hugetlb: add allocate function for hugepage migration
[linux-flexiantxendom0.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 /*
57  * Region tracking -- allows tracking of reservations and instantiated pages
58  *                    across the pages in a mapping.
59  *
60  * The region data structures are protected by a combination of the mmap_sem
61  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
62  * must either hold the mmap_sem for write, or the mmap_sem for read and
63  * the hugetlb_instantiation mutex:
64  *
65  *      down_write(&mm->mmap_sem);
66  * or
67  *      down_read(&mm->mmap_sem);
68  *      mutex_lock(&hugetlb_instantiation_mutex);
69  */
70 struct file_region {
71         struct list_head link;
72         long from;
73         long to;
74 };
75
76 static long region_add(struct list_head *head, long f, long t)
77 {
78         struct file_region *rg, *nrg, *trg;
79
80         /* Locate the region we are either in or before. */
81         list_for_each_entry(rg, head, link)
82                 if (f <= rg->to)
83                         break;
84
85         /* Round our left edge to the current segment if it encloses us. */
86         if (f > rg->from)
87                 f = rg->from;
88
89         /* Check for and consume any regions we now overlap with. */
90         nrg = rg;
91         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92                 if (&rg->link == head)
93                         break;
94                 if (rg->from > t)
95                         break;
96
97                 /* If this area reaches higher then extend our area to
98                  * include it completely.  If this is not the first area
99                  * which we intend to reuse, free it. */
100                 if (rg->to > t)
101                         t = rg->to;
102                 if (rg != nrg) {
103                         list_del(&rg->link);
104                         kfree(rg);
105                 }
106         }
107         nrg->from = f;
108         nrg->to = t;
109         return 0;
110 }
111
112 static long region_chg(struct list_head *head, long f, long t)
113 {
114         struct file_region *rg, *nrg;
115         long chg = 0;
116
117         /* Locate the region we are before or in. */
118         list_for_each_entry(rg, head, link)
119                 if (f <= rg->to)
120                         break;
121
122         /* If we are below the current region then a new region is required.
123          * Subtle, allocate a new region at the position but make it zero
124          * size such that we can guarantee to record the reservation. */
125         if (&rg->link == head || t < rg->from) {
126                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127                 if (!nrg)
128                         return -ENOMEM;
129                 nrg->from = f;
130                 nrg->to   = f;
131                 INIT_LIST_HEAD(&nrg->link);
132                 list_add(&nrg->link, rg->link.prev);
133
134                 return t - f;
135         }
136
137         /* Round our left edge to the current segment if it encloses us. */
138         if (f > rg->from)
139                 f = rg->from;
140         chg = t - f;
141
142         /* Check for and consume any regions we now overlap with. */
143         list_for_each_entry(rg, rg->link.prev, link) {
144                 if (&rg->link == head)
145                         break;
146                 if (rg->from > t)
147                         return chg;
148
149                 /* We overlap with this area, if it extends futher than
150                  * us then we must extend ourselves.  Account for its
151                  * existing reservation. */
152                 if (rg->to > t) {
153                         chg += rg->to - t;
154                         t = rg->to;
155                 }
156                 chg -= rg->to - rg->from;
157         }
158         return chg;
159 }
160
161 static long region_truncate(struct list_head *head, long end)
162 {
163         struct file_region *rg, *trg;
164         long chg = 0;
165
166         /* Locate the region we are either in or before. */
167         list_for_each_entry(rg, head, link)
168                 if (end <= rg->to)
169                         break;
170         if (&rg->link == head)
171                 return 0;
172
173         /* If we are in the middle of a region then adjust it. */
174         if (end > rg->from) {
175                 chg = rg->to - end;
176                 rg->to = end;
177                 rg = list_entry(rg->link.next, typeof(*rg), link);
178         }
179
180         /* Drop any remaining regions. */
181         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182                 if (&rg->link == head)
183                         break;
184                 chg += rg->to - rg->from;
185                 list_del(&rg->link);
186                 kfree(rg);
187         }
188         return chg;
189 }
190
191 static long region_count(struct list_head *head, long f, long t)
192 {
193         struct file_region *rg;
194         long chg = 0;
195
196         /* Locate each segment we overlap with, and count that overlap. */
197         list_for_each_entry(rg, head, link) {
198                 int seg_from;
199                 int seg_to;
200
201                 if (rg->to <= f)
202                         continue;
203                 if (rg->from >= t)
204                         break;
205
206                 seg_from = max(rg->from, f);
207                 seg_to = min(rg->to, t);
208
209                 chg += seg_to - seg_from;
210         }
211
212         return chg;
213 }
214
215 /*
216  * Convert the address within this vma to the page offset within
217  * the mapping, in pagecache page units; huge pages here.
218  */
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220                         struct vm_area_struct *vma, unsigned long address)
221 {
222         return ((address - vma->vm_start) >> huge_page_shift(h)) +
223                         (vma->vm_pgoff >> huge_page_order(h));
224 }
225
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227                                      unsigned long address)
228 {
229         return vma_hugecache_offset(hstate_vma(vma), vma, address);
230 }
231
232 /*
233  * Return the size of the pages allocated when backing a VMA. In the majority
234  * cases this will be same size as used by the page table entries.
235  */
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237 {
238         struct hstate *hstate;
239
240         if (!is_vm_hugetlb_page(vma))
241                 return PAGE_SIZE;
242
243         hstate = hstate_vma(vma);
244
245         return 1UL << (hstate->order + PAGE_SHIFT);
246 }
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248
249 /*
250  * Return the page size being used by the MMU to back a VMA. In the majority
251  * of cases, the page size used by the kernel matches the MMU size. On
252  * architectures where it differs, an architecture-specific version of this
253  * function is required.
254  */
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257 {
258         return vma_kernel_pagesize(vma);
259 }
260 #endif
261
262 /*
263  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
264  * bits of the reservation map pointer, which are always clear due to
265  * alignment.
266  */
267 #define HPAGE_RESV_OWNER    (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270
271 /*
272  * These helpers are used to track how many pages are reserved for
273  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274  * is guaranteed to have their future faults succeed.
275  *
276  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277  * the reserve counters are updated with the hugetlb_lock held. It is safe
278  * to reset the VMA at fork() time as it is not in use yet and there is no
279  * chance of the global counters getting corrupted as a result of the values.
280  *
281  * The private mapping reservation is represented in a subtly different
282  * manner to a shared mapping.  A shared mapping has a region map associated
283  * with the underlying file, this region map represents the backing file
284  * pages which have ever had a reservation assigned which this persists even
285  * after the page is instantiated.  A private mapping has a region map
286  * associated with the original mmap which is attached to all VMAs which
287  * reference it, this region map represents those offsets which have consumed
288  * reservation ie. where pages have been instantiated.
289  */
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291 {
292         return (unsigned long)vma->vm_private_data;
293 }
294
295 static void set_vma_private_data(struct vm_area_struct *vma,
296                                                         unsigned long value)
297 {
298         vma->vm_private_data = (void *)value;
299 }
300
301 struct resv_map {
302         struct kref refs;
303         struct list_head regions;
304 };
305
306 static struct resv_map *resv_map_alloc(void)
307 {
308         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309         if (!resv_map)
310                 return NULL;
311
312         kref_init(&resv_map->refs);
313         INIT_LIST_HEAD(&resv_map->regions);
314
315         return resv_map;
316 }
317
318 static void resv_map_release(struct kref *ref)
319 {
320         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322         /* Clear out any active regions before we release the map. */
323         region_truncate(&resv_map->regions, 0);
324         kfree(resv_map);
325 }
326
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 {
329         VM_BUG_ON(!is_vm_hugetlb_page(vma));
330         if (!(vma->vm_flags & VM_MAYSHARE))
331                 return (struct resv_map *)(get_vma_private_data(vma) &
332                                                         ~HPAGE_RESV_MASK);
333         return NULL;
334 }
335
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 {
338         VM_BUG_ON(!is_vm_hugetlb_page(vma));
339         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341         set_vma_private_data(vma, (get_vma_private_data(vma) &
342                                 HPAGE_RESV_MASK) | (unsigned long)map);
343 }
344
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346 {
347         VM_BUG_ON(!is_vm_hugetlb_page(vma));
348         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349
350         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 }
352
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354 {
355         VM_BUG_ON(!is_vm_hugetlb_page(vma));
356
357         return (get_vma_private_data(vma) & flag) != 0;
358 }
359
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362                         struct vm_area_struct *vma)
363 {
364         if (vma->vm_flags & VM_NORESERVE)
365                 return;
366
367         if (vma->vm_flags & VM_MAYSHARE) {
368                 /* Shared mappings always use reserves */
369                 h->resv_huge_pages--;
370         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371                 /*
372                  * Only the process that called mmap() has reserves for
373                  * private mappings.
374                  */
375                 h->resv_huge_pages--;
376         }
377 }
378
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381 {
382         VM_BUG_ON(!is_vm_hugetlb_page(vma));
383         if (!(vma->vm_flags & VM_MAYSHARE))
384                 vma->vm_private_data = (void *)0;
385 }
386
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
389 {
390         if (vma->vm_flags & VM_MAYSHARE)
391                 return 1;
392         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393                 return 1;
394         return 0;
395 }
396
397 static void clear_gigantic_page(struct page *page,
398                         unsigned long addr, unsigned long sz)
399 {
400         int i;
401         struct page *p = page;
402
403         might_sleep();
404         for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
405                 cond_resched();
406                 clear_user_highpage(p, addr + i * PAGE_SIZE);
407         }
408 }
409 static void clear_huge_page(struct page *page,
410                         unsigned long addr, unsigned long sz)
411 {
412         int i;
413
414         if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
415                 clear_gigantic_page(page, addr, sz);
416                 return;
417         }
418
419         might_sleep();
420         for (i = 0; i < sz/PAGE_SIZE; i++) {
421                 cond_resched();
422                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
423         }
424 }
425
426 static void copy_gigantic_page(struct page *dst, struct page *src,
427                            unsigned long addr, struct vm_area_struct *vma)
428 {
429         int i;
430         struct hstate *h = hstate_vma(vma);
431         struct page *dst_base = dst;
432         struct page *src_base = src;
433         might_sleep();
434         for (i = 0; i < pages_per_huge_page(h); ) {
435                 cond_resched();
436                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
437
438                 i++;
439                 dst = mem_map_next(dst, dst_base, i);
440                 src = mem_map_next(src, src_base, i);
441         }
442 }
443 static void copy_huge_page(struct page *dst, struct page *src,
444                            unsigned long addr, struct vm_area_struct *vma)
445 {
446         int i;
447         struct hstate *h = hstate_vma(vma);
448
449         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
450                 copy_gigantic_page(dst, src, addr, vma);
451                 return;
452         }
453
454         might_sleep();
455         for (i = 0; i < pages_per_huge_page(h); i++) {
456                 cond_resched();
457                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
458         }
459 }
460
461 static void enqueue_huge_page(struct hstate *h, struct page *page)
462 {
463         int nid = page_to_nid(page);
464         list_add(&page->lru, &h->hugepage_freelists[nid]);
465         h->free_huge_pages++;
466         h->free_huge_pages_node[nid]++;
467 }
468
469 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
470 {
471         struct page *page;
472
473         if (list_empty(&h->hugepage_freelists[nid]))
474                 return NULL;
475         page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
476         list_del(&page->lru);
477         h->free_huge_pages--;
478         h->free_huge_pages_node[nid]--;
479         return page;
480 }
481
482 static struct page *dequeue_huge_page_vma(struct hstate *h,
483                                 struct vm_area_struct *vma,
484                                 unsigned long address, int avoid_reserve)
485 {
486         struct page *page = NULL;
487         struct mempolicy *mpol;
488         nodemask_t *nodemask;
489         struct zonelist *zonelist;
490         struct zone *zone;
491         struct zoneref *z;
492
493         get_mems_allowed();
494         zonelist = huge_zonelist(vma, address,
495                                         htlb_alloc_mask, &mpol, &nodemask);
496         /*
497          * A child process with MAP_PRIVATE mappings created by their parent
498          * have no page reserves. This check ensures that reservations are
499          * not "stolen". The child may still get SIGKILLed
500          */
501         if (!vma_has_reserves(vma) &&
502                         h->free_huge_pages - h->resv_huge_pages == 0)
503                 goto err;
504
505         /* If reserves cannot be used, ensure enough pages are in the pool */
506         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
507                 goto err;;
508
509         for_each_zone_zonelist_nodemask(zone, z, zonelist,
510                                                 MAX_NR_ZONES - 1, nodemask) {
511                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
512                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
513                         if (page) {
514                                 if (!avoid_reserve)
515                                         decrement_hugepage_resv_vma(h, vma);
516                                 break;
517                         }
518                 }
519         }
520 err:
521         mpol_cond_put(mpol);
522         put_mems_allowed();
523         return page;
524 }
525
526 static void update_and_free_page(struct hstate *h, struct page *page)
527 {
528         int i;
529
530         VM_BUG_ON(h->order >= MAX_ORDER);
531
532         h->nr_huge_pages--;
533         h->nr_huge_pages_node[page_to_nid(page)]--;
534         for (i = 0; i < pages_per_huge_page(h); i++) {
535                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
536                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
537                                 1 << PG_private | 1<< PG_writeback);
538         }
539         set_compound_page_dtor(page, NULL);
540         set_page_refcounted(page);
541         arch_release_hugepage(page);
542         __free_pages(page, huge_page_order(h));
543 }
544
545 struct hstate *size_to_hstate(unsigned long size)
546 {
547         struct hstate *h;
548
549         for_each_hstate(h) {
550                 if (huge_page_size(h) == size)
551                         return h;
552         }
553         return NULL;
554 }
555
556 static void free_huge_page(struct page *page)
557 {
558         /*
559          * Can't pass hstate in here because it is called from the
560          * compound page destructor.
561          */
562         struct hstate *h = page_hstate(page);
563         int nid = page_to_nid(page);
564         struct address_space *mapping;
565
566         mapping = (struct address_space *) page_private(page);
567         set_page_private(page, 0);
568         page->mapping = NULL;
569         BUG_ON(page_count(page));
570         BUG_ON(page_mapcount(page));
571         INIT_LIST_HEAD(&page->lru);
572
573         spin_lock(&hugetlb_lock);
574         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
575                 update_and_free_page(h, page);
576                 h->surplus_huge_pages--;
577                 h->surplus_huge_pages_node[nid]--;
578         } else {
579                 enqueue_huge_page(h, page);
580         }
581         spin_unlock(&hugetlb_lock);
582         if (mapping)
583                 hugetlb_put_quota(mapping, 1);
584 }
585
586 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
587 {
588         set_compound_page_dtor(page, free_huge_page);
589         spin_lock(&hugetlb_lock);
590         h->nr_huge_pages++;
591         h->nr_huge_pages_node[nid]++;
592         spin_unlock(&hugetlb_lock);
593         put_page(page); /* free it into the hugepage allocator */
594 }
595
596 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
597 {
598         int i;
599         int nr_pages = 1 << order;
600         struct page *p = page + 1;
601
602         /* we rely on prep_new_huge_page to set the destructor */
603         set_compound_order(page, order);
604         __SetPageHead(page);
605         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
606                 __SetPageTail(p);
607                 p->first_page = page;
608         }
609 }
610
611 int PageHuge(struct page *page)
612 {
613         compound_page_dtor *dtor;
614
615         if (!PageCompound(page))
616                 return 0;
617
618         page = compound_head(page);
619         dtor = get_compound_page_dtor(page);
620
621         return dtor == free_huge_page;
622 }
623
624 EXPORT_SYMBOL_GPL(PageHuge);
625
626 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
627 {
628         struct page *page;
629
630         if (h->order >= MAX_ORDER)
631                 return NULL;
632
633         page = alloc_pages_exact_node(nid,
634                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
635                                                 __GFP_REPEAT|__GFP_NOWARN,
636                 huge_page_order(h));
637         if (page) {
638                 if (arch_prepare_hugepage(page)) {
639                         __free_pages(page, huge_page_order(h));
640                         return NULL;
641                 }
642                 prep_new_huge_page(h, page, nid);
643         }
644
645         return page;
646 }
647
648 /*
649  * common helper functions for hstate_next_node_to_{alloc|free}.
650  * We may have allocated or freed a huge page based on a different
651  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
652  * be outside of *nodes_allowed.  Ensure that we use an allowed
653  * node for alloc or free.
654  */
655 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
656 {
657         nid = next_node(nid, *nodes_allowed);
658         if (nid == MAX_NUMNODES)
659                 nid = first_node(*nodes_allowed);
660         VM_BUG_ON(nid >= MAX_NUMNODES);
661
662         return nid;
663 }
664
665 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
666 {
667         if (!node_isset(nid, *nodes_allowed))
668                 nid = next_node_allowed(nid, nodes_allowed);
669         return nid;
670 }
671
672 /*
673  * returns the previously saved node ["this node"] from which to
674  * allocate a persistent huge page for the pool and advance the
675  * next node from which to allocate, handling wrap at end of node
676  * mask.
677  */
678 static int hstate_next_node_to_alloc(struct hstate *h,
679                                         nodemask_t *nodes_allowed)
680 {
681         int nid;
682
683         VM_BUG_ON(!nodes_allowed);
684
685         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
686         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
687
688         return nid;
689 }
690
691 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
692 {
693         struct page *page;
694         int start_nid;
695         int next_nid;
696         int ret = 0;
697
698         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
699         next_nid = start_nid;
700
701         do {
702                 page = alloc_fresh_huge_page_node(h, next_nid);
703                 if (page) {
704                         ret = 1;
705                         break;
706                 }
707                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
708         } while (next_nid != start_nid);
709
710         if (ret)
711                 count_vm_event(HTLB_BUDDY_PGALLOC);
712         else
713                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
714
715         return ret;
716 }
717
718 /*
719  * helper for free_pool_huge_page() - return the previously saved
720  * node ["this node"] from which to free a huge page.  Advance the
721  * next node id whether or not we find a free huge page to free so
722  * that the next attempt to free addresses the next node.
723  */
724 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
725 {
726         int nid;
727
728         VM_BUG_ON(!nodes_allowed);
729
730         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
731         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
732
733         return nid;
734 }
735
736 /*
737  * Free huge page from pool from next node to free.
738  * Attempt to keep persistent huge pages more or less
739  * balanced over allowed nodes.
740  * Called with hugetlb_lock locked.
741  */
742 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
743                                                          bool acct_surplus)
744 {
745         int start_nid;
746         int next_nid;
747         int ret = 0;
748
749         start_nid = hstate_next_node_to_free(h, nodes_allowed);
750         next_nid = start_nid;
751
752         do {
753                 /*
754                  * If we're returning unused surplus pages, only examine
755                  * nodes with surplus pages.
756                  */
757                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
758                     !list_empty(&h->hugepage_freelists[next_nid])) {
759                         struct page *page =
760                                 list_entry(h->hugepage_freelists[next_nid].next,
761                                           struct page, lru);
762                         list_del(&page->lru);
763                         h->free_huge_pages--;
764                         h->free_huge_pages_node[next_nid]--;
765                         if (acct_surplus) {
766                                 h->surplus_huge_pages--;
767                                 h->surplus_huge_pages_node[next_nid]--;
768                         }
769                         update_and_free_page(h, page);
770                         ret = 1;
771                         break;
772                 }
773                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
774         } while (next_nid != start_nid);
775
776         return ret;
777 }
778
779 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
780 {
781         struct page *page;
782         unsigned int r_nid;
783
784         if (h->order >= MAX_ORDER)
785                 return NULL;
786
787         /*
788          * Assume we will successfully allocate the surplus page to
789          * prevent racing processes from causing the surplus to exceed
790          * overcommit
791          *
792          * This however introduces a different race, where a process B
793          * tries to grow the static hugepage pool while alloc_pages() is
794          * called by process A. B will only examine the per-node
795          * counters in determining if surplus huge pages can be
796          * converted to normal huge pages in adjust_pool_surplus(). A
797          * won't be able to increment the per-node counter, until the
798          * lock is dropped by B, but B doesn't drop hugetlb_lock until
799          * no more huge pages can be converted from surplus to normal
800          * state (and doesn't try to convert again). Thus, we have a
801          * case where a surplus huge page exists, the pool is grown, and
802          * the surplus huge page still exists after, even though it
803          * should just have been converted to a normal huge page. This
804          * does not leak memory, though, as the hugepage will be freed
805          * once it is out of use. It also does not allow the counters to
806          * go out of whack in adjust_pool_surplus() as we don't modify
807          * the node values until we've gotten the hugepage and only the
808          * per-node value is checked there.
809          */
810         spin_lock(&hugetlb_lock);
811         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
812                 spin_unlock(&hugetlb_lock);
813                 return NULL;
814         } else {
815                 h->nr_huge_pages++;
816                 h->surplus_huge_pages++;
817         }
818         spin_unlock(&hugetlb_lock);
819
820         if (nid == NUMA_NO_NODE)
821                 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
822                                    __GFP_REPEAT|__GFP_NOWARN,
823                                    huge_page_order(h));
824         else
825                 page = alloc_pages_exact_node(nid,
826                         htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
827                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
828
829         if (page && arch_prepare_hugepage(page)) {
830                 __free_pages(page, huge_page_order(h));
831                 return NULL;
832         }
833
834         spin_lock(&hugetlb_lock);
835         if (page) {
836                 /*
837                  * This page is now managed by the hugetlb allocator and has
838                  * no users -- drop the buddy allocator's reference.
839                  */
840                 put_page_testzero(page);
841                 VM_BUG_ON(page_count(page));
842                 r_nid = page_to_nid(page);
843                 set_compound_page_dtor(page, free_huge_page);
844                 /*
845                  * We incremented the global counters already
846                  */
847                 h->nr_huge_pages_node[r_nid]++;
848                 h->surplus_huge_pages_node[r_nid]++;
849                 __count_vm_event(HTLB_BUDDY_PGALLOC);
850         } else {
851                 h->nr_huge_pages--;
852                 h->surplus_huge_pages--;
853                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
854         }
855         spin_unlock(&hugetlb_lock);
856
857         return page;
858 }
859
860 /*
861  * This allocation function is useful in the context where vma is irrelevant.
862  * E.g. soft-offlining uses this function because it only cares physical
863  * address of error page.
864  */
865 struct page *alloc_huge_page_node(struct hstate *h, int nid)
866 {
867         struct page *page;
868
869         spin_lock(&hugetlb_lock);
870         page = dequeue_huge_page_node(h, nid);
871         spin_unlock(&hugetlb_lock);
872
873         if (!page)
874                 page = alloc_buddy_huge_page(h, nid);
875
876         return page;
877 }
878
879 /*
880  * Increase the hugetlb pool such that it can accomodate a reservation
881  * of size 'delta'.
882  */
883 static int gather_surplus_pages(struct hstate *h, int delta)
884 {
885         struct list_head surplus_list;
886         struct page *page, *tmp;
887         int ret, i;
888         int needed, allocated;
889
890         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
891         if (needed <= 0) {
892                 h->resv_huge_pages += delta;
893                 return 0;
894         }
895
896         allocated = 0;
897         INIT_LIST_HEAD(&surplus_list);
898
899         ret = -ENOMEM;
900 retry:
901         spin_unlock(&hugetlb_lock);
902         for (i = 0; i < needed; i++) {
903                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
904                 if (!page) {
905                         /*
906                          * We were not able to allocate enough pages to
907                          * satisfy the entire reservation so we free what
908                          * we've allocated so far.
909                          */
910                         spin_lock(&hugetlb_lock);
911                         needed = 0;
912                         goto free;
913                 }
914
915                 list_add(&page->lru, &surplus_list);
916         }
917         allocated += needed;
918
919         /*
920          * After retaking hugetlb_lock, we need to recalculate 'needed'
921          * because either resv_huge_pages or free_huge_pages may have changed.
922          */
923         spin_lock(&hugetlb_lock);
924         needed = (h->resv_huge_pages + delta) -
925                         (h->free_huge_pages + allocated);
926         if (needed > 0)
927                 goto retry;
928
929         /*
930          * The surplus_list now contains _at_least_ the number of extra pages
931          * needed to accomodate the reservation.  Add the appropriate number
932          * of pages to the hugetlb pool and free the extras back to the buddy
933          * allocator.  Commit the entire reservation here to prevent another
934          * process from stealing the pages as they are added to the pool but
935          * before they are reserved.
936          */
937         needed += allocated;
938         h->resv_huge_pages += delta;
939         ret = 0;
940 free:
941         /* Free the needed pages to the hugetlb pool */
942         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
943                 if ((--needed) < 0)
944                         break;
945                 list_del(&page->lru);
946                 enqueue_huge_page(h, page);
947         }
948
949         /* Free unnecessary surplus pages to the buddy allocator */
950         if (!list_empty(&surplus_list)) {
951                 spin_unlock(&hugetlb_lock);
952                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
953                         list_del(&page->lru);
954                         /*
955                          * The page has a reference count of zero already, so
956                          * call free_huge_page directly instead of using
957                          * put_page.  This must be done with hugetlb_lock
958                          * unlocked which is safe because free_huge_page takes
959                          * hugetlb_lock before deciding how to free the page.
960                          */
961                         free_huge_page(page);
962                 }
963                 spin_lock(&hugetlb_lock);
964         }
965
966         return ret;
967 }
968
969 /*
970  * When releasing a hugetlb pool reservation, any surplus pages that were
971  * allocated to satisfy the reservation must be explicitly freed if they were
972  * never used.
973  * Called with hugetlb_lock held.
974  */
975 static void return_unused_surplus_pages(struct hstate *h,
976                                         unsigned long unused_resv_pages)
977 {
978         unsigned long nr_pages;
979
980         /* Uncommit the reservation */
981         h->resv_huge_pages -= unused_resv_pages;
982
983         /* Cannot return gigantic pages currently */
984         if (h->order >= MAX_ORDER)
985                 return;
986
987         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
988
989         /*
990          * We want to release as many surplus pages as possible, spread
991          * evenly across all nodes with memory. Iterate across these nodes
992          * until we can no longer free unreserved surplus pages. This occurs
993          * when the nodes with surplus pages have no free pages.
994          * free_pool_huge_page() will balance the the freed pages across the
995          * on-line nodes with memory and will handle the hstate accounting.
996          */
997         while (nr_pages--) {
998                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
999                         break;
1000         }
1001 }
1002
1003 /*
1004  * Determine if the huge page at addr within the vma has an associated
1005  * reservation.  Where it does not we will need to logically increase
1006  * reservation and actually increase quota before an allocation can occur.
1007  * Where any new reservation would be required the reservation change is
1008  * prepared, but not committed.  Once the page has been quota'd allocated
1009  * an instantiated the change should be committed via vma_commit_reservation.
1010  * No action is required on failure.
1011  */
1012 static long vma_needs_reservation(struct hstate *h,
1013                         struct vm_area_struct *vma, unsigned long addr)
1014 {
1015         struct address_space *mapping = vma->vm_file->f_mapping;
1016         struct inode *inode = mapping->host;
1017
1018         if (vma->vm_flags & VM_MAYSHARE) {
1019                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1020                 return region_chg(&inode->i_mapping->private_list,
1021                                                         idx, idx + 1);
1022
1023         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1024                 return 1;
1025
1026         } else  {
1027                 long err;
1028                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1029                 struct resv_map *reservations = vma_resv_map(vma);
1030
1031                 err = region_chg(&reservations->regions, idx, idx + 1);
1032                 if (err < 0)
1033                         return err;
1034                 return 0;
1035         }
1036 }
1037 static void vma_commit_reservation(struct hstate *h,
1038                         struct vm_area_struct *vma, unsigned long addr)
1039 {
1040         struct address_space *mapping = vma->vm_file->f_mapping;
1041         struct inode *inode = mapping->host;
1042
1043         if (vma->vm_flags & VM_MAYSHARE) {
1044                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1045                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1046
1047         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1048                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1049                 struct resv_map *reservations = vma_resv_map(vma);
1050
1051                 /* Mark this page used in the map. */
1052                 region_add(&reservations->regions, idx, idx + 1);
1053         }
1054 }
1055
1056 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1057                                     unsigned long addr, int avoid_reserve)
1058 {
1059         struct hstate *h = hstate_vma(vma);
1060         struct page *page;
1061         struct address_space *mapping = vma->vm_file->f_mapping;
1062         struct inode *inode = mapping->host;
1063         long chg;
1064
1065         /*
1066          * Processes that did not create the mapping will have no reserves and
1067          * will not have accounted against quota. Check that the quota can be
1068          * made before satisfying the allocation
1069          * MAP_NORESERVE mappings may also need pages and quota allocated
1070          * if no reserve mapping overlaps.
1071          */
1072         chg = vma_needs_reservation(h, vma, addr);
1073         if (chg < 0)
1074                 return ERR_PTR(chg);
1075         if (chg)
1076                 if (hugetlb_get_quota(inode->i_mapping, chg))
1077                         return ERR_PTR(-ENOSPC);
1078
1079         spin_lock(&hugetlb_lock);
1080         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1081         spin_unlock(&hugetlb_lock);
1082
1083         if (!page) {
1084                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1085                 if (!page) {
1086                         hugetlb_put_quota(inode->i_mapping, chg);
1087                         return ERR_PTR(-VM_FAULT_SIGBUS);
1088                 }
1089         }
1090
1091         set_page_refcounted(page);
1092         set_page_private(page, (unsigned long) mapping);
1093
1094         vma_commit_reservation(h, vma, addr);
1095
1096         return page;
1097 }
1098
1099 int __weak alloc_bootmem_huge_page(struct hstate *h)
1100 {
1101         struct huge_bootmem_page *m;
1102         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1103
1104         while (nr_nodes) {
1105                 void *addr;
1106
1107                 addr = __alloc_bootmem_node_nopanic(
1108                                 NODE_DATA(hstate_next_node_to_alloc(h,
1109                                                 &node_states[N_HIGH_MEMORY])),
1110                                 huge_page_size(h), huge_page_size(h), 0);
1111
1112                 if (addr) {
1113                         /*
1114                          * Use the beginning of the huge page to store the
1115                          * huge_bootmem_page struct (until gather_bootmem
1116                          * puts them into the mem_map).
1117                          */
1118                         m = addr;
1119                         goto found;
1120                 }
1121                 nr_nodes--;
1122         }
1123         return 0;
1124
1125 found:
1126         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1127         /* Put them into a private list first because mem_map is not up yet */
1128         list_add(&m->list, &huge_boot_pages);
1129         m->hstate = h;
1130         return 1;
1131 }
1132
1133 static void prep_compound_huge_page(struct page *page, int order)
1134 {
1135         if (unlikely(order > (MAX_ORDER - 1)))
1136                 prep_compound_gigantic_page(page, order);
1137         else
1138                 prep_compound_page(page, order);
1139 }
1140
1141 /* Put bootmem huge pages into the standard lists after mem_map is up */
1142 static void __init gather_bootmem_prealloc(void)
1143 {
1144         struct huge_bootmem_page *m;
1145
1146         list_for_each_entry(m, &huge_boot_pages, list) {
1147                 struct page *page = virt_to_page(m);
1148                 struct hstate *h = m->hstate;
1149                 __ClearPageReserved(page);
1150                 WARN_ON(page_count(page) != 1);
1151                 prep_compound_huge_page(page, h->order);
1152                 prep_new_huge_page(h, page, page_to_nid(page));
1153         }
1154 }
1155
1156 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1157 {
1158         unsigned long i;
1159
1160         for (i = 0; i < h->max_huge_pages; ++i) {
1161                 if (h->order >= MAX_ORDER) {
1162                         if (!alloc_bootmem_huge_page(h))
1163                                 break;
1164                 } else if (!alloc_fresh_huge_page(h,
1165                                          &node_states[N_HIGH_MEMORY]))
1166                         break;
1167         }
1168         h->max_huge_pages = i;
1169 }
1170
1171 static void __init hugetlb_init_hstates(void)
1172 {
1173         struct hstate *h;
1174
1175         for_each_hstate(h) {
1176                 /* oversize hugepages were init'ed in early boot */
1177                 if (h->order < MAX_ORDER)
1178                         hugetlb_hstate_alloc_pages(h);
1179         }
1180 }
1181
1182 static char * __init memfmt(char *buf, unsigned long n)
1183 {
1184         if (n >= (1UL << 30))
1185                 sprintf(buf, "%lu GB", n >> 30);
1186         else if (n >= (1UL << 20))
1187                 sprintf(buf, "%lu MB", n >> 20);
1188         else
1189                 sprintf(buf, "%lu KB", n >> 10);
1190         return buf;
1191 }
1192
1193 static void __init report_hugepages(void)
1194 {
1195         struct hstate *h;
1196
1197         for_each_hstate(h) {
1198                 char buf[32];
1199                 printk(KERN_INFO "HugeTLB registered %s page size, "
1200                                  "pre-allocated %ld pages\n",
1201                         memfmt(buf, huge_page_size(h)),
1202                         h->free_huge_pages);
1203         }
1204 }
1205
1206 #ifdef CONFIG_HIGHMEM
1207 static void try_to_free_low(struct hstate *h, unsigned long count,
1208                                                 nodemask_t *nodes_allowed)
1209 {
1210         int i;
1211
1212         if (h->order >= MAX_ORDER)
1213                 return;
1214
1215         for_each_node_mask(i, *nodes_allowed) {
1216                 struct page *page, *next;
1217                 struct list_head *freel = &h->hugepage_freelists[i];
1218                 list_for_each_entry_safe(page, next, freel, lru) {
1219                         if (count >= h->nr_huge_pages)
1220                                 return;
1221                         if (PageHighMem(page))
1222                                 continue;
1223                         list_del(&page->lru);
1224                         update_and_free_page(h, page);
1225                         h->free_huge_pages--;
1226                         h->free_huge_pages_node[page_to_nid(page)]--;
1227                 }
1228         }
1229 }
1230 #else
1231 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1232                                                 nodemask_t *nodes_allowed)
1233 {
1234 }
1235 #endif
1236
1237 /*
1238  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1239  * balanced by operating on them in a round-robin fashion.
1240  * Returns 1 if an adjustment was made.
1241  */
1242 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1243                                 int delta)
1244 {
1245         int start_nid, next_nid;
1246         int ret = 0;
1247
1248         VM_BUG_ON(delta != -1 && delta != 1);
1249
1250         if (delta < 0)
1251                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1252         else
1253                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1254         next_nid = start_nid;
1255
1256         do {
1257                 int nid = next_nid;
1258                 if (delta < 0)  {
1259                         /*
1260                          * To shrink on this node, there must be a surplus page
1261                          */
1262                         if (!h->surplus_huge_pages_node[nid]) {
1263                                 next_nid = hstate_next_node_to_alloc(h,
1264                                                                 nodes_allowed);
1265                                 continue;
1266                         }
1267                 }
1268                 if (delta > 0) {
1269                         /*
1270                          * Surplus cannot exceed the total number of pages
1271                          */
1272                         if (h->surplus_huge_pages_node[nid] >=
1273                                                 h->nr_huge_pages_node[nid]) {
1274                                 next_nid = hstate_next_node_to_free(h,
1275                                                                 nodes_allowed);
1276                                 continue;
1277                         }
1278                 }
1279
1280                 h->surplus_huge_pages += delta;
1281                 h->surplus_huge_pages_node[nid] += delta;
1282                 ret = 1;
1283                 break;
1284         } while (next_nid != start_nid);
1285
1286         return ret;
1287 }
1288
1289 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1290 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1291                                                 nodemask_t *nodes_allowed)
1292 {
1293         unsigned long min_count, ret;
1294
1295         if (h->order >= MAX_ORDER)
1296                 return h->max_huge_pages;
1297
1298         /*
1299          * Increase the pool size
1300          * First take pages out of surplus state.  Then make up the
1301          * remaining difference by allocating fresh huge pages.
1302          *
1303          * We might race with alloc_buddy_huge_page() here and be unable
1304          * to convert a surplus huge page to a normal huge page. That is
1305          * not critical, though, it just means the overall size of the
1306          * pool might be one hugepage larger than it needs to be, but
1307          * within all the constraints specified by the sysctls.
1308          */
1309         spin_lock(&hugetlb_lock);
1310         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1311                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1312                         break;
1313         }
1314
1315         while (count > persistent_huge_pages(h)) {
1316                 /*
1317                  * If this allocation races such that we no longer need the
1318                  * page, free_huge_page will handle it by freeing the page
1319                  * and reducing the surplus.
1320                  */
1321                 spin_unlock(&hugetlb_lock);
1322                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1323                 spin_lock(&hugetlb_lock);
1324                 if (!ret)
1325                         goto out;
1326
1327                 /* Bail for signals. Probably ctrl-c from user */
1328                 if (signal_pending(current))
1329                         goto out;
1330         }
1331
1332         /*
1333          * Decrease the pool size
1334          * First return free pages to the buddy allocator (being careful
1335          * to keep enough around to satisfy reservations).  Then place
1336          * pages into surplus state as needed so the pool will shrink
1337          * to the desired size as pages become free.
1338          *
1339          * By placing pages into the surplus state independent of the
1340          * overcommit value, we are allowing the surplus pool size to
1341          * exceed overcommit. There are few sane options here. Since
1342          * alloc_buddy_huge_page() is checking the global counter,
1343          * though, we'll note that we're not allowed to exceed surplus
1344          * and won't grow the pool anywhere else. Not until one of the
1345          * sysctls are changed, or the surplus pages go out of use.
1346          */
1347         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1348         min_count = max(count, min_count);
1349         try_to_free_low(h, min_count, nodes_allowed);
1350         while (min_count < persistent_huge_pages(h)) {
1351                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1352                         break;
1353         }
1354         while (count < persistent_huge_pages(h)) {
1355                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1356                         break;
1357         }
1358 out:
1359         ret = persistent_huge_pages(h);
1360         spin_unlock(&hugetlb_lock);
1361         return ret;
1362 }
1363
1364 #define HSTATE_ATTR_RO(_name) \
1365         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1366
1367 #define HSTATE_ATTR(_name) \
1368         static struct kobj_attribute _name##_attr = \
1369                 __ATTR(_name, 0644, _name##_show, _name##_store)
1370
1371 static struct kobject *hugepages_kobj;
1372 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1373
1374 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1375
1376 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1377 {
1378         int i;
1379
1380         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1381                 if (hstate_kobjs[i] == kobj) {
1382                         if (nidp)
1383                                 *nidp = NUMA_NO_NODE;
1384                         return &hstates[i];
1385                 }
1386
1387         return kobj_to_node_hstate(kobj, nidp);
1388 }
1389
1390 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1391                                         struct kobj_attribute *attr, char *buf)
1392 {
1393         struct hstate *h;
1394         unsigned long nr_huge_pages;
1395         int nid;
1396
1397         h = kobj_to_hstate(kobj, &nid);
1398         if (nid == NUMA_NO_NODE)
1399                 nr_huge_pages = h->nr_huge_pages;
1400         else
1401                 nr_huge_pages = h->nr_huge_pages_node[nid];
1402
1403         return sprintf(buf, "%lu\n", nr_huge_pages);
1404 }
1405 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1406                         struct kobject *kobj, struct kobj_attribute *attr,
1407                         const char *buf, size_t len)
1408 {
1409         int err;
1410         int nid;
1411         unsigned long count;
1412         struct hstate *h;
1413         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1414
1415         err = strict_strtoul(buf, 10, &count);
1416         if (err)
1417                 return 0;
1418
1419         h = kobj_to_hstate(kobj, &nid);
1420         if (nid == NUMA_NO_NODE) {
1421                 /*
1422                  * global hstate attribute
1423                  */
1424                 if (!(obey_mempolicy &&
1425                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1426                         NODEMASK_FREE(nodes_allowed);
1427                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1428                 }
1429         } else if (nodes_allowed) {
1430                 /*
1431                  * per node hstate attribute: adjust count to global,
1432                  * but restrict alloc/free to the specified node.
1433                  */
1434                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1435                 init_nodemask_of_node(nodes_allowed, nid);
1436         } else
1437                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1438
1439         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1440
1441         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1442                 NODEMASK_FREE(nodes_allowed);
1443
1444         return len;
1445 }
1446
1447 static ssize_t nr_hugepages_show(struct kobject *kobj,
1448                                        struct kobj_attribute *attr, char *buf)
1449 {
1450         return nr_hugepages_show_common(kobj, attr, buf);
1451 }
1452
1453 static ssize_t nr_hugepages_store(struct kobject *kobj,
1454                struct kobj_attribute *attr, const char *buf, size_t len)
1455 {
1456         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1457 }
1458 HSTATE_ATTR(nr_hugepages);
1459
1460 #ifdef CONFIG_NUMA
1461
1462 /*
1463  * hstate attribute for optionally mempolicy-based constraint on persistent
1464  * huge page alloc/free.
1465  */
1466 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1467                                        struct kobj_attribute *attr, char *buf)
1468 {
1469         return nr_hugepages_show_common(kobj, attr, buf);
1470 }
1471
1472 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1473                struct kobj_attribute *attr, const char *buf, size_t len)
1474 {
1475         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1476 }
1477 HSTATE_ATTR(nr_hugepages_mempolicy);
1478 #endif
1479
1480
1481 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1482                                         struct kobj_attribute *attr, char *buf)
1483 {
1484         struct hstate *h = kobj_to_hstate(kobj, NULL);
1485         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1486 }
1487 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1488                 struct kobj_attribute *attr, const char *buf, size_t count)
1489 {
1490         int err;
1491         unsigned long input;
1492         struct hstate *h = kobj_to_hstate(kobj, NULL);
1493
1494         err = strict_strtoul(buf, 10, &input);
1495         if (err)
1496                 return 0;
1497
1498         spin_lock(&hugetlb_lock);
1499         h->nr_overcommit_huge_pages = input;
1500         spin_unlock(&hugetlb_lock);
1501
1502         return count;
1503 }
1504 HSTATE_ATTR(nr_overcommit_hugepages);
1505
1506 static ssize_t free_hugepages_show(struct kobject *kobj,
1507                                         struct kobj_attribute *attr, char *buf)
1508 {
1509         struct hstate *h;
1510         unsigned long free_huge_pages;
1511         int nid;
1512
1513         h = kobj_to_hstate(kobj, &nid);
1514         if (nid == NUMA_NO_NODE)
1515                 free_huge_pages = h->free_huge_pages;
1516         else
1517                 free_huge_pages = h->free_huge_pages_node[nid];
1518
1519         return sprintf(buf, "%lu\n", free_huge_pages);
1520 }
1521 HSTATE_ATTR_RO(free_hugepages);
1522
1523 static ssize_t resv_hugepages_show(struct kobject *kobj,
1524                                         struct kobj_attribute *attr, char *buf)
1525 {
1526         struct hstate *h = kobj_to_hstate(kobj, NULL);
1527         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1528 }
1529 HSTATE_ATTR_RO(resv_hugepages);
1530
1531 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1532                                         struct kobj_attribute *attr, char *buf)
1533 {
1534         struct hstate *h;
1535         unsigned long surplus_huge_pages;
1536         int nid;
1537
1538         h = kobj_to_hstate(kobj, &nid);
1539         if (nid == NUMA_NO_NODE)
1540                 surplus_huge_pages = h->surplus_huge_pages;
1541         else
1542                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1543
1544         return sprintf(buf, "%lu\n", surplus_huge_pages);
1545 }
1546 HSTATE_ATTR_RO(surplus_hugepages);
1547
1548 static struct attribute *hstate_attrs[] = {
1549         &nr_hugepages_attr.attr,
1550         &nr_overcommit_hugepages_attr.attr,
1551         &free_hugepages_attr.attr,
1552         &resv_hugepages_attr.attr,
1553         &surplus_hugepages_attr.attr,
1554 #ifdef CONFIG_NUMA
1555         &nr_hugepages_mempolicy_attr.attr,
1556 #endif
1557         NULL,
1558 };
1559
1560 static struct attribute_group hstate_attr_group = {
1561         .attrs = hstate_attrs,
1562 };
1563
1564 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1565                                     struct kobject **hstate_kobjs,
1566                                     struct attribute_group *hstate_attr_group)
1567 {
1568         int retval;
1569         int hi = h - hstates;
1570
1571         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1572         if (!hstate_kobjs[hi])
1573                 return -ENOMEM;
1574
1575         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1576         if (retval)
1577                 kobject_put(hstate_kobjs[hi]);
1578
1579         return retval;
1580 }
1581
1582 static void __init hugetlb_sysfs_init(void)
1583 {
1584         struct hstate *h;
1585         int err;
1586
1587         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1588         if (!hugepages_kobj)
1589                 return;
1590
1591         for_each_hstate(h) {
1592                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1593                                          hstate_kobjs, &hstate_attr_group);
1594                 if (err)
1595                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1596                                                                 h->name);
1597         }
1598 }
1599
1600 #ifdef CONFIG_NUMA
1601
1602 /*
1603  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1604  * with node sysdevs in node_devices[] using a parallel array.  The array
1605  * index of a node sysdev or _hstate == node id.
1606  * This is here to avoid any static dependency of the node sysdev driver, in
1607  * the base kernel, on the hugetlb module.
1608  */
1609 struct node_hstate {
1610         struct kobject          *hugepages_kobj;
1611         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1612 };
1613 struct node_hstate node_hstates[MAX_NUMNODES];
1614
1615 /*
1616  * A subset of global hstate attributes for node sysdevs
1617  */
1618 static struct attribute *per_node_hstate_attrs[] = {
1619         &nr_hugepages_attr.attr,
1620         &free_hugepages_attr.attr,
1621         &surplus_hugepages_attr.attr,
1622         NULL,
1623 };
1624
1625 static struct attribute_group per_node_hstate_attr_group = {
1626         .attrs = per_node_hstate_attrs,
1627 };
1628
1629 /*
1630  * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1631  * Returns node id via non-NULL nidp.
1632  */
1633 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1634 {
1635         int nid;
1636
1637         for (nid = 0; nid < nr_node_ids; nid++) {
1638                 struct node_hstate *nhs = &node_hstates[nid];
1639                 int i;
1640                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1641                         if (nhs->hstate_kobjs[i] == kobj) {
1642                                 if (nidp)
1643                                         *nidp = nid;
1644                                 return &hstates[i];
1645                         }
1646         }
1647
1648         BUG();
1649         return NULL;
1650 }
1651
1652 /*
1653  * Unregister hstate attributes from a single node sysdev.
1654  * No-op if no hstate attributes attached.
1655  */
1656 void hugetlb_unregister_node(struct node *node)
1657 {
1658         struct hstate *h;
1659         struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1660
1661         if (!nhs->hugepages_kobj)
1662                 return;         /* no hstate attributes */
1663
1664         for_each_hstate(h)
1665                 if (nhs->hstate_kobjs[h - hstates]) {
1666                         kobject_put(nhs->hstate_kobjs[h - hstates]);
1667                         nhs->hstate_kobjs[h - hstates] = NULL;
1668                 }
1669
1670         kobject_put(nhs->hugepages_kobj);
1671         nhs->hugepages_kobj = NULL;
1672 }
1673
1674 /*
1675  * hugetlb module exit:  unregister hstate attributes from node sysdevs
1676  * that have them.
1677  */
1678 static void hugetlb_unregister_all_nodes(void)
1679 {
1680         int nid;
1681
1682         /*
1683          * disable node sysdev registrations.
1684          */
1685         register_hugetlbfs_with_node(NULL, NULL);
1686
1687         /*
1688          * remove hstate attributes from any nodes that have them.
1689          */
1690         for (nid = 0; nid < nr_node_ids; nid++)
1691                 hugetlb_unregister_node(&node_devices[nid]);
1692 }
1693
1694 /*
1695  * Register hstate attributes for a single node sysdev.
1696  * No-op if attributes already registered.
1697  */
1698 void hugetlb_register_node(struct node *node)
1699 {
1700         struct hstate *h;
1701         struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1702         int err;
1703
1704         if (nhs->hugepages_kobj)
1705                 return;         /* already allocated */
1706
1707         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1708                                                         &node->sysdev.kobj);
1709         if (!nhs->hugepages_kobj)
1710                 return;
1711
1712         for_each_hstate(h) {
1713                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1714                                                 nhs->hstate_kobjs,
1715                                                 &per_node_hstate_attr_group);
1716                 if (err) {
1717                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1718                                         " for node %d\n",
1719                                                 h->name, node->sysdev.id);
1720                         hugetlb_unregister_node(node);
1721                         break;
1722                 }
1723         }
1724 }
1725
1726 /*
1727  * hugetlb init time:  register hstate attributes for all registered node
1728  * sysdevs of nodes that have memory.  All on-line nodes should have
1729  * registered their associated sysdev by this time.
1730  */
1731 static void hugetlb_register_all_nodes(void)
1732 {
1733         int nid;
1734
1735         for_each_node_state(nid, N_HIGH_MEMORY) {
1736                 struct node *node = &node_devices[nid];
1737                 if (node->sysdev.id == nid)
1738                         hugetlb_register_node(node);
1739         }
1740
1741         /*
1742          * Let the node sysdev driver know we're here so it can
1743          * [un]register hstate attributes on node hotplug.
1744          */
1745         register_hugetlbfs_with_node(hugetlb_register_node,
1746                                      hugetlb_unregister_node);
1747 }
1748 #else   /* !CONFIG_NUMA */
1749
1750 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1751 {
1752         BUG();
1753         if (nidp)
1754                 *nidp = -1;
1755         return NULL;
1756 }
1757
1758 static void hugetlb_unregister_all_nodes(void) { }
1759
1760 static void hugetlb_register_all_nodes(void) { }
1761
1762 #endif
1763
1764 static void __exit hugetlb_exit(void)
1765 {
1766         struct hstate *h;
1767
1768         hugetlb_unregister_all_nodes();
1769
1770         for_each_hstate(h) {
1771                 kobject_put(hstate_kobjs[h - hstates]);
1772         }
1773
1774         kobject_put(hugepages_kobj);
1775 }
1776 module_exit(hugetlb_exit);
1777
1778 static int __init hugetlb_init(void)
1779 {
1780         /* Some platform decide whether they support huge pages at boot
1781          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1782          * there is no such support
1783          */
1784         if (HPAGE_SHIFT == 0)
1785                 return 0;
1786
1787         if (!size_to_hstate(default_hstate_size)) {
1788                 default_hstate_size = HPAGE_SIZE;
1789                 if (!size_to_hstate(default_hstate_size))
1790                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1791         }
1792         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1793         if (default_hstate_max_huge_pages)
1794                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1795
1796         hugetlb_init_hstates();
1797
1798         gather_bootmem_prealloc();
1799
1800         report_hugepages();
1801
1802         hugetlb_sysfs_init();
1803
1804         hugetlb_register_all_nodes();
1805
1806         return 0;
1807 }
1808 module_init(hugetlb_init);
1809
1810 /* Should be called on processing a hugepagesz=... option */
1811 void __init hugetlb_add_hstate(unsigned order)
1812 {
1813         struct hstate *h;
1814         unsigned long i;
1815
1816         if (size_to_hstate(PAGE_SIZE << order)) {
1817                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1818                 return;
1819         }
1820         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1821         BUG_ON(order == 0);
1822         h = &hstates[max_hstate++];
1823         h->order = order;
1824         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1825         h->nr_huge_pages = 0;
1826         h->free_huge_pages = 0;
1827         for (i = 0; i < MAX_NUMNODES; ++i)
1828                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1829         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1830         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1831         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1832                                         huge_page_size(h)/1024);
1833
1834         parsed_hstate = h;
1835 }
1836
1837 static int __init hugetlb_nrpages_setup(char *s)
1838 {
1839         unsigned long *mhp;
1840         static unsigned long *last_mhp;
1841
1842         /*
1843          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1844          * so this hugepages= parameter goes to the "default hstate".
1845          */
1846         if (!max_hstate)
1847                 mhp = &default_hstate_max_huge_pages;
1848         else
1849                 mhp = &parsed_hstate->max_huge_pages;
1850
1851         if (mhp == last_mhp) {
1852                 printk(KERN_WARNING "hugepages= specified twice without "
1853                         "interleaving hugepagesz=, ignoring\n");
1854                 return 1;
1855         }
1856
1857         if (sscanf(s, "%lu", mhp) <= 0)
1858                 *mhp = 0;
1859
1860         /*
1861          * Global state is always initialized later in hugetlb_init.
1862          * But we need to allocate >= MAX_ORDER hstates here early to still
1863          * use the bootmem allocator.
1864          */
1865         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1866                 hugetlb_hstate_alloc_pages(parsed_hstate);
1867
1868         last_mhp = mhp;
1869
1870         return 1;
1871 }
1872 __setup("hugepages=", hugetlb_nrpages_setup);
1873
1874 static int __init hugetlb_default_setup(char *s)
1875 {
1876         default_hstate_size = memparse(s, &s);
1877         return 1;
1878 }
1879 __setup("default_hugepagesz=", hugetlb_default_setup);
1880
1881 static unsigned int cpuset_mems_nr(unsigned int *array)
1882 {
1883         int node;
1884         unsigned int nr = 0;
1885
1886         for_each_node_mask(node, cpuset_current_mems_allowed)
1887                 nr += array[node];
1888
1889         return nr;
1890 }
1891
1892 #ifdef CONFIG_SYSCTL
1893 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1894                          struct ctl_table *table, int write,
1895                          void __user *buffer, size_t *length, loff_t *ppos)
1896 {
1897         struct hstate *h = &default_hstate;
1898         unsigned long tmp;
1899
1900         if (!write)
1901                 tmp = h->max_huge_pages;
1902
1903         table->data = &tmp;
1904         table->maxlen = sizeof(unsigned long);
1905         proc_doulongvec_minmax(table, write, buffer, length, ppos);
1906
1907         if (write) {
1908                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1909                                                 GFP_KERNEL | __GFP_NORETRY);
1910                 if (!(obey_mempolicy &&
1911                                init_nodemask_of_mempolicy(nodes_allowed))) {
1912                         NODEMASK_FREE(nodes_allowed);
1913                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1914                 }
1915                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1916
1917                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1918                         NODEMASK_FREE(nodes_allowed);
1919         }
1920
1921         return 0;
1922 }
1923
1924 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1925                           void __user *buffer, size_t *length, loff_t *ppos)
1926 {
1927
1928         return hugetlb_sysctl_handler_common(false, table, write,
1929                                                         buffer, length, ppos);
1930 }
1931
1932 #ifdef CONFIG_NUMA
1933 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1934                           void __user *buffer, size_t *length, loff_t *ppos)
1935 {
1936         return hugetlb_sysctl_handler_common(true, table, write,
1937                                                         buffer, length, ppos);
1938 }
1939 #endif /* CONFIG_NUMA */
1940
1941 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1942                         void __user *buffer,
1943                         size_t *length, loff_t *ppos)
1944 {
1945         proc_dointvec(table, write, buffer, length, ppos);
1946         if (hugepages_treat_as_movable)
1947                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1948         else
1949                 htlb_alloc_mask = GFP_HIGHUSER;
1950         return 0;
1951 }
1952
1953 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1954                         void __user *buffer,
1955                         size_t *length, loff_t *ppos)
1956 {
1957         struct hstate *h = &default_hstate;
1958         unsigned long tmp;
1959
1960         if (!write)
1961                 tmp = h->nr_overcommit_huge_pages;
1962
1963         table->data = &tmp;
1964         table->maxlen = sizeof(unsigned long);
1965         proc_doulongvec_minmax(table, write, buffer, length, ppos);
1966
1967         if (write) {
1968                 spin_lock(&hugetlb_lock);
1969                 h->nr_overcommit_huge_pages = tmp;
1970                 spin_unlock(&hugetlb_lock);
1971         }
1972
1973         return 0;
1974 }
1975
1976 #endif /* CONFIG_SYSCTL */
1977
1978 void hugetlb_report_meminfo(struct seq_file *m)
1979 {
1980         struct hstate *h = &default_hstate;
1981         seq_printf(m,
1982                         "HugePages_Total:   %5lu\n"
1983                         "HugePages_Free:    %5lu\n"
1984                         "HugePages_Rsvd:    %5lu\n"
1985                         "HugePages_Surp:    %5lu\n"
1986                         "Hugepagesize:   %8lu kB\n",
1987                         h->nr_huge_pages,
1988                         h->free_huge_pages,
1989                         h->resv_huge_pages,
1990                         h->surplus_huge_pages,
1991                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1992 }
1993
1994 int hugetlb_report_node_meminfo(int nid, char *buf)
1995 {
1996         struct hstate *h = &default_hstate;
1997         return sprintf(buf,
1998                 "Node %d HugePages_Total: %5u\n"
1999                 "Node %d HugePages_Free:  %5u\n"
2000                 "Node %d HugePages_Surp:  %5u\n",
2001                 nid, h->nr_huge_pages_node[nid],
2002                 nid, h->free_huge_pages_node[nid],
2003                 nid, h->surplus_huge_pages_node[nid]);
2004 }
2005
2006 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2007 unsigned long hugetlb_total_pages(void)
2008 {
2009         struct hstate *h = &default_hstate;
2010         return h->nr_huge_pages * pages_per_huge_page(h);
2011 }
2012
2013 static int hugetlb_acct_memory(struct hstate *h, long delta)
2014 {
2015         int ret = -ENOMEM;
2016
2017         spin_lock(&hugetlb_lock);
2018         /*
2019          * When cpuset is configured, it breaks the strict hugetlb page
2020          * reservation as the accounting is done on a global variable. Such
2021          * reservation is completely rubbish in the presence of cpuset because
2022          * the reservation is not checked against page availability for the
2023          * current cpuset. Application can still potentially OOM'ed by kernel
2024          * with lack of free htlb page in cpuset that the task is in.
2025          * Attempt to enforce strict accounting with cpuset is almost
2026          * impossible (or too ugly) because cpuset is too fluid that
2027          * task or memory node can be dynamically moved between cpusets.
2028          *
2029          * The change of semantics for shared hugetlb mapping with cpuset is
2030          * undesirable. However, in order to preserve some of the semantics,
2031          * we fall back to check against current free page availability as
2032          * a best attempt and hopefully to minimize the impact of changing
2033          * semantics that cpuset has.
2034          */
2035         if (delta > 0) {
2036                 if (gather_surplus_pages(h, delta) < 0)
2037                         goto out;
2038
2039                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2040                         return_unused_surplus_pages(h, delta);
2041                         goto out;
2042                 }
2043         }
2044
2045         ret = 0;
2046         if (delta < 0)
2047                 return_unused_surplus_pages(h, (unsigned long) -delta);
2048
2049 out:
2050         spin_unlock(&hugetlb_lock);
2051         return ret;
2052 }
2053
2054 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2055 {
2056         struct resv_map *reservations = vma_resv_map(vma);
2057
2058         /*
2059          * This new VMA should share its siblings reservation map if present.
2060          * The VMA will only ever have a valid reservation map pointer where
2061          * it is being copied for another still existing VMA.  As that VMA
2062          * has a reference to the reservation map it cannot dissappear until
2063          * after this open call completes.  It is therefore safe to take a
2064          * new reference here without additional locking.
2065          */
2066         if (reservations)
2067                 kref_get(&reservations->refs);
2068 }
2069
2070 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2071 {
2072         struct hstate *h = hstate_vma(vma);
2073         struct resv_map *reservations = vma_resv_map(vma);
2074         unsigned long reserve;
2075         unsigned long start;
2076         unsigned long end;
2077
2078         if (reservations) {
2079                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2080                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2081
2082                 reserve = (end - start) -
2083                         region_count(&reservations->regions, start, end);
2084
2085                 kref_put(&reservations->refs, resv_map_release);
2086
2087                 if (reserve) {
2088                         hugetlb_acct_memory(h, -reserve);
2089                         hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2090                 }
2091         }
2092 }
2093
2094 /*
2095  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2096  * handle_mm_fault() to try to instantiate regular-sized pages in the
2097  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2098  * this far.
2099  */
2100 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2101 {
2102         BUG();
2103         return 0;
2104 }
2105
2106 const struct vm_operations_struct hugetlb_vm_ops = {
2107         .fault = hugetlb_vm_op_fault,
2108         .open = hugetlb_vm_op_open,
2109         .close = hugetlb_vm_op_close,
2110 };
2111
2112 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2113                                 int writable)
2114 {
2115         pte_t entry;
2116
2117         if (writable) {
2118                 entry =
2119                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2120         } else {
2121                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2122         }
2123         entry = pte_mkyoung(entry);
2124         entry = pte_mkhuge(entry);
2125
2126         return entry;
2127 }
2128
2129 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2130                                    unsigned long address, pte_t *ptep)
2131 {
2132         pte_t entry;
2133
2134         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2135         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2136                 update_mmu_cache(vma, address, ptep);
2137         }
2138 }
2139
2140
2141 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2142                             struct vm_area_struct *vma)
2143 {
2144         pte_t *src_pte, *dst_pte, entry;
2145         struct page *ptepage;
2146         unsigned long addr;
2147         int cow;
2148         struct hstate *h = hstate_vma(vma);
2149         unsigned long sz = huge_page_size(h);
2150
2151         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2152
2153         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2154                 src_pte = huge_pte_offset(src, addr);
2155                 if (!src_pte)
2156                         continue;
2157                 dst_pte = huge_pte_alloc(dst, addr, sz);
2158                 if (!dst_pte)
2159                         goto nomem;
2160
2161                 /* If the pagetables are shared don't copy or take references */
2162                 if (dst_pte == src_pte)
2163                         continue;
2164
2165                 spin_lock(&dst->page_table_lock);
2166                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2167                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2168                         if (cow)
2169                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2170                         entry = huge_ptep_get(src_pte);
2171                         ptepage = pte_page(entry);
2172                         get_page(ptepage);
2173                         page_dup_rmap(ptepage);
2174                         set_huge_pte_at(dst, addr, dst_pte, entry);
2175                 }
2176                 spin_unlock(&src->page_table_lock);
2177                 spin_unlock(&dst->page_table_lock);
2178         }
2179         return 0;
2180
2181 nomem:
2182         return -ENOMEM;
2183 }
2184
2185 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2186 {
2187         swp_entry_t swp;
2188
2189         if (huge_pte_none(pte) || pte_present(pte))
2190                 return 0;
2191         swp = pte_to_swp_entry(pte);
2192         if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2193                 return 1;
2194         } else
2195                 return 0;
2196 }
2197
2198 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2199                             unsigned long end, struct page *ref_page)
2200 {
2201         struct mm_struct *mm = vma->vm_mm;
2202         unsigned long address;
2203         pte_t *ptep;
2204         pte_t pte;
2205         struct page *page;
2206         struct page *tmp;
2207         struct hstate *h = hstate_vma(vma);
2208         unsigned long sz = huge_page_size(h);
2209
2210         /*
2211          * A page gathering list, protected by per file i_mmap_lock. The
2212          * lock is used to avoid list corruption from multiple unmapping
2213          * of the same page since we are using page->lru.
2214          */
2215         LIST_HEAD(page_list);
2216
2217         WARN_ON(!is_vm_hugetlb_page(vma));
2218         BUG_ON(start & ~huge_page_mask(h));
2219         BUG_ON(end & ~huge_page_mask(h));
2220
2221         mmu_notifier_invalidate_range_start(mm, start, end);
2222         spin_lock(&mm->page_table_lock);
2223         for (address = start; address < end; address += sz) {
2224                 ptep = huge_pte_offset(mm, address);
2225                 if (!ptep)
2226                         continue;
2227
2228                 if (huge_pmd_unshare(mm, &address, ptep))
2229                         continue;
2230
2231                 /*
2232                  * If a reference page is supplied, it is because a specific
2233                  * page is being unmapped, not a range. Ensure the page we
2234                  * are about to unmap is the actual page of interest.
2235                  */
2236                 if (ref_page) {
2237                         pte = huge_ptep_get(ptep);
2238                         if (huge_pte_none(pte))
2239                                 continue;
2240                         page = pte_page(pte);
2241                         if (page != ref_page)
2242                                 continue;
2243
2244                         /*
2245                          * Mark the VMA as having unmapped its page so that
2246                          * future faults in this VMA will fail rather than
2247                          * looking like data was lost
2248                          */
2249                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2250                 }
2251
2252                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2253                 if (huge_pte_none(pte))
2254                         continue;
2255
2256                 /*
2257                  * HWPoisoned hugepage is already unmapped and dropped reference
2258                  */
2259                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2260                         continue;
2261
2262                 page = pte_page(pte);
2263                 if (pte_dirty(pte))
2264                         set_page_dirty(page);
2265                 list_add(&page->lru, &page_list);
2266         }
2267         spin_unlock(&mm->page_table_lock);
2268         flush_tlb_range(vma, start, end);
2269         mmu_notifier_invalidate_range_end(mm, start, end);
2270         list_for_each_entry_safe(page, tmp, &page_list, lru) {
2271                 page_remove_rmap(page);
2272                 list_del(&page->lru);
2273                 put_page(page);
2274         }
2275 }
2276
2277 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2278                           unsigned long end, struct page *ref_page)
2279 {
2280         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2281         __unmap_hugepage_range(vma, start, end, ref_page);
2282         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2283 }
2284
2285 /*
2286  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2287  * mappping it owns the reserve page for. The intention is to unmap the page
2288  * from other VMAs and let the children be SIGKILLed if they are faulting the
2289  * same region.
2290  */
2291 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2292                                 struct page *page, unsigned long address)
2293 {
2294         struct hstate *h = hstate_vma(vma);
2295         struct vm_area_struct *iter_vma;
2296         struct address_space *mapping;
2297         struct prio_tree_iter iter;
2298         pgoff_t pgoff;
2299
2300         /*
2301          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2302          * from page cache lookup which is in HPAGE_SIZE units.
2303          */
2304         address = address & huge_page_mask(h);
2305         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2306                 + (vma->vm_pgoff >> PAGE_SHIFT);
2307         mapping = (struct address_space *)page_private(page);
2308
2309         /*
2310          * Take the mapping lock for the duration of the table walk. As
2311          * this mapping should be shared between all the VMAs,
2312          * __unmap_hugepage_range() is called as the lock is already held
2313          */
2314         spin_lock(&mapping->i_mmap_lock);
2315         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2316                 /* Do not unmap the current VMA */
2317                 if (iter_vma == vma)
2318                         continue;
2319
2320                 /*
2321                  * Unmap the page from other VMAs without their own reserves.
2322                  * They get marked to be SIGKILLed if they fault in these
2323                  * areas. This is because a future no-page fault on this VMA
2324                  * could insert a zeroed page instead of the data existing
2325                  * from the time of fork. This would look like data corruption
2326                  */
2327                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2328                         __unmap_hugepage_range(iter_vma,
2329                                 address, address + huge_page_size(h),
2330                                 page);
2331         }
2332         spin_unlock(&mapping->i_mmap_lock);
2333
2334         return 1;
2335 }
2336
2337 /*
2338  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2339  */
2340 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2341                         unsigned long address, pte_t *ptep, pte_t pte,
2342                         struct page *pagecache_page)
2343 {
2344         struct hstate *h = hstate_vma(vma);
2345         struct page *old_page, *new_page;
2346         int avoidcopy;
2347         int outside_reserve = 0;
2348
2349         old_page = pte_page(pte);
2350
2351 retry_avoidcopy:
2352         /* If no-one else is actually using this page, avoid the copy
2353          * and just make the page writable */
2354         avoidcopy = (page_mapcount(old_page) == 1);
2355         if (avoidcopy) {
2356                 if (PageAnon(old_page))
2357                         page_move_anon_rmap(old_page, vma, address);
2358                 set_huge_ptep_writable(vma, address, ptep);
2359                 return 0;
2360         }
2361
2362         /*
2363          * If the process that created a MAP_PRIVATE mapping is about to
2364          * perform a COW due to a shared page count, attempt to satisfy
2365          * the allocation without using the existing reserves. The pagecache
2366          * page is used to determine if the reserve at this address was
2367          * consumed or not. If reserves were used, a partial faulted mapping
2368          * at the time of fork() could consume its reserves on COW instead
2369          * of the full address range.
2370          */
2371         if (!(vma->vm_flags & VM_MAYSHARE) &&
2372                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2373                         old_page != pagecache_page)
2374                 outside_reserve = 1;
2375
2376         page_cache_get(old_page);
2377
2378         /* Drop page_table_lock as buddy allocator may be called */
2379         spin_unlock(&mm->page_table_lock);
2380         new_page = alloc_huge_page(vma, address, outside_reserve);
2381
2382         if (IS_ERR(new_page)) {
2383                 page_cache_release(old_page);
2384
2385                 /*
2386                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2387                  * it is due to references held by a child and an insufficient
2388                  * huge page pool. To guarantee the original mappers
2389                  * reliability, unmap the page from child processes. The child
2390                  * may get SIGKILLed if it later faults.
2391                  */
2392                 if (outside_reserve) {
2393                         BUG_ON(huge_pte_none(pte));
2394                         if (unmap_ref_private(mm, vma, old_page, address)) {
2395                                 BUG_ON(page_count(old_page) != 1);
2396                                 BUG_ON(huge_pte_none(pte));
2397                                 spin_lock(&mm->page_table_lock);
2398                                 goto retry_avoidcopy;
2399                         }
2400                         WARN_ON_ONCE(1);
2401                 }
2402
2403                 /* Caller expects lock to be held */
2404                 spin_lock(&mm->page_table_lock);
2405                 return -PTR_ERR(new_page);
2406         }
2407
2408         /*
2409          * When the original hugepage is shared one, it does not have
2410          * anon_vma prepared.
2411          */
2412         if (unlikely(anon_vma_prepare(vma)))
2413                 return VM_FAULT_OOM;
2414
2415         copy_huge_page(new_page, old_page, address, vma);
2416         __SetPageUptodate(new_page);
2417
2418         /*
2419          * Retake the page_table_lock to check for racing updates
2420          * before the page tables are altered
2421          */
2422         spin_lock(&mm->page_table_lock);
2423         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2424         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2425                 /* Break COW */
2426                 mmu_notifier_invalidate_range_start(mm,
2427                         address & huge_page_mask(h),
2428                         (address & huge_page_mask(h)) + huge_page_size(h));
2429                 huge_ptep_clear_flush(vma, address, ptep);
2430                 set_huge_pte_at(mm, address, ptep,
2431                                 make_huge_pte(vma, new_page, 1));
2432                 page_remove_rmap(old_page);
2433                 hugepage_add_new_anon_rmap(new_page, vma, address);
2434                 /* Make the old page be freed below */
2435                 new_page = old_page;
2436                 mmu_notifier_invalidate_range_end(mm,
2437                         address & huge_page_mask(h),
2438                         (address & huge_page_mask(h)) + huge_page_size(h));
2439         }
2440         page_cache_release(new_page);
2441         page_cache_release(old_page);
2442         return 0;
2443 }
2444
2445 /* Return the pagecache page at a given address within a VMA */
2446 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2447                         struct vm_area_struct *vma, unsigned long address)
2448 {
2449         struct address_space *mapping;
2450         pgoff_t idx;
2451
2452         mapping = vma->vm_file->f_mapping;
2453         idx = vma_hugecache_offset(h, vma, address);
2454
2455         return find_lock_page(mapping, idx);
2456 }
2457
2458 /*
2459  * Return whether there is a pagecache page to back given address within VMA.
2460  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2461  */
2462 static bool hugetlbfs_pagecache_present(struct hstate *h,
2463                         struct vm_area_struct *vma, unsigned long address)
2464 {
2465         struct address_space *mapping;
2466         pgoff_t idx;
2467         struct page *page;
2468
2469         mapping = vma->vm_file->f_mapping;
2470         idx = vma_hugecache_offset(h, vma, address);
2471
2472         page = find_get_page(mapping, idx);
2473         if (page)
2474                 put_page(page);
2475         return page != NULL;
2476 }
2477
2478 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2479                         unsigned long address, pte_t *ptep, unsigned int flags)
2480 {
2481         struct hstate *h = hstate_vma(vma);
2482         int ret = VM_FAULT_SIGBUS;
2483         pgoff_t idx;
2484         unsigned long size;
2485         struct page *page;
2486         struct address_space *mapping;
2487         pte_t new_pte;
2488
2489         /*
2490          * Currently, we are forced to kill the process in the event the
2491          * original mapper has unmapped pages from the child due to a failed
2492          * COW. Warn that such a situation has occured as it may not be obvious
2493          */
2494         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2495                 printk(KERN_WARNING
2496                         "PID %d killed due to inadequate hugepage pool\n",
2497                         current->pid);
2498                 return ret;
2499         }
2500
2501         mapping = vma->vm_file->f_mapping;
2502         idx = vma_hugecache_offset(h, vma, address);
2503
2504         /*
2505          * Use page lock to guard against racing truncation
2506          * before we get page_table_lock.
2507          */
2508 retry:
2509         page = find_lock_page(mapping, idx);
2510         if (!page) {
2511                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2512                 if (idx >= size)
2513                         goto out;
2514                 page = alloc_huge_page(vma, address, 0);
2515                 if (IS_ERR(page)) {
2516                         ret = -PTR_ERR(page);
2517                         goto out;
2518                 }
2519                 clear_huge_page(page, address, huge_page_size(h));
2520                 __SetPageUptodate(page);
2521
2522                 if (vma->vm_flags & VM_MAYSHARE) {
2523                         int err;
2524                         struct inode *inode = mapping->host;
2525
2526                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2527                         if (err) {
2528                                 put_page(page);
2529                                 if (err == -EEXIST)
2530                                         goto retry;
2531                                 goto out;
2532                         }
2533
2534                         spin_lock(&inode->i_lock);
2535                         inode->i_blocks += blocks_per_huge_page(h);
2536                         spin_unlock(&inode->i_lock);
2537                         page_dup_rmap(page);
2538                 } else {
2539                         lock_page(page);
2540                         if (unlikely(anon_vma_prepare(vma))) {
2541                                 ret = VM_FAULT_OOM;
2542                                 goto backout_unlocked;
2543                         }
2544                         hugepage_add_new_anon_rmap(page, vma, address);
2545                 }
2546         } else {
2547                 /*
2548                  * If memory error occurs between mmap() and fault, some process
2549                  * don't have hwpoisoned swap entry for errored virtual address.
2550                  * So we need to block hugepage fault by PG_hwpoison bit check.
2551                  */
2552                 if (unlikely(PageHWPoison(page))) {
2553                         ret = VM_FAULT_HWPOISON;
2554                         goto backout_unlocked;
2555                 }
2556                 page_dup_rmap(page);
2557         }
2558
2559         /*
2560          * If we are going to COW a private mapping later, we examine the
2561          * pending reservations for this page now. This will ensure that
2562          * any allocations necessary to record that reservation occur outside
2563          * the spinlock.
2564          */
2565         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2566                 if (vma_needs_reservation(h, vma, address) < 0) {
2567                         ret = VM_FAULT_OOM;
2568                         goto backout_unlocked;
2569                 }
2570
2571         spin_lock(&mm->page_table_lock);
2572         size = i_size_read(mapping->host) >> huge_page_shift(h);
2573         if (idx >= size)
2574                 goto backout;
2575
2576         ret = 0;
2577         if (!huge_pte_none(huge_ptep_get(ptep)))
2578                 goto backout;
2579
2580         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2581                                 && (vma->vm_flags & VM_SHARED)));
2582         set_huge_pte_at(mm, address, ptep, new_pte);
2583
2584         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2585                 /* Optimization, do the COW without a second fault */
2586                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2587         }
2588
2589         spin_unlock(&mm->page_table_lock);
2590         unlock_page(page);
2591 out:
2592         return ret;
2593
2594 backout:
2595         spin_unlock(&mm->page_table_lock);
2596 backout_unlocked:
2597         unlock_page(page);
2598         put_page(page);
2599         goto out;
2600 }
2601
2602 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2603                         unsigned long address, unsigned int flags)
2604 {
2605         pte_t *ptep;
2606         pte_t entry;
2607         int ret;
2608         struct page *page = NULL;
2609         struct page *pagecache_page = NULL;
2610         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2611         struct hstate *h = hstate_vma(vma);
2612
2613         ptep = huge_pte_offset(mm, address);
2614         if (ptep) {
2615                 entry = huge_ptep_get(ptep);
2616                 if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2617                         return VM_FAULT_HWPOISON;
2618         }
2619
2620         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2621         if (!ptep)
2622                 return VM_FAULT_OOM;
2623
2624         /*
2625          * Serialize hugepage allocation and instantiation, so that we don't
2626          * get spurious allocation failures if two CPUs race to instantiate
2627          * the same page in the page cache.
2628          */
2629         mutex_lock(&hugetlb_instantiation_mutex);
2630         entry = huge_ptep_get(ptep);
2631         if (huge_pte_none(entry)) {
2632                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2633                 goto out_mutex;
2634         }
2635
2636         ret = 0;
2637
2638         /*
2639          * If we are going to COW the mapping later, we examine the pending
2640          * reservations for this page now. This will ensure that any
2641          * allocations necessary to record that reservation occur outside the
2642          * spinlock. For private mappings, we also lookup the pagecache
2643          * page now as it is used to determine if a reservation has been
2644          * consumed.
2645          */
2646         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2647                 if (vma_needs_reservation(h, vma, address) < 0) {
2648                         ret = VM_FAULT_OOM;
2649                         goto out_mutex;
2650                 }
2651
2652                 if (!(vma->vm_flags & VM_MAYSHARE))
2653                         pagecache_page = hugetlbfs_pagecache_page(h,
2654                                                                 vma, address);
2655         }
2656
2657         /*
2658          * hugetlb_cow() requires page locks of pte_page(entry) and
2659          * pagecache_page, so here we need take the former one
2660          * when page != pagecache_page or !pagecache_page.
2661          * Note that locking order is always pagecache_page -> page,
2662          * so no worry about deadlock.
2663          */
2664         page = pte_page(entry);
2665         if (page != pagecache_page)
2666                 lock_page(page);
2667
2668         spin_lock(&mm->page_table_lock);
2669         /* Check for a racing update before calling hugetlb_cow */
2670         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2671                 goto out_page_table_lock;
2672
2673
2674         if (flags & FAULT_FLAG_WRITE) {
2675                 if (!pte_write(entry)) {
2676                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2677                                                         pagecache_page);
2678                         goto out_page_table_lock;
2679                 }
2680                 entry = pte_mkdirty(entry);
2681         }
2682         entry = pte_mkyoung(entry);
2683         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2684                                                 flags & FAULT_FLAG_WRITE))
2685                 update_mmu_cache(vma, address, ptep);
2686
2687 out_page_table_lock:
2688         spin_unlock(&mm->page_table_lock);
2689
2690         if (pagecache_page) {
2691                 unlock_page(pagecache_page);
2692                 put_page(pagecache_page);
2693         }
2694         unlock_page(page);
2695
2696 out_mutex:
2697         mutex_unlock(&hugetlb_instantiation_mutex);
2698
2699         return ret;
2700 }
2701
2702 /* Can be overriden by architectures */
2703 __attribute__((weak)) struct page *
2704 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2705                pud_t *pud, int write)
2706 {
2707         BUG();
2708         return NULL;
2709 }
2710
2711 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2712                         struct page **pages, struct vm_area_struct **vmas,
2713                         unsigned long *position, int *length, int i,
2714                         unsigned int flags)
2715 {
2716         unsigned long pfn_offset;
2717         unsigned long vaddr = *position;
2718         int remainder = *length;
2719         struct hstate *h = hstate_vma(vma);
2720
2721         spin_lock(&mm->page_table_lock);
2722         while (vaddr < vma->vm_end && remainder) {
2723                 pte_t *pte;
2724                 int absent;
2725                 struct page *page;
2726
2727                 /*
2728                  * Some archs (sparc64, sh*) have multiple pte_ts to
2729                  * each hugepage.  We have to make sure we get the
2730                  * first, for the page indexing below to work.
2731                  */
2732                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2733                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2734
2735                 /*
2736                  * When coredumping, it suits get_dump_page if we just return
2737                  * an error where there's an empty slot with no huge pagecache
2738                  * to back it.  This way, we avoid allocating a hugepage, and
2739                  * the sparse dumpfile avoids allocating disk blocks, but its
2740                  * huge holes still show up with zeroes where they need to be.
2741                  */
2742                 if (absent && (flags & FOLL_DUMP) &&
2743                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2744                         remainder = 0;
2745                         break;
2746                 }
2747
2748                 if (absent ||
2749                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2750                         int ret;
2751
2752                         spin_unlock(&mm->page_table_lock);
2753                         ret = hugetlb_fault(mm, vma, vaddr,
2754                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2755                         spin_lock(&mm->page_table_lock);
2756                         if (!(ret & VM_FAULT_ERROR))
2757                                 continue;
2758
2759                         remainder = 0;
2760                         break;
2761                 }
2762
2763                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2764                 page = pte_page(huge_ptep_get(pte));
2765 same_page:
2766                 if (pages) {
2767                         pages[i] = mem_map_offset(page, pfn_offset);
2768                         get_page(pages[i]);
2769                 }
2770
2771                 if (vmas)
2772                         vmas[i] = vma;
2773
2774                 vaddr += PAGE_SIZE;
2775                 ++pfn_offset;
2776                 --remainder;
2777                 ++i;
2778                 if (vaddr < vma->vm_end && remainder &&
2779                                 pfn_offset < pages_per_huge_page(h)) {
2780                         /*
2781                          * We use pfn_offset to avoid touching the pageframes
2782                          * of this compound page.
2783                          */
2784                         goto same_page;
2785                 }
2786         }
2787         spin_unlock(&mm->page_table_lock);
2788         *length = remainder;
2789         *position = vaddr;
2790
2791         return i ? i : -EFAULT;
2792 }
2793
2794 void hugetlb_change_protection(struct vm_area_struct *vma,
2795                 unsigned long address, unsigned long end, pgprot_t newprot)
2796 {
2797         struct mm_struct *mm = vma->vm_mm;
2798         unsigned long start = address;
2799         pte_t *ptep;
2800         pte_t pte;
2801         struct hstate *h = hstate_vma(vma);
2802
2803         BUG_ON(address >= end);
2804         flush_cache_range(vma, address, end);
2805
2806         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2807         spin_lock(&mm->page_table_lock);
2808         for (; address < end; address += huge_page_size(h)) {
2809                 ptep = huge_pte_offset(mm, address);
2810                 if (!ptep)
2811                         continue;
2812                 if (huge_pmd_unshare(mm, &address, ptep))
2813                         continue;
2814                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2815                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2816                         pte = pte_mkhuge(pte_modify(pte, newprot));
2817                         set_huge_pte_at(mm, address, ptep, pte);
2818                 }
2819         }
2820         spin_unlock(&mm->page_table_lock);
2821         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2822
2823         flush_tlb_range(vma, start, end);
2824 }
2825
2826 int hugetlb_reserve_pages(struct inode *inode,
2827                                         long from, long to,
2828                                         struct vm_area_struct *vma,
2829                                         int acctflag)
2830 {
2831         long ret, chg;
2832         struct hstate *h = hstate_inode(inode);
2833
2834         /*
2835          * Only apply hugepage reservation if asked. At fault time, an
2836          * attempt will be made for VM_NORESERVE to allocate a page
2837          * and filesystem quota without using reserves
2838          */
2839         if (acctflag & VM_NORESERVE)
2840                 return 0;
2841
2842         /*
2843          * Shared mappings base their reservation on the number of pages that
2844          * are already allocated on behalf of the file. Private mappings need
2845          * to reserve the full area even if read-only as mprotect() may be
2846          * called to make the mapping read-write. Assume !vma is a shm mapping
2847          */
2848         if (!vma || vma->vm_flags & VM_MAYSHARE)
2849                 chg = region_chg(&inode->i_mapping->private_list, from, to);
2850         else {
2851                 struct resv_map *resv_map = resv_map_alloc();
2852                 if (!resv_map)
2853                         return -ENOMEM;
2854
2855                 chg = to - from;
2856
2857                 set_vma_resv_map(vma, resv_map);
2858                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2859         }
2860
2861         if (chg < 0)
2862                 return chg;
2863
2864         /* There must be enough filesystem quota for the mapping */
2865         if (hugetlb_get_quota(inode->i_mapping, chg))
2866                 return -ENOSPC;
2867
2868         /*
2869          * Check enough hugepages are available for the reservation.
2870          * Hand back the quota if there are not
2871          */
2872         ret = hugetlb_acct_memory(h, chg);
2873         if (ret < 0) {
2874                 hugetlb_put_quota(inode->i_mapping, chg);
2875                 return ret;
2876         }
2877
2878         /*
2879          * Account for the reservations made. Shared mappings record regions
2880          * that have reservations as they are shared by multiple VMAs.
2881          * When the last VMA disappears, the region map says how much
2882          * the reservation was and the page cache tells how much of
2883          * the reservation was consumed. Private mappings are per-VMA and
2884          * only the consumed reservations are tracked. When the VMA
2885          * disappears, the original reservation is the VMA size and the
2886          * consumed reservations are stored in the map. Hence, nothing
2887          * else has to be done for private mappings here
2888          */
2889         if (!vma || vma->vm_flags & VM_MAYSHARE)
2890                 region_add(&inode->i_mapping->private_list, from, to);
2891         return 0;
2892 }
2893
2894 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2895 {
2896         struct hstate *h = hstate_inode(inode);
2897         long chg = region_truncate(&inode->i_mapping->private_list, offset);
2898
2899         spin_lock(&inode->i_lock);
2900         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2901         spin_unlock(&inode->i_lock);
2902
2903         hugetlb_put_quota(inode->i_mapping, (chg - freed));
2904         hugetlb_acct_memory(h, -(chg - freed));
2905 }
2906
2907 /*
2908  * This function is called from memory failure code.
2909  * Assume the caller holds page lock of the head page.
2910  */
2911 void __isolate_hwpoisoned_huge_page(struct page *hpage)
2912 {
2913         struct hstate *h = page_hstate(hpage);
2914         int nid = page_to_nid(hpage);
2915
2916         spin_lock(&hugetlb_lock);
2917         list_del(&hpage->lru);
2918         h->free_huge_pages--;
2919         h->free_huge_pages_node[nid]--;
2920         spin_unlock(&hugetlb_lock);
2921 }