serial: PL011: clear pending interrupts
[linux-flexiantxendom0.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22
23 #define MAX_LSM_EVM_XATTR       2
24
25 /* Boot-time LSM user choice */
26 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
27         CONFIG_DEFAULT_SECURITY;
28
29 static struct security_operations *security_ops;
30 static struct security_operations default_security_ops = {
31         .name   = "default",
32 };
33
34 static inline int __init verify(struct security_operations *ops)
35 {
36         /* verify the security_operations structure exists */
37         if (!ops)
38                 return -EINVAL;
39         security_fixup_ops(ops);
40         return 0;
41 }
42
43 static void __init do_security_initcalls(void)
44 {
45         initcall_t *call;
46         call = __security_initcall_start;
47         while (call < __security_initcall_end) {
48                 (*call) ();
49                 call++;
50         }
51 }
52
53 /**
54  * security_init - initializes the security framework
55  *
56  * This should be called early in the kernel initialization sequence.
57  */
58 int __init security_init(void)
59 {
60         printk(KERN_INFO "Security Framework initialized\n");
61
62         security_fixup_ops(&default_security_ops);
63         security_ops = &default_security_ops;
64         do_security_initcalls();
65
66         return 0;
67 }
68
69 void reset_security_ops(void)
70 {
71         security_ops = &default_security_ops;
72 }
73
74 /* Save user chosen LSM */
75 static int __init choose_lsm(char *str)
76 {
77         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
78         return 1;
79 }
80 __setup("security=", choose_lsm);
81
82 /**
83  * security_module_enable - Load given security module on boot ?
84  * @ops: a pointer to the struct security_operations that is to be checked.
85  *
86  * Each LSM must pass this method before registering its own operations
87  * to avoid security registration races. This method may also be used
88  * to check if your LSM is currently loaded during kernel initialization.
89  *
90  * Return true if:
91  *      -The passed LSM is the one chosen by user at boot time,
92  *      -or the passed LSM is configured as the default and the user did not
93  *       choose an alternate LSM at boot time.
94  * Otherwise, return false.
95  */
96 int __init security_module_enable(struct security_operations *ops)
97 {
98         return !strcmp(ops->name, chosen_lsm);
99 }
100
101 /**
102  * register_security - registers a security framework with the kernel
103  * @ops: a pointer to the struct security_options that is to be registered
104  *
105  * This function allows a security module to register itself with the
106  * kernel security subsystem.  Some rudimentary checking is done on the @ops
107  * value passed to this function. You'll need to check first if your LSM
108  * is allowed to register its @ops by calling security_module_enable(@ops).
109  *
110  * If there is already a security module registered with the kernel,
111  * an error will be returned.  Otherwise %0 is returned on success.
112  */
113 int __init register_security(struct security_operations *ops)
114 {
115         if (verify(ops)) {
116                 printk(KERN_DEBUG "%s could not verify "
117                        "security_operations structure.\n", __func__);
118                 return -EINVAL;
119         }
120
121         if (security_ops != &default_security_ops)
122                 return -EAGAIN;
123
124         security_ops = ops;
125
126         return 0;
127 }
128
129 /* Security operations */
130
131 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
132 {
133         int rc;
134         rc = yama_ptrace_access_check(child, mode);
135         if (rc)
136                 return rc;
137         return security_ops->ptrace_access_check(child, mode);
138 }
139
140 int security_ptrace_traceme(struct task_struct *parent)
141 {
142         return security_ops->ptrace_traceme(parent);
143 }
144
145 int security_capget(struct task_struct *target,
146                      kernel_cap_t *effective,
147                      kernel_cap_t *inheritable,
148                      kernel_cap_t *permitted)
149 {
150         return security_ops->capget(target, effective, inheritable, permitted);
151 }
152
153 int security_capset(struct cred *new, const struct cred *old,
154                     const kernel_cap_t *effective,
155                     const kernel_cap_t *inheritable,
156                     const kernel_cap_t *permitted)
157 {
158         return security_ops->capset(new, old,
159                                     effective, inheritable, permitted);
160 }
161
162 int security_capable(struct user_namespace *ns, const struct cred *cred,
163                      int cap)
164 {
165         return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
166 }
167
168 int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
169                           int cap)
170 {
171         const struct cred *cred;
172         int ret;
173
174         cred = get_task_cred(tsk);
175         ret = security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
176         put_cred(cred);
177         return ret;
178 }
179
180 int security_real_capable_noaudit(struct task_struct *tsk,
181                                   struct user_namespace *ns, int cap)
182 {
183         const struct cred *cred;
184         int ret;
185
186         cred = get_task_cred(tsk);
187         ret = security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
188         put_cred(cred);
189         return ret;
190 }
191
192 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
193 {
194         return security_ops->quotactl(cmds, type, id, sb);
195 }
196
197 int security_quota_on(struct dentry *dentry)
198 {
199         return security_ops->quota_on(dentry);
200 }
201
202 int security_syslog(int type)
203 {
204         return security_ops->syslog(type);
205 }
206
207 int security_settime(const struct timespec *ts, const struct timezone *tz)
208 {
209         return security_ops->settime(ts, tz);
210 }
211
212 int security_vm_enough_memory(long pages)
213 {
214         WARN_ON(current->mm == NULL);
215         return security_ops->vm_enough_memory(current->mm, pages);
216 }
217
218 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
219 {
220         WARN_ON(mm == NULL);
221         return security_ops->vm_enough_memory(mm, pages);
222 }
223
224 int security_vm_enough_memory_kern(long pages)
225 {
226         /* If current->mm is a kernel thread then we will pass NULL,
227            for this specific case that is fine */
228         return security_ops->vm_enough_memory(current->mm, pages);
229 }
230
231 int security_bprm_set_creds(struct linux_binprm *bprm)
232 {
233         return security_ops->bprm_set_creds(bprm);
234 }
235
236 int security_bprm_check(struct linux_binprm *bprm)
237 {
238         int ret;
239
240         ret = security_ops->bprm_check_security(bprm);
241         if (ret)
242                 return ret;
243         return ima_bprm_check(bprm);
244 }
245
246 void security_bprm_committing_creds(struct linux_binprm *bprm)
247 {
248         security_ops->bprm_committing_creds(bprm);
249 }
250
251 void security_bprm_committed_creds(struct linux_binprm *bprm)
252 {
253         security_ops->bprm_committed_creds(bprm);
254 }
255
256 int security_bprm_secureexec(struct linux_binprm *bprm)
257 {
258         return security_ops->bprm_secureexec(bprm);
259 }
260
261 int security_sb_alloc(struct super_block *sb)
262 {
263         return security_ops->sb_alloc_security(sb);
264 }
265
266 void security_sb_free(struct super_block *sb)
267 {
268         security_ops->sb_free_security(sb);
269 }
270
271 int security_sb_copy_data(char *orig, char *copy)
272 {
273         return security_ops->sb_copy_data(orig, copy);
274 }
275 EXPORT_SYMBOL(security_sb_copy_data);
276
277 int security_sb_remount(struct super_block *sb, void *data)
278 {
279         return security_ops->sb_remount(sb, data);
280 }
281
282 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
283 {
284         return security_ops->sb_kern_mount(sb, flags, data);
285 }
286
287 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
288 {
289         return security_ops->sb_show_options(m, sb);
290 }
291
292 int security_sb_statfs(struct dentry *dentry)
293 {
294         return security_ops->sb_statfs(dentry);
295 }
296
297 int security_sb_mount(char *dev_name, struct path *path,
298                        char *type, unsigned long flags, void *data)
299 {
300         return security_ops->sb_mount(dev_name, path, type, flags, data);
301 }
302
303 int security_sb_umount(struct vfsmount *mnt, int flags)
304 {
305         return security_ops->sb_umount(mnt, flags);
306 }
307
308 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
309 {
310         return security_ops->sb_pivotroot(old_path, new_path);
311 }
312
313 int security_sb_set_mnt_opts(struct super_block *sb,
314                                 struct security_mnt_opts *opts)
315 {
316         return security_ops->sb_set_mnt_opts(sb, opts);
317 }
318 EXPORT_SYMBOL(security_sb_set_mnt_opts);
319
320 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
321                                 struct super_block *newsb)
322 {
323         security_ops->sb_clone_mnt_opts(oldsb, newsb);
324 }
325 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
326
327 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
328 {
329         return security_ops->sb_parse_opts_str(options, opts);
330 }
331 EXPORT_SYMBOL(security_sb_parse_opts_str);
332
333 int security_inode_alloc(struct inode *inode)
334 {
335         inode->i_security = NULL;
336         return security_ops->inode_alloc_security(inode);
337 }
338
339 void security_inode_free(struct inode *inode)
340 {
341         integrity_inode_free(inode);
342         security_ops->inode_free_security(inode);
343 }
344
345 int security_inode_init_security(struct inode *inode, struct inode *dir,
346                                  const struct qstr *qstr,
347                                  const initxattrs initxattrs, void *fs_data)
348 {
349         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
350         struct xattr *lsm_xattr, *evm_xattr, *xattr;
351         int ret;
352
353         if (unlikely(IS_PRIVATE(inode)))
354                 return 0;
355
356         memset(new_xattrs, 0, sizeof new_xattrs);
357         if (!initxattrs)
358                 return security_ops->inode_init_security(inode, dir, qstr,
359                                                          NULL, NULL, NULL);
360         lsm_xattr = new_xattrs;
361         ret = security_ops->inode_init_security(inode, dir, qstr,
362                                                 &lsm_xattr->name,
363                                                 &lsm_xattr->value,
364                                                 &lsm_xattr->value_len);
365         if (ret)
366                 goto out;
367
368         evm_xattr = lsm_xattr + 1;
369         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
370         if (ret)
371                 goto out;
372         ret = initxattrs(inode, new_xattrs, fs_data);
373 out:
374         for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
375                 kfree(xattr->name);
376                 kfree(xattr->value);
377         }
378         return (ret == -EOPNOTSUPP) ? 0 : ret;
379 }
380 EXPORT_SYMBOL(security_inode_init_security);
381
382 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
383                                      const struct qstr *qstr, char **name,
384                                      void **value, size_t *len)
385 {
386         if (unlikely(IS_PRIVATE(inode)))
387                 return -EOPNOTSUPP;
388         return security_ops->inode_init_security(inode, dir, qstr, name, value,
389                                                  len);
390 }
391 EXPORT_SYMBOL(security_old_inode_init_security);
392
393 #ifdef CONFIG_SECURITY_PATH
394 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
395                         unsigned int dev)
396 {
397         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
398                 return 0;
399         return security_ops->path_mknod(dir, dentry, mode, dev);
400 }
401 EXPORT_SYMBOL(security_path_mknod);
402
403 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
404 {
405         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
406                 return 0;
407         return security_ops->path_mkdir(dir, dentry, mode);
408 }
409 EXPORT_SYMBOL(security_path_mkdir);
410
411 int security_path_rmdir(struct path *dir, struct dentry *dentry)
412 {
413         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
414                 return 0;
415         return security_ops->path_rmdir(dir, dentry);
416 }
417 EXPORT_SYMBOL(security_path_rmdir);
418
419 int security_path_unlink(struct path *dir, struct dentry *dentry)
420 {
421         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
422                 return 0;
423         return security_ops->path_unlink(dir, dentry);
424 }
425 EXPORT_SYMBOL(security_path_unlink);
426
427 int security_path_symlink(struct path *dir, struct dentry *dentry,
428                           const char *old_name)
429 {
430         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
431                 return 0;
432         return security_ops->path_symlink(dir, dentry, old_name);
433 }
434 EXPORT_SYMBOL(security_path_symlink);
435
436 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
437                        struct dentry *new_dentry)
438 {
439         int rc;
440         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
441                 return 0;
442         rc = yama_path_link(old_dentry, new_dir, new_dentry);
443         if (rc)
444                 return rc;
445         return security_ops->path_link(old_dentry, new_dir, new_dentry);
446 }
447 EXPORT_SYMBOL(security_path_link);
448
449 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
450                          struct path *new_dir, struct dentry *new_dentry)
451 {
452         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
453                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
454                 return 0;
455         return security_ops->path_rename(old_dir, old_dentry, new_dir,
456                                          new_dentry);
457 }
458 EXPORT_SYMBOL(security_path_rename);
459
460 int security_path_truncate(struct path *path)
461 {
462         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
463                 return 0;
464         return security_ops->path_truncate(path);
465 }
466 EXPORT_SYMBOL(security_path_truncate);
467
468 int security_path_chmod(struct path *path, umode_t mode)
469 {
470         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
471                 return 0;
472         return security_ops->path_chmod(path, mode);
473 }
474 EXPORT_SYMBOL(security_path_chmod);
475
476 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
477 {
478         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
479                 return 0;
480         return security_ops->path_chown(path, uid, gid);
481 }
482 EXPORT_SYMBOL(security_path_chown);
483
484 int security_path_chroot(struct path *path)
485 {
486         return security_ops->path_chroot(path);
487 }
488 #endif
489
490 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
491 {
492         if (unlikely(IS_PRIVATE(dir)))
493                 return 0;
494         return security_ops->inode_create(dir, dentry, mode);
495 }
496 EXPORT_SYMBOL_GPL(security_inode_create);
497
498 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
499                          struct dentry *new_dentry)
500 {
501         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
502                 return 0;
503         return security_ops->inode_link(old_dentry, dir, new_dentry);
504 }
505
506 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
507 {
508         if (unlikely(IS_PRIVATE(dentry->d_inode)))
509                 return 0;
510         return security_ops->inode_unlink(dir, dentry);
511 }
512
513 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
514                             const char *old_name)
515 {
516         if (unlikely(IS_PRIVATE(dir)))
517                 return 0;
518         return security_ops->inode_symlink(dir, dentry, old_name);
519 }
520
521 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
522 {
523         if (unlikely(IS_PRIVATE(dir)))
524                 return 0;
525         return security_ops->inode_mkdir(dir, dentry, mode);
526 }
527 EXPORT_SYMBOL_GPL(security_inode_mkdir);
528
529 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
530 {
531         if (unlikely(IS_PRIVATE(dentry->d_inode)))
532                 return 0;
533         return security_ops->inode_rmdir(dir, dentry);
534 }
535
536 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
537 {
538         if (unlikely(IS_PRIVATE(dir)))
539                 return 0;
540         return security_ops->inode_mknod(dir, dentry, mode, dev);
541 }
542
543 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
544                            struct inode *new_dir, struct dentry *new_dentry)
545 {
546         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
547             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
548                 return 0;
549         return security_ops->inode_rename(old_dir, old_dentry,
550                                            new_dir, new_dentry);
551 }
552
553 int security_inode_readlink(struct dentry *dentry)
554 {
555         if (unlikely(IS_PRIVATE(dentry->d_inode)))
556                 return 0;
557         return security_ops->inode_readlink(dentry);
558 }
559 EXPORT_SYMBOL(security_inode_readlink);
560
561 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
562 {
563         int rc;
564         if (unlikely(IS_PRIVATE(dentry->d_inode)))
565                 return 0;
566         rc = yama_inode_follow_link(dentry, nd);
567         if (rc)
568                 return rc;
569         return security_ops->inode_follow_link(dentry, nd);
570 }
571
572 int security_inode_permission(struct inode *inode, int mask)
573 {
574         if (unlikely(IS_PRIVATE(inode)))
575                 return 0;
576         return security_ops->inode_permission(inode, mask);
577 }
578 EXPORT_SYMBOL(security_inode_permission);
579
580 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
581 {
582         int ret;
583
584         if (unlikely(IS_PRIVATE(dentry->d_inode)))
585                 return 0;
586         ret = security_ops->inode_setattr(dentry, attr);
587         if (ret)
588                 return ret;
589         return evm_inode_setattr(dentry, attr);
590 }
591 EXPORT_SYMBOL_GPL(security_inode_setattr);
592
593 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
594 {
595         if (unlikely(IS_PRIVATE(dentry->d_inode)))
596                 return 0;
597         return security_ops->inode_getattr(mnt, dentry);
598 }
599
600 int security_inode_setxattr(struct dentry *dentry, const char *name,
601                             const void *value, size_t size, int flags)
602 {
603         int ret;
604
605         if (unlikely(IS_PRIVATE(dentry->d_inode)))
606                 return 0;
607         ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
608         if (ret)
609                 return ret;
610         return evm_inode_setxattr(dentry, name, value, size);
611 }
612
613 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
614                                   const void *value, size_t size, int flags)
615 {
616         if (unlikely(IS_PRIVATE(dentry->d_inode)))
617                 return;
618         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
619         evm_inode_post_setxattr(dentry, name, value, size);
620 }
621
622 int security_inode_getxattr(struct dentry *dentry, const char *name)
623 {
624         if (unlikely(IS_PRIVATE(dentry->d_inode)))
625                 return 0;
626         return security_ops->inode_getxattr(dentry, name);
627 }
628
629 int security_inode_listxattr(struct dentry *dentry)
630 {
631         if (unlikely(IS_PRIVATE(dentry->d_inode)))
632                 return 0;
633         return security_ops->inode_listxattr(dentry);
634 }
635
636 int security_inode_removexattr(struct dentry *dentry, const char *name)
637 {
638         int ret;
639
640         if (unlikely(IS_PRIVATE(dentry->d_inode)))
641                 return 0;
642         ret = security_ops->inode_removexattr(dentry, name);
643         if (ret)
644                 return ret;
645         return evm_inode_removexattr(dentry, name);
646 }
647
648 int security_inode_need_killpriv(struct dentry *dentry)
649 {
650         return security_ops->inode_need_killpriv(dentry);
651 }
652
653 int security_inode_killpriv(struct dentry *dentry)
654 {
655         return security_ops->inode_killpriv(dentry);
656 }
657
658 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
659 {
660         if (unlikely(IS_PRIVATE(inode)))
661                 return -EOPNOTSUPP;
662         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
663 }
664
665 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
666 {
667         if (unlikely(IS_PRIVATE(inode)))
668                 return -EOPNOTSUPP;
669         return security_ops->inode_setsecurity(inode, name, value, size, flags);
670 }
671
672 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
673 {
674         if (unlikely(IS_PRIVATE(inode)))
675                 return 0;
676         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
677 }
678
679 void security_inode_getsecid(const struct inode *inode, u32 *secid)
680 {
681         security_ops->inode_getsecid(inode, secid);
682 }
683
684 int security_file_permission(struct file *file, int mask)
685 {
686         int ret;
687
688         ret = security_ops->file_permission(file, mask);
689         if (ret)
690                 return ret;
691
692         return fsnotify_perm(file, mask);
693 }
694 EXPORT_SYMBOL(security_file_permission);
695
696 int security_file_alloc(struct file *file)
697 {
698         return security_ops->file_alloc_security(file);
699 }
700
701 void security_file_free(struct file *file)
702 {
703         security_ops->file_free_security(file);
704 }
705
706 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
707 {
708         return security_ops->file_ioctl(file, cmd, arg);
709 }
710
711 int security_file_mmap(struct file *file, unsigned long reqprot,
712                         unsigned long prot, unsigned long flags,
713                         unsigned long addr, unsigned long addr_only)
714 {
715         int ret;
716
717         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
718         if (ret)
719                 return ret;
720         return ima_file_mmap(file, prot);
721 }
722 EXPORT_SYMBOL(security_file_mmap);
723
724 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
725                             unsigned long prot)
726 {
727         return security_ops->file_mprotect(vma, reqprot, prot);
728 }
729
730 int security_file_lock(struct file *file, unsigned int cmd)
731 {
732         return security_ops->file_lock(file, cmd);
733 }
734
735 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
736 {
737         return security_ops->file_fcntl(file, cmd, arg);
738 }
739
740 int security_file_set_fowner(struct file *file)
741 {
742         return security_ops->file_set_fowner(file);
743 }
744
745 int security_file_send_sigiotask(struct task_struct *tsk,
746                                   struct fown_struct *fown, int sig)
747 {
748         return security_ops->file_send_sigiotask(tsk, fown, sig);
749 }
750
751 int security_file_receive(struct file *file)
752 {
753         return security_ops->file_receive(file);
754 }
755
756 int security_dentry_open(struct file *file, const struct cred *cred)
757 {
758         int ret;
759
760         ret = security_ops->dentry_open(file, cred);
761         if (ret)
762                 return ret;
763
764         return fsnotify_perm(file, MAY_OPEN);
765 }
766
767 int security_task_create(unsigned long clone_flags)
768 {
769         return security_ops->task_create(clone_flags);
770 }
771
772 void security_task_free(struct task_struct *task)
773 {
774         yama_task_free(task);
775         security_ops->task_free(task);
776 }
777
778 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
779 {
780         return security_ops->cred_alloc_blank(cred, gfp);
781 }
782
783 void security_cred_free(struct cred *cred)
784 {
785         security_ops->cred_free(cred);
786 }
787
788 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
789 {
790         return security_ops->cred_prepare(new, old, gfp);
791 }
792
793 void security_transfer_creds(struct cred *new, const struct cred *old)
794 {
795         security_ops->cred_transfer(new, old);
796 }
797
798 int security_kernel_act_as(struct cred *new, u32 secid)
799 {
800         return security_ops->kernel_act_as(new, secid);
801 }
802
803 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
804 {
805         return security_ops->kernel_create_files_as(new, inode);
806 }
807
808 int security_kernel_module_request(char *kmod_name)
809 {
810         return security_ops->kernel_module_request(kmod_name);
811 }
812
813 int security_task_fix_setuid(struct cred *new, const struct cred *old,
814                              int flags)
815 {
816         return security_ops->task_fix_setuid(new, old, flags);
817 }
818
819 int security_task_setpgid(struct task_struct *p, pid_t pgid)
820 {
821         return security_ops->task_setpgid(p, pgid);
822 }
823
824 int security_task_getpgid(struct task_struct *p)
825 {
826         return security_ops->task_getpgid(p);
827 }
828
829 int security_task_getsid(struct task_struct *p)
830 {
831         return security_ops->task_getsid(p);
832 }
833
834 void security_task_getsecid(struct task_struct *p, u32 *secid)
835 {
836         security_ops->task_getsecid(p, secid);
837 }
838 EXPORT_SYMBOL(security_task_getsecid);
839
840 int security_task_setnice(struct task_struct *p, int nice)
841 {
842         return security_ops->task_setnice(p, nice);
843 }
844
845 int security_task_setioprio(struct task_struct *p, int ioprio)
846 {
847         return security_ops->task_setioprio(p, ioprio);
848 }
849
850 int security_task_getioprio(struct task_struct *p)
851 {
852         return security_ops->task_getioprio(p);
853 }
854
855 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
856                 struct rlimit *new_rlim)
857 {
858         return security_ops->task_setrlimit(p, resource, new_rlim);
859 }
860
861 int security_task_setscheduler(struct task_struct *p)
862 {
863         return security_ops->task_setscheduler(p);
864 }
865
866 int security_task_getscheduler(struct task_struct *p)
867 {
868         return security_ops->task_getscheduler(p);
869 }
870
871 int security_task_movememory(struct task_struct *p)
872 {
873         return security_ops->task_movememory(p);
874 }
875
876 int security_task_kill(struct task_struct *p, struct siginfo *info,
877                         int sig, u32 secid)
878 {
879         return security_ops->task_kill(p, info, sig, secid);
880 }
881
882 int security_task_wait(struct task_struct *p)
883 {
884         return security_ops->task_wait(p);
885 }
886
887 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
888                          unsigned long arg4, unsigned long arg5)
889 {
890         int rc;
891         rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
892         if (rc != -ENOSYS)
893                 return rc;
894         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
895 }
896
897 void security_task_to_inode(struct task_struct *p, struct inode *inode)
898 {
899         security_ops->task_to_inode(p, inode);
900 }
901
902 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
903 {
904         return security_ops->ipc_permission(ipcp, flag);
905 }
906
907 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
908 {
909         security_ops->ipc_getsecid(ipcp, secid);
910 }
911
912 int security_msg_msg_alloc(struct msg_msg *msg)
913 {
914         return security_ops->msg_msg_alloc_security(msg);
915 }
916
917 void security_msg_msg_free(struct msg_msg *msg)
918 {
919         security_ops->msg_msg_free_security(msg);
920 }
921
922 int security_msg_queue_alloc(struct msg_queue *msq)
923 {
924         return security_ops->msg_queue_alloc_security(msq);
925 }
926
927 void security_msg_queue_free(struct msg_queue *msq)
928 {
929         security_ops->msg_queue_free_security(msq);
930 }
931
932 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
933 {
934         return security_ops->msg_queue_associate(msq, msqflg);
935 }
936
937 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
938 {
939         return security_ops->msg_queue_msgctl(msq, cmd);
940 }
941
942 int security_msg_queue_msgsnd(struct msg_queue *msq,
943                                struct msg_msg *msg, int msqflg)
944 {
945         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
946 }
947
948 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
949                                struct task_struct *target, long type, int mode)
950 {
951         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
952 }
953
954 int security_shm_alloc(struct shmid_kernel *shp)
955 {
956         return security_ops->shm_alloc_security(shp);
957 }
958
959 void security_shm_free(struct shmid_kernel *shp)
960 {
961         security_ops->shm_free_security(shp);
962 }
963
964 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
965 {
966         return security_ops->shm_associate(shp, shmflg);
967 }
968
969 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
970 {
971         return security_ops->shm_shmctl(shp, cmd);
972 }
973
974 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
975 {
976         return security_ops->shm_shmat(shp, shmaddr, shmflg);
977 }
978
979 int security_sem_alloc(struct sem_array *sma)
980 {
981         return security_ops->sem_alloc_security(sma);
982 }
983
984 void security_sem_free(struct sem_array *sma)
985 {
986         security_ops->sem_free_security(sma);
987 }
988
989 int security_sem_associate(struct sem_array *sma, int semflg)
990 {
991         return security_ops->sem_associate(sma, semflg);
992 }
993
994 int security_sem_semctl(struct sem_array *sma, int cmd)
995 {
996         return security_ops->sem_semctl(sma, cmd);
997 }
998
999 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1000                         unsigned nsops, int alter)
1001 {
1002         return security_ops->sem_semop(sma, sops, nsops, alter);
1003 }
1004
1005 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1006 {
1007         if (unlikely(inode && IS_PRIVATE(inode)))
1008                 return;
1009         security_ops->d_instantiate(dentry, inode);
1010 }
1011 EXPORT_SYMBOL(security_d_instantiate);
1012
1013 int security_getprocattr(struct task_struct *p, char *name, char **value)
1014 {
1015         return security_ops->getprocattr(p, name, value);
1016 }
1017
1018 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1019 {
1020         return security_ops->setprocattr(p, name, value, size);
1021 }
1022
1023 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1024 {
1025         return security_ops->netlink_send(sk, skb);
1026 }
1027
1028 int security_netlink_recv(struct sk_buff *skb, int cap)
1029 {
1030         return security_ops->netlink_recv(skb, cap);
1031 }
1032 EXPORT_SYMBOL(security_netlink_recv);
1033
1034 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1035 {
1036         return security_ops->secid_to_secctx(secid, secdata, seclen);
1037 }
1038 EXPORT_SYMBOL(security_secid_to_secctx);
1039
1040 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1041 {
1042         return security_ops->secctx_to_secid(secdata, seclen, secid);
1043 }
1044 EXPORT_SYMBOL(security_secctx_to_secid);
1045
1046 void security_release_secctx(char *secdata, u32 seclen)
1047 {
1048         security_ops->release_secctx(secdata, seclen);
1049 }
1050 EXPORT_SYMBOL(security_release_secctx);
1051
1052 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1053 {
1054         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1055 }
1056 EXPORT_SYMBOL(security_inode_notifysecctx);
1057
1058 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1059 {
1060         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1061 }
1062 EXPORT_SYMBOL(security_inode_setsecctx);
1063
1064 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1065 {
1066         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1067 }
1068 EXPORT_SYMBOL(security_inode_getsecctx);
1069
1070 #ifdef CONFIG_SECURITY_NETWORK
1071
1072 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1073 {
1074         return security_ops->unix_stream_connect(sock, other, newsk);
1075 }
1076 EXPORT_SYMBOL(security_unix_stream_connect);
1077
1078 int security_unix_may_send(struct socket *sock,  struct socket *other)
1079 {
1080         return security_ops->unix_may_send(sock, other);
1081 }
1082 EXPORT_SYMBOL(security_unix_may_send);
1083
1084 int security_socket_create(int family, int type, int protocol, int kern)
1085 {
1086         return security_ops->socket_create(family, type, protocol, kern);
1087 }
1088
1089 int security_socket_post_create(struct socket *sock, int family,
1090                                 int type, int protocol, int kern)
1091 {
1092         return security_ops->socket_post_create(sock, family, type,
1093                                                 protocol, kern);
1094 }
1095
1096 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1097 {
1098         return security_ops->socket_bind(sock, address, addrlen);
1099 }
1100
1101 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1102 {
1103         return security_ops->socket_connect(sock, address, addrlen);
1104 }
1105
1106 int security_socket_listen(struct socket *sock, int backlog)
1107 {
1108         return security_ops->socket_listen(sock, backlog);
1109 }
1110
1111 int security_socket_accept(struct socket *sock, struct socket *newsock)
1112 {
1113         return security_ops->socket_accept(sock, newsock);
1114 }
1115
1116 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1117 {
1118         return security_ops->socket_sendmsg(sock, msg, size);
1119 }
1120
1121 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1122                             int size, int flags)
1123 {
1124         return security_ops->socket_recvmsg(sock, msg, size, flags);
1125 }
1126
1127 int security_socket_getsockname(struct socket *sock)
1128 {
1129         return security_ops->socket_getsockname(sock);
1130 }
1131
1132 int security_socket_getpeername(struct socket *sock)
1133 {
1134         return security_ops->socket_getpeername(sock);
1135 }
1136
1137 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1138 {
1139         return security_ops->socket_getsockopt(sock, level, optname);
1140 }
1141
1142 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1143 {
1144         return security_ops->socket_setsockopt(sock, level, optname);
1145 }
1146
1147 int security_socket_shutdown(struct socket *sock, int how)
1148 {
1149         return security_ops->socket_shutdown(sock, how);
1150 }
1151
1152 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1153 {
1154         return security_ops->socket_sock_rcv_skb(sk, skb);
1155 }
1156 EXPORT_SYMBOL(security_sock_rcv_skb);
1157
1158 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1159                                       int __user *optlen, unsigned len)
1160 {
1161         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1162 }
1163
1164 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1165 {
1166         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1167 }
1168 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1169
1170 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1171 {
1172         return security_ops->sk_alloc_security(sk, family, priority);
1173 }
1174
1175 void security_sk_free(struct sock *sk)
1176 {
1177         security_ops->sk_free_security(sk);
1178 }
1179
1180 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1181 {
1182         security_ops->sk_clone_security(sk, newsk);
1183 }
1184 EXPORT_SYMBOL(security_sk_clone);
1185
1186 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1187 {
1188         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1189 }
1190 EXPORT_SYMBOL(security_sk_classify_flow);
1191
1192 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1193 {
1194         security_ops->req_classify_flow(req, fl);
1195 }
1196 EXPORT_SYMBOL(security_req_classify_flow);
1197
1198 void security_sock_graft(struct sock *sk, struct socket *parent)
1199 {
1200         security_ops->sock_graft(sk, parent);
1201 }
1202 EXPORT_SYMBOL(security_sock_graft);
1203
1204 int security_inet_conn_request(struct sock *sk,
1205                         struct sk_buff *skb, struct request_sock *req)
1206 {
1207         return security_ops->inet_conn_request(sk, skb, req);
1208 }
1209 EXPORT_SYMBOL(security_inet_conn_request);
1210
1211 void security_inet_csk_clone(struct sock *newsk,
1212                         const struct request_sock *req)
1213 {
1214         security_ops->inet_csk_clone(newsk, req);
1215 }
1216
1217 void security_inet_conn_established(struct sock *sk,
1218                         struct sk_buff *skb)
1219 {
1220         security_ops->inet_conn_established(sk, skb);
1221 }
1222
1223 int security_secmark_relabel_packet(u32 secid)
1224 {
1225         return security_ops->secmark_relabel_packet(secid);
1226 }
1227 EXPORT_SYMBOL(security_secmark_relabel_packet);
1228
1229 void security_secmark_refcount_inc(void)
1230 {
1231         security_ops->secmark_refcount_inc();
1232 }
1233 EXPORT_SYMBOL(security_secmark_refcount_inc);
1234
1235 void security_secmark_refcount_dec(void)
1236 {
1237         security_ops->secmark_refcount_dec();
1238 }
1239 EXPORT_SYMBOL(security_secmark_refcount_dec);
1240
1241 int security_tun_dev_create(void)
1242 {
1243         return security_ops->tun_dev_create();
1244 }
1245 EXPORT_SYMBOL(security_tun_dev_create);
1246
1247 void security_tun_dev_post_create(struct sock *sk)
1248 {
1249         return security_ops->tun_dev_post_create(sk);
1250 }
1251 EXPORT_SYMBOL(security_tun_dev_post_create);
1252
1253 int security_tun_dev_attach(struct sock *sk)
1254 {
1255         return security_ops->tun_dev_attach(sk);
1256 }
1257 EXPORT_SYMBOL(security_tun_dev_attach);
1258
1259 #endif  /* CONFIG_SECURITY_NETWORK */
1260
1261 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1262
1263 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1264 {
1265         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1266 }
1267 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1268
1269 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1270                               struct xfrm_sec_ctx **new_ctxp)
1271 {
1272         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1273 }
1274
1275 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1276 {
1277         security_ops->xfrm_policy_free_security(ctx);
1278 }
1279 EXPORT_SYMBOL(security_xfrm_policy_free);
1280
1281 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1282 {
1283         return security_ops->xfrm_policy_delete_security(ctx);
1284 }
1285
1286 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1287 {
1288         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1289 }
1290 EXPORT_SYMBOL(security_xfrm_state_alloc);
1291
1292 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1293                                       struct xfrm_sec_ctx *polsec, u32 secid)
1294 {
1295         if (!polsec)
1296                 return 0;
1297         /*
1298          * We want the context to be taken from secid which is usually
1299          * from the sock.
1300          */
1301         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1302 }
1303
1304 int security_xfrm_state_delete(struct xfrm_state *x)
1305 {
1306         return security_ops->xfrm_state_delete_security(x);
1307 }
1308 EXPORT_SYMBOL(security_xfrm_state_delete);
1309
1310 void security_xfrm_state_free(struct xfrm_state *x)
1311 {
1312         security_ops->xfrm_state_free_security(x);
1313 }
1314
1315 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1316 {
1317         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1318 }
1319
1320 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1321                                        struct xfrm_policy *xp,
1322                                        const struct flowi *fl)
1323 {
1324         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1325 }
1326
1327 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1328 {
1329         return security_ops->xfrm_decode_session(skb, secid, 1);
1330 }
1331
1332 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1333 {
1334         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1335
1336         BUG_ON(rc);
1337 }
1338 EXPORT_SYMBOL(security_skb_classify_flow);
1339
1340 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1341
1342 #ifdef CONFIG_KEYS
1343
1344 int security_key_alloc(struct key *key, const struct cred *cred,
1345                        unsigned long flags)
1346 {
1347         return security_ops->key_alloc(key, cred, flags);
1348 }
1349
1350 void security_key_free(struct key *key)
1351 {
1352         security_ops->key_free(key);
1353 }
1354
1355 int security_key_permission(key_ref_t key_ref,
1356                             const struct cred *cred, key_perm_t perm)
1357 {
1358         return security_ops->key_permission(key_ref, cred, perm);
1359 }
1360
1361 int security_key_getsecurity(struct key *key, char **_buffer)
1362 {
1363         return security_ops->key_getsecurity(key, _buffer);
1364 }
1365
1366 #endif  /* CONFIG_KEYS */
1367
1368 #ifdef CONFIG_AUDIT
1369
1370 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1371 {
1372         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1373 }
1374
1375 int security_audit_rule_known(struct audit_krule *krule)
1376 {
1377         return security_ops->audit_rule_known(krule);
1378 }
1379
1380 void security_audit_rule_free(void *lsmrule)
1381 {
1382         security_ops->audit_rule_free(lsmrule);
1383 }
1384
1385 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1386                               struct audit_context *actx)
1387 {
1388         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1389 }
1390
1391 #endif /* CONFIG_AUDIT */