778018b8d2849065a30a5331609868850796714c
[linux-flexiantxendom0.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/xcr.h>
61 #include <asm/pvclock.h>
62 #include <asm/div64.h>
63
64 #define MAX_IO_MSRS 256
65 #define KVM_MAX_MCE_BANKS 32
66 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
67
68 #define emul_to_vcpu(ctxt) \
69         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
70
71 /* EFER defaults:
72  * - enable syscall per default because its emulated by KVM
73  * - enable LME and LMA per default on 64 bit KVM
74  */
75 #ifdef CONFIG_X86_64
76 static
77 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
78 #else
79 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
80 #endif
81
82 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
83 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
84
85 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
86 static void process_nmi(struct kvm_vcpu *vcpu);
87
88 struct kvm_x86_ops *kvm_x86_ops;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90
91 int ignore_msrs = 0;
92 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
93
94 bool kvm_has_tsc_control;
95 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
96 u32  kvm_max_guest_tsc_khz;
97 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
98
99 #define KVM_NR_SHARED_MSRS 16
100
101 struct kvm_shared_msrs_global {
102         int nr;
103         u32 msrs[KVM_NR_SHARED_MSRS];
104 };
105
106 struct kvm_shared_msrs {
107         struct user_return_notifier urn;
108         bool registered;
109         struct kvm_shared_msr_values {
110                 u64 host;
111                 u64 curr;
112         } values[KVM_NR_SHARED_MSRS];
113 };
114
115 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
116 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
117
118 struct kvm_stats_debugfs_item debugfs_entries[] = {
119         { "pf_fixed", VCPU_STAT(pf_fixed) },
120         { "pf_guest", VCPU_STAT(pf_guest) },
121         { "tlb_flush", VCPU_STAT(tlb_flush) },
122         { "invlpg", VCPU_STAT(invlpg) },
123         { "exits", VCPU_STAT(exits) },
124         { "io_exits", VCPU_STAT(io_exits) },
125         { "mmio_exits", VCPU_STAT(mmio_exits) },
126         { "signal_exits", VCPU_STAT(signal_exits) },
127         { "irq_window", VCPU_STAT(irq_window_exits) },
128         { "nmi_window", VCPU_STAT(nmi_window_exits) },
129         { "halt_exits", VCPU_STAT(halt_exits) },
130         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
131         { "hypercalls", VCPU_STAT(hypercalls) },
132         { "request_irq", VCPU_STAT(request_irq_exits) },
133         { "irq_exits", VCPU_STAT(irq_exits) },
134         { "host_state_reload", VCPU_STAT(host_state_reload) },
135         { "efer_reload", VCPU_STAT(efer_reload) },
136         { "fpu_reload", VCPU_STAT(fpu_reload) },
137         { "insn_emulation", VCPU_STAT(insn_emulation) },
138         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
139         { "irq_injections", VCPU_STAT(irq_injections) },
140         { "nmi_injections", VCPU_STAT(nmi_injections) },
141         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
142         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
143         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
144         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
145         { "mmu_flooded", VM_STAT(mmu_flooded) },
146         { "mmu_recycled", VM_STAT(mmu_recycled) },
147         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
148         { "mmu_unsync", VM_STAT(mmu_unsync) },
149         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
150         { "largepages", VM_STAT(lpages) },
151         { NULL }
152 };
153
154 u64 __read_mostly host_xcr0;
155
156 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
157
158 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
159 {
160         int i;
161         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
162                 vcpu->arch.apf.gfns[i] = ~0;
163 }
164
165 static void kvm_on_user_return(struct user_return_notifier *urn)
166 {
167         unsigned slot;
168         struct kvm_shared_msrs *locals
169                 = container_of(urn, struct kvm_shared_msrs, urn);
170         struct kvm_shared_msr_values *values;
171
172         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
173                 values = &locals->values[slot];
174                 if (values->host != values->curr) {
175                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
176                         values->curr = values->host;
177                 }
178         }
179         locals->registered = false;
180         user_return_notifier_unregister(urn);
181 }
182
183 static void shared_msr_update(unsigned slot, u32 msr)
184 {
185         struct kvm_shared_msrs *smsr;
186         u64 value;
187
188         smsr = &__get_cpu_var(shared_msrs);
189         /* only read, and nobody should modify it at this time,
190          * so don't need lock */
191         if (slot >= shared_msrs_global.nr) {
192                 printk(KERN_ERR "kvm: invalid MSR slot!");
193                 return;
194         }
195         rdmsrl_safe(msr, &value);
196         smsr->values[slot].host = value;
197         smsr->values[slot].curr = value;
198 }
199
200 void kvm_define_shared_msr(unsigned slot, u32 msr)
201 {
202         if (slot >= shared_msrs_global.nr)
203                 shared_msrs_global.nr = slot + 1;
204         shared_msrs_global.msrs[slot] = msr;
205         /* we need ensured the shared_msr_global have been updated */
206         smp_wmb();
207 }
208 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
209
210 static void kvm_shared_msr_cpu_online(void)
211 {
212         unsigned i;
213
214         for (i = 0; i < shared_msrs_global.nr; ++i)
215                 shared_msr_update(i, shared_msrs_global.msrs[i]);
216 }
217
218 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
219 {
220         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
221
222         if (((value ^ smsr->values[slot].curr) & mask) == 0)
223                 return;
224         smsr->values[slot].curr = value;
225         wrmsrl(shared_msrs_global.msrs[slot], value);
226         if (!smsr->registered) {
227                 smsr->urn.on_user_return = kvm_on_user_return;
228                 user_return_notifier_register(&smsr->urn);
229                 smsr->registered = true;
230         }
231 }
232 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
233
234 static void drop_user_return_notifiers(void *ignore)
235 {
236         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
237
238         if (smsr->registered)
239                 kvm_on_user_return(&smsr->urn);
240 }
241
242 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
243 {
244         if (irqchip_in_kernel(vcpu->kvm))
245                 return vcpu->arch.apic_base;
246         else
247                 return vcpu->arch.apic_base;
248 }
249 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
250
251 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
252 {
253         /* TODO: reserve bits check */
254         if (irqchip_in_kernel(vcpu->kvm))
255                 kvm_lapic_set_base(vcpu, data);
256         else
257                 vcpu->arch.apic_base = data;
258 }
259 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
260
261 #define EXCPT_BENIGN            0
262 #define EXCPT_CONTRIBUTORY      1
263 #define EXCPT_PF                2
264
265 static int exception_class(int vector)
266 {
267         switch (vector) {
268         case PF_VECTOR:
269                 return EXCPT_PF;
270         case DE_VECTOR:
271         case TS_VECTOR:
272         case NP_VECTOR:
273         case SS_VECTOR:
274         case GP_VECTOR:
275                 return EXCPT_CONTRIBUTORY;
276         default:
277                 break;
278         }
279         return EXCPT_BENIGN;
280 }
281
282 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
283                 unsigned nr, bool has_error, u32 error_code,
284                 bool reinject)
285 {
286         u32 prev_nr;
287         int class1, class2;
288
289         kvm_make_request(KVM_REQ_EVENT, vcpu);
290
291         if (!vcpu->arch.exception.pending) {
292         queue:
293                 vcpu->arch.exception.pending = true;
294                 vcpu->arch.exception.has_error_code = has_error;
295                 vcpu->arch.exception.nr = nr;
296                 vcpu->arch.exception.error_code = error_code;
297                 vcpu->arch.exception.reinject = reinject;
298                 return;
299         }
300
301         /* to check exception */
302         prev_nr = vcpu->arch.exception.nr;
303         if (prev_nr == DF_VECTOR) {
304                 /* triple fault -> shutdown */
305                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
306                 return;
307         }
308         class1 = exception_class(prev_nr);
309         class2 = exception_class(nr);
310         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
311                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
312                 /* generate double fault per SDM Table 5-5 */
313                 vcpu->arch.exception.pending = true;
314                 vcpu->arch.exception.has_error_code = true;
315                 vcpu->arch.exception.nr = DF_VECTOR;
316                 vcpu->arch.exception.error_code = 0;
317         } else
318                 /* replace previous exception with a new one in a hope
319                    that instruction re-execution will regenerate lost
320                    exception */
321                 goto queue;
322 }
323
324 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
325 {
326         kvm_multiple_exception(vcpu, nr, false, 0, false);
327 }
328 EXPORT_SYMBOL_GPL(kvm_queue_exception);
329
330 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
331 {
332         kvm_multiple_exception(vcpu, nr, false, 0, true);
333 }
334 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
335
336 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
337 {
338         if (err)
339                 kvm_inject_gp(vcpu, 0);
340         else
341                 kvm_x86_ops->skip_emulated_instruction(vcpu);
342 }
343 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
344
345 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
346 {
347         ++vcpu->stat.pf_guest;
348         vcpu->arch.cr2 = fault->address;
349         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
350 }
351 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
352
353 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
354 {
355         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
356                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
357         else
358                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
359 }
360
361 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
362 {
363         atomic_inc(&vcpu->arch.nmi_queued);
364         kvm_make_request(KVM_REQ_NMI, vcpu);
365 }
366 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
367
368 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
369 {
370         kvm_multiple_exception(vcpu, nr, true, error_code, false);
371 }
372 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
373
374 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
375 {
376         kvm_multiple_exception(vcpu, nr, true, error_code, true);
377 }
378 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
379
380 /*
381  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
382  * a #GP and return false.
383  */
384 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
385 {
386         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
387                 return true;
388         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
389         return false;
390 }
391 EXPORT_SYMBOL_GPL(kvm_require_cpl);
392
393 /*
394  * This function will be used to read from the physical memory of the currently
395  * running guest. The difference to kvm_read_guest_page is that this function
396  * can read from guest physical or from the guest's guest physical memory.
397  */
398 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
399                             gfn_t ngfn, void *data, int offset, int len,
400                             u32 access)
401 {
402         gfn_t real_gfn;
403         gpa_t ngpa;
404
405         ngpa     = gfn_to_gpa(ngfn);
406         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
407         if (real_gfn == UNMAPPED_GVA)
408                 return -EFAULT;
409
410         real_gfn = gpa_to_gfn(real_gfn);
411
412         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
413 }
414 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
415
416 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
417                                void *data, int offset, int len, u32 access)
418 {
419         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
420                                        data, offset, len, access);
421 }
422
423 /*
424  * Load the pae pdptrs.  Return true is they are all valid.
425  */
426 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
427 {
428         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
429         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
430         int i;
431         int ret;
432         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
433
434         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
435                                       offset * sizeof(u64), sizeof(pdpte),
436                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
437         if (ret < 0) {
438                 ret = 0;
439                 goto out;
440         }
441         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
442                 if (is_present_gpte(pdpte[i]) &&
443                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
444                         ret = 0;
445                         goto out;
446                 }
447         }
448         ret = 1;
449
450         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
451         __set_bit(VCPU_EXREG_PDPTR,
452                   (unsigned long *)&vcpu->arch.regs_avail);
453         __set_bit(VCPU_EXREG_PDPTR,
454                   (unsigned long *)&vcpu->arch.regs_dirty);
455 out:
456
457         return ret;
458 }
459 EXPORT_SYMBOL_GPL(load_pdptrs);
460
461 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
462 {
463         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
464         bool changed = true;
465         int offset;
466         gfn_t gfn;
467         int r;
468
469         if (is_long_mode(vcpu) || !is_pae(vcpu))
470                 return false;
471
472         if (!test_bit(VCPU_EXREG_PDPTR,
473                       (unsigned long *)&vcpu->arch.regs_avail))
474                 return true;
475
476         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
477         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
478         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
479                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
480         if (r < 0)
481                 goto out;
482         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
483 out:
484
485         return changed;
486 }
487
488 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
489 {
490         unsigned long old_cr0 = kvm_read_cr0(vcpu);
491         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
492                                     X86_CR0_CD | X86_CR0_NW;
493
494         cr0 |= X86_CR0_ET;
495
496 #ifdef CONFIG_X86_64
497         if (cr0 & 0xffffffff00000000UL)
498                 return 1;
499 #endif
500
501         cr0 &= ~CR0_RESERVED_BITS;
502
503         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
504                 return 1;
505
506         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
507                 return 1;
508
509         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
510 #ifdef CONFIG_X86_64
511                 if ((vcpu->arch.efer & EFER_LME)) {
512                         int cs_db, cs_l;
513
514                         if (!is_pae(vcpu))
515                                 return 1;
516                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
517                         if (cs_l)
518                                 return 1;
519                 } else
520 #endif
521                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
522                                                  kvm_read_cr3(vcpu)))
523                         return 1;
524         }
525
526         kvm_x86_ops->set_cr0(vcpu, cr0);
527
528         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
529                 kvm_clear_async_pf_completion_queue(vcpu);
530                 kvm_async_pf_hash_reset(vcpu);
531         }
532
533         if ((cr0 ^ old_cr0) & update_bits)
534                 kvm_mmu_reset_context(vcpu);
535         return 0;
536 }
537 EXPORT_SYMBOL_GPL(kvm_set_cr0);
538
539 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
540 {
541         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
542 }
543 EXPORT_SYMBOL_GPL(kvm_lmsw);
544
545 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
546 {
547         u64 xcr0;
548
549         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
550         if (index != XCR_XFEATURE_ENABLED_MASK)
551                 return 1;
552         xcr0 = xcr;
553         if (kvm_x86_ops->get_cpl(vcpu) != 0)
554                 return 1;
555         if (!(xcr0 & XSTATE_FP))
556                 return 1;
557         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
558                 return 1;
559         if (xcr0 & ~host_xcr0)
560                 return 1;
561         vcpu->arch.xcr0 = xcr0;
562         vcpu->guest_xcr0_loaded = 0;
563         return 0;
564 }
565
566 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
567 {
568         if (__kvm_set_xcr(vcpu, index, xcr)) {
569                 kvm_inject_gp(vcpu, 0);
570                 return 1;
571         }
572         return 0;
573 }
574 EXPORT_SYMBOL_GPL(kvm_set_xcr);
575
576 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
577 {
578         unsigned long old_cr4 = kvm_read_cr4(vcpu);
579         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
580                                    X86_CR4_PAE | X86_CR4_SMEP;
581         if (cr4 & CR4_RESERVED_BITS)
582                 return 1;
583
584         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
585                 return 1;
586
587         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
588                 return 1;
589
590         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
591                 return 1;
592
593         if (is_long_mode(vcpu)) {
594                 if (!(cr4 & X86_CR4_PAE))
595                         return 1;
596         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
597                    && ((cr4 ^ old_cr4) & pdptr_bits)
598                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
599                                    kvm_read_cr3(vcpu)))
600                 return 1;
601
602         if (kvm_x86_ops->set_cr4(vcpu, cr4))
603                 return 1;
604
605         if ((cr4 ^ old_cr4) & pdptr_bits)
606                 kvm_mmu_reset_context(vcpu);
607
608         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
609                 kvm_update_cpuid(vcpu);
610
611         return 0;
612 }
613 EXPORT_SYMBOL_GPL(kvm_set_cr4);
614
615 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
616 {
617         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
618                 kvm_mmu_sync_roots(vcpu);
619                 kvm_mmu_flush_tlb(vcpu);
620                 return 0;
621         }
622
623         if (is_long_mode(vcpu)) {
624                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
625                         return 1;
626         } else {
627                 if (is_pae(vcpu)) {
628                         if (cr3 & CR3_PAE_RESERVED_BITS)
629                                 return 1;
630                         if (is_paging(vcpu) &&
631                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
632                                 return 1;
633                 }
634                 /*
635                  * We don't check reserved bits in nonpae mode, because
636                  * this isn't enforced, and VMware depends on this.
637                  */
638         }
639
640         /*
641          * Does the new cr3 value map to physical memory? (Note, we
642          * catch an invalid cr3 even in real-mode, because it would
643          * cause trouble later on when we turn on paging anyway.)
644          *
645          * A real CPU would silently accept an invalid cr3 and would
646          * attempt to use it - with largely undefined (and often hard
647          * to debug) behavior on the guest side.
648          */
649         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
650                 return 1;
651         vcpu->arch.cr3 = cr3;
652         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
653         vcpu->arch.mmu.new_cr3(vcpu);
654         return 0;
655 }
656 EXPORT_SYMBOL_GPL(kvm_set_cr3);
657
658 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
659 {
660         if (cr8 & CR8_RESERVED_BITS)
661                 return 1;
662         if (irqchip_in_kernel(vcpu->kvm))
663                 kvm_lapic_set_tpr(vcpu, cr8);
664         else
665                 vcpu->arch.cr8 = cr8;
666         return 0;
667 }
668 EXPORT_SYMBOL_GPL(kvm_set_cr8);
669
670 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
671 {
672         if (irqchip_in_kernel(vcpu->kvm))
673                 return kvm_lapic_get_cr8(vcpu);
674         else
675                 return vcpu->arch.cr8;
676 }
677 EXPORT_SYMBOL_GPL(kvm_get_cr8);
678
679 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
680 {
681         switch (dr) {
682         case 0 ... 3:
683                 vcpu->arch.db[dr] = val;
684                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
685                         vcpu->arch.eff_db[dr] = val;
686                 break;
687         case 4:
688                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
689                         return 1; /* #UD */
690                 /* fall through */
691         case 6:
692                 if (val & 0xffffffff00000000ULL)
693                         return -1; /* #GP */
694                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
695                 break;
696         case 5:
697                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
698                         return 1; /* #UD */
699                 /* fall through */
700         default: /* 7 */
701                 if (val & 0xffffffff00000000ULL)
702                         return -1; /* #GP */
703                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
704                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
705                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
706                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
707                 }
708                 break;
709         }
710
711         return 0;
712 }
713
714 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
715 {
716         int res;
717
718         res = __kvm_set_dr(vcpu, dr, val);
719         if (res > 0)
720                 kvm_queue_exception(vcpu, UD_VECTOR);
721         else if (res < 0)
722                 kvm_inject_gp(vcpu, 0);
723
724         return res;
725 }
726 EXPORT_SYMBOL_GPL(kvm_set_dr);
727
728 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
729 {
730         switch (dr) {
731         case 0 ... 3:
732                 *val = vcpu->arch.db[dr];
733                 break;
734         case 4:
735                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
736                         return 1;
737                 /* fall through */
738         case 6:
739                 *val = vcpu->arch.dr6;
740                 break;
741         case 5:
742                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
743                         return 1;
744                 /* fall through */
745         default: /* 7 */
746                 *val = vcpu->arch.dr7;
747                 break;
748         }
749
750         return 0;
751 }
752
753 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
754 {
755         if (_kvm_get_dr(vcpu, dr, val)) {
756                 kvm_queue_exception(vcpu, UD_VECTOR);
757                 return 1;
758         }
759         return 0;
760 }
761 EXPORT_SYMBOL_GPL(kvm_get_dr);
762
763 /*
764  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
765  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
766  *
767  * This list is modified at module load time to reflect the
768  * capabilities of the host cpu. This capabilities test skips MSRs that are
769  * kvm-specific. Those are put in the beginning of the list.
770  */
771
772 #define KVM_SAVE_MSRS_BEGIN     9
773 static u32 msrs_to_save[] = {
774         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
775         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
776         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
777         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
778         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
779         MSR_STAR,
780 #ifdef CONFIG_X86_64
781         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
782 #endif
783         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
784 };
785
786 static unsigned num_msrs_to_save;
787
788 static u32 emulated_msrs[] = {
789         MSR_IA32_TSCDEADLINE,
790         MSR_IA32_MISC_ENABLE,
791         MSR_IA32_MCG_STATUS,
792         MSR_IA32_MCG_CTL,
793 };
794
795 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
796 {
797         u64 old_efer = vcpu->arch.efer;
798
799         if (efer & efer_reserved_bits)
800                 return 1;
801
802         if (is_paging(vcpu)
803             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
804                 return 1;
805
806         if (efer & EFER_FFXSR) {
807                 struct kvm_cpuid_entry2 *feat;
808
809                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
810                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
811                         return 1;
812         }
813
814         if (efer & EFER_SVME) {
815                 struct kvm_cpuid_entry2 *feat;
816
817                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
818                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
819                         return 1;
820         }
821
822         efer &= ~EFER_LMA;
823         efer |= vcpu->arch.efer & EFER_LMA;
824
825         kvm_x86_ops->set_efer(vcpu, efer);
826
827         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
828
829         /* Update reserved bits */
830         if ((efer ^ old_efer) & EFER_NX)
831                 kvm_mmu_reset_context(vcpu);
832
833         return 0;
834 }
835
836 void kvm_enable_efer_bits(u64 mask)
837 {
838        efer_reserved_bits &= ~mask;
839 }
840 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
841
842
843 /*
844  * Writes msr value into into the appropriate "register".
845  * Returns 0 on success, non-0 otherwise.
846  * Assumes vcpu_load() was already called.
847  */
848 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
849 {
850         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
851 }
852
853 /*
854  * Adapt set_msr() to msr_io()'s calling convention
855  */
856 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
857 {
858         return kvm_set_msr(vcpu, index, *data);
859 }
860
861 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
862 {
863         int version;
864         int r;
865         struct pvclock_wall_clock wc;
866         struct timespec boot;
867
868         if (!wall_clock)
869                 return;
870
871         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
872         if (r)
873                 return;
874
875         if (version & 1)
876                 ++version;  /* first time write, random junk */
877
878         ++version;
879
880         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
881
882         /*
883          * The guest calculates current wall clock time by adding
884          * system time (updated by kvm_guest_time_update below) to the
885          * wall clock specified here.  guest system time equals host
886          * system time for us, thus we must fill in host boot time here.
887          */
888         getboottime(&boot);
889
890         wc.sec = boot.tv_sec;
891         wc.nsec = boot.tv_nsec;
892         wc.version = version;
893
894         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
895
896         version++;
897         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
898 }
899
900 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
901 {
902         uint32_t quotient, remainder;
903
904         /* Don't try to replace with do_div(), this one calculates
905          * "(dividend << 32) / divisor" */
906         __asm__ ( "divl %4"
907                   : "=a" (quotient), "=d" (remainder)
908                   : "0" (0), "1" (dividend), "r" (divisor) );
909         return quotient;
910 }
911
912 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
913                                s8 *pshift, u32 *pmultiplier)
914 {
915         uint64_t scaled64;
916         int32_t  shift = 0;
917         uint64_t tps64;
918         uint32_t tps32;
919
920         tps64 = base_khz * 1000LL;
921         scaled64 = scaled_khz * 1000LL;
922         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
923                 tps64 >>= 1;
924                 shift--;
925         }
926
927         tps32 = (uint32_t)tps64;
928         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
929                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
930                         scaled64 >>= 1;
931                 else
932                         tps32 <<= 1;
933                 shift++;
934         }
935
936         *pshift = shift;
937         *pmultiplier = div_frac(scaled64, tps32);
938
939         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
940                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
941 }
942
943 static inline u64 get_kernel_ns(void)
944 {
945         struct timespec ts;
946
947         WARN_ON(preemptible());
948         ktime_get_ts(&ts);
949         monotonic_to_bootbased(&ts);
950         return timespec_to_ns(&ts);
951 }
952
953 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
954 unsigned long max_tsc_khz;
955
956 static inline int kvm_tsc_changes_freq(void)
957 {
958         int cpu = get_cpu();
959         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
960                   cpufreq_quick_get(cpu) != 0;
961         put_cpu();
962         return ret;
963 }
964
965 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
966 {
967         if (vcpu->arch.virtual_tsc_khz)
968                 return vcpu->arch.virtual_tsc_khz;
969         else
970                 return __this_cpu_read(cpu_tsc_khz);
971 }
972
973 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
974 {
975         u64 ret;
976
977         WARN_ON(preemptible());
978         if (kvm_tsc_changes_freq())
979                 printk_once(KERN_WARNING
980                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
981         ret = nsec * vcpu_tsc_khz(vcpu);
982         do_div(ret, USEC_PER_SEC);
983         return ret;
984 }
985
986 static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
987 {
988         /* Compute a scale to convert nanoseconds in TSC cycles */
989         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
990                            &vcpu->arch.tsc_catchup_shift,
991                            &vcpu->arch.tsc_catchup_mult);
992 }
993
994 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
995 {
996         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
997                                       vcpu->arch.tsc_catchup_mult,
998                                       vcpu->arch.tsc_catchup_shift);
999         tsc += vcpu->arch.last_tsc_write;
1000         return tsc;
1001 }
1002
1003 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1004 {
1005         struct kvm *kvm = vcpu->kvm;
1006         u64 offset, ns, elapsed;
1007         unsigned long flags;
1008         s64 sdiff;
1009
1010         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1011         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1012         ns = get_kernel_ns();
1013         elapsed = ns - kvm->arch.last_tsc_nsec;
1014         sdiff = data - kvm->arch.last_tsc_write;
1015         if (sdiff < 0)
1016                 sdiff = -sdiff;
1017
1018         /*
1019          * Special case: close write to TSC within 5 seconds of
1020          * another CPU is interpreted as an attempt to synchronize
1021          * The 5 seconds is to accommodate host load / swapping as
1022          * well as any reset of TSC during the boot process.
1023          *
1024          * In that case, for a reliable TSC, we can match TSC offsets,
1025          * or make a best guest using elapsed value.
1026          */
1027         if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1028             elapsed < 5ULL * NSEC_PER_SEC) {
1029                 if (!check_tsc_unstable()) {
1030                         offset = kvm->arch.last_tsc_offset;
1031                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1032                 } else {
1033                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1034                         offset += delta;
1035                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1036                 }
1037                 ns = kvm->arch.last_tsc_nsec;
1038         }
1039         kvm->arch.last_tsc_nsec = ns;
1040         kvm->arch.last_tsc_write = data;
1041         kvm->arch.last_tsc_offset = offset;
1042         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1043         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1044
1045         /* Reset of TSC must disable overshoot protection below */
1046         vcpu->arch.hv_clock.tsc_timestamp = 0;
1047         vcpu->arch.last_tsc_write = data;
1048         vcpu->arch.last_tsc_nsec = ns;
1049 }
1050 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1051
1052 static int kvm_guest_time_update(struct kvm_vcpu *v)
1053 {
1054         unsigned long flags;
1055         struct kvm_vcpu_arch *vcpu = &v->arch;
1056         void *shared_kaddr;
1057         unsigned long this_tsc_khz;
1058         s64 kernel_ns, max_kernel_ns;
1059         u64 tsc_timestamp;
1060
1061         /* Keep irq disabled to prevent changes to the clock */
1062         local_irq_save(flags);
1063         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1064         kernel_ns = get_kernel_ns();
1065         this_tsc_khz = vcpu_tsc_khz(v);
1066         if (unlikely(this_tsc_khz == 0)) {
1067                 local_irq_restore(flags);
1068                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1069                 return 1;
1070         }
1071
1072         /*
1073          * We may have to catch up the TSC to match elapsed wall clock
1074          * time for two reasons, even if kvmclock is used.
1075          *   1) CPU could have been running below the maximum TSC rate
1076          *   2) Broken TSC compensation resets the base at each VCPU
1077          *      entry to avoid unknown leaps of TSC even when running
1078          *      again on the same CPU.  This may cause apparent elapsed
1079          *      time to disappear, and the guest to stand still or run
1080          *      very slowly.
1081          */
1082         if (vcpu->tsc_catchup) {
1083                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1084                 if (tsc > tsc_timestamp) {
1085                         kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1086                         tsc_timestamp = tsc;
1087                 }
1088         }
1089
1090         local_irq_restore(flags);
1091
1092         if (!vcpu->time_page)
1093                 return 0;
1094
1095         /*
1096          * Time as measured by the TSC may go backwards when resetting the base
1097          * tsc_timestamp.  The reason for this is that the TSC resolution is
1098          * higher than the resolution of the other clock scales.  Thus, many
1099          * possible measurments of the TSC correspond to one measurement of any
1100          * other clock, and so a spread of values is possible.  This is not a
1101          * problem for the computation of the nanosecond clock; with TSC rates
1102          * around 1GHZ, there can only be a few cycles which correspond to one
1103          * nanosecond value, and any path through this code will inevitably
1104          * take longer than that.  However, with the kernel_ns value itself,
1105          * the precision may be much lower, down to HZ granularity.  If the
1106          * first sampling of TSC against kernel_ns ends in the low part of the
1107          * range, and the second in the high end of the range, we can get:
1108          *
1109          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1110          *
1111          * As the sampling errors potentially range in the thousands of cycles,
1112          * it is possible such a time value has already been observed by the
1113          * guest.  To protect against this, we must compute the system time as
1114          * observed by the guest and ensure the new system time is greater.
1115          */
1116         max_kernel_ns = 0;
1117         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1118                 max_kernel_ns = vcpu->last_guest_tsc -
1119                                 vcpu->hv_clock.tsc_timestamp;
1120                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1121                                     vcpu->hv_clock.tsc_to_system_mul,
1122                                     vcpu->hv_clock.tsc_shift);
1123                 max_kernel_ns += vcpu->last_kernel_ns;
1124         }
1125
1126         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1127                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1128                                    &vcpu->hv_clock.tsc_shift,
1129                                    &vcpu->hv_clock.tsc_to_system_mul);
1130                 vcpu->hw_tsc_khz = this_tsc_khz;
1131         }
1132
1133         if (max_kernel_ns > kernel_ns)
1134                 kernel_ns = max_kernel_ns;
1135
1136         /* With all the info we got, fill in the values */
1137         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1138         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1139         vcpu->last_kernel_ns = kernel_ns;
1140         vcpu->last_guest_tsc = tsc_timestamp;
1141         vcpu->hv_clock.flags = 0;
1142
1143         /*
1144          * The interface expects us to write an even number signaling that the
1145          * update is finished. Since the guest won't see the intermediate
1146          * state, we just increase by 2 at the end.
1147          */
1148         vcpu->hv_clock.version += 2;
1149
1150         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1151
1152         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1153                sizeof(vcpu->hv_clock));
1154
1155         kunmap_atomic(shared_kaddr, KM_USER0);
1156
1157         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1158         return 0;
1159 }
1160
1161 static bool msr_mtrr_valid(unsigned msr)
1162 {
1163         switch (msr) {
1164         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1165         case MSR_MTRRfix64K_00000:
1166         case MSR_MTRRfix16K_80000:
1167         case MSR_MTRRfix16K_A0000:
1168         case MSR_MTRRfix4K_C0000:
1169         case MSR_MTRRfix4K_C8000:
1170         case MSR_MTRRfix4K_D0000:
1171         case MSR_MTRRfix4K_D8000:
1172         case MSR_MTRRfix4K_E0000:
1173         case MSR_MTRRfix4K_E8000:
1174         case MSR_MTRRfix4K_F0000:
1175         case MSR_MTRRfix4K_F8000:
1176         case MSR_MTRRdefType:
1177         case MSR_IA32_CR_PAT:
1178                 return true;
1179         case 0x2f8:
1180                 return true;
1181         }
1182         return false;
1183 }
1184
1185 static bool valid_pat_type(unsigned t)
1186 {
1187         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1188 }
1189
1190 static bool valid_mtrr_type(unsigned t)
1191 {
1192         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1193 }
1194
1195 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1196 {
1197         int i;
1198
1199         if (!msr_mtrr_valid(msr))
1200                 return false;
1201
1202         if (msr == MSR_IA32_CR_PAT) {
1203                 for (i = 0; i < 8; i++)
1204                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1205                                 return false;
1206                 return true;
1207         } else if (msr == MSR_MTRRdefType) {
1208                 if (data & ~0xcff)
1209                         return false;
1210                 return valid_mtrr_type(data & 0xff);
1211         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1212                 for (i = 0; i < 8 ; i++)
1213                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1214                                 return false;
1215                 return true;
1216         }
1217
1218         /* variable MTRRs */
1219         return valid_mtrr_type(data & 0xff);
1220 }
1221
1222 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1223 {
1224         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1225
1226         if (!mtrr_valid(vcpu, msr, data))
1227                 return 1;
1228
1229         if (msr == MSR_MTRRdefType) {
1230                 vcpu->arch.mtrr_state.def_type = data;
1231                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1232         } else if (msr == MSR_MTRRfix64K_00000)
1233                 p[0] = data;
1234         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1235                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1236         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1237                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1238         else if (msr == MSR_IA32_CR_PAT)
1239                 vcpu->arch.pat = data;
1240         else {  /* Variable MTRRs */
1241                 int idx, is_mtrr_mask;
1242                 u64 *pt;
1243
1244                 idx = (msr - 0x200) / 2;
1245                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1246                 if (!is_mtrr_mask)
1247                         pt =
1248                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1249                 else
1250                         pt =
1251                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1252                 *pt = data;
1253         }
1254
1255         kvm_mmu_reset_context(vcpu);
1256         return 0;
1257 }
1258
1259 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1260 {
1261         u64 mcg_cap = vcpu->arch.mcg_cap;
1262         unsigned bank_num = mcg_cap & 0xff;
1263
1264         switch (msr) {
1265         case MSR_IA32_MCG_STATUS:
1266                 vcpu->arch.mcg_status = data;
1267                 break;
1268         case MSR_IA32_MCG_CTL:
1269                 if (!(mcg_cap & MCG_CTL_P))
1270                         return 1;
1271                 if (data != 0 && data != ~(u64)0)
1272                         return -1;
1273                 vcpu->arch.mcg_ctl = data;
1274                 break;
1275         default:
1276                 if (msr >= MSR_IA32_MC0_CTL &&
1277                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1278                         u32 offset = msr - MSR_IA32_MC0_CTL;
1279                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1280                          * some Linux kernels though clear bit 10 in bank 4 to
1281                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1282                          * this to avoid an uncatched #GP in the guest
1283                          */
1284                         if ((offset & 0x3) == 0 &&
1285                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1286                                 return -1;
1287                         vcpu->arch.mce_banks[offset] = data;
1288                         break;
1289                 }
1290                 return 1;
1291         }
1292         return 0;
1293 }
1294
1295 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1296 {
1297         struct kvm *kvm = vcpu->kvm;
1298         int lm = is_long_mode(vcpu);
1299         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1300                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1301         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1302                 : kvm->arch.xen_hvm_config.blob_size_32;
1303         u32 page_num = data & ~PAGE_MASK;
1304         u64 page_addr = data & PAGE_MASK;
1305         u8 *page;
1306         int r;
1307
1308         r = -E2BIG;
1309         if (page_num >= blob_size)
1310                 goto out;
1311         r = -ENOMEM;
1312         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1313         if (!page)
1314                 goto out;
1315         r = -EFAULT;
1316         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1317                 goto out_free;
1318         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1319                 goto out_free;
1320         r = 0;
1321 out_free:
1322         kfree(page);
1323 out:
1324         return r;
1325 }
1326
1327 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1328 {
1329         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1330 }
1331
1332 static bool kvm_hv_msr_partition_wide(u32 msr)
1333 {
1334         bool r = false;
1335         switch (msr) {
1336         case HV_X64_MSR_GUEST_OS_ID:
1337         case HV_X64_MSR_HYPERCALL:
1338                 r = true;
1339                 break;
1340         }
1341
1342         return r;
1343 }
1344
1345 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1346 {
1347         struct kvm *kvm = vcpu->kvm;
1348
1349         switch (msr) {
1350         case HV_X64_MSR_GUEST_OS_ID:
1351                 kvm->arch.hv_guest_os_id = data;
1352                 /* setting guest os id to zero disables hypercall page */
1353                 if (!kvm->arch.hv_guest_os_id)
1354                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1355                 break;
1356         case HV_X64_MSR_HYPERCALL: {
1357                 u64 gfn;
1358                 unsigned long addr;
1359                 u8 instructions[4];
1360
1361                 /* if guest os id is not set hypercall should remain disabled */
1362                 if (!kvm->arch.hv_guest_os_id)
1363                         break;
1364                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1365                         kvm->arch.hv_hypercall = data;
1366                         break;
1367                 }
1368                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1369                 addr = gfn_to_hva(kvm, gfn);
1370                 if (kvm_is_error_hva(addr))
1371                         return 1;
1372                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1373                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1374                 if (__copy_to_user((void __user *)addr, instructions, 4))
1375                         return 1;
1376                 kvm->arch.hv_hypercall = data;
1377                 break;
1378         }
1379         default:
1380                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1381                           "data 0x%llx\n", msr, data);
1382                 return 1;
1383         }
1384         return 0;
1385 }
1386
1387 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1388 {
1389         switch (msr) {
1390         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1391                 unsigned long addr;
1392
1393                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1394                         vcpu->arch.hv_vapic = data;
1395                         break;
1396                 }
1397                 addr = gfn_to_hva(vcpu->kvm, data >>
1398                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1399                 if (kvm_is_error_hva(addr))
1400                         return 1;
1401                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1402                         return 1;
1403                 vcpu->arch.hv_vapic = data;
1404                 break;
1405         }
1406         case HV_X64_MSR_EOI:
1407                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1408         case HV_X64_MSR_ICR:
1409                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1410         case HV_X64_MSR_TPR:
1411                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1412         default:
1413                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1414                           "data 0x%llx\n", msr, data);
1415                 return 1;
1416         }
1417
1418         return 0;
1419 }
1420
1421 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1422 {
1423         gpa_t gpa = data & ~0x3f;
1424
1425         /* Bits 2:5 are resrved, Should be zero */
1426         if (data & 0x3c)
1427                 return 1;
1428
1429         vcpu->arch.apf.msr_val = data;
1430
1431         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1432                 kvm_clear_async_pf_completion_queue(vcpu);
1433                 kvm_async_pf_hash_reset(vcpu);
1434                 return 0;
1435         }
1436
1437         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1438                 return 1;
1439
1440         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1441         kvm_async_pf_wakeup_all(vcpu);
1442         return 0;
1443 }
1444
1445 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1446 {
1447         if (vcpu->arch.time_page) {
1448                 kvm_release_page_dirty(vcpu->arch.time_page);
1449                 vcpu->arch.time_page = NULL;
1450         }
1451 }
1452
1453 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1454 {
1455         u64 delta;
1456
1457         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1458                 return;
1459
1460         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1461         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1462         vcpu->arch.st.accum_steal = delta;
1463 }
1464
1465 static void record_steal_time(struct kvm_vcpu *vcpu)
1466 {
1467         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1468                 return;
1469
1470         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1471                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1472                 return;
1473
1474         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1475         vcpu->arch.st.steal.version += 2;
1476         vcpu->arch.st.accum_steal = 0;
1477
1478         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1479                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1480 }
1481
1482 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1483 {
1484         switch (msr) {
1485         case MSR_EFER:
1486                 return set_efer(vcpu, data);
1487         case MSR_K7_HWCR:
1488                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1489                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1490                 if (data != 0) {
1491                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1492                                 data);
1493                         return 1;
1494                 }
1495                 break;
1496         case MSR_FAM10H_MMIO_CONF_BASE:
1497                 if (data != 0) {
1498                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1499                                 "0x%llx\n", data);
1500                         return 1;
1501                 }
1502                 break;
1503         case MSR_AMD64_NB_CFG:
1504                 break;
1505         case MSR_IA32_DEBUGCTLMSR:
1506                 if (!data) {
1507                         /* We support the non-activated case already */
1508                         break;
1509                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1510                         /* Values other than LBR and BTF are vendor-specific,
1511                            thus reserved and should throw a #GP */
1512                         return 1;
1513                 }
1514                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1515                         __func__, data);
1516                 break;
1517         case MSR_IA32_UCODE_REV:
1518         case MSR_IA32_UCODE_WRITE:
1519         case MSR_VM_HSAVE_PA:
1520         case MSR_AMD64_PATCH_LOADER:
1521                 break;
1522         case 0x200 ... 0x2ff:
1523                 return set_msr_mtrr(vcpu, msr, data);
1524         case MSR_IA32_APICBASE:
1525                 kvm_set_apic_base(vcpu, data);
1526                 break;
1527         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1528                 return kvm_x2apic_msr_write(vcpu, msr, data);
1529         case MSR_IA32_TSCDEADLINE:
1530                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1531                 break;
1532         case MSR_IA32_MISC_ENABLE:
1533                 vcpu->arch.ia32_misc_enable_msr = data;
1534                 break;
1535         case MSR_KVM_WALL_CLOCK_NEW:
1536         case MSR_KVM_WALL_CLOCK:
1537                 vcpu->kvm->arch.wall_clock = data;
1538                 kvm_write_wall_clock(vcpu->kvm, data);
1539                 break;
1540         case MSR_KVM_SYSTEM_TIME_NEW:
1541         case MSR_KVM_SYSTEM_TIME: {
1542                 kvmclock_reset(vcpu);
1543
1544                 vcpu->arch.time = data;
1545                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1546
1547                 /* we verify if the enable bit is set... */
1548                 if (!(data & 1))
1549                         break;
1550
1551                 /* ...but clean it before doing the actual write */
1552                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1553
1554                 vcpu->arch.time_page =
1555                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1556
1557                 if (is_error_page(vcpu->arch.time_page)) {
1558                         kvm_release_page_clean(vcpu->arch.time_page);
1559                         vcpu->arch.time_page = NULL;
1560                 }
1561                 break;
1562         }
1563         case MSR_KVM_ASYNC_PF_EN:
1564                 if (kvm_pv_enable_async_pf(vcpu, data))
1565                         return 1;
1566                 break;
1567         case MSR_KVM_STEAL_TIME:
1568
1569                 if (unlikely(!sched_info_on()))
1570                         return 1;
1571
1572                 if (data & KVM_STEAL_RESERVED_MASK)
1573                         return 1;
1574
1575                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1576                                                         data & KVM_STEAL_VALID_BITS))
1577                         return 1;
1578
1579                 vcpu->arch.st.msr_val = data;
1580
1581                 if (!(data & KVM_MSR_ENABLED))
1582                         break;
1583
1584                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1585
1586                 preempt_disable();
1587                 accumulate_steal_time(vcpu);
1588                 preempt_enable();
1589
1590                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1591
1592                 break;
1593
1594         case MSR_IA32_MCG_CTL:
1595         case MSR_IA32_MCG_STATUS:
1596         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1597                 return set_msr_mce(vcpu, msr, data);
1598
1599         /* Performance counters are not protected by a CPUID bit,
1600          * so we should check all of them in the generic path for the sake of
1601          * cross vendor migration.
1602          * Writing a zero into the event select MSRs disables them,
1603          * which we perfectly emulate ;-). Any other value should be at least
1604          * reported, some guests depend on them.
1605          */
1606         case MSR_P6_EVNTSEL0:
1607         case MSR_P6_EVNTSEL1:
1608         case MSR_K7_EVNTSEL0:
1609         case MSR_K7_EVNTSEL1:
1610         case MSR_K7_EVNTSEL2:
1611         case MSR_K7_EVNTSEL3:
1612                 if (data != 0)
1613                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1614                                 "0x%x data 0x%llx\n", msr, data);
1615                 break;
1616         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1617          * so we ignore writes to make it happy.
1618          */
1619         case MSR_P6_PERFCTR0:
1620         case MSR_P6_PERFCTR1:
1621         case MSR_K7_PERFCTR0:
1622         case MSR_K7_PERFCTR1:
1623         case MSR_K7_PERFCTR2:
1624         case MSR_K7_PERFCTR3:
1625                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1626                         "0x%x data 0x%llx\n", msr, data);
1627                 break;
1628         case MSR_K7_CLK_CTL:
1629                 /*
1630                  * Ignore all writes to this no longer documented MSR.
1631                  * Writes are only relevant for old K7 processors,
1632                  * all pre-dating SVM, but a recommended workaround from
1633                  * AMD for these chips. It is possible to speicify the
1634                  * affected processor models on the command line, hence
1635                  * the need to ignore the workaround.
1636                  */
1637                 break;
1638         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1639                 if (kvm_hv_msr_partition_wide(msr)) {
1640                         int r;
1641                         mutex_lock(&vcpu->kvm->lock);
1642                         r = set_msr_hyperv_pw(vcpu, msr, data);
1643                         mutex_unlock(&vcpu->kvm->lock);
1644                         return r;
1645                 } else
1646                         return set_msr_hyperv(vcpu, msr, data);
1647                 break;
1648         case MSR_IA32_BBL_CR_CTL3:
1649                 /* Drop writes to this legacy MSR -- see rdmsr
1650                  * counterpart for further detail.
1651                  */
1652                 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1653                 break;
1654         default:
1655                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1656                         return xen_hvm_config(vcpu, data);
1657                 if (!ignore_msrs) {
1658                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1659                                 msr, data);
1660                         return 1;
1661                 } else {
1662                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1663                                 msr, data);
1664                         break;
1665                 }
1666         }
1667         return 0;
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1670
1671
1672 /*
1673  * Reads an msr value (of 'msr_index') into 'pdata'.
1674  * Returns 0 on success, non-0 otherwise.
1675  * Assumes vcpu_load() was already called.
1676  */
1677 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1678 {
1679         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1680 }
1681
1682 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1683 {
1684         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1685
1686         if (!msr_mtrr_valid(msr))
1687                 return 1;
1688
1689         if (msr == MSR_MTRRdefType)
1690                 *pdata = vcpu->arch.mtrr_state.def_type +
1691                          (vcpu->arch.mtrr_state.enabled << 10);
1692         else if (msr == MSR_MTRRfix64K_00000)
1693                 *pdata = p[0];
1694         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1695                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1696         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1697                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1698         else if (msr == MSR_IA32_CR_PAT)
1699                 *pdata = vcpu->arch.pat;
1700         else {  /* Variable MTRRs */
1701                 int idx, is_mtrr_mask;
1702                 u64 *pt;
1703
1704                 idx = (msr - 0x200) / 2;
1705                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1706                 if (!is_mtrr_mask)
1707                         pt =
1708                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1709                 else
1710                         pt =
1711                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1712                 *pdata = *pt;
1713         }
1714
1715         return 0;
1716 }
1717
1718 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1719 {
1720         u64 data;
1721         u64 mcg_cap = vcpu->arch.mcg_cap;
1722         unsigned bank_num = mcg_cap & 0xff;
1723
1724         switch (msr) {
1725         case MSR_IA32_P5_MC_ADDR:
1726         case MSR_IA32_P5_MC_TYPE:
1727                 data = 0;
1728                 break;
1729         case MSR_IA32_MCG_CAP:
1730                 data = vcpu->arch.mcg_cap;
1731                 break;
1732         case MSR_IA32_MCG_CTL:
1733                 if (!(mcg_cap & MCG_CTL_P))
1734                         return 1;
1735                 data = vcpu->arch.mcg_ctl;
1736                 break;
1737         case MSR_IA32_MCG_STATUS:
1738                 data = vcpu->arch.mcg_status;
1739                 break;
1740         default:
1741                 if (msr >= MSR_IA32_MC0_CTL &&
1742                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1743                         u32 offset = msr - MSR_IA32_MC0_CTL;
1744                         data = vcpu->arch.mce_banks[offset];
1745                         break;
1746                 }
1747                 return 1;
1748         }
1749         *pdata = data;
1750         return 0;
1751 }
1752
1753 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1754 {
1755         u64 data = 0;
1756         struct kvm *kvm = vcpu->kvm;
1757
1758         switch (msr) {
1759         case HV_X64_MSR_GUEST_OS_ID:
1760                 data = kvm->arch.hv_guest_os_id;
1761                 break;
1762         case HV_X64_MSR_HYPERCALL:
1763                 data = kvm->arch.hv_hypercall;
1764                 break;
1765         default:
1766                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1767                 return 1;
1768         }
1769
1770         *pdata = data;
1771         return 0;
1772 }
1773
1774 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1775 {
1776         u64 data = 0;
1777
1778         switch (msr) {
1779         case HV_X64_MSR_VP_INDEX: {
1780                 int r;
1781                 struct kvm_vcpu *v;
1782                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1783                         if (v == vcpu)
1784                                 data = r;
1785                 break;
1786         }
1787         case HV_X64_MSR_EOI:
1788                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1789         case HV_X64_MSR_ICR:
1790                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1791         case HV_X64_MSR_TPR:
1792                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1793         case HV_X64_MSR_APIC_ASSIST_PAGE:
1794                 data = vcpu->arch.hv_vapic;
1795                 break;
1796         default:
1797                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1798                 return 1;
1799         }
1800         *pdata = data;
1801         return 0;
1802 }
1803
1804 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1805 {
1806         u64 data;
1807
1808         switch (msr) {
1809         case MSR_IA32_PLATFORM_ID:
1810         case MSR_IA32_EBL_CR_POWERON:
1811         case MSR_IA32_DEBUGCTLMSR:
1812         case MSR_IA32_LASTBRANCHFROMIP:
1813         case MSR_IA32_LASTBRANCHTOIP:
1814         case MSR_IA32_LASTINTFROMIP:
1815         case MSR_IA32_LASTINTTOIP:
1816         case MSR_K8_SYSCFG:
1817         case MSR_K7_HWCR:
1818         case MSR_VM_HSAVE_PA:
1819         case MSR_P6_PERFCTR0:
1820         case MSR_P6_PERFCTR1:
1821         case MSR_P6_EVNTSEL0:
1822         case MSR_P6_EVNTSEL1:
1823         case MSR_K7_EVNTSEL0:
1824         case MSR_K7_PERFCTR0:
1825         case MSR_K8_INT_PENDING_MSG:
1826         case MSR_AMD64_NB_CFG:
1827         case MSR_FAM10H_MMIO_CONF_BASE:
1828                 data = 0;
1829                 break;
1830         case MSR_IA32_UCODE_REV:
1831                 data = 0x100000000ULL;
1832                 break;
1833         case MSR_MTRRcap:
1834                 data = 0x500 | KVM_NR_VAR_MTRR;
1835                 break;
1836         case 0x200 ... 0x2ff:
1837                 return get_msr_mtrr(vcpu, msr, pdata);
1838         case 0xcd: /* fsb frequency */
1839                 data = 3;
1840                 break;
1841                 /*
1842                  * MSR_EBC_FREQUENCY_ID
1843                  * Conservative value valid for even the basic CPU models.
1844                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1845                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1846                  * and 266MHz for model 3, or 4. Set Core Clock
1847                  * Frequency to System Bus Frequency Ratio to 1 (bits
1848                  * 31:24) even though these are only valid for CPU
1849                  * models > 2, however guests may end up dividing or
1850                  * multiplying by zero otherwise.
1851                  */
1852         case MSR_EBC_FREQUENCY_ID:
1853                 data = 1 << 24;
1854                 break;
1855         case MSR_IA32_APICBASE:
1856                 data = kvm_get_apic_base(vcpu);
1857                 break;
1858         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1859                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1860                 break;
1861         case MSR_IA32_TSCDEADLINE:
1862                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1863                 break;
1864         case MSR_IA32_MISC_ENABLE:
1865                 data = vcpu->arch.ia32_misc_enable_msr;
1866                 break;
1867         case MSR_IA32_PERF_STATUS:
1868                 /* TSC increment by tick */
1869                 data = 1000ULL;
1870                 /* CPU multiplier */
1871                 data |= (((uint64_t)4ULL) << 40);
1872                 break;
1873         case MSR_EFER:
1874                 data = vcpu->arch.efer;
1875                 break;
1876         case MSR_KVM_WALL_CLOCK:
1877         case MSR_KVM_WALL_CLOCK_NEW:
1878                 data = vcpu->kvm->arch.wall_clock;
1879                 break;
1880         case MSR_KVM_SYSTEM_TIME:
1881         case MSR_KVM_SYSTEM_TIME_NEW:
1882                 data = vcpu->arch.time;
1883                 break;
1884         case MSR_KVM_ASYNC_PF_EN:
1885                 data = vcpu->arch.apf.msr_val;
1886                 break;
1887         case MSR_KVM_STEAL_TIME:
1888                 data = vcpu->arch.st.msr_val;
1889                 break;
1890         case MSR_IA32_P5_MC_ADDR:
1891         case MSR_IA32_P5_MC_TYPE:
1892         case MSR_IA32_MCG_CAP:
1893         case MSR_IA32_MCG_CTL:
1894         case MSR_IA32_MCG_STATUS:
1895         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1896                 return get_msr_mce(vcpu, msr, pdata);
1897         case MSR_K7_CLK_CTL:
1898                 /*
1899                  * Provide expected ramp-up count for K7. All other
1900                  * are set to zero, indicating minimum divisors for
1901                  * every field.
1902                  *
1903                  * This prevents guest kernels on AMD host with CPU
1904                  * type 6, model 8 and higher from exploding due to
1905                  * the rdmsr failing.
1906                  */
1907                 data = 0x20000000;
1908                 break;
1909         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1910                 if (kvm_hv_msr_partition_wide(msr)) {
1911                         int r;
1912                         mutex_lock(&vcpu->kvm->lock);
1913                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1914                         mutex_unlock(&vcpu->kvm->lock);
1915                         return r;
1916                 } else
1917                         return get_msr_hyperv(vcpu, msr, pdata);
1918                 break;
1919         case MSR_IA32_BBL_CR_CTL3:
1920                 /* This legacy MSR exists but isn't fully documented in current
1921                  * silicon.  It is however accessed by winxp in very narrow
1922                  * scenarios where it sets bit #19, itself documented as
1923                  * a "reserved" bit.  Best effort attempt to source coherent
1924                  * read data here should the balance of the register be
1925                  * interpreted by the guest:
1926                  *
1927                  * L2 cache control register 3: 64GB range, 256KB size,
1928                  * enabled, latency 0x1, configured
1929                  */
1930                 data = 0xbe702111;
1931                 break;
1932         default:
1933                 if (!ignore_msrs) {
1934                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1935                         return 1;
1936                 } else {
1937                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1938                         data = 0;
1939                 }
1940                 break;
1941         }
1942         *pdata = data;
1943         return 0;
1944 }
1945 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1946
1947 /*
1948  * Read or write a bunch of msrs. All parameters are kernel addresses.
1949  *
1950  * @return number of msrs set successfully.
1951  */
1952 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1953                     struct kvm_msr_entry *entries,
1954                     int (*do_msr)(struct kvm_vcpu *vcpu,
1955                                   unsigned index, u64 *data))
1956 {
1957         int i, idx;
1958
1959         idx = srcu_read_lock(&vcpu->kvm->srcu);
1960         for (i = 0; i < msrs->nmsrs; ++i)
1961                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1962                         break;
1963         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1964
1965         return i;
1966 }
1967
1968 /*
1969  * Read or write a bunch of msrs. Parameters are user addresses.
1970  *
1971  * @return number of msrs set successfully.
1972  */
1973 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1974                   int (*do_msr)(struct kvm_vcpu *vcpu,
1975                                 unsigned index, u64 *data),
1976                   int writeback)
1977 {
1978         struct kvm_msrs msrs;
1979         struct kvm_msr_entry *entries;
1980         int r, n;
1981         unsigned size;
1982
1983         r = -EFAULT;
1984         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1985                 goto out;
1986
1987         r = -E2BIG;
1988         if (msrs.nmsrs >= MAX_IO_MSRS)
1989                 goto out;
1990
1991         r = -ENOMEM;
1992         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1993         entries = kmalloc(size, GFP_KERNEL);
1994         if (!entries)
1995                 goto out;
1996
1997         r = -EFAULT;
1998         if (copy_from_user(entries, user_msrs->entries, size))
1999                 goto out_free;
2000
2001         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2002         if (r < 0)
2003                 goto out_free;
2004
2005         r = -EFAULT;
2006         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2007                 goto out_free;
2008
2009         r = n;
2010
2011 out_free:
2012         kfree(entries);
2013 out:
2014         return r;
2015 }
2016
2017 int kvm_dev_ioctl_check_extension(long ext)
2018 {
2019         int r;
2020
2021         switch (ext) {
2022         case KVM_CAP_IRQCHIP:
2023         case KVM_CAP_HLT:
2024         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2025         case KVM_CAP_SET_TSS_ADDR:
2026         case KVM_CAP_EXT_CPUID:
2027         case KVM_CAP_CLOCKSOURCE:
2028         case KVM_CAP_PIT:
2029         case KVM_CAP_NOP_IO_DELAY:
2030         case KVM_CAP_MP_STATE:
2031         case KVM_CAP_SYNC_MMU:
2032         case KVM_CAP_USER_NMI:
2033         case KVM_CAP_REINJECT_CONTROL:
2034         case KVM_CAP_IRQ_INJECT_STATUS:
2035         case KVM_CAP_ASSIGN_DEV_IRQ:
2036         case KVM_CAP_IRQFD:
2037         case KVM_CAP_IOEVENTFD:
2038         case KVM_CAP_PIT2:
2039         case KVM_CAP_PIT_STATE2:
2040         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2041         case KVM_CAP_XEN_HVM:
2042         case KVM_CAP_ADJUST_CLOCK:
2043         case KVM_CAP_VCPU_EVENTS:
2044         case KVM_CAP_HYPERV:
2045         case KVM_CAP_HYPERV_VAPIC:
2046         case KVM_CAP_HYPERV_SPIN:
2047         case KVM_CAP_PCI_SEGMENT:
2048         case KVM_CAP_DEBUGREGS:
2049         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2050         case KVM_CAP_XSAVE:
2051         case KVM_CAP_ASYNC_PF:
2052         case KVM_CAP_GET_TSC_KHZ:
2053                 r = 1;
2054                 break;
2055         case KVM_CAP_COALESCED_MMIO:
2056                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2057                 break;
2058         case KVM_CAP_VAPIC:
2059                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2060                 break;
2061         case KVM_CAP_NR_VCPUS:
2062                 r = KVM_SOFT_MAX_VCPUS;
2063                 break;
2064         case KVM_CAP_MAX_VCPUS:
2065                 r = KVM_MAX_VCPUS;
2066                 break;
2067         case KVM_CAP_NR_MEMSLOTS:
2068                 r = KVM_MEMORY_SLOTS;
2069                 break;
2070         case KVM_CAP_PV_MMU:    /* obsolete */
2071                 r = 0;
2072                 break;
2073         case KVM_CAP_IOMMU:
2074                 r = iommu_present(&pci_bus_type);
2075                 break;
2076         case KVM_CAP_MCE:
2077                 r = KVM_MAX_MCE_BANKS;
2078                 break;
2079         case KVM_CAP_XCRS:
2080                 r = cpu_has_xsave;
2081                 break;
2082         case KVM_CAP_TSC_CONTROL:
2083                 r = kvm_has_tsc_control;
2084                 break;
2085         case KVM_CAP_TSC_DEADLINE_TIMER:
2086                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2087                 break;
2088         default:
2089                 r = 0;
2090                 break;
2091         }
2092         return r;
2093
2094 }
2095
2096 long kvm_arch_dev_ioctl(struct file *filp,
2097                         unsigned int ioctl, unsigned long arg)
2098 {
2099         void __user *argp = (void __user *)arg;
2100         long r;
2101
2102         switch (ioctl) {
2103         case KVM_GET_MSR_INDEX_LIST: {
2104                 struct kvm_msr_list __user *user_msr_list = argp;
2105                 struct kvm_msr_list msr_list;
2106                 unsigned n;
2107
2108                 r = -EFAULT;
2109                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2110                         goto out;
2111                 n = msr_list.nmsrs;
2112                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2113                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2114                         goto out;
2115                 r = -E2BIG;
2116                 if (n < msr_list.nmsrs)
2117                         goto out;
2118                 r = -EFAULT;
2119                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2120                                  num_msrs_to_save * sizeof(u32)))
2121                         goto out;
2122                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2123                                  &emulated_msrs,
2124                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2125                         goto out;
2126                 r = 0;
2127                 break;
2128         }
2129         case KVM_GET_SUPPORTED_CPUID: {
2130                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2131                 struct kvm_cpuid2 cpuid;
2132
2133                 r = -EFAULT;
2134                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2135                         goto out;
2136                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2137                                                       cpuid_arg->entries);
2138                 if (r)
2139                         goto out;
2140
2141                 r = -EFAULT;
2142                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2143                         goto out;
2144                 r = 0;
2145                 break;
2146         }
2147         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2148                 u64 mce_cap;
2149
2150                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2151                 r = -EFAULT;
2152                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2153                         goto out;
2154                 r = 0;
2155                 break;
2156         }
2157         default:
2158                 r = -EINVAL;
2159         }
2160 out:
2161         return r;
2162 }
2163
2164 static void wbinvd_ipi(void *garbage)
2165 {
2166         wbinvd();
2167 }
2168
2169 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2170 {
2171         return vcpu->kvm->arch.iommu_domain &&
2172                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2173 }
2174
2175 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2176 {
2177         /* Address WBINVD may be executed by guest */
2178         if (need_emulate_wbinvd(vcpu)) {
2179                 if (kvm_x86_ops->has_wbinvd_exit())
2180                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2181                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2182                         smp_call_function_single(vcpu->cpu,
2183                                         wbinvd_ipi, NULL, 1);
2184         }
2185
2186         kvm_x86_ops->vcpu_load(vcpu, cpu);
2187         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2188                 /* Make sure TSC doesn't go backwards */
2189                 s64 tsc_delta;
2190                 u64 tsc;
2191
2192                 tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2193                 tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2194                              tsc - vcpu->arch.last_guest_tsc;
2195
2196                 if (tsc_delta < 0)
2197                         mark_tsc_unstable("KVM discovered backwards TSC");
2198                 if (check_tsc_unstable()) {
2199                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2200                         vcpu->arch.tsc_catchup = 1;
2201                 }
2202                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2203                 if (vcpu->cpu != cpu)
2204                         kvm_migrate_timers(vcpu);
2205                 vcpu->cpu = cpu;
2206         }
2207
2208         accumulate_steal_time(vcpu);
2209         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2210 }
2211
2212 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2213 {
2214         kvm_x86_ops->vcpu_put(vcpu);
2215         kvm_put_guest_fpu(vcpu);
2216         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2217 }
2218
2219 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2220                                     struct kvm_lapic_state *s)
2221 {
2222         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2223
2224         return 0;
2225 }
2226
2227 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2228                                     struct kvm_lapic_state *s)
2229 {
2230         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2231         kvm_apic_post_state_restore(vcpu);
2232         update_cr8_intercept(vcpu);
2233
2234         return 0;
2235 }
2236
2237 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2238                                     struct kvm_interrupt *irq)
2239 {
2240         if (irq->irq < 0 || irq->irq >= 256)
2241                 return -EINVAL;
2242         if (irqchip_in_kernel(vcpu->kvm))
2243                 return -ENXIO;
2244
2245         kvm_queue_interrupt(vcpu, irq->irq, false);
2246         kvm_make_request(KVM_REQ_EVENT, vcpu);
2247
2248         return 0;
2249 }
2250
2251 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2252 {
2253         kvm_inject_nmi(vcpu);
2254
2255         return 0;
2256 }
2257
2258 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2259                                            struct kvm_tpr_access_ctl *tac)
2260 {
2261         if (tac->flags)
2262                 return -EINVAL;
2263         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2264         return 0;
2265 }
2266
2267 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2268                                         u64 mcg_cap)
2269 {
2270         int r;
2271         unsigned bank_num = mcg_cap & 0xff, bank;
2272
2273         r = -EINVAL;
2274         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2275                 goto out;
2276         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2277                 goto out;
2278         r = 0;
2279         vcpu->arch.mcg_cap = mcg_cap;
2280         /* Init IA32_MCG_CTL to all 1s */
2281         if (mcg_cap & MCG_CTL_P)
2282                 vcpu->arch.mcg_ctl = ~(u64)0;
2283         /* Init IA32_MCi_CTL to all 1s */
2284         for (bank = 0; bank < bank_num; bank++)
2285                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2286 out:
2287         return r;
2288 }
2289
2290 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2291                                       struct kvm_x86_mce *mce)
2292 {
2293         u64 mcg_cap = vcpu->arch.mcg_cap;
2294         unsigned bank_num = mcg_cap & 0xff;
2295         u64 *banks = vcpu->arch.mce_banks;
2296
2297         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2298                 return -EINVAL;
2299         /*
2300          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2301          * reporting is disabled
2302          */
2303         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2304             vcpu->arch.mcg_ctl != ~(u64)0)
2305                 return 0;
2306         banks += 4 * mce->bank;
2307         /*
2308          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2309          * reporting is disabled for the bank
2310          */
2311         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2312                 return 0;
2313         if (mce->status & MCI_STATUS_UC) {
2314                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2315                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2316                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2317                         return 0;
2318                 }
2319                 if (banks[1] & MCI_STATUS_VAL)
2320                         mce->status |= MCI_STATUS_OVER;
2321                 banks[2] = mce->addr;
2322                 banks[3] = mce->misc;
2323                 vcpu->arch.mcg_status = mce->mcg_status;
2324                 banks[1] = mce->status;
2325                 kvm_queue_exception(vcpu, MC_VECTOR);
2326         } else if (!(banks[1] & MCI_STATUS_VAL)
2327                    || !(banks[1] & MCI_STATUS_UC)) {
2328                 if (banks[1] & MCI_STATUS_VAL)
2329                         mce->status |= MCI_STATUS_OVER;
2330                 banks[2] = mce->addr;
2331                 banks[3] = mce->misc;
2332                 banks[1] = mce->status;
2333         } else
2334                 banks[1] |= MCI_STATUS_OVER;
2335         return 0;
2336 }
2337
2338 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2339                                                struct kvm_vcpu_events *events)
2340 {
2341         process_nmi(vcpu);
2342         events->exception.injected =
2343                 vcpu->arch.exception.pending &&
2344                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2345         events->exception.nr = vcpu->arch.exception.nr;
2346         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2347         events->exception.pad = 0;
2348         events->exception.error_code = vcpu->arch.exception.error_code;
2349
2350         events->interrupt.injected =
2351                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2352         events->interrupt.nr = vcpu->arch.interrupt.nr;
2353         events->interrupt.soft = 0;
2354         events->interrupt.shadow =
2355                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2356                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2357
2358         events->nmi.injected = vcpu->arch.nmi_injected;
2359         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2360         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2361         events->nmi.pad = 0;
2362
2363         events->sipi_vector = vcpu->arch.sipi_vector;
2364
2365         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2366                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2367                          | KVM_VCPUEVENT_VALID_SHADOW);
2368         memset(&events->reserved, 0, sizeof(events->reserved));
2369 }
2370
2371 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2372                                               struct kvm_vcpu_events *events)
2373 {
2374         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2375                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2376                               | KVM_VCPUEVENT_VALID_SHADOW))
2377                 return -EINVAL;
2378
2379         process_nmi(vcpu);
2380         vcpu->arch.exception.pending = events->exception.injected;
2381         vcpu->arch.exception.nr = events->exception.nr;
2382         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2383         vcpu->arch.exception.error_code = events->exception.error_code;
2384
2385         vcpu->arch.interrupt.pending = events->interrupt.injected;
2386         vcpu->arch.interrupt.nr = events->interrupt.nr;
2387         vcpu->arch.interrupt.soft = events->interrupt.soft;
2388         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2389                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2390                                                   events->interrupt.shadow);
2391
2392         vcpu->arch.nmi_injected = events->nmi.injected;
2393         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2394                 vcpu->arch.nmi_pending = events->nmi.pending;
2395         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2396
2397         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2398                 vcpu->arch.sipi_vector = events->sipi_vector;
2399
2400         kvm_make_request(KVM_REQ_EVENT, vcpu);
2401
2402         return 0;
2403 }
2404
2405 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2406                                              struct kvm_debugregs *dbgregs)
2407 {
2408         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2409         dbgregs->dr6 = vcpu->arch.dr6;
2410         dbgregs->dr7 = vcpu->arch.dr7;
2411         dbgregs->flags = 0;
2412         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2413 }
2414
2415 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2416                                             struct kvm_debugregs *dbgregs)
2417 {
2418         if (dbgregs->flags)
2419                 return -EINVAL;
2420
2421         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2422         vcpu->arch.dr6 = dbgregs->dr6;
2423         vcpu->arch.dr7 = dbgregs->dr7;
2424
2425         return 0;
2426 }
2427
2428 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2429                                          struct kvm_xsave *guest_xsave)
2430 {
2431         if (cpu_has_xsave)
2432                 memcpy(guest_xsave->region,
2433                         &vcpu->arch.guest_fpu.state->xsave,
2434                         xstate_size);
2435         else {
2436                 memcpy(guest_xsave->region,
2437                         &vcpu->arch.guest_fpu.state->fxsave,
2438                         sizeof(struct i387_fxsave_struct));
2439                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2440                         XSTATE_FPSSE;
2441         }
2442 }
2443
2444 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2445                                         struct kvm_xsave *guest_xsave)
2446 {
2447         u64 xstate_bv =
2448                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2449
2450         if (cpu_has_xsave)
2451                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2452                         guest_xsave->region, xstate_size);
2453         else {
2454                 if (xstate_bv & ~XSTATE_FPSSE)
2455                         return -EINVAL;
2456                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2457                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2458         }
2459         return 0;
2460 }
2461
2462 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2463                                         struct kvm_xcrs *guest_xcrs)
2464 {
2465         if (!cpu_has_xsave) {
2466                 guest_xcrs->nr_xcrs = 0;
2467                 return;
2468         }
2469
2470         guest_xcrs->nr_xcrs = 1;
2471         guest_xcrs->flags = 0;
2472         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2473         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2474 }
2475
2476 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2477                                        struct kvm_xcrs *guest_xcrs)
2478 {
2479         int i, r = 0;
2480
2481         if (!cpu_has_xsave)
2482                 return -EINVAL;
2483
2484         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2485                 return -EINVAL;
2486
2487         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2488                 /* Only support XCR0 currently */
2489                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2490                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2491                                 guest_xcrs->xcrs[0].value);
2492                         break;
2493                 }
2494         if (r)
2495                 r = -EINVAL;
2496         return r;
2497 }
2498
2499 long kvm_arch_vcpu_ioctl(struct file *filp,
2500                          unsigned int ioctl, unsigned long arg)
2501 {
2502         struct kvm_vcpu *vcpu = filp->private_data;
2503         void __user *argp = (void __user *)arg;
2504         int r;
2505         union {
2506                 struct kvm_lapic_state *lapic;
2507                 struct kvm_xsave *xsave;
2508                 struct kvm_xcrs *xcrs;
2509                 void *buffer;
2510         } u;
2511
2512         u.buffer = NULL;
2513         switch (ioctl) {
2514         case KVM_GET_LAPIC: {
2515                 r = -EINVAL;
2516                 if (!vcpu->arch.apic)
2517                         goto out;
2518                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2519
2520                 r = -ENOMEM;
2521                 if (!u.lapic)
2522                         goto out;
2523                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2524                 if (r)
2525                         goto out;
2526                 r = -EFAULT;
2527                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2528                         goto out;
2529                 r = 0;
2530                 break;
2531         }
2532         case KVM_SET_LAPIC: {
2533                 r = -EINVAL;
2534                 if (!vcpu->arch.apic)
2535                         goto out;
2536                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2537                 r = -ENOMEM;
2538                 if (!u.lapic)
2539                         goto out;
2540                 r = -EFAULT;
2541                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2542                         goto out;
2543                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2544                 if (r)
2545                         goto out;
2546                 r = 0;
2547                 break;
2548         }
2549         case KVM_INTERRUPT: {
2550                 struct kvm_interrupt irq;
2551
2552                 r = -EFAULT;
2553                 if (copy_from_user(&irq, argp, sizeof irq))
2554                         goto out;
2555                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2556                 if (r)
2557                         goto out;
2558                 r = 0;
2559                 break;
2560         }
2561         case KVM_NMI: {
2562                 r = kvm_vcpu_ioctl_nmi(vcpu);
2563                 if (r)
2564                         goto out;
2565                 r = 0;
2566                 break;
2567         }
2568         case KVM_SET_CPUID: {
2569                 struct kvm_cpuid __user *cpuid_arg = argp;
2570                 struct kvm_cpuid cpuid;
2571
2572                 r = -EFAULT;
2573                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2574                         goto out;
2575                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2576                 if (r)
2577                         goto out;
2578                 break;
2579         }
2580         case KVM_SET_CPUID2: {
2581                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2582                 struct kvm_cpuid2 cpuid;
2583
2584                 r = -EFAULT;
2585                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2586                         goto out;
2587                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2588                                               cpuid_arg->entries);
2589                 if (r)
2590                         goto out;
2591                 break;
2592         }
2593         case KVM_GET_CPUID2: {
2594                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2595                 struct kvm_cpuid2 cpuid;
2596
2597                 r = -EFAULT;
2598                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2599                         goto out;
2600                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2601                                               cpuid_arg->entries);
2602                 if (r)
2603                         goto out;
2604                 r = -EFAULT;
2605                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2606                         goto out;
2607                 r = 0;
2608                 break;
2609         }
2610         case KVM_GET_MSRS:
2611                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2612                 break;
2613         case KVM_SET_MSRS:
2614                 r = msr_io(vcpu, argp, do_set_msr, 0);
2615                 break;
2616         case KVM_TPR_ACCESS_REPORTING: {
2617                 struct kvm_tpr_access_ctl tac;
2618
2619                 r = -EFAULT;
2620                 if (copy_from_user(&tac, argp, sizeof tac))
2621                         goto out;
2622                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2623                 if (r)
2624                         goto out;
2625                 r = -EFAULT;
2626                 if (copy_to_user(argp, &tac, sizeof tac))
2627                         goto out;
2628                 r = 0;
2629                 break;
2630         };
2631         case KVM_SET_VAPIC_ADDR: {
2632                 struct kvm_vapic_addr va;
2633
2634                 r = -EINVAL;
2635                 if (!irqchip_in_kernel(vcpu->kvm))
2636                         goto out;
2637                 r = -EFAULT;
2638                 if (copy_from_user(&va, argp, sizeof va))
2639                         goto out;
2640                 r = 0;
2641                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2642                 break;
2643         }
2644         case KVM_X86_SETUP_MCE: {
2645                 u64 mcg_cap;
2646
2647                 r = -EFAULT;
2648                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2649                         goto out;
2650                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2651                 break;
2652         }
2653         case KVM_X86_SET_MCE: {
2654                 struct kvm_x86_mce mce;
2655
2656                 r = -EFAULT;
2657                 if (copy_from_user(&mce, argp, sizeof mce))
2658                         goto out;
2659                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2660                 break;
2661         }
2662         case KVM_GET_VCPU_EVENTS: {
2663                 struct kvm_vcpu_events events;
2664
2665                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2666
2667                 r = -EFAULT;
2668                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2669                         break;
2670                 r = 0;
2671                 break;
2672         }
2673         case KVM_SET_VCPU_EVENTS: {
2674                 struct kvm_vcpu_events events;
2675
2676                 r = -EFAULT;
2677                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2678                         break;
2679
2680                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2681                 break;
2682         }
2683         case KVM_GET_DEBUGREGS: {
2684                 struct kvm_debugregs dbgregs;
2685
2686                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2687
2688                 r = -EFAULT;
2689                 if (copy_to_user(argp, &dbgregs,
2690                                  sizeof(struct kvm_debugregs)))
2691                         break;
2692                 r = 0;
2693                 break;
2694         }
2695         case KVM_SET_DEBUGREGS: {
2696                 struct kvm_debugregs dbgregs;
2697
2698                 r = -EFAULT;
2699                 if (copy_from_user(&dbgregs, argp,
2700                                    sizeof(struct kvm_debugregs)))
2701                         break;
2702
2703                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2704                 break;
2705         }
2706         case KVM_GET_XSAVE: {
2707                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2708                 r = -ENOMEM;
2709                 if (!u.xsave)
2710                         break;
2711
2712                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2713
2714                 r = -EFAULT;
2715                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2716                         break;
2717                 r = 0;
2718                 break;
2719         }
2720         case KVM_SET_XSAVE: {
2721                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2722                 r = -ENOMEM;
2723                 if (!u.xsave)
2724                         break;
2725
2726                 r = -EFAULT;
2727                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2728                         break;
2729
2730                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2731                 break;
2732         }
2733         case KVM_GET_XCRS: {
2734                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2735                 r = -ENOMEM;
2736                 if (!u.xcrs)
2737                         break;
2738
2739                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2740
2741                 r = -EFAULT;
2742                 if (copy_to_user(argp, u.xcrs,
2743                                  sizeof(struct kvm_xcrs)))
2744                         break;
2745                 r = 0;
2746                 break;
2747         }
2748         case KVM_SET_XCRS: {
2749                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2750                 r = -ENOMEM;
2751                 if (!u.xcrs)
2752                         break;
2753
2754                 r = -EFAULT;
2755                 if (copy_from_user(u.xcrs, argp,
2756                                    sizeof(struct kvm_xcrs)))
2757                         break;
2758
2759                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2760                 break;
2761         }
2762         case KVM_SET_TSC_KHZ: {
2763                 u32 user_tsc_khz;
2764
2765                 r = -EINVAL;
2766                 if (!kvm_has_tsc_control)
2767                         break;
2768
2769                 user_tsc_khz = (u32)arg;
2770
2771                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2772                         goto out;
2773
2774                 kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
2775
2776                 r = 0;
2777                 goto out;
2778         }
2779         case KVM_GET_TSC_KHZ: {
2780                 r = -EIO;
2781                 if (check_tsc_unstable())
2782                         goto out;
2783
2784                 r = vcpu_tsc_khz(vcpu);
2785
2786                 goto out;
2787         }
2788         default:
2789                 r = -EINVAL;
2790         }
2791 out:
2792         kfree(u.buffer);
2793         return r;
2794 }
2795
2796 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2797 {
2798         int ret;
2799
2800         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2801                 return -1;
2802         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2803         return ret;
2804 }
2805
2806 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2807                                               u64 ident_addr)
2808 {
2809         kvm->arch.ept_identity_map_addr = ident_addr;
2810         return 0;
2811 }
2812
2813 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2814                                           u32 kvm_nr_mmu_pages)
2815 {
2816         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2817                 return -EINVAL;
2818
2819         mutex_lock(&kvm->slots_lock);
2820         spin_lock(&kvm->mmu_lock);
2821
2822         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2823         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2824
2825         spin_unlock(&kvm->mmu_lock);
2826         mutex_unlock(&kvm->slots_lock);
2827         return 0;
2828 }
2829
2830 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2831 {
2832         return kvm->arch.n_max_mmu_pages;
2833 }
2834
2835 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2836 {
2837         int r;
2838
2839         r = 0;
2840         switch (chip->chip_id) {
2841         case KVM_IRQCHIP_PIC_MASTER:
2842                 memcpy(&chip->chip.pic,
2843                         &pic_irqchip(kvm)->pics[0],
2844                         sizeof(struct kvm_pic_state));
2845                 break;
2846         case KVM_IRQCHIP_PIC_SLAVE:
2847                 memcpy(&chip->chip.pic,
2848                         &pic_irqchip(kvm)->pics[1],
2849                         sizeof(struct kvm_pic_state));
2850                 break;
2851         case KVM_IRQCHIP_IOAPIC:
2852                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2853                 break;
2854         default:
2855                 r = -EINVAL;
2856                 break;
2857         }
2858         return r;
2859 }
2860
2861 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2862 {
2863         int r;
2864
2865         r = 0;
2866         switch (chip->chip_id) {
2867         case KVM_IRQCHIP_PIC_MASTER:
2868                 spin_lock(&pic_irqchip(kvm)->lock);
2869                 memcpy(&pic_irqchip(kvm)->pics[0],
2870                         &chip->chip.pic,
2871                         sizeof(struct kvm_pic_state));
2872                 spin_unlock(&pic_irqchip(kvm)->lock);
2873                 break;
2874         case KVM_IRQCHIP_PIC_SLAVE:
2875                 spin_lock(&pic_irqchip(kvm)->lock);
2876                 memcpy(&pic_irqchip(kvm)->pics[1],
2877                         &chip->chip.pic,
2878                         sizeof(struct kvm_pic_state));
2879                 spin_unlock(&pic_irqchip(kvm)->lock);
2880                 break;
2881         case KVM_IRQCHIP_IOAPIC:
2882                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2883                 break;
2884         default:
2885                 r = -EINVAL;
2886                 break;
2887         }
2888         kvm_pic_update_irq(pic_irqchip(kvm));
2889         return r;
2890 }
2891
2892 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2893 {
2894         int r = 0;
2895
2896         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2897         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2898         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2899         return r;
2900 }
2901
2902 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2903 {
2904         int r = 0;
2905
2906         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2907         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2908         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2909         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2910         return r;
2911 }
2912
2913 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2914 {
2915         int r = 0;
2916
2917         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2918         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2919                 sizeof(ps->channels));
2920         ps->flags = kvm->arch.vpit->pit_state.flags;
2921         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2922         memset(&ps->reserved, 0, sizeof(ps->reserved));
2923         return r;
2924 }
2925
2926 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2927 {
2928         int r = 0, start = 0;
2929         u32 prev_legacy, cur_legacy;
2930         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2931         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2932         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2933         if (!prev_legacy && cur_legacy)
2934                 start = 1;
2935         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2936                sizeof(kvm->arch.vpit->pit_state.channels));
2937         kvm->arch.vpit->pit_state.flags = ps->flags;
2938         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2939         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2940         return r;
2941 }
2942
2943 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2944                                  struct kvm_reinject_control *control)
2945 {
2946         if (!kvm->arch.vpit)
2947                 return -ENXIO;
2948         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2949         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2950         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2951         return 0;
2952 }
2953
2954 /*
2955  * Get (and clear) the dirty memory log for a memory slot.
2956  */
2957 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2958                                       struct kvm_dirty_log *log)
2959 {
2960         int r, i;
2961         struct kvm_memory_slot *memslot;
2962         unsigned long n;
2963         unsigned long is_dirty = 0;
2964
2965         mutex_lock(&kvm->slots_lock);
2966
2967         r = -EINVAL;
2968         if (log->slot >= KVM_MEMORY_SLOTS)
2969                 goto out;
2970
2971         memslot = &kvm->memslots->memslots[log->slot];
2972         r = -ENOENT;
2973         if (!memslot->dirty_bitmap)
2974                 goto out;
2975
2976         n = kvm_dirty_bitmap_bytes(memslot);
2977
2978         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
2979                 is_dirty = memslot->dirty_bitmap[i];
2980
2981         /* If nothing is dirty, don't bother messing with page tables. */
2982         if (is_dirty) {
2983                 struct kvm_memslots *slots, *old_slots;
2984                 unsigned long *dirty_bitmap;
2985
2986                 dirty_bitmap = memslot->dirty_bitmap_head;
2987                 if (memslot->dirty_bitmap == dirty_bitmap)
2988                         dirty_bitmap += n / sizeof(long);
2989                 memset(dirty_bitmap, 0, n);
2990
2991                 r = -ENOMEM;
2992                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
2993                 if (!slots)
2994                         goto out;
2995                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
2996                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
2997                 slots->generation++;
2998
2999                 old_slots = kvm->memslots;
3000                 rcu_assign_pointer(kvm->memslots, slots);
3001                 synchronize_srcu_expedited(&kvm->srcu);
3002                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3003                 kfree(old_slots);
3004
3005                 spin_lock(&kvm->mmu_lock);
3006                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3007                 spin_unlock(&kvm->mmu_lock);
3008
3009                 r = -EFAULT;
3010                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3011                         goto out;
3012         } else {
3013                 r = -EFAULT;
3014                 if (clear_user(log->dirty_bitmap, n))
3015                         goto out;
3016         }
3017
3018         r = 0;
3019 out:
3020         mutex_unlock(&kvm->slots_lock);
3021         return r;
3022 }
3023
3024 long kvm_arch_vm_ioctl(struct file *filp,
3025                        unsigned int ioctl, unsigned long arg)
3026 {
3027         struct kvm *kvm = filp->private_data;
3028         void __user *argp = (void __user *)arg;
3029         int r = -ENOTTY;
3030         /*
3031          * This union makes it completely explicit to gcc-3.x
3032          * that these two variables' stack usage should be
3033          * combined, not added together.
3034          */
3035         union {
3036                 struct kvm_pit_state ps;
3037                 struct kvm_pit_state2 ps2;
3038                 struct kvm_pit_config pit_config;
3039         } u;
3040
3041         switch (ioctl) {
3042         case KVM_SET_TSS_ADDR:
3043                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3044                 if (r < 0)
3045                         goto out;
3046                 break;
3047         case KVM_SET_IDENTITY_MAP_ADDR: {
3048                 u64 ident_addr;
3049
3050                 r = -EFAULT;
3051                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3052                         goto out;
3053                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3054                 if (r < 0)
3055                         goto out;
3056                 break;
3057         }
3058         case KVM_SET_NR_MMU_PAGES:
3059                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3060                 if (r)
3061                         goto out;
3062                 break;
3063         case KVM_GET_NR_MMU_PAGES:
3064                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3065                 break;
3066         case KVM_CREATE_IRQCHIP: {
3067                 struct kvm_pic *vpic;
3068
3069                 mutex_lock(&kvm->lock);
3070                 r = -EEXIST;
3071                 if (kvm->arch.vpic)
3072                         goto create_irqchip_unlock;
3073                 r = -ENOMEM;
3074                 vpic = kvm_create_pic(kvm);
3075                 if (vpic) {
3076                         r = kvm_ioapic_init(kvm);
3077                         if (r) {
3078                                 mutex_lock(&kvm->slots_lock);
3079                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3080                                                           &vpic->dev_master);
3081                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3082                                                           &vpic->dev_slave);
3083                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3084                                                           &vpic->dev_eclr);
3085                                 mutex_unlock(&kvm->slots_lock);
3086                                 kfree(vpic);
3087                                 goto create_irqchip_unlock;
3088                         }
3089                 } else
3090                         goto create_irqchip_unlock;
3091                 smp_wmb();
3092                 kvm->arch.vpic = vpic;
3093                 smp_wmb();
3094                 r = kvm_setup_default_irq_routing(kvm);
3095                 if (r) {
3096                         mutex_lock(&kvm->slots_lock);
3097                         mutex_lock(&kvm->irq_lock);
3098                         kvm_ioapic_destroy(kvm);
3099                         kvm_destroy_pic(kvm);
3100                         mutex_unlock(&kvm->irq_lock);
3101                         mutex_unlock(&kvm->slots_lock);
3102                 }
3103         create_irqchip_unlock:
3104                 mutex_unlock(&kvm->lock);
3105                 break;
3106         }
3107         case KVM_CREATE_PIT:
3108                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3109                 goto create_pit;
3110         case KVM_CREATE_PIT2:
3111                 r = -EFAULT;
3112                 if (copy_from_user(&u.pit_config, argp,
3113                                    sizeof(struct kvm_pit_config)))
3114                         goto out;
3115         create_pit:
3116                 mutex_lock(&kvm->slots_lock);
3117                 r = -EEXIST;
3118                 if (kvm->arch.vpit)
3119                         goto create_pit_unlock;
3120                 r = -ENOMEM;
3121                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3122                 if (kvm->arch.vpit)
3123                         r = 0;
3124         create_pit_unlock:
3125                 mutex_unlock(&kvm->slots_lock);
3126                 break;
3127         case KVM_IRQ_LINE_STATUS:
3128         case KVM_IRQ_LINE: {
3129                 struct kvm_irq_level irq_event;
3130
3131                 r = -EFAULT;
3132                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3133                         goto out;
3134                 r = -ENXIO;
3135                 if (irqchip_in_kernel(kvm)) {
3136                         __s32 status;
3137                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3138                                         irq_event.irq, irq_event.level);
3139                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3140                                 r = -EFAULT;
3141                                 irq_event.status = status;
3142                                 if (copy_to_user(argp, &irq_event,
3143                                                         sizeof irq_event))
3144                                         goto out;
3145                         }
3146                         r = 0;
3147                 }
3148                 break;
3149         }
3150         case KVM_GET_IRQCHIP: {
3151                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3152                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3153
3154                 r = -ENOMEM;
3155                 if (!chip)
3156                         goto out;
3157                 r = -EFAULT;
3158                 if (copy_from_user(chip, argp, sizeof *chip))
3159                         goto get_irqchip_out;
3160                 r = -ENXIO;
3161                 if (!irqchip_in_kernel(kvm))
3162                         goto get_irqchip_out;
3163                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3164                 if (r)
3165                         goto get_irqchip_out;
3166                 r = -EFAULT;
3167                 if (copy_to_user(argp, chip, sizeof *chip))
3168                         goto get_irqchip_out;
3169                 r = 0;
3170         get_irqchip_out:
3171                 kfree(chip);
3172                 if (r)
3173                         goto out;
3174                 break;
3175         }
3176         case KVM_SET_IRQCHIP: {
3177                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3178                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3179
3180                 r = -ENOMEM;
3181                 if (!chip)
3182                         goto out;
3183                 r = -EFAULT;
3184                 if (copy_from_user(chip, argp, sizeof *chip))
3185                         goto set_irqchip_out;
3186                 r = -ENXIO;
3187                 if (!irqchip_in_kernel(kvm))
3188                         goto set_irqchip_out;
3189                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3190                 if (r)
3191                         goto set_irqchip_out;
3192                 r = 0;
3193         set_irqchip_out:
3194                 kfree(chip);
3195                 if (r)
3196                         goto out;
3197                 break;
3198         }
3199         case KVM_GET_PIT: {
3200                 r = -EFAULT;
3201                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3202                         goto out;
3203                 r = -ENXIO;
3204                 if (!kvm->arch.vpit)
3205                         goto out;
3206                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3207                 if (r)
3208                         goto out;
3209                 r = -EFAULT;
3210                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3211                         goto out;
3212                 r = 0;
3213                 break;
3214         }
3215         case KVM_SET_PIT: {
3216                 r = -EFAULT;
3217                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3218                         goto out;
3219                 r = -ENXIO;
3220                 if (!kvm->arch.vpit)
3221                         goto out;
3222                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3223                 if (r)
3224                         goto out;
3225                 r = 0;
3226                 break;
3227         }
3228         case KVM_GET_PIT2: {
3229                 r = -ENXIO;
3230                 if (!kvm->arch.vpit)
3231                         goto out;
3232                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3233                 if (r)
3234                         goto out;
3235                 r = -EFAULT;
3236                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3237                         goto out;
3238                 r = 0;
3239                 break;
3240         }
3241         case KVM_SET_PIT2: {
3242                 r = -EFAULT;
3243                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3244                         goto out;
3245                 r = -ENXIO;
3246                 if (!kvm->arch.vpit)
3247                         goto out;
3248                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3249                 if (r)
3250                         goto out;
3251                 r = 0;
3252                 break;
3253         }
3254         case KVM_REINJECT_CONTROL: {
3255                 struct kvm_reinject_control control;
3256                 r =  -EFAULT;
3257                 if (copy_from_user(&control, argp, sizeof(control)))
3258                         goto out;
3259                 r = kvm_vm_ioctl_reinject(kvm, &control);
3260                 if (r)
3261                         goto out;
3262                 r = 0;
3263                 break;
3264         }
3265         case KVM_XEN_HVM_CONFIG: {
3266                 r = -EFAULT;
3267                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3268                                    sizeof(struct kvm_xen_hvm_config)))
3269                         goto out;
3270                 r = -EINVAL;
3271                 if (kvm->arch.xen_hvm_config.flags)
3272                         goto out;
3273                 r = 0;
3274                 break;
3275         }
3276         case KVM_SET_CLOCK: {
3277                 struct kvm_clock_data user_ns;
3278                 u64 now_ns;
3279                 s64 delta;
3280
3281                 r = -EFAULT;
3282                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3283                         goto out;
3284
3285                 r = -EINVAL;
3286                 if (user_ns.flags)
3287                         goto out;
3288
3289                 r = 0;
3290                 local_irq_disable();
3291                 now_ns = get_kernel_ns();
3292                 delta = user_ns.clock - now_ns;
3293                 local_irq_enable();
3294                 kvm->arch.kvmclock_offset = delta;
3295                 break;
3296         }
3297         case KVM_GET_CLOCK: {
3298                 struct kvm_clock_data user_ns;
3299                 u64 now_ns;
3300
3301                 local_irq_disable();
3302                 now_ns = get_kernel_ns();
3303                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3304                 local_irq_enable();
3305                 user_ns.flags = 0;
3306                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3307
3308                 r = -EFAULT;
3309                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3310                         goto out;
3311                 r = 0;
3312                 break;
3313         }
3314
3315         default:
3316                 ;
3317         }
3318 out:
3319         return r;
3320 }
3321
3322 static void kvm_init_msr_list(void)
3323 {
3324         u32 dummy[2];
3325         unsigned i, j;
3326
3327         /* skip the first msrs in the list. KVM-specific */
3328         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3329                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3330                         continue;
3331                 if (j < i)
3332                         msrs_to_save[j] = msrs_to_save[i];
3333                 j++;
3334         }
3335         num_msrs_to_save = j;
3336 }
3337
3338 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3339                            const void *v)
3340 {
3341         int handled = 0;
3342         int n;
3343
3344         do {
3345                 n = min(len, 8);
3346                 if (!(vcpu->arch.apic &&
3347                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3348                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3349                         break;
3350                 handled += n;
3351                 addr += n;
3352                 len -= n;
3353                 v += n;
3354         } while (len);
3355
3356         return handled;
3357 }
3358
3359 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3360 {
3361         int handled = 0;
3362         int n;
3363
3364         do {
3365                 n = min(len, 8);
3366                 if (!(vcpu->arch.apic &&
3367                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3368                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3369                         break;
3370                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3371                 handled += n;
3372                 addr += n;
3373                 len -= n;
3374                 v += n;
3375         } while (len);
3376
3377         return handled;
3378 }
3379
3380 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3381                         struct kvm_segment *var, int seg)
3382 {
3383         kvm_x86_ops->set_segment(vcpu, var, seg);
3384 }
3385
3386 void kvm_get_segment(struct kvm_vcpu *vcpu,
3387                      struct kvm_segment *var, int seg)
3388 {
3389         kvm_x86_ops->get_segment(vcpu, var, seg);
3390 }
3391
3392 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3393 {
3394         return gpa;
3395 }
3396
3397 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3398 {
3399         gpa_t t_gpa;
3400         struct x86_exception exception;
3401
3402         BUG_ON(!mmu_is_nested(vcpu));
3403
3404         /* NPT walks are always user-walks */
3405         access |= PFERR_USER_MASK;
3406         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3407
3408         return t_gpa;
3409 }
3410
3411 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3412                               struct x86_exception *exception)
3413 {
3414         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3415         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3416 }
3417
3418  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3419                                 struct x86_exception *exception)
3420 {
3421         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3422         access |= PFERR_FETCH_MASK;
3423         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3424 }
3425
3426 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3427                                struct x86_exception *exception)
3428 {
3429         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3430         access |= PFERR_WRITE_MASK;
3431         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3432 }
3433
3434 /* uses this to access any guest's mapped memory without checking CPL */
3435 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3436                                 struct x86_exception *exception)
3437 {
3438         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3439 }
3440
3441 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3442                                       struct kvm_vcpu *vcpu, u32 access,
3443                                       struct x86_exception *exception)
3444 {
3445         void *data = val;
3446         int r = X86EMUL_CONTINUE;
3447
3448         while (bytes) {
3449                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3450                                                             exception);
3451                 unsigned offset = addr & (PAGE_SIZE-1);
3452                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3453                 int ret;
3454
3455                 if (gpa == UNMAPPED_GVA)
3456                         return X86EMUL_PROPAGATE_FAULT;
3457                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3458                 if (ret < 0) {
3459                         r = X86EMUL_IO_NEEDED;
3460                         goto out;
3461                 }
3462
3463                 bytes -= toread;
3464                 data += toread;
3465                 addr += toread;
3466         }
3467 out:
3468         return r;
3469 }
3470
3471 /* used for instruction fetching */
3472 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3473                                 gva_t addr, void *val, unsigned int bytes,
3474                                 struct x86_exception *exception)
3475 {
3476         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3477         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3478
3479         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3480                                           access | PFERR_FETCH_MASK,
3481                                           exception);
3482 }
3483
3484 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3485                                gva_t addr, void *val, unsigned int bytes,
3486                                struct x86_exception *exception)
3487 {
3488         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3489         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3490
3491         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3492                                           exception);
3493 }
3494 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3495
3496 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3497                                       gva_t addr, void *val, unsigned int bytes,
3498                                       struct x86_exception *exception)
3499 {
3500         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3501         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3502 }
3503
3504 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3505                                        gva_t addr, void *val,
3506                                        unsigned int bytes,
3507                                        struct x86_exception *exception)
3508 {
3509         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3510         void *data = val;
3511         int r = X86EMUL_CONTINUE;
3512
3513         while (bytes) {
3514                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3515                                                              PFERR_WRITE_MASK,
3516                                                              exception);
3517                 unsigned offset = addr & (PAGE_SIZE-1);
3518                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3519                 int ret;
3520
3521                 if (gpa == UNMAPPED_GVA)
3522                         return X86EMUL_PROPAGATE_FAULT;
3523                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3524                 if (ret < 0) {
3525                         r = X86EMUL_IO_NEEDED;
3526                         goto out;
3527                 }
3528
3529                 bytes -= towrite;
3530                 data += towrite;
3531                 addr += towrite;
3532         }
3533 out:
3534         return r;
3535 }
3536 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3537
3538 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3539                                 gpa_t *gpa, struct x86_exception *exception,
3540                                 bool write)
3541 {
3542         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3543
3544         if (vcpu_match_mmio_gva(vcpu, gva) &&
3545                   check_write_user_access(vcpu, write, access,
3546                   vcpu->arch.access)) {
3547                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3548                                         (gva & (PAGE_SIZE - 1));
3549                 trace_vcpu_match_mmio(gva, *gpa, write, false);
3550                 return 1;
3551         }
3552
3553         if (write)
3554                 access |= PFERR_WRITE_MASK;
3555
3556         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3557
3558         if (*gpa == UNMAPPED_GVA)
3559                 return -1;
3560
3561         /* For APIC access vmexit */
3562         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3563                 return 1;
3564
3565         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3566                 trace_vcpu_match_mmio(gva, *gpa, write, true);
3567                 return 1;
3568         }
3569
3570         return 0;
3571 }
3572
3573 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3574                         const void *val, int bytes)
3575 {
3576         int ret;
3577
3578         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3579         if (ret < 0)
3580                 return 0;
3581         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3582         return 1;
3583 }
3584
3585 struct read_write_emulator_ops {
3586         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3587                                   int bytes);
3588         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3589                                   void *val, int bytes);
3590         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3591                                int bytes, void *val);
3592         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3593                                     void *val, int bytes);
3594         bool write;
3595 };
3596
3597 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3598 {
3599         if (vcpu->mmio_read_completed) {
3600                 memcpy(val, vcpu->mmio_data, bytes);
3601                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3602                                vcpu->mmio_phys_addr, *(u64 *)val);
3603                 vcpu->mmio_read_completed = 0;
3604                 return 1;
3605         }
3606
3607         return 0;
3608 }
3609
3610 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3611                         void *val, int bytes)
3612 {
3613         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3614 }
3615
3616 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3617                          void *val, int bytes)
3618 {
3619         return emulator_write_phys(vcpu, gpa, val, bytes);
3620 }
3621
3622 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3623 {
3624         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3625         return vcpu_mmio_write(vcpu, gpa, bytes, val);
3626 }
3627
3628 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3629                           void *val, int bytes)
3630 {
3631         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3632         return X86EMUL_IO_NEEDED;
3633 }
3634
3635 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3636                            void *val, int bytes)
3637 {
3638         memcpy(vcpu->mmio_data, val, bytes);
3639         memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3640         return X86EMUL_CONTINUE;
3641 }
3642
3643 static struct read_write_emulator_ops read_emultor = {
3644         .read_write_prepare = read_prepare,
3645         .read_write_emulate = read_emulate,
3646         .read_write_mmio = vcpu_mmio_read,
3647         .read_write_exit_mmio = read_exit_mmio,
3648 };
3649
3650 static struct read_write_emulator_ops write_emultor = {
3651         .read_write_emulate = write_emulate,
3652         .read_write_mmio = write_mmio,
3653         .read_write_exit_mmio = write_exit_mmio,
3654         .write = true,
3655 };
3656
3657 static int emulator_read_write_onepage(unsigned long addr, void *val,
3658                                        unsigned int bytes,
3659                                        struct x86_exception *exception,
3660                                        struct kvm_vcpu *vcpu,
3661                                        struct read_write_emulator_ops *ops)
3662 {
3663         gpa_t gpa;
3664         int handled, ret;
3665         bool write = ops->write;
3666
3667         if (ops->read_write_prepare &&
3668                   ops->read_write_prepare(vcpu, val, bytes))
3669                 return X86EMUL_CONTINUE;
3670
3671         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3672
3673         if (ret < 0)
3674                 return X86EMUL_PROPAGATE_FAULT;
3675
3676         /* For APIC access vmexit */
3677         if (ret)
3678                 goto mmio;
3679
3680         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3681                 return X86EMUL_CONTINUE;
3682
3683 mmio:
3684         /*
3685          * Is this MMIO handled locally?
3686          */
3687         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3688         if (handled == bytes)
3689                 return X86EMUL_CONTINUE;
3690
3691         gpa += handled;
3692         bytes -= handled;
3693         val += handled;
3694
3695         vcpu->mmio_needed = 1;
3696         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3697         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3698         vcpu->mmio_size = bytes;
3699         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3700         vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
3701         vcpu->mmio_index = 0;
3702
3703         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3704 }
3705
3706 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3707                         void *val, unsigned int bytes,
3708                         struct x86_exception *exception,
3709                         struct read_write_emulator_ops *ops)
3710 {
3711         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3712
3713         /* Crossing a page boundary? */
3714         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3715                 int rc, now;
3716
3717                 now = -addr & ~PAGE_MASK;
3718                 rc = emulator_read_write_onepage(addr, val, now, exception,
3719                                                  vcpu, ops);
3720
3721                 if (rc != X86EMUL_CONTINUE)
3722                         return rc;
3723                 addr += now;
3724                 val += now;
3725                 bytes -= now;
3726         }
3727
3728         return emulator_read_write_onepage(addr, val, bytes, exception,
3729                                            vcpu, ops);
3730 }
3731
3732 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3733                                   unsigned long addr,
3734                                   void *val,
3735                                   unsigned int bytes,
3736                                   struct x86_exception *exception)
3737 {
3738         return emulator_read_write(ctxt, addr, val, bytes,
3739                                    exception, &read_emultor);
3740 }
3741
3742 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3743                             unsigned long addr,
3744                             const void *val,
3745                             unsigned int bytes,
3746                             struct x86_exception *exception)
3747 {
3748         return emulator_read_write(ctxt, addr, (void *)val, bytes,
3749                                    exception, &write_emultor);
3750 }
3751
3752 #define CMPXCHG_TYPE(t, ptr, old, new) \
3753         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3754
3755 #ifdef CONFIG_X86_64
3756 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3757 #else
3758 #  define CMPXCHG64(ptr, old, new) \
3759         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3760 #endif
3761
3762 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3763                                      unsigned long addr,
3764                                      const void *old,
3765                                      const void *new,
3766                                      unsigned int bytes,
3767                                      struct x86_exception *exception)
3768 {
3769         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3770         gpa_t gpa;
3771         struct page *page;
3772         char *kaddr;
3773         bool exchanged;
3774
3775         /* guests cmpxchg8b have to be emulated atomically */
3776         if (bytes > 8 || (bytes & (bytes - 1)))
3777                 goto emul_write;
3778
3779         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3780
3781         if (gpa == UNMAPPED_GVA ||
3782             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3783                 goto emul_write;
3784
3785         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3786                 goto emul_write;
3787
3788         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3789         if (is_error_page(page)) {
3790                 kvm_release_page_clean(page);
3791                 goto emul_write;
3792         }
3793
3794         kaddr = kmap_atomic(page, KM_USER0);
3795         kaddr += offset_in_page(gpa);
3796         switch (bytes) {
3797         case 1:
3798                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3799                 break;
3800         case 2:
3801                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3802                 break;
3803         case 4:
3804                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3805                 break;
3806         case 8:
3807                 exchanged = CMPXCHG64(kaddr, old, new);
3808                 break;
3809         default:
3810                 BUG();
3811         }
3812         kunmap_atomic(kaddr, KM_USER0);
3813         kvm_release_page_dirty(page);
3814
3815         if (!exchanged)
3816                 return X86EMUL_CMPXCHG_FAILED;
3817
3818         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3819
3820         return X86EMUL_CONTINUE;
3821
3822 emul_write:
3823         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3824
3825         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3826 }
3827
3828 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3829 {
3830         /* TODO: String I/O for in kernel device */
3831         int r;
3832
3833         if (vcpu->arch.pio.in)
3834                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3835                                     vcpu->arch.pio.size, pd);
3836         else
3837                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3838                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3839                                      pd);
3840         return r;
3841 }
3842
3843
3844 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
3845                                     int size, unsigned short port, void *val,
3846                                     unsigned int count)
3847 {
3848         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3849
3850         if (vcpu->arch.pio.count)
3851                 goto data_avail;
3852
3853         trace_kvm_pio(0, port, size, count);
3854
3855         vcpu->arch.pio.port = port;
3856         vcpu->arch.pio.in = 1;
3857         vcpu->arch.pio.count  = count;
3858         vcpu->arch.pio.size = size;
3859
3860         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3861         data_avail:
3862                 memcpy(val, vcpu->arch.pio_data, size * count);
3863                 vcpu->arch.pio.count = 0;
3864                 return 1;
3865         }
3866
3867         vcpu->run->exit_reason = KVM_EXIT_IO;
3868         vcpu->run->io.direction = KVM_EXIT_IO_IN;
3869         vcpu->run->io.size = size;
3870         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3871         vcpu->run->io.count = count;
3872         vcpu->run->io.port = port;
3873
3874         return 0;
3875 }
3876
3877 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
3878                                      int size, unsigned short port,
3879                                      const void *val, unsigned int count)
3880 {
3881         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3882
3883         trace_kvm_pio(1, port, size, count);
3884
3885         vcpu->arch.pio.port = port;
3886         vcpu->arch.pio.in = 0;
3887         vcpu->arch.pio.count = count;
3888         vcpu->arch.pio.size = size;
3889
3890         memcpy(vcpu->arch.pio_data, val, size * count);
3891
3892         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3893                 vcpu->arch.pio.count = 0;
3894                 return 1;
3895         }
3896
3897         vcpu->run->exit_reason = KVM_EXIT_IO;
3898         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3899         vcpu->run->io.size = size;
3900         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3901         vcpu->run->io.count = count;
3902         vcpu->run->io.port = port;
3903
3904         return 0;
3905 }
3906
3907 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3908 {
3909         return kvm_x86_ops->get_segment_base(vcpu, seg);
3910 }
3911
3912 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
3913 {
3914         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
3915 }
3916
3917 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3918 {
3919         if (!need_emulate_wbinvd(vcpu))
3920                 return X86EMUL_CONTINUE;
3921
3922         if (kvm_x86_ops->has_wbinvd_exit()) {
3923                 int cpu = get_cpu();
3924
3925                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3926                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3927                                 wbinvd_ipi, NULL, 1);
3928                 put_cpu();
3929                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3930         } else
3931                 wbinvd();
3932         return X86EMUL_CONTINUE;
3933 }
3934 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3935
3936 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
3937 {
3938         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
3939 }
3940
3941 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3942 {
3943         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
3944 }
3945
3946 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3947 {
3948
3949         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
3950 }
3951
3952 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3953 {
3954         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3955 }
3956
3957 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
3958 {
3959         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3960         unsigned long value;
3961
3962         switch (cr) {
3963         case 0:
3964                 value = kvm_read_cr0(vcpu);
3965                 break;
3966         case 2:
3967                 value = vcpu->arch.cr2;
3968                 break;
3969         case 3:
3970                 value = kvm_read_cr3(vcpu);
3971                 break;
3972         case 4:
3973                 value = kvm_read_cr4(vcpu);
3974                 break;
3975         case 8:
3976                 value = kvm_get_cr8(vcpu);
3977                 break;
3978         default:
3979                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3980                 return 0;
3981         }
3982
3983         return value;
3984 }
3985
3986 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
3987 {
3988         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3989         int res = 0;
3990
3991         switch (cr) {
3992         case 0:
3993                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3994                 break;
3995         case 2:
3996                 vcpu->arch.cr2 = val;
3997                 break;
3998         case 3:
3999                 res = kvm_set_cr3(vcpu, val);
4000                 break;
4001         case 4:
4002                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4003                 break;
4004         case 8:
4005                 res = kvm_set_cr8(vcpu, val);
4006                 break;
4007         default:
4008                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4009                 res = -1;
4010         }
4011
4012         return res;
4013 }
4014
4015 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4016 {
4017         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4018 }
4019
4020 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4021 {
4022         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4023 }
4024
4025 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4026 {
4027         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4028 }
4029
4030 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4031 {
4032         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4033 }
4034
4035 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4036 {
4037         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4038 }
4039
4040 static unsigned long emulator_get_cached_segment_base(
4041         struct x86_emulate_ctxt *ctxt, int seg)
4042 {
4043         return get_segment_base(emul_to_vcpu(ctxt), seg);
4044 }
4045
4046 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4047                                  struct desc_struct *desc, u32 *base3,
4048                                  int seg)
4049 {
4050         struct kvm_segment var;
4051
4052         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4053         *selector = var.selector;
4054
4055         if (var.unusable)
4056                 return false;
4057
4058         if (var.g)
4059                 var.limit >>= 12;
4060         set_desc_limit(desc, var.limit);
4061         set_desc_base(desc, (unsigned long)var.base);
4062 #ifdef CONFIG_X86_64
4063         if (base3)
4064                 *base3 = var.base >> 32;
4065 #endif
4066         desc->type = var.type;
4067         desc->s = var.s;
4068         desc->dpl = var.dpl;
4069         desc->p = var.present;
4070         desc->avl = var.avl;
4071         desc->l = var.l;
4072         desc->d = var.db;
4073         desc->g = var.g;
4074
4075         return true;
4076 }
4077
4078 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4079                                  struct desc_struct *desc, u32 base3,
4080                                  int seg)
4081 {
4082         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4083         struct kvm_segment var;
4084
4085         var.selector = selector;
4086         var.base = get_desc_base(desc);
4087 #ifdef CONFIG_X86_64
4088         var.base |= ((u64)base3) << 32;
4089 #endif
4090         var.limit = get_desc_limit(desc);
4091         if (desc->g)
4092                 var.limit = (var.limit << 12) | 0xfff;
4093         var.type = desc->type;
4094         var.present = desc->p;
4095         var.dpl = desc->dpl;
4096         var.db = desc->d;
4097         var.s = desc->s;
4098         var.l = desc->l;
4099         var.g = desc->g;
4100         var.avl = desc->avl;
4101         var.present = desc->p;
4102         var.unusable = !var.present;
4103         var.padding = 0;
4104
4105         kvm_set_segment(vcpu, &var, seg);
4106         return;
4107 }
4108
4109 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4110                             u32 msr_index, u64 *pdata)
4111 {
4112         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4113 }
4114
4115 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4116                             u32 msr_index, u64 data)
4117 {
4118         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4119 }
4120
4121 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4122 {
4123         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4124 }
4125
4126 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4127 {
4128         preempt_disable();
4129         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4130         /*
4131          * CR0.TS may reference the host fpu state, not the guest fpu state,
4132          * so it may be clear at this point.
4133          */
4134         clts();
4135 }
4136
4137 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4138 {
4139         preempt_enable();
4140 }
4141
4142 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4143                               struct x86_instruction_info *info,
4144                               enum x86_intercept_stage stage)
4145 {
4146         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4147 }
4148
4149 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4150                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4151 {
4152         struct kvm_cpuid_entry2 *cpuid = NULL;
4153
4154         if (eax && ecx)
4155                 cpuid = kvm_find_cpuid_entry(emul_to_vcpu(ctxt),
4156                                             *eax, *ecx);
4157
4158         if (cpuid) {
4159                 *eax = cpuid->eax;
4160                 *ecx = cpuid->ecx;
4161                 if (ebx)
4162                         *ebx = cpuid->ebx;
4163                 if (edx)
4164                         *edx = cpuid->edx;
4165                 return true;
4166         }
4167
4168         return false;
4169 }
4170
4171 static struct x86_emulate_ops emulate_ops = {
4172         .read_std            = kvm_read_guest_virt_system,
4173         .write_std           = kvm_write_guest_virt_system,
4174         .fetch               = kvm_fetch_guest_virt,
4175         .read_emulated       = emulator_read_emulated,
4176         .write_emulated      = emulator_write_emulated,
4177         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4178         .invlpg              = emulator_invlpg,
4179         .pio_in_emulated     = emulator_pio_in_emulated,
4180         .pio_out_emulated    = emulator_pio_out_emulated,
4181         .get_segment         = emulator_get_segment,
4182         .set_segment         = emulator_set_segment,
4183         .get_cached_segment_base = emulator_get_cached_segment_base,
4184         .get_gdt             = emulator_get_gdt,
4185         .get_idt             = emulator_get_idt,
4186         .set_gdt             = emulator_set_gdt,
4187         .set_idt             = emulator_set_idt,
4188         .get_cr              = emulator_get_cr,
4189         .set_cr              = emulator_set_cr,
4190         .cpl                 = emulator_get_cpl,
4191         .get_dr              = emulator_get_dr,
4192         .set_dr              = emulator_set_dr,
4193         .set_msr             = emulator_set_msr,
4194         .get_msr             = emulator_get_msr,
4195         .halt                = emulator_halt,
4196         .wbinvd              = emulator_wbinvd,
4197         .fix_hypercall       = emulator_fix_hypercall,
4198         .get_fpu             = emulator_get_fpu,
4199         .put_fpu             = emulator_put_fpu,
4200         .intercept           = emulator_intercept,
4201         .get_cpuid           = emulator_get_cpuid,
4202 };
4203
4204 static void cache_all_regs(struct kvm_vcpu *vcpu)
4205 {
4206         kvm_register_read(vcpu, VCPU_REGS_RAX);
4207         kvm_register_read(vcpu, VCPU_REGS_RSP);
4208         kvm_register_read(vcpu, VCPU_REGS_RIP);
4209         vcpu->arch.regs_dirty = ~0;
4210 }
4211
4212 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4213 {
4214         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4215         /*
4216          * an sti; sti; sequence only disable interrupts for the first
4217          * instruction. So, if the last instruction, be it emulated or
4218          * not, left the system with the INT_STI flag enabled, it
4219          * means that the last instruction is an sti. We should not
4220          * leave the flag on in this case. The same goes for mov ss
4221          */
4222         if (!(int_shadow & mask))
4223                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4224 }
4225
4226 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4227 {
4228         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4229         if (ctxt->exception.vector == PF_VECTOR)
4230                 kvm_propagate_fault(vcpu, &ctxt->exception);
4231         else if (ctxt->exception.error_code_valid)
4232                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4233                                       ctxt->exception.error_code);
4234         else
4235                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4236 }
4237
4238 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4239                               const unsigned long *regs)
4240 {
4241         memset(&ctxt->twobyte, 0,
4242                (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4243         memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4244
4245         ctxt->fetch.start = 0;
4246         ctxt->fetch.end = 0;
4247         ctxt->io_read.pos = 0;
4248         ctxt->io_read.end = 0;
4249         ctxt->mem_read.pos = 0;
4250         ctxt->mem_read.end = 0;
4251 }
4252
4253 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4254 {
4255         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4256         int cs_db, cs_l;
4257
4258         /*
4259          * TODO: fix emulate.c to use guest_read/write_register
4260          * instead of direct ->regs accesses, can save hundred cycles
4261          * on Intel for instructions that don't read/change RSP, for
4262          * for example.
4263          */
4264         cache_all_regs(vcpu);
4265
4266         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4267
4268         ctxt->eflags = kvm_get_rflags(vcpu);
4269         ctxt->eip = kvm_rip_read(vcpu);
4270         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4271                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4272                      cs_l                               ? X86EMUL_MODE_PROT64 :
4273                      cs_db                              ? X86EMUL_MODE_PROT32 :
4274                                                           X86EMUL_MODE_PROT16;
4275         ctxt->guest_mode = is_guest_mode(vcpu);
4276
4277         init_decode_cache(ctxt, vcpu->arch.regs);
4278         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4279 }
4280
4281 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4282 {
4283         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4284         int ret;
4285
4286         init_emulate_ctxt(vcpu);
4287
4288         ctxt->op_bytes = 2;
4289         ctxt->ad_bytes = 2;
4290         ctxt->_eip = ctxt->eip + inc_eip;
4291         ret = emulate_int_real(ctxt, irq);
4292
4293         if (ret != X86EMUL_CONTINUE)
4294                 return EMULATE_FAIL;
4295
4296         ctxt->eip = ctxt->_eip;
4297         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4298         kvm_rip_write(vcpu, ctxt->eip);
4299         kvm_set_rflags(vcpu, ctxt->eflags);
4300
4301         if (irq == NMI_VECTOR)
4302                 vcpu->arch.nmi_pending = 0;
4303         else
4304                 vcpu->arch.interrupt.pending = false;
4305
4306         return EMULATE_DONE;
4307 }
4308 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4309
4310 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4311 {
4312         int r = EMULATE_DONE;
4313
4314         ++vcpu->stat.insn_emulation_fail;
4315         trace_kvm_emulate_insn_failed(vcpu);
4316         if (!is_guest_mode(vcpu)) {
4317                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4318                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4319                 vcpu->run->internal.ndata = 0;
4320                 r = EMULATE_FAIL;
4321         }
4322         kvm_queue_exception(vcpu, UD_VECTOR);
4323
4324         return r;
4325 }
4326
4327 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4328 {
4329         gpa_t gpa;
4330
4331         if (tdp_enabled)
4332                 return false;
4333
4334         /*
4335          * if emulation was due to access to shadowed page table
4336          * and it failed try to unshadow page and re-entetr the
4337          * guest to let CPU execute the instruction.
4338          */
4339         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4340                 return true;
4341
4342         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4343
4344         if (gpa == UNMAPPED_GVA)
4345                 return true; /* let cpu generate fault */
4346
4347         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4348                 return true;
4349
4350         return false;
4351 }
4352
4353 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4354                             unsigned long cr2,
4355                             int emulation_type,
4356                             void *insn,
4357                             int insn_len)
4358 {
4359         int r;
4360         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4361         bool writeback = true;
4362
4363         kvm_clear_exception_queue(vcpu);
4364
4365         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4366                 init_emulate_ctxt(vcpu);
4367                 ctxt->interruptibility = 0;
4368                 ctxt->have_exception = false;
4369                 ctxt->perm_ok = false;
4370
4371                 ctxt->only_vendor_specific_insn
4372                         = emulation_type & EMULTYPE_TRAP_UD;
4373
4374                 r = x86_decode_insn(ctxt, insn, insn_len);
4375
4376                 trace_kvm_emulate_insn_start(vcpu);
4377                 ++vcpu->stat.insn_emulation;
4378                 if (r != EMULATION_OK)  {
4379                         if (emulation_type & EMULTYPE_TRAP_UD)
4380                                 return EMULATE_FAIL;
4381                         if (reexecute_instruction(vcpu, cr2))
4382                                 return EMULATE_DONE;
4383                         if (emulation_type & EMULTYPE_SKIP)
4384                                 return EMULATE_FAIL;
4385                         return handle_emulation_failure(vcpu);
4386                 }
4387         }
4388
4389         if (emulation_type & EMULTYPE_SKIP) {
4390                 kvm_rip_write(vcpu, ctxt->_eip);
4391                 return EMULATE_DONE;
4392         }
4393
4394         /* this is needed for vmware backdoor interface to work since it
4395            changes registers values  during IO operation */
4396         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4397                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4398                 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4399         }
4400
4401 restart:
4402         r = x86_emulate_insn(ctxt);
4403
4404         if (r == EMULATION_INTERCEPTED)
4405                 return EMULATE_DONE;
4406
4407         if (r == EMULATION_FAILED) {
4408                 if (reexecute_instruction(vcpu, cr2))
4409                         return EMULATE_DONE;
4410
4411                 return handle_emulation_failure(vcpu);
4412         }
4413
4414         if (ctxt->have_exception) {
4415                 inject_emulated_exception(vcpu);
4416                 r = EMULATE_DONE;
4417         } else if (vcpu->arch.pio.count) {
4418                 if (!vcpu->arch.pio.in)
4419                         vcpu->arch.pio.count = 0;
4420                 else
4421                         writeback = false;
4422                 r = EMULATE_DO_MMIO;
4423         } else if (vcpu->mmio_needed) {
4424                 if (!vcpu->mmio_is_write)
4425                         writeback = false;
4426                 r = EMULATE_DO_MMIO;
4427         } else if (r == EMULATION_RESTART)
4428                 goto restart;
4429         else
4430                 r = EMULATE_DONE;
4431
4432         if (writeback) {
4433                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4434                 kvm_set_rflags(vcpu, ctxt->eflags);
4435                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4436                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4437                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4438                 kvm_rip_write(vcpu, ctxt->eip);
4439         } else
4440                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4441
4442         return r;
4443 }
4444 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4445
4446 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4447 {
4448         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4449         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4450                                             size, port, &val, 1);
4451         /* do not return to emulator after return from userspace */
4452         vcpu->arch.pio.count = 0;
4453         return ret;
4454 }
4455 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4456
4457 static void tsc_bad(void *info)
4458 {
4459         __this_cpu_write(cpu_tsc_khz, 0);
4460 }
4461
4462 static void tsc_khz_changed(void *data)
4463 {
4464         struct cpufreq_freqs *freq = data;
4465         unsigned long khz = 0;
4466
4467         if (data)
4468                 khz = freq->new;
4469         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4470                 khz = cpufreq_quick_get(raw_smp_processor_id());
4471         if (!khz)
4472                 khz = tsc_khz;
4473         __this_cpu_write(cpu_tsc_khz, khz);
4474 }
4475
4476 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4477                                      void *data)
4478 {
4479         struct cpufreq_freqs *freq = data;
4480         struct kvm *kvm;
4481         struct kvm_vcpu *vcpu;
4482         int i, send_ipi = 0;
4483
4484         /*
4485          * We allow guests to temporarily run on slowing clocks,
4486          * provided we notify them after, or to run on accelerating
4487          * clocks, provided we notify them before.  Thus time never
4488          * goes backwards.
4489          *
4490          * However, we have a problem.  We can't atomically update
4491          * the frequency of a given CPU from this function; it is
4492          * merely a notifier, which can be called from any CPU.
4493          * Changing the TSC frequency at arbitrary points in time
4494          * requires a recomputation of local variables related to
4495          * the TSC for each VCPU.  We must flag these local variables
4496          * to be updated and be sure the update takes place with the
4497          * new frequency before any guests proceed.
4498          *
4499          * Unfortunately, the combination of hotplug CPU and frequency
4500          * change creates an intractable locking scenario; the order
4501          * of when these callouts happen is undefined with respect to
4502          * CPU hotplug, and they can race with each other.  As such,
4503          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4504          * undefined; you can actually have a CPU frequency change take
4505          * place in between the computation of X and the setting of the
4506          * variable.  To protect against this problem, all updates of
4507          * the per_cpu tsc_khz variable are done in an interrupt
4508          * protected IPI, and all callers wishing to update the value
4509          * must wait for a synchronous IPI to complete (which is trivial
4510          * if the caller is on the CPU already).  This establishes the
4511          * necessary total order on variable updates.
4512          *
4513          * Note that because a guest time update may take place
4514          * anytime after the setting of the VCPU's request bit, the
4515          * correct TSC value must be set before the request.  However,
4516          * to ensure the update actually makes it to any guest which
4517          * starts running in hardware virtualization between the set
4518          * and the acquisition of the spinlock, we must also ping the
4519          * CPU after setting the request bit.
4520          *
4521          */
4522
4523         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4524                 return 0;
4525         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4526                 return 0;
4527
4528         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4529
4530         raw_spin_lock(&kvm_lock);
4531         list_for_each_entry(kvm, &vm_list, vm_list) {
4532                 kvm_for_each_vcpu(i, vcpu, kvm) {
4533                         if (vcpu->cpu != freq->cpu)
4534                                 continue;
4535                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4536                         if (vcpu->cpu != smp_processor_id())
4537                                 send_ipi = 1;
4538                 }
4539         }
4540         raw_spin_unlock(&kvm_lock);
4541
4542         if (freq->old < freq->new && send_ipi) {
4543                 /*
4544                  * We upscale the frequency.  Must make the guest
4545                  * doesn't see old kvmclock values while running with
4546                  * the new frequency, otherwise we risk the guest sees
4547                  * time go backwards.
4548                  *
4549                  * In case we update the frequency for another cpu
4550                  * (which might be in guest context) send an interrupt
4551                  * to kick the cpu out of guest context.  Next time
4552                  * guest context is entered kvmclock will be updated,
4553                  * so the guest will not see stale values.
4554                  */
4555                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4556         }
4557         return 0;
4558 }
4559
4560 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4561         .notifier_call  = kvmclock_cpufreq_notifier
4562 };
4563
4564 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4565                                         unsigned long action, void *hcpu)
4566 {
4567         unsigned int cpu = (unsigned long)hcpu;
4568
4569         switch (action) {
4570                 case CPU_ONLINE:
4571                 case CPU_DOWN_FAILED:
4572                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4573                         break;
4574                 case CPU_DOWN_PREPARE:
4575                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4576                         break;
4577         }
4578         return NOTIFY_OK;
4579 }
4580
4581 static struct notifier_block kvmclock_cpu_notifier_block = {
4582         .notifier_call  = kvmclock_cpu_notifier,
4583         .priority = -INT_MAX
4584 };
4585
4586 static void kvm_timer_init(void)
4587 {
4588         int cpu;
4589
4590         max_tsc_khz = tsc_khz;
4591         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4592         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4593 #ifdef CONFIG_CPU_FREQ
4594                 struct cpufreq_policy policy;
4595                 memset(&policy, 0, sizeof(policy));
4596                 cpu = get_cpu();
4597                 cpufreq_get_policy(&policy, cpu);
4598                 if (policy.cpuinfo.max_freq)
4599                         max_tsc_khz = policy.cpuinfo.max_freq;
4600                 put_cpu();
4601 #endif
4602                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4603                                           CPUFREQ_TRANSITION_NOTIFIER);
4604         }
4605         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4606         for_each_online_cpu(cpu)
4607                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4608 }
4609
4610 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4611
4612 static int kvm_is_in_guest(void)
4613 {
4614         return percpu_read(current_vcpu) != NULL;
4615 }
4616
4617 static int kvm_is_user_mode(void)
4618 {
4619         int user_mode = 3;
4620
4621         if (percpu_read(current_vcpu))
4622                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4623
4624         return user_mode != 0;
4625 }
4626
4627 static unsigned long kvm_get_guest_ip(void)
4628 {
4629         unsigned long ip = 0;
4630
4631         if (percpu_read(current_vcpu))
4632                 ip = kvm_rip_read(percpu_read(current_vcpu));
4633
4634         return ip;
4635 }
4636
4637 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4638         .is_in_guest            = kvm_is_in_guest,
4639         .is_user_mode           = kvm_is_user_mode,
4640         .get_guest_ip           = kvm_get_guest_ip,
4641 };
4642
4643 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4644 {
4645         percpu_write(current_vcpu, vcpu);
4646 }
4647 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4648
4649 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4650 {
4651         percpu_write(current_vcpu, NULL);
4652 }
4653 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4654
4655 static void kvm_set_mmio_spte_mask(void)
4656 {
4657         u64 mask;
4658         int maxphyaddr = boot_cpu_data.x86_phys_bits;
4659
4660         /*
4661          * Set the reserved bits and the present bit of an paging-structure
4662          * entry to generate page fault with PFER.RSV = 1.
4663          */
4664         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4665         mask |= 1ull;
4666
4667 #ifdef CONFIG_X86_64
4668         /*
4669          * If reserved bit is not supported, clear the present bit to disable
4670          * mmio page fault.
4671          */
4672         if (maxphyaddr == 52)
4673                 mask &= ~1ull;
4674 #endif
4675
4676         kvm_mmu_set_mmio_spte_mask(mask);
4677 }
4678
4679 int kvm_arch_init(void *opaque)
4680 {
4681         int r;
4682         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4683
4684         if (kvm_x86_ops) {
4685                 printk(KERN_ERR "kvm: already loaded the other module\n");
4686                 r = -EEXIST;
4687                 goto out;
4688         }
4689
4690         if (!ops->cpu_has_kvm_support()) {
4691                 printk(KERN_ERR "kvm: no hardware support\n");
4692                 r = -EOPNOTSUPP;
4693                 goto out;
4694         }
4695         if (ops->disabled_by_bios()) {
4696                 printk(KERN_ERR "kvm: disabled by bios\n");
4697                 r = -EOPNOTSUPP;
4698                 goto out;
4699         }
4700
4701         r = kvm_mmu_module_init();
4702         if (r)
4703                 goto out;
4704
4705         kvm_set_mmio_spte_mask();
4706         kvm_init_msr_list();
4707
4708         kvm_x86_ops = ops;
4709         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4710                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4711
4712         kvm_timer_init();
4713
4714         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4715
4716         if (cpu_has_xsave)
4717                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4718
4719         return 0;
4720
4721 out:
4722         return r;
4723 }
4724
4725 void kvm_arch_exit(void)
4726 {
4727         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4728
4729         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4730                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4731                                             CPUFREQ_TRANSITION_NOTIFIER);
4732         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4733         kvm_x86_ops = NULL;
4734         kvm_mmu_module_exit();
4735 }
4736
4737 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4738 {
4739         ++vcpu->stat.halt_exits;
4740         if (irqchip_in_kernel(vcpu->kvm)) {
4741                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4742                 return 1;
4743         } else {
4744                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4745                 return 0;
4746         }
4747 }
4748 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4749
4750 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4751                            unsigned long a1)
4752 {
4753         if (is_long_mode(vcpu))
4754                 return a0;
4755         else
4756                 return a0 | ((gpa_t)a1 << 32);
4757 }
4758
4759 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4760 {
4761         u64 param, ingpa, outgpa, ret;
4762         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4763         bool fast, longmode;
4764         int cs_db, cs_l;
4765
4766         /*
4767          * hypercall generates UD from non zero cpl and real mode
4768          * per HYPER-V spec
4769          */
4770         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4771                 kvm_queue_exception(vcpu, UD_VECTOR);
4772                 return 0;
4773         }
4774
4775         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4776         longmode = is_long_mode(vcpu) && cs_l == 1;
4777
4778         if (!longmode) {
4779                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4780                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4781                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4782                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4783                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4784                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4785         }
4786 #ifdef CONFIG_X86_64
4787         else {
4788                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4789                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4790                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4791         }
4792 #endif
4793
4794         code = param & 0xffff;
4795         fast = (param >> 16) & 0x1;
4796         rep_cnt = (param >> 32) & 0xfff;
4797         rep_idx = (param >> 48) & 0xfff;
4798
4799         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4800
4801         switch (code) {
4802         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4803                 kvm_vcpu_on_spin(vcpu);
4804                 break;
4805         default:
4806                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4807                 break;
4808         }
4809
4810         ret = res | (((u64)rep_done & 0xfff) << 32);
4811         if (longmode) {
4812                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4813         } else {
4814                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4815                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4816         }
4817
4818         return 1;
4819 }
4820
4821 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4822 {
4823         unsigned long nr, a0, a1, a2, a3, ret;
4824         int r = 1;
4825
4826         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4827                 return kvm_hv_hypercall(vcpu);
4828
4829         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4830         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4831         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4832         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4833         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4834
4835         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4836
4837         if (!is_long_mode(vcpu)) {
4838                 nr &= 0xFFFFFFFF;
4839                 a0 &= 0xFFFFFFFF;
4840                 a1 &= 0xFFFFFFFF;
4841                 a2 &= 0xFFFFFFFF;
4842                 a3 &= 0xFFFFFFFF;
4843         }
4844
4845         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4846                 ret = -KVM_EPERM;
4847                 goto out;
4848         }
4849
4850         switch (nr) {
4851         case KVM_HC_VAPIC_POLL_IRQ:
4852                 ret = 0;
4853                 break;
4854         case KVM_HC_MMU_OP:
4855                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4856                 break;
4857         default:
4858                 ret = -KVM_ENOSYS;
4859                 break;
4860         }
4861 out:
4862         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4863         ++vcpu->stat.hypercalls;
4864         return r;
4865 }
4866 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4867
4868 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
4869 {
4870         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4871         char instruction[3];
4872         unsigned long rip = kvm_rip_read(vcpu);
4873
4874         /*
4875          * Blow out the MMU to ensure that no other VCPU has an active mapping
4876          * to ensure that the updated hypercall appears atomically across all
4877          * VCPUs.
4878          */
4879         kvm_mmu_zap_all(vcpu->kvm);
4880
4881         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4882
4883         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
4884 }
4885
4886 /*
4887  * Check if userspace requested an interrupt window, and that the
4888  * interrupt window is open.
4889  *
4890  * No need to exit to userspace if we already have an interrupt queued.
4891  */
4892 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4893 {
4894         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4895                 vcpu->run->request_interrupt_window &&
4896                 kvm_arch_interrupt_allowed(vcpu));
4897 }
4898
4899 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4900 {
4901         struct kvm_run *kvm_run = vcpu->run;
4902
4903         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4904         kvm_run->cr8 = kvm_get_cr8(vcpu);
4905         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4906         if (irqchip_in_kernel(vcpu->kvm))
4907                 kvm_run->ready_for_interrupt_injection = 1;
4908         else
4909                 kvm_run->ready_for_interrupt_injection =
4910                         kvm_arch_interrupt_allowed(vcpu) &&
4911                         !kvm_cpu_has_interrupt(vcpu) &&
4912                         !kvm_event_needs_reinjection(vcpu);
4913 }
4914
4915 static void vapic_enter(struct kvm_vcpu *vcpu)
4916 {
4917         struct kvm_lapic *apic = vcpu->arch.apic;
4918         struct page *page;
4919
4920         if (!apic || !apic->vapic_addr)
4921                 return;
4922
4923         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4924
4925         vcpu->arch.apic->vapic_page = page;
4926 }
4927
4928 static void vapic_exit(struct kvm_vcpu *vcpu)
4929 {
4930         struct kvm_lapic *apic = vcpu->arch.apic;
4931         int idx;
4932
4933         if (!apic || !apic->vapic_addr)
4934                 return;
4935
4936         idx = srcu_read_lock(&vcpu->kvm->srcu);
4937         kvm_release_page_dirty(apic->vapic_page);
4938         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4939         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4940 }
4941
4942 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4943 {
4944         int max_irr, tpr;
4945
4946         if (!kvm_x86_ops->update_cr8_intercept)
4947                 return;
4948
4949         if (!vcpu->arch.apic)
4950                 return;
4951
4952         if (!vcpu->arch.apic->vapic_addr)
4953                 max_irr = kvm_lapic_find_highest_irr(vcpu);
4954         else
4955                 max_irr = -1;
4956
4957         if (max_irr != -1)
4958                 max_irr >>= 4;
4959
4960         tpr = kvm_lapic_get_cr8(vcpu);
4961
4962         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4963 }
4964
4965 static void inject_pending_event(struct kvm_vcpu *vcpu)
4966 {
4967         /* try to reinject previous events if any */
4968         if (vcpu->arch.exception.pending) {
4969                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4970                                         vcpu->arch.exception.has_error_code,
4971                                         vcpu->arch.exception.error_code);
4972                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4973                                           vcpu->arch.exception.has_error_code,
4974                                           vcpu->arch.exception.error_code,
4975                                           vcpu->arch.exception.reinject);
4976                 return;
4977         }
4978
4979         if (vcpu->arch.nmi_injected) {
4980                 kvm_x86_ops->set_nmi(vcpu);
4981                 return;
4982         }
4983
4984         if (vcpu->arch.interrupt.pending) {
4985                 kvm_x86_ops->set_irq(vcpu);
4986                 return;
4987         }
4988
4989         /* try to inject new event if pending */
4990         if (vcpu->arch.nmi_pending) {
4991                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4992                         --vcpu->arch.nmi_pending;
4993                         vcpu->arch.nmi_injected = true;
4994                         kvm_x86_ops->set_nmi(vcpu);
4995                 }
4996         } else if (kvm_cpu_has_interrupt(vcpu)) {
4997                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4998                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4999                                             false);
5000                         kvm_x86_ops->set_irq(vcpu);
5001                 }
5002         }
5003 }
5004
5005 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5006 {
5007         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5008                         !vcpu->guest_xcr0_loaded) {
5009                 /* kvm_set_xcr() also depends on this */
5010                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5011                 vcpu->guest_xcr0_loaded = 1;
5012         }
5013 }
5014
5015 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5016 {
5017         if (vcpu->guest_xcr0_loaded) {
5018                 if (vcpu->arch.xcr0 != host_xcr0)
5019                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5020                 vcpu->guest_xcr0_loaded = 0;
5021         }
5022 }
5023
5024 static void process_nmi(struct kvm_vcpu *vcpu)
5025 {
5026         unsigned limit = 2;
5027
5028         /*
5029          * x86 is limited to one NMI running, and one NMI pending after it.
5030          * If an NMI is already in progress, limit further NMIs to just one.
5031          * Otherwise, allow two (and we'll inject the first one immediately).
5032          */
5033         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5034                 limit = 1;
5035
5036         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5037         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5038         kvm_make_request(KVM_REQ_EVENT, vcpu);
5039 }
5040
5041 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5042 {
5043         int r;
5044         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5045                 vcpu->run->request_interrupt_window;
5046
5047         if (vcpu->requests) {
5048                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5049                         kvm_mmu_unload(vcpu);
5050                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5051                         __kvm_migrate_timers(vcpu);
5052                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5053                         r = kvm_guest_time_update(vcpu);
5054                         if (unlikely(r))
5055                                 goto out;
5056                 }
5057                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5058                         kvm_mmu_sync_roots(vcpu);
5059                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5060                         kvm_x86_ops->tlb_flush(vcpu);
5061                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5062                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5063                         r = 0;
5064                         goto out;
5065                 }
5066                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5067                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5068                         r = 0;
5069                         goto out;
5070                 }
5071                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5072                         vcpu->fpu_active = 0;
5073                         kvm_x86_ops->fpu_deactivate(vcpu);
5074                 }
5075                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5076                         /* Page is swapped out. Do synthetic halt */
5077                         vcpu->arch.apf.halted = true;
5078                         r = 1;
5079                         goto out;
5080                 }
5081                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5082                         record_steal_time(vcpu);
5083                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5084                         process_nmi(vcpu);
5085
5086         }
5087
5088         r = kvm_mmu_reload(vcpu);
5089         if (unlikely(r))
5090                 goto out;
5091
5092         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5093                 inject_pending_event(vcpu);
5094
5095                 /* enable NMI/IRQ window open exits if needed */
5096                 if (vcpu->arch.nmi_pending)
5097                         kvm_x86_ops->enable_nmi_window(vcpu);
5098                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5099                         kvm_x86_ops->enable_irq_window(vcpu);
5100
5101                 if (kvm_lapic_enabled(vcpu)) {
5102                         update_cr8_intercept(vcpu);
5103                         kvm_lapic_sync_to_vapic(vcpu);
5104                 }
5105         }
5106
5107         preempt_disable();
5108
5109         kvm_x86_ops->prepare_guest_switch(vcpu);
5110         if (vcpu->fpu_active)
5111                 kvm_load_guest_fpu(vcpu);
5112         kvm_load_guest_xcr0(vcpu);
5113
5114         vcpu->mode = IN_GUEST_MODE;
5115
5116         /* We should set ->mode before check ->requests,
5117          * see the comment in make_all_cpus_request.
5118          */
5119         smp_mb();
5120
5121         local_irq_disable();
5122
5123         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5124             || need_resched() || signal_pending(current)) {
5125                 vcpu->mode = OUTSIDE_GUEST_MODE;
5126                 smp_wmb();
5127                 local_irq_enable();
5128                 preempt_enable();
5129                 kvm_x86_ops->cancel_injection(vcpu);
5130                 r = 1;
5131                 goto out;
5132         }
5133
5134         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5135
5136         kvm_guest_enter();
5137
5138         if (unlikely(vcpu->arch.switch_db_regs)) {
5139                 set_debugreg(0, 7);
5140                 set_debugreg(vcpu->arch.eff_db[0], 0);
5141                 set_debugreg(vcpu->arch.eff_db[1], 1);
5142                 set_debugreg(vcpu->arch.eff_db[2], 2);
5143                 set_debugreg(vcpu->arch.eff_db[3], 3);
5144         }
5145
5146         trace_kvm_entry(vcpu->vcpu_id);
5147         kvm_x86_ops->run(vcpu);
5148
5149         /*
5150          * If the guest has used debug registers, at least dr7
5151          * will be disabled while returning to the host.
5152          * If we don't have active breakpoints in the host, we don't
5153          * care about the messed up debug address registers. But if
5154          * we have some of them active, restore the old state.
5155          */
5156         if (hw_breakpoint_active())
5157                 hw_breakpoint_restore();
5158
5159         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5160
5161         vcpu->mode = OUTSIDE_GUEST_MODE;
5162         smp_wmb();
5163         local_irq_enable();
5164
5165         ++vcpu->stat.exits;
5166
5167         /*
5168          * We must have an instruction between local_irq_enable() and
5169          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5170          * the interrupt shadow.  The stat.exits increment will do nicely.
5171          * But we need to prevent reordering, hence this barrier():
5172          */
5173         barrier();
5174
5175         kvm_guest_exit();
5176
5177         preempt_enable();
5178
5179         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5180
5181         /*
5182          * Profile KVM exit RIPs:
5183          */
5184         if (unlikely(prof_on == KVM_PROFILING)) {
5185                 unsigned long rip = kvm_rip_read(vcpu);
5186                 profile_hit(KVM_PROFILING, (void *)rip);
5187         }
5188
5189
5190         kvm_lapic_sync_from_vapic(vcpu);
5191
5192         r = kvm_x86_ops->handle_exit(vcpu);
5193 out:
5194         return r;
5195 }
5196
5197
5198 static int __vcpu_run(struct kvm_vcpu *vcpu)
5199 {
5200         int r;
5201         struct kvm *kvm = vcpu->kvm;
5202
5203         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5204                 pr_debug("vcpu %d received sipi with vector # %x\n",
5205                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5206                 kvm_lapic_reset(vcpu);
5207                 r = kvm_arch_vcpu_reset(vcpu);
5208                 if (r)
5209                         return r;
5210                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5211         }
5212
5213         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5214         vapic_enter(vcpu);
5215
5216         r = 1;
5217         while (r > 0) {
5218                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5219                     !vcpu->arch.apf.halted)
5220                         r = vcpu_enter_guest(vcpu);
5221                 else {
5222                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5223                         kvm_vcpu_block(vcpu);
5224                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5225                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5226                         {
5227                                 switch(vcpu->arch.mp_state) {
5228                                 case KVM_MP_STATE_HALTED:
5229                                         vcpu->arch.mp_state =
5230                                                 KVM_MP_STATE_RUNNABLE;
5231                                 case KVM_MP_STATE_RUNNABLE:
5232                                         vcpu->arch.apf.halted = false;
5233                                         break;
5234                                 case KVM_MP_STATE_SIPI_RECEIVED:
5235                                 default:
5236                                         r = -EINTR;
5237                                         break;
5238                                 }
5239                         }
5240                 }
5241
5242                 if (r <= 0)
5243                         break;
5244
5245                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5246                 if (kvm_cpu_has_pending_timer(vcpu))
5247                         kvm_inject_pending_timer_irqs(vcpu);
5248
5249                 if (dm_request_for_irq_injection(vcpu)) {
5250                         r = -EINTR;
5251                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5252                         ++vcpu->stat.request_irq_exits;
5253                 }
5254
5255                 kvm_check_async_pf_completion(vcpu);
5256
5257                 if (signal_pending(current)) {
5258                         r = -EINTR;
5259                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5260                         ++vcpu->stat.signal_exits;
5261                 }
5262                 if (need_resched()) {
5263                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5264                         kvm_resched(vcpu);
5265                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5266                 }
5267         }
5268
5269         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5270
5271         vapic_exit(vcpu);
5272
5273         return r;
5274 }
5275
5276 static int complete_mmio(struct kvm_vcpu *vcpu)
5277 {
5278         struct kvm_run *run = vcpu->run;
5279         int r;
5280
5281         if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5282                 return 1;
5283
5284         if (vcpu->mmio_needed) {
5285                 vcpu->mmio_needed = 0;
5286                 if (!vcpu->mmio_is_write)
5287                         memcpy(vcpu->mmio_data + vcpu->mmio_index,
5288                                run->mmio.data, 8);
5289                 vcpu->mmio_index += 8;
5290                 if (vcpu->mmio_index < vcpu->mmio_size) {
5291                         run->exit_reason = KVM_EXIT_MMIO;
5292                         run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5293                         memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5294                         run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5295                         run->mmio.is_write = vcpu->mmio_is_write;
5296                         vcpu->mmio_needed = 1;
5297                         return 0;
5298                 }
5299                 if (vcpu->mmio_is_write)
5300                         return 1;
5301                 vcpu->mmio_read_completed = 1;
5302         }
5303         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5304         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5305         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5306         if (r != EMULATE_DONE)
5307                 return 0;
5308         return 1;
5309 }
5310
5311 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5312 {
5313         int r;
5314         sigset_t sigsaved;
5315
5316         if (!tsk_used_math(current) && init_fpu(current))
5317                 return -ENOMEM;
5318
5319         if (vcpu->sigset_active)
5320                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5321
5322         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5323                 kvm_vcpu_block(vcpu);
5324                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5325                 r = -EAGAIN;
5326                 goto out;
5327         }
5328
5329         /* re-sync apic's tpr */
5330         if (!irqchip_in_kernel(vcpu->kvm)) {
5331                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5332                         r = -EINVAL;
5333                         goto out;
5334                 }
5335         }
5336
5337         r = complete_mmio(vcpu);
5338         if (r <= 0)
5339                 goto out;
5340
5341         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5342                 kvm_register_write(vcpu, VCPU_REGS_RAX,
5343                                      kvm_run->hypercall.ret);
5344
5345         r = __vcpu_run(vcpu);
5346
5347 out:
5348         post_kvm_run_save(vcpu);
5349         if (vcpu->sigset_active)
5350                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5351
5352         return r;
5353 }
5354
5355 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5356 {
5357         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5358                 /*
5359                  * We are here if userspace calls get_regs() in the middle of
5360                  * instruction emulation. Registers state needs to be copied
5361                  * back from emulation context to vcpu. Usrapace shouldn't do
5362                  * that usually, but some bad designed PV devices (vmware
5363                  * backdoor interface) need this to work
5364                  */
5365                 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5366                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5367                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5368         }
5369         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5370         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5371         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5372         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5373         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5374         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5375         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5376         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5377 #ifdef CONFIG_X86_64
5378         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5379         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5380         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5381         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5382         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5383         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5384         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5385         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5386 #endif
5387
5388         regs->rip = kvm_rip_read(vcpu);
5389         regs->rflags = kvm_get_rflags(vcpu);
5390
5391         return 0;
5392 }
5393
5394 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5395 {
5396         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5397         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5398
5399         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5400         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5401         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5402         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5403         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5404         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5405         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5406         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5407 #ifdef CONFIG_X86_64
5408         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5409         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5410         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5411         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5412         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5413         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5414         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5415         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5416 #endif
5417
5418         kvm_rip_write(vcpu, regs->rip);
5419         kvm_set_rflags(vcpu, regs->rflags);
5420
5421         vcpu->arch.exception.pending = false;
5422
5423         kvm_make_request(KVM_REQ_EVENT, vcpu);
5424
5425         return 0;
5426 }
5427
5428 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5429 {
5430         struct kvm_segment cs;
5431
5432         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5433         *db = cs.db;
5434         *l = cs.l;
5435 }
5436 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5437
5438 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5439                                   struct kvm_sregs *sregs)
5440 {
5441         struct desc_ptr dt;
5442
5443         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5444         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5445         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5446         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5447         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5448         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5449
5450         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5451         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5452
5453         kvm_x86_ops->get_idt(vcpu, &dt);
5454         sregs->idt.limit = dt.size;
5455         sregs->idt.base = dt.address;
5456         kvm_x86_ops->get_gdt(vcpu, &dt);
5457         sregs->gdt.limit = dt.size;
5458         sregs->gdt.base = dt.address;
5459
5460         sregs->cr0 = kvm_read_cr0(vcpu);
5461         sregs->cr2 = vcpu->arch.cr2;
5462         sregs->cr3 = kvm_read_cr3(vcpu);
5463         sregs->cr4 = kvm_read_cr4(vcpu);
5464         sregs->cr8 = kvm_get_cr8(vcpu);
5465         sregs->efer = vcpu->arch.efer;
5466         sregs->apic_base = kvm_get_apic_base(vcpu);
5467
5468         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5469
5470         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5471                 set_bit(vcpu->arch.interrupt.nr,
5472                         (unsigned long *)sregs->interrupt_bitmap);
5473
5474         return 0;
5475 }
5476
5477 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5478                                     struct kvm_mp_state *mp_state)
5479 {
5480         mp_state->mp_state = vcpu->arch.mp_state;
5481         return 0;
5482 }
5483
5484 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5485                                     struct kvm_mp_state *mp_state)
5486 {
5487         vcpu->arch.mp_state = mp_state->mp_state;
5488         kvm_make_request(KVM_REQ_EVENT, vcpu);
5489         return 0;
5490 }
5491
5492 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5493                     bool has_error_code, u32 error_code)
5494 {
5495         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5496         int ret;
5497
5498         init_emulate_ctxt(vcpu);
5499
5500         ret = emulator_task_switch(ctxt, tss_selector, reason,
5501                                    has_error_code, error_code);
5502
5503         if (ret)
5504                 return EMULATE_FAIL;
5505
5506         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5507         kvm_rip_write(vcpu, ctxt->eip);
5508         kvm_set_rflags(vcpu, ctxt->eflags);
5509         kvm_make_request(KVM_REQ_EVENT, vcpu);
5510         return EMULATE_DONE;
5511 }
5512 EXPORT_SYMBOL_GPL(kvm_task_switch);
5513
5514 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5515                                   struct kvm_sregs *sregs)
5516 {
5517         int mmu_reset_needed = 0;
5518         int pending_vec, max_bits, idx;
5519         struct desc_ptr dt;
5520
5521         dt.size = sregs->idt.limit;
5522         dt.address = sregs->idt.base;
5523         kvm_x86_ops->set_idt(vcpu, &dt);
5524         dt.size = sregs->gdt.limit;
5525         dt.address = sregs->gdt.base;
5526         kvm_x86_ops->set_gdt(vcpu, &dt);
5527
5528         vcpu->arch.cr2 = sregs->cr2;
5529         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5530         vcpu->arch.cr3 = sregs->cr3;
5531         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5532
5533         kvm_set_cr8(vcpu, sregs->cr8);
5534
5535         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5536         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5537         kvm_set_apic_base(vcpu, sregs->apic_base);
5538
5539         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5540         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5541         vcpu->arch.cr0 = sregs->cr0;
5542
5543         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5544         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5545         if (sregs->cr4 & X86_CR4_OSXSAVE)
5546                 kvm_update_cpuid(vcpu);
5547
5548         idx = srcu_read_lock(&vcpu->kvm->srcu);
5549         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5550                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5551                 mmu_reset_needed = 1;
5552         }
5553         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5554
5555         if (mmu_reset_needed)
5556                 kvm_mmu_reset_context(vcpu);
5557
5558         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5559         pending_vec = find_first_bit(
5560                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5561         if (pending_vec < max_bits) {
5562                 kvm_queue_interrupt(vcpu, pending_vec, false);
5563                 pr_debug("Set back pending irq %d\n", pending_vec);
5564         }
5565
5566         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5567         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5568         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5569         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5570         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5571         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5572
5573         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5574         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5575
5576         update_cr8_intercept(vcpu);
5577
5578         /* Older userspace won't unhalt the vcpu on reset. */
5579         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5580             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5581             !is_protmode(vcpu))
5582                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5583
5584         kvm_make_request(KVM_REQ_EVENT, vcpu);
5585
5586         return 0;
5587 }
5588
5589 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5590                                         struct kvm_guest_debug *dbg)
5591 {
5592         unsigned long rflags;
5593         int i, r;
5594
5595         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5596                 r = -EBUSY;
5597                 if (vcpu->arch.exception.pending)
5598                         goto out;
5599                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5600                         kvm_queue_exception(vcpu, DB_VECTOR);
5601                 else
5602                         kvm_queue_exception(vcpu, BP_VECTOR);
5603         }
5604
5605         /*
5606          * Read rflags as long as potentially injected trace flags are still
5607          * filtered out.
5608          */
5609         rflags = kvm_get_rflags(vcpu);
5610
5611         vcpu->guest_debug = dbg->control;
5612         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5613                 vcpu->guest_debug = 0;
5614
5615         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5616                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5617                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5618                 vcpu->arch.switch_db_regs =
5619                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5620         } else {
5621                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5622                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5623                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5624         }
5625
5626         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5627                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5628                         get_segment_base(vcpu, VCPU_SREG_CS);
5629
5630         /*
5631          * Trigger an rflags update that will inject or remove the trace
5632          * flags.
5633          */
5634         kvm_set_rflags(vcpu, rflags);
5635
5636         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5637
5638         r = 0;
5639
5640 out:
5641
5642         return r;
5643 }
5644
5645 /*
5646  * Translate a guest virtual address to a guest physical address.
5647  */
5648 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5649                                     struct kvm_translation *tr)
5650 {
5651         unsigned long vaddr = tr->linear_address;
5652         gpa_t gpa;
5653         int idx;
5654
5655         idx = srcu_read_lock(&vcpu->kvm->srcu);
5656         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5657         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5658         tr->physical_address = gpa;
5659         tr->valid = gpa != UNMAPPED_GVA;
5660         tr->writeable = 1;
5661         tr->usermode = 0;
5662
5663         return 0;
5664 }
5665
5666 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5667 {
5668         struct i387_fxsave_struct *fxsave =
5669                         &vcpu->arch.guest_fpu.state->fxsave;
5670
5671         memcpy(fpu->fpr, fxsave->st_space, 128);
5672         fpu->fcw = fxsave->cwd;
5673         fpu->fsw = fxsave->swd;
5674         fpu->ftwx = fxsave->twd;
5675         fpu->last_opcode = fxsave->fop;
5676         fpu->last_ip = fxsave->rip;
5677         fpu->last_dp = fxsave->rdp;
5678         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5679
5680         return 0;
5681 }
5682
5683 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5684 {
5685         struct i387_fxsave_struct *fxsave =
5686                         &vcpu->arch.guest_fpu.state->fxsave;
5687
5688         memcpy(fxsave->st_space, fpu->fpr, 128);
5689         fxsave->cwd = fpu->fcw;
5690         fxsave->swd = fpu->fsw;
5691         fxsave->twd = fpu->ftwx;
5692         fxsave->fop = fpu->last_opcode;
5693         fxsave->rip = fpu->last_ip;
5694         fxsave->rdp = fpu->last_dp;
5695         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5696
5697         return 0;
5698 }
5699
5700 int fx_init(struct kvm_vcpu *vcpu)
5701 {
5702         int err;
5703
5704         err = fpu_alloc(&vcpu->arch.guest_fpu);
5705         if (err)
5706                 return err;
5707
5708         fpu_finit(&vcpu->arch.guest_fpu);
5709
5710         /*
5711          * Ensure guest xcr0 is valid for loading
5712          */
5713         vcpu->arch.xcr0 = XSTATE_FP;
5714
5715         vcpu->arch.cr0 |= X86_CR0_ET;
5716
5717         return 0;
5718 }
5719 EXPORT_SYMBOL_GPL(fx_init);
5720
5721 static void fx_free(struct kvm_vcpu *vcpu)
5722 {
5723         fpu_free(&vcpu->arch.guest_fpu);
5724 }
5725
5726 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5727 {
5728         if (vcpu->guest_fpu_loaded)
5729                 return;
5730
5731         /*
5732          * Restore all possible states in the guest,
5733          * and assume host would use all available bits.
5734          * Guest xcr0 would be loaded later.
5735          */
5736         kvm_put_guest_xcr0(vcpu);
5737         vcpu->guest_fpu_loaded = 1;
5738         unlazy_fpu(current);
5739         fpu_restore_checking(&vcpu->arch.guest_fpu);
5740         trace_kvm_fpu(1);
5741 }
5742
5743 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5744 {
5745         kvm_put_guest_xcr0(vcpu);
5746
5747         if (!vcpu->guest_fpu_loaded)
5748                 return;
5749
5750         vcpu->guest_fpu_loaded = 0;
5751         fpu_save_init(&vcpu->arch.guest_fpu);
5752         ++vcpu->stat.fpu_reload;
5753         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5754         trace_kvm_fpu(0);
5755 }
5756
5757 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5758 {
5759         kvmclock_reset(vcpu);
5760
5761         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5762         fx_free(vcpu);
5763         kvm_x86_ops->vcpu_free(vcpu);
5764 }
5765
5766 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5767                                                 unsigned int id)
5768 {
5769         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5770                 printk_once(KERN_WARNING
5771                 "kvm: SMP vm created on host with unstable TSC; "
5772                 "guest TSC will not be reliable\n");
5773         return kvm_x86_ops->vcpu_create(kvm, id);
5774 }
5775
5776 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5777 {
5778         int r;
5779
5780         vcpu->arch.mtrr_state.have_fixed = 1;
5781         vcpu_load(vcpu);
5782         r = kvm_arch_vcpu_reset(vcpu);
5783         if (r == 0)
5784                 r = kvm_mmu_setup(vcpu);
5785         vcpu_put(vcpu);
5786
5787         return r;
5788 }
5789
5790 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5791 {
5792         vcpu->arch.apf.msr_val = 0;
5793
5794         vcpu_load(vcpu);
5795         kvm_mmu_unload(vcpu);
5796         vcpu_put(vcpu);
5797
5798         fx_free(vcpu);
5799         kvm_x86_ops->vcpu_free(vcpu);
5800 }
5801
5802 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5803 {
5804         atomic_set(&vcpu->arch.nmi_queued, 0);
5805         vcpu->arch.nmi_pending = 0;
5806         vcpu->arch.nmi_injected = false;
5807
5808         vcpu->arch.switch_db_regs = 0;
5809         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5810         vcpu->arch.dr6 = DR6_FIXED_1;
5811         vcpu->arch.dr7 = DR7_FIXED_1;
5812
5813         kvm_make_request(KVM_REQ_EVENT, vcpu);
5814         vcpu->arch.apf.msr_val = 0;
5815         vcpu->arch.st.msr_val = 0;
5816
5817         kvmclock_reset(vcpu);
5818
5819         kvm_clear_async_pf_completion_queue(vcpu);
5820         kvm_async_pf_hash_reset(vcpu);
5821         vcpu->arch.apf.halted = false;
5822
5823         return kvm_x86_ops->vcpu_reset(vcpu);
5824 }
5825
5826 int kvm_arch_hardware_enable(void *garbage)
5827 {
5828         struct kvm *kvm;
5829         struct kvm_vcpu *vcpu;
5830         int i;
5831
5832         kvm_shared_msr_cpu_online();
5833         list_for_each_entry(kvm, &vm_list, vm_list)
5834                 kvm_for_each_vcpu(i, vcpu, kvm)
5835                         if (vcpu->cpu == smp_processor_id())
5836                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5837         return kvm_x86_ops->hardware_enable(garbage);
5838 }
5839
5840 void kvm_arch_hardware_disable(void *garbage)
5841 {
5842         kvm_x86_ops->hardware_disable(garbage);
5843         drop_user_return_notifiers(garbage);
5844 }
5845
5846 int kvm_arch_hardware_setup(void)
5847 {
5848         return kvm_x86_ops->hardware_setup();
5849 }
5850
5851 void kvm_arch_hardware_unsetup(void)
5852 {
5853         kvm_x86_ops->hardware_unsetup();
5854 }
5855
5856 void kvm_arch_check_processor_compat(void *rtn)
5857 {
5858         kvm_x86_ops->check_processor_compatibility(rtn);
5859 }
5860
5861 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5862 {
5863         struct page *page;
5864         struct kvm *kvm;
5865         int r;
5866
5867         BUG_ON(vcpu->kvm == NULL);
5868         kvm = vcpu->kvm;
5869
5870         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5871         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5872         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5873         vcpu->arch.mmu.translate_gpa = translate_gpa;
5874         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5875         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5876                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5877         else
5878                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5879
5880         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5881         if (!page) {
5882                 r = -ENOMEM;
5883                 goto fail;
5884         }
5885         vcpu->arch.pio_data = page_address(page);
5886
5887         kvm_init_tsc_catchup(vcpu, max_tsc_khz);
5888
5889         r = kvm_mmu_create(vcpu);
5890         if (r < 0)
5891                 goto fail_free_pio_data;
5892
5893         if (irqchip_in_kernel(kvm)) {
5894                 r = kvm_create_lapic(vcpu);
5895                 if (r < 0)
5896                         goto fail_mmu_destroy;
5897         }
5898
5899         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5900                                        GFP_KERNEL);
5901         if (!vcpu->arch.mce_banks) {
5902                 r = -ENOMEM;
5903                 goto fail_free_lapic;
5904         }
5905         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5906
5907         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5908                 goto fail_free_mce_banks;
5909
5910         kvm_async_pf_hash_reset(vcpu);
5911
5912         return 0;
5913 fail_free_mce_banks:
5914         kfree(vcpu->arch.mce_banks);
5915 fail_free_lapic:
5916         kvm_free_lapic(vcpu);
5917 fail_mmu_destroy:
5918         kvm_mmu_destroy(vcpu);
5919 fail_free_pio_data:
5920         free_page((unsigned long)vcpu->arch.pio_data);
5921 fail:
5922         return r;
5923 }
5924
5925 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5926 {
5927         int idx;
5928
5929         kfree(vcpu->arch.mce_banks);
5930         kvm_free_lapic(vcpu);
5931         idx = srcu_read_lock(&vcpu->kvm->srcu);
5932         kvm_mmu_destroy(vcpu);
5933         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5934         free_page((unsigned long)vcpu->arch.pio_data);
5935 }
5936
5937 int kvm_arch_init_vm(struct kvm *kvm)
5938 {
5939         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5940         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5941
5942         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5943         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5944
5945         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
5946
5947         return 0;
5948 }
5949
5950 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5951 {
5952         vcpu_load(vcpu);
5953         kvm_mmu_unload(vcpu);
5954         vcpu_put(vcpu);
5955 }
5956
5957 static void kvm_free_vcpus(struct kvm *kvm)
5958 {
5959         unsigned int i;
5960         struct kvm_vcpu *vcpu;
5961
5962         /*
5963          * Unpin any mmu pages first.
5964          */
5965         kvm_for_each_vcpu(i, vcpu, kvm) {
5966                 kvm_clear_async_pf_completion_queue(vcpu);
5967                 kvm_unload_vcpu_mmu(vcpu);
5968         }
5969         kvm_for_each_vcpu(i, vcpu, kvm)
5970                 kvm_arch_vcpu_free(vcpu);
5971
5972         mutex_lock(&kvm->lock);
5973         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5974                 kvm->vcpus[i] = NULL;
5975
5976         atomic_set(&kvm->online_vcpus, 0);
5977         mutex_unlock(&kvm->lock);
5978 }
5979
5980 void kvm_arch_sync_events(struct kvm *kvm)
5981 {
5982         kvm_free_all_assigned_devices(kvm);
5983         kvm_free_pit(kvm);
5984 }
5985
5986 void kvm_arch_destroy_vm(struct kvm *kvm)
5987 {
5988         kvm_iommu_unmap_guest(kvm);
5989         kfree(kvm->arch.vpic);
5990         kfree(kvm->arch.vioapic);
5991         kvm_free_vcpus(kvm);
5992         if (kvm->arch.apic_access_page)
5993                 put_page(kvm->arch.apic_access_page);
5994         if (kvm->arch.ept_identity_pagetable)
5995                 put_page(kvm->arch.ept_identity_pagetable);
5996 }
5997
5998 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5999                                 struct kvm_memory_slot *memslot,
6000                                 struct kvm_memory_slot old,
6001                                 struct kvm_userspace_memory_region *mem,
6002                                 int user_alloc)
6003 {
6004         int npages = memslot->npages;
6005         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6006
6007         /* Prevent internal slot pages from being moved by fork()/COW. */
6008         if (memslot->id >= KVM_MEMORY_SLOTS)
6009                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6010
6011         /*To keep backward compatibility with older userspace,
6012          *x86 needs to hanlde !user_alloc case.
6013          */
6014         if (!user_alloc) {
6015                 if (npages && !old.rmap) {
6016                         unsigned long userspace_addr;
6017
6018                         down_write(&current->mm->mmap_sem);
6019                         userspace_addr = do_mmap(NULL, 0,
6020                                                  npages * PAGE_SIZE,
6021                                                  PROT_READ | PROT_WRITE,
6022                                                  map_flags,
6023                                                  0);
6024                         up_write(&current->mm->mmap_sem);
6025
6026                         if (IS_ERR((void *)userspace_addr))
6027                                 return PTR_ERR((void *)userspace_addr);
6028
6029                         memslot->userspace_addr = userspace_addr;
6030                 }
6031         }
6032
6033
6034         return 0;
6035 }
6036
6037 void kvm_arch_commit_memory_region(struct kvm *kvm,
6038                                 struct kvm_userspace_memory_region *mem,
6039                                 struct kvm_memory_slot old,
6040                                 int user_alloc)
6041 {
6042
6043         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6044
6045         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6046                 int ret;
6047
6048                 down_write(&current->mm->mmap_sem);
6049                 ret = do_munmap(current->mm, old.userspace_addr,
6050                                 old.npages * PAGE_SIZE);
6051                 up_write(&current->mm->mmap_sem);
6052                 if (ret < 0)
6053                         printk(KERN_WARNING
6054                                "kvm_vm_ioctl_set_memory_region: "
6055                                "failed to munmap memory\n");
6056         }
6057
6058         if (!kvm->arch.n_requested_mmu_pages)
6059                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6060
6061         spin_lock(&kvm->mmu_lock);
6062         if (nr_mmu_pages)
6063                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6064         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6065         spin_unlock(&kvm->mmu_lock);
6066 }
6067
6068 void kvm_arch_flush_shadow(struct kvm *kvm)
6069 {
6070         kvm_mmu_zap_all(kvm);
6071         kvm_reload_remote_mmus(kvm);
6072 }
6073
6074 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6075 {
6076         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6077                 !vcpu->arch.apf.halted)
6078                 || !list_empty_careful(&vcpu->async_pf.done)
6079                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6080                 || atomic_read(&vcpu->arch.nmi_queued) ||
6081                 (kvm_arch_interrupt_allowed(vcpu) &&
6082                  kvm_cpu_has_interrupt(vcpu));
6083 }
6084
6085 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6086 {
6087         int me;
6088         int cpu = vcpu->cpu;
6089
6090         if (waitqueue_active(&vcpu->wq)) {
6091                 wake_up_interruptible(&vcpu->wq);
6092                 ++vcpu->stat.halt_wakeup;
6093         }
6094
6095         me = get_cpu();
6096         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6097                 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6098                         smp_send_reschedule(cpu);
6099         put_cpu();
6100 }
6101
6102 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6103 {
6104         return kvm_x86_ops->interrupt_allowed(vcpu);
6105 }
6106
6107 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6108 {
6109         unsigned long current_rip = kvm_rip_read(vcpu) +
6110                 get_segment_base(vcpu, VCPU_SREG_CS);
6111
6112         return current_rip == linear_rip;
6113 }
6114 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6115
6116 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6117 {
6118         unsigned long rflags;
6119
6120         rflags = kvm_x86_ops->get_rflags(vcpu);
6121         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6122                 rflags &= ~X86_EFLAGS_TF;
6123         return rflags;
6124 }
6125 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6126
6127 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6128 {
6129         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6130             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6131                 rflags |= X86_EFLAGS_TF;
6132         kvm_x86_ops->set_rflags(vcpu, rflags);
6133         kvm_make_request(KVM_REQ_EVENT, vcpu);
6134 }
6135 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6136
6137 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6138 {
6139         int r;
6140
6141         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6142               is_error_page(work->page))
6143                 return;
6144
6145         r = kvm_mmu_reload(vcpu);
6146         if (unlikely(r))
6147                 return;
6148
6149         if (!vcpu->arch.mmu.direct_map &&
6150               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6151                 return;
6152
6153         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6154 }
6155
6156 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6157 {
6158         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6159 }
6160
6161 static inline u32 kvm_async_pf_next_probe(u32 key)
6162 {
6163         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6164 }
6165
6166 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6167 {
6168         u32 key = kvm_async_pf_hash_fn(gfn);
6169
6170         while (vcpu->arch.apf.gfns[key] != ~0)
6171                 key = kvm_async_pf_next_probe(key);
6172
6173         vcpu->arch.apf.gfns[key] = gfn;
6174 }
6175
6176 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6177 {
6178         int i;
6179         u32 key = kvm_async_pf_hash_fn(gfn);
6180
6181         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6182                      (vcpu->arch.apf.gfns[key] != gfn &&
6183                       vcpu->arch.apf.gfns[key] != ~0); i++)
6184                 key = kvm_async_pf_next_probe(key);
6185
6186         return key;
6187 }
6188
6189 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6190 {
6191         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6192 }
6193
6194 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6195 {
6196         u32 i, j, k;
6197
6198         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6199         while (true) {
6200                 vcpu->arch.apf.gfns[i] = ~0;
6201                 do {
6202                         j = kvm_async_pf_next_probe(j);
6203                         if (vcpu->arch.apf.gfns[j] == ~0)
6204                                 return;
6205                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6206                         /*
6207                          * k lies cyclically in ]i,j]
6208                          * |    i.k.j |
6209                          * |....j i.k.| or  |.k..j i...|
6210                          */
6211                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6212                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6213                 i = j;
6214         }
6215 }
6216
6217 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6218 {
6219
6220         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6221                                       sizeof(val));
6222 }
6223
6224 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6225                                      struct kvm_async_pf *work)
6226 {
6227         struct x86_exception fault;
6228
6229         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6230         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6231
6232         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6233             (vcpu->arch.apf.send_user_only &&
6234              kvm_x86_ops->get_cpl(vcpu) == 0))
6235                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6236         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6237                 fault.vector = PF_VECTOR;
6238                 fault.error_code_valid = true;
6239                 fault.error_code = 0;
6240                 fault.nested_page_fault = false;
6241                 fault.address = work->arch.token;
6242                 kvm_inject_page_fault(vcpu, &fault);
6243         }
6244 }
6245
6246 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6247                                  struct kvm_async_pf *work)
6248 {
6249         struct x86_exception fault;
6250
6251         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6252         if (is_error_page(work->page))
6253                 work->arch.token = ~0; /* broadcast wakeup */
6254         else
6255                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6256
6257         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6258             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6259                 fault.vector = PF_VECTOR;
6260                 fault.error_code_valid = true;
6261                 fault.error_code = 0;
6262                 fault.nested_page_fault = false;
6263                 fault.address = work->arch.token;
6264                 kvm_inject_page_fault(vcpu, &fault);
6265         }
6266         vcpu->arch.apf.halted = false;
6267 }
6268
6269 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6270 {
6271         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6272                 return true;
6273         else
6274                 return !kvm_event_needs_reinjection(vcpu) &&
6275                         kvm_x86_ops->interrupt_allowed(vcpu);
6276 }
6277
6278 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6279 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6280 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6281 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6282 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6283 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6284 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6285 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6286 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6287 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6288 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6289 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);