serial: PL011: clear pending interrupts
[linux-flexiantxendom0.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <linux/swapops.h>
38 #include <linux/page_cgroup.h>
39
40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41                                  unsigned char);
42 static void free_swap_count_continuations(struct swap_info_struct *);
43 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44
45 static DEFINE_SPINLOCK(swap_lock);
46 static unsigned int nr_swapfiles;
47 long nr_swap_pages;
48 long total_swap_pages;
49 static int least_priority;
50
51 static const char Bad_file[] = "Bad swap file entry ";
52 static const char Unused_file[] = "Unused swap file entry ";
53 static const char Bad_offset[] = "Bad swap offset entry ";
54 static const char Unused_offset[] = "Unused swap offset entry ";
55
56 static struct swap_list_t swap_list = {-1, -1};
57
58 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
59
60 static DEFINE_MUTEX(swapon_mutex);
61
62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
63 /* Activity counter to indicate that a swapon or swapoff has occurred */
64 static atomic_t proc_poll_event = ATOMIC_INIT(0);
65
66 static inline unsigned char swap_count(unsigned char ent)
67 {
68         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
69 }
70
71 /* returns 1 if swap entry is freed */
72 static int
73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
74 {
75         swp_entry_t entry = swp_entry(si->type, offset);
76         struct page *page;
77         int ret = 0;
78
79         page = find_get_page(&swapper_space, entry.val);
80         if (!page)
81                 return 0;
82         /*
83          * This function is called from scan_swap_map() and it's called
84          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85          * We have to use trylock for avoiding deadlock. This is a special
86          * case and you should use try_to_free_swap() with explicit lock_page()
87          * in usual operations.
88          */
89         if (trylock_page(page)) {
90                 ret = try_to_free_swap(page);
91                 unlock_page(page);
92         }
93         page_cache_release(page);
94         return ret;
95 }
96
97 /*
98  * swapon tell device that all the old swap contents can be discarded,
99  * to allow the swap device to optimize its wear-levelling.
100  */
101 static int discard_swap(struct swap_info_struct *si)
102 {
103         struct swap_extent *se;
104         sector_t start_block;
105         sector_t nr_blocks;
106         int err = 0;
107
108         /* Do not discard the swap header page! */
109         se = &si->first_swap_extent;
110         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
111         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
112         if (nr_blocks) {
113                 err = blkdev_issue_discard(si->bdev, start_block,
114                                 nr_blocks, GFP_KERNEL, 0);
115                 if (err)
116                         return err;
117                 cond_resched();
118         }
119
120         list_for_each_entry(se, &si->first_swap_extent.list, list) {
121                 start_block = se->start_block << (PAGE_SHIFT - 9);
122                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
123
124                 err = blkdev_issue_discard(si->bdev, start_block,
125                                 nr_blocks, GFP_KERNEL, 0);
126                 if (err)
127                         break;
128
129                 cond_resched();
130         }
131         return err;             /* That will often be -EOPNOTSUPP */
132 }
133
134 /*
135  * swap allocation tell device that a cluster of swap can now be discarded,
136  * to allow the swap device to optimize its wear-levelling.
137  */
138 static void discard_swap_cluster(struct swap_info_struct *si,
139                                  pgoff_t start_page, pgoff_t nr_pages)
140 {
141         struct swap_extent *se = si->curr_swap_extent;
142         int found_extent = 0;
143
144         while (nr_pages) {
145                 struct list_head *lh;
146
147                 if (se->start_page <= start_page &&
148                     start_page < se->start_page + se->nr_pages) {
149                         pgoff_t offset = start_page - se->start_page;
150                         sector_t start_block = se->start_block + offset;
151                         sector_t nr_blocks = se->nr_pages - offset;
152
153                         if (nr_blocks > nr_pages)
154                                 nr_blocks = nr_pages;
155                         start_page += nr_blocks;
156                         nr_pages -= nr_blocks;
157
158                         if (!found_extent++)
159                                 si->curr_swap_extent = se;
160
161                         start_block <<= PAGE_SHIFT - 9;
162                         nr_blocks <<= PAGE_SHIFT - 9;
163                         if (blkdev_issue_discard(si->bdev, start_block,
164                                     nr_blocks, GFP_NOIO, 0))
165                                 break;
166                 }
167
168                 lh = se->list.next;
169                 se = list_entry(lh, struct swap_extent, list);
170         }
171 }
172
173 static int wait_for_discard(void *word)
174 {
175         schedule();
176         return 0;
177 }
178
179 #define SWAPFILE_CLUSTER        256
180 #define LATENCY_LIMIT           256
181
182 static unsigned long scan_swap_map(struct swap_info_struct *si,
183                                    unsigned char usage)
184 {
185         unsigned long offset;
186         unsigned long scan_base;
187         unsigned long last_in_cluster = 0;
188         int latency_ration = LATENCY_LIMIT;
189         int found_free_cluster = 0;
190
191         /*
192          * We try to cluster swap pages by allocating them sequentially
193          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
194          * way, however, we resort to first-free allocation, starting
195          * a new cluster.  This prevents us from scattering swap pages
196          * all over the entire swap partition, so that we reduce
197          * overall disk seek times between swap pages.  -- sct
198          * But we do now try to find an empty cluster.  -Andrea
199          * And we let swap pages go all over an SSD partition.  Hugh
200          */
201
202         si->flags += SWP_SCANNING;
203         scan_base = offset = si->cluster_next;
204
205         if (unlikely(!si->cluster_nr--)) {
206                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
207                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
208                         goto checks;
209                 }
210                 if (si->flags & SWP_DISCARDABLE) {
211                         /*
212                          * Start range check on racing allocations, in case
213                          * they overlap the cluster we eventually decide on
214                          * (we scan without swap_lock to allow preemption).
215                          * It's hardly conceivable that cluster_nr could be
216                          * wrapped during our scan, but don't depend on it.
217                          */
218                         if (si->lowest_alloc)
219                                 goto checks;
220                         si->lowest_alloc = si->max;
221                         si->highest_alloc = 0;
222                 }
223                 spin_unlock(&swap_lock);
224
225                 /*
226                  * If seek is expensive, start searching for new cluster from
227                  * start of partition, to minimize the span of allocated swap.
228                  * But if seek is cheap, search from our current position, so
229                  * that swap is allocated from all over the partition: if the
230                  * Flash Translation Layer only remaps within limited zones,
231                  * we don't want to wear out the first zone too quickly.
232                  */
233                 if (!(si->flags & SWP_SOLIDSTATE))
234                         scan_base = offset = si->lowest_bit;
235                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
236
237                 /* Locate the first empty (unaligned) cluster */
238                 for (; last_in_cluster <= si->highest_bit; offset++) {
239                         if (si->swap_map[offset])
240                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
241                         else if (offset == last_in_cluster) {
242                                 spin_lock(&swap_lock);
243                                 offset -= SWAPFILE_CLUSTER - 1;
244                                 si->cluster_next = offset;
245                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
246                                 found_free_cluster = 1;
247                                 goto checks;
248                         }
249                         if (unlikely(--latency_ration < 0)) {
250                                 cond_resched();
251                                 latency_ration = LATENCY_LIMIT;
252                         }
253                 }
254
255                 offset = si->lowest_bit;
256                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
257
258                 /* Locate the first empty (unaligned) cluster */
259                 for (; last_in_cluster < scan_base; offset++) {
260                         if (si->swap_map[offset])
261                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
262                         else if (offset == last_in_cluster) {
263                                 spin_lock(&swap_lock);
264                                 offset -= SWAPFILE_CLUSTER - 1;
265                                 si->cluster_next = offset;
266                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
267                                 found_free_cluster = 1;
268                                 goto checks;
269                         }
270                         if (unlikely(--latency_ration < 0)) {
271                                 cond_resched();
272                                 latency_ration = LATENCY_LIMIT;
273                         }
274                 }
275
276                 offset = scan_base;
277                 spin_lock(&swap_lock);
278                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
279                 si->lowest_alloc = 0;
280         }
281
282 checks:
283         if (!(si->flags & SWP_WRITEOK))
284                 goto no_page;
285         if (!si->highest_bit)
286                 goto no_page;
287         if (offset > si->highest_bit)
288                 scan_base = offset = si->lowest_bit;
289
290         /* reuse swap entry of cache-only swap if not busy. */
291         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
292                 int swap_was_freed;
293                 spin_unlock(&swap_lock);
294                 swap_was_freed = __try_to_reclaim_swap(si, offset);
295                 spin_lock(&swap_lock);
296                 /* entry was freed successfully, try to use this again */
297                 if (swap_was_freed)
298                         goto checks;
299                 goto scan; /* check next one */
300         }
301
302         if (si->swap_map[offset])
303                 goto scan;
304
305         if (offset == si->lowest_bit)
306                 si->lowest_bit++;
307         if (offset == si->highest_bit)
308                 si->highest_bit--;
309         si->inuse_pages++;
310         if (si->inuse_pages == si->pages) {
311                 si->lowest_bit = si->max;
312                 si->highest_bit = 0;
313         }
314         si->swap_map[offset] = usage;
315         si->cluster_next = offset + 1;
316         si->flags -= SWP_SCANNING;
317
318         if (si->lowest_alloc) {
319                 /*
320                  * Only set when SWP_DISCARDABLE, and there's a scan
321                  * for a free cluster in progress or just completed.
322                  */
323                 if (found_free_cluster) {
324                         /*
325                          * To optimize wear-levelling, discard the
326                          * old data of the cluster, taking care not to
327                          * discard any of its pages that have already
328                          * been allocated by racing tasks (offset has
329                          * already stepped over any at the beginning).
330                          */
331                         if (offset < si->highest_alloc &&
332                             si->lowest_alloc <= last_in_cluster)
333                                 last_in_cluster = si->lowest_alloc - 1;
334                         si->flags |= SWP_DISCARDING;
335                         spin_unlock(&swap_lock);
336
337                         if (offset < last_in_cluster)
338                                 discard_swap_cluster(si, offset,
339                                         last_in_cluster - offset + 1);
340
341                         spin_lock(&swap_lock);
342                         si->lowest_alloc = 0;
343                         si->flags &= ~SWP_DISCARDING;
344
345                         smp_mb();       /* wake_up_bit advises this */
346                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
347
348                 } else if (si->flags & SWP_DISCARDING) {
349                         /*
350                          * Delay using pages allocated by racing tasks
351                          * until the whole discard has been issued. We
352                          * could defer that delay until swap_writepage,
353                          * but it's easier to keep this self-contained.
354                          */
355                         spin_unlock(&swap_lock);
356                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
357                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
358                         spin_lock(&swap_lock);
359                 } else {
360                         /*
361                          * Note pages allocated by racing tasks while
362                          * scan for a free cluster is in progress, so
363                          * that its final discard can exclude them.
364                          */
365                         if (offset < si->lowest_alloc)
366                                 si->lowest_alloc = offset;
367                         if (offset > si->highest_alloc)
368                                 si->highest_alloc = offset;
369                 }
370         }
371         return offset;
372
373 scan:
374         spin_unlock(&swap_lock);
375         while (++offset <= si->highest_bit) {
376                 if (!si->swap_map[offset]) {
377                         spin_lock(&swap_lock);
378                         goto checks;
379                 }
380                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
381                         spin_lock(&swap_lock);
382                         goto checks;
383                 }
384                 if (unlikely(--latency_ration < 0)) {
385                         cond_resched();
386                         latency_ration = LATENCY_LIMIT;
387                 }
388         }
389         offset = si->lowest_bit;
390         while (++offset < scan_base) {
391                 if (!si->swap_map[offset]) {
392                         spin_lock(&swap_lock);
393                         goto checks;
394                 }
395                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
396                         spin_lock(&swap_lock);
397                         goto checks;
398                 }
399                 if (unlikely(--latency_ration < 0)) {
400                         cond_resched();
401                         latency_ration = LATENCY_LIMIT;
402                 }
403         }
404         spin_lock(&swap_lock);
405
406 no_page:
407         si->flags -= SWP_SCANNING;
408         return 0;
409 }
410
411 swp_entry_t get_swap_page(void)
412 {
413         struct swap_info_struct *si;
414         pgoff_t offset;
415         int type, next;
416         int wrapped = 0;
417
418         spin_lock(&swap_lock);
419         if (nr_swap_pages <= 0)
420                 goto noswap;
421         nr_swap_pages--;
422
423         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
424                 si = swap_info[type];
425                 next = si->next;
426                 if (next < 0 ||
427                     (!wrapped && si->prio != swap_info[next]->prio)) {
428                         next = swap_list.head;
429                         wrapped++;
430                 }
431
432                 if (!si->highest_bit)
433                         continue;
434                 if (!(si->flags & SWP_WRITEOK))
435                         continue;
436
437                 swap_list.next = next;
438                 /* This is called for allocating swap entry for cache */
439                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
440                 if (offset) {
441                         spin_unlock(&swap_lock);
442                         return swp_entry(type, offset);
443                 }
444                 next = swap_list.next;
445         }
446
447         nr_swap_pages++;
448 noswap:
449         spin_unlock(&swap_lock);
450         return (swp_entry_t) {0};
451 }
452
453 /* The only caller of this function is now susupend routine */
454 swp_entry_t get_swap_page_of_type(int type)
455 {
456         struct swap_info_struct *si;
457         pgoff_t offset;
458
459         spin_lock(&swap_lock);
460         si = swap_info[type];
461         if (si && (si->flags & SWP_WRITEOK)) {
462                 nr_swap_pages--;
463                 /* This is called for allocating swap entry, not cache */
464                 offset = scan_swap_map(si, 1);
465                 if (offset) {
466                         spin_unlock(&swap_lock);
467                         return swp_entry(type, offset);
468                 }
469                 nr_swap_pages++;
470         }
471         spin_unlock(&swap_lock);
472         return (swp_entry_t) {0};
473 }
474
475 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
476 {
477         struct swap_info_struct *p;
478         unsigned long offset, type;
479
480         if (!entry.val)
481                 goto out;
482         type = swp_type(entry);
483         if (type >= nr_swapfiles)
484                 goto bad_nofile;
485         p = swap_info[type];
486         if (!(p->flags & SWP_USED))
487                 goto bad_device;
488         offset = swp_offset(entry);
489         if (offset >= p->max)
490                 goto bad_offset;
491         if (!p->swap_map[offset])
492                 goto bad_free;
493         spin_lock(&swap_lock);
494         return p;
495
496 bad_free:
497         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
498         goto out;
499 bad_offset:
500         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
501         goto out;
502 bad_device:
503         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
504         goto out;
505 bad_nofile:
506         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
507 out:
508         return NULL;
509 }
510
511 static unsigned char swap_entry_free(struct swap_info_struct *p,
512                                      swp_entry_t entry, unsigned char usage)
513 {
514         unsigned long offset = swp_offset(entry);
515         unsigned char count;
516         unsigned char has_cache;
517
518         count = p->swap_map[offset];
519         has_cache = count & SWAP_HAS_CACHE;
520         count &= ~SWAP_HAS_CACHE;
521
522         if (usage == SWAP_HAS_CACHE) {
523                 VM_BUG_ON(!has_cache);
524                 has_cache = 0;
525         } else if (count == SWAP_MAP_SHMEM) {
526                 /*
527                  * Or we could insist on shmem.c using a special
528                  * swap_shmem_free() and free_shmem_swap_and_cache()...
529                  */
530                 count = 0;
531         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
532                 if (count == COUNT_CONTINUED) {
533                         if (swap_count_continued(p, offset, count))
534                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
535                         else
536                                 count = SWAP_MAP_MAX;
537                 } else
538                         count--;
539         }
540
541         if (!count)
542                 mem_cgroup_uncharge_swap(entry);
543
544         usage = count | has_cache;
545         p->swap_map[offset] = usage;
546
547         /* free if no reference */
548         if (!usage) {
549                 struct gendisk *disk = p->bdev->bd_disk;
550                 if (offset < p->lowest_bit)
551                         p->lowest_bit = offset;
552                 if (offset > p->highest_bit)
553                         p->highest_bit = offset;
554                 if (swap_list.next >= 0 &&
555                     p->prio > swap_info[swap_list.next]->prio)
556                         swap_list.next = p->type;
557                 nr_swap_pages++;
558                 p->inuse_pages--;
559                 if ((p->flags & SWP_BLKDEV) &&
560                                 disk->fops->swap_slot_free_notify)
561                         disk->fops->swap_slot_free_notify(p->bdev, offset);
562         }
563
564         if (!swap_count(count)) {
565                 mem_cgroup_uncharge_swap(entry);
566                         if (p->notify_swap_entry_free_fn)
567                                 p->notify_swap_entry_free_fn(offset);
568         }
569
570         return usage;
571 }
572
573 /*
574  * Caller has made sure that the swapdevice corresponding to entry
575  * is still around or has not been recycled.
576  */
577 void swap_free(swp_entry_t entry)
578 {
579         struct swap_info_struct *p;
580
581         p = swap_info_get(entry);
582         if (p) {
583                 swap_entry_free(p, entry, 1);
584                 spin_unlock(&swap_lock);
585         }
586 }
587
588 /*
589  * Called after dropping swapcache to decrease refcnt to swap entries.
590  */
591 void swapcache_free(swp_entry_t entry, struct page *page)
592 {
593         struct swap_info_struct *p;
594         unsigned char count;
595
596         p = swap_info_get(entry);
597         if (p) {
598                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
599                 if (page)
600                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
601                 spin_unlock(&swap_lock);
602         }
603 }
604
605 /*
606  * How many references to page are currently swapped out?
607  * This does not give an exact answer when swap count is continued,
608  * but does include the high COUNT_CONTINUED flag to allow for that.
609  */
610 static inline int page_swapcount(struct page *page)
611 {
612         int count = 0;
613         struct swap_info_struct *p;
614         swp_entry_t entry;
615
616         entry.val = page_private(page);
617         p = swap_info_get(entry);
618         if (p) {
619                 count = swap_count(p->swap_map[swp_offset(entry)]);
620                 spin_unlock(&swap_lock);
621         }
622         return count;
623 }
624
625 /*
626  * We can write to an anon page without COW if there are no other references
627  * to it.  And as a side-effect, free up its swap: because the old content
628  * on disk will never be read, and seeking back there to write new content
629  * later would only waste time away from clustering.
630  */
631 int reuse_swap_page(struct page *page)
632 {
633         int count;
634
635         VM_BUG_ON(!PageLocked(page));
636         if (unlikely(PageKsm(page)))
637                 return 0;
638         count = page_mapcount(page);
639         if (count <= 1 && PageSwapCache(page)) {
640                 count += page_swapcount(page);
641                 if (count == 1 && !PageWriteback(page)) {
642                         delete_from_swap_cache(page);
643                         SetPageDirty(page);
644                 }
645         }
646         return count <= 1;
647 }
648
649 /*
650  * If swap is getting full, or if there are no more mappings of this page,
651  * then try_to_free_swap is called to free its swap space.
652  */
653 int try_to_free_swap(struct page *page)
654 {
655         VM_BUG_ON(!PageLocked(page));
656
657         if (!PageSwapCache(page))
658                 return 0;
659         if (PageWriteback(page))
660                 return 0;
661         if (page_swapcount(page))
662                 return 0;
663
664         /*
665          * Once hibernation has begun to create its image of memory,
666          * there's a danger that one of the calls to try_to_free_swap()
667          * - most probably a call from __try_to_reclaim_swap() while
668          * hibernation is allocating its own swap pages for the image,
669          * but conceivably even a call from memory reclaim - will free
670          * the swap from a page which has already been recorded in the
671          * image as a clean swapcache page, and then reuse its swap for
672          * another page of the image.  On waking from hibernation, the
673          * original page might be freed under memory pressure, then
674          * later read back in from swap, now with the wrong data.
675          *
676          * Hibernation clears bits from gfp_allowed_mask to prevent
677          * memory reclaim from writing to disk, so check that here.
678          */
679         if (!(gfp_allowed_mask & __GFP_IO))
680                 return 0;
681
682         delete_from_swap_cache(page);
683         SetPageDirty(page);
684         return 1;
685 }
686
687 /*
688  * Free the swap entry like above, but also try to
689  * free the page cache entry if it is the last user.
690  */
691 int free_swap_and_cache(swp_entry_t entry)
692 {
693         struct swap_info_struct *p;
694         struct page *page = NULL;
695
696         if (non_swap_entry(entry))
697                 return 1;
698
699         p = swap_info_get(entry);
700         if (p) {
701                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
702                         page = find_get_page(&swapper_space, entry.val);
703                         if (page && !trylock_page(page)) {
704                                 page_cache_release(page);
705                                 page = NULL;
706                         }
707                 }
708                 spin_unlock(&swap_lock);
709         }
710         if (page) {
711                 /*
712                  * Not mapped elsewhere, or swap space full? Free it!
713                  * Also recheck PageSwapCache now page is locked (above).
714                  */
715                 if (PageSwapCache(page) && !PageWriteback(page) &&
716                                 (!page_mapped(page) || vm_swap_full())) {
717                         delete_from_swap_cache(page);
718                         SetPageDirty(page);
719                 }
720                 unlock_page(page);
721                 page_cache_release(page);
722         }
723         return p != NULL;
724 }
725
726 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
727 /**
728  * mem_cgroup_count_swap_user - count the user of a swap entry
729  * @ent: the swap entry to be checked
730  * @pagep: the pointer for the swap cache page of the entry to be stored
731  *
732  * Returns the number of the user of the swap entry. The number is valid only
733  * for swaps of anonymous pages.
734  * If the entry is found on swap cache, the page is stored to pagep with
735  * refcount of it being incremented.
736  */
737 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
738 {
739         struct page *page;
740         struct swap_info_struct *p;
741         int count = 0;
742
743         page = find_get_page(&swapper_space, ent.val);
744         if (page)
745                 count += page_mapcount(page);
746         p = swap_info_get(ent);
747         if (p) {
748                 count += swap_count(p->swap_map[swp_offset(ent)]);
749                 spin_unlock(&swap_lock);
750         }
751
752         *pagep = page;
753         return count;
754 }
755 #endif
756
757 #ifdef CONFIG_HIBERNATION
758 /*
759  * Find the swap type that corresponds to given device (if any).
760  *
761  * @offset - number of the PAGE_SIZE-sized block of the device, starting
762  * from 0, in which the swap header is expected to be located.
763  *
764  * This is needed for the suspend to disk (aka swsusp).
765  */
766 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
767 {
768         struct block_device *bdev = NULL;
769         int type;
770
771         if (device)
772                 bdev = bdget(device);
773
774         spin_lock(&swap_lock);
775         for (type = 0; type < nr_swapfiles; type++) {
776                 struct swap_info_struct *sis = swap_info[type];
777
778                 if (!(sis->flags & SWP_WRITEOK))
779                         continue;
780
781                 if (!bdev) {
782                         if (bdev_p)
783                                 *bdev_p = bdgrab(sis->bdev);
784
785                         spin_unlock(&swap_lock);
786                         return type;
787                 }
788                 if (bdev == sis->bdev) {
789                         struct swap_extent *se = &sis->first_swap_extent;
790
791                         if (se->start_block == offset) {
792                                 if (bdev_p)
793                                         *bdev_p = bdgrab(sis->bdev);
794
795                                 spin_unlock(&swap_lock);
796                                 bdput(bdev);
797                                 return type;
798                         }
799                 }
800         }
801         spin_unlock(&swap_lock);
802         if (bdev)
803                 bdput(bdev);
804
805         return -ENODEV;
806 }
807
808 /*
809  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
810  * corresponding to given index in swap_info (swap type).
811  */
812 sector_t swapdev_block(int type, pgoff_t offset)
813 {
814         struct block_device *bdev;
815
816         if ((unsigned int)type >= nr_swapfiles)
817                 return 0;
818         if (!(swap_info[type]->flags & SWP_WRITEOK))
819                 return 0;
820         return map_swap_entry(swp_entry(type, offset), &bdev);
821 }
822
823 /*
824  * Return either the total number of swap pages of given type, or the number
825  * of free pages of that type (depending on @free)
826  *
827  * This is needed for software suspend
828  */
829 unsigned int count_swap_pages(int type, int free)
830 {
831         unsigned int n = 0;
832
833         spin_lock(&swap_lock);
834         if ((unsigned int)type < nr_swapfiles) {
835                 struct swap_info_struct *sis = swap_info[type];
836
837                 if (sis->flags & SWP_WRITEOK) {
838                         n = sis->pages;
839                         if (free)
840                                 n -= sis->inuse_pages;
841                 }
842         }
843         spin_unlock(&swap_lock);
844         return n;
845 }
846 #endif /* CONFIG_HIBERNATION */
847
848 /*
849  * No need to decide whether this PTE shares the swap entry with others,
850  * just let do_wp_page work it out if a write is requested later - to
851  * force COW, vm_page_prot omits write permission from any private vma.
852  */
853 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
854                 unsigned long addr, swp_entry_t entry, struct page *page)
855 {
856         struct mem_cgroup *ptr;
857         spinlock_t *ptl;
858         pte_t *pte;
859         int ret = 1;
860
861         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
862                 ret = -ENOMEM;
863                 goto out_nolock;
864         }
865
866         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
867         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
868                 if (ret > 0)
869                         mem_cgroup_cancel_charge_swapin(ptr);
870                 ret = 0;
871                 goto out;
872         }
873
874         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
875         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
876         get_page(page);
877         set_pte_at(vma->vm_mm, addr, pte,
878                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
879         page_add_anon_rmap(page, vma, addr);
880         mem_cgroup_commit_charge_swapin(page, ptr);
881         swap_free(entry);
882         /*
883          * Move the page to the active list so it is not
884          * immediately swapped out again after swapon.
885          */
886         activate_page(page);
887 out:
888         pte_unmap_unlock(pte, ptl);
889 out_nolock:
890         return ret;
891 }
892
893 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
894                                 unsigned long addr, unsigned long end,
895                                 swp_entry_t entry, struct page *page)
896 {
897         pte_t swp_pte = swp_entry_to_pte(entry);
898         pte_t *pte;
899         int ret = 0;
900
901         /*
902          * We don't actually need pte lock while scanning for swp_pte: since
903          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
904          * page table while we're scanning; though it could get zapped, and on
905          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
906          * of unmatched parts which look like swp_pte, so unuse_pte must
907          * recheck under pte lock.  Scanning without pte lock lets it be
908          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
909          */
910         pte = pte_offset_map(pmd, addr);
911         do {
912                 /*
913                  * swapoff spends a _lot_ of time in this loop!
914                  * Test inline before going to call unuse_pte.
915                  */
916                 if (unlikely(pte_same(*pte, swp_pte))) {
917                         pte_unmap(pte);
918                         ret = unuse_pte(vma, pmd, addr, entry, page);
919                         if (ret)
920                                 goto out;
921                         pte = pte_offset_map(pmd, addr);
922                 }
923         } while (pte++, addr += PAGE_SIZE, addr != end);
924         pte_unmap(pte - 1);
925 out:
926         return ret;
927 }
928
929 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
930                                 unsigned long addr, unsigned long end,
931                                 swp_entry_t entry, struct page *page)
932 {
933         pmd_t *pmd;
934         unsigned long next;
935         int ret;
936
937         pmd = pmd_offset(pud, addr);
938         do {
939                 next = pmd_addr_end(addr, end);
940                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
941                         continue;
942                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
943                 if (ret)
944                         return ret;
945         } while (pmd++, addr = next, addr != end);
946         return 0;
947 }
948
949 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
950                                 unsigned long addr, unsigned long end,
951                                 swp_entry_t entry, struct page *page)
952 {
953         pud_t *pud;
954         unsigned long next;
955         int ret;
956
957         pud = pud_offset(pgd, addr);
958         do {
959                 next = pud_addr_end(addr, end);
960                 if (pud_none_or_clear_bad(pud))
961                         continue;
962                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
963                 if (ret)
964                         return ret;
965         } while (pud++, addr = next, addr != end);
966         return 0;
967 }
968
969 static int unuse_vma(struct vm_area_struct *vma,
970                                 swp_entry_t entry, struct page *page)
971 {
972         pgd_t *pgd;
973         unsigned long addr, end, next;
974         int ret;
975
976         if (page_anon_vma(page)) {
977                 addr = page_address_in_vma(page, vma);
978                 if (addr == -EFAULT)
979                         return 0;
980                 else
981                         end = addr + PAGE_SIZE;
982         } else {
983                 addr = vma->vm_start;
984                 end = vma->vm_end;
985         }
986
987         pgd = pgd_offset(vma->vm_mm, addr);
988         do {
989                 next = pgd_addr_end(addr, end);
990                 if (pgd_none_or_clear_bad(pgd))
991                         continue;
992                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
993                 if (ret)
994                         return ret;
995         } while (pgd++, addr = next, addr != end);
996         return 0;
997 }
998
999 static int unuse_mm(struct mm_struct *mm,
1000                                 swp_entry_t entry, struct page *page)
1001 {
1002         struct vm_area_struct *vma;
1003         int ret = 0;
1004
1005         if (!down_read_trylock(&mm->mmap_sem)) {
1006                 /*
1007                  * Activate page so shrink_inactive_list is unlikely to unmap
1008                  * its ptes while lock is dropped, so swapoff can make progress.
1009                  */
1010                 activate_page(page);
1011                 unlock_page(page);
1012                 down_read(&mm->mmap_sem);
1013                 lock_page(page);
1014         }
1015         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1016                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1017                         break;
1018         }
1019         up_read(&mm->mmap_sem);
1020         return (ret < 0)? ret: 0;
1021 }
1022
1023 /*
1024  * Scan swap_map from current position to next entry still in use.
1025  * Recycle to start on reaching the end, returning 0 when empty.
1026  */
1027 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1028                                         unsigned int prev)
1029 {
1030         unsigned int max = si->max;
1031         unsigned int i = prev;
1032         unsigned char count;
1033
1034         /*
1035          * No need for swap_lock here: we're just looking
1036          * for whether an entry is in use, not modifying it; false
1037          * hits are okay, and sys_swapoff() has already prevented new
1038          * allocations from this area (while holding swap_lock).
1039          */
1040         for (;;) {
1041                 if (++i >= max) {
1042                         if (!prev) {
1043                                 i = 0;
1044                                 break;
1045                         }
1046                         /*
1047                          * No entries in use at top of swap_map,
1048                          * loop back to start and recheck there.
1049                          */
1050                         max = prev + 1;
1051                         prev = 0;
1052                         i = 1;
1053                 }
1054                 count = si->swap_map[i];
1055                 if (count && swap_count(count) != SWAP_MAP_BAD)
1056                         break;
1057         }
1058         return i;
1059 }
1060
1061 /*
1062  * We completely avoid races by reading each swap page in advance,
1063  * and then search for the process using it.  All the necessary
1064  * page table adjustments can then be made atomically.
1065  */
1066 static int try_to_unuse(unsigned int type)
1067 {
1068         struct swap_info_struct *si = swap_info[type];
1069         struct mm_struct *start_mm;
1070         unsigned char *swap_map;
1071         unsigned char swcount;
1072         struct page *page;
1073         swp_entry_t entry;
1074         unsigned int i = 0;
1075         int retval = 0;
1076
1077         /*
1078          * When searching mms for an entry, a good strategy is to
1079          * start at the first mm we freed the previous entry from
1080          * (though actually we don't notice whether we or coincidence
1081          * freed the entry).  Initialize this start_mm with a hold.
1082          *
1083          * A simpler strategy would be to start at the last mm we
1084          * freed the previous entry from; but that would take less
1085          * advantage of mmlist ordering, which clusters forked mms
1086          * together, child after parent.  If we race with dup_mmap(), we
1087          * prefer to resolve parent before child, lest we miss entries
1088          * duplicated after we scanned child: using last mm would invert
1089          * that.
1090          */
1091         start_mm = &init_mm;
1092         atomic_inc(&init_mm.mm_users);
1093
1094         /*
1095          * Keep on scanning until all entries have gone.  Usually,
1096          * one pass through swap_map is enough, but not necessarily:
1097          * there are races when an instance of an entry might be missed.
1098          */
1099         while ((i = find_next_to_unuse(si, i)) != 0) {
1100                 if (signal_pending(current)) {
1101                         retval = -EINTR;
1102                         break;
1103                 }
1104
1105                 /*
1106                  * Get a page for the entry, using the existing swap
1107                  * cache page if there is one.  Otherwise, get a clean
1108                  * page and read the swap into it.
1109                  */
1110                 swap_map = &si->swap_map[i];
1111                 entry = swp_entry(type, i);
1112                 page = read_swap_cache_async(entry,
1113                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1114                 if (!page) {
1115                         /*
1116                          * Either swap_duplicate() failed because entry
1117                          * has been freed independently, and will not be
1118                          * reused since sys_swapoff() already disabled
1119                          * allocation from here, or alloc_page() failed.
1120                          */
1121                         if (!*swap_map)
1122                                 continue;
1123                         retval = -ENOMEM;
1124                         break;
1125                 }
1126
1127                 /*
1128                  * Don't hold on to start_mm if it looks like exiting.
1129                  */
1130                 if (atomic_read(&start_mm->mm_users) == 1) {
1131                         mmput(start_mm);
1132                         start_mm = &init_mm;
1133                         atomic_inc(&init_mm.mm_users);
1134                 }
1135
1136                 /*
1137                  * Wait for and lock page.  When do_swap_page races with
1138                  * try_to_unuse, do_swap_page can handle the fault much
1139                  * faster than try_to_unuse can locate the entry.  This
1140                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1141                  * defer to do_swap_page in such a case - in some tests,
1142                  * do_swap_page and try_to_unuse repeatedly compete.
1143                  */
1144                 wait_on_page_locked(page);
1145                 wait_on_page_writeback(page);
1146                 lock_page(page);
1147                 wait_on_page_writeback(page);
1148
1149                 /*
1150                  * Remove all references to entry.
1151                  */
1152                 swcount = *swap_map;
1153                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1154                         retval = shmem_unuse(entry, page);
1155                         /* page has already been unlocked and released */
1156                         if (retval < 0)
1157                                 break;
1158                         continue;
1159                 }
1160                 if (swap_count(swcount) && start_mm != &init_mm)
1161                         retval = unuse_mm(start_mm, entry, page);
1162
1163                 if (swap_count(*swap_map)) {
1164                         int set_start_mm = (*swap_map >= swcount);
1165                         struct list_head *p = &start_mm->mmlist;
1166                         struct mm_struct *new_start_mm = start_mm;
1167                         struct mm_struct *prev_mm = start_mm;
1168                         struct mm_struct *mm;
1169
1170                         atomic_inc(&new_start_mm->mm_users);
1171                         atomic_inc(&prev_mm->mm_users);
1172                         spin_lock(&mmlist_lock);
1173                         while (swap_count(*swap_map) && !retval &&
1174                                         (p = p->next) != &start_mm->mmlist) {
1175                                 mm = list_entry(p, struct mm_struct, mmlist);
1176                                 if (!atomic_inc_not_zero(&mm->mm_users))
1177                                         continue;
1178                                 spin_unlock(&mmlist_lock);
1179                                 mmput(prev_mm);
1180                                 prev_mm = mm;
1181
1182                                 cond_resched();
1183
1184                                 swcount = *swap_map;
1185                                 if (!swap_count(swcount)) /* any usage ? */
1186                                         ;
1187                                 else if (mm == &init_mm)
1188                                         set_start_mm = 1;
1189                                 else
1190                                         retval = unuse_mm(mm, entry, page);
1191
1192                                 if (set_start_mm && *swap_map < swcount) {
1193                                         mmput(new_start_mm);
1194                                         atomic_inc(&mm->mm_users);
1195                                         new_start_mm = mm;
1196                                         set_start_mm = 0;
1197                                 }
1198                                 spin_lock(&mmlist_lock);
1199                         }
1200                         spin_unlock(&mmlist_lock);
1201                         mmput(prev_mm);
1202                         mmput(start_mm);
1203                         start_mm = new_start_mm;
1204                 }
1205                 if (retval) {
1206                         unlock_page(page);
1207                         page_cache_release(page);
1208                         break;
1209                 }
1210
1211                 /*
1212                  * If a reference remains (rare), we would like to leave
1213                  * the page in the swap cache; but try_to_unmap could
1214                  * then re-duplicate the entry once we drop page lock,
1215                  * so we might loop indefinitely; also, that page could
1216                  * not be swapped out to other storage meanwhile.  So:
1217                  * delete from cache even if there's another reference,
1218                  * after ensuring that the data has been saved to disk -
1219                  * since if the reference remains (rarer), it will be
1220                  * read from disk into another page.  Splitting into two
1221                  * pages would be incorrect if swap supported "shared
1222                  * private" pages, but they are handled by tmpfs files.
1223                  *
1224                  * Given how unuse_vma() targets one particular offset
1225                  * in an anon_vma, once the anon_vma has been determined,
1226                  * this splitting happens to be just what is needed to
1227                  * handle where KSM pages have been swapped out: re-reading
1228                  * is unnecessarily slow, but we can fix that later on.
1229                  */
1230                 if (swap_count(*swap_map) &&
1231                      PageDirty(page) && PageSwapCache(page)) {
1232                         struct writeback_control wbc = {
1233                                 .sync_mode = WB_SYNC_NONE,
1234                         };
1235
1236                         swap_writepage(page, &wbc);
1237                         lock_page(page);
1238                         wait_on_page_writeback(page);
1239                 }
1240
1241                 /*
1242                  * It is conceivable that a racing task removed this page from
1243                  * swap cache just before we acquired the page lock at the top,
1244                  * or while we dropped it in unuse_mm().  The page might even
1245                  * be back in swap cache on another swap area: that we must not
1246                  * delete, since it may not have been written out to swap yet.
1247                  */
1248                 if (PageSwapCache(page) &&
1249                     likely(page_private(page) == entry.val))
1250                         delete_from_swap_cache(page);
1251
1252                 /*
1253                  * So we could skip searching mms once swap count went
1254                  * to 1, we did not mark any present ptes as dirty: must
1255                  * mark page dirty so shrink_page_list will preserve it.
1256                  */
1257                 SetPageDirty(page);
1258                 unlock_page(page);
1259                 page_cache_release(page);
1260
1261                 /*
1262                  * Make sure that we aren't completely killing
1263                  * interactive performance.
1264                  */
1265                 cond_resched();
1266         }
1267
1268         mmput(start_mm);
1269         return retval;
1270 }
1271
1272 /*
1273  * After a successful try_to_unuse, if no swap is now in use, we know
1274  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1275  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1276  * added to the mmlist just after page_duplicate - before would be racy.
1277  */
1278 static void drain_mmlist(void)
1279 {
1280         struct list_head *p, *next;
1281         unsigned int type;
1282
1283         for (type = 0; type < nr_swapfiles; type++)
1284                 if (swap_info[type]->inuse_pages)
1285                         return;
1286         spin_lock(&mmlist_lock);
1287         list_for_each_safe(p, next, &init_mm.mmlist)
1288                 list_del_init(p);
1289         spin_unlock(&mmlist_lock);
1290 }
1291
1292 /*
1293  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1294  * corresponds to page offset for the specified swap entry.
1295  * Note that the type of this function is sector_t, but it returns page offset
1296  * into the bdev, not sector offset.
1297  */
1298 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1299 {
1300         struct swap_info_struct *sis;
1301         struct swap_extent *start_se;
1302         struct swap_extent *se;
1303         pgoff_t offset;
1304
1305         sis = swap_info[swp_type(entry)];
1306         *bdev = sis->bdev;
1307
1308         offset = swp_offset(entry);
1309         start_se = sis->curr_swap_extent;
1310         se = start_se;
1311
1312         for ( ; ; ) {
1313                 struct list_head *lh;
1314
1315                 if (se->start_page <= offset &&
1316                                 offset < (se->start_page + se->nr_pages)) {
1317                         return se->start_block + (offset - se->start_page);
1318                 }
1319                 lh = se->list.next;
1320                 se = list_entry(lh, struct swap_extent, list);
1321                 sis->curr_swap_extent = se;
1322                 BUG_ON(se == start_se);         /* It *must* be present */
1323         }
1324 }
1325
1326 /*
1327  * Returns the page offset into bdev for the specified page's swap entry.
1328  */
1329 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1330 {
1331         swp_entry_t entry;
1332         entry.val = page_private(page);
1333         return map_swap_entry(entry, bdev);
1334 }
1335
1336 /*
1337  * Free all of a swapdev's extent information
1338  */
1339 static void destroy_swap_extents(struct swap_info_struct *sis)
1340 {
1341         while (!list_empty(&sis->first_swap_extent.list)) {
1342                 struct swap_extent *se;
1343
1344                 se = list_entry(sis->first_swap_extent.list.next,
1345                                 struct swap_extent, list);
1346                 list_del(&se->list);
1347                 kfree(se);
1348         }
1349 }
1350
1351 /*
1352  * Add a block range (and the corresponding page range) into this swapdev's
1353  * extent list.  The extent list is kept sorted in page order.
1354  *
1355  * This function rather assumes that it is called in ascending page order.
1356  */
1357 static int
1358 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1359                 unsigned long nr_pages, sector_t start_block)
1360 {
1361         struct swap_extent *se;
1362         struct swap_extent *new_se;
1363         struct list_head *lh;
1364
1365         if (start_page == 0) {
1366                 se = &sis->first_swap_extent;
1367                 sis->curr_swap_extent = se;
1368                 se->start_page = 0;
1369                 se->nr_pages = nr_pages;
1370                 se->start_block = start_block;
1371                 return 1;
1372         } else {
1373                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1374                 se = list_entry(lh, struct swap_extent, list);
1375                 BUG_ON(se->start_page + se->nr_pages != start_page);
1376                 if (se->start_block + se->nr_pages == start_block) {
1377                         /* Merge it */
1378                         se->nr_pages += nr_pages;
1379                         return 0;
1380                 }
1381         }
1382
1383         /*
1384          * No merge.  Insert a new extent, preserving ordering.
1385          */
1386         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1387         if (new_se == NULL)
1388                 return -ENOMEM;
1389         new_se->start_page = start_page;
1390         new_se->nr_pages = nr_pages;
1391         new_se->start_block = start_block;
1392
1393         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1394         return 1;
1395 }
1396
1397 /*
1398  * A `swap extent' is a simple thing which maps a contiguous range of pages
1399  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1400  * is built at swapon time and is then used at swap_writepage/swap_readpage
1401  * time for locating where on disk a page belongs.
1402  *
1403  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1404  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1405  * swap files identically.
1406  *
1407  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1408  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1409  * swapfiles are handled *identically* after swapon time.
1410  *
1411  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1412  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1413  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1414  * requirements, they are simply tossed out - we will never use those blocks
1415  * for swapping.
1416  *
1417  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1418  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1419  * which will scribble on the fs.
1420  *
1421  * The amount of disk space which a single swap extent represents varies.
1422  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1423  * extents in the list.  To avoid much list walking, we cache the previous
1424  * search location in `curr_swap_extent', and start new searches from there.
1425  * This is extremely effective.  The average number of iterations in
1426  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1427  */
1428 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1429 {
1430         struct inode *inode;
1431         unsigned blocks_per_page;
1432         unsigned long page_no;
1433         unsigned blkbits;
1434         sector_t probe_block;
1435         sector_t last_block;
1436         sector_t lowest_block = -1;
1437         sector_t highest_block = 0;
1438         int nr_extents = 0;
1439         int ret;
1440
1441         inode = sis->swap_file->f_mapping->host;
1442         if (S_ISBLK(inode->i_mode)) {
1443                 ret = add_swap_extent(sis, 0, sis->max, 0);
1444                 *span = sis->pages;
1445                 goto out;
1446         }
1447
1448         blkbits = inode->i_blkbits;
1449         blocks_per_page = PAGE_SIZE >> blkbits;
1450
1451         /*
1452          * Map all the blocks into the extent list.  This code doesn't try
1453          * to be very smart.
1454          */
1455         probe_block = 0;
1456         page_no = 0;
1457         last_block = i_size_read(inode) >> blkbits;
1458         while ((probe_block + blocks_per_page) <= last_block &&
1459                         page_no < sis->max) {
1460                 unsigned block_in_page;
1461                 sector_t first_block;
1462
1463                 first_block = bmap(inode, probe_block);
1464                 if (first_block == 0)
1465                         goto bad_bmap;
1466
1467                 /*
1468                  * It must be PAGE_SIZE aligned on-disk
1469                  */
1470                 if (first_block & (blocks_per_page - 1)) {
1471                         probe_block++;
1472                         goto reprobe;
1473                 }
1474
1475                 for (block_in_page = 1; block_in_page < blocks_per_page;
1476                                         block_in_page++) {
1477                         sector_t block;
1478
1479                         block = bmap(inode, probe_block + block_in_page);
1480                         if (block == 0)
1481                                 goto bad_bmap;
1482                         if (block != first_block + block_in_page) {
1483                                 /* Discontiguity */
1484                                 probe_block++;
1485                                 goto reprobe;
1486                         }
1487                 }
1488
1489                 first_block >>= (PAGE_SHIFT - blkbits);
1490                 if (page_no) {  /* exclude the header page */
1491                         if (first_block < lowest_block)
1492                                 lowest_block = first_block;
1493                         if (first_block > highest_block)
1494                                 highest_block = first_block;
1495                 }
1496
1497                 /*
1498                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1499                  */
1500                 ret = add_swap_extent(sis, page_no, 1, first_block);
1501                 if (ret < 0)
1502                         goto out;
1503                 nr_extents += ret;
1504                 page_no++;
1505                 probe_block += blocks_per_page;
1506 reprobe:
1507                 continue;
1508         }
1509         ret = nr_extents;
1510         *span = 1 + highest_block - lowest_block;
1511         if (page_no == 0)
1512                 page_no = 1;    /* force Empty message */
1513         sis->max = page_no;
1514         sis->pages = page_no - 1;
1515         sis->highest_bit = page_no - 1;
1516 out:
1517         return ret;
1518 bad_bmap:
1519         printk(KERN_ERR "swapon: swapfile has holes\n");
1520         ret = -EINVAL;
1521         goto out;
1522 }
1523
1524 static void enable_swap_info(struct swap_info_struct *p, int prio,
1525                                 unsigned char *swap_map)
1526 {
1527         int i, prev;
1528
1529         spin_lock(&swap_lock);
1530         if (prio >= 0)
1531                 p->prio = prio;
1532         else
1533                 p->prio = --least_priority;
1534         p->swap_map = swap_map;
1535         p->flags |= SWP_WRITEOK;
1536         nr_swap_pages += p->pages;
1537         total_swap_pages += p->pages;
1538
1539         /* insert swap space into swap_list: */
1540         prev = -1;
1541         for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1542                 if (p->prio >= swap_info[i]->prio)
1543                         break;
1544                 prev = i;
1545         }
1546         p->next = i;
1547         if (prev < 0)
1548                 swap_list.head = swap_list.next = p->type;
1549         else
1550                 swap_info[prev]->next = p->type;
1551         spin_unlock(&swap_lock);
1552 }
1553
1554 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1555 {
1556         struct swap_info_struct *p = NULL;
1557         unsigned char *swap_map;
1558         struct file *swap_file, *victim;
1559         struct address_space *mapping;
1560         struct inode *inode;
1561         char *pathname;
1562         int oom_score_adj;
1563         int i, type, prev;
1564         int err;
1565
1566         if (!capable(CAP_SYS_ADMIN))
1567                 return -EPERM;
1568
1569         pathname = getname(specialfile);
1570         err = PTR_ERR(pathname);
1571         if (IS_ERR(pathname))
1572                 goto out;
1573
1574         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1575         putname(pathname);
1576         err = PTR_ERR(victim);
1577         if (IS_ERR(victim))
1578                 goto out;
1579
1580         mapping = victim->f_mapping;
1581         prev = -1;
1582         spin_lock(&swap_lock);
1583         for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1584                 p = swap_info[type];
1585                 if (p->flags & SWP_WRITEOK) {
1586                         if (p->swap_file->f_mapping == mapping)
1587                                 break;
1588                 }
1589                 prev = type;
1590         }
1591         if (type < 0) {
1592                 err = -EINVAL;
1593                 spin_unlock(&swap_lock);
1594                 goto out_dput;
1595         }
1596         if (!security_vm_enough_memory(p->pages))
1597                 vm_unacct_memory(p->pages);
1598         else {
1599                 err = -ENOMEM;
1600                 spin_unlock(&swap_lock);
1601                 goto out_dput;
1602         }
1603         if (prev < 0)
1604                 swap_list.head = p->next;
1605         else
1606                 swap_info[prev]->next = p->next;
1607         if (type == swap_list.next) {
1608                 /* just pick something that's safe... */
1609                 swap_list.next = swap_list.head;
1610         }
1611         if (p->prio < 0) {
1612                 for (i = p->next; i >= 0; i = swap_info[i]->next)
1613                         swap_info[i]->prio = p->prio--;
1614                 least_priority++;
1615         }
1616         nr_swap_pages -= p->pages;
1617         total_swap_pages -= p->pages;
1618         p->flags &= ~SWP_WRITEOK;
1619         spin_unlock(&swap_lock);
1620
1621         oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1622         err = try_to_unuse(type);
1623         compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj);
1624
1625         if (err) {
1626                 /*
1627                  * reading p->prio and p->swap_map outside the lock is
1628                  * safe here because only sys_swapon and sys_swapoff
1629                  * change them, and there can be no other sys_swapon or
1630                  * sys_swapoff for this swap_info_struct at this point.
1631                  */
1632                 /* re-insert swap space back into swap_list */
1633                 enable_swap_info(p, p->prio, p->swap_map);
1634                 goto out_dput;
1635         }
1636
1637         destroy_swap_extents(p);
1638         if (p->flags & SWP_CONTINUED)
1639                 free_swap_count_continuations(p);
1640
1641         mutex_lock(&swapon_mutex);
1642         spin_lock(&swap_lock);
1643         drain_mmlist();
1644
1645         /* wait for anyone still in scan_swap_map */
1646         p->highest_bit = 0;             /* cuts scans short */
1647         while (p->flags >= SWP_SCANNING) {
1648                 spin_unlock(&swap_lock);
1649                 schedule_timeout_uninterruptible(1);
1650                 spin_lock(&swap_lock);
1651         }
1652
1653         swap_file = p->swap_file;
1654         p->swap_file = NULL;
1655         p->max = 0;
1656         swap_map = p->swap_map;
1657         p->swap_map = NULL;
1658         p->flags = 0;
1659         spin_unlock(&swap_lock);
1660         mutex_unlock(&swapon_mutex);
1661         vfree(swap_map);
1662         /* Destroy swap account informatin */
1663         swap_cgroup_swapoff(type);
1664
1665         inode = mapping->host;
1666         if (S_ISBLK(inode->i_mode)) {
1667                 struct block_device *bdev = I_BDEV(inode);
1668                 set_blocksize(bdev, p->old_block_size);
1669                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1670         } else {
1671                 mutex_lock(&inode->i_mutex);
1672                 inode->i_flags &= ~S_SWAPFILE;
1673                 mutex_unlock(&inode->i_mutex);
1674         }
1675         filp_close(swap_file, NULL);
1676         err = 0;
1677         atomic_inc(&proc_poll_event);
1678         wake_up_interruptible(&proc_poll_wait);
1679
1680 out_dput:
1681         filp_close(victim, NULL);
1682 out:
1683         return err;
1684 }
1685
1686 #ifdef CONFIG_PROC_FS
1687 static unsigned swaps_poll(struct file *file, poll_table *wait)
1688 {
1689         struct seq_file *seq = file->private_data;
1690
1691         poll_wait(file, &proc_poll_wait, wait);
1692
1693         if (seq->poll_event != atomic_read(&proc_poll_event)) {
1694                 seq->poll_event = atomic_read(&proc_poll_event);
1695                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1696         }
1697
1698         return POLLIN | POLLRDNORM;
1699 }
1700
1701 /* iterator */
1702 static void *swap_start(struct seq_file *swap, loff_t *pos)
1703 {
1704         struct swap_info_struct *si;
1705         int type;
1706         loff_t l = *pos;
1707
1708         mutex_lock(&swapon_mutex);
1709
1710         if (!l)
1711                 return SEQ_START_TOKEN;
1712
1713         for (type = 0; type < nr_swapfiles; type++) {
1714                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1715                 si = swap_info[type];
1716                 if (!(si->flags & SWP_USED) || !si->swap_map)
1717                         continue;
1718                 if (!--l)
1719                         return si;
1720         }
1721
1722         return NULL;
1723 }
1724
1725 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1726 {
1727         struct swap_info_struct *si = v;
1728         int type;
1729
1730         if (v == SEQ_START_TOKEN)
1731                 type = 0;
1732         else
1733                 type = si->type + 1;
1734
1735         for (; type < nr_swapfiles; type++) {
1736                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1737                 si = swap_info[type];
1738                 if (!(si->flags & SWP_USED) || !si->swap_map)
1739                         continue;
1740                 ++*pos;
1741                 return si;
1742         }
1743
1744         return NULL;
1745 }
1746
1747 static void swap_stop(struct seq_file *swap, void *v)
1748 {
1749         mutex_unlock(&swapon_mutex);
1750 }
1751
1752 static int swap_show(struct seq_file *swap, void *v)
1753 {
1754         struct swap_info_struct *si = v;
1755         struct file *file;
1756         int len;
1757
1758         if (si == SEQ_START_TOKEN) {
1759                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1760                 return 0;
1761         }
1762
1763         file = si->swap_file;
1764         len = seq_path(swap, &file->f_path, " \t\n\\");
1765         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1766                         len < 40 ? 40 - len : 1, " ",
1767                         S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1768                                 "partition" : "file\t",
1769                         si->pages << (PAGE_SHIFT - 10),
1770                         si->inuse_pages << (PAGE_SHIFT - 10),
1771                         si->prio);
1772         return 0;
1773 }
1774
1775 static const struct seq_operations swaps_op = {
1776         .start =        swap_start,
1777         .next =         swap_next,
1778         .stop =         swap_stop,
1779         .show =         swap_show
1780 };
1781
1782 static int swaps_open(struct inode *inode, struct file *file)
1783 {
1784         struct seq_file *seq;
1785         int ret;
1786
1787         ret = seq_open(file, &swaps_op);
1788         if (ret)
1789                 return ret;
1790
1791         seq = file->private_data;
1792         seq->poll_event = atomic_read(&proc_poll_event);
1793         return 0;
1794 }
1795
1796 static const struct file_operations proc_swaps_operations = {
1797         .open           = swaps_open,
1798         .read           = seq_read,
1799         .llseek         = seq_lseek,
1800         .release        = seq_release,
1801         .poll           = swaps_poll,
1802 };
1803
1804 static int __init procswaps_init(void)
1805 {
1806         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1807         return 0;
1808 }
1809 __initcall(procswaps_init);
1810 #endif /* CONFIG_PROC_FS */
1811
1812 #ifdef MAX_SWAPFILES_CHECK
1813 static int __init max_swapfiles_check(void)
1814 {
1815         MAX_SWAPFILES_CHECK();
1816         return 0;
1817 }
1818 late_initcall(max_swapfiles_check);
1819 #endif
1820
1821 static struct swap_info_struct *alloc_swap_info(void)
1822 {
1823         struct swap_info_struct *p;
1824         unsigned int type;
1825
1826         p = kzalloc(sizeof(*p), GFP_KERNEL);
1827         if (!p)
1828                 return ERR_PTR(-ENOMEM);
1829
1830         spin_lock(&swap_lock);
1831         for (type = 0; type < nr_swapfiles; type++) {
1832                 if (!(swap_info[type]->flags & SWP_USED))
1833                         break;
1834         }
1835         if (type >= MAX_SWAPFILES) {
1836                 spin_unlock(&swap_lock);
1837                 kfree(p);
1838                 return ERR_PTR(-EPERM);
1839         }
1840         if (type >= nr_swapfiles) {
1841                 p->type = type;
1842                 swap_info[type] = p;
1843                 /*
1844                  * Write swap_info[type] before nr_swapfiles, in case a
1845                  * racing procfs swap_start() or swap_next() is reading them.
1846                  * (We never shrink nr_swapfiles, we never free this entry.)
1847                  */
1848                 smp_wmb();
1849                 nr_swapfiles++;
1850         } else {
1851                 kfree(p);
1852                 p = swap_info[type];
1853                 /*
1854                  * Do not memset this entry: a racing procfs swap_next()
1855                  * would be relying on p->type to remain valid.
1856                  */
1857         }
1858         INIT_LIST_HEAD(&p->first_swap_extent.list);
1859         p->flags = SWP_USED;
1860         p->next = -1;
1861         spin_unlock(&swap_lock);
1862
1863         return p;
1864 }
1865
1866 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1867 {
1868         int error;
1869
1870         if (S_ISBLK(inode->i_mode)) {
1871                 p->bdev = bdgrab(I_BDEV(inode));
1872                 error = blkdev_get(p->bdev,
1873                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1874                                    sys_swapon);
1875                 if (error < 0) {
1876                         p->bdev = NULL;
1877                         return -EINVAL;
1878                 }
1879                 p->old_block_size = block_size(p->bdev);
1880                 error = set_blocksize(p->bdev, PAGE_SIZE);
1881                 if (error < 0)
1882                         return error;
1883                 p->flags |= SWP_BLKDEV;
1884         } else if (S_ISREG(inode->i_mode)) {
1885                 p->bdev = inode->i_sb->s_bdev;
1886                 mutex_lock(&inode->i_mutex);
1887                 if (IS_SWAPFILE(inode))
1888                         return -EBUSY;
1889         } else
1890                 return -EINVAL;
1891
1892         return 0;
1893 }
1894
1895 static unsigned long read_swap_header(struct swap_info_struct *p,
1896                                         union swap_header *swap_header,
1897                                         struct inode *inode)
1898 {
1899         int i;
1900         unsigned long maxpages;
1901         unsigned long swapfilepages;
1902
1903         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1904                 printk(KERN_ERR "Unable to find swap-space signature\n");
1905                 return 0;
1906         }
1907
1908         /* swap partition endianess hack... */
1909         if (swab32(swap_header->info.version) == 1) {
1910                 swab32s(&swap_header->info.version);
1911                 swab32s(&swap_header->info.last_page);
1912                 swab32s(&swap_header->info.nr_badpages);
1913                 for (i = 0; i < swap_header->info.nr_badpages; i++)
1914                         swab32s(&swap_header->info.badpages[i]);
1915         }
1916         /* Check the swap header's sub-version */
1917         if (swap_header->info.version != 1) {
1918                 printk(KERN_WARNING
1919                        "Unable to handle swap header version %d\n",
1920                        swap_header->info.version);
1921                 return 0;
1922         }
1923
1924         p->lowest_bit  = 1;
1925         p->cluster_next = 1;
1926         p->cluster_nr = 0;
1927
1928         /*
1929          * Find out how many pages are allowed for a single swap
1930          * device. There are three limiting factors: 1) the number
1931          * of bits for the swap offset in the swp_entry_t type, and
1932          * 2) the number of bits in the swap pte as defined by the
1933          * the different architectures, and 3) the number of free bits
1934          * in an exceptional radix_tree entry. In order to find the
1935          * largest possible bit mask, a swap entry with swap type 0
1936          * and swap offset ~0UL is created, encoded to a swap pte,
1937          * decoded to a swp_entry_t again, and finally the swap
1938          * offset is extracted. This will mask all the bits from
1939          * the initial ~0UL mask that can't be encoded in either
1940          * the swp_entry_t or the architecture definition of a
1941          * swap pte.  Then the same is done for a radix_tree entry.
1942          */
1943         maxpages = swp_offset(pte_to_swp_entry(
1944                         swp_entry_to_pte(swp_entry(0, ~0UL))));
1945         maxpages = swp_offset(radix_to_swp_entry(
1946                         swp_to_radix_entry(swp_entry(0, maxpages)))) + 1;
1947
1948         if (maxpages > swap_header->info.last_page) {
1949                 maxpages = swap_header->info.last_page + 1;
1950                 /* p->max is an unsigned int: don't overflow it */
1951                 if ((unsigned int)maxpages == 0)
1952                         maxpages = UINT_MAX;
1953         }
1954         p->highest_bit = maxpages - 1;
1955
1956         if (!maxpages)
1957                 return 0;
1958         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1959         if (swapfilepages && maxpages > swapfilepages) {
1960                 printk(KERN_WARNING
1961                        "Swap area shorter than signature indicates\n");
1962                 return 0;
1963         }
1964         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1965                 return 0;
1966         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1967                 return 0;
1968
1969         return maxpages;
1970 }
1971
1972 static int setup_swap_map_and_extents(struct swap_info_struct *p,
1973                                         union swap_header *swap_header,
1974                                         unsigned char *swap_map,
1975                                         unsigned long maxpages,
1976                                         sector_t *span)
1977 {
1978         int i;
1979         unsigned int nr_good_pages;
1980         int nr_extents;
1981
1982         nr_good_pages = maxpages - 1;   /* omit header page */
1983
1984         for (i = 0; i < swap_header->info.nr_badpages; i++) {
1985                 unsigned int page_nr = swap_header->info.badpages[i];
1986                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
1987                         return -EINVAL;
1988                 if (page_nr < maxpages) {
1989                         swap_map[page_nr] = SWAP_MAP_BAD;
1990                         nr_good_pages--;
1991                 }
1992         }
1993
1994         if (nr_good_pages) {
1995                 swap_map[0] = SWAP_MAP_BAD;
1996                 p->max = maxpages;
1997                 p->pages = nr_good_pages;
1998                 nr_extents = setup_swap_extents(p, span);
1999                 if (nr_extents < 0)
2000                         return nr_extents;
2001                 nr_good_pages = p->pages;
2002         }
2003         if (!nr_good_pages) {
2004                 printk(KERN_WARNING "Empty swap-file\n");
2005                 return -EINVAL;
2006         }
2007
2008         return nr_extents;
2009 }
2010
2011 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2012 {
2013         struct swap_info_struct *p;
2014         char *name;
2015         struct file *swap_file = NULL;
2016         struct address_space *mapping;
2017         int i;
2018         int prio;
2019         int error;
2020         union swap_header *swap_header;
2021         int nr_extents;
2022         sector_t span;
2023         unsigned long maxpages;
2024         unsigned char *swap_map = NULL;
2025         struct page *page = NULL;
2026         struct inode *inode = NULL;
2027
2028         if (!capable(CAP_SYS_ADMIN))
2029                 return -EPERM;
2030
2031         p = alloc_swap_info();
2032         if (IS_ERR(p))
2033                 return PTR_ERR(p);
2034
2035         name = getname(specialfile);
2036         if (IS_ERR(name)) {
2037                 error = PTR_ERR(name);
2038                 name = NULL;
2039                 goto bad_swap;
2040         }
2041         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2042         if (IS_ERR(swap_file)) {
2043                 error = PTR_ERR(swap_file);
2044                 swap_file = NULL;
2045                 goto bad_swap;
2046         }
2047
2048         p->swap_file = swap_file;
2049         mapping = swap_file->f_mapping;
2050
2051         for (i = 0; i < nr_swapfiles; i++) {
2052                 struct swap_info_struct *q = swap_info[i];
2053
2054                 if (q == p || !q->swap_file)
2055                         continue;
2056                 if (mapping == q->swap_file->f_mapping) {
2057                         error = -EBUSY;
2058                         goto bad_swap;
2059                 }
2060         }
2061
2062         inode = mapping->host;
2063         /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2064         error = claim_swapfile(p, inode);
2065         if (unlikely(error))
2066                 goto bad_swap;
2067
2068         /*
2069          * Read the swap header.
2070          */
2071         if (!mapping->a_ops->readpage) {
2072                 error = -EINVAL;
2073                 goto bad_swap;
2074         }
2075         page = read_mapping_page(mapping, 0, swap_file);
2076         if (IS_ERR(page)) {
2077                 error = PTR_ERR(page);
2078                 goto bad_swap;
2079         }
2080         swap_header = kmap(page);
2081
2082         maxpages = read_swap_header(p, swap_header, inode);
2083         if (unlikely(!maxpages)) {
2084                 error = -EINVAL;
2085                 goto bad_swap;
2086         }
2087
2088         /* OK, set up the swap map and apply the bad block list */
2089         swap_map = vzalloc(maxpages);
2090         if (!swap_map) {
2091                 error = -ENOMEM;
2092                 goto bad_swap;
2093         }
2094
2095         error = swap_cgroup_swapon(p->type, maxpages);
2096         if (error)
2097                 goto bad_swap;
2098
2099         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2100                 maxpages, &span);
2101         if (unlikely(nr_extents < 0)) {
2102                 error = nr_extents;
2103                 goto bad_swap;
2104         }
2105
2106         if (p->bdev) {
2107                 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2108                         p->flags |= SWP_SOLIDSTATE;
2109                         p->cluster_next = 1 + (random32() % p->highest_bit);
2110                 }
2111                 if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2112                         p->flags |= SWP_DISCARDABLE;
2113         }
2114
2115         mutex_lock(&swapon_mutex);
2116         prio = -1;
2117         if (swap_flags & SWAP_FLAG_PREFER)
2118                 prio =
2119                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2120         enable_swap_info(p, prio, swap_map);
2121
2122         printk(KERN_INFO "Adding %uk swap on %s.  "
2123                         "Priority:%d extents:%d across:%lluk %s%s\n",
2124                 p->pages<<(PAGE_SHIFT-10), name, p->prio,
2125                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2126                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2127                 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2128
2129         mutex_unlock(&swapon_mutex);
2130         atomic_inc(&proc_poll_event);
2131         wake_up_interruptible(&proc_poll_wait);
2132
2133         if (S_ISREG(inode->i_mode))
2134                 inode->i_flags |= S_SWAPFILE;
2135         error = 0;
2136         goto out;
2137 bad_swap:
2138         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2139                 set_blocksize(p->bdev, p->old_block_size);
2140                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2141         }
2142         destroy_swap_extents(p);
2143         swap_cgroup_swapoff(p->type);
2144         spin_lock(&swap_lock);
2145         p->swap_file = NULL;
2146         p->flags = 0;
2147         spin_unlock(&swap_lock);
2148         vfree(swap_map);
2149         if (swap_file) {
2150                 if (inode && S_ISREG(inode->i_mode)) {
2151                         mutex_unlock(&inode->i_mutex);
2152                         inode = NULL;
2153                 }
2154                 filp_close(swap_file, NULL);
2155         }
2156 out:
2157         if (page && !IS_ERR(page)) {
2158                 kunmap(page);
2159                 page_cache_release(page);
2160         }
2161         if (name)
2162                 putname(name);
2163         if (inode && S_ISREG(inode->i_mode))
2164                 mutex_unlock(&inode->i_mutex);
2165         return error;
2166 }
2167
2168 void si_swapinfo(struct sysinfo *val)
2169 {
2170         unsigned int type;
2171         unsigned long nr_to_be_unused = 0;
2172
2173         spin_lock(&swap_lock);
2174         for (type = 0; type < nr_swapfiles; type++) {
2175                 struct swap_info_struct *si = swap_info[type];
2176
2177                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2178                         nr_to_be_unused += si->inuse_pages;
2179         }
2180         val->freeswap = nr_swap_pages + nr_to_be_unused;
2181         val->totalswap = total_swap_pages + nr_to_be_unused;
2182         spin_unlock(&swap_lock);
2183 }
2184
2185 /*
2186  * Verify that a swap entry is valid and increment its swap map count.
2187  *
2188  * Returns error code in following case.
2189  * - success -> 0
2190  * - swp_entry is invalid -> EINVAL
2191  * - swp_entry is migration entry -> EINVAL
2192  * - swap-cache reference is requested but there is already one. -> EEXIST
2193  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2194  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2195  */
2196 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2197 {
2198         struct swap_info_struct *p;
2199         unsigned long offset, type;
2200         unsigned char count;
2201         unsigned char has_cache;
2202         int err = -EINVAL;
2203
2204         if (non_swap_entry(entry))
2205                 goto out;
2206
2207         type = swp_type(entry);
2208         if (type >= nr_swapfiles)
2209                 goto bad_file;
2210         p = swap_info[type];
2211         offset = swp_offset(entry);
2212
2213         spin_lock(&swap_lock);
2214         if (unlikely(offset >= p->max))
2215                 goto unlock_out;
2216
2217         count = p->swap_map[offset];
2218         has_cache = count & SWAP_HAS_CACHE;
2219         count &= ~SWAP_HAS_CACHE;
2220         err = 0;
2221
2222         if (usage == SWAP_HAS_CACHE) {
2223
2224                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2225                 if (!has_cache && count)
2226                         has_cache = SWAP_HAS_CACHE;
2227                 else if (has_cache)             /* someone else added cache */
2228                         err = -EEXIST;
2229                 else                            /* no users remaining */
2230                         err = -ENOENT;
2231
2232         } else if (count || has_cache) {
2233
2234                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2235                         count += usage;
2236                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2237                         err = -EINVAL;
2238                 else if (swap_count_continued(p, offset, count))
2239                         count = COUNT_CONTINUED;
2240                 else
2241                         err = -ENOMEM;
2242         } else
2243                 err = -ENOENT;                  /* unused swap entry */
2244
2245         p->swap_map[offset] = count | has_cache;
2246
2247 unlock_out:
2248         spin_unlock(&swap_lock);
2249 out:
2250         return err;
2251
2252 bad_file:
2253         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2254         goto out;
2255 }
2256
2257 /*
2258  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2259  * (in which case its reference count is never incremented).
2260  */
2261 void swap_shmem_alloc(swp_entry_t entry)
2262 {
2263         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2264 }
2265
2266 /*
2267  * Increase reference count of swap entry by 1.
2268  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2269  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2270  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2271  * might occur if a page table entry has got corrupted.
2272  */
2273 int swap_duplicate(swp_entry_t entry)
2274 {
2275         int err = 0;
2276
2277         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2278                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2279         return err;
2280 }
2281
2282 /*
2283  * @entry: swap entry for which we allocate swap cache.
2284  *
2285  * Called when allocating swap cache for existing swap entry,
2286  * This can return error codes. Returns 0 at success.
2287  * -EBUSY means there is a swap cache.
2288  * Note: return code is different from swap_duplicate().
2289  */
2290 int swapcache_prepare(swp_entry_t entry)
2291 {
2292         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2293 }
2294
2295 /*
2296  * Sets callback for event when swap_map[offset] == 0
2297  * i.e. page at this swap offset is not longer used.
2298  *
2299  * type: identifies swap file
2300  * fn: callback function
2301  */
2302 void set_notify_swap_entry_free(unsigned type, void (*fn) (unsigned long))
2303 {
2304         struct swap_info_struct *sis;
2305         sis = swap_info[type];
2306         BUG_ON(!sis);
2307         sis->notify_swap_entry_free_fn = fn;
2308         return;
2309 }
2310 EXPORT_SYMBOL(set_notify_swap_entry_free);
2311
2312 /*
2313  * swap_lock prevents swap_map being freed. Don't grab an extra
2314  * reference on the swaphandle, it doesn't matter if it becomes unused.
2315  */
2316 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2317 {
2318         struct swap_info_struct *si;
2319         int our_page_cluster = page_cluster;
2320         pgoff_t target, toff;
2321         pgoff_t base, end;
2322         int nr_pages = 0;
2323
2324         if (!our_page_cluster)  /* no readahead */
2325                 return 0;
2326
2327         si = swap_info[swp_type(entry)];
2328         target = swp_offset(entry);
2329         base = (target >> our_page_cluster) << our_page_cluster;
2330         end = base + (1 << our_page_cluster);
2331         if (!base)              /* first page is swap header */
2332                 base++;
2333
2334         spin_lock(&swap_lock);
2335         if (end > si->max)      /* don't go beyond end of map */
2336                 end = si->max;
2337
2338         /* Count contiguous allocated slots above our target */
2339         for (toff = target; ++toff < end; nr_pages++) {
2340                 /* Don't read in free or bad pages */
2341                 if (!si->swap_map[toff])
2342                         break;
2343                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2344                         break;
2345         }
2346         /* Count contiguous allocated slots below our target */
2347         for (toff = target; --toff >= base; nr_pages++) {
2348                 /* Don't read in free or bad pages */
2349                 if (!si->swap_map[toff])
2350                         break;
2351                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2352                         break;
2353         }
2354         spin_unlock(&swap_lock);
2355
2356         /*
2357          * Indicate starting offset, and return number of pages to get:
2358          * if only 1, say 0, since there's then no readahead to be done.
2359          */
2360         *offset = ++toff;
2361         return nr_pages? ++nr_pages: 0;
2362 }
2363
2364 /*
2365  * add_swap_count_continuation - called when a swap count is duplicated
2366  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2367  * page of the original vmalloc'ed swap_map, to hold the continuation count
2368  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2369  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2370  *
2371  * These continuation pages are seldom referenced: the common paths all work
2372  * on the original swap_map, only referring to a continuation page when the
2373  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2374  *
2375  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2376  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2377  * can be called after dropping locks.
2378  */
2379 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2380 {
2381         struct swap_info_struct *si;
2382         struct page *head;
2383         struct page *page;
2384         struct page *list_page;
2385         pgoff_t offset;
2386         unsigned char count;
2387
2388         /*
2389          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2390          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2391          */
2392         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2393
2394         si = swap_info_get(entry);
2395         if (!si) {
2396                 /*
2397                  * An acceptable race has occurred since the failing
2398                  * __swap_duplicate(): the swap entry has been freed,
2399                  * perhaps even the whole swap_map cleared for swapoff.
2400                  */
2401                 goto outer;
2402         }
2403
2404         offset = swp_offset(entry);
2405         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2406
2407         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2408                 /*
2409                  * The higher the swap count, the more likely it is that tasks
2410                  * will race to add swap count continuation: we need to avoid
2411                  * over-provisioning.
2412                  */
2413                 goto out;
2414         }
2415
2416         if (!page) {
2417                 spin_unlock(&swap_lock);
2418                 return -ENOMEM;
2419         }
2420
2421         /*
2422          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2423          * no architecture is using highmem pages for kernel pagetables: so it
2424          * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2425          */
2426         head = vmalloc_to_page(si->swap_map + offset);
2427         offset &= ~PAGE_MASK;
2428
2429         /*
2430          * Page allocation does not initialize the page's lru field,
2431          * but it does always reset its private field.
2432          */
2433         if (!page_private(head)) {
2434                 BUG_ON(count & COUNT_CONTINUED);
2435                 INIT_LIST_HEAD(&head->lru);
2436                 set_page_private(head, SWP_CONTINUED);
2437                 si->flags |= SWP_CONTINUED;
2438         }
2439
2440         list_for_each_entry(list_page, &head->lru, lru) {
2441                 unsigned char *map;
2442
2443                 /*
2444                  * If the previous map said no continuation, but we've found
2445                  * a continuation page, free our allocation and use this one.
2446                  */
2447                 if (!(count & COUNT_CONTINUED))
2448                         goto out;
2449
2450                 map = kmap_atomic(list_page, KM_USER0) + offset;
2451                 count = *map;
2452                 kunmap_atomic(map, KM_USER0);
2453
2454                 /*
2455                  * If this continuation count now has some space in it,
2456                  * free our allocation and use this one.
2457                  */
2458                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2459                         goto out;
2460         }
2461
2462         list_add_tail(&page->lru, &head->lru);
2463         page = NULL;                    /* now it's attached, don't free it */
2464 out:
2465         spin_unlock(&swap_lock);
2466 outer:
2467         if (page)
2468                 __free_page(page);
2469         return 0;
2470 }
2471
2472 /*
2473  * swap_count_continued - when the original swap_map count is incremented
2474  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2475  * into, carry if so, or else fail until a new continuation page is allocated;
2476  * when the original swap_map count is decremented from 0 with continuation,
2477  * borrow from the continuation and report whether it still holds more.
2478  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2479  */
2480 static bool swap_count_continued(struct swap_info_struct *si,
2481                                  pgoff_t offset, unsigned char count)
2482 {
2483         struct page *head;
2484         struct page *page;
2485         unsigned char *map;
2486
2487         head = vmalloc_to_page(si->swap_map + offset);
2488         if (page_private(head) != SWP_CONTINUED) {
2489                 BUG_ON(count & COUNT_CONTINUED);
2490                 return false;           /* need to add count continuation */
2491         }
2492
2493         offset &= ~PAGE_MASK;
2494         page = list_entry(head->lru.next, struct page, lru);
2495         map = kmap_atomic(page, KM_USER0) + offset;
2496
2497         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2498                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2499
2500         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2501                 /*
2502                  * Think of how you add 1 to 999
2503                  */
2504                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2505                         kunmap_atomic(map, KM_USER0);
2506                         page = list_entry(page->lru.next, struct page, lru);
2507                         BUG_ON(page == head);
2508                         map = kmap_atomic(page, KM_USER0) + offset;
2509                 }
2510                 if (*map == SWAP_CONT_MAX) {
2511                         kunmap_atomic(map, KM_USER0);
2512                         page = list_entry(page->lru.next, struct page, lru);
2513                         if (page == head)
2514                                 return false;   /* add count continuation */
2515                         map = kmap_atomic(page, KM_USER0) + offset;
2516 init_map:               *map = 0;               /* we didn't zero the page */
2517                 }
2518                 *map += 1;
2519                 kunmap_atomic(map, KM_USER0);
2520                 page = list_entry(page->lru.prev, struct page, lru);
2521                 while (page != head) {
2522                         map = kmap_atomic(page, KM_USER0) + offset;
2523                         *map = COUNT_CONTINUED;
2524                         kunmap_atomic(map, KM_USER0);
2525                         page = list_entry(page->lru.prev, struct page, lru);
2526                 }
2527                 return true;                    /* incremented */
2528
2529         } else {                                /* decrementing */
2530                 /*
2531                  * Think of how you subtract 1 from 1000
2532                  */
2533                 BUG_ON(count != COUNT_CONTINUED);
2534                 while (*map == COUNT_CONTINUED) {
2535                         kunmap_atomic(map, KM_USER0);
2536                         page = list_entry(page->lru.next, struct page, lru);
2537                         BUG_ON(page == head);
2538                         map = kmap_atomic(page, KM_USER0) + offset;
2539                 }
2540                 BUG_ON(*map == 0);
2541                 *map -= 1;
2542                 if (*map == 0)
2543                         count = 0;
2544                 kunmap_atomic(map, KM_USER0);
2545                 page = list_entry(page->lru.prev, struct page, lru);
2546                 while (page != head) {
2547                         map = kmap_atomic(page, KM_USER0) + offset;
2548                         *map = SWAP_CONT_MAX | count;
2549                         count = COUNT_CONTINUED;
2550                         kunmap_atomic(map, KM_USER0);
2551                         page = list_entry(page->lru.prev, struct page, lru);
2552                 }
2553                 return count == COUNT_CONTINUED;
2554         }
2555 }
2556
2557 /*
2558  * free_swap_count_continuations - swapoff free all the continuation pages
2559  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2560  */
2561 static void free_swap_count_continuations(struct swap_info_struct *si)
2562 {
2563         pgoff_t offset;
2564
2565         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2566                 struct page *head;
2567                 head = vmalloc_to_page(si->swap_map + offset);
2568                 if (page_private(head)) {
2569                         struct list_head *this, *next;
2570                         list_for_each_safe(this, next, &head->lru) {
2571                                 struct page *page;
2572                                 page = list_entry(this, struct page, lru);
2573                                 list_del(this);
2574                                 __free_page(page);
2575                         }
2576                 }
2577         }
2578 }