md: rename "mdk_personality" to "md_personality"
[linux-flexiantxendom0.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160         struct mddev *mddev, **mddevp;
161
162         mddevp = (void*)bio;
163         mddev = mddevp[-1];
164
165         bio_free(bio, mddev->bio_set);
166 }
167
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169                             struct mddev *mddev)
170 {
171         struct bio *b;
172         struct mddev **mddevp;
173
174         if (!mddev || !mddev->bio_set)
175                 return bio_alloc(gfp_mask, nr_iovecs);
176
177         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178                              mddev->bio_set);
179         if (!b)
180                 return NULL;
181         mddevp = (void*)b;
182         mddevp[-1] = mddev;
183         b->bi_destructor = mddev_bio_destructor;
184         return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189                             struct mddev *mddev)
190 {
191         struct bio *b;
192         struct mddev **mddevp;
193
194         if (!mddev || !mddev->bio_set)
195                 return bio_clone(bio, gfp_mask);
196
197         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198                              mddev->bio_set);
199         if (!b)
200                 return NULL;
201         mddevp = (void*)b;
202         mddevp[-1] = mddev;
203         b->bi_destructor = mddev_bio_destructor;
204         __bio_clone(b, bio);
205         if (bio_integrity(bio)) {
206                 int ret;
207
208                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209
210                 if (ret < 0) {
211                         bio_put(b);
212                         return NULL;
213                 }
214         }
215
216         return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222         /* 'bio' is a cloned bio which we need to trim to match
223          * the given offset and size.
224          * This requires adjusting bi_sector, bi_size, and bi_io_vec
225          */
226         int i;
227         struct bio_vec *bvec;
228         int sofar = 0;
229
230         size <<= 9;
231         if (offset == 0 && size == bio->bi_size)
232                 return;
233
234         bio->bi_sector += offset;
235         bio->bi_size = size;
236         offset <<= 9;
237         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238
239         while (bio->bi_idx < bio->bi_vcnt &&
240                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241                 /* remove this whole bio_vec */
242                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243                 bio->bi_idx++;
244         }
245         if (bio->bi_idx < bio->bi_vcnt) {
246                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248         }
249         /* avoid any complications with bi_idx being non-zero*/
250         if (bio->bi_idx) {
251                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253                 bio->bi_vcnt -= bio->bi_idx;
254                 bio->bi_idx = 0;
255         }
256         /* Make sure vcnt and last bv are not too big */
257         bio_for_each_segment(bvec, bio, i) {
258                 if (sofar + bvec->bv_len > size)
259                         bvec->bv_len = size - sofar;
260                 if (bvec->bv_len == 0) {
261                         bio->bi_vcnt = i;
262                         break;
263                 }
264                 sofar += bvec->bv_len;
265         }
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268
269 /*
270  * We have a system wide 'event count' that is incremented
271  * on any 'interesting' event, and readers of /proc/mdstat
272  * can use 'poll' or 'select' to find out when the event
273  * count increases.
274  *
275  * Events are:
276  *  start array, stop array, error, add device, remove device,
277  *  start build, activate spare
278  */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283         atomic_inc(&md_event_count);
284         wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287
288 /* Alternate version that can be called from interrupts
289  * when calling sysfs_notify isn't needed.
290  */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293         atomic_inc(&md_event_count);
294         wake_up(&md_event_waiters);
295 }
296
297 /*
298  * Enables to iterate over all existing md arrays
299  * all_mddevs_lock protects this list.
300  */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303
304
305 /*
306  * iterates through all used mddevs in the system.
307  * We take care to grab the all_mddevs_lock whenever navigating
308  * the list, and to always hold a refcount when unlocked.
309  * Any code which breaks out of this loop while own
310  * a reference to the current mddev and must mddev_put it.
311  */
312 #define for_each_mddev(_mddev,_tmp)                                     \
313                                                                         \
314         for (({ spin_lock(&all_mddevs_lock);                            \
315                 _tmp = all_mddevs.next;                                 \
316                 _mddev = NULL;});                                       \
317              ({ if (_tmp != &all_mddevs)                                \
318                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319                 spin_unlock(&all_mddevs_lock);                          \
320                 if (_mddev) mddev_put(_mddev);                          \
321                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
322                 _tmp != &all_mddevs;});                                 \
323              ({ spin_lock(&all_mddevs_lock);                            \
324                 _tmp = _tmp->next;})                                    \
325                 )
326
327
328 /* Rather than calling directly into the personality make_request function,
329  * IO requests come here first so that we can check if the device is
330  * being suspended pending a reconfiguration.
331  * We hold a refcount over the call to ->make_request.  By the time that
332  * call has finished, the bio has been linked into some internal structure
333  * and so is visible to ->quiesce(), so we don't need the refcount any more.
334  */
335 static int md_make_request(struct request_queue *q, struct bio *bio)
336 {
337         const int rw = bio_data_dir(bio);
338         struct mddev *mddev = q->queuedata;
339         int rv;
340         int cpu;
341         unsigned int sectors;
342
343         if (mddev == NULL || mddev->pers == NULL
344             || !mddev->ready) {
345                 bio_io_error(bio);
346                 return 0;
347         }
348         smp_rmb(); /* Ensure implications of  'active' are visible */
349         rcu_read_lock();
350         if (mddev->suspended) {
351                 DEFINE_WAIT(__wait);
352                 for (;;) {
353                         prepare_to_wait(&mddev->sb_wait, &__wait,
354                                         TASK_UNINTERRUPTIBLE);
355                         if (!mddev->suspended)
356                                 break;
357                         rcu_read_unlock();
358                         schedule();
359                         rcu_read_lock();
360                 }
361                 finish_wait(&mddev->sb_wait, &__wait);
362         }
363         atomic_inc(&mddev->active_io);
364         rcu_read_unlock();
365
366         /*
367          * save the sectors now since our bio can
368          * go away inside make_request
369          */
370         sectors = bio_sectors(bio);
371         rv = mddev->pers->make_request(mddev, bio);
372
373         cpu = part_stat_lock();
374         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
375         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
376         part_stat_unlock();
377
378         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
379                 wake_up(&mddev->sb_wait);
380
381         return rv;
382 }
383
384 /* mddev_suspend makes sure no new requests are submitted
385  * to the device, and that any requests that have been submitted
386  * are completely handled.
387  * Once ->stop is called and completes, the module will be completely
388  * unused.
389  */
390 void mddev_suspend(struct mddev *mddev)
391 {
392         BUG_ON(mddev->suspended);
393         mddev->suspended = 1;
394         synchronize_rcu();
395         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
396         mddev->pers->quiesce(mddev, 1);
397 }
398 EXPORT_SYMBOL_GPL(mddev_suspend);
399
400 void mddev_resume(struct mddev *mddev)
401 {
402         mddev->suspended = 0;
403         wake_up(&mddev->sb_wait);
404         mddev->pers->quiesce(mddev, 0);
405
406         md_wakeup_thread(mddev->thread);
407         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
408 }
409 EXPORT_SYMBOL_GPL(mddev_resume);
410
411 int mddev_congested(struct mddev *mddev, int bits)
412 {
413         return mddev->suspended;
414 }
415 EXPORT_SYMBOL(mddev_congested);
416
417 /*
418  * Generic flush handling for md
419  */
420
421 static void md_end_flush(struct bio *bio, int err)
422 {
423         struct md_rdev *rdev = bio->bi_private;
424         struct mddev *mddev = rdev->mddev;
425
426         rdev_dec_pending(rdev, mddev);
427
428         if (atomic_dec_and_test(&mddev->flush_pending)) {
429                 /* The pre-request flush has finished */
430                 queue_work(md_wq, &mddev->flush_work);
431         }
432         bio_put(bio);
433 }
434
435 static void md_submit_flush_data(struct work_struct *ws);
436
437 static void submit_flushes(struct work_struct *ws)
438 {
439         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440         struct md_rdev *rdev;
441
442         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
443         atomic_set(&mddev->flush_pending, 1);
444         rcu_read_lock();
445         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
446                 if (rdev->raid_disk >= 0 &&
447                     !test_bit(Faulty, &rdev->flags)) {
448                         /* Take two references, one is dropped
449                          * when request finishes, one after
450                          * we reclaim rcu_read_lock
451                          */
452                         struct bio *bi;
453                         atomic_inc(&rdev->nr_pending);
454                         atomic_inc(&rdev->nr_pending);
455                         rcu_read_unlock();
456                         bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
457                         bi->bi_end_io = md_end_flush;
458                         bi->bi_private = rdev;
459                         bi->bi_bdev = rdev->bdev;
460                         atomic_inc(&mddev->flush_pending);
461                         submit_bio(WRITE_FLUSH, bi);
462                         rcu_read_lock();
463                         rdev_dec_pending(rdev, mddev);
464                 }
465         rcu_read_unlock();
466         if (atomic_dec_and_test(&mddev->flush_pending))
467                 queue_work(md_wq, &mddev->flush_work);
468 }
469
470 static void md_submit_flush_data(struct work_struct *ws)
471 {
472         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
473         struct bio *bio = mddev->flush_bio;
474
475         if (bio->bi_size == 0)
476                 /* an empty barrier - all done */
477                 bio_endio(bio, 0);
478         else {
479                 bio->bi_rw &= ~REQ_FLUSH;
480                 if (mddev->pers->make_request(mddev, bio))
481                         generic_make_request(bio);
482         }
483
484         mddev->flush_bio = NULL;
485         wake_up(&mddev->sb_wait);
486 }
487
488 void md_flush_request(struct mddev *mddev, struct bio *bio)
489 {
490         spin_lock_irq(&mddev->write_lock);
491         wait_event_lock_irq(mddev->sb_wait,
492                             !mddev->flush_bio,
493                             mddev->write_lock, /*nothing*/);
494         mddev->flush_bio = bio;
495         spin_unlock_irq(&mddev->write_lock);
496
497         INIT_WORK(&mddev->flush_work, submit_flushes);
498         queue_work(md_wq, &mddev->flush_work);
499 }
500 EXPORT_SYMBOL(md_flush_request);
501
502 /* Support for plugging.
503  * This mirrors the plugging support in request_queue, but does not
504  * require having a whole queue or request structures.
505  * We allocate an md_plug_cb for each md device and each thread it gets
506  * plugged on.  This links tot the private plug_handle structure in the
507  * personality data where we keep a count of the number of outstanding
508  * plugs so other code can see if a plug is active.
509  */
510 struct md_plug_cb {
511         struct blk_plug_cb cb;
512         struct mddev *mddev;
513 };
514
515 static void plugger_unplug(struct blk_plug_cb *cb)
516 {
517         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
518         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
519                 md_wakeup_thread(mdcb->mddev->thread);
520         kfree(mdcb);
521 }
522
523 /* Check that an unplug wakeup will come shortly.
524  * If not, wakeup the md thread immediately
525  */
526 int mddev_check_plugged(struct mddev *mddev)
527 {
528         struct blk_plug *plug = current->plug;
529         struct md_plug_cb *mdcb;
530
531         if (!plug)
532                 return 0;
533
534         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
535                 if (mdcb->cb.callback == plugger_unplug &&
536                     mdcb->mddev == mddev) {
537                         /* Already on the list, move to top */
538                         if (mdcb != list_first_entry(&plug->cb_list,
539                                                     struct md_plug_cb,
540                                                     cb.list))
541                                 list_move(&mdcb->cb.list, &plug->cb_list);
542                         return 1;
543                 }
544         }
545         /* Not currently on the callback list */
546         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
547         if (!mdcb)
548                 return 0;
549
550         mdcb->mddev = mddev;
551         mdcb->cb.callback = plugger_unplug;
552         atomic_inc(&mddev->plug_cnt);
553         list_add(&mdcb->cb.list, &plug->cb_list);
554         return 1;
555 }
556 EXPORT_SYMBOL_GPL(mddev_check_plugged);
557
558 static inline struct mddev *mddev_get(struct mddev *mddev)
559 {
560         atomic_inc(&mddev->active);
561         return mddev;
562 }
563
564 static void mddev_delayed_delete(struct work_struct *ws);
565
566 static void mddev_put(struct mddev *mddev)
567 {
568         struct bio_set *bs = NULL;
569
570         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
571                 return;
572         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
573             mddev->ctime == 0 && !mddev->hold_active) {
574                 /* Array is not configured at all, and not held active,
575                  * so destroy it */
576                 list_del(&mddev->all_mddevs);
577                 bs = mddev->bio_set;
578                 mddev->bio_set = NULL;
579                 if (mddev->gendisk) {
580                         /* We did a probe so need to clean up.  Call
581                          * queue_work inside the spinlock so that
582                          * flush_workqueue() after mddev_find will
583                          * succeed in waiting for the work to be done.
584                          */
585                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
586                         queue_work(md_misc_wq, &mddev->del_work);
587                 } else
588                         kfree(mddev);
589         }
590         spin_unlock(&all_mddevs_lock);
591         if (bs)
592                 bioset_free(bs);
593 }
594
595 void mddev_init(struct mddev *mddev)
596 {
597         mutex_init(&mddev->open_mutex);
598         mutex_init(&mddev->reconfig_mutex);
599         mutex_init(&mddev->bitmap_info.mutex);
600         INIT_LIST_HEAD(&mddev->disks);
601         INIT_LIST_HEAD(&mddev->all_mddevs);
602         init_timer(&mddev->safemode_timer);
603         atomic_set(&mddev->active, 1);
604         atomic_set(&mddev->openers, 0);
605         atomic_set(&mddev->active_io, 0);
606         atomic_set(&mddev->plug_cnt, 0);
607         spin_lock_init(&mddev->write_lock);
608         atomic_set(&mddev->flush_pending, 0);
609         init_waitqueue_head(&mddev->sb_wait);
610         init_waitqueue_head(&mddev->recovery_wait);
611         mddev->reshape_position = MaxSector;
612         mddev->resync_min = 0;
613         mddev->resync_max = MaxSector;
614         mddev->level = LEVEL_NONE;
615 }
616 EXPORT_SYMBOL_GPL(mddev_init);
617
618 static struct mddev * mddev_find(dev_t unit)
619 {
620         struct mddev *mddev, *new = NULL;
621
622         if (unit && MAJOR(unit) != MD_MAJOR)
623                 unit &= ~((1<<MdpMinorShift)-1);
624
625  retry:
626         spin_lock(&all_mddevs_lock);
627
628         if (unit) {
629                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
630                         if (mddev->unit == unit) {
631                                 mddev_get(mddev);
632                                 spin_unlock(&all_mddevs_lock);
633                                 kfree(new);
634                                 return mddev;
635                         }
636
637                 if (new) {
638                         list_add(&new->all_mddevs, &all_mddevs);
639                         spin_unlock(&all_mddevs_lock);
640                         new->hold_active = UNTIL_IOCTL;
641                         return new;
642                 }
643         } else if (new) {
644                 /* find an unused unit number */
645                 static int next_minor = 512;
646                 int start = next_minor;
647                 int is_free = 0;
648                 int dev = 0;
649                 while (!is_free) {
650                         dev = MKDEV(MD_MAJOR, next_minor);
651                         next_minor++;
652                         if (next_minor > MINORMASK)
653                                 next_minor = 0;
654                         if (next_minor == start) {
655                                 /* Oh dear, all in use. */
656                                 spin_unlock(&all_mddevs_lock);
657                                 kfree(new);
658                                 return NULL;
659                         }
660                                 
661                         is_free = 1;
662                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
663                                 if (mddev->unit == dev) {
664                                         is_free = 0;
665                                         break;
666                                 }
667                 }
668                 new->unit = dev;
669                 new->md_minor = MINOR(dev);
670                 new->hold_active = UNTIL_STOP;
671                 list_add(&new->all_mddevs, &all_mddevs);
672                 spin_unlock(&all_mddevs_lock);
673                 return new;
674         }
675         spin_unlock(&all_mddevs_lock);
676
677         new = kzalloc(sizeof(*new), GFP_KERNEL);
678         if (!new)
679                 return NULL;
680
681         new->unit = unit;
682         if (MAJOR(unit) == MD_MAJOR)
683                 new->md_minor = MINOR(unit);
684         else
685                 new->md_minor = MINOR(unit) >> MdpMinorShift;
686
687         mddev_init(new);
688
689         goto retry;
690 }
691
692 static inline int mddev_lock(struct mddev * mddev)
693 {
694         return mutex_lock_interruptible(&mddev->reconfig_mutex);
695 }
696
697 static inline int mddev_is_locked(struct mddev *mddev)
698 {
699         return mutex_is_locked(&mddev->reconfig_mutex);
700 }
701
702 static inline int mddev_trylock(struct mddev * mddev)
703 {
704         return mutex_trylock(&mddev->reconfig_mutex);
705 }
706
707 static struct attribute_group md_redundancy_group;
708
709 static void mddev_unlock(struct mddev * mddev)
710 {
711         if (mddev->to_remove) {
712                 /* These cannot be removed under reconfig_mutex as
713                  * an access to the files will try to take reconfig_mutex
714                  * while holding the file unremovable, which leads to
715                  * a deadlock.
716                  * So hold set sysfs_active while the remove in happeing,
717                  * and anything else which might set ->to_remove or my
718                  * otherwise change the sysfs namespace will fail with
719                  * -EBUSY if sysfs_active is still set.
720                  * We set sysfs_active under reconfig_mutex and elsewhere
721                  * test it under the same mutex to ensure its correct value
722                  * is seen.
723                  */
724                 struct attribute_group *to_remove = mddev->to_remove;
725                 mddev->to_remove = NULL;
726                 mddev->sysfs_active = 1;
727                 mutex_unlock(&mddev->reconfig_mutex);
728
729                 if (mddev->kobj.sd) {
730                         if (to_remove != &md_redundancy_group)
731                                 sysfs_remove_group(&mddev->kobj, to_remove);
732                         if (mddev->pers == NULL ||
733                             mddev->pers->sync_request == NULL) {
734                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
735                                 if (mddev->sysfs_action)
736                                         sysfs_put(mddev->sysfs_action);
737                                 mddev->sysfs_action = NULL;
738                         }
739                 }
740                 mddev->sysfs_active = 0;
741         } else
742                 mutex_unlock(&mddev->reconfig_mutex);
743
744         /* was we've dropped the mutex we need a spinlock to
745          * make sur the thread doesn't disappear
746          */
747         spin_lock(&pers_lock);
748         md_wakeup_thread(mddev->thread);
749         spin_unlock(&pers_lock);
750 }
751
752 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
753 {
754         struct md_rdev *rdev;
755
756         list_for_each_entry(rdev, &mddev->disks, same_set)
757                 if (rdev->desc_nr == nr)
758                         return rdev;
759
760         return NULL;
761 }
762
763 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
764 {
765         struct md_rdev *rdev;
766
767         list_for_each_entry(rdev, &mddev->disks, same_set)
768                 if (rdev->bdev->bd_dev == dev)
769                         return rdev;
770
771         return NULL;
772 }
773
774 static struct md_personality *find_pers(int level, char *clevel)
775 {
776         struct md_personality *pers;
777         list_for_each_entry(pers, &pers_list, list) {
778                 if (level != LEVEL_NONE && pers->level == level)
779                         return pers;
780                 if (strcmp(pers->name, clevel)==0)
781                         return pers;
782         }
783         return NULL;
784 }
785
786 /* return the offset of the super block in 512byte sectors */
787 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
788 {
789         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
790         return MD_NEW_SIZE_SECTORS(num_sectors);
791 }
792
793 static int alloc_disk_sb(struct md_rdev * rdev)
794 {
795         if (rdev->sb_page)
796                 MD_BUG();
797
798         rdev->sb_page = alloc_page(GFP_KERNEL);
799         if (!rdev->sb_page) {
800                 printk(KERN_ALERT "md: out of memory.\n");
801                 return -ENOMEM;
802         }
803
804         return 0;
805 }
806
807 static void free_disk_sb(struct md_rdev * rdev)
808 {
809         if (rdev->sb_page) {
810                 put_page(rdev->sb_page);
811                 rdev->sb_loaded = 0;
812                 rdev->sb_page = NULL;
813                 rdev->sb_start = 0;
814                 rdev->sectors = 0;
815         }
816         if (rdev->bb_page) {
817                 put_page(rdev->bb_page);
818                 rdev->bb_page = NULL;
819         }
820 }
821
822
823 static void super_written(struct bio *bio, int error)
824 {
825         struct md_rdev *rdev = bio->bi_private;
826         struct mddev *mddev = rdev->mddev;
827
828         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
829                 printk("md: super_written gets error=%d, uptodate=%d\n",
830                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
831                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
832                 md_error(mddev, rdev);
833         }
834
835         if (atomic_dec_and_test(&mddev->pending_writes))
836                 wake_up(&mddev->sb_wait);
837         bio_put(bio);
838 }
839
840 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
841                    sector_t sector, int size, struct page *page)
842 {
843         /* write first size bytes of page to sector of rdev
844          * Increment mddev->pending_writes before returning
845          * and decrement it on completion, waking up sb_wait
846          * if zero is reached.
847          * If an error occurred, call md_error
848          */
849         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
850
851         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
852         bio->bi_sector = sector;
853         bio_add_page(bio, page, size, 0);
854         bio->bi_private = rdev;
855         bio->bi_end_io = super_written;
856
857         atomic_inc(&mddev->pending_writes);
858         submit_bio(WRITE_FLUSH_FUA, bio);
859 }
860
861 void md_super_wait(struct mddev *mddev)
862 {
863         /* wait for all superblock writes that were scheduled to complete */
864         DEFINE_WAIT(wq);
865         for(;;) {
866                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
867                 if (atomic_read(&mddev->pending_writes)==0)
868                         break;
869                 schedule();
870         }
871         finish_wait(&mddev->sb_wait, &wq);
872 }
873
874 static void bi_complete(struct bio *bio, int error)
875 {
876         complete((struct completion*)bio->bi_private);
877 }
878
879 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
880                  struct page *page, int rw, bool metadata_op)
881 {
882         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
883         struct completion event;
884         int ret;
885
886         rw |= REQ_SYNC;
887
888         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
889                 rdev->meta_bdev : rdev->bdev;
890         if (metadata_op)
891                 bio->bi_sector = sector + rdev->sb_start;
892         else
893                 bio->bi_sector = sector + rdev->data_offset;
894         bio_add_page(bio, page, size, 0);
895         init_completion(&event);
896         bio->bi_private = &event;
897         bio->bi_end_io = bi_complete;
898         submit_bio(rw, bio);
899         wait_for_completion(&event);
900
901         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
902         bio_put(bio);
903         return ret;
904 }
905 EXPORT_SYMBOL_GPL(sync_page_io);
906
907 static int read_disk_sb(struct md_rdev * rdev, int size)
908 {
909         char b[BDEVNAME_SIZE];
910         if (!rdev->sb_page) {
911                 MD_BUG();
912                 return -EINVAL;
913         }
914         if (rdev->sb_loaded)
915                 return 0;
916
917
918         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
919                 goto fail;
920         rdev->sb_loaded = 1;
921         return 0;
922
923 fail:
924         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
925                 bdevname(rdev->bdev,b));
926         return -EINVAL;
927 }
928
929 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
930 {
931         return  sb1->set_uuid0 == sb2->set_uuid0 &&
932                 sb1->set_uuid1 == sb2->set_uuid1 &&
933                 sb1->set_uuid2 == sb2->set_uuid2 &&
934                 sb1->set_uuid3 == sb2->set_uuid3;
935 }
936
937 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
938 {
939         int ret;
940         mdp_super_t *tmp1, *tmp2;
941
942         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
943         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
944
945         if (!tmp1 || !tmp2) {
946                 ret = 0;
947                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
948                 goto abort;
949         }
950
951         *tmp1 = *sb1;
952         *tmp2 = *sb2;
953
954         /*
955          * nr_disks is not constant
956          */
957         tmp1->nr_disks = 0;
958         tmp2->nr_disks = 0;
959
960         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
961 abort:
962         kfree(tmp1);
963         kfree(tmp2);
964         return ret;
965 }
966
967
968 static u32 md_csum_fold(u32 csum)
969 {
970         csum = (csum & 0xffff) + (csum >> 16);
971         return (csum & 0xffff) + (csum >> 16);
972 }
973
974 static unsigned int calc_sb_csum(mdp_super_t * sb)
975 {
976         u64 newcsum = 0;
977         u32 *sb32 = (u32*)sb;
978         int i;
979         unsigned int disk_csum, csum;
980
981         disk_csum = sb->sb_csum;
982         sb->sb_csum = 0;
983
984         for (i = 0; i < MD_SB_BYTES/4 ; i++)
985                 newcsum += sb32[i];
986         csum = (newcsum & 0xffffffff) + (newcsum>>32);
987
988
989 #ifdef CONFIG_ALPHA
990         /* This used to use csum_partial, which was wrong for several
991          * reasons including that different results are returned on
992          * different architectures.  It isn't critical that we get exactly
993          * the same return value as before (we always csum_fold before
994          * testing, and that removes any differences).  However as we
995          * know that csum_partial always returned a 16bit value on
996          * alphas, do a fold to maximise conformity to previous behaviour.
997          */
998         sb->sb_csum = md_csum_fold(disk_csum);
999 #else
1000         sb->sb_csum = disk_csum;
1001 #endif
1002         return csum;
1003 }
1004
1005
1006 /*
1007  * Handle superblock details.
1008  * We want to be able to handle multiple superblock formats
1009  * so we have a common interface to them all, and an array of
1010  * different handlers.
1011  * We rely on user-space to write the initial superblock, and support
1012  * reading and updating of superblocks.
1013  * Interface methods are:
1014  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1015  *      loads and validates a superblock on dev.
1016  *      if refdev != NULL, compare superblocks on both devices
1017  *    Return:
1018  *      0 - dev has a superblock that is compatible with refdev
1019  *      1 - dev has a superblock that is compatible and newer than refdev
1020  *          so dev should be used as the refdev in future
1021  *     -EINVAL superblock incompatible or invalid
1022  *     -othererror e.g. -EIO
1023  *
1024  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1025  *      Verify that dev is acceptable into mddev.
1026  *       The first time, mddev->raid_disks will be 0, and data from
1027  *       dev should be merged in.  Subsequent calls check that dev
1028  *       is new enough.  Return 0 or -EINVAL
1029  *
1030  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1031  *     Update the superblock for rdev with data in mddev
1032  *     This does not write to disc.
1033  *
1034  */
1035
1036 struct super_type  {
1037         char                *name;
1038         struct module       *owner;
1039         int                 (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1040                                           int minor_version);
1041         int                 (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1042         void                (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1043         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1044                                                 sector_t num_sectors);
1045 };
1046
1047 /*
1048  * Check that the given mddev has no bitmap.
1049  *
1050  * This function is called from the run method of all personalities that do not
1051  * support bitmaps. It prints an error message and returns non-zero if mddev
1052  * has a bitmap. Otherwise, it returns 0.
1053  *
1054  */
1055 int md_check_no_bitmap(struct mddev *mddev)
1056 {
1057         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1058                 return 0;
1059         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1060                 mdname(mddev), mddev->pers->name);
1061         return 1;
1062 }
1063 EXPORT_SYMBOL(md_check_no_bitmap);
1064
1065 /*
1066  * load_super for 0.90.0 
1067  */
1068 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1069 {
1070         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1071         mdp_super_t *sb;
1072         int ret;
1073
1074         /*
1075          * Calculate the position of the superblock (512byte sectors),
1076          * it's at the end of the disk.
1077          *
1078          * It also happens to be a multiple of 4Kb.
1079          */
1080         rdev->sb_start = calc_dev_sboffset(rdev);
1081
1082         ret = read_disk_sb(rdev, MD_SB_BYTES);
1083         if (ret) return ret;
1084
1085         ret = -EINVAL;
1086
1087         bdevname(rdev->bdev, b);
1088         sb = page_address(rdev->sb_page);
1089
1090         if (sb->md_magic != MD_SB_MAGIC) {
1091                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1092                        b);
1093                 goto abort;
1094         }
1095
1096         if (sb->major_version != 0 ||
1097             sb->minor_version < 90 ||
1098             sb->minor_version > 91) {
1099                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1100                         sb->major_version, sb->minor_version,
1101                         b);
1102                 goto abort;
1103         }
1104
1105         if (sb->raid_disks <= 0)
1106                 goto abort;
1107
1108         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1109                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1110                         b);
1111                 goto abort;
1112         }
1113
1114         rdev->preferred_minor = sb->md_minor;
1115         rdev->data_offset = 0;
1116         rdev->sb_size = MD_SB_BYTES;
1117         rdev->badblocks.shift = -1;
1118
1119         if (sb->level == LEVEL_MULTIPATH)
1120                 rdev->desc_nr = -1;
1121         else
1122                 rdev->desc_nr = sb->this_disk.number;
1123
1124         if (!refdev) {
1125                 ret = 1;
1126         } else {
1127                 __u64 ev1, ev2;
1128                 mdp_super_t *refsb = page_address(refdev->sb_page);
1129                 if (!uuid_equal(refsb, sb)) {
1130                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1131                                 b, bdevname(refdev->bdev,b2));
1132                         goto abort;
1133                 }
1134                 if (!sb_equal(refsb, sb)) {
1135                         printk(KERN_WARNING "md: %s has same UUID"
1136                                " but different superblock to %s\n",
1137                                b, bdevname(refdev->bdev, b2));
1138                         goto abort;
1139                 }
1140                 ev1 = md_event(sb);
1141                 ev2 = md_event(refsb);
1142                 if (ev1 > ev2)
1143                         ret = 1;
1144                 else 
1145                         ret = 0;
1146         }
1147         rdev->sectors = rdev->sb_start;
1148         /* Limit to 4TB as metadata cannot record more than that */
1149         if (rdev->sectors >= (2ULL << 32))
1150                 rdev->sectors = (2ULL << 32) - 2;
1151
1152         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1153                 /* "this cannot possibly happen" ... */
1154                 ret = -EINVAL;
1155
1156  abort:
1157         return ret;
1158 }
1159
1160 /*
1161  * validate_super for 0.90.0
1162  */
1163 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1164 {
1165         mdp_disk_t *desc;
1166         mdp_super_t *sb = page_address(rdev->sb_page);
1167         __u64 ev1 = md_event(sb);
1168
1169         rdev->raid_disk = -1;
1170         clear_bit(Faulty, &rdev->flags);
1171         clear_bit(In_sync, &rdev->flags);
1172         clear_bit(WriteMostly, &rdev->flags);
1173
1174         if (mddev->raid_disks == 0) {
1175                 mddev->major_version = 0;
1176                 mddev->minor_version = sb->minor_version;
1177                 mddev->patch_version = sb->patch_version;
1178                 mddev->external = 0;
1179                 mddev->chunk_sectors = sb->chunk_size >> 9;
1180                 mddev->ctime = sb->ctime;
1181                 mddev->utime = sb->utime;
1182                 mddev->level = sb->level;
1183                 mddev->clevel[0] = 0;
1184                 mddev->layout = sb->layout;
1185                 mddev->raid_disks = sb->raid_disks;
1186                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1187                 mddev->events = ev1;
1188                 mddev->bitmap_info.offset = 0;
1189                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1190
1191                 if (mddev->minor_version >= 91) {
1192                         mddev->reshape_position = sb->reshape_position;
1193                         mddev->delta_disks = sb->delta_disks;
1194                         mddev->new_level = sb->new_level;
1195                         mddev->new_layout = sb->new_layout;
1196                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1197                 } else {
1198                         mddev->reshape_position = MaxSector;
1199                         mddev->delta_disks = 0;
1200                         mddev->new_level = mddev->level;
1201                         mddev->new_layout = mddev->layout;
1202                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1203                 }
1204
1205                 if (sb->state & (1<<MD_SB_CLEAN))
1206                         mddev->recovery_cp = MaxSector;
1207                 else {
1208                         if (sb->events_hi == sb->cp_events_hi && 
1209                                 sb->events_lo == sb->cp_events_lo) {
1210                                 mddev->recovery_cp = sb->recovery_cp;
1211                         } else
1212                                 mddev->recovery_cp = 0;
1213                 }
1214
1215                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1216                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1217                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1218                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1219
1220                 mddev->max_disks = MD_SB_DISKS;
1221
1222                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1223                     mddev->bitmap_info.file == NULL)
1224                         mddev->bitmap_info.offset =
1225                                 mddev->bitmap_info.default_offset;
1226
1227         } else if (mddev->pers == NULL) {
1228                 /* Insist on good event counter while assembling, except
1229                  * for spares (which don't need an event count) */
1230                 ++ev1;
1231                 if (sb->disks[rdev->desc_nr].state & (
1232                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1233                         if (ev1 < mddev->events) 
1234                                 return -EINVAL;
1235         } else if (mddev->bitmap) {
1236                 /* if adding to array with a bitmap, then we can accept an
1237                  * older device ... but not too old.
1238                  */
1239                 if (ev1 < mddev->bitmap->events_cleared)
1240                         return 0;
1241         } else {
1242                 if (ev1 < mddev->events)
1243                         /* just a hot-add of a new device, leave raid_disk at -1 */
1244                         return 0;
1245         }
1246
1247         if (mddev->level != LEVEL_MULTIPATH) {
1248                 desc = sb->disks + rdev->desc_nr;
1249
1250                 if (desc->state & (1<<MD_DISK_FAULTY))
1251                         set_bit(Faulty, &rdev->flags);
1252                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1253                             desc->raid_disk < mddev->raid_disks */) {
1254                         set_bit(In_sync, &rdev->flags);
1255                         rdev->raid_disk = desc->raid_disk;
1256                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1257                         /* active but not in sync implies recovery up to
1258                          * reshape position.  We don't know exactly where
1259                          * that is, so set to zero for now */
1260                         if (mddev->minor_version >= 91) {
1261                                 rdev->recovery_offset = 0;
1262                                 rdev->raid_disk = desc->raid_disk;
1263                         }
1264                 }
1265                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1266                         set_bit(WriteMostly, &rdev->flags);
1267         } else /* MULTIPATH are always insync */
1268                 set_bit(In_sync, &rdev->flags);
1269         return 0;
1270 }
1271
1272 /*
1273  * sync_super for 0.90.0
1274  */
1275 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1276 {
1277         mdp_super_t *sb;
1278         struct md_rdev *rdev2;
1279         int next_spare = mddev->raid_disks;
1280
1281
1282         /* make rdev->sb match mddev data..
1283          *
1284          * 1/ zero out disks
1285          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1286          * 3/ any empty disks < next_spare become removed
1287          *
1288          * disks[0] gets initialised to REMOVED because
1289          * we cannot be sure from other fields if it has
1290          * been initialised or not.
1291          */
1292         int i;
1293         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1294
1295         rdev->sb_size = MD_SB_BYTES;
1296
1297         sb = page_address(rdev->sb_page);
1298
1299         memset(sb, 0, sizeof(*sb));
1300
1301         sb->md_magic = MD_SB_MAGIC;
1302         sb->major_version = mddev->major_version;
1303         sb->patch_version = mddev->patch_version;
1304         sb->gvalid_words  = 0; /* ignored */
1305         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1306         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1307         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1308         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1309
1310         sb->ctime = mddev->ctime;
1311         sb->level = mddev->level;
1312         sb->size = mddev->dev_sectors / 2;
1313         sb->raid_disks = mddev->raid_disks;
1314         sb->md_minor = mddev->md_minor;
1315         sb->not_persistent = 0;
1316         sb->utime = mddev->utime;
1317         sb->state = 0;
1318         sb->events_hi = (mddev->events>>32);
1319         sb->events_lo = (u32)mddev->events;
1320
1321         if (mddev->reshape_position == MaxSector)
1322                 sb->minor_version = 90;
1323         else {
1324                 sb->minor_version = 91;
1325                 sb->reshape_position = mddev->reshape_position;
1326                 sb->new_level = mddev->new_level;
1327                 sb->delta_disks = mddev->delta_disks;
1328                 sb->new_layout = mddev->new_layout;
1329                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1330         }
1331         mddev->minor_version = sb->minor_version;
1332         if (mddev->in_sync)
1333         {
1334                 sb->recovery_cp = mddev->recovery_cp;
1335                 sb->cp_events_hi = (mddev->events>>32);
1336                 sb->cp_events_lo = (u32)mddev->events;
1337                 if (mddev->recovery_cp == MaxSector)
1338                         sb->state = (1<< MD_SB_CLEAN);
1339         } else
1340                 sb->recovery_cp = 0;
1341
1342         sb->layout = mddev->layout;
1343         sb->chunk_size = mddev->chunk_sectors << 9;
1344
1345         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1346                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1347
1348         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1349         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1350                 mdp_disk_t *d;
1351                 int desc_nr;
1352                 int is_active = test_bit(In_sync, &rdev2->flags);
1353
1354                 if (rdev2->raid_disk >= 0 &&
1355                     sb->minor_version >= 91)
1356                         /* we have nowhere to store the recovery_offset,
1357                          * but if it is not below the reshape_position,
1358                          * we can piggy-back on that.
1359                          */
1360                         is_active = 1;
1361                 if (rdev2->raid_disk < 0 ||
1362                     test_bit(Faulty, &rdev2->flags))
1363                         is_active = 0;
1364                 if (is_active)
1365                         desc_nr = rdev2->raid_disk;
1366                 else
1367                         desc_nr = next_spare++;
1368                 rdev2->desc_nr = desc_nr;
1369                 d = &sb->disks[rdev2->desc_nr];
1370                 nr_disks++;
1371                 d->number = rdev2->desc_nr;
1372                 d->major = MAJOR(rdev2->bdev->bd_dev);
1373                 d->minor = MINOR(rdev2->bdev->bd_dev);
1374                 if (is_active)
1375                         d->raid_disk = rdev2->raid_disk;
1376                 else
1377                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1378                 if (test_bit(Faulty, &rdev2->flags))
1379                         d->state = (1<<MD_DISK_FAULTY);
1380                 else if (is_active) {
1381                         d->state = (1<<MD_DISK_ACTIVE);
1382                         if (test_bit(In_sync, &rdev2->flags))
1383                                 d->state |= (1<<MD_DISK_SYNC);
1384                         active++;
1385                         working++;
1386                 } else {
1387                         d->state = 0;
1388                         spare++;
1389                         working++;
1390                 }
1391                 if (test_bit(WriteMostly, &rdev2->flags))
1392                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1393         }
1394         /* now set the "removed" and "faulty" bits on any missing devices */
1395         for (i=0 ; i < mddev->raid_disks ; i++) {
1396                 mdp_disk_t *d = &sb->disks[i];
1397                 if (d->state == 0 && d->number == 0) {
1398                         d->number = i;
1399                         d->raid_disk = i;
1400                         d->state = (1<<MD_DISK_REMOVED);
1401                         d->state |= (1<<MD_DISK_FAULTY);
1402                         failed++;
1403                 }
1404         }
1405         sb->nr_disks = nr_disks;
1406         sb->active_disks = active;
1407         sb->working_disks = working;
1408         sb->failed_disks = failed;
1409         sb->spare_disks = spare;
1410
1411         sb->this_disk = sb->disks[rdev->desc_nr];
1412         sb->sb_csum = calc_sb_csum(sb);
1413 }
1414
1415 /*
1416  * rdev_size_change for 0.90.0
1417  */
1418 static unsigned long long
1419 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1420 {
1421         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1422                 return 0; /* component must fit device */
1423         if (rdev->mddev->bitmap_info.offset)
1424                 return 0; /* can't move bitmap */
1425         rdev->sb_start = calc_dev_sboffset(rdev);
1426         if (!num_sectors || num_sectors > rdev->sb_start)
1427                 num_sectors = rdev->sb_start;
1428         /* Limit to 4TB as metadata cannot record more than that.
1429          * 4TB == 2^32 KB, or 2*2^32 sectors.
1430          */
1431         if (num_sectors >= (2ULL << 32))
1432                 num_sectors = (2ULL << 32) - 2;
1433         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1434                        rdev->sb_page);
1435         md_super_wait(rdev->mddev);
1436         return num_sectors;
1437 }
1438
1439
1440 /*
1441  * version 1 superblock
1442  */
1443
1444 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1445 {
1446         __le32 disk_csum;
1447         u32 csum;
1448         unsigned long long newcsum;
1449         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1450         __le32 *isuper = (__le32*)sb;
1451         int i;
1452
1453         disk_csum = sb->sb_csum;
1454         sb->sb_csum = 0;
1455         newcsum = 0;
1456         for (i=0; size>=4; size -= 4 )
1457                 newcsum += le32_to_cpu(*isuper++);
1458
1459         if (size == 2)
1460                 newcsum += le16_to_cpu(*(__le16*) isuper);
1461
1462         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1463         sb->sb_csum = disk_csum;
1464         return cpu_to_le32(csum);
1465 }
1466
1467 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1468                             int acknowledged);
1469 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1470 {
1471         struct mdp_superblock_1 *sb;
1472         int ret;
1473         sector_t sb_start;
1474         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1475         int bmask;
1476
1477         /*
1478          * Calculate the position of the superblock in 512byte sectors.
1479          * It is always aligned to a 4K boundary and
1480          * depeding on minor_version, it can be:
1481          * 0: At least 8K, but less than 12K, from end of device
1482          * 1: At start of device
1483          * 2: 4K from start of device.
1484          */
1485         switch(minor_version) {
1486         case 0:
1487                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1488                 sb_start -= 8*2;
1489                 sb_start &= ~(sector_t)(4*2-1);
1490                 break;
1491         case 1:
1492                 sb_start = 0;
1493                 break;
1494         case 2:
1495                 sb_start = 8;
1496                 break;
1497         default:
1498                 return -EINVAL;
1499         }
1500         rdev->sb_start = sb_start;
1501
1502         /* superblock is rarely larger than 1K, but it can be larger,
1503          * and it is safe to read 4k, so we do that
1504          */
1505         ret = read_disk_sb(rdev, 4096);
1506         if (ret) return ret;
1507
1508
1509         sb = page_address(rdev->sb_page);
1510
1511         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1512             sb->major_version != cpu_to_le32(1) ||
1513             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1514             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1515             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1516                 return -EINVAL;
1517
1518         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1519                 printk("md: invalid superblock checksum on %s\n",
1520                         bdevname(rdev->bdev,b));
1521                 return -EINVAL;
1522         }
1523         if (le64_to_cpu(sb->data_size) < 10) {
1524                 printk("md: data_size too small on %s\n",
1525                        bdevname(rdev->bdev,b));
1526                 return -EINVAL;
1527         }
1528
1529         rdev->preferred_minor = 0xffff;
1530         rdev->data_offset = le64_to_cpu(sb->data_offset);
1531         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1532
1533         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1534         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1535         if (rdev->sb_size & bmask)
1536                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1537
1538         if (minor_version
1539             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1540                 return -EINVAL;
1541
1542         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1543                 rdev->desc_nr = -1;
1544         else
1545                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1546
1547         if (!rdev->bb_page) {
1548                 rdev->bb_page = alloc_page(GFP_KERNEL);
1549                 if (!rdev->bb_page)
1550                         return -ENOMEM;
1551         }
1552         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1553             rdev->badblocks.count == 0) {
1554                 /* need to load the bad block list.
1555                  * Currently we limit it to one page.
1556                  */
1557                 s32 offset;
1558                 sector_t bb_sector;
1559                 u64 *bbp;
1560                 int i;
1561                 int sectors = le16_to_cpu(sb->bblog_size);
1562                 if (sectors > (PAGE_SIZE / 512))
1563                         return -EINVAL;
1564                 offset = le32_to_cpu(sb->bblog_offset);
1565                 if (offset == 0)
1566                         return -EINVAL;
1567                 bb_sector = (long long)offset;
1568                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1569                                   rdev->bb_page, READ, true))
1570                         return -EIO;
1571                 bbp = (u64 *)page_address(rdev->bb_page);
1572                 rdev->badblocks.shift = sb->bblog_shift;
1573                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1574                         u64 bb = le64_to_cpu(*bbp);
1575                         int count = bb & (0x3ff);
1576                         u64 sector = bb >> 10;
1577                         sector <<= sb->bblog_shift;
1578                         count <<= sb->bblog_shift;
1579                         if (bb + 1 == 0)
1580                                 break;
1581                         if (md_set_badblocks(&rdev->badblocks,
1582                                              sector, count, 1) == 0)
1583                                 return -EINVAL;
1584                 }
1585         } else if (sb->bblog_offset == 0)
1586                 rdev->badblocks.shift = -1;
1587
1588         if (!refdev) {
1589                 ret = 1;
1590         } else {
1591                 __u64 ev1, ev2;
1592                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1593
1594                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1595                     sb->level != refsb->level ||
1596                     sb->layout != refsb->layout ||
1597                     sb->chunksize != refsb->chunksize) {
1598                         printk(KERN_WARNING "md: %s has strangely different"
1599                                 " superblock to %s\n",
1600                                 bdevname(rdev->bdev,b),
1601                                 bdevname(refdev->bdev,b2));
1602                         return -EINVAL;
1603                 }
1604                 ev1 = le64_to_cpu(sb->events);
1605                 ev2 = le64_to_cpu(refsb->events);
1606
1607                 if (ev1 > ev2)
1608                         ret = 1;
1609                 else
1610                         ret = 0;
1611         }
1612         if (minor_version)
1613                 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1614                         le64_to_cpu(sb->data_offset);
1615         else
1616                 rdev->sectors = rdev->sb_start;
1617         if (rdev->sectors < le64_to_cpu(sb->data_size))
1618                 return -EINVAL;
1619         rdev->sectors = le64_to_cpu(sb->data_size);
1620         if (le64_to_cpu(sb->size) > rdev->sectors)
1621                 return -EINVAL;
1622         return ret;
1623 }
1624
1625 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1626 {
1627         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1628         __u64 ev1 = le64_to_cpu(sb->events);
1629
1630         rdev->raid_disk = -1;
1631         clear_bit(Faulty, &rdev->flags);
1632         clear_bit(In_sync, &rdev->flags);
1633         clear_bit(WriteMostly, &rdev->flags);
1634
1635         if (mddev->raid_disks == 0) {
1636                 mddev->major_version = 1;
1637                 mddev->patch_version = 0;
1638                 mddev->external = 0;
1639                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1640                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1641                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1642                 mddev->level = le32_to_cpu(sb->level);
1643                 mddev->clevel[0] = 0;
1644                 mddev->layout = le32_to_cpu(sb->layout);
1645                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1646                 mddev->dev_sectors = le64_to_cpu(sb->size);
1647                 mddev->events = ev1;
1648                 mddev->bitmap_info.offset = 0;
1649                 mddev->bitmap_info.default_offset = 1024 >> 9;
1650                 
1651                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1652                 memcpy(mddev->uuid, sb->set_uuid, 16);
1653
1654                 mddev->max_disks =  (4096-256)/2;
1655
1656                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1657                     mddev->bitmap_info.file == NULL )
1658                         mddev->bitmap_info.offset =
1659                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1660
1661                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1662                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1663                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1664                         mddev->new_level = le32_to_cpu(sb->new_level);
1665                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1666                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1667                 } else {
1668                         mddev->reshape_position = MaxSector;
1669                         mddev->delta_disks = 0;
1670                         mddev->new_level = mddev->level;
1671                         mddev->new_layout = mddev->layout;
1672                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1673                 }
1674
1675         } else if (mddev->pers == NULL) {
1676                 /* Insist of good event counter while assembling, except for
1677                  * spares (which don't need an event count) */
1678                 ++ev1;
1679                 if (rdev->desc_nr >= 0 &&
1680                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1681                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1682                         if (ev1 < mddev->events)
1683                                 return -EINVAL;
1684         } else if (mddev->bitmap) {
1685                 /* If adding to array with a bitmap, then we can accept an
1686                  * older device, but not too old.
1687                  */
1688                 if (ev1 < mddev->bitmap->events_cleared)
1689                         return 0;
1690         } else {
1691                 if (ev1 < mddev->events)
1692                         /* just a hot-add of a new device, leave raid_disk at -1 */
1693                         return 0;
1694         }
1695         if (mddev->level != LEVEL_MULTIPATH) {
1696                 int role;
1697                 if (rdev->desc_nr < 0 ||
1698                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1699                         role = 0xffff;
1700                         rdev->desc_nr = -1;
1701                 } else
1702                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1703                 switch(role) {
1704                 case 0xffff: /* spare */
1705                         break;
1706                 case 0xfffe: /* faulty */
1707                         set_bit(Faulty, &rdev->flags);
1708                         break;
1709                 default:
1710                         if ((le32_to_cpu(sb->feature_map) &
1711                              MD_FEATURE_RECOVERY_OFFSET))
1712                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1713                         else
1714                                 set_bit(In_sync, &rdev->flags);
1715                         rdev->raid_disk = role;
1716                         break;
1717                 }
1718                 if (sb->devflags & WriteMostly1)
1719                         set_bit(WriteMostly, &rdev->flags);
1720         } else /* MULTIPATH are always insync */
1721                 set_bit(In_sync, &rdev->flags);
1722
1723         return 0;
1724 }
1725
1726 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1727 {
1728         struct mdp_superblock_1 *sb;
1729         struct md_rdev *rdev2;
1730         int max_dev, i;
1731         /* make rdev->sb match mddev and rdev data. */
1732
1733         sb = page_address(rdev->sb_page);
1734
1735         sb->feature_map = 0;
1736         sb->pad0 = 0;
1737         sb->recovery_offset = cpu_to_le64(0);
1738         memset(sb->pad1, 0, sizeof(sb->pad1));
1739         memset(sb->pad3, 0, sizeof(sb->pad3));
1740
1741         sb->utime = cpu_to_le64((__u64)mddev->utime);
1742         sb->events = cpu_to_le64(mddev->events);
1743         if (mddev->in_sync)
1744                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1745         else
1746                 sb->resync_offset = cpu_to_le64(0);
1747
1748         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1749
1750         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1751         sb->size = cpu_to_le64(mddev->dev_sectors);
1752         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1753         sb->level = cpu_to_le32(mddev->level);
1754         sb->layout = cpu_to_le32(mddev->layout);
1755
1756         if (test_bit(WriteMostly, &rdev->flags))
1757                 sb->devflags |= WriteMostly1;
1758         else
1759                 sb->devflags &= ~WriteMostly1;
1760
1761         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1762                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1763                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1764         }
1765
1766         if (rdev->raid_disk >= 0 &&
1767             !test_bit(In_sync, &rdev->flags)) {
1768                 sb->feature_map |=
1769                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1770                 sb->recovery_offset =
1771                         cpu_to_le64(rdev->recovery_offset);
1772         }
1773
1774         if (mddev->reshape_position != MaxSector) {
1775                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1776                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1777                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1778                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1779                 sb->new_level = cpu_to_le32(mddev->new_level);
1780                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1781         }
1782
1783         if (rdev->badblocks.count == 0)
1784                 /* Nothing to do for bad blocks*/ ;
1785         else if (sb->bblog_offset == 0)
1786                 /* Cannot record bad blocks on this device */
1787                 md_error(mddev, rdev);
1788         else {
1789                 struct badblocks *bb = &rdev->badblocks;
1790                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1791                 u64 *p = bb->page;
1792                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1793                 if (bb->changed) {
1794                         unsigned seq;
1795
1796 retry:
1797                         seq = read_seqbegin(&bb->lock);
1798
1799                         memset(bbp, 0xff, PAGE_SIZE);
1800
1801                         for (i = 0 ; i < bb->count ; i++) {
1802                                 u64 internal_bb = *p++;
1803                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1804                                                 | BB_LEN(internal_bb));
1805                                 *bbp++ = cpu_to_le64(store_bb);
1806                         }
1807                         if (read_seqretry(&bb->lock, seq))
1808                                 goto retry;
1809
1810                         bb->sector = (rdev->sb_start +
1811                                       (int)le32_to_cpu(sb->bblog_offset));
1812                         bb->size = le16_to_cpu(sb->bblog_size);
1813                         bb->changed = 0;
1814                 }
1815         }
1816
1817         max_dev = 0;
1818         list_for_each_entry(rdev2, &mddev->disks, same_set)
1819                 if (rdev2->desc_nr+1 > max_dev)
1820                         max_dev = rdev2->desc_nr+1;
1821
1822         if (max_dev > le32_to_cpu(sb->max_dev)) {
1823                 int bmask;
1824                 sb->max_dev = cpu_to_le32(max_dev);
1825                 rdev->sb_size = max_dev * 2 + 256;
1826                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1827                 if (rdev->sb_size & bmask)
1828                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1829         } else
1830                 max_dev = le32_to_cpu(sb->max_dev);
1831
1832         for (i=0; i<max_dev;i++)
1833                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1834         
1835         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1836                 i = rdev2->desc_nr;
1837                 if (test_bit(Faulty, &rdev2->flags))
1838                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1839                 else if (test_bit(In_sync, &rdev2->flags))
1840                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1841                 else if (rdev2->raid_disk >= 0)
1842                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1843                 else
1844                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1845         }
1846
1847         sb->sb_csum = calc_sb_1_csum(sb);
1848 }
1849
1850 static unsigned long long
1851 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1852 {
1853         struct mdp_superblock_1 *sb;
1854         sector_t max_sectors;
1855         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1856                 return 0; /* component must fit device */
1857         if (rdev->sb_start < rdev->data_offset) {
1858                 /* minor versions 1 and 2; superblock before data */
1859                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1860                 max_sectors -= rdev->data_offset;
1861                 if (!num_sectors || num_sectors > max_sectors)
1862                         num_sectors = max_sectors;
1863         } else if (rdev->mddev->bitmap_info.offset) {
1864                 /* minor version 0 with bitmap we can't move */
1865                 return 0;
1866         } else {
1867                 /* minor version 0; superblock after data */
1868                 sector_t sb_start;
1869                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1870                 sb_start &= ~(sector_t)(4*2 - 1);
1871                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1872                 if (!num_sectors || num_sectors > max_sectors)
1873                         num_sectors = max_sectors;
1874                 rdev->sb_start = sb_start;
1875         }
1876         sb = page_address(rdev->sb_page);
1877         sb->data_size = cpu_to_le64(num_sectors);
1878         sb->super_offset = rdev->sb_start;
1879         sb->sb_csum = calc_sb_1_csum(sb);
1880         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1881                        rdev->sb_page);
1882         md_super_wait(rdev->mddev);
1883         return num_sectors;
1884 }
1885
1886 static struct super_type super_types[] = {
1887         [0] = {
1888                 .name   = "0.90.0",
1889                 .owner  = THIS_MODULE,
1890                 .load_super         = super_90_load,
1891                 .validate_super     = super_90_validate,
1892                 .sync_super         = super_90_sync,
1893                 .rdev_size_change   = super_90_rdev_size_change,
1894         },
1895         [1] = {
1896                 .name   = "md-1",
1897                 .owner  = THIS_MODULE,
1898                 .load_super         = super_1_load,
1899                 .validate_super     = super_1_validate,
1900                 .sync_super         = super_1_sync,
1901                 .rdev_size_change   = super_1_rdev_size_change,
1902         },
1903 };
1904
1905 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1906 {
1907         if (mddev->sync_super) {
1908                 mddev->sync_super(mddev, rdev);
1909                 return;
1910         }
1911
1912         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1913
1914         super_types[mddev->major_version].sync_super(mddev, rdev);
1915 }
1916
1917 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1918 {
1919         struct md_rdev *rdev, *rdev2;
1920
1921         rcu_read_lock();
1922         rdev_for_each_rcu(rdev, mddev1)
1923                 rdev_for_each_rcu(rdev2, mddev2)
1924                         if (rdev->bdev->bd_contains ==
1925                             rdev2->bdev->bd_contains) {
1926                                 rcu_read_unlock();
1927                                 return 1;
1928                         }
1929         rcu_read_unlock();
1930         return 0;
1931 }
1932
1933 static LIST_HEAD(pending_raid_disks);
1934
1935 /*
1936  * Try to register data integrity profile for an mddev
1937  *
1938  * This is called when an array is started and after a disk has been kicked
1939  * from the array. It only succeeds if all working and active component devices
1940  * are integrity capable with matching profiles.
1941  */
1942 int md_integrity_register(struct mddev *mddev)
1943 {
1944         struct md_rdev *rdev, *reference = NULL;
1945
1946         if (list_empty(&mddev->disks))
1947                 return 0; /* nothing to do */
1948         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1949                 return 0; /* shouldn't register, or already is */
1950         list_for_each_entry(rdev, &mddev->disks, same_set) {
1951                 /* skip spares and non-functional disks */
1952                 if (test_bit(Faulty, &rdev->flags))
1953                         continue;
1954                 if (rdev->raid_disk < 0)
1955                         continue;
1956                 if (!reference) {
1957                         /* Use the first rdev as the reference */
1958                         reference = rdev;
1959                         continue;
1960                 }
1961                 /* does this rdev's profile match the reference profile? */
1962                 if (blk_integrity_compare(reference->bdev->bd_disk,
1963                                 rdev->bdev->bd_disk) < 0)
1964                         return -EINVAL;
1965         }
1966         if (!reference || !bdev_get_integrity(reference->bdev))
1967                 return 0;
1968         /*
1969          * All component devices are integrity capable and have matching
1970          * profiles, register the common profile for the md device.
1971          */
1972         if (blk_integrity_register(mddev->gendisk,
1973                         bdev_get_integrity(reference->bdev)) != 0) {
1974                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1975                         mdname(mddev));
1976                 return -EINVAL;
1977         }
1978         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1979         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1980                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1981                        mdname(mddev));
1982                 return -EINVAL;
1983         }
1984         return 0;
1985 }
1986 EXPORT_SYMBOL(md_integrity_register);
1987
1988 /* Disable data integrity if non-capable/non-matching disk is being added */
1989 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1990 {
1991         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1992         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1993
1994         if (!bi_mddev) /* nothing to do */
1995                 return;
1996         if (rdev->raid_disk < 0) /* skip spares */
1997                 return;
1998         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1999                                              rdev->bdev->bd_disk) >= 0)
2000                 return;
2001         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2002         blk_integrity_unregister(mddev->gendisk);
2003 }
2004 EXPORT_SYMBOL(md_integrity_add_rdev);
2005
2006 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2007 {
2008         char b[BDEVNAME_SIZE];
2009         struct kobject *ko;
2010         char *s;
2011         int err;
2012
2013         if (rdev->mddev) {
2014                 MD_BUG();
2015                 return -EINVAL;
2016         }
2017
2018         /* prevent duplicates */
2019         if (find_rdev(mddev, rdev->bdev->bd_dev))
2020                 return -EEXIST;
2021
2022         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2023         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2024                         rdev->sectors < mddev->dev_sectors)) {
2025                 if (mddev->pers) {
2026                         /* Cannot change size, so fail
2027                          * If mddev->level <= 0, then we don't care
2028                          * about aligning sizes (e.g. linear)
2029                          */
2030                         if (mddev->level > 0)
2031                                 return -ENOSPC;
2032                 } else
2033                         mddev->dev_sectors = rdev->sectors;
2034         }
2035
2036         /* Verify rdev->desc_nr is unique.
2037          * If it is -1, assign a free number, else
2038          * check number is not in use
2039          */
2040         if (rdev->desc_nr < 0) {
2041                 int choice = 0;
2042                 if (mddev->pers) choice = mddev->raid_disks;
2043                 while (find_rdev_nr(mddev, choice))
2044                         choice++;
2045                 rdev->desc_nr = choice;
2046         } else {
2047                 if (find_rdev_nr(mddev, rdev->desc_nr))
2048                         return -EBUSY;
2049         }
2050         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2051                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2052                        mdname(mddev), mddev->max_disks);
2053                 return -EBUSY;
2054         }
2055         bdevname(rdev->bdev,b);
2056         while ( (s=strchr(b, '/')) != NULL)
2057                 *s = '!';
2058
2059         rdev->mddev = mddev;
2060         printk(KERN_INFO "md: bind<%s>\n", b);
2061
2062         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2063                 goto fail;
2064
2065         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2066         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2067                 /* failure here is OK */;
2068         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2069
2070         list_add_rcu(&rdev->same_set, &mddev->disks);
2071         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2072
2073         /* May as well allow recovery to be retried once */
2074         mddev->recovery_disabled++;
2075
2076         return 0;
2077
2078  fail:
2079         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2080                b, mdname(mddev));
2081         return err;
2082 }
2083
2084 static void md_delayed_delete(struct work_struct *ws)
2085 {
2086         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2087         kobject_del(&rdev->kobj);
2088         kobject_put(&rdev->kobj);
2089 }
2090
2091 static void unbind_rdev_from_array(struct md_rdev * rdev)
2092 {
2093         char b[BDEVNAME_SIZE];
2094         if (!rdev->mddev) {
2095                 MD_BUG();
2096                 return;
2097         }
2098         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2099         list_del_rcu(&rdev->same_set);
2100         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2101         rdev->mddev = NULL;
2102         sysfs_remove_link(&rdev->kobj, "block");
2103         sysfs_put(rdev->sysfs_state);
2104         rdev->sysfs_state = NULL;
2105         kfree(rdev->badblocks.page);
2106         rdev->badblocks.count = 0;
2107         rdev->badblocks.page = NULL;
2108         /* We need to delay this, otherwise we can deadlock when
2109          * writing to 'remove' to "dev/state".  We also need
2110          * to delay it due to rcu usage.
2111          */
2112         synchronize_rcu();
2113         INIT_WORK(&rdev->del_work, md_delayed_delete);
2114         kobject_get(&rdev->kobj);
2115         queue_work(md_misc_wq, &rdev->del_work);
2116 }
2117
2118 /*
2119  * prevent the device from being mounted, repartitioned or
2120  * otherwise reused by a RAID array (or any other kernel
2121  * subsystem), by bd_claiming the device.
2122  */
2123 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2124 {
2125         int err = 0;
2126         struct block_device *bdev;
2127         char b[BDEVNAME_SIZE];
2128
2129         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2130                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2131         if (IS_ERR(bdev)) {
2132                 printk(KERN_ERR "md: could not open %s.\n",
2133                         __bdevname(dev, b));
2134                 return PTR_ERR(bdev);
2135         }
2136         rdev->bdev = bdev;
2137         return err;
2138 }
2139
2140 static void unlock_rdev(struct md_rdev *rdev)
2141 {
2142         struct block_device *bdev = rdev->bdev;
2143         rdev->bdev = NULL;
2144         if (!bdev)
2145                 MD_BUG();
2146         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2147 }
2148
2149 void md_autodetect_dev(dev_t dev);
2150
2151 static void export_rdev(struct md_rdev * rdev)
2152 {
2153         char b[BDEVNAME_SIZE];
2154         printk(KERN_INFO "md: export_rdev(%s)\n",
2155                 bdevname(rdev->bdev,b));
2156         if (rdev->mddev)
2157                 MD_BUG();
2158         free_disk_sb(rdev);
2159 #ifndef MODULE
2160         if (test_bit(AutoDetected, &rdev->flags))
2161                 md_autodetect_dev(rdev->bdev->bd_dev);
2162 #endif
2163         unlock_rdev(rdev);
2164         kobject_put(&rdev->kobj);
2165 }
2166
2167 static void kick_rdev_from_array(struct md_rdev * rdev)
2168 {
2169         unbind_rdev_from_array(rdev);
2170         export_rdev(rdev);
2171 }
2172
2173 static void export_array(struct mddev *mddev)
2174 {
2175         struct md_rdev *rdev, *tmp;
2176
2177         rdev_for_each(rdev, tmp, mddev) {
2178                 if (!rdev->mddev) {
2179                         MD_BUG();
2180                         continue;
2181                 }
2182                 kick_rdev_from_array(rdev);
2183         }
2184         if (!list_empty(&mddev->disks))
2185                 MD_BUG();
2186         mddev->raid_disks = 0;
2187         mddev->major_version = 0;
2188 }
2189
2190 static void print_desc(mdp_disk_t *desc)
2191 {
2192         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2193                 desc->major,desc->minor,desc->raid_disk,desc->state);
2194 }
2195
2196 static void print_sb_90(mdp_super_t *sb)
2197 {
2198         int i;
2199
2200         printk(KERN_INFO 
2201                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2202                 sb->major_version, sb->minor_version, sb->patch_version,
2203                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2204                 sb->ctime);
2205         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2206                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2207                 sb->md_minor, sb->layout, sb->chunk_size);
2208         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2209                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2210                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2211                 sb->failed_disks, sb->spare_disks,
2212                 sb->sb_csum, (unsigned long)sb->events_lo);
2213
2214         printk(KERN_INFO);
2215         for (i = 0; i < MD_SB_DISKS; i++) {
2216                 mdp_disk_t *desc;
2217
2218                 desc = sb->disks + i;
2219                 if (desc->number || desc->major || desc->minor ||
2220                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2221                         printk("     D %2d: ", i);
2222                         print_desc(desc);
2223                 }
2224         }
2225         printk(KERN_INFO "md:     THIS: ");
2226         print_desc(&sb->this_disk);
2227 }
2228
2229 static void print_sb_1(struct mdp_superblock_1 *sb)
2230 {
2231         __u8 *uuid;
2232
2233         uuid = sb->set_uuid;
2234         printk(KERN_INFO
2235                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2236                "md:    Name: \"%s\" CT:%llu\n",
2237                 le32_to_cpu(sb->major_version),
2238                 le32_to_cpu(sb->feature_map),
2239                 uuid,
2240                 sb->set_name,
2241                 (unsigned long long)le64_to_cpu(sb->ctime)
2242                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2243
2244         uuid = sb->device_uuid;
2245         printk(KERN_INFO
2246                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2247                         " RO:%llu\n"
2248                "md:     Dev:%08x UUID: %pU\n"
2249                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2250                "md:         (MaxDev:%u) \n",
2251                 le32_to_cpu(sb->level),
2252                 (unsigned long long)le64_to_cpu(sb->size),
2253                 le32_to_cpu(sb->raid_disks),
2254                 le32_to_cpu(sb->layout),
2255                 le32_to_cpu(sb->chunksize),
2256                 (unsigned long long)le64_to_cpu(sb->data_offset),
2257                 (unsigned long long)le64_to_cpu(sb->data_size),
2258                 (unsigned long long)le64_to_cpu(sb->super_offset),
2259                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2260                 le32_to_cpu(sb->dev_number),
2261                 uuid,
2262                 sb->devflags,
2263                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2264                 (unsigned long long)le64_to_cpu(sb->events),
2265                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2266                 le32_to_cpu(sb->sb_csum),
2267                 le32_to_cpu(sb->max_dev)
2268                 );
2269 }
2270
2271 static void print_rdev(struct md_rdev *rdev, int major_version)
2272 {
2273         char b[BDEVNAME_SIZE];
2274         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2275                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2276                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2277                 rdev->desc_nr);
2278         if (rdev->sb_loaded) {
2279                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2280                 switch (major_version) {
2281                 case 0:
2282                         print_sb_90(page_address(rdev->sb_page));
2283                         break;
2284                 case 1:
2285                         print_sb_1(page_address(rdev->sb_page));
2286                         break;
2287                 }
2288         } else
2289                 printk(KERN_INFO "md: no rdev superblock!\n");
2290 }
2291
2292 static void md_print_devices(void)
2293 {
2294         struct list_head *tmp;
2295         struct md_rdev *rdev;
2296         struct mddev *mddev;
2297         char b[BDEVNAME_SIZE];
2298
2299         printk("\n");
2300         printk("md:     **********************************\n");
2301         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2302         printk("md:     **********************************\n");
2303         for_each_mddev(mddev, tmp) {
2304
2305                 if (mddev->bitmap)
2306                         bitmap_print_sb(mddev->bitmap);
2307                 else
2308                         printk("%s: ", mdname(mddev));
2309                 list_for_each_entry(rdev, &mddev->disks, same_set)
2310                         printk("<%s>", bdevname(rdev->bdev,b));
2311                 printk("\n");
2312
2313                 list_for_each_entry(rdev, &mddev->disks, same_set)
2314                         print_rdev(rdev, mddev->major_version);
2315         }
2316         printk("md:     **********************************\n");
2317         printk("\n");
2318 }
2319
2320
2321 static void sync_sbs(struct mddev * mddev, int nospares)
2322 {
2323         /* Update each superblock (in-memory image), but
2324          * if we are allowed to, skip spares which already
2325          * have the right event counter, or have one earlier
2326          * (which would mean they aren't being marked as dirty
2327          * with the rest of the array)
2328          */
2329         struct md_rdev *rdev;
2330         list_for_each_entry(rdev, &mddev->disks, same_set) {
2331                 if (rdev->sb_events == mddev->events ||
2332                     (nospares &&
2333                      rdev->raid_disk < 0 &&
2334                      rdev->sb_events+1 == mddev->events)) {
2335                         /* Don't update this superblock */
2336                         rdev->sb_loaded = 2;
2337                 } else {
2338                         sync_super(mddev, rdev);
2339                         rdev->sb_loaded = 1;
2340                 }
2341         }
2342 }
2343
2344 static void md_update_sb(struct mddev * mddev, int force_change)
2345 {
2346         struct md_rdev *rdev;
2347         int sync_req;
2348         int nospares = 0;
2349         int any_badblocks_changed = 0;
2350
2351 repeat:
2352         /* First make sure individual recovery_offsets are correct */
2353         list_for_each_entry(rdev, &mddev->disks, same_set) {
2354                 if (rdev->raid_disk >= 0 &&
2355                     mddev->delta_disks >= 0 &&
2356                     !test_bit(In_sync, &rdev->flags) &&
2357                     mddev->curr_resync_completed > rdev->recovery_offset)
2358                                 rdev->recovery_offset = mddev->curr_resync_completed;
2359
2360         }       
2361         if (!mddev->persistent) {
2362                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2363                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2364                 if (!mddev->external) {
2365                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2366                         list_for_each_entry(rdev, &mddev->disks, same_set) {
2367                                 if (rdev->badblocks.changed) {
2368                                         md_ack_all_badblocks(&rdev->badblocks);
2369                                         md_error(mddev, rdev);
2370                                 }
2371                                 clear_bit(Blocked, &rdev->flags);
2372                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2373                                 wake_up(&rdev->blocked_wait);
2374                         }
2375                 }
2376                 wake_up(&mddev->sb_wait);
2377                 return;
2378         }
2379
2380         spin_lock_irq(&mddev->write_lock);
2381
2382         mddev->utime = get_seconds();
2383
2384         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2385                 force_change = 1;
2386         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2387                 /* just a clean<-> dirty transition, possibly leave spares alone,
2388                  * though if events isn't the right even/odd, we will have to do
2389                  * spares after all
2390                  */
2391                 nospares = 1;
2392         if (force_change)
2393                 nospares = 0;
2394         if (mddev->degraded)
2395                 /* If the array is degraded, then skipping spares is both
2396                  * dangerous and fairly pointless.
2397                  * Dangerous because a device that was removed from the array
2398                  * might have a event_count that still looks up-to-date,
2399                  * so it can be re-added without a resync.
2400                  * Pointless because if there are any spares to skip,
2401                  * then a recovery will happen and soon that array won't
2402                  * be degraded any more and the spare can go back to sleep then.
2403                  */
2404                 nospares = 0;
2405
2406         sync_req = mddev->in_sync;
2407
2408         /* If this is just a dirty<->clean transition, and the array is clean
2409          * and 'events' is odd, we can roll back to the previous clean state */
2410         if (nospares
2411             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2412             && mddev->can_decrease_events
2413             && mddev->events != 1) {
2414                 mddev->events--;
2415                 mddev->can_decrease_events = 0;
2416         } else {
2417                 /* otherwise we have to go forward and ... */
2418                 mddev->events ++;
2419                 mddev->can_decrease_events = nospares;
2420         }
2421
2422         if (!mddev->events) {
2423                 /*
2424                  * oops, this 64-bit counter should never wrap.
2425                  * Either we are in around ~1 trillion A.C., assuming
2426                  * 1 reboot per second, or we have a bug:
2427                  */
2428                 MD_BUG();
2429                 mddev->events --;
2430         }
2431
2432         list_for_each_entry(rdev, &mddev->disks, same_set) {
2433                 if (rdev->badblocks.changed)
2434                         any_badblocks_changed++;
2435                 if (test_bit(Faulty, &rdev->flags))
2436                         set_bit(FaultRecorded, &rdev->flags);
2437         }
2438
2439         sync_sbs(mddev, nospares);
2440         spin_unlock_irq(&mddev->write_lock);
2441
2442         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2443                  mdname(mddev), mddev->in_sync);
2444
2445         bitmap_update_sb(mddev->bitmap);
2446         list_for_each_entry(rdev, &mddev->disks, same_set) {
2447                 char b[BDEVNAME_SIZE];
2448
2449                 if (rdev->sb_loaded != 1)
2450                         continue; /* no noise on spare devices */
2451
2452                 if (!test_bit(Faulty, &rdev->flags)) {
2453                         md_super_write(mddev,rdev,
2454                                        rdev->sb_start, rdev->sb_size,
2455                                        rdev->sb_page);
2456                         pr_debug("md: (write) %s's sb offset: %llu\n",
2457                                  bdevname(rdev->bdev, b),
2458                                  (unsigned long long)rdev->sb_start);
2459                         rdev->sb_events = mddev->events;
2460                         if (rdev->badblocks.size) {
2461                                 md_super_write(mddev, rdev,
2462                                                rdev->badblocks.sector,
2463                                                rdev->badblocks.size << 9,
2464                                                rdev->bb_page);
2465                                 rdev->badblocks.size = 0;
2466                         }
2467
2468                 } else
2469                         pr_debug("md: %s (skipping faulty)\n",
2470                                  bdevname(rdev->bdev, b));
2471                 if (mddev->level == LEVEL_MULTIPATH)
2472                         /* only need to write one superblock... */
2473                         break;
2474         }
2475         md_super_wait(mddev);
2476         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2477
2478         spin_lock_irq(&mddev->write_lock);
2479         if (mddev->in_sync != sync_req ||
2480             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2481                 /* have to write it out again */
2482                 spin_unlock_irq(&mddev->write_lock);
2483                 goto repeat;
2484         }
2485         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2486         spin_unlock_irq(&mddev->write_lock);
2487         wake_up(&mddev->sb_wait);
2488         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2489                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2490
2491         list_for_each_entry(rdev, &mddev->disks, same_set) {
2492                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2493                         clear_bit(Blocked, &rdev->flags);
2494
2495                 if (any_badblocks_changed)
2496                         md_ack_all_badblocks(&rdev->badblocks);
2497                 clear_bit(BlockedBadBlocks, &rdev->flags);
2498                 wake_up(&rdev->blocked_wait);
2499         }
2500 }
2501
2502 /* words written to sysfs files may, or may not, be \n terminated.
2503  * We want to accept with case. For this we use cmd_match.
2504  */
2505 static int cmd_match(const char *cmd, const char *str)
2506 {
2507         /* See if cmd, written into a sysfs file, matches
2508          * str.  They must either be the same, or cmd can
2509          * have a trailing newline
2510          */
2511         while (*cmd && *str && *cmd == *str) {
2512                 cmd++;
2513                 str++;
2514         }
2515         if (*cmd == '\n')
2516                 cmd++;
2517         if (*str || *cmd)
2518                 return 0;
2519         return 1;
2520 }
2521
2522 struct rdev_sysfs_entry {
2523         struct attribute attr;
2524         ssize_t (*show)(struct md_rdev *, char *);
2525         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2526 };
2527
2528 static ssize_t
2529 state_show(struct md_rdev *rdev, char *page)
2530 {
2531         char *sep = "";
2532         size_t len = 0;
2533
2534         if (test_bit(Faulty, &rdev->flags) ||
2535             rdev->badblocks.unacked_exist) {
2536                 len+= sprintf(page+len, "%sfaulty",sep);
2537                 sep = ",";
2538         }
2539         if (test_bit(In_sync, &rdev->flags)) {
2540                 len += sprintf(page+len, "%sin_sync",sep);
2541                 sep = ",";
2542         }
2543         if (test_bit(WriteMostly, &rdev->flags)) {
2544                 len += sprintf(page+len, "%swrite_mostly",sep);
2545                 sep = ",";
2546         }
2547         if (test_bit(Blocked, &rdev->flags) ||
2548             rdev->badblocks.unacked_exist) {
2549                 len += sprintf(page+len, "%sblocked", sep);
2550                 sep = ",";
2551         }
2552         if (!test_bit(Faulty, &rdev->flags) &&
2553             !test_bit(In_sync, &rdev->flags)) {
2554                 len += sprintf(page+len, "%sspare", sep);
2555                 sep = ",";
2556         }
2557         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2558                 len += sprintf(page+len, "%swrite_error", sep);
2559                 sep = ",";
2560         }
2561         return len+sprintf(page+len, "\n");
2562 }
2563
2564 static ssize_t
2565 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2566 {
2567         /* can write
2568          *  faulty  - simulates an error
2569          *  remove  - disconnects the device
2570          *  writemostly - sets write_mostly
2571          *  -writemostly - clears write_mostly
2572          *  blocked - sets the Blocked flags
2573          *  -blocked - clears the Blocked and possibly simulates an error
2574          *  insync - sets Insync providing device isn't active
2575          *  write_error - sets WriteErrorSeen
2576          *  -write_error - clears WriteErrorSeen
2577          */
2578         int err = -EINVAL;
2579         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2580                 md_error(rdev->mddev, rdev);
2581                 if (test_bit(Faulty, &rdev->flags))
2582                         err = 0;
2583                 else
2584                         err = -EBUSY;
2585         } else if (cmd_match(buf, "remove")) {
2586                 if (rdev->raid_disk >= 0)
2587                         err = -EBUSY;
2588                 else {
2589                         struct mddev *mddev = rdev->mddev;
2590                         kick_rdev_from_array(rdev);
2591                         if (mddev->pers)
2592                                 md_update_sb(mddev, 1);
2593                         md_new_event(mddev);
2594                         err = 0;
2595                 }
2596         } else if (cmd_match(buf, "writemostly")) {
2597                 set_bit(WriteMostly, &rdev->flags);
2598                 err = 0;
2599         } else if (cmd_match(buf, "-writemostly")) {
2600                 clear_bit(WriteMostly, &rdev->flags);
2601                 err = 0;
2602         } else if (cmd_match(buf, "blocked")) {
2603                 set_bit(Blocked, &rdev->flags);
2604                 err = 0;
2605         } else if (cmd_match(buf, "-blocked")) {
2606                 if (!test_bit(Faulty, &rdev->flags) &&
2607                     rdev->badblocks.unacked_exist) {
2608                         /* metadata handler doesn't understand badblocks,
2609                          * so we need to fail the device
2610                          */
2611                         md_error(rdev->mddev, rdev);
2612                 }
2613                 clear_bit(Blocked, &rdev->flags);
2614                 clear_bit(BlockedBadBlocks, &rdev->flags);
2615                 wake_up(&rdev->blocked_wait);
2616                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2617                 md_wakeup_thread(rdev->mddev->thread);
2618
2619                 err = 0;
2620         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2621                 set_bit(In_sync, &rdev->flags);
2622                 err = 0;
2623         } else if (cmd_match(buf, "write_error")) {
2624                 set_bit(WriteErrorSeen, &rdev->flags);
2625                 err = 0;
2626         } else if (cmd_match(buf, "-write_error")) {
2627                 clear_bit(WriteErrorSeen, &rdev->flags);
2628                 err = 0;
2629         }
2630         if (!err)
2631                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2632         return err ? err : len;
2633 }
2634 static struct rdev_sysfs_entry rdev_state =
2635 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2636
2637 static ssize_t
2638 errors_show(struct md_rdev *rdev, char *page)
2639 {
2640         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2641 }
2642
2643 static ssize_t
2644 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2645 {
2646         char *e;
2647         unsigned long n = simple_strtoul(buf, &e, 10);
2648         if (*buf && (*e == 0 || *e == '\n')) {
2649                 atomic_set(&rdev->corrected_errors, n);
2650                 return len;
2651         }
2652         return -EINVAL;
2653 }
2654 static struct rdev_sysfs_entry rdev_errors =
2655 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2656
2657 static ssize_t
2658 slot_show(struct md_rdev *rdev, char *page)
2659 {
2660         if (rdev->raid_disk < 0)
2661                 return sprintf(page, "none\n");
2662         else
2663                 return sprintf(page, "%d\n", rdev->raid_disk);
2664 }
2665
2666 static ssize_t
2667 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2668 {
2669         char *e;
2670         int err;
2671         int slot = simple_strtoul(buf, &e, 10);
2672         if (strncmp(buf, "none", 4)==0)
2673                 slot = -1;
2674         else if (e==buf || (*e && *e!= '\n'))
2675                 return -EINVAL;
2676         if (rdev->mddev->pers && slot == -1) {
2677                 /* Setting 'slot' on an active array requires also
2678                  * updating the 'rd%d' link, and communicating
2679                  * with the personality with ->hot_*_disk.
2680                  * For now we only support removing
2681                  * failed/spare devices.  This normally happens automatically,
2682                  * but not when the metadata is externally managed.
2683                  */
2684                 if (rdev->raid_disk == -1)
2685                         return -EEXIST;
2686                 /* personality does all needed checks */
2687                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2688                         return -EINVAL;
2689                 err = rdev->mddev->pers->
2690                         hot_remove_disk(rdev->mddev, rdev->raid_disk);
2691                 if (err)
2692                         return err;
2693                 sysfs_unlink_rdev(rdev->mddev, rdev);
2694                 rdev->raid_disk = -1;
2695                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2696                 md_wakeup_thread(rdev->mddev->thread);
2697         } else if (rdev->mddev->pers) {
2698                 struct md_rdev *rdev2;
2699                 /* Activating a spare .. or possibly reactivating
2700                  * if we ever get bitmaps working here.
2701                  */
2702
2703                 if (rdev->raid_disk != -1)
2704                         return -EBUSY;
2705
2706                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2707                         return -EBUSY;
2708
2709                 if (rdev->mddev->pers->hot_add_disk == NULL)
2710                         return -EINVAL;
2711
2712                 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2713                         if (rdev2->raid_disk == slot)
2714                                 return -EEXIST;
2715
2716                 if (slot >= rdev->mddev->raid_disks &&
2717                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2718                         return -ENOSPC;
2719
2720                 rdev->raid_disk = slot;
2721                 if (test_bit(In_sync, &rdev->flags))
2722                         rdev->saved_raid_disk = slot;
2723                 else
2724                         rdev->saved_raid_disk = -1;
2725                 err = rdev->mddev->pers->
2726                         hot_add_disk(rdev->mddev, rdev);
2727                 if (err) {
2728                         rdev->raid_disk = -1;
2729                         return err;
2730                 } else
2731                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2732                 if (sysfs_link_rdev(rdev->mddev, rdev))
2733                         /* failure here is OK */;
2734                 /* don't wakeup anyone, leave that to userspace. */
2735         } else {
2736                 if (slot >= rdev->mddev->raid_disks &&
2737                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2738                         return -ENOSPC;
2739                 rdev->raid_disk = slot;
2740                 /* assume it is working */
2741                 clear_bit(Faulty, &rdev->flags);
2742                 clear_bit(WriteMostly, &rdev->flags);
2743                 set_bit(In_sync, &rdev->flags);
2744                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2745         }
2746         return len;
2747 }
2748
2749
2750 static struct rdev_sysfs_entry rdev_slot =
2751 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2752
2753 static ssize_t
2754 offset_show(struct md_rdev *rdev, char *page)
2755 {
2756         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2757 }
2758
2759 static ssize_t
2760 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2761 {
2762         char *e;
2763         unsigned long long offset = simple_strtoull(buf, &e, 10);
2764         if (e==buf || (*e && *e != '\n'))
2765                 return -EINVAL;
2766         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2767                 return -EBUSY;
2768         if (rdev->sectors && rdev->mddev->external)
2769                 /* Must set offset before size, so overlap checks
2770                  * can be sane */
2771                 return -EBUSY;
2772         rdev->data_offset = offset;
2773         return len;
2774 }
2775
2776 static struct rdev_sysfs_entry rdev_offset =
2777 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2778
2779 static ssize_t
2780 rdev_size_show(struct md_rdev *rdev, char *page)
2781 {
2782         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2783 }
2784
2785 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2786 {
2787         /* check if two start/length pairs overlap */
2788         if (s1+l1 <= s2)
2789                 return 0;
2790         if (s2+l2 <= s1)
2791                 return 0;
2792         return 1;
2793 }
2794
2795 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2796 {
2797         unsigned long long blocks;
2798         sector_t new;
2799
2800         if (strict_strtoull(buf, 10, &blocks) < 0)
2801                 return -EINVAL;
2802
2803         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2804                 return -EINVAL; /* sector conversion overflow */
2805
2806         new = blocks * 2;
2807         if (new != blocks * 2)
2808                 return -EINVAL; /* unsigned long long to sector_t overflow */
2809
2810         *sectors = new;
2811         return 0;
2812 }
2813
2814 static ssize_t
2815 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2816 {
2817         struct mddev *my_mddev = rdev->mddev;
2818         sector_t oldsectors = rdev->sectors;
2819         sector_t sectors;
2820
2821         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2822                 return -EINVAL;
2823         if (my_mddev->pers && rdev->raid_disk >= 0) {
2824                 if (my_mddev->persistent) {
2825                         sectors = super_types[my_mddev->major_version].
2826                                 rdev_size_change(rdev, sectors);
2827                         if (!sectors)
2828                                 return -EBUSY;
2829                 } else if (!sectors)
2830                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2831                                 rdev->data_offset;
2832         }
2833         if (sectors < my_mddev->dev_sectors)
2834                 return -EINVAL; /* component must fit device */
2835
2836         rdev->sectors = sectors;
2837         if (sectors > oldsectors && my_mddev->external) {
2838                 /* need to check that all other rdevs with the same ->bdev
2839                  * do not overlap.  We need to unlock the mddev to avoid
2840                  * a deadlock.  We have already changed rdev->sectors, and if
2841                  * we have to change it back, we will have the lock again.
2842                  */
2843                 struct mddev *mddev;
2844                 int overlap = 0;
2845                 struct list_head *tmp;
2846
2847                 mddev_unlock(my_mddev);
2848                 for_each_mddev(mddev, tmp) {
2849                         struct md_rdev *rdev2;
2850
2851                         mddev_lock(mddev);
2852                         list_for_each_entry(rdev2, &mddev->disks, same_set)
2853                                 if (rdev->bdev == rdev2->bdev &&
2854                                     rdev != rdev2 &&
2855                                     overlaps(rdev->data_offset, rdev->sectors,
2856                                              rdev2->data_offset,
2857                                              rdev2->sectors)) {
2858                                         overlap = 1;
2859                                         break;
2860                                 }
2861                         mddev_unlock(mddev);
2862                         if (overlap) {
2863                                 mddev_put(mddev);
2864                                 break;
2865                         }
2866                 }
2867                 mddev_lock(my_mddev);
2868                 if (overlap) {
2869                         /* Someone else could have slipped in a size
2870                          * change here, but doing so is just silly.
2871                          * We put oldsectors back because we *know* it is
2872                          * safe, and trust userspace not to race with
2873                          * itself
2874                          */
2875                         rdev->sectors = oldsectors;
2876                         return -EBUSY;
2877                 }
2878         }
2879         return len;
2880 }
2881
2882 static struct rdev_sysfs_entry rdev_size =
2883 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2884
2885
2886 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2887 {
2888         unsigned long long recovery_start = rdev->recovery_offset;
2889
2890         if (test_bit(In_sync, &rdev->flags) ||
2891             recovery_start == MaxSector)
2892                 return sprintf(page, "none\n");
2893
2894         return sprintf(page, "%llu\n", recovery_start);
2895 }
2896
2897 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2898 {
2899         unsigned long long recovery_start;
2900
2901         if (cmd_match(buf, "none"))
2902                 recovery_start = MaxSector;
2903         else if (strict_strtoull(buf, 10, &recovery_start))
2904                 return -EINVAL;
2905
2906         if (rdev->mddev->pers &&
2907             rdev->raid_disk >= 0)
2908                 return -EBUSY;
2909
2910         rdev->recovery_offset = recovery_start;
2911         if (recovery_start == MaxSector)
2912                 set_bit(In_sync, &rdev->flags);
2913         else
2914                 clear_bit(In_sync, &rdev->flags);
2915         return len;
2916 }
2917
2918 static struct rdev_sysfs_entry rdev_recovery_start =
2919 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2920
2921
2922 static ssize_t
2923 badblocks_show(struct badblocks *bb, char *page, int unack);
2924 static ssize_t
2925 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2926
2927 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2928 {
2929         return badblocks_show(&rdev->badblocks, page, 0);
2930 }
2931 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2932 {
2933         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2934         /* Maybe that ack was all we needed */
2935         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2936                 wake_up(&rdev->blocked_wait);
2937         return rv;
2938 }
2939 static struct rdev_sysfs_entry rdev_bad_blocks =
2940 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2941
2942
2943 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2944 {
2945         return badblocks_show(&rdev->badblocks, page, 1);
2946 }
2947 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2948 {
2949         return badblocks_store(&rdev->badblocks, page, len, 1);
2950 }
2951 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2952 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2953
2954 static struct attribute *rdev_default_attrs[] = {
2955         &rdev_state.attr,
2956         &rdev_errors.attr,
2957         &rdev_slot.attr,
2958         &rdev_offset.attr,
2959         &rdev_size.attr,
2960         &rdev_recovery_start.attr,
2961         &rdev_bad_blocks.attr,
2962         &rdev_unack_bad_blocks.attr,
2963         NULL,
2964 };
2965 static ssize_t
2966 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2967 {
2968         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2969         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2970         struct mddev *mddev = rdev->mddev;
2971         ssize_t rv;
2972
2973         if (!entry->show)
2974                 return -EIO;
2975
2976         rv = mddev ? mddev_lock(mddev) : -EBUSY;
2977         if (!rv) {
2978                 if (rdev->mddev == NULL)
2979                         rv = -EBUSY;
2980                 else
2981                         rv = entry->show(rdev, page);
2982                 mddev_unlock(mddev);
2983         }
2984         return rv;
2985 }
2986
2987 static ssize_t
2988 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2989               const char *page, size_t length)
2990 {
2991         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2992         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2993         ssize_t rv;
2994         struct mddev *mddev = rdev->mddev;
2995
2996         if (!entry->store)
2997                 return -EIO;
2998         if (!capable(CAP_SYS_ADMIN))
2999                 return -EACCES;
3000         rv = mddev ? mddev_lock(mddev): -EBUSY;
3001         if (!rv) {
3002                 if (rdev->mddev == NULL)
3003                         rv = -EBUSY;
3004                 else
3005                         rv = entry->store(rdev, page, length);
3006                 mddev_unlock(mddev);
3007         }
3008         return rv;
3009 }
3010
3011 static void rdev_free(struct kobject *ko)
3012 {
3013         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3014         kfree(rdev);
3015 }
3016 static const struct sysfs_ops rdev_sysfs_ops = {
3017         .show           = rdev_attr_show,
3018         .store          = rdev_attr_store,
3019 };
3020 static struct kobj_type rdev_ktype = {
3021         .release        = rdev_free,
3022         .sysfs_ops      = &rdev_sysfs_ops,
3023         .default_attrs  = rdev_default_attrs,
3024 };
3025
3026 int md_rdev_init(struct md_rdev *rdev)
3027 {
3028         rdev->desc_nr = -1;
3029         rdev->saved_raid_disk = -1;
3030         rdev->raid_disk = -1;
3031         rdev->flags = 0;
3032         rdev->data_offset = 0;
3033         rdev->sb_events = 0;
3034         rdev->last_read_error.tv_sec  = 0;
3035         rdev->last_read_error.tv_nsec = 0;
3036         rdev->sb_loaded = 0;
3037         rdev->bb_page = NULL;
3038         atomic_set(&rdev->nr_pending, 0);
3039         atomic_set(&rdev->read_errors, 0);
3040         atomic_set(&rdev->corrected_errors, 0);
3041
3042         INIT_LIST_HEAD(&rdev->same_set);
3043         init_waitqueue_head(&rdev->blocked_wait);
3044
3045         /* Add space to store bad block list.
3046          * This reserves the space even on arrays where it cannot
3047          * be used - I wonder if that matters
3048          */
3049         rdev->badblocks.count = 0;
3050         rdev->badblocks.shift = 0;
3051         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3052         seqlock_init(&rdev->badblocks.lock);
3053         if (rdev->badblocks.page == NULL)
3054                 return -ENOMEM;
3055
3056         return 0;
3057 }
3058 EXPORT_SYMBOL_GPL(md_rdev_init);
3059 /*
3060  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3061  *
3062  * mark the device faulty if:
3063  *
3064  *   - the device is nonexistent (zero size)
3065  *   - the device has no valid superblock
3066  *
3067  * a faulty rdev _never_ has rdev->sb set.
3068  */
3069 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3070 {
3071         char b[BDEVNAME_SIZE];
3072         int err;
3073         struct md_rdev *rdev;
3074         sector_t size;
3075
3076         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3077         if (!rdev) {
3078                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3079                 return ERR_PTR(-ENOMEM);
3080         }
3081
3082         err = md_rdev_init(rdev);
3083         if (err)
3084                 goto abort_free;
3085         err = alloc_disk_sb(rdev);
3086         if (err)
3087                 goto abort_free;
3088
3089         err = lock_rdev(rdev, newdev, super_format == -2);
3090         if (err)
3091                 goto abort_free;
3092
3093         kobject_init(&rdev->kobj, &rdev_ktype);
3094
3095         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3096         if (!size) {
3097                 printk(KERN_WARNING 
3098                         "md: %s has zero or unknown size, marking faulty!\n",
3099                         bdevname(rdev->bdev,b));
3100                 err = -EINVAL;
3101                 goto abort_free;
3102         }
3103
3104         if (super_format >= 0) {
3105                 err = super_types[super_format].
3106                         load_super(rdev, NULL, super_minor);
3107                 if (err == -EINVAL) {
3108                         printk(KERN_WARNING
3109                                 "md: %s does not have a valid v%d.%d "
3110                                "superblock, not importing!\n",
3111                                 bdevname(rdev->bdev,b),
3112                                super_format, super_minor);
3113                         goto abort_free;
3114                 }
3115                 if (err < 0) {
3116                         printk(KERN_WARNING 
3117                                 "md: could not read %s's sb, not importing!\n",
3118                                 bdevname(rdev->bdev,b));
3119                         goto abort_free;
3120                 }
3121         }
3122         if (super_format == -1)
3123                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3124                 rdev->badblocks.shift = -1;
3125
3126         return rdev;
3127
3128 abort_free:
3129         if (rdev->bdev)
3130                 unlock_rdev(rdev);
3131         free_disk_sb(rdev);
3132         kfree(rdev->badblocks.page);
3133         kfree(rdev);
3134         return ERR_PTR(err);
3135 }
3136
3137 /*
3138  * Check a full RAID array for plausibility
3139  */
3140
3141
3142 static void analyze_sbs(struct mddev * mddev)
3143 {
3144         int i;
3145         struct md_rdev *rdev, *freshest, *tmp;
3146         char b[BDEVNAME_SIZE];
3147
3148         freshest = NULL;
3149         rdev_for_each(rdev, tmp, mddev)
3150                 switch (super_types[mddev->major_version].
3151                         load_super(rdev, freshest, mddev->minor_version)) {
3152                 case 1:
3153                         freshest = rdev;
3154                         break;
3155                 case 0:
3156                         break;
3157                 default:
3158                         printk( KERN_ERR \
3159                                 "md: fatal superblock inconsistency in %s"
3160                                 " -- removing from array\n", 
3161                                 bdevname(rdev->bdev,b));
3162                         kick_rdev_from_array(rdev);
3163                 }
3164
3165
3166         super_types[mddev->major_version].
3167                 validate_super(mddev, freshest);
3168
3169         i = 0;
3170         rdev_for_each(rdev, tmp, mddev) {
3171                 if (mddev->max_disks &&
3172                     (rdev->desc_nr >= mddev->max_disks ||
3173                      i > mddev->max_disks)) {
3174                         printk(KERN_WARNING
3175                                "md: %s: %s: only %d devices permitted\n",
3176                                mdname(mddev), bdevname(rdev->bdev, b),
3177                                mddev->max_disks);
3178                         kick_rdev_from_array(rdev);
3179                         continue;
3180                 }
3181                 if (rdev != freshest)
3182                         if (super_types[mddev->major_version].
3183                             validate_super(mddev, rdev)) {
3184                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3185                                         " from array!\n",
3186                                         bdevname(rdev->bdev,b));
3187                                 kick_rdev_from_array(rdev);
3188                                 continue;
3189                         }
3190                 if (mddev->level == LEVEL_MULTIPATH) {
3191                         rdev->desc_nr = i++;
3192                         rdev->raid_disk = rdev->desc_nr;
3193                         set_bit(In_sync, &rdev->flags);
3194                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3195                         rdev->raid_disk = -1;
3196                         clear_bit(In_sync, &rdev->flags);
3197                 }
3198         }
3199 }
3200
3201 /* Read a fixed-point number.
3202  * Numbers in sysfs attributes should be in "standard" units where
3203  * possible, so time should be in seconds.
3204  * However we internally use a a much smaller unit such as 
3205  * milliseconds or jiffies.
3206  * This function takes a decimal number with a possible fractional
3207  * component, and produces an integer which is the result of
3208  * multiplying that number by 10^'scale'.
3209  * all without any floating-point arithmetic.
3210  */
3211 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3212 {
3213         unsigned long result = 0;
3214         long decimals = -1;
3215         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3216                 if (*cp == '.')
3217                         decimals = 0;
3218                 else if (decimals < scale) {
3219                         unsigned int value;
3220                         value = *cp - '0';
3221                         result = result * 10 + value;
3222                         if (decimals >= 0)
3223                                 decimals++;
3224                 }
3225                 cp++;
3226         }
3227         if (*cp == '\n')
3228                 cp++;
3229         if (*cp)
3230                 return -EINVAL;
3231         if (decimals < 0)
3232                 decimals = 0;
3233         while (decimals < scale) {
3234                 result *= 10;
3235                 decimals ++;
3236         }
3237         *res = result;
3238         return 0;
3239 }
3240
3241
3242 static void md_safemode_timeout(unsigned long data);
3243
3244 static ssize_t
3245 safe_delay_show(struct mddev *mddev, char *page)
3246 {
3247         int msec = (mddev->safemode_delay*1000)/HZ;
3248         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3249 }
3250 static ssize_t
3251 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3252 {
3253         unsigned long msec;
3254
3255         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3256                 return -EINVAL;
3257         if (msec == 0)
3258                 mddev->safemode_delay = 0;
3259         else {
3260                 unsigned long old_delay = mddev->safemode_delay;
3261                 mddev->safemode_delay = (msec*HZ)/1000;
3262                 if (mddev->safemode_delay == 0)
3263                         mddev->safemode_delay = 1;
3264                 if (mddev->safemode_delay < old_delay)
3265                         md_safemode_timeout((unsigned long)mddev);
3266         }
3267         return len;
3268 }
3269 static struct md_sysfs_entry md_safe_delay =
3270 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3271
3272 static ssize_t
3273 level_show(struct mddev *mddev, char *page)
3274 {
3275         struct md_personality *p = mddev->pers;
3276         if (p)
3277                 return sprintf(page, "%s\n", p->name);
3278         else if (mddev->clevel[0])
3279                 return sprintf(page, "%s\n", mddev->clevel);
3280         else if (mddev->level != LEVEL_NONE)
3281                 return sprintf(page, "%d\n", mddev->level);
3282         else
3283                 return 0;
3284 }
3285
3286 static ssize_t
3287 level_store(struct mddev *mddev, const char *buf, size_t len)
3288 {
3289         char clevel[16];
3290         ssize_t rv = len;
3291         struct md_personality *pers;
3292         long level;
3293         void *priv;
3294         struct md_rdev *rdev;
3295
3296         if (mddev->pers == NULL) {
3297                 if (len == 0)
3298                         return 0;
3299                 if (len >= sizeof(mddev->clevel))
3300                         return -ENOSPC;
3301                 strncpy(mddev->clevel, buf, len);
3302                 if (mddev->clevel[len-1] == '\n')
3303                         len--;
3304                 mddev->clevel[len] = 0;
3305                 mddev->level = LEVEL_NONE;
3306                 return rv;
3307         }
3308
3309         /* request to change the personality.  Need to ensure:
3310          *  - array is not engaged in resync/recovery/reshape
3311          *  - old personality can be suspended
3312          *  - new personality will access other array.
3313          */
3314
3315         if (mddev->sync_thread ||
3316             mddev->reshape_position != MaxSector ||
3317             mddev->sysfs_active)
3318                 return -EBUSY;
3319
3320         if (!mddev->pers->quiesce) {
3321                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3322                        mdname(mddev), mddev->pers->name);
3323                 return -EINVAL;
3324         }
3325
3326         /* Now find the new personality */
3327         if (len == 0 || len >= sizeof(clevel))
3328                 return -EINVAL;
3329         strncpy(clevel, buf, len);
3330         if (clevel[len-1] == '\n')
3331                 len--;
3332         clevel[len] = 0;
3333         if (strict_strtol(clevel, 10, &level))
3334                 level = LEVEL_NONE;
3335
3336         if (request_module("md-%s", clevel) != 0)
3337                 request_module("md-level-%s", clevel);
3338         spin_lock(&pers_lock);
3339         pers = find_pers(level, clevel);
3340         if (!pers || !try_module_get(pers->owner)) {
3341                 spin_unlock(&pers_lock);
3342                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3343                 return -EINVAL;
3344         }
3345         spin_unlock(&pers_lock);
3346
3347         if (pers == mddev->pers) {
3348                 /* Nothing to do! */
3349                 module_put(pers->owner);
3350                 return rv;
3351         }
3352         if (!pers->takeover) {
3353                 module_put(pers->owner);
3354                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3355                        mdname(mddev), clevel);
3356                 return -EINVAL;
3357         }
3358
3359         list_for_each_entry(rdev, &mddev->disks, same_set)
3360                 rdev->new_raid_disk = rdev->raid_disk;
3361
3362         /* ->takeover must set new_* and/or delta_disks
3363          * if it succeeds, and may set them when it fails.
3364          */
3365         priv = pers->takeover(mddev);
3366         if (IS_ERR(priv)) {
3367                 mddev->new_level = mddev->level;
3368                 mddev->new_layout = mddev->layout;
3369                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3370                 mddev->raid_disks -= mddev->delta_disks;
3371                 mddev->delta_disks = 0;
3372                 module_put(pers->owner);
3373                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3374                        mdname(mddev), clevel);
3375                 return PTR_ERR(priv);
3376         }
3377
3378         /* Looks like we have a winner */
3379         mddev_suspend(mddev);
3380         mddev->pers->stop(mddev);
3381         
3382         if (mddev->pers->sync_request == NULL &&
3383             pers->sync_request != NULL) {
3384                 /* need to add the md_redundancy_group */
3385                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3386                         printk(KERN_WARNING
3387                                "md: cannot register extra attributes for %s\n",
3388                                mdname(mddev));
3389                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3390         }               
3391         if (mddev->pers->sync_request != NULL &&
3392             pers->sync_request == NULL) {
3393                 /* need to remove the md_redundancy_group */
3394                 if (mddev->to_remove == NULL)
3395                         mddev->to_remove = &md_redundancy_group;
3396         }
3397
3398         if (mddev->pers->sync_request == NULL &&
3399             mddev->external) {
3400                 /* We are converting from a no-redundancy array
3401                  * to a redundancy array and metadata is managed
3402                  * externally so we need to be sure that writes
3403                  * won't block due to a need to transition
3404                  *      clean->dirty
3405                  * until external management is started.
3406                  */
3407                 mddev->in_sync = 0;
3408                 mddev->safemode_delay = 0;
3409                 mddev->safemode = 0;
3410         }
3411
3412         list_for_each_entry(rdev, &mddev->disks, same_set) {
3413                 if (rdev->raid_disk < 0)
3414                         continue;
3415                 if (rdev->new_raid_disk >= mddev->raid_disks)
3416                         rdev->new_raid_disk = -1;
3417                 if (rdev->new_raid_disk == rdev->raid_disk)
3418                         continue;
3419                 sysfs_unlink_rdev(mddev, rdev);
3420         }
3421         list_for_each_entry(rdev, &mddev->disks, same_set) {
3422                 if (rdev->raid_disk < 0)
3423                         continue;
3424                 if (rdev->new_raid_disk == rdev->raid_disk)
3425                         continue;
3426                 rdev->raid_disk = rdev->new_raid_disk;
3427                 if (rdev->raid_disk < 0)
3428                         clear_bit(In_sync, &rdev->flags);
3429                 else {
3430                         if (sysfs_link_rdev(mddev, rdev))
3431                                 printk(KERN_WARNING "md: cannot register rd%d"
3432                                        " for %s after level change\n",
3433                                        rdev->raid_disk, mdname(mddev));
3434                 }
3435         }
3436
3437         module_put(mddev->pers->owner);
3438         mddev->pers = pers;
3439         mddev->private = priv;
3440         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3441         mddev->level = mddev->new_level;
3442         mddev->layout = mddev->new_layout;
3443         mddev->chunk_sectors = mddev->new_chunk_sectors;
3444         mddev->delta_disks = 0;
3445         mddev->degraded = 0;
3446         if (mddev->pers->sync_request == NULL) {
3447                 /* this is now an array without redundancy, so
3448                  * it must always be in_sync
3449                  */
3450                 mddev->in_sync = 1;
3451                 del_timer_sync(&mddev->safemode_timer);
3452         }
3453         pers->run(mddev);
3454         mddev_resume(mddev);
3455         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3456         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3457         md_wakeup_thread(mddev->thread);
3458         sysfs_notify(&mddev->kobj, NULL, "level");
3459         md_new_event(mddev);
3460         return rv;
3461 }
3462
3463 static struct md_sysfs_entry md_level =
3464 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3465
3466
3467 static ssize_t
3468 layout_show(struct mddev *mddev, char *page)
3469 {
3470         /* just a number, not meaningful for all levels */
3471         if (mddev->reshape_position != MaxSector &&
3472             mddev->layout != mddev->new_layout)
3473                 return sprintf(page, "%d (%d)\n",
3474                                mddev->new_layout, mddev->layout);
3475         return sprintf(page, "%d\n", mddev->layout);
3476 }
3477
3478 static ssize_t
3479 layout_store(struct mddev *mddev, const char *buf, size_t len)
3480 {
3481         char *e;
3482         unsigned long n = simple_strtoul(buf, &e, 10);
3483
3484         if (!*buf || (*e && *e != '\n'))
3485                 return -EINVAL;
3486
3487         if (mddev->pers) {
3488                 int err;
3489                 if (mddev->pers->check_reshape == NULL)
3490                         return -EBUSY;
3491                 mddev->new_layout = n;
3492                 err = mddev->pers->check_reshape(mddev);
3493                 if (err) {
3494                         mddev->new_layout = mddev->layout;
3495                         return err;
3496                 }
3497         } else {
3498                 mddev->new_layout = n;
3499                 if (mddev->reshape_position == MaxSector)
3500                         mddev->layout = n;
3501         }
3502         return len;
3503 }
3504 static struct md_sysfs_entry md_layout =
3505 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3506
3507
3508 static ssize_t
3509 raid_disks_show(struct mddev *mddev, char *page)
3510 {
3511         if (mddev->raid_disks == 0)
3512                 return 0;
3513         if (mddev->reshape_position != MaxSector &&
3514             mddev->delta_disks != 0)
3515                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3516                                mddev->raid_disks - mddev->delta_disks);
3517         return sprintf(page, "%d\n", mddev->raid_disks);
3518 }
3519
3520 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3521
3522 static ssize_t
3523 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3524 {
3525         char *e;
3526         int rv = 0;
3527         unsigned long n = simple_strtoul(buf, &e, 10);
3528
3529         if (!*buf || (*e && *e != '\n'))
3530                 return -EINVAL;
3531
3532         if (mddev->pers)
3533                 rv = update_raid_disks(mddev, n);
3534         else if (mddev->reshape_position != MaxSector) {
3535                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3536                 mddev->delta_disks = n - olddisks;
3537                 mddev->raid_disks = n;
3538         } else
3539                 mddev->raid_disks = n;
3540         return rv ? rv : len;
3541 }
3542 static struct md_sysfs_entry md_raid_disks =
3543 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3544
3545 static ssize_t
3546 chunk_size_show(struct mddev *mddev, char *page)
3547 {
3548         if (mddev->reshape_position != MaxSector &&
3549             mddev->chunk_sectors != mddev->new_chunk_sectors)
3550                 return sprintf(page, "%d (%d)\n",
3551                                mddev->new_chunk_sectors << 9,
3552                                mddev->chunk_sectors << 9);
3553         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3554 }
3555
3556 static ssize_t
3557 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3558 {
3559         char *e;
3560         unsigned long n = simple_strtoul(buf, &e, 10);
3561
3562         if (!*buf || (*e && *e != '\n'))
3563                 return -EINVAL;
3564
3565         if (mddev->pers) {
3566                 int err;
3567                 if (mddev->pers->check_reshape == NULL)
3568                         return -EBUSY;
3569                 mddev->new_chunk_sectors = n >> 9;
3570                 err = mddev->pers->check_reshape(mddev);
3571                 if (err) {
3572                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3573                         return err;
3574                 }
3575         } else {
3576                 mddev->new_chunk_sectors = n >> 9;
3577                 if (mddev->reshape_position == MaxSector)
3578                         mddev->chunk_sectors = n >> 9;
3579         }
3580         return len;
3581 }
3582 static struct md_sysfs_entry md_chunk_size =
3583 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3584
3585 static ssize_t
3586 resync_start_show(struct mddev *mddev, char *page)
3587 {
3588         if (mddev->recovery_cp == MaxSector)
3589                 return sprintf(page, "none\n");
3590         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3591 }
3592
3593 static ssize_t
3594 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3595 {
3596         char *e;
3597         unsigned long long n = simple_strtoull(buf, &e, 10);
3598
3599         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3600                 return -EBUSY;
3601         if (cmd_match(buf, "none"))
3602                 n = MaxSector;
3603         else if (!*buf || (*e && *e != '\n'))
3604                 return -EINVAL;
3605
3606         mddev->recovery_cp = n;
3607         return len;
3608 }
3609 static struct md_sysfs_entry md_resync_start =
3610 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3611
3612 /*
3613  * The array state can be:
3614  *
3615  * clear
3616  *     No devices, no size, no level
3617  *     Equivalent to STOP_ARRAY ioctl
3618  * inactive
3619  *     May have some settings, but array is not active
3620  *        all IO results in error
3621  *     When written, doesn't tear down array, but just stops it
3622  * suspended (not supported yet)
3623  *     All IO requests will block. The array can be reconfigured.
3624  *     Writing this, if accepted, will block until array is quiescent
3625  * readonly
3626  *     no resync can happen.  no superblocks get written.
3627  *     write requests fail
3628  * read-auto
3629  *     like readonly, but behaves like 'clean' on a write request.
3630  *
3631  * clean - no pending writes, but otherwise active.
3632  *     When written to inactive array, starts without resync
3633  *     If a write request arrives then
3634  *       if metadata is known, mark 'dirty' and switch to 'active'.
3635  *       if not known, block and switch to write-pending
3636  *     If written to an active array that has pending writes, then fails.
3637  * active
3638  *     fully active: IO and resync can be happening.
3639  *     When written to inactive array, starts with resync
3640  *
3641  * write-pending
3642  *     clean, but writes are blocked waiting for 'active' to be written.
3643  *
3644  * active-idle
3645  *     like active, but no writes have been seen for a while (100msec).
3646  *
3647  */
3648 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3649                    write_pending, active_idle, bad_word};
3650 static char *array_states[] = {
3651         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3652         "write-pending", "active-idle", NULL };
3653
3654 static int match_word(const char *word, char **list)
3655 {
3656         int n;
3657         for (n=0; list[n]; n++)
3658                 if (cmd_match(word, list[n]))
3659                         break;
3660         return n;
3661 }
3662
3663 static ssize_t
3664 array_state_show(struct mddev *mddev, char *page)
3665 {
3666         enum array_state st = inactive;
3667
3668         if (mddev->pers)
3669                 switch(mddev->ro) {
3670                 case 1:
3671                         st = readonly;
3672                         break;
3673                 case 2:
3674                         st = read_auto;
3675                         break;
3676                 case 0:
3677                         if (mddev->in_sync)
3678                                 st = clean;
3679                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3680                                 st = write_pending;
3681                         else if (mddev->safemode)
3682                                 st = active_idle;
3683                         else
3684                                 st = active;
3685                 }
3686         else {
3687                 if (list_empty(&mddev->disks) &&
3688                     mddev->raid_disks == 0 &&
3689                     mddev->dev_sectors == 0)
3690                         st = clear;
3691                 else
3692                         st = inactive;
3693         }
3694         return sprintf(page, "%s\n", array_states[st]);
3695 }
3696
3697 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3698 static int md_set_readonly(struct mddev * mddev, int is_open);
3699 static int do_md_run(struct mddev * mddev);
3700 static int restart_array(struct mddev *mddev);
3701
3702 static ssize_t
3703 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3704 {
3705         int err = -EINVAL;
3706         enum array_state st = match_word(buf, array_states);
3707         switch(st) {
3708         case bad_word:
3709                 break;
3710         case clear:
3711                 /* stopping an active array */
3712                 if (atomic_read(&mddev->openers) > 0)
3713                         return -EBUSY;
3714                 err = do_md_stop(mddev, 0, 0);
3715                 break;
3716         case inactive:
3717                 /* stopping an active array */
3718                 if (mddev->pers) {
3719                         if (atomic_read(&mddev->openers) > 0)
3720                                 return -EBUSY;
3721                         err = do_md_stop(mddev, 2, 0);
3722                 } else
3723                         err = 0; /* already inactive */
3724                 break;
3725         case suspended:
3726                 break; /* not supported yet */
3727         case readonly:
3728                 if (mddev->pers)
3729                         err = md_set_readonly(mddev, 0);
3730                 else {
3731                         mddev->ro = 1;
3732                         set_disk_ro(mddev->gendisk, 1);
3733                         err = do_md_run(mddev);
3734                 }
3735                 break;
3736         case read_auto:
3737                 if (mddev->pers) {
3738                         if (mddev->ro == 0)
3739                                 err = md_set_readonly(mddev, 0);
3740                         else if (mddev->ro == 1)
3741                                 err = restart_array(mddev);
3742                         if (err == 0) {
3743                                 mddev->ro = 2;
3744                                 set_disk_ro(mddev->gendisk, 0);
3745                         }
3746                 } else {
3747                         mddev->ro = 2;
3748                         err = do_md_run(mddev);
3749                 }
3750                 break;
3751         case clean:
3752                 if (mddev->pers) {
3753                         restart_array(mddev);
3754                         spin_lock_irq(&mddev->write_lock);
3755                         if (atomic_read(&mddev->writes_pending) == 0) {
3756                                 if (mddev->in_sync == 0) {
3757                                         mddev->in_sync = 1;
3758                                         if (mddev->safemode == 1)
3759                                                 mddev->safemode = 0;
3760                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3761                                 }
3762                                 err = 0;
3763                         } else
3764                                 err = -EBUSY;
3765                         spin_unlock_irq(&mddev->write_lock);
3766                 } else
3767                         err = -EINVAL;
3768                 break;
3769         case active:
3770                 if (mddev->pers) {
3771                         restart_array(mddev);
3772                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3773                         wake_up(&mddev->sb_wait);
3774                         err = 0;
3775                 } else {
3776                         mddev->ro = 0;
3777                         set_disk_ro(mddev->gendisk, 0);
3778                         err = do_md_run(mddev);
3779                 }
3780                 break;
3781         case write_pending:
3782         case active_idle:
3783                 /* these cannot be set */
3784                 break;
3785         }
3786         if (err)
3787                 return err;
3788         else {
3789                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3790                 return len;
3791         }
3792 }
3793 static struct md_sysfs_entry md_array_state =
3794 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3795
3796 static ssize_t
3797 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3798         return sprintf(page, "%d\n",
3799                        atomic_read(&mddev->max_corr_read_errors));
3800 }
3801
3802 static ssize_t
3803 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3804 {
3805         char *e;
3806         unsigned long n = simple_strtoul(buf, &e, 10);
3807
3808         if (*buf && (*e == 0 || *e == '\n')) {
3809                 atomic_set(&mddev->max_corr_read_errors, n);
3810                 return len;
3811         }
3812         return -EINVAL;
3813 }
3814
3815 static struct md_sysfs_entry max_corr_read_errors =
3816 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3817         max_corrected_read_errors_store);
3818
3819 static ssize_t
3820 null_show(struct mddev *mddev, char *page)
3821 {
3822         return -EINVAL;
3823 }
3824
3825 static ssize_t
3826 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3827 {
3828         /* buf must be %d:%d\n? giving major and minor numbers */
3829         /* The new device is added to the array.
3830          * If the array has a persistent superblock, we read the
3831          * superblock to initialise info and check validity.
3832          * Otherwise, only checking done is that in bind_rdev_to_array,
3833          * which mainly checks size.
3834          */
3835         char *e;
3836         int major = simple_strtoul(buf, &e, 10);
3837         int minor;
3838         dev_t dev;
3839         struct md_rdev *rdev;
3840         int err;
3841
3842         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3843                 return -EINVAL;
3844         minor = simple_strtoul(e+1, &e, 10);
3845         if (*e && *e != '\n')
3846                 return -EINVAL;
3847         dev = MKDEV(major, minor);
3848         if (major != MAJOR(dev) ||
3849             minor != MINOR(dev))
3850                 return -EOVERFLOW;
3851
3852
3853         if (mddev->persistent) {
3854                 rdev = md_import_device(dev, mddev->major_version,
3855                                         mddev->minor_version);
3856                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3857                         struct md_rdev *rdev0
3858                                 = list_entry(mddev->disks.next,
3859                                              struct md_rdev, same_set);
3860                         err = super_types[mddev->major_version]
3861                                 .load_super(rdev, rdev0, mddev->minor_version);
3862                         if (err < 0)
3863                                 goto out;
3864                 }
3865         } else if (mddev->external)
3866                 rdev = md_import_device(dev, -2, -1);
3867         else
3868                 rdev = md_import_device(dev, -1, -1);
3869
3870         if (IS_ERR(rdev))
3871                 return PTR_ERR(rdev);
3872         err = bind_rdev_to_array(rdev, mddev);
3873  out:
3874         if (err)
3875                 export_rdev(rdev);
3876         return err ? err : len;
3877 }
3878
3879 static struct md_sysfs_entry md_new_device =
3880 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3881
3882 static ssize_t
3883 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3884 {
3885         char *end;
3886         unsigned long chunk, end_chunk;
3887
3888         if (!mddev->bitmap)
3889                 goto out;
3890         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3891         while (*buf) {
3892                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3893                 if (buf == end) break;
3894                 if (*end == '-') { /* range */
3895                         buf = end + 1;
3896                         end_chunk = simple_strtoul(buf, &end, 0);
3897                         if (buf == end) break;
3898                 }
3899                 if (*end && !isspace(*end)) break;
3900                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3901                 buf = skip_spaces(end);
3902         }
3903         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3904 out:
3905         return len;
3906 }
3907
3908 static struct md_sysfs_entry md_bitmap =
3909 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3910
3911 static ssize_t
3912 size_show(struct mddev *mddev, char *page)
3913 {
3914         return sprintf(page, "%llu\n",
3915                 (unsigned long long)mddev->dev_sectors / 2);
3916 }
3917
3918 static int update_size(struct mddev *mddev, sector_t num_sectors);
3919
3920 static ssize_t
3921 size_store(struct mddev *mddev, const char *buf, size_t len)
3922 {
3923         /* If array is inactive, we can reduce the component size, but
3924          * not increase it (except from 0).
3925          * If array is active, we can try an on-line resize
3926          */
3927         sector_t sectors;
3928         int err = strict_blocks_to_sectors(buf, &sectors);
3929
3930         if (err < 0)
3931                 return err;
3932         if (mddev->pers) {
3933                 err = update_size(mddev, sectors);
3934                 md_update_sb(mddev, 1);
3935         } else {
3936                 if (mddev->dev_sectors == 0 ||
3937                     mddev->dev_sectors > sectors)
3938                         mddev->dev_sectors = sectors;
3939                 else
3940                         err = -ENOSPC;
3941         }
3942         return err ? err : len;
3943 }
3944
3945 static struct md_sysfs_entry md_size =
3946 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3947
3948
3949 /* Metdata version.
3950  * This is one of
3951  *   'none' for arrays with no metadata (good luck...)
3952  *   'external' for arrays with externally managed metadata,
3953  * or N.M for internally known formats
3954  */
3955 static ssize_t
3956 metadata_show(struct mddev *mddev, char *page)
3957 {
3958         if (mddev->persistent)
3959                 return sprintf(page, "%d.%d\n",
3960                                mddev->major_version, mddev->minor_version);
3961         else if (mddev->external)
3962                 return sprintf(page, "external:%s\n", mddev->metadata_type);
3963         else
3964                 return sprintf(page, "none\n");
3965 }
3966
3967 static ssize_t
3968 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3969 {
3970         int major, minor;
3971         char *e;
3972         /* Changing the details of 'external' metadata is
3973          * always permitted.  Otherwise there must be
3974          * no devices attached to the array.
3975          */
3976         if (mddev->external && strncmp(buf, "external:", 9) == 0)
3977                 ;
3978         else if (!list_empty(&mddev->disks))
3979                 return -EBUSY;
3980
3981         if (cmd_match(buf, "none")) {
3982                 mddev->persistent = 0;
3983                 mddev->external = 0;
3984                 mddev->major_version = 0;
3985                 mddev->minor_version = 90;
3986                 return len;
3987         }
3988         if (strncmp(buf, "external:", 9) == 0) {
3989                 size_t namelen = len-9;
3990                 if (namelen >= sizeof(mddev->metadata_type))
3991                         namelen = sizeof(mddev->metadata_type)-1;
3992                 strncpy(mddev->metadata_type, buf+9, namelen);
3993                 mddev->metadata_type[namelen] = 0;
3994                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3995                         mddev->metadata_type[--namelen] = 0;
3996                 mddev->persistent = 0;
3997                 mddev->external = 1;
3998                 mddev->major_version = 0;
3999                 mddev->minor_version = 90;
4000                 return len;
4001         }
4002         major = simple_strtoul(buf, &e, 10);
4003         if (e==buf || *e != '.')
4004                 return -EINVAL;
4005         buf = e+1;
4006         minor = simple_strtoul(buf, &e, 10);
4007         if (e==buf || (*e && *e != '\n') )
4008                 return -EINVAL;
4009         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4010                 return -ENOENT;
4011         mddev->major_version = major;
4012         mddev->minor_version = minor;
4013         mddev->persistent = 1;
4014         mddev->external = 0;
4015         return len;
4016 }
4017
4018 static struct md_sysfs_entry md_metadata =
4019 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4020
4021 static ssize_t
4022 action_show(struct mddev *mddev, char *page)
4023 {
4024         char *type = "idle";
4025         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4026                 type = "frozen";
4027         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4028             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4029                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4030                         type = "reshape";
4031                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4032                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4033                                 type = "resync";
4034                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4035                                 type = "check";
4036                         else
4037                                 type = "repair";
4038                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4039                         type = "recover";
4040         }
4041         return sprintf(page, "%s\n", type);
4042 }
4043
4044 static void reap_sync_thread(struct mddev *mddev);
4045
4046 static ssize_t
4047 action_store(struct mddev *mddev, const char *page, size_t len)
4048 {
4049         if (!mddev->pers || !mddev->pers->sync_request)
4050                 return -EINVAL;
4051
4052         if (cmd_match(page, "frozen"))
4053                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4054         else
4055                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4056
4057         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4058                 if (mddev->sync_thread) {
4059                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4060                         reap_sync_thread(mddev);
4061                 }
4062         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4063                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4064                 return -EBUSY;
4065         else if (cmd_match(page, "resync"))
4066                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4067         else if (cmd_match(page, "recover")) {
4068                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4069                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4070         } else if (cmd_match(page, "reshape")) {
4071                 int err;
4072                 if (mddev->pers->start_reshape == NULL)
4073                         return -EINVAL;
4074                 err = mddev->pers->start_reshape(mddev);
4075                 if (err)
4076                         return err;
4077                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4078         } else {
4079                 if (cmd_match(page, "check"))
4080                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4081                 else if (!cmd_match(page, "repair"))
4082                         return -EINVAL;
4083                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4084                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4085         }
4086         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4087         md_wakeup_thread(mddev->thread);
4088         sysfs_notify_dirent_safe(mddev->sysfs_action);
4089         return len;
4090 }
4091
4092 static ssize_t
4093 mismatch_cnt_show(struct mddev *mddev, char *page)
4094 {
4095         return sprintf(page, "%llu\n",
4096                        (unsigned long long) mddev->resync_mismatches);
4097 }
4098
4099 static struct md_sysfs_entry md_scan_mode =
4100 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4101
4102
4103 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4104
4105 static ssize_t
4106 sync_min_show(struct mddev *mddev, char *page)
4107 {
4108         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4109                        mddev->sync_speed_min ? "local": "system");
4110 }
4111
4112 static ssize_t
4113 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4114 {
4115         int min;
4116         char *e;
4117         if (strncmp(buf, "system", 6)==0) {
4118                 mddev->sync_speed_min = 0;
4119                 return len;
4120         }
4121         min = simple_strtoul(buf, &e, 10);
4122         if (buf == e || (*e && *e != '\n') || min <= 0)
4123                 return -EINVAL;
4124         mddev->sync_speed_min = min;
4125         return len;
4126 }
4127
4128 static struct md_sysfs_entry md_sync_min =
4129 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4130
4131 static ssize_t
4132 sync_max_show(struct mddev *mddev, char *page)
4133 {
4134         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4135                        mddev->sync_speed_max ? "local": "system");
4136 }
4137
4138 static ssize_t
4139 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4140 {
4141         int max;
4142         char *e;
4143         if (strncmp(buf, "system", 6)==0) {
4144                 mddev->sync_speed_max = 0;
4145                 return len;
4146         }
4147         max = simple_strtoul(buf, &e, 10);
4148         if (buf == e || (*e && *e != '\n') || max <= 0)
4149                 return -EINVAL;
4150         mddev->sync_speed_max = max;
4151         return len;
4152 }
4153
4154 static struct md_sysfs_entry md_sync_max =
4155 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4156
4157 static ssize_t
4158 degraded_show(struct mddev *mddev, char *page)
4159 {
4160         return sprintf(page, "%d\n", mddev->degraded);
4161 }
4162 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4163
4164 static ssize_t
4165 sync_force_parallel_show(struct mddev *mddev, char *page)
4166 {
4167         return sprintf(page, "%d\n", mddev->parallel_resync);
4168 }
4169
4170 static ssize_t
4171 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4172 {
4173         long n;
4174
4175         if (strict_strtol(buf, 10, &n))
4176                 return -EINVAL;
4177
4178         if (n != 0 && n != 1)
4179                 return -EINVAL;
4180
4181         mddev->parallel_resync = n;
4182
4183         if (mddev->sync_thread)
4184                 wake_up(&resync_wait);
4185
4186         return len;
4187 }
4188
4189 /* force parallel resync, even with shared block devices */
4190 static struct md_sysfs_entry md_sync_force_parallel =
4191 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4192        sync_force_parallel_show, sync_force_parallel_store);
4193
4194 static ssize_t
4195 sync_speed_show(struct mddev *mddev, char *page)
4196 {
4197         unsigned long resync, dt, db;
4198         if (mddev->curr_resync == 0)
4199                 return sprintf(page, "none\n");
4200         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4201         dt = (jiffies - mddev->resync_mark) / HZ;
4202         if (!dt) dt++;
4203         db = resync - mddev->resync_mark_cnt;
4204         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4205 }
4206
4207 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4208
4209 static ssize_t
4210 sync_completed_show(struct mddev *mddev, char *page)
4211 {
4212         unsigned long long max_sectors, resync;
4213
4214         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4215                 return sprintf(page, "none\n");
4216
4217         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4218                 max_sectors = mddev->resync_max_sectors;
4219         else
4220                 max_sectors = mddev->dev_sectors;
4221
4222         resync = mddev->curr_resync_completed;
4223         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4224 }
4225
4226 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4227
4228 static ssize_t
4229 min_sync_show(struct mddev *mddev, char *page)
4230 {
4231         return sprintf(page, "%llu\n",
4232                        (unsigned long long)mddev->resync_min);
4233 }
4234 static ssize_t
4235 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4236 {
4237         unsigned long long min;
4238         if (strict_strtoull(buf, 10, &min))
4239                 return -EINVAL;
4240         if (min > mddev->resync_max)
4241                 return -EINVAL;
4242         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4243                 return -EBUSY;
4244
4245         /* Must be a multiple of chunk_size */
4246         if (mddev->chunk_sectors) {
4247                 sector_t temp = min;
4248                 if (sector_div(temp, mddev->chunk_sectors))
4249                         return -EINVAL;
4250         }
4251         mddev->resync_min = min;
4252
4253         return len;
4254 }
4255
4256 static struct md_sysfs_entry md_min_sync =
4257 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4258
4259 static ssize_t
4260 max_sync_show(struct mddev *mddev, char *page)
4261 {
4262         if (mddev->resync_max == MaxSector)
4263                 return sprintf(page, "max\n");
4264         else
4265                 return sprintf(page, "%llu\n",
4266                                (unsigned long long)mddev->resync_max);
4267 }
4268 static ssize_t
4269 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4270 {
4271         if (strncmp(buf, "max", 3) == 0)
4272                 mddev->resync_max = MaxSector;
4273         else {
4274                 unsigned long long max;
4275                 if (strict_strtoull(buf, 10, &max))
4276                         return -EINVAL;
4277                 if (max < mddev->resync_min)
4278                         return -EINVAL;
4279                 if (max < mddev->resync_max &&
4280                     mddev->ro == 0 &&
4281                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4282                         return -EBUSY;
4283
4284                 /* Must be a multiple of chunk_size */
4285                 if (mddev->chunk_sectors) {
4286                         sector_t temp = max;
4287                         if (sector_div(temp, mddev->chunk_sectors))
4288                                 return -EINVAL;
4289                 }
4290                 mddev->resync_max = max;
4291         }
4292         wake_up(&mddev->recovery_wait);
4293         return len;
4294 }
4295
4296 static struct md_sysfs_entry md_max_sync =
4297 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4298
4299 static ssize_t
4300 suspend_lo_show(struct mddev *mddev, char *page)
4301 {
4302         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4303 }
4304
4305 static ssize_t
4306 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4307 {
4308         char *e;
4309         unsigned long long new = simple_strtoull(buf, &e, 10);
4310         unsigned long long old = mddev->suspend_lo;
4311
4312         if (mddev->pers == NULL || 
4313             mddev->pers->quiesce == NULL)
4314                 return -EINVAL;
4315         if (buf == e || (*e && *e != '\n'))
4316                 return -EINVAL;
4317
4318         mddev->suspend_lo = new;
4319         if (new >= old)
4320                 /* Shrinking suspended region */
4321                 mddev->pers->quiesce(mddev, 2);
4322         else {
4323                 /* Expanding suspended region - need to wait */
4324                 mddev->pers->quiesce(mddev, 1);
4325                 mddev->pers->quiesce(mddev, 0);
4326         }
4327         return len;
4328 }
4329 static struct md_sysfs_entry md_suspend_lo =
4330 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4331
4332
4333 static ssize_t
4334 suspend_hi_show(struct mddev *mddev, char *page)
4335 {
4336         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4337 }
4338
4339 static ssize_t
4340 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4341 {
4342         char *e;
4343         unsigned long long new = simple_strtoull(buf, &e, 10);
4344         unsigned long long old = mddev->suspend_hi;
4345
4346         if (mddev->pers == NULL ||
4347             mddev->pers->quiesce == NULL)
4348                 return -EINVAL;
4349         if (buf == e || (*e && *e != '\n'))
4350                 return -EINVAL;
4351
4352         mddev->suspend_hi = new;
4353         if (new <= old)
4354                 /* Shrinking suspended region */
4355                 mddev->pers->quiesce(mddev, 2);
4356         else {
4357                 /* Expanding suspended region - need to wait */
4358                 mddev->pers->quiesce(mddev, 1);
4359                 mddev->pers->quiesce(mddev, 0);
4360         }
4361         return len;
4362 }
4363 static struct md_sysfs_entry md_suspend_hi =
4364 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4365
4366 static ssize_t
4367 reshape_position_show(struct mddev *mddev, char *page)
4368 {
4369         if (mddev->reshape_position != MaxSector)
4370                 return sprintf(page, "%llu\n",
4371                                (unsigned long long)mddev->reshape_position);
4372         strcpy(page, "none\n");
4373         return 5;
4374 }
4375
4376 static ssize_t
4377 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4378 {
4379         char *e;
4380         unsigned long long new = simple_strtoull(buf, &e, 10);
4381         if (mddev->pers)
4382                 return -EBUSY;
4383         if (buf == e || (*e && *e != '\n'))
4384                 return -EINVAL;
4385         mddev->reshape_position = new;
4386         mddev->delta_disks = 0;
4387         mddev->new_level = mddev->level;
4388         mddev->new_layout = mddev->layout;
4389         mddev->new_chunk_sectors = mddev->chunk_sectors;
4390         return len;
4391 }
4392
4393 static struct md_sysfs_entry md_reshape_position =
4394 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4395        reshape_position_store);
4396
4397 static ssize_t
4398 array_size_show(struct mddev *mddev, char *page)
4399 {
4400         if (mddev->external_size)
4401                 return sprintf(page, "%llu\n",
4402                                (unsigned long long)mddev->array_sectors/2);
4403         else
4404                 return sprintf(page, "default\n");
4405 }
4406
4407 static ssize_t
4408 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4409 {
4410         sector_t sectors;
4411
4412         if (strncmp(buf, "default", 7) == 0) {
4413                 if (mddev->pers)
4414                         sectors = mddev->pers->size(mddev, 0, 0);
4415                 else
4416                         sectors = mddev->array_sectors;
4417
4418                 mddev->external_size = 0;
4419         } else {
4420                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4421                         return -EINVAL;
4422                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4423                         return -E2BIG;
4424
4425                 mddev->external_size = 1;
4426         }
4427
4428         mddev->array_sectors = sectors;
4429         if (mddev->pers) {
4430                 set_capacity(mddev->gendisk, mddev->array_sectors);
4431                 revalidate_disk(mddev->gendisk);
4432         }
4433         return len;
4434 }
4435
4436 static struct md_sysfs_entry md_array_size =
4437 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4438        array_size_store);
4439
4440 static struct attribute *md_default_attrs[] = {
4441         &md_level.attr,
4442         &md_layout.attr,
4443         &md_raid_disks.attr,
4444         &md_chunk_size.attr,
4445         &md_size.attr,
4446         &md_resync_start.attr,
4447         &md_metadata.attr,
4448         &md_new_device.attr,
4449         &md_safe_delay.attr,
4450         &md_array_state.attr,
4451         &md_reshape_position.attr,
4452         &md_array_size.attr,
4453         &max_corr_read_errors.attr,
4454         NULL,
4455 };
4456
4457 static struct attribute *md_redundancy_attrs[] = {
4458         &md_scan_mode.attr,
4459         &md_mismatches.attr,
4460         &md_sync_min.attr,
4461         &md_sync_max.attr,
4462         &md_sync_speed.attr,
4463         &md_sync_force_parallel.attr,
4464         &md_sync_completed.attr,
4465         &md_min_sync.attr,
4466         &md_max_sync.attr,
4467         &md_suspend_lo.attr,
4468         &md_suspend_hi.attr,
4469         &md_bitmap.attr,
4470         &md_degraded.attr,
4471         NULL,
4472 };
4473 static struct attribute_group md_redundancy_group = {
4474         .name = NULL,
4475         .attrs = md_redundancy_attrs,
4476 };
4477
4478
4479 static ssize_t
4480 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4481 {
4482         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4483         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4484         ssize_t rv;
4485
4486         if (!entry->show)
4487                 return -EIO;
4488         rv = mddev_lock(mddev);
4489         if (!rv) {
4490                 rv = entry->show(mddev, page);
4491                 mddev_unlock(mddev);
4492         }
4493         return rv;
4494 }
4495
4496 static ssize_t
4497 md_attr_store(struct kobject *kobj, struct attribute *attr,
4498               const char *page, size_t length)
4499 {
4500         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4501         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4502         ssize_t rv;
4503
4504         if (!entry->store)
4505                 return -EIO;
4506         if (!capable(CAP_SYS_ADMIN))
4507                 return -EACCES;
4508         rv = mddev_lock(mddev);
4509         if (mddev->hold_active == UNTIL_IOCTL)
4510                 mddev->hold_active = 0;
4511         if (!rv) {
4512                 rv = entry->store(mddev, page, length);
4513                 mddev_unlock(mddev);
4514         }
4515         return rv;
4516 }
4517
4518 static void md_free(struct kobject *ko)
4519 {
4520         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4521
4522         if (mddev->sysfs_state)
4523                 sysfs_put(mddev->sysfs_state);
4524
4525         if (mddev->gendisk) {
4526                 del_gendisk(mddev->gendisk);
4527                 put_disk(mddev->gendisk);
4528         }
4529         if (mddev->queue)
4530                 blk_cleanup_queue(mddev->queue);
4531
4532         kfree(mddev);
4533 }
4534
4535 static const struct sysfs_ops md_sysfs_ops = {
4536         .show   = md_attr_show,
4537         .store  = md_attr_store,
4538 };
4539 static struct kobj_type md_ktype = {
4540         .release        = md_free,
4541         .sysfs_ops      = &md_sysfs_ops,
4542         .default_attrs  = md_default_attrs,
4543 };
4544
4545 int mdp_major = 0;
4546
4547 static void mddev_delayed_delete(struct work_struct *ws)
4548 {
4549         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4550
4551         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4552         kobject_del(&mddev->kobj);
4553         kobject_put(&mddev->kobj);
4554 }
4555
4556 static int md_alloc(dev_t dev, char *name)
4557 {
4558         static DEFINE_MUTEX(disks_mutex);
4559         struct mddev *mddev = mddev_find(dev);
4560         struct gendisk *disk;
4561         int partitioned;
4562         int shift;
4563         int unit;
4564         int error;
4565
4566         if (!mddev)
4567                 return -ENODEV;
4568
4569         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4570         shift = partitioned ? MdpMinorShift : 0;
4571         unit = MINOR(mddev->unit) >> shift;
4572
4573         /* wait for any previous instance of this device to be
4574          * completely removed (mddev_delayed_delete).
4575          */
4576         flush_workqueue(md_misc_wq);
4577
4578         mutex_lock(&disks_mutex);
4579         error = -EEXIST;
4580         if (mddev->gendisk)
4581                 goto abort;
4582
4583         if (name) {
4584                 /* Need to ensure that 'name' is not a duplicate.
4585                  */
4586                 struct mddev *mddev2;
4587                 spin_lock(&all_mddevs_lock);
4588
4589                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4590                         if (mddev2->gendisk &&
4591                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4592                                 spin_unlock(&all_mddevs_lock);
4593                                 goto abort;
4594                         }
4595                 spin_unlock(&all_mddevs_lock);
4596         }
4597
4598         error = -ENOMEM;
4599         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4600         if (!mddev->queue)
4601                 goto abort;
4602         mddev->queue->queuedata = mddev;
4603
4604         blk_queue_make_request(mddev->queue, md_make_request);
4605
4606         disk = alloc_disk(1 << shift);
4607         if (!disk) {
4608                 blk_cleanup_queue(mddev->queue);
4609                 mddev->queue = NULL;
4610                 goto abort;
4611         }
4612         disk->major = MAJOR(mddev->unit);
4613         disk->first_minor = unit << shift;
4614         if (name)
4615                 strcpy(disk->disk_name, name);
4616         else if (partitioned)
4617                 sprintf(disk->disk_name, "md_d%d", unit);
4618         else
4619                 sprintf(disk->disk_name, "md%d", unit);
4620         disk->fops = &md_fops;
4621         disk->private_data = mddev;
4622         disk->queue = mddev->queue;
4623         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4624         /* Allow extended partitions.  This makes the
4625          * 'mdp' device redundant, but we can't really
4626          * remove it now.
4627          */
4628         disk->flags |= GENHD_FL_EXT_DEVT;
4629         mddev->gendisk = disk;
4630         /* As soon as we call add_disk(), another thread could get
4631          * through to md_open, so make sure it doesn't get too far
4632          */
4633         mutex_lock(&mddev->open_mutex);
4634         add_disk(disk);
4635
4636         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4637                                      &disk_to_dev(disk)->kobj, "%s", "md");
4638         if (error) {
4639                 /* This isn't possible, but as kobject_init_and_add is marked
4640                  * __must_check, we must do something with the result
4641                  */
4642                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4643                        disk->disk_name);
4644                 error = 0;
4645         }
4646         if (mddev->kobj.sd &&
4647             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4648                 printk(KERN_DEBUG "pointless warning\n");
4649         mutex_unlock(&mddev->open_mutex);
4650  abort:
4651         mutex_unlock(&disks_mutex);
4652         if (!error && mddev->kobj.sd) {
4653                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4654                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4655         }
4656         mddev_put(mddev);
4657         return error;
4658 }
4659
4660 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4661 {
4662         md_alloc(dev, NULL);
4663         return NULL;
4664 }
4665
4666 static int add_named_array(const char *val, struct kernel_param *kp)
4667 {
4668         /* val must be "md_*" where * is not all digits.
4669          * We allocate an array with a large free minor number, and
4670          * set the name to val.  val must not already be an active name.
4671          */
4672         int len = strlen(val);
4673         char buf[DISK_NAME_LEN];
4674
4675         while (len && val[len-1] == '\n')
4676                 len--;
4677         if (len >= DISK_NAME_LEN)
4678                 return -E2BIG;
4679         strlcpy(buf, val, len+1);
4680         if (strncmp(buf, "md_", 3) != 0)
4681                 return -EINVAL;
4682         return md_alloc(0, buf);
4683 }
4684
4685 static void md_safemode_timeout(unsigned long data)
4686 {
4687         struct mddev *mddev = (struct mddev *) data;
4688
4689         if (!atomic_read(&mddev->writes_pending)) {
4690                 mddev->safemode = 1;
4691                 if (mddev->external)
4692                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4693         }
4694         md_wakeup_thread(mddev->thread);
4695 }
4696
4697 static int start_dirty_degraded;
4698
4699 int md_run(struct mddev *mddev)
4700 {
4701         int err;
4702         struct md_rdev *rdev;
4703         struct md_personality *pers;
4704
4705         if (list_empty(&mddev->disks))
4706                 /* cannot run an array with no devices.. */
4707                 return -EINVAL;
4708
4709         if (mddev->pers)
4710                 return -EBUSY;
4711         /* Cannot run until previous stop completes properly */
4712         if (mddev->sysfs_active)
4713                 return -EBUSY;
4714
4715         /*
4716          * Analyze all RAID superblock(s)
4717          */
4718         if (!mddev->raid_disks) {
4719                 if (!mddev->persistent)
4720                         return -EINVAL;
4721                 analyze_sbs(mddev);
4722         }
4723
4724         if (mddev->level != LEVEL_NONE)
4725                 request_module("md-level-%d", mddev->level);
4726         else if (mddev->clevel[0])
4727                 request_module("md-%s", mddev->clevel);
4728
4729         /*
4730          * Drop all container device buffers, from now on
4731          * the only valid external interface is through the md
4732          * device.
4733          */
4734         list_for_each_entry(rdev, &mddev->disks, same_set) {
4735                 if (test_bit(Faulty, &rdev->flags))
4736                         continue;
4737                 sync_blockdev(rdev->bdev);
4738                 invalidate_bdev(rdev->bdev);
4739
4740                 /* perform some consistency tests on the device.
4741                  * We don't want the data to overlap the metadata,
4742                  * Internal Bitmap issues have been handled elsewhere.
4743                  */
4744                 if (rdev->meta_bdev) {
4745                         /* Nothing to check */;
4746                 } else if (rdev->data_offset < rdev->sb_start) {
4747                         if (mddev->dev_sectors &&
4748                             rdev->data_offset + mddev->dev_sectors
4749                             > rdev->sb_start) {
4750                                 printk("md: %s: data overlaps metadata\n",
4751                                        mdname(mddev));
4752                                 return -EINVAL;
4753                         }
4754                 } else {
4755                         if (rdev->sb_start + rdev->sb_size/512
4756                             > rdev->data_offset) {
4757                                 printk("md: %s: metadata overlaps data\n",
4758                                        mdname(mddev));
4759                                 return -EINVAL;
4760                         }
4761                 }
4762                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4763         }
4764
4765         if (mddev->bio_set == NULL)
4766                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4767                                                sizeof(struct mddev *));
4768
4769         spin_lock(&pers_lock);
4770         pers = find_pers(mddev->level, mddev->clevel);
4771         if (!pers || !try_module_get(pers->owner)) {
4772                 spin_unlock(&pers_lock);
4773                 if (mddev->level != LEVEL_NONE)
4774                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4775                                mddev->level);
4776                 else
4777                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4778                                mddev->clevel);
4779                 return -EINVAL;
4780         }
4781         mddev->pers = pers;
4782         spin_unlock(&pers_lock);
4783         if (mddev->level != pers->level) {
4784                 mddev->level = pers->level;
4785                 mddev->new_level = pers->level;
4786         }
4787         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4788
4789         if (mddev->reshape_position != MaxSector &&
4790             pers->start_reshape == NULL) {
4791                 /* This personality cannot handle reshaping... */
4792                 mddev->pers = NULL;
4793                 module_put(pers->owner);
4794                 return -EINVAL;
4795         }
4796
4797         if (pers->sync_request) {
4798                 /* Warn if this is a potentially silly
4799                  * configuration.
4800                  */
4801                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4802                 struct md_rdev *rdev2;
4803                 int warned = 0;
4804
4805                 list_for_each_entry(rdev, &mddev->disks, same_set)
4806                         list_for_each_entry(rdev2, &mddev->disks, same_set) {
4807                                 if (rdev < rdev2 &&
4808                                     rdev->bdev->bd_contains ==
4809                                     rdev2->bdev->bd_contains) {
4810                                         printk(KERN_WARNING
4811                                                "%s: WARNING: %s appears to be"
4812                                                " on the same physical disk as"
4813                                                " %s.\n",
4814                                                mdname(mddev),
4815                                                bdevname(rdev->bdev,b),
4816                                                bdevname(rdev2->bdev,b2));
4817                                         warned = 1;
4818                                 }
4819                         }
4820
4821                 if (warned)
4822                         printk(KERN_WARNING
4823                                "True protection against single-disk"
4824                                " failure might be compromised.\n");
4825         }
4826
4827         mddev->recovery = 0;
4828         /* may be over-ridden by personality */
4829         mddev->resync_max_sectors = mddev->dev_sectors;
4830
4831         mddev->ok_start_degraded = start_dirty_degraded;
4832
4833         if (start_readonly && mddev->ro == 0)
4834                 mddev->ro = 2; /* read-only, but switch on first write */
4835
4836         err = mddev->pers->run(mddev);
4837         if (err)
4838                 printk(KERN_ERR "md: pers->run() failed ...\n");
4839         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4840                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4841                           " but 'external_size' not in effect?\n", __func__);
4842                 printk(KERN_ERR
4843                        "md: invalid array_size %llu > default size %llu\n",
4844                        (unsigned long long)mddev->array_sectors / 2,
4845                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4846                 err = -EINVAL;
4847                 mddev->pers->stop(mddev);
4848         }
4849         if (err == 0 && mddev->pers->sync_request) {
4850                 err = bitmap_create(mddev);
4851                 if (err) {
4852                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4853                                mdname(mddev), err);
4854                         mddev->pers->stop(mddev);
4855                 }
4856         }
4857         if (err) {
4858                 module_put(mddev->pers->owner);
4859                 mddev->pers = NULL;
4860                 bitmap_destroy(mddev);
4861                 return err;
4862         }
4863         if (mddev->pers->sync_request) {
4864                 if (mddev->kobj.sd &&
4865                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4866                         printk(KERN_WARNING
4867                                "md: cannot register extra attributes for %s\n",
4868                                mdname(mddev));
4869                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4870         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4871                 mddev->ro = 0;
4872
4873         atomic_set(&mddev->writes_pending,0);
4874         atomic_set(&mddev->max_corr_read_errors,
4875                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4876         mddev->safemode = 0;
4877         mddev->safemode_timer.function = md_safemode_timeout;
4878         mddev->safemode_timer.data = (unsigned long) mddev;
4879         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4880         mddev->in_sync = 1;
4881         smp_wmb();
4882         mddev->ready = 1;
4883         list_for_each_entry(rdev, &mddev->disks, same_set)
4884                 if (rdev->raid_disk >= 0)
4885                         if (sysfs_link_rdev(mddev, rdev))
4886                                 /* failure here is OK */;
4887         
4888         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4889         
4890         if (mddev->flags)
4891                 md_update_sb(mddev, 0);
4892
4893         md_new_event(mddev);
4894         sysfs_notify_dirent_safe(mddev->sysfs_state);
4895         sysfs_notify_dirent_safe(mddev->sysfs_action);
4896         sysfs_notify(&mddev->kobj, NULL, "degraded");
4897         return 0;
4898 }
4899 EXPORT_SYMBOL_GPL(md_run);
4900
4901 static int do_md_run(struct mddev *mddev)
4902 {
4903         int err;
4904
4905         err = md_run(mddev);
4906         if (err)
4907                 goto out;
4908         err = bitmap_load(mddev);
4909         if (err) {
4910                 bitmap_destroy(mddev);
4911                 goto out;
4912         }
4913
4914         md_wakeup_thread(mddev->thread);
4915         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4916
4917         set_capacity(mddev->gendisk, mddev->array_sectors);
4918         revalidate_disk(mddev->gendisk);
4919         mddev->changed = 1;
4920         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4921 out:
4922         return err;
4923 }
4924
4925 static int restart_array(struct mddev *mddev)
4926 {
4927         struct gendisk *disk = mddev->gendisk;
4928
4929         /* Complain if it has no devices */
4930         if (list_empty(&mddev->disks))
4931                 return -ENXIO;
4932         if (!mddev->pers)
4933                 return -EINVAL;
4934         if (!mddev->ro)
4935                 return -EBUSY;
4936         mddev->safemode = 0;
4937         mddev->ro = 0;
4938         set_disk_ro(disk, 0);
4939         printk(KERN_INFO "md: %s switched to read-write mode.\n",
4940                 mdname(mddev));
4941         /* Kick recovery or resync if necessary */
4942         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4943         md_wakeup_thread(mddev->thread);
4944         md_wakeup_thread(mddev->sync_thread);
4945         sysfs_notify_dirent_safe(mddev->sysfs_state);
4946         return 0;
4947 }
4948
4949 /* similar to deny_write_access, but accounts for our holding a reference
4950  * to the file ourselves */
4951 static int deny_bitmap_write_access(struct file * file)
4952 {
4953         struct inode *inode = file->f_mapping->host;
4954
4955         spin_lock(&inode->i_lock);
4956         if (atomic_read(&inode->i_writecount) > 1) {
4957                 spin_unlock(&inode->i_lock);
4958                 return -ETXTBSY;
4959         }
4960         atomic_set(&inode->i_writecount, -1);
4961         spin_unlock(&inode->i_lock);
4962
4963         return 0;
4964 }
4965
4966 void restore_bitmap_write_access(struct file *file)
4967 {
4968         struct inode *inode = file->f_mapping->host;
4969
4970         spin_lock(&inode->i_lock);
4971         atomic_set(&inode->i_writecount, 1);
4972         spin_unlock(&inode->i_lock);
4973 }
4974
4975 static void md_clean(struct mddev *mddev)
4976 {
4977         mddev->array_sectors = 0;
4978         mddev->external_size = 0;
4979         mddev->dev_sectors = 0;
4980         mddev->raid_disks = 0;
4981         mddev->recovery_cp = 0;
4982         mddev->resync_min = 0;
4983         mddev->resync_max = MaxSector;
4984         mddev->reshape_position = MaxSector;
4985         mddev->external = 0;
4986         mddev->persistent = 0;
4987         mddev->level = LEVEL_NONE;
4988         mddev->clevel[0] = 0;
4989         mddev->flags = 0;
4990         mddev->ro = 0;
4991         mddev->metadata_type[0] = 0;
4992         mddev->chunk_sectors = 0;
4993         mddev->ctime = mddev->utime = 0;
4994         mddev->layout = 0;
4995         mddev->max_disks = 0;
4996         mddev->events = 0;
4997         mddev->can_decrease_events = 0;
4998         mddev->delta_disks = 0;
4999         mddev->new_level = LEVEL_NONE;
5000         mddev->new_layout = 0;
5001         mddev->new_chunk_sectors = 0;
5002         mddev->curr_resync = 0;
5003         mddev->resync_mismatches = 0;
5004         mddev->suspend_lo = mddev->suspend_hi = 0;
5005         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5006         mddev->recovery = 0;
5007         mddev->in_sync = 0;
5008         mddev->changed = 0;
5009         mddev->degraded = 0;
5010         mddev->safemode = 0;
5011         mddev->bitmap_info.offset = 0;
5012         mddev->bitmap_info.default_offset = 0;
5013         mddev->bitmap_info.chunksize = 0;
5014         mddev->bitmap_info.daemon_sleep = 0;
5015         mddev->bitmap_info.max_write_behind = 0;
5016 }
5017
5018 static void __md_stop_writes(struct mddev *mddev)
5019 {
5020         if (mddev->sync_thread) {
5021                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5022                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5023                 reap_sync_thread(mddev);
5024         }
5025
5026         del_timer_sync(&mddev->safemode_timer);
5027
5028         bitmap_flush(mddev);
5029         md_super_wait(mddev);
5030
5031         if (!mddev->in_sync || mddev->flags) {
5032                 /* mark array as shutdown cleanly */
5033                 mddev->in_sync = 1;
5034                 md_update_sb(mddev, 1);
5035         }
5036 }
5037
5038 void md_stop_writes(struct mddev *mddev)
5039 {
5040         mddev_lock(mddev);
5041         __md_stop_writes(mddev);
5042         mddev_unlock(mddev);
5043 }
5044 EXPORT_SYMBOL_GPL(md_stop_writes);
5045
5046 void md_stop(struct mddev *mddev)
5047 {
5048         mddev->ready = 0;
5049         mddev->pers->stop(mddev);
5050         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5051                 mddev->to_remove = &md_redundancy_group;
5052         module_put(mddev->pers->owner);
5053         mddev->pers = NULL;
5054         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5055 }
5056 EXPORT_SYMBOL_GPL(md_stop);
5057
5058 static int md_set_readonly(struct mddev *mddev, int is_open)
5059 {
5060         int err = 0;
5061         mutex_lock(&mddev->open_mutex);
5062         if (atomic_read(&mddev->openers) > is_open) {
5063                 printk("md: %s still in use.\n",mdname(mddev));
5064                 err = -EBUSY;
5065                 goto out;
5066         }
5067         if (mddev->pers) {
5068                 __md_stop_writes(mddev);
5069
5070                 err  = -ENXIO;
5071                 if (mddev->ro==1)
5072                         goto out;
5073                 mddev->ro = 1;
5074                 set_disk_ro(mddev->gendisk, 1);
5075                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5076                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5077                 err = 0;        
5078         }
5079 out:
5080         mutex_unlock(&mddev->open_mutex);
5081         return err;
5082 }
5083
5084 /* mode:
5085  *   0 - completely stop and dis-assemble array
5086  *   2 - stop but do not disassemble array
5087  */
5088 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5089 {
5090         struct gendisk *disk = mddev->gendisk;
5091         struct md_rdev *rdev;
5092
5093         mutex_lock(&mddev->open_mutex);
5094         if (atomic_read(&mddev->openers) > is_open ||
5095             mddev->sysfs_active) {
5096                 printk("md: %s still in use.\n",mdname(mddev));
5097                 mutex_unlock(&mddev->open_mutex);
5098                 return -EBUSY;
5099         }
5100
5101         if (mddev->pers) {
5102                 if (mddev->ro)
5103                         set_disk_ro(disk, 0);
5104
5105                 __md_stop_writes(mddev);
5106                 md_stop(mddev);
5107                 mddev->queue->merge_bvec_fn = NULL;
5108                 mddev->queue->backing_dev_info.congested_fn = NULL;
5109
5110                 /* tell userspace to handle 'inactive' */
5111                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5112
5113                 list_for_each_entry(rdev, &mddev->disks, same_set)
5114                         if (rdev->raid_disk >= 0)
5115                                 sysfs_unlink_rdev(mddev, rdev);
5116
5117                 set_capacity(disk, 0);
5118                 mutex_unlock(&mddev->open_mutex);
5119                 mddev->changed = 1;
5120                 revalidate_disk(disk);
5121
5122                 if (mddev->ro)
5123                         mddev->ro = 0;
5124         } else
5125                 mutex_unlock(&mddev->open_mutex);
5126         /*
5127          * Free resources if final stop
5128          */
5129         if (mode == 0) {
5130                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5131
5132                 bitmap_destroy(mddev);
5133                 if (mddev->bitmap_info.file) {
5134                         restore_bitmap_write_access(mddev->bitmap_info.file);
5135                         fput(mddev->bitmap_info.file);
5136                         mddev->bitmap_info.file = NULL;
5137                 }
5138                 mddev->bitmap_info.offset = 0;
5139
5140                 export_array(mddev);
5141
5142                 md_clean(mddev);
5143                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5144                 if (mddev->hold_active == UNTIL_STOP)
5145                         mddev->hold_active = 0;
5146         }
5147         blk_integrity_unregister(disk);
5148         md_new_event(mddev);
5149         sysfs_notify_dirent_safe(mddev->sysfs_state);
5150         return 0;
5151 }
5152
5153 #ifndef MODULE
5154 static void autorun_array(struct mddev *mddev)
5155 {
5156         struct md_rdev *rdev;
5157         int err;
5158
5159         if (list_empty(&mddev->disks))
5160                 return;
5161
5162         printk(KERN_INFO "md: running: ");
5163
5164         list_for_each_entry(rdev, &mddev->disks, same_set) {
5165                 char b[BDEVNAME_SIZE];
5166                 printk("<%s>", bdevname(rdev->bdev,b));
5167         }
5168         printk("\n");
5169
5170         err = do_md_run(mddev);
5171         if (err) {
5172                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5173                 do_md_stop(mddev, 0, 0);
5174         }
5175 }
5176
5177 /*
5178  * lets try to run arrays based on all disks that have arrived
5179  * until now. (those are in pending_raid_disks)
5180  *
5181  * the method: pick the first pending disk, collect all disks with
5182  * the same UUID, remove all from the pending list and put them into
5183  * the 'same_array' list. Then order this list based on superblock
5184  * update time (freshest comes first), kick out 'old' disks and
5185  * compare superblocks. If everything's fine then run it.
5186  *
5187  * If "unit" is allocated, then bump its reference count
5188  */
5189 static void autorun_devices(int part)
5190 {
5191         struct md_rdev *rdev0, *rdev, *tmp;
5192         struct mddev *mddev;
5193         char b[BDEVNAME_SIZE];
5194
5195         printk(KERN_INFO "md: autorun ...\n");
5196         while (!list_empty(&pending_raid_disks)) {
5197                 int unit;
5198                 dev_t dev;
5199                 LIST_HEAD(candidates);
5200                 rdev0 = list_entry(pending_raid_disks.next,
5201                                          struct md_rdev, same_set);
5202
5203                 printk(KERN_INFO "md: considering %s ...\n",
5204                         bdevname(rdev0->bdev,b));
5205                 INIT_LIST_HEAD(&candidates);
5206                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5207                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5208                                 printk(KERN_INFO "md:  adding %s ...\n",
5209                                         bdevname(rdev->bdev,b));
5210                                 list_move(&rdev->same_set, &candidates);
5211                         }
5212                 /*
5213                  * now we have a set of devices, with all of them having
5214                  * mostly sane superblocks. It's time to allocate the
5215                  * mddev.
5216                  */
5217                 if (part) {
5218                         dev = MKDEV(mdp_major,
5219                                     rdev0->preferred_minor << MdpMinorShift);
5220                         unit = MINOR(dev) >> MdpMinorShift;
5221                 } else {
5222                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5223                         unit = MINOR(dev);
5224                 }
5225                 if (rdev0->preferred_minor != unit) {
5226                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5227                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5228                         break;
5229                 }
5230
5231                 md_probe(dev, NULL, NULL);
5232                 mddev = mddev_find(dev);
5233                 if (!mddev || !mddev->gendisk) {
5234                         if (mddev)
5235                                 mddev_put(mddev);
5236                         printk(KERN_ERR
5237                                 "md: cannot allocate memory for md drive.\n");
5238                         break;
5239                 }
5240                 if (mddev_lock(mddev)) 
5241                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5242                                mdname(mddev));
5243                 else if (mddev->raid_disks || mddev->major_version
5244                          || !list_empty(&mddev->disks)) {
5245                         printk(KERN_WARNING 
5246                                 "md: %s already running, cannot run %s\n",
5247                                 mdname(mddev), bdevname(rdev0->bdev,b));
5248                         mddev_unlock(mddev);
5249                 } else {
5250                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5251                         mddev->persistent = 1;
5252                         rdev_for_each_list(rdev, tmp, &candidates) {
5253                                 list_del_init(&rdev->same_set);
5254                                 if (bind_rdev_to_array(rdev, mddev))
5255                                         export_rdev(rdev);
5256                         }
5257                         autorun_array(mddev);
5258                         mddev_unlock(mddev);
5259                 }
5260                 /* on success, candidates will be empty, on error
5261                  * it won't...
5262                  */
5263                 rdev_for_each_list(rdev, tmp, &candidates) {
5264                         list_del_init(&rdev->same_set);
5265                         export_rdev(rdev);
5266                 }
5267                 mddev_put(mddev);
5268         }
5269         printk(KERN_INFO "md: ... autorun DONE.\n");
5270 }
5271 #endif /* !MODULE */
5272
5273 static int get_version(void __user * arg)
5274 {
5275         mdu_version_t ver;
5276
5277         ver.major = MD_MAJOR_VERSION;
5278         ver.minor = MD_MINOR_VERSION;
5279         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5280
5281         if (copy_to_user(arg, &ver, sizeof(ver)))
5282                 return -EFAULT;
5283
5284         return 0;
5285 }
5286
5287 static int get_array_info(struct mddev * mddev, void __user * arg)
5288 {
5289         mdu_array_info_t info;
5290         int nr,working,insync,failed,spare;
5291         struct md_rdev *rdev;
5292
5293         nr=working=insync=failed=spare=0;
5294         list_for_each_entry(rdev, &mddev->disks, same_set) {
5295                 nr++;
5296                 if (test_bit(Faulty, &rdev->flags))
5297                         failed++;
5298                 else {
5299                         working++;
5300                         if (test_bit(In_sync, &rdev->flags))
5301                                 insync++;       
5302                         else
5303                                 spare++;
5304                 }
5305         }
5306
5307         info.major_version = mddev->major_version;
5308         info.minor_version = mddev->minor_version;
5309         info.patch_version = MD_PATCHLEVEL_VERSION;
5310         info.ctime         = mddev->ctime;
5311         info.level         = mddev->level;
5312         info.size          = mddev->dev_sectors / 2;
5313         if (info.size != mddev->dev_sectors / 2) /* overflow */
5314                 info.size = -1;
5315         info.nr_disks      = nr;
5316         info.raid_disks    = mddev->raid_disks;
5317         info.md_minor      = mddev->md_minor;
5318         info.not_persistent= !mddev->persistent;
5319
5320         info.utime         = mddev->utime;
5321         info.state         = 0;
5322         if (mddev->in_sync)
5323                 info.state = (1<<MD_SB_CLEAN);
5324         if (mddev->bitmap && mddev->bitmap_info.offset)
5325                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5326         info.active_disks  = insync;
5327         info.working_disks = working;
5328         info.failed_disks  = failed;
5329         info.spare_disks   = spare;
5330
5331         info.layout        = mddev->layout;
5332         info.chunk_size    = mddev->chunk_sectors << 9;
5333
5334         if (copy_to_user(arg, &info, sizeof(info)))
5335                 return -EFAULT;
5336
5337         return 0;
5338 }
5339
5340 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5341 {
5342         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5343         char *ptr, *buf = NULL;
5344         int err = -ENOMEM;
5345
5346         if (md_allow_write(mddev))
5347                 file = kmalloc(sizeof(*file), GFP_NOIO);
5348         else
5349                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5350
5351         if (!file)
5352                 goto out;
5353
5354         /* bitmap disabled, zero the first byte and copy out */
5355         if (!mddev->bitmap || !mddev->bitmap->file) {
5356                 file->pathname[0] = '\0';
5357                 goto copy_out;
5358         }
5359
5360         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5361         if (!buf)
5362                 goto out;
5363
5364         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5365         if (IS_ERR(ptr))
5366                 goto out;
5367
5368         strcpy(file->pathname, ptr);
5369
5370 copy_out:
5371         err = 0;
5372         if (copy_to_user(arg, file, sizeof(*file)))
5373                 err = -EFAULT;
5374 out:
5375         kfree(buf);
5376         kfree(file);
5377         return err;
5378 }
5379
5380 static int get_disk_info(struct mddev * mddev, void __user * arg)
5381 {
5382         mdu_disk_info_t info;
5383         struct md_rdev *rdev;
5384
5385         if (copy_from_user(&info, arg, sizeof(info)))
5386                 return -EFAULT;
5387
5388         rdev = find_rdev_nr(mddev, info.number);
5389         if (rdev) {
5390                 info.major = MAJOR(rdev->bdev->bd_dev);
5391                 info.minor = MINOR(rdev->bdev->bd_dev);
5392                 info.raid_disk = rdev->raid_disk;
5393                 info.state = 0;
5394                 if (test_bit(Faulty, &rdev->flags))
5395                         info.state |= (1<<MD_DISK_FAULTY);
5396                 else if (test_bit(In_sync, &rdev->flags)) {
5397                         info.state |= (1<<MD_DISK_ACTIVE);
5398                         info.state |= (1<<MD_DISK_SYNC);
5399                 }
5400                 if (test_bit(WriteMostly, &rdev->flags))
5401                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5402         } else {
5403                 info.major = info.minor = 0;
5404                 info.raid_disk = -1;
5405                 info.state = (1<<MD_DISK_REMOVED);
5406         }
5407
5408         if (copy_to_user(arg, &info, sizeof(info)))
5409                 return -EFAULT;
5410
5411         return 0;
5412 }
5413
5414 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5415 {
5416         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5417         struct md_rdev *rdev;
5418         dev_t dev = MKDEV(info->major,info->minor);
5419
5420         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5421                 return -EOVERFLOW;
5422
5423         if (!mddev->raid_disks) {
5424                 int err;
5425                 /* expecting a device which has a superblock */
5426                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5427                 if (IS_ERR(rdev)) {
5428                         printk(KERN_WARNING 
5429                                 "md: md_import_device returned %ld\n",
5430                                 PTR_ERR(rdev));
5431                         return PTR_ERR(rdev);
5432                 }
5433                 if (!list_empty(&mddev->disks)) {
5434                         struct md_rdev *rdev0
5435                                 = list_entry(mddev->disks.next,
5436                                              struct md_rdev, same_set);
5437                         err = super_types[mddev->major_version]
5438                                 .load_super(rdev, rdev0, mddev->minor_version);
5439                         if (err < 0) {
5440                                 printk(KERN_WARNING 
5441                                         "md: %s has different UUID to %s\n",
5442                                         bdevname(rdev->bdev,b), 
5443                                         bdevname(rdev0->bdev,b2));
5444                                 export_rdev(rdev);
5445                                 return -EINVAL;
5446                         }
5447                 }
5448                 err = bind_rdev_to_array(rdev, mddev);
5449                 if (err)
5450                         export_rdev(rdev);
5451                 return err;
5452         }
5453
5454         /*
5455          * add_new_disk can be used once the array is assembled
5456          * to add "hot spares".  They must already have a superblock
5457          * written
5458          */
5459         if (mddev->pers) {
5460                 int err;
5461                 if (!mddev->pers->hot_add_disk) {
5462                         printk(KERN_WARNING 
5463                                 "%s: personality does not support diskops!\n",
5464                                mdname(mddev));
5465                         return -EINVAL;
5466                 }
5467                 if (mddev->persistent)
5468                         rdev = md_import_device(dev, mddev->major_version,
5469                                                 mddev->minor_version);
5470                 else
5471                         rdev = md_import_device(dev, -1, -1);
5472                 if (IS_ERR(rdev)) {
5473                         printk(KERN_WARNING 
5474                                 "md: md_import_device returned %ld\n",
5475                                 PTR_ERR(rdev));
5476                         return PTR_ERR(rdev);
5477                 }
5478                 /* set saved_raid_disk if appropriate */
5479                 if (!mddev->persistent) {
5480                         if (info->state & (1<<MD_DISK_SYNC)  &&
5481                             info->raid_disk < mddev->raid_disks) {
5482                                 rdev->raid_disk = info->raid_disk;
5483                                 set_bit(In_sync, &rdev->flags);
5484                         } else
5485                                 rdev->raid_disk = -1;
5486                 } else
5487                         super_types[mddev->major_version].
5488                                 validate_super(mddev, rdev);
5489                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5490                     (!test_bit(In_sync, &rdev->flags) ||
5491                      rdev->raid_disk != info->raid_disk)) {
5492                         /* This was a hot-add request, but events doesn't
5493                          * match, so reject it.
5494                          */
5495                         export_rdev(rdev);
5496                         return -EINVAL;
5497                 }
5498
5499                 if (test_bit(In_sync, &rdev->flags))
5500                         rdev->saved_raid_disk = rdev->raid_disk;
5501                 else
5502                         rdev->saved_raid_disk = -1;
5503
5504                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5505                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5506                         set_bit(WriteMostly, &rdev->flags);
5507                 else
5508                         clear_bit(WriteMostly, &rdev->flags);
5509
5510                 rdev->raid_disk = -1;
5511                 err = bind_rdev_to_array(rdev, mddev);
5512                 if (!err && !mddev->pers->hot_remove_disk) {
5513                         /* If there is hot_add_disk but no hot_remove_disk
5514                          * then added disks for geometry changes,
5515                          * and should be added immediately.
5516                          */
5517                         super_types[mddev->major_version].
5518                                 validate_super(mddev, rdev);
5519                         err = mddev->pers->hot_add_disk(mddev, rdev);
5520                         if (err)
5521                                 unbind_rdev_from_array(rdev);
5522                 }
5523                 if (err)
5524                         export_rdev(rdev);
5525                 else
5526                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5527
5528                 md_update_sb(mddev, 1);
5529                 if (mddev->degraded)
5530                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5531                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5532                 if (!err)
5533                         md_new_event(mddev);
5534                 md_wakeup_thread(mddev->thread);
5535                 return err;
5536         }
5537
5538         /* otherwise, add_new_disk is only allowed
5539          * for major_version==0 superblocks
5540          */
5541         if (mddev->major_version != 0) {
5542                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5543                        mdname(mddev));
5544                 return -EINVAL;
5545         }
5546
5547         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5548                 int err;
5549                 rdev = md_import_device(dev, -1, 0);
5550                 if (IS_ERR(rdev)) {
5551                         printk(KERN_WARNING 
5552                                 "md: error, md_import_device() returned %ld\n",
5553                                 PTR_ERR(rdev));
5554                         return PTR_ERR(rdev);
5555                 }
5556                 rdev->desc_nr = info->number;
5557                 if (info->raid_disk < mddev->raid_disks)
5558                         rdev->raid_disk = info->raid_disk;
5559                 else
5560                         rdev->raid_disk = -1;
5561
5562                 if (rdev->raid_disk < mddev->raid_disks)
5563                         if (info->state & (1<<MD_DISK_SYNC))
5564                                 set_bit(In_sync, &rdev->flags);
5565
5566                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5567                         set_bit(WriteMostly, &rdev->flags);
5568
5569                 if (!mddev->persistent) {
5570                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5571                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5572                 } else
5573                         rdev->sb_start = calc_dev_sboffset(rdev);
5574                 rdev->sectors = rdev->sb_start;
5575
5576                 err = bind_rdev_to_array(rdev, mddev);
5577                 if (err) {
5578                         export_rdev(rdev);
5579                         return err;
5580                 }
5581         }
5582
5583         return 0;
5584 }
5585
5586 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5587 {
5588         char b[BDEVNAME_SIZE];
5589         struct md_rdev *rdev;
5590
5591         rdev = find_rdev(mddev, dev);
5592         if (!rdev)
5593                 return -ENXIO;
5594
5595         if (rdev->raid_disk >= 0)
5596                 goto busy;
5597
5598         kick_rdev_from_array(rdev);
5599         md_update_sb(mddev, 1);
5600         md_new_event(mddev);
5601
5602         return 0;
5603 busy:
5604         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5605                 bdevname(rdev->bdev,b), mdname(mddev));
5606         return -EBUSY;
5607 }
5608
5609 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5610 {
5611         char b[BDEVNAME_SIZE];
5612         int err;
5613         struct md_rdev *rdev;
5614
5615         if (!mddev->pers)
5616                 return -ENODEV;
5617
5618         if (mddev->major_version != 0) {
5619                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5620                         " version-0 superblocks.\n",
5621                         mdname(mddev));
5622                 return -EINVAL;
5623         }
5624         if (!mddev->pers->hot_add_disk) {
5625                 printk(KERN_WARNING 
5626                         "%s: personality does not support diskops!\n",
5627                         mdname(mddev));
5628                 return -EINVAL;
5629         }
5630
5631         rdev = md_import_device(dev, -1, 0);
5632         if (IS_ERR(rdev)) {
5633                 printk(KERN_WARNING 
5634                         "md: error, md_import_device() returned %ld\n",
5635                         PTR_ERR(rdev));
5636                 return -EINVAL;
5637         }
5638
5639         if (mddev->persistent)
5640                 rdev->sb_start = calc_dev_sboffset(rdev);
5641         else
5642                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5643
5644         rdev->sectors = rdev->sb_start;
5645
5646         if (test_bit(Faulty, &rdev->flags)) {
5647                 printk(KERN_WARNING 
5648                         "md: can not hot-add faulty %s disk to %s!\n",
5649                         bdevname(rdev->bdev,b), mdname(mddev));
5650                 err = -EINVAL;
5651                 goto abort_export;
5652         }
5653         clear_bit(In_sync, &rdev->flags);
5654         rdev->desc_nr = -1;
5655         rdev->saved_raid_disk = -1;
5656         err = bind_rdev_to_array(rdev, mddev);
5657         if (err)
5658                 goto abort_export;
5659
5660         /*
5661          * The rest should better be atomic, we can have disk failures
5662          * noticed in interrupt contexts ...
5663          */
5664
5665         rdev->raid_disk = -1;
5666
5667         md_update_sb(mddev, 1);
5668
5669         /*
5670          * Kick recovery, maybe this spare has to be added to the
5671          * array immediately.
5672          */
5673         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5674         md_wakeup_thread(mddev->thread);
5675         md_new_event(mddev);
5676         return 0;
5677
5678 abort_export:
5679         export_rdev(rdev);
5680         return err;
5681 }
5682
5683 static int set_bitmap_file(struct mddev *mddev, int fd)
5684 {
5685         int err;
5686
5687         if (mddev->pers) {
5688                 if (!mddev->pers->quiesce)
5689                         return -EBUSY;
5690                 if (mddev->recovery || mddev->sync_thread)
5691                         return -EBUSY;
5692                 /* we should be able to change the bitmap.. */
5693         }
5694
5695
5696         if (fd >= 0) {
5697                 if (mddev->bitmap)
5698                         return -EEXIST; /* cannot add when bitmap is present */
5699                 mddev->bitmap_info.file = fget(fd);
5700
5701                 if (mddev->bitmap_info.file == NULL) {
5702                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5703                                mdname(mddev));
5704                         return -EBADF;
5705                 }
5706
5707                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5708                 if (err) {
5709                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5710                                mdname(mddev));
5711                         fput(mddev->bitmap_info.file);
5712                         mddev->bitmap_info.file = NULL;
5713                         return err;
5714                 }
5715                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5716         } else if (mddev->bitmap == NULL)
5717                 return -ENOENT; /* cannot remove what isn't there */
5718         err = 0;
5719         if (mddev->pers) {
5720                 mddev->pers->quiesce(mddev, 1);
5721                 if (fd >= 0) {
5722                         err = bitmap_create(mddev);
5723                         if (!err)
5724                                 err = bitmap_load(mddev);
5725                 }
5726                 if (fd < 0 || err) {
5727                         bitmap_destroy(mddev);
5728                         fd = -1; /* make sure to put the file */
5729                 }
5730                 mddev->pers->quiesce(mddev, 0);
5731         }
5732         if (fd < 0) {
5733                 if (mddev->bitmap_info.file) {
5734                         restore_bitmap_write_access(mddev->bitmap_info.file);
5735                         fput(mddev->bitmap_info.file);
5736                 }
5737                 mddev->bitmap_info.file = NULL;
5738         }
5739
5740         return err;
5741 }
5742
5743 /*
5744  * set_array_info is used two different ways
5745  * The original usage is when creating a new array.
5746  * In this usage, raid_disks is > 0 and it together with
5747  *  level, size, not_persistent,layout,chunksize determine the
5748  *  shape of the array.
5749  *  This will always create an array with a type-0.90.0 superblock.
5750  * The newer usage is when assembling an array.
5751  *  In this case raid_disks will be 0, and the major_version field is
5752  *  use to determine which style super-blocks are to be found on the devices.
5753  *  The minor and patch _version numbers are also kept incase the
5754  *  super_block handler wishes to interpret them.
5755  */
5756 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5757 {
5758
5759         if (info->raid_disks == 0) {
5760                 /* just setting version number for superblock loading */
5761                 if (info->major_version < 0 ||
5762                     info->major_version >= ARRAY_SIZE(super_types) ||
5763                     super_types[info->major_version].name == NULL) {
5764                         /* maybe try to auto-load a module? */
5765                         printk(KERN_INFO 
5766                                 "md: superblock version %d not known\n",
5767                                 info->major_version);
5768                         return -EINVAL;
5769                 }
5770                 mddev->major_version = info->major_version;
5771                 mddev->minor_version = info->minor_version;
5772                 mddev->patch_version = info->patch_version;
5773                 mddev->persistent = !info->not_persistent;
5774                 /* ensure mddev_put doesn't delete this now that there
5775                  * is some minimal configuration.
5776                  */
5777                 mddev->ctime         = get_seconds();
5778                 return 0;
5779         }
5780         mddev->major_version = MD_MAJOR_VERSION;
5781         mddev->minor_version = MD_MINOR_VERSION;
5782         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5783         mddev->ctime         = get_seconds();
5784
5785         mddev->level         = info->level;
5786         mddev->clevel[0]     = 0;
5787         mddev->dev_sectors   = 2 * (sector_t)info->size;
5788         mddev->raid_disks    = info->raid_disks;
5789         /* don't set md_minor, it is determined by which /dev/md* was
5790          * openned
5791          */
5792         if (info->state & (1<<MD_SB_CLEAN))
5793                 mddev->recovery_cp = MaxSector;
5794         else
5795                 mddev->recovery_cp = 0;
5796         mddev->persistent    = ! info->not_persistent;
5797         mddev->external      = 0;
5798
5799         mddev->layout        = info->layout;
5800         mddev->chunk_sectors = info->chunk_size >> 9;
5801
5802         mddev->max_disks     = MD_SB_DISKS;
5803
5804         if (mddev->persistent)
5805                 mddev->flags         = 0;
5806         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5807
5808         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5809         mddev->bitmap_info.offset = 0;
5810
5811         mddev->reshape_position = MaxSector;
5812
5813         /*
5814          * Generate a 128 bit UUID
5815          */
5816         get_random_bytes(mddev->uuid, 16);
5817
5818         mddev->new_level = mddev->level;
5819         mddev->new_chunk_sectors = mddev->chunk_sectors;
5820         mddev->new_layout = mddev->layout;
5821         mddev->delta_disks = 0;
5822
5823         return 0;
5824 }
5825
5826 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5827 {
5828         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5829
5830         if (mddev->external_size)
5831                 return;
5832
5833         mddev->array_sectors = array_sectors;
5834 }
5835 EXPORT_SYMBOL(md_set_array_sectors);
5836
5837 static int update_size(struct mddev *mddev, sector_t num_sectors)
5838 {
5839         struct md_rdev *rdev;
5840         int rv;
5841         int fit = (num_sectors == 0);
5842
5843         if (mddev->pers->resize == NULL)
5844                 return -EINVAL;
5845         /* The "num_sectors" is the number of sectors of each device that
5846          * is used.  This can only make sense for arrays with redundancy.
5847          * linear and raid0 always use whatever space is available. We can only
5848          * consider changing this number if no resync or reconstruction is
5849          * happening, and if the new size is acceptable. It must fit before the
5850          * sb_start or, if that is <data_offset, it must fit before the size
5851          * of each device.  If num_sectors is zero, we find the largest size
5852          * that fits.
5853          */
5854         if (mddev->sync_thread)
5855                 return -EBUSY;
5856         if (mddev->bitmap)
5857                 /* Sorry, cannot grow a bitmap yet, just remove it,
5858                  * grow, and re-add.
5859                  */
5860                 return -EBUSY;
5861         list_for_each_entry(rdev, &mddev->disks, same_set) {
5862                 sector_t avail = rdev->sectors;
5863
5864                 if (fit && (num_sectors == 0 || num_sectors > avail))
5865                         num_sectors = avail;
5866                 if (avail < num_sectors)
5867                         return -ENOSPC;
5868         }
5869         rv = mddev->pers->resize(mddev, num_sectors);
5870         if (!rv)
5871                 revalidate_disk(mddev->gendisk);
5872         return rv;
5873 }
5874
5875 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5876 {
5877         int rv;
5878         /* change the number of raid disks */
5879         if (mddev->pers->check_reshape == NULL)
5880                 return -EINVAL;
5881         if (raid_disks <= 0 ||
5882             (mddev->max_disks && raid_disks >= mddev->max_disks))
5883                 return -EINVAL;
5884         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5885                 return -EBUSY;
5886         mddev->delta_disks = raid_disks - mddev->raid_disks;
5887
5888         rv = mddev->pers->check_reshape(mddev);
5889         if (rv < 0)
5890                 mddev->delta_disks = 0;
5891         return rv;
5892 }
5893
5894
5895 /*
5896  * update_array_info is used to change the configuration of an
5897  * on-line array.
5898  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5899  * fields in the info are checked against the array.
5900  * Any differences that cannot be handled will cause an error.
5901  * Normally, only one change can be managed at a time.
5902  */
5903 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5904 {
5905         int rv = 0;
5906         int cnt = 0;
5907         int state = 0;
5908
5909         /* calculate expected state,ignoring low bits */
5910         if (mddev->bitmap && mddev->bitmap_info.offset)
5911                 state |= (1 << MD_SB_BITMAP_PRESENT);
5912
5913         if (mddev->major_version != info->major_version ||
5914             mddev->minor_version != info->minor_version ||
5915 /*          mddev->patch_version != info->patch_version || */
5916             mddev->ctime         != info->ctime         ||
5917             mddev->level         != info->level         ||
5918 /*          mddev->layout        != info->layout        || */
5919             !mddev->persistent   != info->not_persistent||
5920             mddev->chunk_sectors != info->chunk_size >> 9 ||
5921             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5922             ((state^info->state) & 0xfffffe00)
5923                 )
5924                 return -EINVAL;
5925         /* Check there is only one change */
5926         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5927                 cnt++;
5928         if (mddev->raid_disks != info->raid_disks)
5929                 cnt++;
5930         if (mddev->layout != info->layout)
5931                 cnt++;
5932         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5933                 cnt++;
5934         if (cnt == 0)
5935                 return 0;
5936         if (cnt > 1)
5937                 return -EINVAL;
5938
5939         if (mddev->layout != info->layout) {
5940                 /* Change layout
5941                  * we don't need to do anything at the md level, the
5942                  * personality will take care of it all.
5943                  */
5944                 if (mddev->pers->check_reshape == NULL)
5945                         return -EINVAL;
5946                 else {
5947                         mddev->new_layout = info->layout;
5948                         rv = mddev->pers->check_reshape(mddev);
5949                         if (rv)
5950                                 mddev->new_layout = mddev->layout;
5951                         return rv;
5952                 }
5953         }
5954         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5955                 rv = update_size(mddev, (sector_t)info->size * 2);
5956
5957         if (mddev->raid_disks    != info->raid_disks)
5958                 rv = update_raid_disks(mddev, info->raid_disks);
5959
5960         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5961                 if (mddev->pers->quiesce == NULL)
5962                         return -EINVAL;
5963                 if (mddev->recovery || mddev->sync_thread)
5964                         return -EBUSY;
5965                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5966                         /* add the bitmap */
5967                         if (mddev->bitmap)
5968                                 return -EEXIST;
5969                         if (mddev->bitmap_info.default_offset == 0)
5970                                 return -EINVAL;
5971                         mddev->bitmap_info.offset =
5972                                 mddev->bitmap_info.default_offset;
5973                         mddev->pers->quiesce(mddev, 1);
5974                         rv = bitmap_create(mddev);
5975                         if (!rv)
5976                                 rv = bitmap_load(mddev);
5977                         if (rv)
5978                                 bitmap_destroy(mddev);
5979                         mddev->pers->quiesce(mddev, 0);
5980                 } else {
5981                         /* remove the bitmap */
5982                         if (!mddev->bitmap)
5983                                 return -ENOENT;
5984                         if (mddev->bitmap->file)
5985                                 return -EINVAL;
5986                         mddev->pers->quiesce(mddev, 1);
5987                         bitmap_destroy(mddev);
5988                         mddev->pers->quiesce(mddev, 0);
5989                         mddev->bitmap_info.offset = 0;
5990                 }
5991         }
5992         md_update_sb(mddev, 1);
5993         return rv;
5994 }
5995
5996 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
5997 {
5998         struct md_rdev *rdev;
5999
6000         if (mddev->pers == NULL)
6001                 return -ENODEV;
6002
6003         rdev = find_rdev(mddev, dev);
6004         if (!rdev)
6005                 return -ENODEV;
6006
6007         md_error(mddev, rdev);
6008         if (!test_bit(Faulty, &rdev->flags))
6009                 return -EBUSY;
6010         return 0;
6011 }
6012
6013 /*
6014  * We have a problem here : there is no easy way to give a CHS
6015  * virtual geometry. We currently pretend that we have a 2 heads
6016  * 4 sectors (with a BIG number of cylinders...). This drives
6017  * dosfs just mad... ;-)
6018  */
6019 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6020 {
6021         struct mddev *mddev = bdev->bd_disk->private_data;
6022
6023         geo->heads = 2;
6024         geo->sectors = 4;
6025         geo->cylinders = mddev->array_sectors / 8;
6026         return 0;
6027 }
6028
6029 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6030                         unsigned int cmd, unsigned long arg)
6031 {
6032         int err = 0;
6033         void __user *argp = (void __user *)arg;
6034         struct mddev *mddev = NULL;
6035         int ro;
6036
6037         if (!capable(CAP_SYS_ADMIN))
6038                 return -EACCES;
6039
6040         /*
6041          * Commands dealing with the RAID driver but not any
6042          * particular array:
6043          */
6044         switch (cmd)
6045         {
6046                 case RAID_VERSION:
6047                         err = get_version(argp);
6048                         goto done;
6049
6050                 case PRINT_RAID_DEBUG:
6051                         err = 0;
6052                         md_print_devices();
6053                         goto done;
6054
6055 #ifndef MODULE
6056                 case RAID_AUTORUN:
6057                         err = 0;
6058                         autostart_arrays(arg);
6059                         goto done;
6060 #endif
6061                 default:;
6062         }
6063
6064         /*
6065          * Commands creating/starting a new array:
6066          */
6067
6068         mddev = bdev->bd_disk->private_data;
6069
6070         if (!mddev) {
6071                 BUG();
6072                 goto abort;
6073         }
6074
6075         err = mddev_lock(mddev);
6076         if (err) {
6077                 printk(KERN_INFO 
6078                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6079                         err, cmd);
6080                 goto abort;
6081         }
6082
6083         switch (cmd)
6084         {
6085                 case SET_ARRAY_INFO:
6086                         {
6087                                 mdu_array_info_t info;
6088                                 if (!arg)
6089                                         memset(&info, 0, sizeof(info));
6090                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6091                                         err = -EFAULT;
6092                                         goto abort_unlock;
6093                                 }
6094                                 if (mddev->pers) {
6095                                         err = update_array_info(mddev, &info);
6096                                         if (err) {
6097                                                 printk(KERN_WARNING "md: couldn't update"
6098                                                        " array info. %d\n", err);
6099                                                 goto abort_unlock;
6100                                         }
6101                                         goto done_unlock;
6102                                 }
6103                                 if (!list_empty(&mddev->disks)) {
6104                                         printk(KERN_WARNING
6105                                                "md: array %s already has disks!\n",
6106                                                mdname(mddev));
6107                                         err = -EBUSY;
6108                                         goto abort_unlock;
6109                                 }
6110                                 if (mddev->raid_disks) {
6111                                         printk(KERN_WARNING
6112                                                "md: array %s already initialised!\n",
6113                                                mdname(mddev));
6114                                         err = -EBUSY;
6115                                         goto abort_unlock;
6116                                 }
6117                                 err = set_array_info(mddev, &info);
6118                                 if (err) {
6119                                         printk(KERN_WARNING "md: couldn't set"
6120                                                " array info. %d\n", err);
6121                                         goto abort_unlock;
6122                                 }
6123                         }
6124                         goto done_unlock;
6125
6126                 default:;
6127         }
6128
6129         /*
6130          * Commands querying/configuring an existing array:
6131          */
6132         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6133          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6134         if ((!mddev->raid_disks && !mddev->external)
6135             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6136             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6137             && cmd != GET_BITMAP_FILE) {
6138                 err = -ENODEV;
6139                 goto abort_unlock;
6140         }
6141
6142         /*
6143          * Commands even a read-only array can execute:
6144          */
6145         switch (cmd)
6146         {
6147                 case GET_ARRAY_INFO:
6148                         err = get_array_info(mddev, argp);
6149                         goto done_unlock;
6150
6151                 case GET_BITMAP_FILE:
6152                         err = get_bitmap_file(mddev, argp);
6153                         goto done_unlock;
6154
6155                 case GET_DISK_INFO:
6156                         err = get_disk_info(mddev, argp);
6157                         goto done_unlock;
6158
6159                 case RESTART_ARRAY_RW:
6160                         err = restart_array(mddev);
6161                         goto done_unlock;
6162
6163                 case STOP_ARRAY:
6164                         err = do_md_stop(mddev, 0, 1);
6165                         goto done_unlock;
6166
6167                 case STOP_ARRAY_RO:
6168                         err = md_set_readonly(mddev, 1);
6169                         goto done_unlock;
6170
6171                 case BLKROSET:
6172                         if (get_user(ro, (int __user *)(arg))) {
6173                                 err = -EFAULT;
6174                                 goto done_unlock;
6175                         }
6176                         err = -EINVAL;
6177
6178                         /* if the bdev is going readonly the value of mddev->ro
6179                          * does not matter, no writes are coming
6180                          */
6181                         if (ro)
6182                                 goto done_unlock;
6183
6184                         /* are we are already prepared for writes? */
6185                         if (mddev->ro != 1)
6186                                 goto done_unlock;
6187
6188                         /* transitioning to readauto need only happen for
6189                          * arrays that call md_write_start
6190                          */
6191                         if (mddev->pers) {
6192                                 err = restart_array(mddev);
6193                                 if (err == 0) {
6194                                         mddev->ro = 2;
6195                                         set_disk_ro(mddev->gendisk, 0);
6196                                 }
6197                         }
6198                         goto done_unlock;
6199         }
6200
6201         /*
6202          * The remaining ioctls are changing the state of the
6203          * superblock, so we do not allow them on read-only arrays.
6204          * However non-MD ioctls (e.g. get-size) will still come through
6205          * here and hit the 'default' below, so only disallow
6206          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6207          */
6208         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6209                 if (mddev->ro == 2) {
6210                         mddev->ro = 0;
6211                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6212                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6213                         md_wakeup_thread(mddev->thread);
6214                 } else {
6215                         err = -EROFS;
6216                         goto abort_unlock;
6217                 }
6218         }
6219
6220         switch (cmd)
6221         {
6222                 case ADD_NEW_DISK:
6223                 {
6224                         mdu_disk_info_t info;
6225                         if (copy_from_user(&info, argp, sizeof(info)))
6226                                 err = -EFAULT;
6227                         else
6228                                 err = add_new_disk(mddev, &info);
6229                         goto done_unlock;
6230                 }
6231
6232                 case HOT_REMOVE_DISK:
6233                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6234                         goto done_unlock;
6235
6236                 case HOT_ADD_DISK:
6237                         err = hot_add_disk(mddev, new_decode_dev(arg));
6238                         goto done_unlock;
6239
6240                 case SET_DISK_FAULTY:
6241                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6242                         goto done_unlock;
6243
6244                 case RUN_ARRAY:
6245                         err = do_md_run(mddev);
6246                         goto done_unlock;
6247
6248                 case SET_BITMAP_FILE:
6249                         err = set_bitmap_file(mddev, (int)arg);
6250                         goto done_unlock;
6251
6252                 default:
6253                         err = -EINVAL;
6254                         goto abort_unlock;
6255         }
6256
6257 done_unlock:
6258 abort_unlock:
6259         if (mddev->hold_active == UNTIL_IOCTL &&
6260             err != -EINVAL)
6261                 mddev->hold_active = 0;
6262         mddev_unlock(mddev);
6263
6264         return err;
6265 done:
6266         if (err)
6267                 MD_BUG();
6268 abort:
6269         return err;
6270 }
6271 #ifdef CONFIG_COMPAT
6272 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6273                     unsigned int cmd, unsigned long arg)
6274 {
6275         switch (cmd) {
6276         case HOT_REMOVE_DISK:
6277         case HOT_ADD_DISK:
6278         case SET_DISK_FAULTY:
6279         case SET_BITMAP_FILE:
6280                 /* These take in integer arg, do not convert */
6281                 break;
6282         default:
6283                 arg = (unsigned long)compat_ptr(arg);
6284                 break;
6285         }
6286
6287         return md_ioctl(bdev, mode, cmd, arg);
6288 }
6289 #endif /* CONFIG_COMPAT */
6290
6291 static int md_open(struct block_device *bdev, fmode_t mode)
6292 {
6293         /*
6294          * Succeed if we can lock the mddev, which confirms that
6295          * it isn't being stopped right now.
6296          */
6297         struct mddev *mddev = mddev_find(bdev->bd_dev);
6298         int err;
6299
6300         if (mddev->gendisk != bdev->bd_disk) {
6301                 /* we are racing with mddev_put which is discarding this
6302                  * bd_disk.
6303                  */
6304                 mddev_put(mddev);
6305                 /* Wait until bdev->bd_disk is definitely gone */
6306                 flush_workqueue(md_misc_wq);
6307                 /* Then retry the open from the top */
6308                 return -ERESTARTSYS;
6309         }
6310         BUG_ON(mddev != bdev->bd_disk->private_data);
6311
6312         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6313                 goto out;
6314
6315         err = 0;
6316         atomic_inc(&mddev->openers);
6317         mutex_unlock(&mddev->open_mutex);
6318
6319         check_disk_change(bdev);
6320  out:
6321         return err;
6322 }
6323
6324 static int md_release(struct gendisk *disk, fmode_t mode)
6325 {
6326         struct mddev *mddev = disk->private_data;
6327
6328         BUG_ON(!mddev);
6329         atomic_dec(&mddev->openers);
6330         mddev_put(mddev);
6331
6332         return 0;
6333 }
6334
6335 static int md_media_changed(struct gendisk *disk)
6336 {
6337         struct mddev *mddev = disk->private_data;
6338
6339         return mddev->changed;
6340 }
6341
6342 static int md_revalidate(struct gendisk *disk)
6343 {
6344         struct mddev *mddev = disk->private_data;
6345
6346         mddev->changed = 0;
6347         return 0;
6348 }
6349 static const struct block_device_operations md_fops =
6350 {
6351         .owner          = THIS_MODULE,
6352         .open           = md_open,
6353         .release        = md_release,
6354         .ioctl          = md_ioctl,
6355 #ifdef CONFIG_COMPAT
6356         .compat_ioctl   = md_compat_ioctl,
6357 #endif
6358         .getgeo         = md_getgeo,
6359         .media_changed  = md_media_changed,
6360         .revalidate_disk= md_revalidate,
6361 };
6362
6363 static int md_thread(void * arg)
6364 {
6365         struct md_thread *thread = arg;
6366
6367         /*
6368          * md_thread is a 'system-thread', it's priority should be very
6369          * high. We avoid resource deadlocks individually in each
6370          * raid personality. (RAID5 does preallocation) We also use RR and
6371          * the very same RT priority as kswapd, thus we will never get
6372          * into a priority inversion deadlock.
6373          *
6374          * we definitely have to have equal or higher priority than
6375          * bdflush, otherwise bdflush will deadlock if there are too
6376          * many dirty RAID5 blocks.
6377          */
6378
6379         allow_signal(SIGKILL);
6380         while (!kthread_should_stop()) {
6381
6382                 /* We need to wait INTERRUPTIBLE so that
6383                  * we don't add to the load-average.
6384                  * That means we need to be sure no signals are
6385                  * pending
6386                  */
6387                 if (signal_pending(current))
6388                         flush_signals(current);
6389
6390                 wait_event_interruptible_timeout
6391                         (thread->wqueue,
6392                          test_bit(THREAD_WAKEUP, &thread->flags)
6393                          || kthread_should_stop(),
6394                          thread->timeout);
6395
6396                 clear_bit(THREAD_WAKEUP, &thread->flags);
6397                 if (!kthread_should_stop())
6398                         thread->run(thread->mddev);
6399         }
6400
6401         return 0;
6402 }
6403
6404 void md_wakeup_thread(struct md_thread *thread)
6405 {
6406         if (thread) {
6407                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6408                 set_bit(THREAD_WAKEUP, &thread->flags);
6409                 wake_up(&thread->wqueue);
6410         }
6411 }
6412
6413 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6414                                  const char *name)
6415 {
6416         struct md_thread *thread;
6417
6418         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6419         if (!thread)
6420                 return NULL;
6421
6422         init_waitqueue_head(&thread->wqueue);
6423
6424         thread->run = run;
6425         thread->mddev = mddev;
6426         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6427         thread->tsk = kthread_run(md_thread, thread,
6428                                   "%s_%s",
6429                                   mdname(thread->mddev),
6430                                   name ?: mddev->pers->name);
6431         if (IS_ERR(thread->tsk)) {
6432                 kfree(thread);
6433                 return NULL;
6434         }
6435         return thread;
6436 }
6437
6438 void md_unregister_thread(struct md_thread **threadp)
6439 {
6440         struct md_thread *thread = *threadp;
6441         if (!thread)
6442                 return;
6443         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6444         /* Locking ensures that mddev_unlock does not wake_up a
6445          * non-existent thread
6446          */
6447         spin_lock(&pers_lock);
6448         *threadp = NULL;
6449         spin_unlock(&pers_lock);
6450
6451         kthread_stop(thread->tsk);
6452         kfree(thread);
6453 }
6454
6455 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6456 {
6457         if (!mddev) {
6458                 MD_BUG();
6459                 return;
6460         }
6461
6462         if (!rdev || test_bit(Faulty, &rdev->flags))
6463                 return;
6464
6465         if (!mddev->pers || !mddev->pers->error_handler)
6466                 return;
6467         mddev->pers->error_handler(mddev,rdev);
6468         if (mddev->degraded)
6469                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6470         sysfs_notify_dirent_safe(rdev->sysfs_state);
6471         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6472         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6473         md_wakeup_thread(mddev->thread);
6474         if (mddev->event_work.func)
6475                 queue_work(md_misc_wq, &mddev->event_work);
6476         md_new_event_inintr(mddev);
6477 }
6478
6479 /* seq_file implementation /proc/mdstat */
6480
6481 static void status_unused(struct seq_file *seq)
6482 {
6483         int i = 0;
6484         struct md_rdev *rdev;
6485
6486         seq_printf(seq, "unused devices: ");
6487
6488         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6489                 char b[BDEVNAME_SIZE];
6490                 i++;
6491                 seq_printf(seq, "%s ",
6492                               bdevname(rdev->bdev,b));
6493         }
6494         if (!i)
6495                 seq_printf(seq, "<none>");
6496
6497         seq_printf(seq, "\n");
6498 }
6499
6500
6501 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6502 {
6503         sector_t max_sectors, resync, res;
6504         unsigned long dt, db;
6505         sector_t rt;
6506         int scale;
6507         unsigned int per_milli;
6508
6509         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6510
6511         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6512                 max_sectors = mddev->resync_max_sectors;
6513         else
6514                 max_sectors = mddev->dev_sectors;
6515
6516         /*
6517          * Should not happen.
6518          */
6519         if (!max_sectors) {
6520                 MD_BUG();
6521                 return;
6522         }
6523         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6524          * in a sector_t, and (max_sectors>>scale) will fit in a
6525          * u32, as those are the requirements for sector_div.
6526          * Thus 'scale' must be at least 10
6527          */
6528         scale = 10;
6529         if (sizeof(sector_t) > sizeof(unsigned long)) {
6530                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6531                         scale++;
6532         }
6533         res = (resync>>scale)*1000;
6534         sector_div(res, (u32)((max_sectors>>scale)+1));
6535
6536         per_milli = res;
6537         {
6538                 int i, x = per_milli/50, y = 20-x;
6539                 seq_printf(seq, "[");
6540                 for (i = 0; i < x; i++)
6541                         seq_printf(seq, "=");
6542                 seq_printf(seq, ">");
6543                 for (i = 0; i < y; i++)
6544                         seq_printf(seq, ".");
6545                 seq_printf(seq, "] ");
6546         }
6547         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6548                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6549                     "reshape" :
6550                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6551                      "check" :
6552                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6553                       "resync" : "recovery"))),
6554                    per_milli/10, per_milli % 10,
6555                    (unsigned long long) resync/2,
6556                    (unsigned long long) max_sectors/2);
6557
6558         /*
6559          * dt: time from mark until now
6560          * db: blocks written from mark until now
6561          * rt: remaining time
6562          *
6563          * rt is a sector_t, so could be 32bit or 64bit.
6564          * So we divide before multiply in case it is 32bit and close
6565          * to the limit.
6566          * We scale the divisor (db) by 32 to avoid losing precision
6567          * near the end of resync when the number of remaining sectors
6568          * is close to 'db'.
6569          * We then divide rt by 32 after multiplying by db to compensate.
6570          * The '+1' avoids division by zero if db is very small.
6571          */
6572         dt = ((jiffies - mddev->resync_mark) / HZ);
6573         if (!dt) dt++;
6574         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6575                 - mddev->resync_mark_cnt;
6576
6577         rt = max_sectors - resync;    /* number of remaining sectors */
6578         sector_div(rt, db/32+1);
6579         rt *= dt;
6580         rt >>= 5;
6581
6582         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6583                    ((unsigned long)rt % 60)/6);
6584
6585         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6586 }
6587
6588 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6589 {
6590         struct list_head *tmp;
6591         loff_t l = *pos;
6592         struct mddev *mddev;
6593
6594         if (l >= 0x10000)
6595                 return NULL;
6596         if (!l--)
6597                 /* header */
6598                 return (void*)1;
6599
6600         spin_lock(&all_mddevs_lock);
6601         list_for_each(tmp,&all_mddevs)
6602                 if (!l--) {
6603                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6604                         mddev_get(mddev);
6605                         spin_unlock(&all_mddevs_lock);
6606                         return mddev;
6607                 }
6608         spin_unlock(&all_mddevs_lock);
6609         if (!l--)
6610                 return (void*)2;/* tail */
6611         return NULL;
6612 }
6613
6614 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6615 {
6616         struct list_head *tmp;
6617         struct mddev *next_mddev, *mddev = v;
6618         
6619         ++*pos;
6620         if (v == (void*)2)
6621                 return NULL;
6622
6623         spin_lock(&all_mddevs_lock);
6624         if (v == (void*)1)
6625                 tmp = all_mddevs.next;
6626         else
6627                 tmp = mddev->all_mddevs.next;
6628         if (tmp != &all_mddevs)
6629                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6630         else {
6631                 next_mddev = (void*)2;
6632                 *pos = 0x10000;
6633         }               
6634         spin_unlock(&all_mddevs_lock);
6635
6636         if (v != (void*)1)
6637                 mddev_put(mddev);
6638         return next_mddev;
6639
6640 }
6641
6642 static void md_seq_stop(struct seq_file *seq, void *v)
6643 {
6644         struct mddev *mddev = v;
6645
6646         if (mddev && v != (void*)1 && v != (void*)2)
6647                 mddev_put(mddev);
6648 }
6649
6650 static int md_seq_show(struct seq_file *seq, void *v)
6651 {
6652         struct mddev *mddev = v;
6653         sector_t sectors;
6654         struct md_rdev *rdev;
6655         struct bitmap *bitmap;
6656
6657         if (v == (void*)1) {
6658                 struct md_personality *pers;
6659                 seq_printf(seq, "Personalities : ");
6660                 spin_lock(&pers_lock);
6661                 list_for_each_entry(pers, &pers_list, list)
6662                         seq_printf(seq, "[%s] ", pers->name);
6663
6664                 spin_unlock(&pers_lock);
6665                 seq_printf(seq, "\n");
6666                 seq->poll_event = atomic_read(&md_event_count);
6667                 return 0;
6668         }
6669         if (v == (void*)2) {
6670                 status_unused(seq);
6671                 return 0;
6672         }
6673
6674         if (mddev_lock(mddev) < 0)
6675                 return -EINTR;
6676
6677         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6678                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6679                                                 mddev->pers ? "" : "in");
6680                 if (mddev->pers) {
6681                         if (mddev->ro==1)
6682                                 seq_printf(seq, " (read-only)");
6683                         if (mddev->ro==2)
6684                                 seq_printf(seq, " (auto-read-only)");
6685                         seq_printf(seq, " %s", mddev->pers->name);
6686                 }
6687
6688                 sectors = 0;
6689                 list_for_each_entry(rdev, &mddev->disks, same_set) {
6690                         char b[BDEVNAME_SIZE];
6691                         seq_printf(seq, " %s[%d]",
6692                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6693                         if (test_bit(WriteMostly, &rdev->flags))
6694                                 seq_printf(seq, "(W)");
6695                         if (test_bit(Faulty, &rdev->flags)) {
6696                                 seq_printf(seq, "(F)");
6697                                 continue;
6698                         } else if (rdev->raid_disk < 0)
6699                                 seq_printf(seq, "(S)"); /* spare */
6700                         sectors += rdev->sectors;
6701                 }
6702
6703                 if (!list_empty(&mddev->disks)) {
6704                         if (mddev->pers)
6705                                 seq_printf(seq, "\n      %llu blocks",
6706                                            (unsigned long long)
6707                                            mddev->array_sectors / 2);
6708                         else
6709                                 seq_printf(seq, "\n      %llu blocks",
6710                                            (unsigned long long)sectors / 2);
6711                 }
6712                 if (mddev->persistent) {
6713                         if (mddev->major_version != 0 ||
6714                             mddev->minor_version != 90) {
6715                                 seq_printf(seq," super %d.%d",
6716                                            mddev->major_version,
6717                                            mddev->minor_version);
6718                         }
6719                 } else if (mddev->external)
6720                         seq_printf(seq, " super external:%s",
6721                                    mddev->metadata_type);
6722                 else
6723                         seq_printf(seq, " super non-persistent");
6724
6725                 if (mddev->pers) {
6726                         mddev->pers->status(seq, mddev);
6727                         seq_printf(seq, "\n      ");
6728                         if (mddev->pers->sync_request) {
6729                                 if (mddev->curr_resync > 2) {
6730                                         status_resync(seq, mddev);
6731                                         seq_printf(seq, "\n      ");
6732                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6733                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6734                                 else if (mddev->recovery_cp < MaxSector)
6735                                         seq_printf(seq, "\tresync=PENDING\n      ");
6736                         }
6737                 } else
6738                         seq_printf(seq, "\n       ");
6739
6740                 if ((bitmap = mddev->bitmap)) {
6741                         unsigned long chunk_kb;
6742                         unsigned long flags;
6743                         spin_lock_irqsave(&bitmap->lock, flags);
6744                         chunk_kb = mddev->bitmap_info.chunksize >> 10;
6745                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6746                                 "%lu%s chunk",
6747                                 bitmap->pages - bitmap->missing_pages,
6748                                 bitmap->pages,
6749                                 (bitmap->pages - bitmap->missing_pages)
6750                                         << (PAGE_SHIFT - 10),
6751                                 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6752                                 chunk_kb ? "KB" : "B");
6753                         if (bitmap->file) {
6754                                 seq_printf(seq, ", file: ");
6755                                 seq_path(seq, &bitmap->file->f_path, " \t\n");
6756                         }
6757
6758                         seq_printf(seq, "\n");
6759                         spin_unlock_irqrestore(&bitmap->lock, flags);
6760                 }
6761
6762                 seq_printf(seq, "\n");
6763         }
6764         mddev_unlock(mddev);
6765         
6766         return 0;
6767 }
6768
6769 static const struct seq_operations md_seq_ops = {
6770         .start  = md_seq_start,
6771         .next   = md_seq_next,
6772         .stop   = md_seq_stop,
6773         .show   = md_seq_show,
6774 };
6775
6776 static int md_seq_open(struct inode *inode, struct file *file)
6777 {
6778         struct seq_file *seq;
6779         int error;
6780
6781         error = seq_open(file, &md_seq_ops);
6782         if (error)
6783                 return error;
6784
6785         seq = file->private_data;
6786         seq->poll_event = atomic_read(&md_event_count);
6787         return error;
6788 }
6789
6790 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6791 {
6792         struct seq_file *seq = filp->private_data;
6793         int mask;
6794
6795         poll_wait(filp, &md_event_waiters, wait);
6796
6797         /* always allow read */
6798         mask = POLLIN | POLLRDNORM;
6799
6800         if (seq->poll_event != atomic_read(&md_event_count))
6801                 mask |= POLLERR | POLLPRI;
6802         return mask;
6803 }
6804
6805 static const struct file_operations md_seq_fops = {
6806         .owner          = THIS_MODULE,
6807         .open           = md_seq_open,
6808         .read           = seq_read,
6809         .llseek         = seq_lseek,
6810         .release        = seq_release_private,
6811         .poll           = mdstat_poll,
6812 };
6813
6814 int register_md_personality(struct md_personality *p)
6815 {
6816         spin_lock(&pers_lock);
6817         list_add_tail(&p->list, &pers_list);
6818         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6819         spin_unlock(&pers_lock);
6820         return 0;
6821 }
6822
6823 int unregister_md_personality(struct md_personality *p)
6824 {
6825         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6826         spin_lock(&pers_lock);
6827         list_del_init(&p->list);
6828         spin_unlock(&pers_lock);
6829         return 0;
6830 }
6831
6832 static int is_mddev_idle(struct mddev *mddev, int init)
6833 {
6834         struct md_rdev * rdev;
6835         int idle;
6836         int curr_events;
6837
6838         idle = 1;
6839         rcu_read_lock();
6840         rdev_for_each_rcu(rdev, mddev) {
6841                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6842                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6843                               (int)part_stat_read(&disk->part0, sectors[1]) -
6844                               atomic_read(&disk->sync_io);
6845                 /* sync IO will cause sync_io to increase before the disk_stats
6846                  * as sync_io is counted when a request starts, and
6847                  * disk_stats is counted when it completes.
6848                  * So resync activity will cause curr_events to be smaller than
6849                  * when there was no such activity.
6850                  * non-sync IO will cause disk_stat to increase without
6851                  * increasing sync_io so curr_events will (eventually)
6852                  * be larger than it was before.  Once it becomes
6853                  * substantially larger, the test below will cause
6854                  * the array to appear non-idle, and resync will slow
6855                  * down.
6856                  * If there is a lot of outstanding resync activity when
6857                  * we set last_event to curr_events, then all that activity
6858                  * completing might cause the array to appear non-idle
6859                  * and resync will be slowed down even though there might
6860                  * not have been non-resync activity.  This will only
6861                  * happen once though.  'last_events' will soon reflect
6862                  * the state where there is little or no outstanding
6863                  * resync requests, and further resync activity will
6864                  * always make curr_events less than last_events.
6865                  *
6866                  */
6867                 if (init || curr_events - rdev->last_events > 64) {
6868                         rdev->last_events = curr_events;
6869                         idle = 0;
6870                 }
6871         }
6872         rcu_read_unlock();
6873         return idle;
6874 }
6875
6876 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6877 {
6878         /* another "blocks" (512byte) blocks have been synced */
6879         atomic_sub(blocks, &mddev->recovery_active);
6880         wake_up(&mddev->recovery_wait);
6881         if (!ok) {
6882                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6883                 md_wakeup_thread(mddev->thread);
6884                 // stop recovery, signal do_sync ....
6885         }
6886 }
6887
6888
6889 /* md_write_start(mddev, bi)
6890  * If we need to update some array metadata (e.g. 'active' flag
6891  * in superblock) before writing, schedule a superblock update
6892  * and wait for it to complete.
6893  */
6894 void md_write_start(struct mddev *mddev, struct bio *bi)
6895 {
6896         int did_change = 0;
6897         if (bio_data_dir(bi) != WRITE)
6898                 return;
6899
6900         BUG_ON(mddev->ro == 1);
6901         if (mddev->ro == 2) {
6902                 /* need to switch to read/write */
6903                 mddev->ro = 0;
6904                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6905                 md_wakeup_thread(mddev->thread);
6906                 md_wakeup_thread(mddev->sync_thread);
6907                 did_change = 1;
6908         }
6909         atomic_inc(&mddev->writes_pending);
6910         if (mddev->safemode == 1)
6911                 mddev->safemode = 0;
6912         if (mddev->in_sync) {
6913                 spin_lock_irq(&mddev->write_lock);
6914                 if (mddev->in_sync) {
6915                         mddev->in_sync = 0;
6916                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6917                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
6918                         md_wakeup_thread(mddev->thread);
6919                         did_change = 1;
6920                 }
6921                 spin_unlock_irq(&mddev->write_lock);
6922         }
6923         if (did_change)
6924                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6925         wait_event(mddev->sb_wait,
6926                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6927 }
6928
6929 void md_write_end(struct mddev *mddev)
6930 {
6931         if (atomic_dec_and_test(&mddev->writes_pending)) {
6932                 if (mddev->safemode == 2)
6933                         md_wakeup_thread(mddev->thread);
6934                 else if (mddev->safemode_delay)
6935                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6936         }
6937 }
6938
6939 /* md_allow_write(mddev)
6940  * Calling this ensures that the array is marked 'active' so that writes
6941  * may proceed without blocking.  It is important to call this before
6942  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6943  * Must be called with mddev_lock held.
6944  *
6945  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6946  * is dropped, so return -EAGAIN after notifying userspace.
6947  */
6948 int md_allow_write(struct mddev *mddev)
6949 {
6950         if (!mddev->pers)
6951                 return 0;
6952         if (mddev->ro)
6953                 return 0;
6954         if (!mddev->pers->sync_request)
6955                 return 0;
6956
6957         spin_lock_irq(&mddev->write_lock);
6958         if (mddev->in_sync) {
6959                 mddev->in_sync = 0;
6960                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6961                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6962                 if (mddev->safemode_delay &&
6963                     mddev->safemode == 0)
6964                         mddev->safemode = 1;
6965                 spin_unlock_irq(&mddev->write_lock);
6966                 md_update_sb(mddev, 0);
6967                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6968         } else
6969                 spin_unlock_irq(&mddev->write_lock);
6970
6971         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6972                 return -EAGAIN;
6973         else
6974                 return 0;
6975 }
6976 EXPORT_SYMBOL_GPL(md_allow_write);
6977
6978 #define SYNC_MARKS      10
6979 #define SYNC_MARK_STEP  (3*HZ)
6980 void md_do_sync(struct mddev *mddev)
6981 {
6982         struct mddev *mddev2;
6983         unsigned int currspeed = 0,
6984                  window;
6985         sector_t max_sectors,j, io_sectors;
6986         unsigned long mark[SYNC_MARKS];
6987         sector_t mark_cnt[SYNC_MARKS];
6988         int last_mark,m;
6989         struct list_head *tmp;
6990         sector_t last_check;
6991         int skipped = 0;
6992         struct md_rdev *rdev;
6993         char *desc;
6994
6995         /* just incase thread restarts... */
6996         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6997                 return;
6998         if (mddev->ro) /* never try to sync a read-only array */
6999                 return;
7000
7001         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7002                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7003                         desc = "data-check";
7004                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7005                         desc = "requested-resync";
7006                 else
7007                         desc = "resync";
7008         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7009                 desc = "reshape";
7010         else
7011                 desc = "recovery";
7012
7013         /* we overload curr_resync somewhat here.
7014          * 0 == not engaged in resync at all
7015          * 2 == checking that there is no conflict with another sync
7016          * 1 == like 2, but have yielded to allow conflicting resync to
7017          *              commense
7018          * other == active in resync - this many blocks
7019          *
7020          * Before starting a resync we must have set curr_resync to
7021          * 2, and then checked that every "conflicting" array has curr_resync
7022          * less than ours.  When we find one that is the same or higher
7023          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7024          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7025          * This will mean we have to start checking from the beginning again.
7026          *
7027          */
7028
7029         do {
7030                 mddev->curr_resync = 2;
7031
7032         try_again:
7033                 if (kthread_should_stop())
7034                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7035
7036                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7037                         goto skip;
7038                 for_each_mddev(mddev2, tmp) {
7039                         if (mddev2 == mddev)
7040                                 continue;
7041                         if (!mddev->parallel_resync
7042                         &&  mddev2->curr_resync
7043                         &&  match_mddev_units(mddev, mddev2)) {
7044                                 DEFINE_WAIT(wq);
7045                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7046                                         /* arbitrarily yield */
7047                                         mddev->curr_resync = 1;
7048                                         wake_up(&resync_wait);
7049                                 }
7050                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7051                                         /* no need to wait here, we can wait the next
7052                                          * time 'round when curr_resync == 2
7053                                          */
7054                                         continue;
7055                                 /* We need to wait 'interruptible' so as not to
7056                                  * contribute to the load average, and not to
7057                                  * be caught by 'softlockup'
7058                                  */
7059                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7060                                 if (!kthread_should_stop() &&
7061                                     mddev2->curr_resync >= mddev->curr_resync) {
7062                                         printk(KERN_INFO "md: delaying %s of %s"
7063                                                " until %s has finished (they"
7064                                                " share one or more physical units)\n",
7065                                                desc, mdname(mddev), mdname(mddev2));
7066                                         mddev_put(mddev2);
7067                                         if (signal_pending(current))
7068                                                 flush_signals(current);
7069                                         schedule();
7070                                         finish_wait(&resync_wait, &wq);
7071                                         goto try_again;
7072                                 }
7073                                 finish_wait(&resync_wait, &wq);
7074                         }
7075                 }
7076         } while (mddev->curr_resync < 2);
7077
7078         j = 0;
7079         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7080                 /* resync follows the size requested by the personality,
7081                  * which defaults to physical size, but can be virtual size
7082                  */
7083                 max_sectors = mddev->resync_max_sectors;
7084                 mddev->resync_mismatches = 0;
7085                 /* we don't use the checkpoint if there's a bitmap */
7086                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7087                         j = mddev->resync_min;
7088                 else if (!mddev->bitmap)
7089                         j = mddev->recovery_cp;
7090
7091         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7092                 max_sectors = mddev->dev_sectors;
7093         else {
7094                 /* recovery follows the physical size of devices */
7095                 max_sectors = mddev->dev_sectors;
7096                 j = MaxSector;
7097                 rcu_read_lock();
7098                 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7099                         if (rdev->raid_disk >= 0 &&
7100                             !test_bit(Faulty, &rdev->flags) &&
7101                             !test_bit(In_sync, &rdev->flags) &&
7102                             rdev->recovery_offset < j)
7103                                 j = rdev->recovery_offset;
7104                 rcu_read_unlock();
7105         }
7106
7107         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7108         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7109                 " %d KB/sec/disk.\n", speed_min(mddev));
7110         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7111                "(but not more than %d KB/sec) for %s.\n",
7112                speed_max(mddev), desc);
7113
7114         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7115
7116         io_sectors = 0;
7117         for (m = 0; m < SYNC_MARKS; m++) {
7118                 mark[m] = jiffies;
7119                 mark_cnt[m] = io_sectors;
7120         }
7121         last_mark = 0;
7122         mddev->resync_mark = mark[last_mark];
7123         mddev->resync_mark_cnt = mark_cnt[last_mark];
7124
7125         /*
7126          * Tune reconstruction:
7127          */
7128         window = 32*(PAGE_SIZE/512);
7129         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7130                 window/2, (unsigned long long)max_sectors/2);
7131
7132         atomic_set(&mddev->recovery_active, 0);
7133         last_check = 0;
7134
7135         if (j>2) {
7136                 printk(KERN_INFO 
7137                        "md: resuming %s of %s from checkpoint.\n",
7138                        desc, mdname(mddev));
7139                 mddev->curr_resync = j;
7140         }
7141         mddev->curr_resync_completed = j;
7142
7143         while (j < max_sectors) {
7144                 sector_t sectors;
7145
7146                 skipped = 0;
7147
7148                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7149                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7150                       (mddev->curr_resync - mddev->curr_resync_completed)
7151                       > (max_sectors >> 4)) ||
7152                      (j - mddev->curr_resync_completed)*2
7153                      >= mddev->resync_max - mddev->curr_resync_completed
7154                             )) {
7155                         /* time to update curr_resync_completed */
7156                         wait_event(mddev->recovery_wait,
7157                                    atomic_read(&mddev->recovery_active) == 0);
7158                         mddev->curr_resync_completed = j;
7159                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7160                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7161                 }
7162
7163                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7164                         /* As this condition is controlled by user-space,
7165                          * we can block indefinitely, so use '_interruptible'
7166                          * to avoid triggering warnings.
7167                          */
7168                         flush_signals(current); /* just in case */
7169                         wait_event_interruptible(mddev->recovery_wait,
7170                                                  mddev->resync_max > j
7171                                                  || kthread_should_stop());
7172                 }
7173
7174                 if (kthread_should_stop())
7175                         goto interrupted;
7176
7177                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7178                                                   currspeed < speed_min(mddev));
7179                 if (sectors == 0) {
7180                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7181                         goto out;
7182                 }
7183
7184                 if (!skipped) { /* actual IO requested */
7185                         io_sectors += sectors;
7186                         atomic_add(sectors, &mddev->recovery_active);
7187                 }
7188
7189                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7190                         break;
7191
7192                 j += sectors;
7193                 if (j>1) mddev->curr_resync = j;
7194                 mddev->curr_mark_cnt = io_sectors;
7195                 if (last_check == 0)
7196                         /* this is the earliest that rebuild will be
7197                          * visible in /proc/mdstat
7198                          */
7199                         md_new_event(mddev);
7200
7201                 if (last_check + window > io_sectors || j == max_sectors)
7202                         continue;
7203
7204                 last_check = io_sectors;
7205         repeat:
7206                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7207                         /* step marks */
7208                         int next = (last_mark+1) % SYNC_MARKS;
7209
7210                         mddev->resync_mark = mark[next];
7211                         mddev->resync_mark_cnt = mark_cnt[next];
7212                         mark[next] = jiffies;
7213                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7214                         last_mark = next;
7215                 }
7216
7217
7218                 if (kthread_should_stop())
7219                         goto interrupted;
7220
7221
7222                 /*
7223                  * this loop exits only if either when we are slower than
7224                  * the 'hard' speed limit, or the system was IO-idle for
7225                  * a jiffy.
7226                  * the system might be non-idle CPU-wise, but we only care
7227                  * about not overloading the IO subsystem. (things like an
7228                  * e2fsck being done on the RAID array should execute fast)
7229                  */
7230                 cond_resched();
7231
7232                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7233                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7234
7235                 if (currspeed > speed_min(mddev)) {
7236                         if ((currspeed > speed_max(mddev)) ||
7237                                         !is_mddev_idle(mddev, 0)) {
7238                                 msleep(500);
7239                                 goto repeat;
7240                         }
7241                 }
7242         }
7243         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7244         /*
7245          * this also signals 'finished resyncing' to md_stop
7246          */
7247  out:
7248         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7249
7250         /* tell personality that we are finished */
7251         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7252
7253         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7254             mddev->curr_resync > 2) {
7255                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7256                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7257                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7258                                         printk(KERN_INFO
7259                                                "md: checkpointing %s of %s.\n",
7260                                                desc, mdname(mddev));
7261                                         mddev->recovery_cp = mddev->curr_resync;
7262                                 }
7263                         } else
7264                                 mddev->recovery_cp = MaxSector;
7265                 } else {
7266                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7267                                 mddev->curr_resync = MaxSector;
7268                         rcu_read_lock();
7269                         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7270                                 if (rdev->raid_disk >= 0 &&
7271                                     mddev->delta_disks >= 0 &&
7272                                     !test_bit(Faulty, &rdev->flags) &&
7273                                     !test_bit(In_sync, &rdev->flags) &&
7274                                     rdev->recovery_offset < mddev->curr_resync)
7275                                         rdev->recovery_offset = mddev->curr_resync;
7276                         rcu_read_unlock();
7277                 }
7278         }
7279         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7280
7281  skip:
7282         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7283                 /* We completed so min/max setting can be forgotten if used. */
7284                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7285                         mddev->resync_min = 0;
7286                 mddev->resync_max = MaxSector;
7287         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7288                 mddev->resync_min = mddev->curr_resync_completed;
7289         mddev->curr_resync = 0;
7290         wake_up(&resync_wait);
7291         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7292         md_wakeup_thread(mddev->thread);
7293         return;
7294
7295  interrupted:
7296         /*
7297          * got a signal, exit.
7298          */
7299         printk(KERN_INFO
7300                "md: md_do_sync() got signal ... exiting\n");
7301         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7302         goto out;
7303
7304 }
7305 EXPORT_SYMBOL_GPL(md_do_sync);
7306
7307 static int remove_and_add_spares(struct mddev *mddev)
7308 {
7309         struct md_rdev *rdev;
7310         int spares = 0;
7311
7312         mddev->curr_resync_completed = 0;
7313
7314         list_for_each_entry(rdev, &mddev->disks, same_set)
7315                 if (rdev->raid_disk >= 0 &&
7316                     !test_bit(Blocked, &rdev->flags) &&
7317                     (test_bit(Faulty, &rdev->flags) ||
7318                      ! test_bit(In_sync, &rdev->flags)) &&
7319                     atomic_read(&rdev->nr_pending)==0) {
7320                         if (mddev->pers->hot_remove_disk(
7321                                     mddev, rdev->raid_disk)==0) {
7322                                 sysfs_unlink_rdev(mddev, rdev);
7323                                 rdev->raid_disk = -1;
7324                         }
7325                 }
7326
7327         if (mddev->degraded) {
7328                 list_for_each_entry(rdev, &mddev->disks, same_set) {
7329                         if (rdev->raid_disk >= 0 &&
7330                             !test_bit(In_sync, &rdev->flags) &&
7331                             !test_bit(Faulty, &rdev->flags))
7332                                 spares++;
7333                         if (rdev->raid_disk < 0
7334                             && !test_bit(Faulty, &rdev->flags)) {
7335                                 rdev->recovery_offset = 0;
7336                                 if (mddev->pers->
7337                                     hot_add_disk(mddev, rdev) == 0) {
7338                                         if (sysfs_link_rdev(mddev, rdev))
7339                                                 /* failure here is OK */;
7340                                         spares++;
7341                                         md_new_event(mddev);
7342                                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7343                                 } else
7344                                         break;
7345                         }
7346                 }
7347         }
7348         return spares;
7349 }
7350
7351 static void reap_sync_thread(struct mddev *mddev)
7352 {
7353         struct md_rdev *rdev;
7354
7355         /* resync has finished, collect result */
7356         md_unregister_thread(&mddev->sync_thread);
7357         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7358             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7359                 /* success...*/
7360                 /* activate any spares */
7361                 if (mddev->pers->spare_active(mddev))
7362                         sysfs_notify(&mddev->kobj, NULL,
7363                                      "degraded");
7364         }
7365         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7366             mddev->pers->finish_reshape)
7367                 mddev->pers->finish_reshape(mddev);
7368         md_update_sb(mddev, 1);
7369
7370         /* if array is no-longer degraded, then any saved_raid_disk
7371          * information must be scrapped
7372          */
7373         if (!mddev->degraded)
7374                 list_for_each_entry(rdev, &mddev->disks, same_set)
7375                         rdev->saved_raid_disk = -1;
7376
7377         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7378         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7379         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7380         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7381         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7382         /* flag recovery needed just to double check */
7383         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7384         sysfs_notify_dirent_safe(mddev->sysfs_action);
7385         md_new_event(mddev);
7386         if (mddev->event_work.func)
7387                 queue_work(md_misc_wq, &mddev->event_work);
7388 }
7389
7390 /*
7391  * This routine is regularly called by all per-raid-array threads to
7392  * deal with generic issues like resync and super-block update.
7393  * Raid personalities that don't have a thread (linear/raid0) do not
7394  * need this as they never do any recovery or update the superblock.
7395  *
7396  * It does not do any resync itself, but rather "forks" off other threads
7397  * to do that as needed.
7398  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7399  * "->recovery" and create a thread at ->sync_thread.
7400  * When the thread finishes it sets MD_RECOVERY_DONE
7401  * and wakeups up this thread which will reap the thread and finish up.
7402  * This thread also removes any faulty devices (with nr_pending == 0).
7403  *
7404  * The overall approach is:
7405  *  1/ if the superblock needs updating, update it.
7406  *  2/ If a recovery thread is running, don't do anything else.
7407  *  3/ If recovery has finished, clean up, possibly marking spares active.
7408  *  4/ If there are any faulty devices, remove them.
7409  *  5/ If array is degraded, try to add spares devices
7410  *  6/ If array has spares or is not in-sync, start a resync thread.
7411  */
7412 void md_check_recovery(struct mddev *mddev)
7413 {
7414         if (mddev->suspended)
7415                 return;
7416
7417         if (mddev->bitmap)
7418                 bitmap_daemon_work(mddev);
7419
7420         if (signal_pending(current)) {
7421                 if (mddev->pers->sync_request && !mddev->external) {
7422                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7423                                mdname(mddev));
7424                         mddev->safemode = 2;
7425                 }
7426                 flush_signals(current);
7427         }
7428
7429         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7430                 return;
7431         if ( ! (
7432                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7433                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7434                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7435                 (mddev->external == 0 && mddev->safemode == 1) ||
7436                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7437                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7438                 ))
7439                 return;
7440
7441         if (mddev_trylock(mddev)) {
7442                 int spares = 0;
7443
7444                 if (mddev->ro) {
7445                         /* Only thing we do on a ro array is remove
7446                          * failed devices.
7447                          */
7448                         struct md_rdev *rdev;
7449                         list_for_each_entry(rdev, &mddev->disks, same_set)
7450                                 if (rdev->raid_disk >= 0 &&
7451                                     !test_bit(Blocked, &rdev->flags) &&
7452                                     test_bit(Faulty, &rdev->flags) &&
7453                                     atomic_read(&rdev->nr_pending)==0) {
7454                                         if (mddev->pers->hot_remove_disk(
7455                                                     mddev, rdev->raid_disk)==0) {
7456                                                 sysfs_unlink_rdev(mddev, rdev);
7457                                                 rdev->raid_disk = -1;
7458                                         }
7459                                 }
7460                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7461                         goto unlock;
7462                 }
7463
7464                 if (!mddev->external) {
7465                         int did_change = 0;
7466                         spin_lock_irq(&mddev->write_lock);
7467                         if (mddev->safemode &&
7468                             !atomic_read(&mddev->writes_pending) &&
7469                             !mddev->in_sync &&
7470                             mddev->recovery_cp == MaxSector) {
7471                                 mddev->in_sync = 1;
7472                                 did_change = 1;
7473                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7474                         }
7475                         if (mddev->safemode == 1)
7476                                 mddev->safemode = 0;
7477                         spin_unlock_irq(&mddev->write_lock);
7478                         if (did_change)
7479                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7480                 }
7481
7482                 if (mddev->flags)
7483                         md_update_sb(mddev, 0);
7484
7485                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7486                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7487                         /* resync/recovery still happening */
7488                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7489                         goto unlock;
7490                 }
7491                 if (mddev->sync_thread) {
7492                         reap_sync_thread(mddev);
7493                         goto unlock;
7494                 }
7495                 /* Set RUNNING before clearing NEEDED to avoid
7496                  * any transients in the value of "sync_action".
7497                  */
7498                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7499                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7500                 /* Clear some bits that don't mean anything, but
7501                  * might be left set
7502                  */
7503                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7504                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7505
7506                 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7507                         goto unlock;
7508                 /* no recovery is running.
7509                  * remove any failed drives, then
7510                  * add spares if possible.
7511                  * Spare are also removed and re-added, to allow
7512                  * the personality to fail the re-add.
7513                  */
7514
7515                 if (mddev->reshape_position != MaxSector) {
7516                         if (mddev->pers->check_reshape == NULL ||
7517                             mddev->pers->check_reshape(mddev) != 0)
7518                                 /* Cannot proceed */
7519                                 goto unlock;
7520                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7521                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7522                 } else if ((spares = remove_and_add_spares(mddev))) {
7523                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7524                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7525                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7526                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7527                 } else if (mddev->recovery_cp < MaxSector) {
7528                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7529                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7530                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7531                         /* nothing to be done ... */
7532                         goto unlock;
7533
7534                 if (mddev->pers->sync_request) {
7535                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7536                                 /* We are adding a device or devices to an array
7537                                  * which has the bitmap stored on all devices.
7538                                  * So make sure all bitmap pages get written
7539                                  */
7540                                 bitmap_write_all(mddev->bitmap);
7541                         }
7542                         mddev->sync_thread = md_register_thread(md_do_sync,
7543                                                                 mddev,
7544                                                                 "resync");
7545                         if (!mddev->sync_thread) {
7546                                 printk(KERN_ERR "%s: could not start resync"
7547                                         " thread...\n", 
7548                                         mdname(mddev));
7549                                 /* leave the spares where they are, it shouldn't hurt */
7550                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7551                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7552                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7553                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7554                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7555                         } else
7556                                 md_wakeup_thread(mddev->sync_thread);
7557                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7558                         md_new_event(mddev);
7559                 }
7560         unlock:
7561                 if (!mddev->sync_thread) {
7562                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7563                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7564                                                &mddev->recovery))
7565                                 if (mddev->sysfs_action)
7566                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7567                 }
7568                 mddev_unlock(mddev);
7569         }
7570 }
7571
7572 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7573 {
7574         sysfs_notify_dirent_safe(rdev->sysfs_state);
7575         wait_event_timeout(rdev->blocked_wait,
7576                            !test_bit(Blocked, &rdev->flags) &&
7577                            !test_bit(BlockedBadBlocks, &rdev->flags),
7578                            msecs_to_jiffies(5000));
7579         rdev_dec_pending(rdev, mddev);
7580 }
7581 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7582
7583
7584 /* Bad block management.
7585  * We can record which blocks on each device are 'bad' and so just
7586  * fail those blocks, or that stripe, rather than the whole device.
7587  * Entries in the bad-block table are 64bits wide.  This comprises:
7588  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7589  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7590  *  A 'shift' can be set so that larger blocks are tracked and
7591  *  consequently larger devices can be covered.
7592  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7593  *
7594  * Locking of the bad-block table uses a seqlock so md_is_badblock
7595  * might need to retry if it is very unlucky.
7596  * We will sometimes want to check for bad blocks in a bi_end_io function,
7597  * so we use the write_seqlock_irq variant.
7598  *
7599  * When looking for a bad block we specify a range and want to
7600  * know if any block in the range is bad.  So we binary-search
7601  * to the last range that starts at-or-before the given endpoint,
7602  * (or "before the sector after the target range")
7603  * then see if it ends after the given start.
7604  * We return
7605  *  0 if there are no known bad blocks in the range
7606  *  1 if there are known bad block which are all acknowledged
7607  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7608  * plus the start/length of the first bad section we overlap.
7609  */
7610 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7611                    sector_t *first_bad, int *bad_sectors)
7612 {
7613         int hi;
7614         int lo = 0;
7615         u64 *p = bb->page;
7616         int rv = 0;
7617         sector_t target = s + sectors;
7618         unsigned seq;
7619
7620         if (bb->shift > 0) {
7621                 /* round the start down, and the end up */
7622                 s >>= bb->shift;
7623                 target += (1<<bb->shift) - 1;
7624                 target >>= bb->shift;
7625                 sectors = target - s;
7626         }
7627         /* 'target' is now the first block after the bad range */
7628
7629 retry:
7630         seq = read_seqbegin(&bb->lock);
7631
7632         hi = bb->count;
7633
7634         /* Binary search between lo and hi for 'target'
7635          * i.e. for the last range that starts before 'target'
7636          */
7637         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7638          * are known not to be the last range before target.
7639          * VARIANT: hi-lo is the number of possible
7640          * ranges, and decreases until it reaches 1
7641          */
7642         while (hi - lo > 1) {
7643                 int mid = (lo + hi) / 2;
7644                 sector_t a = BB_OFFSET(p[mid]);
7645                 if (a < target)
7646                         /* This could still be the one, earlier ranges
7647                          * could not. */
7648                         lo = mid;
7649                 else
7650                         /* This and later ranges are definitely out. */
7651                         hi = mid;
7652         }
7653         /* 'lo' might be the last that started before target, but 'hi' isn't */
7654         if (hi > lo) {
7655                 /* need to check all range that end after 's' to see if
7656                  * any are unacknowledged.
7657                  */
7658                 while (lo >= 0 &&
7659                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7660                         if (BB_OFFSET(p[lo]) < target) {
7661                                 /* starts before the end, and finishes after
7662                                  * the start, so they must overlap
7663                                  */
7664                                 if (rv != -1 && BB_ACK(p[lo]))
7665                                         rv = 1;
7666                                 else
7667                                         rv = -1;
7668                                 *first_bad = BB_OFFSET(p[lo]);
7669                                 *bad_sectors = BB_LEN(p[lo]);
7670                         }
7671                         lo--;
7672                 }
7673         }
7674
7675         if (read_seqretry(&bb->lock, seq))
7676                 goto retry;
7677
7678         return rv;
7679 }
7680 EXPORT_SYMBOL_GPL(md_is_badblock);
7681
7682 /*
7683  * Add a range of bad blocks to the table.
7684  * This might extend the table, or might contract it
7685  * if two adjacent ranges can be merged.
7686  * We binary-search to find the 'insertion' point, then
7687  * decide how best to handle it.
7688  */
7689 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7690                             int acknowledged)
7691 {
7692         u64 *p;
7693         int lo, hi;
7694         int rv = 1;
7695
7696         if (bb->shift < 0)
7697                 /* badblocks are disabled */
7698                 return 0;
7699
7700         if (bb->shift) {
7701                 /* round the start down, and the end up */
7702                 sector_t next = s + sectors;
7703                 s >>= bb->shift;
7704                 next += (1<<bb->shift) - 1;
7705                 next >>= bb->shift;
7706                 sectors = next - s;
7707         }
7708
7709         write_seqlock_irq(&bb->lock);
7710
7711         p = bb->page;
7712         lo = 0;
7713         hi = bb->count;
7714         /* Find the last range that starts at-or-before 's' */
7715         while (hi - lo > 1) {
7716                 int mid = (lo + hi) / 2;
7717                 sector_t a = BB_OFFSET(p[mid]);
7718                 if (a <= s)
7719                         lo = mid;
7720                 else
7721                         hi = mid;
7722         }
7723         if (hi > lo && BB_OFFSET(p[lo]) > s)
7724                 hi = lo;
7725
7726         if (hi > lo) {
7727                 /* we found a range that might merge with the start
7728                  * of our new range
7729                  */
7730                 sector_t a = BB_OFFSET(p[lo]);
7731                 sector_t e = a + BB_LEN(p[lo]);
7732                 int ack = BB_ACK(p[lo]);
7733                 if (e >= s) {
7734                         /* Yes, we can merge with a previous range */
7735                         if (s == a && s + sectors >= e)
7736                                 /* new range covers old */
7737                                 ack = acknowledged;
7738                         else
7739                                 ack = ack && acknowledged;
7740
7741                         if (e < s + sectors)
7742                                 e = s + sectors;
7743                         if (e - a <= BB_MAX_LEN) {
7744                                 p[lo] = BB_MAKE(a, e-a, ack);
7745                                 s = e;
7746                         } else {
7747                                 /* does not all fit in one range,
7748                                  * make p[lo] maximal
7749                                  */
7750                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7751                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7752                                 s = a + BB_MAX_LEN;
7753                         }
7754                         sectors = e - s;
7755                 }
7756         }
7757         if (sectors && hi < bb->count) {
7758                 /* 'hi' points to the first range that starts after 's'.
7759                  * Maybe we can merge with the start of that range */
7760                 sector_t a = BB_OFFSET(p[hi]);
7761                 sector_t e = a + BB_LEN(p[hi]);
7762                 int ack = BB_ACK(p[hi]);
7763                 if (a <= s + sectors) {
7764                         /* merging is possible */
7765                         if (e <= s + sectors) {
7766                                 /* full overlap */
7767                                 e = s + sectors;
7768                                 ack = acknowledged;
7769                         } else
7770                                 ack = ack && acknowledged;
7771
7772                         a = s;
7773                         if (e - a <= BB_MAX_LEN) {
7774                                 p[hi] = BB_MAKE(a, e-a, ack);
7775                                 s = e;
7776                         } else {
7777                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7778                                 s = a + BB_MAX_LEN;
7779                         }
7780                         sectors = e - s;
7781                         lo = hi;
7782                         hi++;
7783                 }
7784         }
7785         if (sectors == 0 && hi < bb->count) {
7786                 /* we might be able to combine lo and hi */
7787                 /* Note: 's' is at the end of 'lo' */
7788                 sector_t a = BB_OFFSET(p[hi]);
7789                 int lolen = BB_LEN(p[lo]);
7790                 int hilen = BB_LEN(p[hi]);
7791                 int newlen = lolen + hilen - (s - a);
7792                 if (s >= a && newlen < BB_MAX_LEN) {
7793                         /* yes, we can combine them */
7794                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7795                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7796                         memmove(p + hi, p + hi + 1,
7797                                 (bb->count - hi - 1) * 8);
7798                         bb->count--;
7799                 }
7800         }
7801         while (sectors) {
7802                 /* didn't merge (it all).
7803                  * Need to add a range just before 'hi' */
7804                 if (bb->count >= MD_MAX_BADBLOCKS) {
7805                         /* No room for more */
7806                         rv = 0;
7807                         break;
7808                 } else {
7809                         int this_sectors = sectors;
7810                         memmove(p + hi + 1, p + hi,
7811                                 (bb->count - hi) * 8);
7812                         bb->count++;
7813
7814                         if (this_sectors > BB_MAX_LEN)
7815                                 this_sectors = BB_MAX_LEN;
7816                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7817                         sectors -= this_sectors;
7818                         s += this_sectors;
7819                 }
7820         }
7821
7822         bb->changed = 1;
7823         if (!acknowledged)
7824                 bb->unacked_exist = 1;
7825         write_sequnlock_irq(&bb->lock);
7826
7827         return rv;
7828 }
7829
7830 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7831                        int acknowledged)
7832 {
7833         int rv = md_set_badblocks(&rdev->badblocks,
7834                                   s + rdev->data_offset, sectors, acknowledged);
7835         if (rv) {
7836                 /* Make sure they get written out promptly */
7837                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7838                 md_wakeup_thread(rdev->mddev->thread);
7839         }
7840         return rv;
7841 }
7842 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7843
7844 /*
7845  * Remove a range of bad blocks from the table.
7846  * This may involve extending the table if we spilt a region,
7847  * but it must not fail.  So if the table becomes full, we just
7848  * drop the remove request.
7849  */
7850 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7851 {
7852         u64 *p;
7853         int lo, hi;
7854         sector_t target = s + sectors;
7855         int rv = 0;
7856
7857         if (bb->shift > 0) {
7858                 /* When clearing we round the start up and the end down.
7859                  * This should not matter as the shift should align with
7860                  * the block size and no rounding should ever be needed.
7861                  * However it is better the think a block is bad when it
7862                  * isn't than to think a block is not bad when it is.
7863                  */
7864                 s += (1<<bb->shift) - 1;
7865                 s >>= bb->shift;
7866                 target >>= bb->shift;
7867                 sectors = target - s;
7868         }
7869
7870         write_seqlock_irq(&bb->lock);
7871
7872         p = bb->page;
7873         lo = 0;
7874         hi = bb->count;
7875         /* Find the last range that starts before 'target' */
7876         while (hi - lo > 1) {
7877                 int mid = (lo + hi) / 2;
7878                 sector_t a = BB_OFFSET(p[mid]);
7879                 if (a < target)
7880                         lo = mid;
7881                 else
7882                         hi = mid;
7883         }
7884         if (hi > lo) {
7885                 /* p[lo] is the last range that could overlap the
7886                  * current range.  Earlier ranges could also overlap,
7887                  * but only this one can overlap the end of the range.
7888                  */
7889                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7890                         /* Partial overlap, leave the tail of this range */
7891                         int ack = BB_ACK(p[lo]);
7892                         sector_t a = BB_OFFSET(p[lo]);
7893                         sector_t end = a + BB_LEN(p[lo]);
7894
7895                         if (a < s) {
7896                                 /* we need to split this range */
7897                                 if (bb->count >= MD_MAX_BADBLOCKS) {
7898                                         rv = 0;
7899                                         goto out;
7900                                 }
7901                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7902                                 bb->count++;
7903                                 p[lo] = BB_MAKE(a, s-a, ack);
7904                                 lo++;
7905                         }
7906                         p[lo] = BB_MAKE(target, end - target, ack);
7907                         /* there is no longer an overlap */
7908                         hi = lo;
7909                         lo--;
7910                 }
7911                 while (lo >= 0 &&
7912                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7913                         /* This range does overlap */
7914                         if (BB_OFFSET(p[lo]) < s) {
7915                                 /* Keep the early parts of this range. */
7916                                 int ack = BB_ACK(p[lo]);
7917                                 sector_t start = BB_OFFSET(p[lo]);
7918                                 p[lo] = BB_MAKE(start, s - start, ack);
7919                                 /* now low doesn't overlap, so.. */
7920                                 break;
7921                         }
7922                         lo--;
7923                 }
7924                 /* 'lo' is strictly before, 'hi' is strictly after,
7925                  * anything between needs to be discarded
7926                  */
7927                 if (hi - lo > 1) {
7928                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7929                         bb->count -= (hi - lo - 1);
7930                 }
7931         }
7932
7933         bb->changed = 1;
7934 out:
7935         write_sequnlock_irq(&bb->lock);
7936         return rv;
7937 }
7938
7939 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
7940 {
7941         return md_clear_badblocks(&rdev->badblocks,
7942                                   s + rdev->data_offset,
7943                                   sectors);
7944 }
7945 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7946
7947 /*
7948  * Acknowledge all bad blocks in a list.
7949  * This only succeeds if ->changed is clear.  It is used by
7950  * in-kernel metadata updates
7951  */
7952 void md_ack_all_badblocks(struct badblocks *bb)
7953 {
7954         if (bb->page == NULL || bb->changed)
7955                 /* no point even trying */
7956                 return;
7957         write_seqlock_irq(&bb->lock);
7958
7959         if (bb->changed == 0) {
7960                 u64 *p = bb->page;
7961                 int i;
7962                 for (i = 0; i < bb->count ; i++) {
7963                         if (!BB_ACK(p[i])) {
7964                                 sector_t start = BB_OFFSET(p[i]);
7965                                 int len = BB_LEN(p[i]);
7966                                 p[i] = BB_MAKE(start, len, 1);
7967                         }
7968                 }
7969                 bb->unacked_exist = 0;
7970         }
7971         write_sequnlock_irq(&bb->lock);
7972 }
7973 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7974
7975 /* sysfs access to bad-blocks list.
7976  * We present two files.
7977  * 'bad-blocks' lists sector numbers and lengths of ranges that
7978  *    are recorded as bad.  The list is truncated to fit within
7979  *    the one-page limit of sysfs.
7980  *    Writing "sector length" to this file adds an acknowledged
7981  *    bad block list.
7982  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7983  *    been acknowledged.  Writing to this file adds bad blocks
7984  *    without acknowledging them.  This is largely for testing.
7985  */
7986
7987 static ssize_t
7988 badblocks_show(struct badblocks *bb, char *page, int unack)
7989 {
7990         size_t len;
7991         int i;
7992         u64 *p = bb->page;
7993         unsigned seq;
7994
7995         if (bb->shift < 0)
7996                 return 0;
7997
7998 retry:
7999         seq = read_seqbegin(&bb->lock);
8000
8001         len = 0;
8002         i = 0;
8003
8004         while (len < PAGE_SIZE && i < bb->count) {
8005                 sector_t s = BB_OFFSET(p[i]);
8006                 unsigned int length = BB_LEN(p[i]);
8007                 int ack = BB_ACK(p[i]);
8008                 i++;
8009
8010                 if (unack && ack)
8011                         continue;
8012
8013                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8014                                 (unsigned long long)s << bb->shift,
8015                                 length << bb->shift);
8016         }
8017         if (unack && len == 0)
8018                 bb->unacked_exist = 0;
8019
8020         if (read_seqretry(&bb->lock, seq))
8021                 goto retry;
8022
8023         return len;
8024 }
8025
8026 #define DO_DEBUG 1
8027
8028 static ssize_t
8029 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8030 {
8031         unsigned long long sector;
8032         int length;
8033         char newline;
8034 #ifdef DO_DEBUG
8035         /* Allow clearing via sysfs *only* for testing/debugging.
8036          * Normally only a successful write may clear a badblock
8037          */
8038         int clear = 0;
8039         if (page[0] == '-') {
8040                 clear = 1;
8041                 page++;
8042         }
8043 #endif /* DO_DEBUG */
8044
8045         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8046         case 3:
8047                 if (newline != '\n')
8048                         return -EINVAL;
8049         case 2:
8050                 if (length <= 0)
8051                         return -EINVAL;
8052                 break;
8053         default:
8054                 return -EINVAL;
8055         }
8056
8057 #ifdef DO_DEBUG
8058         if (clear) {
8059                 md_clear_badblocks(bb, sector, length);
8060                 return len;
8061         }
8062 #endif /* DO_DEBUG */
8063         if (md_set_badblocks(bb, sector, length, !unack))
8064                 return len;
8065         else
8066                 return -ENOSPC;
8067 }
8068
8069 static int md_notify_reboot(struct notifier_block *this,
8070                             unsigned long code, void *x)
8071 {
8072         struct list_head *tmp;
8073         struct mddev *mddev;
8074         int need_delay = 0;
8075
8076         if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8077
8078                 printk(KERN_INFO "md: stopping all md devices.\n");
8079
8080                 for_each_mddev(mddev, tmp) {
8081                         if (mddev_trylock(mddev)) {
8082                                 /* Force a switch to readonly even array
8083                                  * appears to still be in use.  Hence
8084                                  * the '100'.
8085                                  */
8086                                 md_set_readonly(mddev, 100);
8087                                 mddev_unlock(mddev);
8088                         }
8089                         need_delay = 1;
8090                 }
8091                 /*
8092                  * certain more exotic SCSI devices are known to be
8093                  * volatile wrt too early system reboots. While the
8094                  * right place to handle this issue is the given
8095                  * driver, we do want to have a safe RAID driver ...
8096                  */
8097                 if (need_delay)
8098                         mdelay(1000*1);
8099         }
8100         return NOTIFY_DONE;
8101 }
8102
8103 static struct notifier_block md_notifier = {
8104         .notifier_call  = md_notify_reboot,
8105         .next           = NULL,
8106         .priority       = INT_MAX, /* before any real devices */
8107 };
8108
8109 static void md_geninit(void)
8110 {
8111         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8112
8113         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8114 }
8115
8116 static int __init md_init(void)
8117 {
8118         int ret = -ENOMEM;
8119
8120         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8121         if (!md_wq)
8122                 goto err_wq;
8123
8124         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8125         if (!md_misc_wq)
8126                 goto err_misc_wq;
8127
8128         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8129                 goto err_md;
8130
8131         if ((ret = register_blkdev(0, "mdp")) < 0)
8132                 goto err_mdp;
8133         mdp_major = ret;
8134
8135         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8136                             md_probe, NULL, NULL);
8137         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8138                             md_probe, NULL, NULL);
8139
8140         register_reboot_notifier(&md_notifier);
8141         raid_table_header = register_sysctl_table(raid_root_table);
8142
8143         md_geninit();
8144         return 0;
8145
8146 err_mdp:
8147         unregister_blkdev(MD_MAJOR, "md");
8148 err_md:
8149         destroy_workqueue(md_misc_wq);
8150 err_misc_wq:
8151         destroy_workqueue(md_wq);
8152 err_wq:
8153         return ret;
8154 }
8155
8156 #ifndef MODULE
8157
8158 /*
8159  * Searches all registered partitions for autorun RAID arrays
8160  * at boot time.
8161  */
8162
8163 static LIST_HEAD(all_detected_devices);
8164 struct detected_devices_node {
8165         struct list_head list;
8166         dev_t dev;
8167 };
8168
8169 void md_autodetect_dev(dev_t dev)
8170 {
8171         struct detected_devices_node *node_detected_dev;
8172
8173         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8174         if (node_detected_dev) {
8175                 node_detected_dev->dev = dev;
8176                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8177         } else {
8178                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8179                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8180         }
8181 }
8182
8183
8184 static void autostart_arrays(int part)
8185 {
8186         struct md_rdev *rdev;
8187         struct detected_devices_node *node_detected_dev;
8188         dev_t dev;
8189         int i_scanned, i_passed;
8190
8191         i_scanned = 0;
8192         i_passed = 0;
8193
8194         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8195
8196         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8197                 i_scanned++;
8198                 node_detected_dev = list_entry(all_detected_devices.next,
8199                                         struct detected_devices_node, list);
8200                 list_del(&node_detected_dev->list);
8201                 dev = node_detected_dev->dev;
8202                 kfree(node_detected_dev);
8203                 rdev = md_import_device(dev,0, 90);
8204                 if (IS_ERR(rdev))
8205                         continue;
8206
8207                 if (test_bit(Faulty, &rdev->flags)) {
8208                         MD_BUG();
8209                         continue;
8210                 }
8211                 set_bit(AutoDetected, &rdev->flags);
8212                 list_add(&rdev->same_set, &pending_raid_disks);
8213                 i_passed++;
8214         }
8215
8216         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8217                                                 i_scanned, i_passed);
8218
8219         autorun_devices(part);
8220 }
8221
8222 #endif /* !MODULE */
8223
8224 static __exit void md_exit(void)
8225 {
8226         struct mddev *mddev;
8227         struct list_head *tmp;
8228
8229         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8230         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8231
8232         unregister_blkdev(MD_MAJOR,"md");
8233         unregister_blkdev(mdp_major, "mdp");
8234         unregister_reboot_notifier(&md_notifier);
8235         unregister_sysctl_table(raid_table_header);
8236         remove_proc_entry("mdstat", NULL);
8237         for_each_mddev(mddev, tmp) {
8238                 export_array(mddev);
8239                 mddev->hold_active = 0;
8240         }
8241         destroy_workqueue(md_misc_wq);
8242         destroy_workqueue(md_wq);
8243 }
8244
8245 subsys_initcall(md_init);
8246 module_exit(md_exit)
8247
8248 static int get_ro(char *buffer, struct kernel_param *kp)
8249 {
8250         return sprintf(buffer, "%d", start_readonly);
8251 }
8252 static int set_ro(const char *val, struct kernel_param *kp)
8253 {
8254         char *e;
8255         int num = simple_strtoul(val, &e, 10);
8256         if (*val && (*e == '\0' || *e == '\n')) {
8257                 start_readonly = num;
8258                 return 0;
8259         }
8260         return -EINVAL;
8261 }
8262
8263 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8264 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8265
8266 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8267
8268 EXPORT_SYMBOL(register_md_personality);
8269 EXPORT_SYMBOL(unregister_md_personality);
8270 EXPORT_SYMBOL(md_error);
8271 EXPORT_SYMBOL(md_done_sync);
8272 EXPORT_SYMBOL(md_write_start);
8273 EXPORT_SYMBOL(md_write_end);
8274 EXPORT_SYMBOL(md_register_thread);
8275 EXPORT_SYMBOL(md_unregister_thread);
8276 EXPORT_SYMBOL(md_wakeup_thread);
8277 EXPORT_SYMBOL(md_check_recovery);
8278 MODULE_LICENSE("GPL");
8279 MODULE_DESCRIPTION("MD RAID framework");
8280 MODULE_ALIAS("md");
8281 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);