97d0d947da903c54d158d26ac4bc4aeb022b759b
[linux-flexiantxendom0.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22
23 #define MAX_LSM_EVM_XATTR       2
24
25 /* Boot-time LSM user choice */
26 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
27         CONFIG_DEFAULT_SECURITY;
28
29 static struct security_operations *security_ops;
30 static struct security_operations default_security_ops = {
31         .name   = "default",
32 };
33
34 static inline int __init verify(struct security_operations *ops)
35 {
36         /* verify the security_operations structure exists */
37         if (!ops)
38                 return -EINVAL;
39         security_fixup_ops(ops);
40         return 0;
41 }
42
43 static void __init do_security_initcalls(void)
44 {
45         initcall_t *call;
46         call = __security_initcall_start;
47         while (call < __security_initcall_end) {
48                 (*call) ();
49                 call++;
50         }
51 }
52
53 /**
54  * security_init - initializes the security framework
55  *
56  * This should be called early in the kernel initialization sequence.
57  */
58 int __init security_init(void)
59 {
60         printk(KERN_INFO "Security Framework initialized\n");
61
62         security_fixup_ops(&default_security_ops);
63         security_ops = &default_security_ops;
64         do_security_initcalls();
65
66         return 0;
67 }
68
69 void reset_security_ops(void)
70 {
71         security_ops = &default_security_ops;
72 }
73
74 /* Save user chosen LSM */
75 static int __init choose_lsm(char *str)
76 {
77         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
78         return 1;
79 }
80 __setup("security=", choose_lsm);
81
82 /**
83  * security_module_enable - Load given security module on boot ?
84  * @ops: a pointer to the struct security_operations that is to be checked.
85  *
86  * Each LSM must pass this method before registering its own operations
87  * to avoid security registration races. This method may also be used
88  * to check if your LSM is currently loaded during kernel initialization.
89  *
90  * Return true if:
91  *      -The passed LSM is the one chosen by user at boot time,
92  *      -or the passed LSM is configured as the default and the user did not
93  *       choose an alternate LSM at boot time.
94  * Otherwise, return false.
95  */
96 int __init security_module_enable(struct security_operations *ops)
97 {
98         return !strcmp(ops->name, chosen_lsm);
99 }
100
101 /**
102  * register_security - registers a security framework with the kernel
103  * @ops: a pointer to the struct security_options that is to be registered
104  *
105  * This function allows a security module to register itself with the
106  * kernel security subsystem.  Some rudimentary checking is done on the @ops
107  * value passed to this function. You'll need to check first if your LSM
108  * is allowed to register its @ops by calling security_module_enable(@ops).
109  *
110  * If there is already a security module registered with the kernel,
111  * an error will be returned.  Otherwise %0 is returned on success.
112  */
113 int __init register_security(struct security_operations *ops)
114 {
115         if (verify(ops)) {
116                 printk(KERN_DEBUG "%s could not verify "
117                        "security_operations structure.\n", __func__);
118                 return -EINVAL;
119         }
120
121         if (security_ops != &default_security_ops)
122                 return -EAGAIN;
123
124         security_ops = ops;
125
126         return 0;
127 }
128
129 /* Security operations */
130
131 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
132 {
133         int rc;
134         rc = yama_ptrace_access_check(child, mode);
135         if (rc)
136                 return rc;
137         return security_ops->ptrace_access_check(child, mode);
138 }
139
140 int security_ptrace_traceme(struct task_struct *parent)
141 {
142         return security_ops->ptrace_traceme(parent);
143 }
144
145 int security_capget(struct task_struct *target,
146                      kernel_cap_t *effective,
147                      kernel_cap_t *inheritable,
148                      kernel_cap_t *permitted)
149 {
150         return security_ops->capget(target, effective, inheritable, permitted);
151 }
152
153 int security_capset(struct cred *new, const struct cred *old,
154                     const kernel_cap_t *effective,
155                     const kernel_cap_t *inheritable,
156                     const kernel_cap_t *permitted)
157 {
158         return security_ops->capset(new, old,
159                                     effective, inheritable, permitted);
160 }
161
162 int security_capable(struct user_namespace *ns, const struct cred *cred,
163                      int cap)
164 {
165         return security_ops->capable(current, cred, ns, cap,
166                                      SECURITY_CAP_AUDIT);
167 }
168
169 int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
170                           int cap)
171 {
172         const struct cred *cred;
173         int ret;
174
175         cred = get_task_cred(tsk);
176         ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_AUDIT);
177         put_cred(cred);
178         return ret;
179 }
180
181 int security_real_capable_noaudit(struct task_struct *tsk,
182                                   struct user_namespace *ns, int cap)
183 {
184         const struct cred *cred;
185         int ret;
186
187         cred = get_task_cred(tsk);
188         ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_NOAUDIT);
189         put_cred(cred);
190         return ret;
191 }
192
193 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
194 {
195         return security_ops->quotactl(cmds, type, id, sb);
196 }
197
198 int security_quota_on(struct dentry *dentry)
199 {
200         return security_ops->quota_on(dentry);
201 }
202
203 int security_syslog(int type)
204 {
205         return security_ops->syslog(type);
206 }
207
208 int security_settime(const struct timespec *ts, const struct timezone *tz)
209 {
210         return security_ops->settime(ts, tz);
211 }
212
213 int security_vm_enough_memory(long pages)
214 {
215         WARN_ON(current->mm == NULL);
216         return security_ops->vm_enough_memory(current->mm, pages);
217 }
218
219 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
220 {
221         WARN_ON(mm == NULL);
222         return security_ops->vm_enough_memory(mm, pages);
223 }
224
225 int security_vm_enough_memory_kern(long pages)
226 {
227         /* If current->mm is a kernel thread then we will pass NULL,
228            for this specific case that is fine */
229         return security_ops->vm_enough_memory(current->mm, pages);
230 }
231
232 int security_bprm_set_creds(struct linux_binprm *bprm)
233 {
234         return security_ops->bprm_set_creds(bprm);
235 }
236
237 int security_bprm_check(struct linux_binprm *bprm)
238 {
239         int ret;
240
241         ret = security_ops->bprm_check_security(bprm);
242         if (ret)
243                 return ret;
244         return ima_bprm_check(bprm);
245 }
246
247 void security_bprm_committing_creds(struct linux_binprm *bprm)
248 {
249         security_ops->bprm_committing_creds(bprm);
250 }
251
252 void security_bprm_committed_creds(struct linux_binprm *bprm)
253 {
254         security_ops->bprm_committed_creds(bprm);
255 }
256
257 int security_bprm_secureexec(struct linux_binprm *bprm)
258 {
259         return security_ops->bprm_secureexec(bprm);
260 }
261
262 int security_sb_alloc(struct super_block *sb)
263 {
264         return security_ops->sb_alloc_security(sb);
265 }
266
267 void security_sb_free(struct super_block *sb)
268 {
269         security_ops->sb_free_security(sb);
270 }
271
272 int security_sb_copy_data(char *orig, char *copy)
273 {
274         return security_ops->sb_copy_data(orig, copy);
275 }
276 EXPORT_SYMBOL(security_sb_copy_data);
277
278 int security_sb_remount(struct super_block *sb, void *data)
279 {
280         return security_ops->sb_remount(sb, data);
281 }
282
283 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
284 {
285         return security_ops->sb_kern_mount(sb, flags, data);
286 }
287
288 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
289 {
290         return security_ops->sb_show_options(m, sb);
291 }
292
293 int security_sb_statfs(struct dentry *dentry)
294 {
295         return security_ops->sb_statfs(dentry);
296 }
297
298 int security_sb_mount(char *dev_name, struct path *path,
299                        char *type, unsigned long flags, void *data)
300 {
301         return security_ops->sb_mount(dev_name, path, type, flags, data);
302 }
303
304 int security_sb_umount(struct vfsmount *mnt, int flags)
305 {
306         return security_ops->sb_umount(mnt, flags);
307 }
308
309 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
310 {
311         return security_ops->sb_pivotroot(old_path, new_path);
312 }
313
314 int security_sb_set_mnt_opts(struct super_block *sb,
315                                 struct security_mnt_opts *opts)
316 {
317         return security_ops->sb_set_mnt_opts(sb, opts);
318 }
319 EXPORT_SYMBOL(security_sb_set_mnt_opts);
320
321 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
322                                 struct super_block *newsb)
323 {
324         security_ops->sb_clone_mnt_opts(oldsb, newsb);
325 }
326 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
327
328 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
329 {
330         return security_ops->sb_parse_opts_str(options, opts);
331 }
332 EXPORT_SYMBOL(security_sb_parse_opts_str);
333
334 int security_inode_alloc(struct inode *inode)
335 {
336         inode->i_security = NULL;
337         return security_ops->inode_alloc_security(inode);
338 }
339
340 void security_inode_free(struct inode *inode)
341 {
342         integrity_inode_free(inode);
343         security_ops->inode_free_security(inode);
344 }
345
346 int security_inode_init_security(struct inode *inode, struct inode *dir,
347                                  const struct qstr *qstr,
348                                  const initxattrs initxattrs, void *fs_data)
349 {
350         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
351         struct xattr *lsm_xattr, *evm_xattr, *xattr;
352         int ret;
353
354         if (unlikely(IS_PRIVATE(inode)))
355                 return 0;
356
357         memset(new_xattrs, 0, sizeof new_xattrs);
358         if (!initxattrs)
359                 return security_ops->inode_init_security(inode, dir, qstr,
360                                                          NULL, NULL, NULL);
361         lsm_xattr = new_xattrs;
362         ret = security_ops->inode_init_security(inode, dir, qstr,
363                                                 &lsm_xattr->name,
364                                                 &lsm_xattr->value,
365                                                 &lsm_xattr->value_len);
366         if (ret)
367                 goto out;
368
369         evm_xattr = lsm_xattr + 1;
370         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
371         if (ret)
372                 goto out;
373         ret = initxattrs(inode, new_xattrs, fs_data);
374 out:
375         for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
376                 kfree(xattr->name);
377                 kfree(xattr->value);
378         }
379         return (ret == -EOPNOTSUPP) ? 0 : ret;
380 }
381 EXPORT_SYMBOL(security_inode_init_security);
382
383 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
384                                      const struct qstr *qstr, char **name,
385                                      void **value, size_t *len)
386 {
387         if (unlikely(IS_PRIVATE(inode)))
388                 return -EOPNOTSUPP;
389         return security_ops->inode_init_security(inode, dir, qstr, name, value,
390                                                  len);
391 }
392 EXPORT_SYMBOL(security_old_inode_init_security);
393
394 #ifdef CONFIG_SECURITY_PATH
395 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
396                         unsigned int dev)
397 {
398         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
399                 return 0;
400         return security_ops->path_mknod(dir, dentry, mode, dev);
401 }
402 EXPORT_SYMBOL(security_path_mknod);
403
404 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
405 {
406         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
407                 return 0;
408         return security_ops->path_mkdir(dir, dentry, mode);
409 }
410 EXPORT_SYMBOL(security_path_mkdir);
411
412 int security_path_rmdir(struct path *dir, struct dentry *dentry)
413 {
414         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
415                 return 0;
416         return security_ops->path_rmdir(dir, dentry);
417 }
418 EXPORT_SYMBOL(security_path_rmdir);
419
420 int security_path_unlink(struct path *dir, struct dentry *dentry)
421 {
422         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
423                 return 0;
424         return security_ops->path_unlink(dir, dentry);
425 }
426 EXPORT_SYMBOL(security_path_unlink);
427
428 int security_path_symlink(struct path *dir, struct dentry *dentry,
429                           const char *old_name)
430 {
431         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
432                 return 0;
433         return security_ops->path_symlink(dir, dentry, old_name);
434 }
435 EXPORT_SYMBOL(security_path_symlink);
436
437 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
438                        struct dentry *new_dentry)
439 {
440         int rc;
441         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
442                 return 0;
443         rc = yama_path_link(old_dentry, new_dir, new_dentry);
444         if (rc)
445                 return rc;
446         return security_ops->path_link(old_dentry, new_dir, new_dentry);
447 }
448 EXPORT_SYMBOL(security_path_link);
449
450 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
451                          struct path *new_dir, struct dentry *new_dentry)
452 {
453         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
454                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
455                 return 0;
456         return security_ops->path_rename(old_dir, old_dentry, new_dir,
457                                          new_dentry);
458 }
459 EXPORT_SYMBOL(security_path_rename);
460
461 int security_path_truncate(struct path *path)
462 {
463         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
464                 return 0;
465         return security_ops->path_truncate(path);
466 }
467 EXPORT_SYMBOL(security_path_truncate);
468
469 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
470                         mode_t mode)
471 {
472         if (unlikely(IS_PRIVATE(dentry->d_inode)))
473                 return 0;
474         return security_ops->path_chmod(dentry, mnt, mode);
475 }
476 EXPORT_SYMBOL(security_path_chmod);
477
478 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
479 {
480         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
481                 return 0;
482         return security_ops->path_chown(path, uid, gid);
483 }
484 EXPORT_SYMBOL(security_path_chown);
485
486 int security_path_chroot(struct path *path)
487 {
488         return security_ops->path_chroot(path);
489 }
490 #endif
491
492 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
493 {
494         if (unlikely(IS_PRIVATE(dir)))
495                 return 0;
496         return security_ops->inode_create(dir, dentry, mode);
497 }
498 EXPORT_SYMBOL_GPL(security_inode_create);
499
500 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
501                          struct dentry *new_dentry)
502 {
503         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
504                 return 0;
505         return security_ops->inode_link(old_dentry, dir, new_dentry);
506 }
507
508 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
509 {
510         if (unlikely(IS_PRIVATE(dentry->d_inode)))
511                 return 0;
512         return security_ops->inode_unlink(dir, dentry);
513 }
514
515 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
516                             const char *old_name)
517 {
518         if (unlikely(IS_PRIVATE(dir)))
519                 return 0;
520         return security_ops->inode_symlink(dir, dentry, old_name);
521 }
522
523 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
524 {
525         if (unlikely(IS_PRIVATE(dir)))
526                 return 0;
527         return security_ops->inode_mkdir(dir, dentry, mode);
528 }
529 EXPORT_SYMBOL_GPL(security_inode_mkdir);
530
531 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
532 {
533         if (unlikely(IS_PRIVATE(dentry->d_inode)))
534                 return 0;
535         return security_ops->inode_rmdir(dir, dentry);
536 }
537
538 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
539 {
540         if (unlikely(IS_PRIVATE(dir)))
541                 return 0;
542         return security_ops->inode_mknod(dir, dentry, mode, dev);
543 }
544
545 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
546                            struct inode *new_dir, struct dentry *new_dentry)
547 {
548         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
549             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
550                 return 0;
551         return security_ops->inode_rename(old_dir, old_dentry,
552                                            new_dir, new_dentry);
553 }
554
555 int security_inode_readlink(struct dentry *dentry)
556 {
557         if (unlikely(IS_PRIVATE(dentry->d_inode)))
558                 return 0;
559         return security_ops->inode_readlink(dentry);
560 }
561 EXPORT_SYMBOL(security_inode_readlink);
562
563 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
564 {
565         int rc;
566         if (unlikely(IS_PRIVATE(dentry->d_inode)))
567                 return 0;
568         rc = yama_inode_follow_link(dentry, nd);
569         if (rc)
570                 return rc;
571         return security_ops->inode_follow_link(dentry, nd);
572 }
573
574 int security_inode_permission(struct inode *inode, int mask)
575 {
576         if (unlikely(IS_PRIVATE(inode)))
577                 return 0;
578         return security_ops->inode_permission(inode, mask);
579 }
580 EXPORT_SYMBOL(security_inode_permission);
581
582 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
583 {
584         int ret;
585
586         if (unlikely(IS_PRIVATE(dentry->d_inode)))
587                 return 0;
588         ret = security_ops->inode_setattr(dentry, attr);
589         if (ret)
590                 return ret;
591         return evm_inode_setattr(dentry, attr);
592 }
593 EXPORT_SYMBOL_GPL(security_inode_setattr);
594
595 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
596 {
597         if (unlikely(IS_PRIVATE(dentry->d_inode)))
598                 return 0;
599         return security_ops->inode_getattr(mnt, dentry);
600 }
601
602 int security_inode_setxattr(struct dentry *dentry, const char *name,
603                             const void *value, size_t size, int flags)
604 {
605         int ret;
606
607         if (unlikely(IS_PRIVATE(dentry->d_inode)))
608                 return 0;
609         ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
610         if (ret)
611                 return ret;
612         return evm_inode_setxattr(dentry, name, value, size);
613 }
614
615 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
616                                   const void *value, size_t size, int flags)
617 {
618         if (unlikely(IS_PRIVATE(dentry->d_inode)))
619                 return;
620         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
621         evm_inode_post_setxattr(dentry, name, value, size);
622 }
623
624 int security_inode_getxattr(struct dentry *dentry, const char *name)
625 {
626         if (unlikely(IS_PRIVATE(dentry->d_inode)))
627                 return 0;
628         return security_ops->inode_getxattr(dentry, name);
629 }
630
631 int security_inode_listxattr(struct dentry *dentry)
632 {
633         if (unlikely(IS_PRIVATE(dentry->d_inode)))
634                 return 0;
635         return security_ops->inode_listxattr(dentry);
636 }
637
638 int security_inode_removexattr(struct dentry *dentry, const char *name)
639 {
640         int ret;
641
642         if (unlikely(IS_PRIVATE(dentry->d_inode)))
643                 return 0;
644         ret = security_ops->inode_removexattr(dentry, name);
645         if (ret)
646                 return ret;
647         return evm_inode_removexattr(dentry, name);
648 }
649
650 int security_inode_need_killpriv(struct dentry *dentry)
651 {
652         return security_ops->inode_need_killpriv(dentry);
653 }
654
655 int security_inode_killpriv(struct dentry *dentry)
656 {
657         return security_ops->inode_killpriv(dentry);
658 }
659
660 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
661 {
662         if (unlikely(IS_PRIVATE(inode)))
663                 return -EOPNOTSUPP;
664         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
665 }
666
667 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
668 {
669         if (unlikely(IS_PRIVATE(inode)))
670                 return -EOPNOTSUPP;
671         return security_ops->inode_setsecurity(inode, name, value, size, flags);
672 }
673
674 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
675 {
676         if (unlikely(IS_PRIVATE(inode)))
677                 return 0;
678         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
679 }
680
681 void security_inode_getsecid(const struct inode *inode, u32 *secid)
682 {
683         security_ops->inode_getsecid(inode, secid);
684 }
685
686 int security_file_permission(struct file *file, int mask)
687 {
688         int ret;
689
690         ret = security_ops->file_permission(file, mask);
691         if (ret)
692                 return ret;
693
694         return fsnotify_perm(file, mask);
695 }
696 EXPORT_SYMBOL(security_file_permission);
697
698 int security_file_alloc(struct file *file)
699 {
700         return security_ops->file_alloc_security(file);
701 }
702
703 void security_file_free(struct file *file)
704 {
705         security_ops->file_free_security(file);
706 }
707
708 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
709 {
710         return security_ops->file_ioctl(file, cmd, arg);
711 }
712
713 int security_file_mmap(struct file *file, unsigned long reqprot,
714                         unsigned long prot, unsigned long flags,
715                         unsigned long addr, unsigned long addr_only)
716 {
717         int ret;
718
719         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
720         if (ret)
721                 return ret;
722         return ima_file_mmap(file, prot);
723 }
724 EXPORT_SYMBOL(security_file_mmap);
725
726 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
727                             unsigned long prot)
728 {
729         return security_ops->file_mprotect(vma, reqprot, prot);
730 }
731
732 int security_file_lock(struct file *file, unsigned int cmd)
733 {
734         return security_ops->file_lock(file, cmd);
735 }
736
737 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
738 {
739         return security_ops->file_fcntl(file, cmd, arg);
740 }
741
742 int security_file_set_fowner(struct file *file)
743 {
744         return security_ops->file_set_fowner(file);
745 }
746
747 int security_file_send_sigiotask(struct task_struct *tsk,
748                                   struct fown_struct *fown, int sig)
749 {
750         return security_ops->file_send_sigiotask(tsk, fown, sig);
751 }
752
753 int security_file_receive(struct file *file)
754 {
755         return security_ops->file_receive(file);
756 }
757
758 int security_dentry_open(struct file *file, const struct cred *cred)
759 {
760         int ret;
761
762         ret = security_ops->dentry_open(file, cred);
763         if (ret)
764                 return ret;
765
766         return fsnotify_perm(file, MAY_OPEN);
767 }
768
769 int security_task_create(unsigned long clone_flags)
770 {
771         return security_ops->task_create(clone_flags);
772 }
773
774 void security_task_free(struct task_struct *task)
775 {
776         yama_task_free(task);
777         security_ops->task_free(task);
778 }
779
780 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
781 {
782         return security_ops->cred_alloc_blank(cred, gfp);
783 }
784
785 void security_cred_free(struct cred *cred)
786 {
787         security_ops->cred_free(cred);
788 }
789
790 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
791 {
792         return security_ops->cred_prepare(new, old, gfp);
793 }
794
795 void security_transfer_creds(struct cred *new, const struct cred *old)
796 {
797         security_ops->cred_transfer(new, old);
798 }
799
800 int security_kernel_act_as(struct cred *new, u32 secid)
801 {
802         return security_ops->kernel_act_as(new, secid);
803 }
804
805 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
806 {
807         return security_ops->kernel_create_files_as(new, inode);
808 }
809
810 int security_kernel_module_request(char *kmod_name)
811 {
812         return security_ops->kernel_module_request(kmod_name);
813 }
814
815 int security_task_fix_setuid(struct cred *new, const struct cred *old,
816                              int flags)
817 {
818         return security_ops->task_fix_setuid(new, old, flags);
819 }
820
821 int security_task_setpgid(struct task_struct *p, pid_t pgid)
822 {
823         return security_ops->task_setpgid(p, pgid);
824 }
825
826 int security_task_getpgid(struct task_struct *p)
827 {
828         return security_ops->task_getpgid(p);
829 }
830
831 int security_task_getsid(struct task_struct *p)
832 {
833         return security_ops->task_getsid(p);
834 }
835
836 void security_task_getsecid(struct task_struct *p, u32 *secid)
837 {
838         security_ops->task_getsecid(p, secid);
839 }
840 EXPORT_SYMBOL(security_task_getsecid);
841
842 int security_task_setnice(struct task_struct *p, int nice)
843 {
844         return security_ops->task_setnice(p, nice);
845 }
846
847 int security_task_setioprio(struct task_struct *p, int ioprio)
848 {
849         return security_ops->task_setioprio(p, ioprio);
850 }
851
852 int security_task_getioprio(struct task_struct *p)
853 {
854         return security_ops->task_getioprio(p);
855 }
856
857 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
858                 struct rlimit *new_rlim)
859 {
860         return security_ops->task_setrlimit(p, resource, new_rlim);
861 }
862
863 int security_task_setscheduler(struct task_struct *p)
864 {
865         return security_ops->task_setscheduler(p);
866 }
867
868 int security_task_getscheduler(struct task_struct *p)
869 {
870         return security_ops->task_getscheduler(p);
871 }
872
873 int security_task_movememory(struct task_struct *p)
874 {
875         return security_ops->task_movememory(p);
876 }
877
878 int security_task_kill(struct task_struct *p, struct siginfo *info,
879                         int sig, u32 secid)
880 {
881         return security_ops->task_kill(p, info, sig, secid);
882 }
883
884 int security_task_wait(struct task_struct *p)
885 {
886         return security_ops->task_wait(p);
887 }
888
889 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
890                          unsigned long arg4, unsigned long arg5)
891 {
892         int rc;
893         rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
894         if (rc != -ENOSYS)
895                 return rc;
896         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
897 }
898
899 void security_task_to_inode(struct task_struct *p, struct inode *inode)
900 {
901         security_ops->task_to_inode(p, inode);
902 }
903
904 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
905 {
906         return security_ops->ipc_permission(ipcp, flag);
907 }
908
909 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
910 {
911         security_ops->ipc_getsecid(ipcp, secid);
912 }
913
914 int security_msg_msg_alloc(struct msg_msg *msg)
915 {
916         return security_ops->msg_msg_alloc_security(msg);
917 }
918
919 void security_msg_msg_free(struct msg_msg *msg)
920 {
921         security_ops->msg_msg_free_security(msg);
922 }
923
924 int security_msg_queue_alloc(struct msg_queue *msq)
925 {
926         return security_ops->msg_queue_alloc_security(msq);
927 }
928
929 void security_msg_queue_free(struct msg_queue *msq)
930 {
931         security_ops->msg_queue_free_security(msq);
932 }
933
934 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
935 {
936         return security_ops->msg_queue_associate(msq, msqflg);
937 }
938
939 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
940 {
941         return security_ops->msg_queue_msgctl(msq, cmd);
942 }
943
944 int security_msg_queue_msgsnd(struct msg_queue *msq,
945                                struct msg_msg *msg, int msqflg)
946 {
947         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
948 }
949
950 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
951                                struct task_struct *target, long type, int mode)
952 {
953         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
954 }
955
956 int security_shm_alloc(struct shmid_kernel *shp)
957 {
958         return security_ops->shm_alloc_security(shp);
959 }
960
961 void security_shm_free(struct shmid_kernel *shp)
962 {
963         security_ops->shm_free_security(shp);
964 }
965
966 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
967 {
968         return security_ops->shm_associate(shp, shmflg);
969 }
970
971 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
972 {
973         return security_ops->shm_shmctl(shp, cmd);
974 }
975
976 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
977 {
978         return security_ops->shm_shmat(shp, shmaddr, shmflg);
979 }
980
981 int security_sem_alloc(struct sem_array *sma)
982 {
983         return security_ops->sem_alloc_security(sma);
984 }
985
986 void security_sem_free(struct sem_array *sma)
987 {
988         security_ops->sem_free_security(sma);
989 }
990
991 int security_sem_associate(struct sem_array *sma, int semflg)
992 {
993         return security_ops->sem_associate(sma, semflg);
994 }
995
996 int security_sem_semctl(struct sem_array *sma, int cmd)
997 {
998         return security_ops->sem_semctl(sma, cmd);
999 }
1000
1001 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1002                         unsigned nsops, int alter)
1003 {
1004         return security_ops->sem_semop(sma, sops, nsops, alter);
1005 }
1006
1007 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1008 {
1009         if (unlikely(inode && IS_PRIVATE(inode)))
1010                 return;
1011         security_ops->d_instantiate(dentry, inode);
1012 }
1013 EXPORT_SYMBOL(security_d_instantiate);
1014
1015 int security_getprocattr(struct task_struct *p, char *name, char **value)
1016 {
1017         return security_ops->getprocattr(p, name, value);
1018 }
1019
1020 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1021 {
1022         return security_ops->setprocattr(p, name, value, size);
1023 }
1024
1025 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1026 {
1027         return security_ops->netlink_send(sk, skb);
1028 }
1029
1030 int security_netlink_recv(struct sk_buff *skb, int cap)
1031 {
1032         return security_ops->netlink_recv(skb, cap);
1033 }
1034 EXPORT_SYMBOL(security_netlink_recv);
1035
1036 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1037 {
1038         return security_ops->secid_to_secctx(secid, secdata, seclen);
1039 }
1040 EXPORT_SYMBOL(security_secid_to_secctx);
1041
1042 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1043 {
1044         return security_ops->secctx_to_secid(secdata, seclen, secid);
1045 }
1046 EXPORT_SYMBOL(security_secctx_to_secid);
1047
1048 void security_release_secctx(char *secdata, u32 seclen)
1049 {
1050         security_ops->release_secctx(secdata, seclen);
1051 }
1052 EXPORT_SYMBOL(security_release_secctx);
1053
1054 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1055 {
1056         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1057 }
1058 EXPORT_SYMBOL(security_inode_notifysecctx);
1059
1060 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1061 {
1062         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1063 }
1064 EXPORT_SYMBOL(security_inode_setsecctx);
1065
1066 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1067 {
1068         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1069 }
1070 EXPORT_SYMBOL(security_inode_getsecctx);
1071
1072 #ifdef CONFIG_SECURITY_NETWORK
1073
1074 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1075 {
1076         return security_ops->unix_stream_connect(sock, other, newsk);
1077 }
1078 EXPORT_SYMBOL(security_unix_stream_connect);
1079
1080 int security_unix_may_send(struct socket *sock,  struct socket *other)
1081 {
1082         return security_ops->unix_may_send(sock, other);
1083 }
1084 EXPORT_SYMBOL(security_unix_may_send);
1085
1086 int security_socket_create(int family, int type, int protocol, int kern)
1087 {
1088         return security_ops->socket_create(family, type, protocol, kern);
1089 }
1090
1091 int security_socket_post_create(struct socket *sock, int family,
1092                                 int type, int protocol, int kern)
1093 {
1094         return security_ops->socket_post_create(sock, family, type,
1095                                                 protocol, kern);
1096 }
1097
1098 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1099 {
1100         return security_ops->socket_bind(sock, address, addrlen);
1101 }
1102
1103 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1104 {
1105         return security_ops->socket_connect(sock, address, addrlen);
1106 }
1107
1108 int security_socket_listen(struct socket *sock, int backlog)
1109 {
1110         return security_ops->socket_listen(sock, backlog);
1111 }
1112
1113 int security_socket_accept(struct socket *sock, struct socket *newsock)
1114 {
1115         return security_ops->socket_accept(sock, newsock);
1116 }
1117
1118 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1119 {
1120         return security_ops->socket_sendmsg(sock, msg, size);
1121 }
1122
1123 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1124                             int size, int flags)
1125 {
1126         return security_ops->socket_recvmsg(sock, msg, size, flags);
1127 }
1128
1129 int security_socket_getsockname(struct socket *sock)
1130 {
1131         return security_ops->socket_getsockname(sock);
1132 }
1133
1134 int security_socket_getpeername(struct socket *sock)
1135 {
1136         return security_ops->socket_getpeername(sock);
1137 }
1138
1139 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1140 {
1141         return security_ops->socket_getsockopt(sock, level, optname);
1142 }
1143
1144 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1145 {
1146         return security_ops->socket_setsockopt(sock, level, optname);
1147 }
1148
1149 int security_socket_shutdown(struct socket *sock, int how)
1150 {
1151         return security_ops->socket_shutdown(sock, how);
1152 }
1153
1154 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1155 {
1156         return security_ops->socket_sock_rcv_skb(sk, skb);
1157 }
1158 EXPORT_SYMBOL(security_sock_rcv_skb);
1159
1160 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1161                                       int __user *optlen, unsigned len)
1162 {
1163         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1164 }
1165
1166 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1167 {
1168         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1169 }
1170 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1171
1172 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1173 {
1174         return security_ops->sk_alloc_security(sk, family, priority);
1175 }
1176
1177 void security_sk_free(struct sock *sk)
1178 {
1179         security_ops->sk_free_security(sk);
1180 }
1181
1182 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1183 {
1184         security_ops->sk_clone_security(sk, newsk);
1185 }
1186 EXPORT_SYMBOL(security_sk_clone);
1187
1188 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1189 {
1190         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1191 }
1192 EXPORT_SYMBOL(security_sk_classify_flow);
1193
1194 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1195 {
1196         security_ops->req_classify_flow(req, fl);
1197 }
1198 EXPORT_SYMBOL(security_req_classify_flow);
1199
1200 void security_sock_graft(struct sock *sk, struct socket *parent)
1201 {
1202         security_ops->sock_graft(sk, parent);
1203 }
1204 EXPORT_SYMBOL(security_sock_graft);
1205
1206 int security_inet_conn_request(struct sock *sk,
1207                         struct sk_buff *skb, struct request_sock *req)
1208 {
1209         return security_ops->inet_conn_request(sk, skb, req);
1210 }
1211 EXPORT_SYMBOL(security_inet_conn_request);
1212
1213 void security_inet_csk_clone(struct sock *newsk,
1214                         const struct request_sock *req)
1215 {
1216         security_ops->inet_csk_clone(newsk, req);
1217 }
1218
1219 void security_inet_conn_established(struct sock *sk,
1220                         struct sk_buff *skb)
1221 {
1222         security_ops->inet_conn_established(sk, skb);
1223 }
1224
1225 int security_secmark_relabel_packet(u32 secid)
1226 {
1227         return security_ops->secmark_relabel_packet(secid);
1228 }
1229 EXPORT_SYMBOL(security_secmark_relabel_packet);
1230
1231 void security_secmark_refcount_inc(void)
1232 {
1233         security_ops->secmark_refcount_inc();
1234 }
1235 EXPORT_SYMBOL(security_secmark_refcount_inc);
1236
1237 void security_secmark_refcount_dec(void)
1238 {
1239         security_ops->secmark_refcount_dec();
1240 }
1241 EXPORT_SYMBOL(security_secmark_refcount_dec);
1242
1243 int security_tun_dev_create(void)
1244 {
1245         return security_ops->tun_dev_create();
1246 }
1247 EXPORT_SYMBOL(security_tun_dev_create);
1248
1249 void security_tun_dev_post_create(struct sock *sk)
1250 {
1251         return security_ops->tun_dev_post_create(sk);
1252 }
1253 EXPORT_SYMBOL(security_tun_dev_post_create);
1254
1255 int security_tun_dev_attach(struct sock *sk)
1256 {
1257         return security_ops->tun_dev_attach(sk);
1258 }
1259 EXPORT_SYMBOL(security_tun_dev_attach);
1260
1261 #endif  /* CONFIG_SECURITY_NETWORK */
1262
1263 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1264
1265 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1266 {
1267         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1268 }
1269 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1270
1271 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1272                               struct xfrm_sec_ctx **new_ctxp)
1273 {
1274         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1275 }
1276
1277 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1278 {
1279         security_ops->xfrm_policy_free_security(ctx);
1280 }
1281 EXPORT_SYMBOL(security_xfrm_policy_free);
1282
1283 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1284 {
1285         return security_ops->xfrm_policy_delete_security(ctx);
1286 }
1287
1288 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1289 {
1290         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1291 }
1292 EXPORT_SYMBOL(security_xfrm_state_alloc);
1293
1294 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1295                                       struct xfrm_sec_ctx *polsec, u32 secid)
1296 {
1297         if (!polsec)
1298                 return 0;
1299         /*
1300          * We want the context to be taken from secid which is usually
1301          * from the sock.
1302          */
1303         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1304 }
1305
1306 int security_xfrm_state_delete(struct xfrm_state *x)
1307 {
1308         return security_ops->xfrm_state_delete_security(x);
1309 }
1310 EXPORT_SYMBOL(security_xfrm_state_delete);
1311
1312 void security_xfrm_state_free(struct xfrm_state *x)
1313 {
1314         security_ops->xfrm_state_free_security(x);
1315 }
1316
1317 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1318 {
1319         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1320 }
1321
1322 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1323                                        struct xfrm_policy *xp,
1324                                        const struct flowi *fl)
1325 {
1326         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1327 }
1328
1329 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1330 {
1331         return security_ops->xfrm_decode_session(skb, secid, 1);
1332 }
1333
1334 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1335 {
1336         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1337
1338         BUG_ON(rc);
1339 }
1340 EXPORT_SYMBOL(security_skb_classify_flow);
1341
1342 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1343
1344 #ifdef CONFIG_KEYS
1345
1346 int security_key_alloc(struct key *key, const struct cred *cred,
1347                        unsigned long flags)
1348 {
1349         return security_ops->key_alloc(key, cred, flags);
1350 }
1351
1352 void security_key_free(struct key *key)
1353 {
1354         security_ops->key_free(key);
1355 }
1356
1357 int security_key_permission(key_ref_t key_ref,
1358                             const struct cred *cred, key_perm_t perm)
1359 {
1360         return security_ops->key_permission(key_ref, cred, perm);
1361 }
1362
1363 int security_key_getsecurity(struct key *key, char **_buffer)
1364 {
1365         return security_ops->key_getsecurity(key, _buffer);
1366 }
1367
1368 #endif  /* CONFIG_KEYS */
1369
1370 #ifdef CONFIG_AUDIT
1371
1372 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1373 {
1374         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1375 }
1376
1377 int security_audit_rule_known(struct audit_krule *krule)
1378 {
1379         return security_ops->audit_rule_known(krule);
1380 }
1381
1382 void security_audit_rule_free(void *lsmrule)
1383 {
1384         security_ops->audit_rule_free(lsmrule);
1385 }
1386
1387 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1388                               struct audit_context *actx)
1389 {
1390         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1391 }
1392
1393 #endif /* CONFIG_AUDIT */