 1) {
7873                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7874                         bb->count -= (hi - lo - 1);
7875                 }
7876         }
7877
7878         bb->changed = 1;
7879 out:
7880         write_sequnlock_irq(&bb->lock);
7881         return rv;
7882 }
7883
7884 int rdev_clear_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors)
7885 {
7886         return md_clear_badblocks(&rdev->badblocks,
7887                                   s + rdev->data_offset,
7888                                   sectors);
7889 }
7890 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7891
7892 /*
7893  * Acknowledge all bad blocks in a list.
7894  * This only succeeds if ->changed is clear.  It is used by
7895  * in-kernel metadata updates
7896  */
7897 void md_ack_all_badblocks(struct badblocks *bb)
7898 {
7899         if (bb->page == NULL || bb->changed)
7900                 /* no point even trying */
7901                 return;
7902         write_seqlock_irq(&bb->lock);
7903
7904         if (bb->changed == 0) {
7905                 u64 *p = bb->page;
7906                 int i;
7907                 for (i = 0; i < bb->count ; i++) {
7908                         if (!BB_ACK(p[i])) {
7909                                 sector_t start = BB_OFFSET(p[i]);
7910                                 int len = BB_LEN(p[i]);
7911                                 p[i] = BB_MAKE(start, len, 1);
7912                         }
7913                 }
7914         }
7915         write_sequnlock_irq(&bb->lock);
7916 }
7917 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7918
7919 /* sysfs access to bad-blocks list.
7920  * We present two files.
7921  * 'bad-blocks' lists sector numbers and lengths of ranges that
7922  *    are recorded as bad.  The list is truncated to fit within
7923  *    the one-page limit of sysfs.
7924  *    Writing "sector length" to this file adds an acknowledged
7925  *    bad block list.
7926  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7927  *    been acknowledged.  Writing to this file adds bad blocks
7928  *    without acknowledging them.  This is largely for testing.
7929  */
7930
7931 static ssize_t
7932 badblocks_show(struct badblocks *bb, char *page, int unack)
7933 {
7934         size_t len;
7935         int i;
7936         u64 *p = bb->page;
7937         unsigned seq;
7938
7939         if (bb->shift < 0)
7940                 return 0;
7941
7942 retry:
7943         seq = read_seqbegin(&bb->lock);
7944
7945         len = 0;
7946         i = 0;
7947
7948         while (len < PAGE_SIZE && i < bb->count) {
7949                 sector_t s = BB_OFFSET(p[i]);
7950                 unsigned int length = BB_LEN(p[i]);
7951                 int ack = BB_ACK(p[i]);
7952                 i++;
7953
7954                 if (unack && ack)
7955                         continue;
7956
7957                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
7958                                 (unsigned long long)s << bb->shift,
7959                                 length << bb->shift);
7960         }
7961
7962         if (read_seqretry(&bb->lock, seq))
7963                 goto retry;
7964
7965         return len;
7966 }
7967
7968 #define DO_DEBUG 1
7969
7970 static ssize_t
7971 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
7972 {
7973         unsigned long long sector;
7974         int length;
7975         char newline;
7976 #ifdef DO_DEBUG
7977         /* Allow clearing via sysfs *only* for testing/debugging.
7978          * Normally only a successful write may clear a badblock
7979          */
7980         int clear = 0;
7981         if (page[0] == '-') {
7982                 clear = 1;
7983                 page++;
7984         }
7985 #endif /* DO_DEBUG */
7986
7987         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
7988         case 3:
7989                 if (newline != '\n')
7990                         return -EINVAL;
7991         case 2:
7992                 if (length <= 0)
7993                         return -EINVAL;
7994                 break;
7995         default:
7996                 return -EINVAL;
7997         }
7998
7999 #ifdef DO_DEBUG
8000         if (clear) {
8001                 md_clear_badblocks(bb, sector, length);
8002                 return len;
8003         }
8004 #endif /* DO_DEBUG */
8005         if (md_set_badblocks(bb, sector, length, !unack))
8006                 return len;
8007         else
8008                 return -ENOSPC;
8009 }
8010
8011 static int md_notify_reboot(struct notifier_block *this,
8012                             unsigned long code, void *x)
8013 {
8014         struct list_head *tmp;
8015         mddev_t *mddev;
8016
8017         if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8018
8019                 printk(KERN_INFO "md: stopping all md devices.\n");
8020
8021                 for_each_mddev(mddev, tmp)
8022                         if (mddev_trylock(mddev)) {
8023                                 /* Force a switch to readonly even array
8024                                  * appears to still be in use.  Hence
8025                                  * the '100'.
8026                                  */
8027                                 md_set_readonly(mddev, 100);
8028                                 mddev_unlock(mddev);
8029                         }
8030                 /*
8031                  * certain more exotic SCSI devices are known to be
8032                  * volatile wrt too early system reboots. While the
8033                  * right place to handle this issue is the given
8034                  * driver, we do want to have a safe RAID driver ...
8035                  */
8036                 mdelay(1000*1);
8037         }
8038         return NOTIFY_DONE;
8039 }
8040
8041 static struct notifier_block md_notifier = {
8042         .notifier_call  = md_notify_reboot,
8043         .next           = NULL,
8044         .priority       = INT_MAX, /* before any real devices */
8045 };
8046
8047 static void md_geninit(void)
8048 {
8049         dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8050
8051         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8052 }
8053
8054 static int __init md_init(void)
8055 {
8056         int ret = -ENOMEM;
8057
8058         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8059         if (!md_wq)
8060                 goto err_wq;
8061
8062         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8063         if (!md_misc_wq)
8064                 goto err_misc_wq;
8065
8066         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8067                 goto err_md;
8068
8069         if ((ret = register_blkdev(0, "mdp")) < 0)
8070                 goto err_mdp;
8071         mdp_major = ret;
8072
8073         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8074                             md_probe, NULL, NULL);
8075         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8076                             md_probe, NULL, NULL);
8077
8078         register_reboot_notifier(&md_notifier);
8079         raid_table_header = register_sysctl_table(raid_root_table);
8080
8081         md_geninit();
8082         return 0;
8083
8084 err_mdp:
8085         unregister_blkdev(MD_MAJOR, "md");
8086 err_md:
8087         destroy_workqueue(md_misc_wq);
8088 err_misc_wq:
8089         destroy_workqueue(md_wq);
8090 err_wq:
8091         return ret;
8092 }
8093
8094 #ifndef MODULE
8095
8096 /*
8097  * Searches all registered partitions for autorun RAID arrays
8098  * at boot time.
8099  */
8100
8101 static LIST_HEAD(all_detected_devices);
8102 struct detected_devices_node {
8103         struct list_head list;
8104         dev_t dev;
8105 };
8106
8107 void md_autodetect_dev(dev_t dev)
8108 {
8109         struct detected_devices_node *node_detected_dev;
8110
8111         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8112         if (node_detected_dev) {
8113                 node_detected_dev->dev = dev;
8114                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8115         } else {
8116                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8117                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8118         }
8119 }
8120
8121
8122 static void autostart_arrays(int part)
8123 {
8124         mdk_rdev_t *rdev;
8125         struct detected_devices_node *node_detected_dev;
8126         dev_t dev;
8127         int i_scanned, i_passed;
8128
8129         i_scanned = 0;
8130         i_passed = 0;
8131
8132         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8133
8134         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8135                 i_scanned++;
8136                 node_detected_dev = list_entry(all_detected_devices.next,
8137                                         struct detected_devices_node, list);
8138                 list_del(&node_detected_dev->list);
8139                 dev = node_detected_dev->dev;
8140                 kfree(node_detected_dev);
8141                 rdev = md_import_device(dev,0, 90);
8142                 if (IS_ERR(rdev))
8143                         continue;
8144
8145                 if (test_bit(Faulty, &rdev->flags)) {
8146                         MD_BUG();
8147                         continue;
8148                 }
8149                 set_bit(AutoDetected, &rdev->flags);
8150                 list_add(&rdev->same_set, &pending_raid_disks);
8151                 i_passed++;
8152         }
8153
8154         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8155                                                 i_scanned, i_passed);
8156
8157         autorun_devices(part);
8158 }
8159
8160 #endif /* !MODULE */
8161
8162 static __exit void md_exit(void)
8163 {
8164         mddev_t *mddev;
8165         struct list_head *tmp;
8166
8167         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8168         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8169
8170         unregister_blkdev(MD_MAJOR,"md");
8171         unregister_blkdev(mdp_major, "mdp");
8172         unregister_reboot_notifier(&md_notifier);
8173         unregister_sysctl_table(raid_table_header);
8174         remove_proc_entry("mdstat", NULL);
8175         for_each_mddev(mddev, tmp) {
8176                 export_array(mddev);
8177                 mddev->hold_active = 0;
8178         }
8179         destroy_workqueue(md_misc_wq);
8180         destroy_workqueue(md_wq);
8181 }
8182
8183 subsys_initcall(md_init);
8184 module_exit(md_exit)
8185
8186 static int get_ro(char *buffer, struct kernel_param *kp)
8187 {
8188         return sprintf(buffer, "%d", start_readonly);
8189 }
8190 static int set_ro(const char *val, struct kernel_param *kp)
8191 {
8192         char *e;
8193         int num = simple_strtoul(val, &e, 10);
8194         if (*val && (*e == '\0' || *e == '\n')) {
8195                 start_readonly = num;
8196                 return 0;
8197         }
8198         return -EINVAL;
8199 }
8200
8201 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8202 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8203
8204 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8205
8206 EXPORT_SYMBOL(register_md_personality);
8207 EXPORT_SYMBOL(unregister_md_personality);
8208 EXPORT_SYMBOL(md_error);
8209 EXPORT_SYMBOL(md_done_sync);
8210 EXPORT_SYMBOL(md_write_start);
8211 EXPORT_SYMBOL(md_write_end);
8212 EXPORT_SYMBOL(md_register_thread);
8213 EXPORT_SYMBOL(md_unregister_thread);
8214 EXPORT_SYMBOL(md_wakeup_thread);
8215 EXPORT_SYMBOL(md_check_recovery);
8216 MODULE_LICENSE("GPL");
8217 MODULE_DESCRIPTION("MD RAID framework");
8218 MODULE_ALIAS("md");
8219 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);