KVM: fix the handling of dirty bitmaps to avoid overflows
[linux-flexiantxendom0.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/mm.h>
26 #include <linux/miscdevice.h>
27 #include <linux/vmalloc.h>
28 #include <linux/reboot.h>
29 #include <linux/debugfs.h>
30 #include <linux/highmem.h>
31 #include <linux/file.h>
32 #include <linux/sysdev.h>
33 #include <linux/cpu.h>
34 #include <linux/sched.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49
50 #include <asm/processor.h>
51 #include <asm/io.h>
52 #include <asm/uaccess.h>
53 #include <asm/pgtable.h>
54 #include <asm-generic/bitops/le.h>
55
56 #include "coalesced_mmio.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/kvm.h>
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 /*
65  * Ordering of locks:
66  *
67  *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
68  */
69
70 DEFINE_SPINLOCK(kvm_lock);
71 LIST_HEAD(vm_list);
72
73 static cpumask_var_t cpus_hardware_enabled;
74 static int kvm_usage_count = 0;
75 static atomic_t hardware_enable_failed;
76
77 struct kmem_cache *kvm_vcpu_cache;
78 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
79
80 static __read_mostly struct preempt_ops kvm_preempt_ops;
81
82 struct dentry *kvm_debugfs_dir;
83
84 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
85                            unsigned long arg);
86 static int hardware_enable_all(void);
87 static void hardware_disable_all(void);
88
89 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
90
91 static bool kvm_rebooting;
92
93 static bool largepages_enabled = true;
94
95 inline int kvm_is_mmio_pfn(pfn_t pfn)
96 {
97         if (pfn_valid(pfn)) {
98                 struct page *page = compound_head(pfn_to_page(pfn));
99                 return PageReserved(page);
100         }
101
102         return true;
103 }
104
105 /*
106  * Switches to specified vcpu, until a matching vcpu_put()
107  */
108 void vcpu_load(struct kvm_vcpu *vcpu)
109 {
110         int cpu;
111
112         mutex_lock(&vcpu->mutex);
113         cpu = get_cpu();
114         preempt_notifier_register(&vcpu->preempt_notifier);
115         kvm_arch_vcpu_load(vcpu, cpu);
116         put_cpu();
117 }
118
119 void vcpu_put(struct kvm_vcpu *vcpu)
120 {
121         preempt_disable();
122         kvm_arch_vcpu_put(vcpu);
123         preempt_notifier_unregister(&vcpu->preempt_notifier);
124         preempt_enable();
125         mutex_unlock(&vcpu->mutex);
126 }
127
128 static void ack_flush(void *_completed)
129 {
130 }
131
132 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
133 {
134         int i, cpu, me;
135         cpumask_var_t cpus;
136         bool called = true;
137         struct kvm_vcpu *vcpu;
138
139         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
140
141         raw_spin_lock(&kvm->requests_lock);
142         me = smp_processor_id();
143         kvm_for_each_vcpu(i, vcpu, kvm) {
144                 if (test_and_set_bit(req, &vcpu->requests))
145                         continue;
146                 cpu = vcpu->cpu;
147                 if (cpus != NULL && cpu != -1 && cpu != me)
148                         cpumask_set_cpu(cpu, cpus);
149         }
150         if (unlikely(cpus == NULL))
151                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
152         else if (!cpumask_empty(cpus))
153                 smp_call_function_many(cpus, ack_flush, NULL, 1);
154         else
155                 called = false;
156         raw_spin_unlock(&kvm->requests_lock);
157         free_cpumask_var(cpus);
158         return called;
159 }
160
161 void kvm_flush_remote_tlbs(struct kvm *kvm)
162 {
163         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
164                 ++kvm->stat.remote_tlb_flush;
165 }
166
167 void kvm_reload_remote_mmus(struct kvm *kvm)
168 {
169         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
170 }
171
172 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
173 {
174         struct page *page;
175         int r;
176
177         mutex_init(&vcpu->mutex);
178         vcpu->cpu = -1;
179         vcpu->kvm = kvm;
180         vcpu->vcpu_id = id;
181         init_waitqueue_head(&vcpu->wq);
182
183         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
184         if (!page) {
185                 r = -ENOMEM;
186                 goto fail;
187         }
188         vcpu->run = page_address(page);
189
190         r = kvm_arch_vcpu_init(vcpu);
191         if (r < 0)
192                 goto fail_free_run;
193         return 0;
194
195 fail_free_run:
196         free_page((unsigned long)vcpu->run);
197 fail:
198         return r;
199 }
200 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
201
202 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
203 {
204         kvm_arch_vcpu_uninit(vcpu);
205         free_page((unsigned long)vcpu->run);
206 }
207 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
208
209 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
210 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
211 {
212         return container_of(mn, struct kvm, mmu_notifier);
213 }
214
215 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
216                                              struct mm_struct *mm,
217                                              unsigned long address)
218 {
219         struct kvm *kvm = mmu_notifier_to_kvm(mn);
220         int need_tlb_flush, idx;
221
222         /*
223          * When ->invalidate_page runs, the linux pte has been zapped
224          * already but the page is still allocated until
225          * ->invalidate_page returns. So if we increase the sequence
226          * here the kvm page fault will notice if the spte can't be
227          * established because the page is going to be freed. If
228          * instead the kvm page fault establishes the spte before
229          * ->invalidate_page runs, kvm_unmap_hva will release it
230          * before returning.
231          *
232          * The sequence increase only need to be seen at spin_unlock
233          * time, and not at spin_lock time.
234          *
235          * Increasing the sequence after the spin_unlock would be
236          * unsafe because the kvm page fault could then establish the
237          * pte after kvm_unmap_hva returned, without noticing the page
238          * is going to be freed.
239          */
240         idx = srcu_read_lock(&kvm->srcu);
241         spin_lock(&kvm->mmu_lock);
242         kvm->mmu_notifier_seq++;
243         need_tlb_flush = kvm_unmap_hva(kvm, address);
244         spin_unlock(&kvm->mmu_lock);
245         srcu_read_unlock(&kvm->srcu, idx);
246
247         /* we've to flush the tlb before the pages can be freed */
248         if (need_tlb_flush)
249                 kvm_flush_remote_tlbs(kvm);
250
251 }
252
253 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
254                                         struct mm_struct *mm,
255                                         unsigned long address,
256                                         pte_t pte)
257 {
258         struct kvm *kvm = mmu_notifier_to_kvm(mn);
259         int idx;
260
261         idx = srcu_read_lock(&kvm->srcu);
262         spin_lock(&kvm->mmu_lock);
263         kvm->mmu_notifier_seq++;
264         kvm_set_spte_hva(kvm, address, pte);
265         spin_unlock(&kvm->mmu_lock);
266         srcu_read_unlock(&kvm->srcu, idx);
267 }
268
269 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
270                                                     struct mm_struct *mm,
271                                                     unsigned long start,
272                                                     unsigned long end)
273 {
274         struct kvm *kvm = mmu_notifier_to_kvm(mn);
275         int need_tlb_flush = 0, idx;
276
277         idx = srcu_read_lock(&kvm->srcu);
278         spin_lock(&kvm->mmu_lock);
279         /*
280          * The count increase must become visible at unlock time as no
281          * spte can be established without taking the mmu_lock and
282          * count is also read inside the mmu_lock critical section.
283          */
284         kvm->mmu_notifier_count++;
285         for (; start < end; start += PAGE_SIZE)
286                 need_tlb_flush |= kvm_unmap_hva(kvm, start);
287         spin_unlock(&kvm->mmu_lock);
288         srcu_read_unlock(&kvm->srcu, idx);
289
290         /* we've to flush the tlb before the pages can be freed */
291         if (need_tlb_flush)
292                 kvm_flush_remote_tlbs(kvm);
293 }
294
295 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
296                                                   struct mm_struct *mm,
297                                                   unsigned long start,
298                                                   unsigned long end)
299 {
300         struct kvm *kvm = mmu_notifier_to_kvm(mn);
301
302         spin_lock(&kvm->mmu_lock);
303         /*
304          * This sequence increase will notify the kvm page fault that
305          * the page that is going to be mapped in the spte could have
306          * been freed.
307          */
308         kvm->mmu_notifier_seq++;
309         /*
310          * The above sequence increase must be visible before the
311          * below count decrease but both values are read by the kvm
312          * page fault under mmu_lock spinlock so we don't need to add
313          * a smb_wmb() here in between the two.
314          */
315         kvm->mmu_notifier_count--;
316         spin_unlock(&kvm->mmu_lock);
317
318         BUG_ON(kvm->mmu_notifier_count < 0);
319 }
320
321 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
322                                               struct mm_struct *mm,
323                                               unsigned long address)
324 {
325         struct kvm *kvm = mmu_notifier_to_kvm(mn);
326         int young, idx;
327
328         idx = srcu_read_lock(&kvm->srcu);
329         spin_lock(&kvm->mmu_lock);
330         young = kvm_age_hva(kvm, address);
331         spin_unlock(&kvm->mmu_lock);
332         srcu_read_unlock(&kvm->srcu, idx);
333
334         if (young)
335                 kvm_flush_remote_tlbs(kvm);
336
337         return young;
338 }
339
340 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
341                                      struct mm_struct *mm)
342 {
343         struct kvm *kvm = mmu_notifier_to_kvm(mn);
344         kvm_arch_flush_shadow(kvm);
345 }
346
347 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
348         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
349         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
350         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
351         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
352         .change_pte             = kvm_mmu_notifier_change_pte,
353         .release                = kvm_mmu_notifier_release,
354 };
355
356 static int kvm_init_mmu_notifier(struct kvm *kvm)
357 {
358         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
359         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
360 }
361
362 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
363
364 static int kvm_init_mmu_notifier(struct kvm *kvm)
365 {
366         return 0;
367 }
368
369 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
370
371 static struct kvm *kvm_create_vm(void)
372 {
373         int r = 0, i;
374         struct kvm *kvm = kvm_arch_create_vm();
375
376         if (IS_ERR(kvm))
377                 goto out;
378
379         r = hardware_enable_all();
380         if (r)
381                 goto out_err_nodisable;
382
383 #ifdef CONFIG_HAVE_KVM_IRQCHIP
384         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
385         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
386 #endif
387
388         r = -ENOMEM;
389         kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
390         if (!kvm->memslots)
391                 goto out_err;
392         if (init_srcu_struct(&kvm->srcu))
393                 goto out_err;
394         for (i = 0; i < KVM_NR_BUSES; i++) {
395                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
396                                         GFP_KERNEL);
397                 if (!kvm->buses[i]) {
398                         cleanup_srcu_struct(&kvm->srcu);
399                         goto out_err;
400                 }
401         }
402
403         r = kvm_init_mmu_notifier(kvm);
404         if (r) {
405                 cleanup_srcu_struct(&kvm->srcu);
406                 goto out_err;
407         }
408
409         kvm->mm = current->mm;
410         atomic_inc(&kvm->mm->mm_count);
411         spin_lock_init(&kvm->mmu_lock);
412         raw_spin_lock_init(&kvm->requests_lock);
413         kvm_eventfd_init(kvm);
414         mutex_init(&kvm->lock);
415         mutex_init(&kvm->irq_lock);
416         mutex_init(&kvm->slots_lock);
417         atomic_set(&kvm->users_count, 1);
418         spin_lock(&kvm_lock);
419         list_add(&kvm->vm_list, &vm_list);
420         spin_unlock(&kvm_lock);
421 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
422         kvm_coalesced_mmio_init(kvm);
423 #endif
424 out:
425         return kvm;
426
427 out_err:
428         hardware_disable_all();
429 out_err_nodisable:
430         for (i = 0; i < KVM_NR_BUSES; i++)
431                 kfree(kvm->buses[i]);
432         kfree(kvm->memslots);
433         kfree(kvm);
434         return ERR_PTR(r);
435 }
436
437 /*
438  * Free any memory in @free but not in @dont.
439  */
440 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
441                                   struct kvm_memory_slot *dont)
442 {
443         int i;
444
445         if (!dont || free->rmap != dont->rmap)
446                 vfree(free->rmap);
447
448         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
449                 vfree(free->dirty_bitmap);
450
451
452         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
453                 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
454                         vfree(free->lpage_info[i]);
455                         free->lpage_info[i] = NULL;
456                 }
457         }
458
459         free->npages = 0;
460         free->dirty_bitmap = NULL;
461         free->rmap = NULL;
462 }
463
464 void kvm_free_physmem(struct kvm *kvm)
465 {
466         int i;
467         struct kvm_memslots *slots = kvm->memslots;
468
469         for (i = 0; i < slots->nmemslots; ++i)
470                 kvm_free_physmem_slot(&slots->memslots[i], NULL);
471
472         kfree(kvm->memslots);
473 }
474
475 static void kvm_destroy_vm(struct kvm *kvm)
476 {
477         int i;
478         struct mm_struct *mm = kvm->mm;
479
480         kvm_arch_sync_events(kvm);
481         spin_lock(&kvm_lock);
482         list_del(&kvm->vm_list);
483         spin_unlock(&kvm_lock);
484         kvm_free_irq_routing(kvm);
485         for (i = 0; i < KVM_NR_BUSES; i++)
486                 kvm_io_bus_destroy(kvm->buses[i]);
487         kvm_coalesced_mmio_free(kvm);
488 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
489         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
490 #else
491         kvm_arch_flush_shadow(kvm);
492 #endif
493         kvm_arch_destroy_vm(kvm);
494         hardware_disable_all();
495         mmdrop(mm);
496 }
497
498 void kvm_get_kvm(struct kvm *kvm)
499 {
500         atomic_inc(&kvm->users_count);
501 }
502 EXPORT_SYMBOL_GPL(kvm_get_kvm);
503
504 void kvm_put_kvm(struct kvm *kvm)
505 {
506         if (atomic_dec_and_test(&kvm->users_count))
507                 kvm_destroy_vm(kvm);
508 }
509 EXPORT_SYMBOL_GPL(kvm_put_kvm);
510
511
512 static int kvm_vm_release(struct inode *inode, struct file *filp)
513 {
514         struct kvm *kvm = filp->private_data;
515
516         kvm_irqfd_release(kvm);
517
518         kvm_put_kvm(kvm);
519         return 0;
520 }
521
522 /*
523  * Allocate some memory and give it an address in the guest physical address
524  * space.
525  *
526  * Discontiguous memory is allowed, mostly for framebuffers.
527  *
528  * Must be called holding mmap_sem for write.
529  */
530 int __kvm_set_memory_region(struct kvm *kvm,
531                             struct kvm_userspace_memory_region *mem,
532                             int user_alloc)
533 {
534         int r, flush_shadow = 0;
535         gfn_t base_gfn;
536         unsigned long npages;
537         unsigned long i;
538         struct kvm_memory_slot *memslot;
539         struct kvm_memory_slot old, new;
540         struct kvm_memslots *slots, *old_memslots;
541
542         r = -EINVAL;
543         /* General sanity checks */
544         if (mem->memory_size & (PAGE_SIZE - 1))
545                 goto out;
546         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
547                 goto out;
548         if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
549                 goto out;
550         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
551                 goto out;
552         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
553                 goto out;
554
555         memslot = &kvm->memslots->memslots[mem->slot];
556         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
557         npages = mem->memory_size >> PAGE_SHIFT;
558
559         if (!npages)
560                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
561
562         new = old = *memslot;
563
564         new.base_gfn = base_gfn;
565         new.npages = npages;
566         new.flags = mem->flags;
567
568         /* Disallow changing a memory slot's size. */
569         r = -EINVAL;
570         if (npages && old.npages && npages != old.npages)
571                 goto out_free;
572
573         /* Check for overlaps */
574         r = -EEXIST;
575         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
576                 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
577
578                 if (s == memslot || !s->npages)
579                         continue;
580                 if (!((base_gfn + npages <= s->base_gfn) ||
581                       (base_gfn >= s->base_gfn + s->npages)))
582                         goto out_free;
583         }
584
585         /* Free page dirty bitmap if unneeded */
586         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
587                 new.dirty_bitmap = NULL;
588
589         r = -ENOMEM;
590
591         /* Allocate if a slot is being created */
592 #ifndef CONFIG_S390
593         if (npages && !new.rmap) {
594                 new.rmap = vmalloc(npages * sizeof(struct page *));
595
596                 if (!new.rmap)
597                         goto out_free;
598
599                 memset(new.rmap, 0, npages * sizeof(*new.rmap));
600
601                 new.user_alloc = user_alloc;
602                 new.userspace_addr = mem->userspace_addr;
603         }
604         if (!npages)
605                 goto skip_lpage;
606
607         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
608                 unsigned long ugfn;
609                 unsigned long j;
610                 int lpages;
611                 int level = i + 2;
612
613                 /* Avoid unused variable warning if no large pages */
614                 (void)level;
615
616                 if (new.lpage_info[i])
617                         continue;
618
619                 lpages = 1 + (base_gfn + npages - 1) /
620                              KVM_PAGES_PER_HPAGE(level);
621                 lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
622
623                 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
624
625                 if (!new.lpage_info[i])
626                         goto out_free;
627
628                 memset(new.lpage_info[i], 0,
629                        lpages * sizeof(*new.lpage_info[i]));
630
631                 if (base_gfn % KVM_PAGES_PER_HPAGE(level))
632                         new.lpage_info[i][0].write_count = 1;
633                 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
634                         new.lpage_info[i][lpages - 1].write_count = 1;
635                 ugfn = new.userspace_addr >> PAGE_SHIFT;
636                 /*
637                  * If the gfn and userspace address are not aligned wrt each
638                  * other, or if explicitly asked to, disable large page
639                  * support for this slot
640                  */
641                 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
642                     !largepages_enabled)
643                         for (j = 0; j < lpages; ++j)
644                                 new.lpage_info[i][j].write_count = 1;
645         }
646
647 skip_lpage:
648
649         /* Allocate page dirty bitmap if needed */
650         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
651                 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
652
653                 new.dirty_bitmap = vmalloc(dirty_bytes);
654                 if (!new.dirty_bitmap)
655                         goto out_free;
656                 memset(new.dirty_bitmap, 0, dirty_bytes);
657                 /* destroy any largepage mappings for dirty tracking */
658                 if (old.npages)
659                         flush_shadow = 1;
660         }
661 #else  /* not defined CONFIG_S390 */
662         new.user_alloc = user_alloc;
663         if (user_alloc)
664                 new.userspace_addr = mem->userspace_addr;
665 #endif /* not defined CONFIG_S390 */
666
667         if (!npages) {
668                 r = -ENOMEM;
669                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
670                 if (!slots)
671                         goto out_free;
672                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
673                 if (mem->slot >= slots->nmemslots)
674                         slots->nmemslots = mem->slot + 1;
675                 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
676
677                 old_memslots = kvm->memslots;
678                 rcu_assign_pointer(kvm->memslots, slots);
679                 synchronize_srcu_expedited(&kvm->srcu);
680                 /* From this point no new shadow pages pointing to a deleted
681                  * memslot will be created.
682                  *
683                  * validation of sp->gfn happens in:
684                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
685                  *      - kvm_is_visible_gfn (mmu_check_roots)
686                  */
687                 kvm_arch_flush_shadow(kvm);
688                 kfree(old_memslots);
689         }
690
691         r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
692         if (r)
693                 goto out_free;
694
695 #ifdef CONFIG_DMAR
696         /* map the pages in iommu page table */
697         if (npages) {
698                 r = kvm_iommu_map_pages(kvm, &new);
699                 if (r)
700                         goto out_free;
701         }
702 #endif
703
704         r = -ENOMEM;
705         slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
706         if (!slots)
707                 goto out_free;
708         memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
709         if (mem->slot >= slots->nmemslots)
710                 slots->nmemslots = mem->slot + 1;
711
712         /* actual memory is freed via old in kvm_free_physmem_slot below */
713         if (!npages) {
714                 new.rmap = NULL;
715                 new.dirty_bitmap = NULL;
716                 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
717                         new.lpage_info[i] = NULL;
718         }
719
720         slots->memslots[mem->slot] = new;
721         old_memslots = kvm->memslots;
722         rcu_assign_pointer(kvm->memslots, slots);
723         synchronize_srcu_expedited(&kvm->srcu);
724
725         kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
726
727         kvm_free_physmem_slot(&old, &new);
728         kfree(old_memslots);
729
730         if (flush_shadow)
731                 kvm_arch_flush_shadow(kvm);
732
733         return 0;
734
735 out_free:
736         kvm_free_physmem_slot(&new, &old);
737 out:
738         return r;
739
740 }
741 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
742
743 int kvm_set_memory_region(struct kvm *kvm,
744                           struct kvm_userspace_memory_region *mem,
745                           int user_alloc)
746 {
747         int r;
748
749         mutex_lock(&kvm->slots_lock);
750         r = __kvm_set_memory_region(kvm, mem, user_alloc);
751         mutex_unlock(&kvm->slots_lock);
752         return r;
753 }
754 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
755
756 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
757                                    struct
758                                    kvm_userspace_memory_region *mem,
759                                    int user_alloc)
760 {
761         if (mem->slot >= KVM_MEMORY_SLOTS)
762                 return -EINVAL;
763         return kvm_set_memory_region(kvm, mem, user_alloc);
764 }
765
766 int kvm_get_dirty_log(struct kvm *kvm,
767                         struct kvm_dirty_log *log, int *is_dirty)
768 {
769         struct kvm_memory_slot *memslot;
770         int r, i;
771         unsigned long n;
772         unsigned long any = 0;
773
774         r = -EINVAL;
775         if (log->slot >= KVM_MEMORY_SLOTS)
776                 goto out;
777
778         memslot = &kvm->memslots->memslots[log->slot];
779         r = -ENOENT;
780         if (!memslot->dirty_bitmap)
781                 goto out;
782
783         n = kvm_dirty_bitmap_bytes(memslot);
784
785         for (i = 0; !any && i < n/sizeof(long); ++i)
786                 any = memslot->dirty_bitmap[i];
787
788         r = -EFAULT;
789         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
790                 goto out;
791
792         if (any)
793                 *is_dirty = 1;
794
795         r = 0;
796 out:
797         return r;
798 }
799
800 void kvm_disable_largepages(void)
801 {
802         largepages_enabled = false;
803 }
804 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
805
806 int is_error_page(struct page *page)
807 {
808         return page == bad_page;
809 }
810 EXPORT_SYMBOL_GPL(is_error_page);
811
812 int is_error_pfn(pfn_t pfn)
813 {
814         return pfn == bad_pfn;
815 }
816 EXPORT_SYMBOL_GPL(is_error_pfn);
817
818 static inline unsigned long bad_hva(void)
819 {
820         return PAGE_OFFSET;
821 }
822
823 int kvm_is_error_hva(unsigned long addr)
824 {
825         return addr == bad_hva();
826 }
827 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
828
829 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
830 {
831         int i;
832         struct kvm_memslots *slots = rcu_dereference(kvm->memslots);
833
834         for (i = 0; i < slots->nmemslots; ++i) {
835                 struct kvm_memory_slot *memslot = &slots->memslots[i];
836
837                 if (gfn >= memslot->base_gfn
838                     && gfn < memslot->base_gfn + memslot->npages)
839                         return memslot;
840         }
841         return NULL;
842 }
843 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
844
845 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
846 {
847         gfn = unalias_gfn(kvm, gfn);
848         return gfn_to_memslot_unaliased(kvm, gfn);
849 }
850
851 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
852 {
853         int i;
854         struct kvm_memslots *slots = rcu_dereference(kvm->memslots);
855
856         gfn = unalias_gfn_instantiation(kvm, gfn);
857         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
858                 struct kvm_memory_slot *memslot = &slots->memslots[i];
859
860                 if (memslot->flags & KVM_MEMSLOT_INVALID)
861                         continue;
862
863                 if (gfn >= memslot->base_gfn
864                     && gfn < memslot->base_gfn + memslot->npages)
865                         return 1;
866         }
867         return 0;
868 }
869 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
870
871 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
872 {
873         struct vm_area_struct *vma;
874         unsigned long addr, size;
875
876         size = PAGE_SIZE;
877
878         addr = gfn_to_hva(kvm, gfn);
879         if (kvm_is_error_hva(addr))
880                 return PAGE_SIZE;
881
882         down_read(&current->mm->mmap_sem);
883         vma = find_vma(current->mm, addr);
884         if (!vma)
885                 goto out;
886
887         size = vma_kernel_pagesize(vma);
888
889 out:
890         up_read(&current->mm->mmap_sem);
891
892         return size;
893 }
894
895 int memslot_id(struct kvm *kvm, gfn_t gfn)
896 {
897         int i;
898         struct kvm_memslots *slots = rcu_dereference(kvm->memslots);
899         struct kvm_memory_slot *memslot = NULL;
900
901         gfn = unalias_gfn(kvm, gfn);
902         for (i = 0; i < slots->nmemslots; ++i) {
903                 memslot = &slots->memslots[i];
904
905                 if (gfn >= memslot->base_gfn
906                     && gfn < memslot->base_gfn + memslot->npages)
907                         break;
908         }
909
910         return memslot - slots->memslots;
911 }
912
913 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
914 {
915         struct kvm_memory_slot *slot;
916
917         gfn = unalias_gfn_instantiation(kvm, gfn);
918         slot = gfn_to_memslot_unaliased(kvm, gfn);
919         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
920                 return bad_hva();
921         return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
922 }
923 EXPORT_SYMBOL_GPL(gfn_to_hva);
924
925 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
926 {
927         struct page *page[1];
928         int npages;
929         pfn_t pfn;
930
931         might_sleep();
932
933         npages = get_user_pages_fast(addr, 1, 1, page);
934
935         if (unlikely(npages != 1)) {
936                 struct vm_area_struct *vma;
937
938                 down_read(&current->mm->mmap_sem);
939                 vma = find_vma(current->mm, addr);
940
941                 if (vma == NULL || addr < vma->vm_start ||
942                     !(vma->vm_flags & VM_PFNMAP)) {
943                         up_read(&current->mm->mmap_sem);
944                         get_page(bad_page);
945                         return page_to_pfn(bad_page);
946                 }
947
948                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
949                 up_read(&current->mm->mmap_sem);
950                 BUG_ON(!kvm_is_mmio_pfn(pfn));
951         } else
952                 pfn = page_to_pfn(page[0]);
953
954         return pfn;
955 }
956
957 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
958 {
959         unsigned long addr;
960
961         addr = gfn_to_hva(kvm, gfn);
962         if (kvm_is_error_hva(addr)) {
963                 get_page(bad_page);
964                 return page_to_pfn(bad_page);
965         }
966
967         return hva_to_pfn(kvm, addr);
968 }
969 EXPORT_SYMBOL_GPL(gfn_to_pfn);
970
971 static unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
972 {
973         return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
974 }
975
976 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
977                          struct kvm_memory_slot *slot, gfn_t gfn)
978 {
979         unsigned long addr = gfn_to_hva_memslot(slot, gfn);
980         return hva_to_pfn(kvm, addr);
981 }
982
983 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
984 {
985         pfn_t pfn;
986
987         pfn = gfn_to_pfn(kvm, gfn);
988         if (!kvm_is_mmio_pfn(pfn))
989                 return pfn_to_page(pfn);
990
991         WARN_ON(kvm_is_mmio_pfn(pfn));
992
993         get_page(bad_page);
994         return bad_page;
995 }
996
997 EXPORT_SYMBOL_GPL(gfn_to_page);
998
999 void kvm_release_page_clean(struct page *page)
1000 {
1001         kvm_release_pfn_clean(page_to_pfn(page));
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1004
1005 void kvm_release_pfn_clean(pfn_t pfn)
1006 {
1007         if (!kvm_is_mmio_pfn(pfn))
1008                 put_page(pfn_to_page(pfn));
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1011
1012 void kvm_release_page_dirty(struct page *page)
1013 {
1014         kvm_release_pfn_dirty(page_to_pfn(page));
1015 }
1016 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1017
1018 void kvm_release_pfn_dirty(pfn_t pfn)
1019 {
1020         kvm_set_pfn_dirty(pfn);
1021         kvm_release_pfn_clean(pfn);
1022 }
1023 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1024
1025 void kvm_set_page_dirty(struct page *page)
1026 {
1027         kvm_set_pfn_dirty(page_to_pfn(page));
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1030
1031 void kvm_set_pfn_dirty(pfn_t pfn)
1032 {
1033         if (!kvm_is_mmio_pfn(pfn)) {
1034                 struct page *page = pfn_to_page(pfn);
1035                 if (!PageReserved(page))
1036                         SetPageDirty(page);
1037         }
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1040
1041 void kvm_set_pfn_accessed(pfn_t pfn)
1042 {
1043         if (!kvm_is_mmio_pfn(pfn))
1044                 mark_page_accessed(pfn_to_page(pfn));
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1047
1048 void kvm_get_pfn(pfn_t pfn)
1049 {
1050         if (!kvm_is_mmio_pfn(pfn))
1051                 get_page(pfn_to_page(pfn));
1052 }
1053 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1054
1055 static int next_segment(unsigned long len, int offset)
1056 {
1057         if (len > PAGE_SIZE - offset)
1058                 return PAGE_SIZE - offset;
1059         else
1060                 return len;
1061 }
1062
1063 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1064                         int len)
1065 {
1066         int r;
1067         unsigned long addr;
1068
1069         addr = gfn_to_hva(kvm, gfn);
1070         if (kvm_is_error_hva(addr))
1071                 return -EFAULT;
1072         r = copy_from_user(data, (void __user *)addr + offset, len);
1073         if (r)
1074                 return -EFAULT;
1075         return 0;
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1078
1079 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1080 {
1081         gfn_t gfn = gpa >> PAGE_SHIFT;
1082         int seg;
1083         int offset = offset_in_page(gpa);
1084         int ret;
1085
1086         while ((seg = next_segment(len, offset)) != 0) {
1087                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1088                 if (ret < 0)
1089                         return ret;
1090                 offset = 0;
1091                 len -= seg;
1092                 data += seg;
1093                 ++gfn;
1094         }
1095         return 0;
1096 }
1097 EXPORT_SYMBOL_GPL(kvm_read_guest);
1098
1099 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1100                           unsigned long len)
1101 {
1102         int r;
1103         unsigned long addr;
1104         gfn_t gfn = gpa >> PAGE_SHIFT;
1105         int offset = offset_in_page(gpa);
1106
1107         addr = gfn_to_hva(kvm, gfn);
1108         if (kvm_is_error_hva(addr))
1109                 return -EFAULT;
1110         pagefault_disable();
1111         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1112         pagefault_enable();
1113         if (r)
1114                 return -EFAULT;
1115         return 0;
1116 }
1117 EXPORT_SYMBOL(kvm_read_guest_atomic);
1118
1119 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1120                          int offset, int len)
1121 {
1122         int r;
1123         unsigned long addr;
1124
1125         addr = gfn_to_hva(kvm, gfn);
1126         if (kvm_is_error_hva(addr))
1127                 return -EFAULT;
1128         r = copy_to_user((void __user *)addr + offset, data, len);
1129         if (r)
1130                 return -EFAULT;
1131         mark_page_dirty(kvm, gfn);
1132         return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1135
1136 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1137                     unsigned long len)
1138 {
1139         gfn_t gfn = gpa >> PAGE_SHIFT;
1140         int seg;
1141         int offset = offset_in_page(gpa);
1142         int ret;
1143
1144         while ((seg = next_segment(len, offset)) != 0) {
1145                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1146                 if (ret < 0)
1147                         return ret;
1148                 offset = 0;
1149                 len -= seg;
1150                 data += seg;
1151                 ++gfn;
1152         }
1153         return 0;
1154 }
1155
1156 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1157 {
1158         return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1159 }
1160 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1161
1162 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1163 {
1164         gfn_t gfn = gpa >> PAGE_SHIFT;
1165         int seg;
1166         int offset = offset_in_page(gpa);
1167         int ret;
1168
1169         while ((seg = next_segment(len, offset)) != 0) {
1170                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1171                 if (ret < 0)
1172                         return ret;
1173                 offset = 0;
1174                 len -= seg;
1175                 ++gfn;
1176         }
1177         return 0;
1178 }
1179 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1180
1181 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1182 {
1183         struct kvm_memory_slot *memslot;
1184
1185         gfn = unalias_gfn(kvm, gfn);
1186         memslot = gfn_to_memslot_unaliased(kvm, gfn);
1187         if (memslot && memslot->dirty_bitmap) {
1188                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1189                 unsigned long *p = memslot->dirty_bitmap +
1190                                         rel_gfn / BITS_PER_LONG;
1191                 int offset = rel_gfn % BITS_PER_LONG;
1192
1193                 /* avoid RMW */
1194                 if (!generic_test_le_bit(offset, p))
1195                         generic___set_le_bit(offset, p);
1196         }
1197 }
1198
1199 /*
1200  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1201  */
1202 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1203 {
1204         DEFINE_WAIT(wait);
1205
1206         for (;;) {
1207                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1208
1209                 if (kvm_arch_vcpu_runnable(vcpu)) {
1210                         set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1211                         break;
1212                 }
1213                 if (kvm_cpu_has_pending_timer(vcpu))
1214                         break;
1215                 if (signal_pending(current))
1216                         break;
1217
1218                 schedule();
1219         }
1220
1221         finish_wait(&vcpu->wq, &wait);
1222 }
1223
1224 void kvm_resched(struct kvm_vcpu *vcpu)
1225 {
1226         if (!need_resched())
1227                 return;
1228         cond_resched();
1229 }
1230 EXPORT_SYMBOL_GPL(kvm_resched);
1231
1232 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1233 {
1234         ktime_t expires;
1235         DEFINE_WAIT(wait);
1236
1237         prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1238
1239         /* Sleep for 100 us, and hope lock-holder got scheduled */
1240         expires = ktime_add_ns(ktime_get(), 100000UL);
1241         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1242
1243         finish_wait(&vcpu->wq, &wait);
1244 }
1245 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1246
1247 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1248 {
1249         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1250         struct page *page;
1251
1252         if (vmf->pgoff == 0)
1253                 page = virt_to_page(vcpu->run);
1254 #ifdef CONFIG_X86
1255         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1256                 page = virt_to_page(vcpu->arch.pio_data);
1257 #endif
1258 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1259         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1260                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1261 #endif
1262         else
1263                 return VM_FAULT_SIGBUS;
1264         get_page(page);
1265         vmf->page = page;
1266         return 0;
1267 }
1268
1269 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1270         .fault = kvm_vcpu_fault,
1271 };
1272
1273 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1274 {
1275         vma->vm_ops = &kvm_vcpu_vm_ops;
1276         return 0;
1277 }
1278
1279 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1280 {
1281         struct kvm_vcpu *vcpu = filp->private_data;
1282
1283         kvm_put_kvm(vcpu->kvm);
1284         return 0;
1285 }
1286
1287 static struct file_operations kvm_vcpu_fops = {
1288         .release        = kvm_vcpu_release,
1289         .unlocked_ioctl = kvm_vcpu_ioctl,
1290         .compat_ioctl   = kvm_vcpu_ioctl,
1291         .mmap           = kvm_vcpu_mmap,
1292 };
1293
1294 /*
1295  * Allocates an inode for the vcpu.
1296  */
1297 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1298 {
1299         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1300 }
1301
1302 /*
1303  * Creates some virtual cpus.  Good luck creating more than one.
1304  */
1305 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1306 {
1307         int r;
1308         struct kvm_vcpu *vcpu, *v;
1309
1310         vcpu = kvm_arch_vcpu_create(kvm, id);
1311         if (IS_ERR(vcpu))
1312                 return PTR_ERR(vcpu);
1313
1314         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1315
1316         r = kvm_arch_vcpu_setup(vcpu);
1317         if (r)
1318                 return r;
1319
1320         mutex_lock(&kvm->lock);
1321         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1322                 r = -EINVAL;
1323                 goto vcpu_destroy;
1324         }
1325
1326         kvm_for_each_vcpu(r, v, kvm)
1327                 if (v->vcpu_id == id) {
1328                         r = -EEXIST;
1329                         goto vcpu_destroy;
1330                 }
1331
1332         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1333
1334         /* Now it's all set up, let userspace reach it */
1335         kvm_get_kvm(kvm);
1336         r = create_vcpu_fd(vcpu);
1337         if (r < 0) {
1338                 kvm_put_kvm(kvm);
1339                 goto vcpu_destroy;
1340         }
1341
1342         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1343         smp_wmb();
1344         atomic_inc(&kvm->online_vcpus);
1345
1346 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1347         if (kvm->bsp_vcpu_id == id)
1348                 kvm->bsp_vcpu = vcpu;
1349 #endif
1350         mutex_unlock(&kvm->lock);
1351         return r;
1352
1353 vcpu_destroy:
1354         mutex_unlock(&kvm->lock);
1355         kvm_arch_vcpu_destroy(vcpu);
1356         return r;
1357 }
1358
1359 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1360 {
1361         if (sigset) {
1362                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1363                 vcpu->sigset_active = 1;
1364                 vcpu->sigset = *sigset;
1365         } else
1366                 vcpu->sigset_active = 0;
1367         return 0;
1368 }
1369
1370 static long kvm_vcpu_ioctl(struct file *filp,
1371                            unsigned int ioctl, unsigned long arg)
1372 {
1373         struct kvm_vcpu *vcpu = filp->private_data;
1374         void __user *argp = (void __user *)arg;
1375         int r;
1376         struct kvm_fpu *fpu = NULL;
1377         struct kvm_sregs *kvm_sregs = NULL;
1378
1379         if (vcpu->kvm->mm != current->mm)
1380                 return -EIO;
1381         switch (ioctl) {
1382         case KVM_RUN:
1383                 r = -EINVAL;
1384                 if (arg)
1385                         goto out;
1386                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1387                 break;
1388         case KVM_GET_REGS: {
1389                 struct kvm_regs *kvm_regs;
1390
1391                 r = -ENOMEM;
1392                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1393                 if (!kvm_regs)
1394                         goto out;
1395                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1396                 if (r)
1397                         goto out_free1;
1398                 r = -EFAULT;
1399                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1400                         goto out_free1;
1401                 r = 0;
1402 out_free1:
1403                 kfree(kvm_regs);
1404                 break;
1405         }
1406         case KVM_SET_REGS: {
1407                 struct kvm_regs *kvm_regs;
1408
1409                 r = -ENOMEM;
1410                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1411                 if (!kvm_regs)
1412                         goto out;
1413                 r = -EFAULT;
1414                 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1415                         goto out_free2;
1416                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1417                 if (r)
1418                         goto out_free2;
1419                 r = 0;
1420 out_free2:
1421                 kfree(kvm_regs);
1422                 break;
1423         }
1424         case KVM_GET_SREGS: {
1425                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1426                 r = -ENOMEM;
1427                 if (!kvm_sregs)
1428                         goto out;
1429                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1430                 if (r)
1431                         goto out;
1432                 r = -EFAULT;
1433                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1434                         goto out;
1435                 r = 0;
1436                 break;
1437         }
1438         case KVM_SET_SREGS: {
1439                 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1440                 r = -ENOMEM;
1441                 if (!kvm_sregs)
1442                         goto out;
1443                 r = -EFAULT;
1444                 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1445                         goto out;
1446                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1447                 if (r)
1448                         goto out;
1449                 r = 0;
1450                 break;
1451         }
1452         case KVM_GET_MP_STATE: {
1453                 struct kvm_mp_state mp_state;
1454
1455                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1456                 if (r)
1457                         goto out;
1458                 r = -EFAULT;
1459                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1460                         goto out;
1461                 r = 0;
1462                 break;
1463         }
1464         case KVM_SET_MP_STATE: {
1465                 struct kvm_mp_state mp_state;
1466
1467                 r = -EFAULT;
1468                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1469                         goto out;
1470                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1471                 if (r)
1472                         goto out;
1473                 r = 0;
1474                 break;
1475         }
1476         case KVM_TRANSLATE: {
1477                 struct kvm_translation tr;
1478
1479                 r = -EFAULT;
1480                 if (copy_from_user(&tr, argp, sizeof tr))
1481                         goto out;
1482                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1483                 if (r)
1484                         goto out;
1485                 r = -EFAULT;
1486                 if (copy_to_user(argp, &tr, sizeof tr))
1487                         goto out;
1488                 r = 0;
1489                 break;
1490         }
1491         case KVM_SET_GUEST_DEBUG: {
1492                 struct kvm_guest_debug dbg;
1493
1494                 r = -EFAULT;
1495                 if (copy_from_user(&dbg, argp, sizeof dbg))
1496                         goto out;
1497                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1498                 if (r)
1499                         goto out;
1500                 r = 0;
1501                 break;
1502         }
1503         case KVM_SET_SIGNAL_MASK: {
1504                 struct kvm_signal_mask __user *sigmask_arg = argp;
1505                 struct kvm_signal_mask kvm_sigmask;
1506                 sigset_t sigset, *p;
1507
1508                 p = NULL;
1509                 if (argp) {
1510                         r = -EFAULT;
1511                         if (copy_from_user(&kvm_sigmask, argp,
1512                                            sizeof kvm_sigmask))
1513                                 goto out;
1514                         r = -EINVAL;
1515                         if (kvm_sigmask.len != sizeof sigset)
1516                                 goto out;
1517                         r = -EFAULT;
1518                         if (copy_from_user(&sigset, sigmask_arg->sigset,
1519                                            sizeof sigset))
1520                                 goto out;
1521                         p = &sigset;
1522                 }
1523                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1524                 break;
1525         }
1526         case KVM_GET_FPU: {
1527                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1528                 r = -ENOMEM;
1529                 if (!fpu)
1530                         goto out;
1531                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1532                 if (r)
1533                         goto out;
1534                 r = -EFAULT;
1535                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1536                         goto out;
1537                 r = 0;
1538                 break;
1539         }
1540         case KVM_SET_FPU: {
1541                 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1542                 r = -ENOMEM;
1543                 if (!fpu)
1544                         goto out;
1545                 r = -EFAULT;
1546                 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1547                         goto out;
1548                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1549                 if (r)
1550                         goto out;
1551                 r = 0;
1552                 break;
1553         }
1554         default:
1555                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1556         }
1557 out:
1558         kfree(fpu);
1559         kfree(kvm_sregs);
1560         return r;
1561 }
1562
1563 static long kvm_vm_ioctl(struct file *filp,
1564                            unsigned int ioctl, unsigned long arg)
1565 {
1566         struct kvm *kvm = filp->private_data;
1567         void __user *argp = (void __user *)arg;
1568         int r;
1569
1570         if (kvm->mm != current->mm)
1571                 return -EIO;
1572         switch (ioctl) {
1573         case KVM_CREATE_VCPU:
1574                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1575                 if (r < 0)
1576                         goto out;
1577                 break;
1578         case KVM_SET_USER_MEMORY_REGION: {
1579                 struct kvm_userspace_memory_region kvm_userspace_mem;
1580
1581                 r = -EFAULT;
1582                 if (copy_from_user(&kvm_userspace_mem, argp,
1583                                                 sizeof kvm_userspace_mem))
1584                         goto out;
1585
1586                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1587                 if (r)
1588                         goto out;
1589                 break;
1590         }
1591         case KVM_GET_DIRTY_LOG: {
1592                 struct kvm_dirty_log log;
1593
1594                 r = -EFAULT;
1595                 if (copy_from_user(&log, argp, sizeof log))
1596                         goto out;
1597                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1598                 if (r)
1599                         goto out;
1600                 break;
1601         }
1602 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1603         case KVM_REGISTER_COALESCED_MMIO: {
1604                 struct kvm_coalesced_mmio_zone zone;
1605                 r = -EFAULT;
1606                 if (copy_from_user(&zone, argp, sizeof zone))
1607                         goto out;
1608                 r = -ENXIO;
1609                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1610                 if (r)
1611                         goto out;
1612                 r = 0;
1613                 break;
1614         }
1615         case KVM_UNREGISTER_COALESCED_MMIO: {
1616                 struct kvm_coalesced_mmio_zone zone;
1617                 r = -EFAULT;
1618                 if (copy_from_user(&zone, argp, sizeof zone))
1619                         goto out;
1620                 r = -ENXIO;
1621                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1622                 if (r)
1623                         goto out;
1624                 r = 0;
1625                 break;
1626         }
1627 #endif
1628         case KVM_IRQFD: {
1629                 struct kvm_irqfd data;
1630
1631                 r = -EFAULT;
1632                 if (copy_from_user(&data, argp, sizeof data))
1633                         goto out;
1634                 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1635                 break;
1636         }
1637         case KVM_IOEVENTFD: {
1638                 struct kvm_ioeventfd data;
1639
1640                 r = -EFAULT;
1641                 if (copy_from_user(&data, argp, sizeof data))
1642                         goto out;
1643                 r = kvm_ioeventfd(kvm, &data);
1644                 break;
1645         }
1646 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1647         case KVM_SET_BOOT_CPU_ID:
1648                 r = 0;
1649                 mutex_lock(&kvm->lock);
1650                 if (atomic_read(&kvm->online_vcpus) != 0)
1651                         r = -EBUSY;
1652                 else
1653                         kvm->bsp_vcpu_id = arg;
1654                 mutex_unlock(&kvm->lock);
1655                 break;
1656 #endif
1657         default:
1658                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1659                 if (r == -ENOTTY)
1660                         r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1661         }
1662 out:
1663         return r;
1664 }
1665
1666 #ifdef CONFIG_COMPAT
1667 struct compat_kvm_dirty_log {
1668         __u32 slot;
1669         __u32 padding1;
1670         union {
1671                 compat_uptr_t dirty_bitmap; /* one bit per page */
1672                 __u64 padding2;
1673         };
1674 };
1675
1676 static long kvm_vm_compat_ioctl(struct file *filp,
1677                            unsigned int ioctl, unsigned long arg)
1678 {
1679         struct kvm *kvm = filp->private_data;
1680         int r;
1681
1682         if (kvm->mm != current->mm)
1683                 return -EIO;
1684         switch (ioctl) {
1685         case KVM_GET_DIRTY_LOG: {
1686                 struct compat_kvm_dirty_log compat_log;
1687                 struct kvm_dirty_log log;
1688
1689                 r = -EFAULT;
1690                 if (copy_from_user(&compat_log, (void __user *)arg,
1691                                    sizeof(compat_log)))
1692                         goto out;
1693                 log.slot         = compat_log.slot;
1694                 log.padding1     = compat_log.padding1;
1695                 log.padding2     = compat_log.padding2;
1696                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1697
1698                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1699                 if (r)
1700                         goto out;
1701                 break;
1702         }
1703         default:
1704                 r = kvm_vm_ioctl(filp, ioctl, arg);
1705         }
1706
1707 out:
1708         return r;
1709 }
1710 #endif
1711
1712 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1713 {
1714         struct page *page[1];
1715         unsigned long addr;
1716         int npages;
1717         gfn_t gfn = vmf->pgoff;
1718         struct kvm *kvm = vma->vm_file->private_data;
1719
1720         addr = gfn_to_hva(kvm, gfn);
1721         if (kvm_is_error_hva(addr))
1722                 return VM_FAULT_SIGBUS;
1723
1724         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1725                                 NULL);
1726         if (unlikely(npages != 1))
1727                 return VM_FAULT_SIGBUS;
1728
1729         vmf->page = page[0];
1730         return 0;
1731 }
1732
1733 static const struct vm_operations_struct kvm_vm_vm_ops = {
1734         .fault = kvm_vm_fault,
1735 };
1736
1737 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1738 {
1739         vma->vm_ops = &kvm_vm_vm_ops;
1740         return 0;
1741 }
1742
1743 static struct file_operations kvm_vm_fops = {
1744         .release        = kvm_vm_release,
1745         .unlocked_ioctl = kvm_vm_ioctl,
1746 #ifdef CONFIG_COMPAT
1747         .compat_ioctl   = kvm_vm_compat_ioctl,
1748 #endif
1749         .mmap           = kvm_vm_mmap,
1750 };
1751
1752 static int kvm_dev_ioctl_create_vm(void)
1753 {
1754         int fd;
1755         struct kvm *kvm;
1756
1757         kvm = kvm_create_vm();
1758         if (IS_ERR(kvm))
1759                 return PTR_ERR(kvm);
1760         fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1761         if (fd < 0)
1762                 kvm_put_kvm(kvm);
1763
1764         return fd;
1765 }
1766
1767 static long kvm_dev_ioctl_check_extension_generic(long arg)
1768 {
1769         switch (arg) {
1770         case KVM_CAP_USER_MEMORY:
1771         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1772         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1773 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1774         case KVM_CAP_SET_BOOT_CPU_ID:
1775 #endif
1776         case KVM_CAP_INTERNAL_ERROR_DATA:
1777                 return 1;
1778 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1779         case KVM_CAP_IRQ_ROUTING:
1780                 return KVM_MAX_IRQ_ROUTES;
1781 #endif
1782         default:
1783                 break;
1784         }
1785         return kvm_dev_ioctl_check_extension(arg);
1786 }
1787
1788 static long kvm_dev_ioctl(struct file *filp,
1789                           unsigned int ioctl, unsigned long arg)
1790 {
1791         long r = -EINVAL;
1792
1793         switch (ioctl) {
1794         case KVM_GET_API_VERSION:
1795                 r = -EINVAL;
1796                 if (arg)
1797                         goto out;
1798                 r = KVM_API_VERSION;
1799                 break;
1800         case KVM_CREATE_VM:
1801                 r = -EINVAL;
1802                 if (arg)
1803                         goto out;
1804                 r = kvm_dev_ioctl_create_vm();
1805                 break;
1806         case KVM_CHECK_EXTENSION:
1807                 r = kvm_dev_ioctl_check_extension_generic(arg);
1808                 break;
1809         case KVM_GET_VCPU_MMAP_SIZE:
1810                 r = -EINVAL;
1811                 if (arg)
1812                         goto out;
1813                 r = PAGE_SIZE;     /* struct kvm_run */
1814 #ifdef CONFIG_X86
1815                 r += PAGE_SIZE;    /* pio data page */
1816 #endif
1817 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1818                 r += PAGE_SIZE;    /* coalesced mmio ring page */
1819 #endif
1820                 break;
1821         case KVM_TRACE_ENABLE:
1822         case KVM_TRACE_PAUSE:
1823         case KVM_TRACE_DISABLE:
1824                 r = -EOPNOTSUPP;
1825                 break;
1826         default:
1827                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1828         }
1829 out:
1830         return r;
1831 }
1832
1833 static struct file_operations kvm_chardev_ops = {
1834         .unlocked_ioctl = kvm_dev_ioctl,
1835         .compat_ioctl   = kvm_dev_ioctl,
1836 };
1837
1838 static struct miscdevice kvm_dev = {
1839         KVM_MINOR,
1840         "kvm",
1841         &kvm_chardev_ops,
1842 };
1843
1844 static void hardware_enable(void *junk)
1845 {
1846         int cpu = raw_smp_processor_id();
1847         int r;
1848
1849         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1850                 return;
1851
1852         cpumask_set_cpu(cpu, cpus_hardware_enabled);
1853
1854         r = kvm_arch_hardware_enable(NULL);
1855
1856         if (r) {
1857                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1858                 atomic_inc(&hardware_enable_failed);
1859                 printk(KERN_INFO "kvm: enabling virtualization on "
1860                                  "CPU%d failed\n", cpu);
1861         }
1862 }
1863
1864 static void hardware_disable(void *junk)
1865 {
1866         int cpu = raw_smp_processor_id();
1867
1868         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1869                 return;
1870         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1871         kvm_arch_hardware_disable(NULL);
1872 }
1873
1874 static void hardware_disable_all_nolock(void)
1875 {
1876         BUG_ON(!kvm_usage_count);
1877
1878         kvm_usage_count--;
1879         if (!kvm_usage_count)
1880                 on_each_cpu(hardware_disable, NULL, 1);
1881 }
1882
1883 static void hardware_disable_all(void)
1884 {
1885         spin_lock(&kvm_lock);
1886         hardware_disable_all_nolock();
1887         spin_unlock(&kvm_lock);
1888 }
1889
1890 static int hardware_enable_all(void)
1891 {
1892         int r = 0;
1893
1894         spin_lock(&kvm_lock);
1895
1896         kvm_usage_count++;
1897         if (kvm_usage_count == 1) {
1898                 atomic_set(&hardware_enable_failed, 0);
1899                 on_each_cpu(hardware_enable, NULL, 1);
1900
1901                 if (atomic_read(&hardware_enable_failed)) {
1902                         hardware_disable_all_nolock();
1903                         r = -EBUSY;
1904                 }
1905         }
1906
1907         spin_unlock(&kvm_lock);
1908
1909         return r;
1910 }
1911
1912 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1913                            void *v)
1914 {
1915         int cpu = (long)v;
1916
1917         if (!kvm_usage_count)
1918                 return NOTIFY_OK;
1919
1920         val &= ~CPU_TASKS_FROZEN;
1921         switch (val) {
1922         case CPU_DYING:
1923                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1924                        cpu);
1925                 hardware_disable(NULL);
1926                 break;
1927         case CPU_UP_CANCELED:
1928                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1929                        cpu);
1930                 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1931                 break;
1932         case CPU_ONLINE:
1933                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1934                        cpu);
1935                 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1936                 break;
1937         }
1938         return NOTIFY_OK;
1939 }
1940
1941
1942 asmlinkage void kvm_handle_fault_on_reboot(void)
1943 {
1944         if (kvm_rebooting)
1945                 /* spin while reset goes on */
1946                 while (true)
1947                         ;
1948         /* Fault while not rebooting.  We want the trace. */
1949         BUG();
1950 }
1951 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1952
1953 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1954                       void *v)
1955 {
1956         /*
1957          * Some (well, at least mine) BIOSes hang on reboot if
1958          * in vmx root mode.
1959          *
1960          * And Intel TXT required VMX off for all cpu when system shutdown.
1961          */
1962         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1963         kvm_rebooting = true;
1964         on_each_cpu(hardware_disable, NULL, 1);
1965         return NOTIFY_OK;
1966 }
1967
1968 static struct notifier_block kvm_reboot_notifier = {
1969         .notifier_call = kvm_reboot,
1970         .priority = 0,
1971 };
1972
1973 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1974 {
1975         int i;
1976
1977         for (i = 0; i < bus->dev_count; i++) {
1978                 struct kvm_io_device *pos = bus->devs[i];
1979
1980                 kvm_iodevice_destructor(pos);
1981         }
1982         kfree(bus);
1983 }
1984
1985 /* kvm_io_bus_write - called under kvm->slots_lock */
1986 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
1987                      int len, const void *val)
1988 {
1989         int i;
1990         struct kvm_io_bus *bus = rcu_dereference(kvm->buses[bus_idx]);
1991         for (i = 0; i < bus->dev_count; i++)
1992                 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
1993                         return 0;
1994         return -EOPNOTSUPP;
1995 }
1996
1997 /* kvm_io_bus_read - called under kvm->slots_lock */
1998 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
1999                     int len, void *val)
2000 {
2001         int i;
2002         struct kvm_io_bus *bus = rcu_dereference(kvm->buses[bus_idx]);
2003
2004         for (i = 0; i < bus->dev_count; i++)
2005                 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2006                         return 0;
2007         return -EOPNOTSUPP;
2008 }
2009
2010 /* Caller must hold slots_lock. */
2011 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2012                             struct kvm_io_device *dev)
2013 {
2014         struct kvm_io_bus *new_bus, *bus;
2015
2016         bus = kvm->buses[bus_idx];
2017         if (bus->dev_count > NR_IOBUS_DEVS-1)
2018                 return -ENOSPC;
2019
2020         new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2021         if (!new_bus)
2022                 return -ENOMEM;
2023         memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2024         new_bus->devs[new_bus->dev_count++] = dev;
2025         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2026         synchronize_srcu_expedited(&kvm->srcu);
2027         kfree(bus);
2028
2029         return 0;
2030 }
2031
2032 /* Caller must hold slots_lock. */
2033 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2034                               struct kvm_io_device *dev)
2035 {
2036         int i, r;
2037         struct kvm_io_bus *new_bus, *bus;
2038
2039         new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2040         if (!new_bus)
2041                 return -ENOMEM;
2042
2043         bus = kvm->buses[bus_idx];
2044         memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2045
2046         r = -ENOENT;
2047         for (i = 0; i < new_bus->dev_count; i++)
2048                 if (new_bus->devs[i] == dev) {
2049                         r = 0;
2050                         new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2051                         break;
2052                 }
2053
2054         if (r) {
2055                 kfree(new_bus);
2056                 return r;
2057         }
2058
2059         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2060         synchronize_srcu_expedited(&kvm->srcu);
2061         kfree(bus);
2062         return r;
2063 }
2064
2065 static struct notifier_block kvm_cpu_notifier = {
2066         .notifier_call = kvm_cpu_hotplug,
2067         .priority = 20, /* must be > scheduler priority */
2068 };
2069
2070 static int vm_stat_get(void *_offset, u64 *val)
2071 {
2072         unsigned offset = (long)_offset;
2073         struct kvm *kvm;
2074
2075         *val = 0;
2076         spin_lock(&kvm_lock);
2077         list_for_each_entry(kvm, &vm_list, vm_list)
2078                 *val += *(u32 *)((void *)kvm + offset);
2079         spin_unlock(&kvm_lock);
2080         return 0;
2081 }
2082
2083 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2084
2085 static int vcpu_stat_get(void *_offset, u64 *val)
2086 {
2087         unsigned offset = (long)_offset;
2088         struct kvm *kvm;
2089         struct kvm_vcpu *vcpu;
2090         int i;
2091
2092         *val = 0;
2093         spin_lock(&kvm_lock);
2094         list_for_each_entry(kvm, &vm_list, vm_list)
2095                 kvm_for_each_vcpu(i, vcpu, kvm)
2096                         *val += *(u32 *)((void *)vcpu + offset);
2097
2098         spin_unlock(&kvm_lock);
2099         return 0;
2100 }
2101
2102 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2103
2104 static const struct file_operations *stat_fops[] = {
2105         [KVM_STAT_VCPU] = &vcpu_stat_fops,
2106         [KVM_STAT_VM]   = &vm_stat_fops,
2107 };
2108
2109 static void kvm_init_debug(void)
2110 {
2111         struct kvm_stats_debugfs_item *p;
2112
2113         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2114         for (p = debugfs_entries; p->name; ++p)
2115                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2116                                                 (void *)(long)p->offset,
2117                                                 stat_fops[p->kind]);
2118 }
2119
2120 static void kvm_exit_debug(void)
2121 {
2122         struct kvm_stats_debugfs_item *p;
2123
2124         for (p = debugfs_entries; p->name; ++p)
2125                 debugfs_remove(p->dentry);
2126         debugfs_remove(kvm_debugfs_dir);
2127 }
2128
2129 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2130 {
2131         if (kvm_usage_count)
2132                 hardware_disable(NULL);
2133         return 0;
2134 }
2135
2136 static int kvm_resume(struct sys_device *dev)
2137 {
2138         if (kvm_usage_count)
2139                 hardware_enable(NULL);
2140         return 0;
2141 }
2142
2143 static struct sysdev_class kvm_sysdev_class = {
2144         .name = "kvm",
2145         .suspend = kvm_suspend,
2146         .resume = kvm_resume,
2147 };
2148
2149 static struct sys_device kvm_sysdev = {
2150         .id = 0,
2151         .cls = &kvm_sysdev_class,
2152 };
2153
2154 struct page *bad_page;
2155 pfn_t bad_pfn;
2156
2157 static inline
2158 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2159 {
2160         return container_of(pn, struct kvm_vcpu, preempt_notifier);
2161 }
2162
2163 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2164 {
2165         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2166
2167         kvm_arch_vcpu_load(vcpu, cpu);
2168 }
2169
2170 static void kvm_sched_out(struct preempt_notifier *pn,
2171                           struct task_struct *next)
2172 {
2173         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2174
2175         kvm_arch_vcpu_put(vcpu);
2176 }
2177
2178 int kvm_init(void *opaque, unsigned int vcpu_size,
2179                   struct module *module)
2180 {
2181         int r;
2182         int cpu;
2183
2184         r = kvm_arch_init(opaque);
2185         if (r)
2186                 goto out_fail;
2187
2188         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2189
2190         if (bad_page == NULL) {
2191                 r = -ENOMEM;
2192                 goto out;
2193         }
2194
2195         bad_pfn = page_to_pfn(bad_page);
2196
2197         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2198                 r = -ENOMEM;
2199                 goto out_free_0;
2200         }
2201
2202         r = kvm_arch_hardware_setup();
2203         if (r < 0)
2204                 goto out_free_0a;
2205
2206         for_each_online_cpu(cpu) {
2207                 smp_call_function_single(cpu,
2208                                 kvm_arch_check_processor_compat,
2209                                 &r, 1);
2210                 if (r < 0)
2211                         goto out_free_1;
2212         }
2213
2214         r = register_cpu_notifier(&kvm_cpu_notifier);
2215         if (r)
2216                 goto out_free_2;
2217         register_reboot_notifier(&kvm_reboot_notifier);
2218
2219         r = sysdev_class_register(&kvm_sysdev_class);
2220         if (r)
2221                 goto out_free_3;
2222
2223         r = sysdev_register(&kvm_sysdev);
2224         if (r)
2225                 goto out_free_4;
2226
2227         /* A kmem cache lets us meet the alignment requirements of fx_save. */
2228         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2229                                            __alignof__(struct kvm_vcpu),
2230                                            0, NULL);
2231         if (!kvm_vcpu_cache) {
2232                 r = -ENOMEM;
2233                 goto out_free_5;
2234         }
2235
2236         kvm_chardev_ops.owner = module;
2237         kvm_vm_fops.owner = module;
2238         kvm_vcpu_fops.owner = module;
2239
2240         r = misc_register(&kvm_dev);
2241         if (r) {
2242                 printk(KERN_ERR "kvm: misc device register failed\n");
2243                 goto out_free;
2244         }
2245
2246         kvm_preempt_ops.sched_in = kvm_sched_in;
2247         kvm_preempt_ops.sched_out = kvm_sched_out;
2248
2249         kvm_init_debug();
2250
2251         return 0;
2252
2253 out_free:
2254         kmem_cache_destroy(kvm_vcpu_cache);
2255 out_free_5:
2256         sysdev_unregister(&kvm_sysdev);
2257 out_free_4:
2258         sysdev_class_unregister(&kvm_sysdev_class);
2259 out_free_3:
2260         unregister_reboot_notifier(&kvm_reboot_notifier);
2261         unregister_cpu_notifier(&kvm_cpu_notifier);
2262 out_free_2:
2263 out_free_1:
2264         kvm_arch_hardware_unsetup();
2265 out_free_0a:
2266         free_cpumask_var(cpus_hardware_enabled);
2267 out_free_0:
2268         __free_page(bad_page);
2269 out:
2270         kvm_arch_exit();
2271 out_fail:
2272         return r;
2273 }
2274 EXPORT_SYMBOL_GPL(kvm_init);
2275
2276 void kvm_exit(void)
2277 {
2278         tracepoint_synchronize_unregister();
2279         kvm_exit_debug();
2280         misc_deregister(&kvm_dev);
2281         kmem_cache_destroy(kvm_vcpu_cache);
2282         sysdev_unregister(&kvm_sysdev);
2283         sysdev_class_unregister(&kvm_sysdev_class);
2284         unregister_reboot_notifier(&kvm_reboot_notifier);
2285         unregister_cpu_notifier(&kvm_cpu_notifier);
2286         on_each_cpu(hardware_disable, NULL, 1);
2287         kvm_arch_hardware_unsetup();
2288         kvm_arch_exit();
2289         free_cpumask_var(cpus_hardware_enabled);
2290         __free_page(bad_page);
2291 }
2292 EXPORT_SYMBOL_GPL(kvm_exit);