hugetlb: add nodemask arg to huge page alloc, free and surplus adjust functions
[linux-flexiantxendom0.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
25
26 #include <linux/hugetlb.h>
27 #include "internal.h"
28
29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
32
33 static int max_hstate;
34 unsigned int default_hstate_idx;
35 struct hstate hstates[HUGE_MAX_HSTATE];
36
37 __initdata LIST_HEAD(huge_boot_pages);
38
39 /* for command line parsing */
40 static struct hstate * __initdata parsed_hstate;
41 static unsigned long __initdata default_hstate_max_huge_pages;
42 static unsigned long __initdata default_hstate_size;
43
44 #define for_each_hstate(h) \
45         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46
47 /*
48  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49  */
50 static DEFINE_SPINLOCK(hugetlb_lock);
51
52 /*
53  * Region tracking -- allows tracking of reservations and instantiated pages
54  *                    across the pages in a mapping.
55  *
56  * The region data structures are protected by a combination of the mmap_sem
57  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
58  * must either hold the mmap_sem for write, or the mmap_sem for read and
59  * the hugetlb_instantiation mutex:
60  *
61  *      down_write(&mm->mmap_sem);
62  * or
63  *      down_read(&mm->mmap_sem);
64  *      mutex_lock(&hugetlb_instantiation_mutex);
65  */
66 struct file_region {
67         struct list_head link;
68         long from;
69         long to;
70 };
71
72 static long region_add(struct list_head *head, long f, long t)
73 {
74         struct file_region *rg, *nrg, *trg;
75
76         /* Locate the region we are either in or before. */
77         list_for_each_entry(rg, head, link)
78                 if (f <= rg->to)
79                         break;
80
81         /* Round our left edge to the current segment if it encloses us. */
82         if (f > rg->from)
83                 f = rg->from;
84
85         /* Check for and consume any regions we now overlap with. */
86         nrg = rg;
87         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88                 if (&rg->link == head)
89                         break;
90                 if (rg->from > t)
91                         break;
92
93                 /* If this area reaches higher then extend our area to
94                  * include it completely.  If this is not the first area
95                  * which we intend to reuse, free it. */
96                 if (rg->to > t)
97                         t = rg->to;
98                 if (rg != nrg) {
99                         list_del(&rg->link);
100                         kfree(rg);
101                 }
102         }
103         nrg->from = f;
104         nrg->to = t;
105         return 0;
106 }
107
108 static long region_chg(struct list_head *head, long f, long t)
109 {
110         struct file_region *rg, *nrg;
111         long chg = 0;
112
113         /* Locate the region we are before or in. */
114         list_for_each_entry(rg, head, link)
115                 if (f <= rg->to)
116                         break;
117
118         /* If we are below the current region then a new region is required.
119          * Subtle, allocate a new region at the position but make it zero
120          * size such that we can guarantee to record the reservation. */
121         if (&rg->link == head || t < rg->from) {
122                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123                 if (!nrg)
124                         return -ENOMEM;
125                 nrg->from = f;
126                 nrg->to   = f;
127                 INIT_LIST_HEAD(&nrg->link);
128                 list_add(&nrg->link, rg->link.prev);
129
130                 return t - f;
131         }
132
133         /* Round our left edge to the current segment if it encloses us. */
134         if (f > rg->from)
135                 f = rg->from;
136         chg = t - f;
137
138         /* Check for and consume any regions we now overlap with. */
139         list_for_each_entry(rg, rg->link.prev, link) {
140                 if (&rg->link == head)
141                         break;
142                 if (rg->from > t)
143                         return chg;
144
145                 /* We overlap with this area, if it extends futher than
146                  * us then we must extend ourselves.  Account for its
147                  * existing reservation. */
148                 if (rg->to > t) {
149                         chg += rg->to - t;
150                         t = rg->to;
151                 }
152                 chg -= rg->to - rg->from;
153         }
154         return chg;
155 }
156
157 static long region_truncate(struct list_head *head, long end)
158 {
159         struct file_region *rg, *trg;
160         long chg = 0;
161
162         /* Locate the region we are either in or before. */
163         list_for_each_entry(rg, head, link)
164                 if (end <= rg->to)
165                         break;
166         if (&rg->link == head)
167                 return 0;
168
169         /* If we are in the middle of a region then adjust it. */
170         if (end > rg->from) {
171                 chg = rg->to - end;
172                 rg->to = end;
173                 rg = list_entry(rg->link.next, typeof(*rg), link);
174         }
175
176         /* Drop any remaining regions. */
177         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178                 if (&rg->link == head)
179                         break;
180                 chg += rg->to - rg->from;
181                 list_del(&rg->link);
182                 kfree(rg);
183         }
184         return chg;
185 }
186
187 static long region_count(struct list_head *head, long f, long t)
188 {
189         struct file_region *rg;
190         long chg = 0;
191
192         /* Locate each segment we overlap with, and count that overlap. */
193         list_for_each_entry(rg, head, link) {
194                 int seg_from;
195                 int seg_to;
196
197                 if (rg->to <= f)
198                         continue;
199                 if (rg->from >= t)
200                         break;
201
202                 seg_from = max(rg->from, f);
203                 seg_to = min(rg->to, t);
204
205                 chg += seg_to - seg_from;
206         }
207
208         return chg;
209 }
210
211 /*
212  * Convert the address within this vma to the page offset within
213  * the mapping, in pagecache page units; huge pages here.
214  */
215 static pgoff_t vma_hugecache_offset(struct hstate *h,
216                         struct vm_area_struct *vma, unsigned long address)
217 {
218         return ((address - vma->vm_start) >> huge_page_shift(h)) +
219                         (vma->vm_pgoff >> huge_page_order(h));
220 }
221
222 /*
223  * Return the size of the pages allocated when backing a VMA. In the majority
224  * cases this will be same size as used by the page table entries.
225  */
226 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
227 {
228         struct hstate *hstate;
229
230         if (!is_vm_hugetlb_page(vma))
231                 return PAGE_SIZE;
232
233         hstate = hstate_vma(vma);
234
235         return 1UL << (hstate->order + PAGE_SHIFT);
236 }
237 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
238
239 /*
240  * Return the page size being used by the MMU to back a VMA. In the majority
241  * of cases, the page size used by the kernel matches the MMU size. On
242  * architectures where it differs, an architecture-specific version of this
243  * function is required.
244  */
245 #ifndef vma_mmu_pagesize
246 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
247 {
248         return vma_kernel_pagesize(vma);
249 }
250 #endif
251
252 /*
253  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
254  * bits of the reservation map pointer, which are always clear due to
255  * alignment.
256  */
257 #define HPAGE_RESV_OWNER    (1UL << 0)
258 #define HPAGE_RESV_UNMAPPED (1UL << 1)
259 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
260
261 /*
262  * These helpers are used to track how many pages are reserved for
263  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
264  * is guaranteed to have their future faults succeed.
265  *
266  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
267  * the reserve counters are updated with the hugetlb_lock held. It is safe
268  * to reset the VMA at fork() time as it is not in use yet and there is no
269  * chance of the global counters getting corrupted as a result of the values.
270  *
271  * The private mapping reservation is represented in a subtly different
272  * manner to a shared mapping.  A shared mapping has a region map associated
273  * with the underlying file, this region map represents the backing file
274  * pages which have ever had a reservation assigned which this persists even
275  * after the page is instantiated.  A private mapping has a region map
276  * associated with the original mmap which is attached to all VMAs which
277  * reference it, this region map represents those offsets which have consumed
278  * reservation ie. where pages have been instantiated.
279  */
280 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
281 {
282         return (unsigned long)vma->vm_private_data;
283 }
284
285 static void set_vma_private_data(struct vm_area_struct *vma,
286                                                         unsigned long value)
287 {
288         vma->vm_private_data = (void *)value;
289 }
290
291 struct resv_map {
292         struct kref refs;
293         struct list_head regions;
294 };
295
296 static struct resv_map *resv_map_alloc(void)
297 {
298         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
299         if (!resv_map)
300                 return NULL;
301
302         kref_init(&resv_map->refs);
303         INIT_LIST_HEAD(&resv_map->regions);
304
305         return resv_map;
306 }
307
308 static void resv_map_release(struct kref *ref)
309 {
310         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
311
312         /* Clear out any active regions before we release the map. */
313         region_truncate(&resv_map->regions, 0);
314         kfree(resv_map);
315 }
316
317 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
318 {
319         VM_BUG_ON(!is_vm_hugetlb_page(vma));
320         if (!(vma->vm_flags & VM_MAYSHARE))
321                 return (struct resv_map *)(get_vma_private_data(vma) &
322                                                         ~HPAGE_RESV_MASK);
323         return NULL;
324 }
325
326 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
327 {
328         VM_BUG_ON(!is_vm_hugetlb_page(vma));
329         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
330
331         set_vma_private_data(vma, (get_vma_private_data(vma) &
332                                 HPAGE_RESV_MASK) | (unsigned long)map);
333 }
334
335 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
336 {
337         VM_BUG_ON(!is_vm_hugetlb_page(vma));
338         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
339
340         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
341 }
342
343 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
344 {
345         VM_BUG_ON(!is_vm_hugetlb_page(vma));
346
347         return (get_vma_private_data(vma) & flag) != 0;
348 }
349
350 /* Decrement the reserved pages in the hugepage pool by one */
351 static void decrement_hugepage_resv_vma(struct hstate *h,
352                         struct vm_area_struct *vma)
353 {
354         if (vma->vm_flags & VM_NORESERVE)
355                 return;
356
357         if (vma->vm_flags & VM_MAYSHARE) {
358                 /* Shared mappings always use reserves */
359                 h->resv_huge_pages--;
360         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
361                 /*
362                  * Only the process that called mmap() has reserves for
363                  * private mappings.
364                  */
365                 h->resv_huge_pages--;
366         }
367 }
368
369 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
371 {
372         VM_BUG_ON(!is_vm_hugetlb_page(vma));
373         if (!(vma->vm_flags & VM_MAYSHARE))
374                 vma->vm_private_data = (void *)0;
375 }
376
377 /* Returns true if the VMA has associated reserve pages */
378 static int vma_has_reserves(struct vm_area_struct *vma)
379 {
380         if (vma->vm_flags & VM_MAYSHARE)
381                 return 1;
382         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
383                 return 1;
384         return 0;
385 }
386
387 static void clear_gigantic_page(struct page *page,
388                         unsigned long addr, unsigned long sz)
389 {
390         int i;
391         struct page *p = page;
392
393         might_sleep();
394         for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
395                 cond_resched();
396                 clear_user_highpage(p, addr + i * PAGE_SIZE);
397         }
398 }
399 static void clear_huge_page(struct page *page,
400                         unsigned long addr, unsigned long sz)
401 {
402         int i;
403
404         if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
405                 clear_gigantic_page(page, addr, sz);
406                 return;
407         }
408
409         might_sleep();
410         for (i = 0; i < sz/PAGE_SIZE; i++) {
411                 cond_resched();
412                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
413         }
414 }
415
416 static void copy_gigantic_page(struct page *dst, struct page *src,
417                            unsigned long addr, struct vm_area_struct *vma)
418 {
419         int i;
420         struct hstate *h = hstate_vma(vma);
421         struct page *dst_base = dst;
422         struct page *src_base = src;
423         might_sleep();
424         for (i = 0; i < pages_per_huge_page(h); ) {
425                 cond_resched();
426                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
427
428                 i++;
429                 dst = mem_map_next(dst, dst_base, i);
430                 src = mem_map_next(src, src_base, i);
431         }
432 }
433 static void copy_huge_page(struct page *dst, struct page *src,
434                            unsigned long addr, struct vm_area_struct *vma)
435 {
436         int i;
437         struct hstate *h = hstate_vma(vma);
438
439         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
440                 copy_gigantic_page(dst, src, addr, vma);
441                 return;
442         }
443
444         might_sleep();
445         for (i = 0; i < pages_per_huge_page(h); i++) {
446                 cond_resched();
447                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
448         }
449 }
450
451 static void enqueue_huge_page(struct hstate *h, struct page *page)
452 {
453         int nid = page_to_nid(page);
454         list_add(&page->lru, &h->hugepage_freelists[nid]);
455         h->free_huge_pages++;
456         h->free_huge_pages_node[nid]++;
457 }
458
459 static struct page *dequeue_huge_page_vma(struct hstate *h,
460                                 struct vm_area_struct *vma,
461                                 unsigned long address, int avoid_reserve)
462 {
463         int nid;
464         struct page *page = NULL;
465         struct mempolicy *mpol;
466         nodemask_t *nodemask;
467         struct zonelist *zonelist = huge_zonelist(vma, address,
468                                         htlb_alloc_mask, &mpol, &nodemask);
469         struct zone *zone;
470         struct zoneref *z;
471
472         /*
473          * A child process with MAP_PRIVATE mappings created by their parent
474          * have no page reserves. This check ensures that reservations are
475          * not "stolen". The child may still get SIGKILLed
476          */
477         if (!vma_has_reserves(vma) &&
478                         h->free_huge_pages - h->resv_huge_pages == 0)
479                 return NULL;
480
481         /* If reserves cannot be used, ensure enough pages are in the pool */
482         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
483                 return NULL;
484
485         for_each_zone_zonelist_nodemask(zone, z, zonelist,
486                                                 MAX_NR_ZONES - 1, nodemask) {
487                 nid = zone_to_nid(zone);
488                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
489                     !list_empty(&h->hugepage_freelists[nid])) {
490                         page = list_entry(h->hugepage_freelists[nid].next,
491                                           struct page, lru);
492                         list_del(&page->lru);
493                         h->free_huge_pages--;
494                         h->free_huge_pages_node[nid]--;
495
496                         if (!avoid_reserve)
497                                 decrement_hugepage_resv_vma(h, vma);
498
499                         break;
500                 }
501         }
502         mpol_cond_put(mpol);
503         return page;
504 }
505
506 static void update_and_free_page(struct hstate *h, struct page *page)
507 {
508         int i;
509
510         VM_BUG_ON(h->order >= MAX_ORDER);
511
512         h->nr_huge_pages--;
513         h->nr_huge_pages_node[page_to_nid(page)]--;
514         for (i = 0; i < pages_per_huge_page(h); i++) {
515                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
516                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
517                                 1 << PG_private | 1<< PG_writeback);
518         }
519         set_compound_page_dtor(page, NULL);
520         set_page_refcounted(page);
521         arch_release_hugepage(page);
522         __free_pages(page, huge_page_order(h));
523 }
524
525 struct hstate *size_to_hstate(unsigned long size)
526 {
527         struct hstate *h;
528
529         for_each_hstate(h) {
530                 if (huge_page_size(h) == size)
531                         return h;
532         }
533         return NULL;
534 }
535
536 static void free_huge_page(struct page *page)
537 {
538         /*
539          * Can't pass hstate in here because it is called from the
540          * compound page destructor.
541          */
542         struct hstate *h = page_hstate(page);
543         int nid = page_to_nid(page);
544         struct address_space *mapping;
545
546         mapping = (struct address_space *) page_private(page);
547         set_page_private(page, 0);
548         BUG_ON(page_count(page));
549         INIT_LIST_HEAD(&page->lru);
550
551         spin_lock(&hugetlb_lock);
552         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
553                 update_and_free_page(h, page);
554                 h->surplus_huge_pages--;
555                 h->surplus_huge_pages_node[nid]--;
556         } else {
557                 enqueue_huge_page(h, page);
558         }
559         spin_unlock(&hugetlb_lock);
560         if (mapping)
561                 hugetlb_put_quota(mapping, 1);
562 }
563
564 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
565 {
566         set_compound_page_dtor(page, free_huge_page);
567         spin_lock(&hugetlb_lock);
568         h->nr_huge_pages++;
569         h->nr_huge_pages_node[nid]++;
570         spin_unlock(&hugetlb_lock);
571         put_page(page); /* free it into the hugepage allocator */
572 }
573
574 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
575 {
576         int i;
577         int nr_pages = 1 << order;
578         struct page *p = page + 1;
579
580         /* we rely on prep_new_huge_page to set the destructor */
581         set_compound_order(page, order);
582         __SetPageHead(page);
583         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
584                 __SetPageTail(p);
585                 p->first_page = page;
586         }
587 }
588
589 int PageHuge(struct page *page)
590 {
591         compound_page_dtor *dtor;
592
593         if (!PageCompound(page))
594                 return 0;
595
596         page = compound_head(page);
597         dtor = get_compound_page_dtor(page);
598
599         return dtor == free_huge_page;
600 }
601
602 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
603 {
604         struct page *page;
605
606         if (h->order >= MAX_ORDER)
607                 return NULL;
608
609         page = alloc_pages_exact_node(nid,
610                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
611                                                 __GFP_REPEAT|__GFP_NOWARN,
612                 huge_page_order(h));
613         if (page) {
614                 if (arch_prepare_hugepage(page)) {
615                         __free_pages(page, huge_page_order(h));
616                         return NULL;
617                 }
618                 prep_new_huge_page(h, page, nid);
619         }
620
621         return page;
622 }
623
624 /*
625  * common helper functions for hstate_next_node_to_{alloc|free}.
626  * We may have allocated or freed a huge page based on a different
627  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
628  * be outside of *nodes_allowed.  Ensure that we use an allowed
629  * node for alloc or free.
630  */
631 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
632 {
633         nid = next_node(nid, *nodes_allowed);
634         if (nid == MAX_NUMNODES)
635                 nid = first_node(*nodes_allowed);
636         VM_BUG_ON(nid >= MAX_NUMNODES);
637
638         return nid;
639 }
640
641 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
642 {
643         if (!node_isset(nid, *nodes_allowed))
644                 nid = next_node_allowed(nid, nodes_allowed);
645         return nid;
646 }
647
648 /*
649  * returns the previously saved node ["this node"] from which to
650  * allocate a persistent huge page for the pool and advance the
651  * next node from which to allocate, handling wrap at end of node
652  * mask.
653  */
654 static int hstate_next_node_to_alloc(struct hstate *h,
655                                         nodemask_t *nodes_allowed)
656 {
657         int nid;
658
659         VM_BUG_ON(!nodes_allowed);
660
661         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
662         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
663
664         return nid;
665 }
666
667 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
668 {
669         struct page *page;
670         int start_nid;
671         int next_nid;
672         int ret = 0;
673
674         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
675         next_nid = start_nid;
676
677         do {
678                 page = alloc_fresh_huge_page_node(h, next_nid);
679                 if (page) {
680                         ret = 1;
681                         break;
682                 }
683                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
684         } while (next_nid != start_nid);
685
686         if (ret)
687                 count_vm_event(HTLB_BUDDY_PGALLOC);
688         else
689                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
690
691         return ret;
692 }
693
694 /*
695  * helper for free_pool_huge_page() - return the previously saved
696  * node ["this node"] from which to free a huge page.  Advance the
697  * next node id whether or not we find a free huge page to free so
698  * that the next attempt to free addresses the next node.
699  */
700 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
701 {
702         int nid;
703
704         VM_BUG_ON(!nodes_allowed);
705
706         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
707         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
708
709         return nid;
710 }
711
712 /*
713  * Free huge page from pool from next node to free.
714  * Attempt to keep persistent huge pages more or less
715  * balanced over allowed nodes.
716  * Called with hugetlb_lock locked.
717  */
718 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
719                                                          bool acct_surplus)
720 {
721         int start_nid;
722         int next_nid;
723         int ret = 0;
724
725         start_nid = hstate_next_node_to_free(h, nodes_allowed);
726         next_nid = start_nid;
727
728         do {
729                 /*
730                  * If we're returning unused surplus pages, only examine
731                  * nodes with surplus pages.
732                  */
733                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
734                     !list_empty(&h->hugepage_freelists[next_nid])) {
735                         struct page *page =
736                                 list_entry(h->hugepage_freelists[next_nid].next,
737                                           struct page, lru);
738                         list_del(&page->lru);
739                         h->free_huge_pages--;
740                         h->free_huge_pages_node[next_nid]--;
741                         if (acct_surplus) {
742                                 h->surplus_huge_pages--;
743                                 h->surplus_huge_pages_node[next_nid]--;
744                         }
745                         update_and_free_page(h, page);
746                         ret = 1;
747                         break;
748                 }
749                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
750         } while (next_nid != start_nid);
751
752         return ret;
753 }
754
755 static struct page *alloc_buddy_huge_page(struct hstate *h,
756                         struct vm_area_struct *vma, unsigned long address)
757 {
758         struct page *page;
759         unsigned int nid;
760
761         if (h->order >= MAX_ORDER)
762                 return NULL;
763
764         /*
765          * Assume we will successfully allocate the surplus page to
766          * prevent racing processes from causing the surplus to exceed
767          * overcommit
768          *
769          * This however introduces a different race, where a process B
770          * tries to grow the static hugepage pool while alloc_pages() is
771          * called by process A. B will only examine the per-node
772          * counters in determining if surplus huge pages can be
773          * converted to normal huge pages in adjust_pool_surplus(). A
774          * won't be able to increment the per-node counter, until the
775          * lock is dropped by B, but B doesn't drop hugetlb_lock until
776          * no more huge pages can be converted from surplus to normal
777          * state (and doesn't try to convert again). Thus, we have a
778          * case where a surplus huge page exists, the pool is grown, and
779          * the surplus huge page still exists after, even though it
780          * should just have been converted to a normal huge page. This
781          * does not leak memory, though, as the hugepage will be freed
782          * once it is out of use. It also does not allow the counters to
783          * go out of whack in adjust_pool_surplus() as we don't modify
784          * the node values until we've gotten the hugepage and only the
785          * per-node value is checked there.
786          */
787         spin_lock(&hugetlb_lock);
788         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
789                 spin_unlock(&hugetlb_lock);
790                 return NULL;
791         } else {
792                 h->nr_huge_pages++;
793                 h->surplus_huge_pages++;
794         }
795         spin_unlock(&hugetlb_lock);
796
797         page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
798                                         __GFP_REPEAT|__GFP_NOWARN,
799                                         huge_page_order(h));
800
801         if (page && arch_prepare_hugepage(page)) {
802                 __free_pages(page, huge_page_order(h));
803                 return NULL;
804         }
805
806         spin_lock(&hugetlb_lock);
807         if (page) {
808                 /*
809                  * This page is now managed by the hugetlb allocator and has
810                  * no users -- drop the buddy allocator's reference.
811                  */
812                 put_page_testzero(page);
813                 VM_BUG_ON(page_count(page));
814                 nid = page_to_nid(page);
815                 set_compound_page_dtor(page, free_huge_page);
816                 /*
817                  * We incremented the global counters already
818                  */
819                 h->nr_huge_pages_node[nid]++;
820                 h->surplus_huge_pages_node[nid]++;
821                 __count_vm_event(HTLB_BUDDY_PGALLOC);
822         } else {
823                 h->nr_huge_pages--;
824                 h->surplus_huge_pages--;
825                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
826         }
827         spin_unlock(&hugetlb_lock);
828
829         return page;
830 }
831
832 /*
833  * Increase the hugetlb pool such that it can accomodate a reservation
834  * of size 'delta'.
835  */
836 static int gather_surplus_pages(struct hstate *h, int delta)
837 {
838         struct list_head surplus_list;
839         struct page *page, *tmp;
840         int ret, i;
841         int needed, allocated;
842
843         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
844         if (needed <= 0) {
845                 h->resv_huge_pages += delta;
846                 return 0;
847         }
848
849         allocated = 0;
850         INIT_LIST_HEAD(&surplus_list);
851
852         ret = -ENOMEM;
853 retry:
854         spin_unlock(&hugetlb_lock);
855         for (i = 0; i < needed; i++) {
856                 page = alloc_buddy_huge_page(h, NULL, 0);
857                 if (!page) {
858                         /*
859                          * We were not able to allocate enough pages to
860                          * satisfy the entire reservation so we free what
861                          * we've allocated so far.
862                          */
863                         spin_lock(&hugetlb_lock);
864                         needed = 0;
865                         goto free;
866                 }
867
868                 list_add(&page->lru, &surplus_list);
869         }
870         allocated += needed;
871
872         /*
873          * After retaking hugetlb_lock, we need to recalculate 'needed'
874          * because either resv_huge_pages or free_huge_pages may have changed.
875          */
876         spin_lock(&hugetlb_lock);
877         needed = (h->resv_huge_pages + delta) -
878                         (h->free_huge_pages + allocated);
879         if (needed > 0)
880                 goto retry;
881
882         /*
883          * The surplus_list now contains _at_least_ the number of extra pages
884          * needed to accomodate the reservation.  Add the appropriate number
885          * of pages to the hugetlb pool and free the extras back to the buddy
886          * allocator.  Commit the entire reservation here to prevent another
887          * process from stealing the pages as they are added to the pool but
888          * before they are reserved.
889          */
890         needed += allocated;
891         h->resv_huge_pages += delta;
892         ret = 0;
893 free:
894         /* Free the needed pages to the hugetlb pool */
895         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
896                 if ((--needed) < 0)
897                         break;
898                 list_del(&page->lru);
899                 enqueue_huge_page(h, page);
900         }
901
902         /* Free unnecessary surplus pages to the buddy allocator */
903         if (!list_empty(&surplus_list)) {
904                 spin_unlock(&hugetlb_lock);
905                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
906                         list_del(&page->lru);
907                         /*
908                          * The page has a reference count of zero already, so
909                          * call free_huge_page directly instead of using
910                          * put_page.  This must be done with hugetlb_lock
911                          * unlocked which is safe because free_huge_page takes
912                          * hugetlb_lock before deciding how to free the page.
913                          */
914                         free_huge_page(page);
915                 }
916                 spin_lock(&hugetlb_lock);
917         }
918
919         return ret;
920 }
921
922 /*
923  * When releasing a hugetlb pool reservation, any surplus pages that were
924  * allocated to satisfy the reservation must be explicitly freed if they were
925  * never used.
926  * Called with hugetlb_lock held.
927  */
928 static void return_unused_surplus_pages(struct hstate *h,
929                                         unsigned long unused_resv_pages)
930 {
931         unsigned long nr_pages;
932
933         /* Uncommit the reservation */
934         h->resv_huge_pages -= unused_resv_pages;
935
936         /* Cannot return gigantic pages currently */
937         if (h->order >= MAX_ORDER)
938                 return;
939
940         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
941
942         /*
943          * We want to release as many surplus pages as possible, spread
944          * evenly across all nodes. Iterate across all nodes until we
945          * can no longer free unreserved surplus pages. This occurs when
946          * the nodes with surplus pages have no free pages.
947          * free_pool_huge_page() will balance the the frees across the
948          * on-line nodes for us and will handle the hstate accounting.
949          */
950         while (nr_pages--) {
951                 if (!free_pool_huge_page(h, &node_online_map, 1))
952                         break;
953         }
954 }
955
956 /*
957  * Determine if the huge page at addr within the vma has an associated
958  * reservation.  Where it does not we will need to logically increase
959  * reservation and actually increase quota before an allocation can occur.
960  * Where any new reservation would be required the reservation change is
961  * prepared, but not committed.  Once the page has been quota'd allocated
962  * an instantiated the change should be committed via vma_commit_reservation.
963  * No action is required on failure.
964  */
965 static long vma_needs_reservation(struct hstate *h,
966                         struct vm_area_struct *vma, unsigned long addr)
967 {
968         struct address_space *mapping = vma->vm_file->f_mapping;
969         struct inode *inode = mapping->host;
970
971         if (vma->vm_flags & VM_MAYSHARE) {
972                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
973                 return region_chg(&inode->i_mapping->private_list,
974                                                         idx, idx + 1);
975
976         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
977                 return 1;
978
979         } else  {
980                 long err;
981                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
982                 struct resv_map *reservations = vma_resv_map(vma);
983
984                 err = region_chg(&reservations->regions, idx, idx + 1);
985                 if (err < 0)
986                         return err;
987                 return 0;
988         }
989 }
990 static void vma_commit_reservation(struct hstate *h,
991                         struct vm_area_struct *vma, unsigned long addr)
992 {
993         struct address_space *mapping = vma->vm_file->f_mapping;
994         struct inode *inode = mapping->host;
995
996         if (vma->vm_flags & VM_MAYSHARE) {
997                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
998                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
999
1000         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1001                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1002                 struct resv_map *reservations = vma_resv_map(vma);
1003
1004                 /* Mark this page used in the map. */
1005                 region_add(&reservations->regions, idx, idx + 1);
1006         }
1007 }
1008
1009 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1010                                     unsigned long addr, int avoid_reserve)
1011 {
1012         struct hstate *h = hstate_vma(vma);
1013         struct page *page;
1014         struct address_space *mapping = vma->vm_file->f_mapping;
1015         struct inode *inode = mapping->host;
1016         long chg;
1017
1018         /*
1019          * Processes that did not create the mapping will have no reserves and
1020          * will not have accounted against quota. Check that the quota can be
1021          * made before satisfying the allocation
1022          * MAP_NORESERVE mappings may also need pages and quota allocated
1023          * if no reserve mapping overlaps.
1024          */
1025         chg = vma_needs_reservation(h, vma, addr);
1026         if (chg < 0)
1027                 return ERR_PTR(chg);
1028         if (chg)
1029                 if (hugetlb_get_quota(inode->i_mapping, chg))
1030                         return ERR_PTR(-ENOSPC);
1031
1032         spin_lock(&hugetlb_lock);
1033         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1034         spin_unlock(&hugetlb_lock);
1035
1036         if (!page) {
1037                 page = alloc_buddy_huge_page(h, vma, addr);
1038                 if (!page) {
1039                         hugetlb_put_quota(inode->i_mapping, chg);
1040                         return ERR_PTR(-VM_FAULT_OOM);
1041                 }
1042         }
1043
1044         set_page_refcounted(page);
1045         set_page_private(page, (unsigned long) mapping);
1046
1047         vma_commit_reservation(h, vma, addr);
1048
1049         return page;
1050 }
1051
1052 int __weak alloc_bootmem_huge_page(struct hstate *h)
1053 {
1054         struct huge_bootmem_page *m;
1055         int nr_nodes = nodes_weight(node_online_map);
1056
1057         while (nr_nodes) {
1058                 void *addr;
1059
1060                 addr = __alloc_bootmem_node_nopanic(
1061                                 NODE_DATA(hstate_next_node_to_alloc(h,
1062                                                         &node_online_map)),
1063                                 huge_page_size(h), huge_page_size(h), 0);
1064
1065                 if (addr) {
1066                         /*
1067                          * Use the beginning of the huge page to store the
1068                          * huge_bootmem_page struct (until gather_bootmem
1069                          * puts them into the mem_map).
1070                          */
1071                         m = addr;
1072                         goto found;
1073                 }
1074                 nr_nodes--;
1075         }
1076         return 0;
1077
1078 found:
1079         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1080         /* Put them into a private list first because mem_map is not up yet */
1081         list_add(&m->list, &huge_boot_pages);
1082         m->hstate = h;
1083         return 1;
1084 }
1085
1086 static void prep_compound_huge_page(struct page *page, int order)
1087 {
1088         if (unlikely(order > (MAX_ORDER - 1)))
1089                 prep_compound_gigantic_page(page, order);
1090         else
1091                 prep_compound_page(page, order);
1092 }
1093
1094 /* Put bootmem huge pages into the standard lists after mem_map is up */
1095 static void __init gather_bootmem_prealloc(void)
1096 {
1097         struct huge_bootmem_page *m;
1098
1099         list_for_each_entry(m, &huge_boot_pages, list) {
1100                 struct page *page = virt_to_page(m);
1101                 struct hstate *h = m->hstate;
1102                 __ClearPageReserved(page);
1103                 WARN_ON(page_count(page) != 1);
1104                 prep_compound_huge_page(page, h->order);
1105                 prep_new_huge_page(h, page, page_to_nid(page));
1106         }
1107 }
1108
1109 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1110 {
1111         unsigned long i;
1112
1113         for (i = 0; i < h->max_huge_pages; ++i) {
1114                 if (h->order >= MAX_ORDER) {
1115                         if (!alloc_bootmem_huge_page(h))
1116                                 break;
1117                 } else if (!alloc_fresh_huge_page(h, &node_online_map))
1118                         break;
1119         }
1120         h->max_huge_pages = i;
1121 }
1122
1123 static void __init hugetlb_init_hstates(void)
1124 {
1125         struct hstate *h;
1126
1127         for_each_hstate(h) {
1128                 /* oversize hugepages were init'ed in early boot */
1129                 if (h->order < MAX_ORDER)
1130                         hugetlb_hstate_alloc_pages(h);
1131         }
1132 }
1133
1134 static char * __init memfmt(char *buf, unsigned long n)
1135 {
1136         if (n >= (1UL << 30))
1137                 sprintf(buf, "%lu GB", n >> 30);
1138         else if (n >= (1UL << 20))
1139                 sprintf(buf, "%lu MB", n >> 20);
1140         else
1141                 sprintf(buf, "%lu KB", n >> 10);
1142         return buf;
1143 }
1144
1145 static void __init report_hugepages(void)
1146 {
1147         struct hstate *h;
1148
1149         for_each_hstate(h) {
1150                 char buf[32];
1151                 printk(KERN_INFO "HugeTLB registered %s page size, "
1152                                  "pre-allocated %ld pages\n",
1153                         memfmt(buf, huge_page_size(h)),
1154                         h->free_huge_pages);
1155         }
1156 }
1157
1158 #ifdef CONFIG_HIGHMEM
1159 static void try_to_free_low(struct hstate *h, unsigned long count,
1160                                                 nodemask_t *nodes_allowed)
1161 {
1162         int i;
1163
1164         if (h->order >= MAX_ORDER)
1165                 return;
1166
1167         for_each_node_mask(i, *nodes_allowed) {
1168                 struct page *page, *next;
1169                 struct list_head *freel = &h->hugepage_freelists[i];
1170                 list_for_each_entry_safe(page, next, freel, lru) {
1171                         if (count >= h->nr_huge_pages)
1172                                 return;
1173                         if (PageHighMem(page))
1174                                 continue;
1175                         list_del(&page->lru);
1176                         update_and_free_page(h, page);
1177                         h->free_huge_pages--;
1178                         h->free_huge_pages_node[page_to_nid(page)]--;
1179                 }
1180         }
1181 }
1182 #else
1183 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1184                                                 nodemask_t *nodes_allowed)
1185 {
1186 }
1187 #endif
1188
1189 /*
1190  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1191  * balanced by operating on them in a round-robin fashion.
1192  * Returns 1 if an adjustment was made.
1193  */
1194 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1195                                 int delta)
1196 {
1197         int start_nid, next_nid;
1198         int ret = 0;
1199
1200         VM_BUG_ON(delta != -1 && delta != 1);
1201
1202         if (delta < 0)
1203                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1204         else
1205                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1206         next_nid = start_nid;
1207
1208         do {
1209                 int nid = next_nid;
1210                 if (delta < 0)  {
1211                         /*
1212                          * To shrink on this node, there must be a surplus page
1213                          */
1214                         if (!h->surplus_huge_pages_node[nid]) {
1215                                 next_nid = hstate_next_node_to_alloc(h,
1216                                                                 nodes_allowed);
1217                                 continue;
1218                         }
1219                 }
1220                 if (delta > 0) {
1221                         /*
1222                          * Surplus cannot exceed the total number of pages
1223                          */
1224                         if (h->surplus_huge_pages_node[nid] >=
1225                                                 h->nr_huge_pages_node[nid]) {
1226                                 next_nid = hstate_next_node_to_free(h,
1227                                                                 nodes_allowed);
1228                                 continue;
1229                         }
1230                 }
1231
1232                 h->surplus_huge_pages += delta;
1233                 h->surplus_huge_pages_node[nid] += delta;
1234                 ret = 1;
1235                 break;
1236         } while (next_nid != start_nid);
1237
1238         return ret;
1239 }
1240
1241 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1242 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1243                                                 nodemask_t *nodes_allowed)
1244 {
1245         unsigned long min_count, ret;
1246
1247         if (h->order >= MAX_ORDER)
1248                 return h->max_huge_pages;
1249
1250         /*
1251          * Increase the pool size
1252          * First take pages out of surplus state.  Then make up the
1253          * remaining difference by allocating fresh huge pages.
1254          *
1255          * We might race with alloc_buddy_huge_page() here and be unable
1256          * to convert a surplus huge page to a normal huge page. That is
1257          * not critical, though, it just means the overall size of the
1258          * pool might be one hugepage larger than it needs to be, but
1259          * within all the constraints specified by the sysctls.
1260          */
1261         spin_lock(&hugetlb_lock);
1262         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1263                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1264                         break;
1265         }
1266
1267         while (count > persistent_huge_pages(h)) {
1268                 /*
1269                  * If this allocation races such that we no longer need the
1270                  * page, free_huge_page will handle it by freeing the page
1271                  * and reducing the surplus.
1272                  */
1273                 spin_unlock(&hugetlb_lock);
1274                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1275                 spin_lock(&hugetlb_lock);
1276                 if (!ret)
1277                         goto out;
1278
1279         }
1280
1281         /*
1282          * Decrease the pool size
1283          * First return free pages to the buddy allocator (being careful
1284          * to keep enough around to satisfy reservations).  Then place
1285          * pages into surplus state as needed so the pool will shrink
1286          * to the desired size as pages become free.
1287          *
1288          * By placing pages into the surplus state independent of the
1289          * overcommit value, we are allowing the surplus pool size to
1290          * exceed overcommit. There are few sane options here. Since
1291          * alloc_buddy_huge_page() is checking the global counter,
1292          * though, we'll note that we're not allowed to exceed surplus
1293          * and won't grow the pool anywhere else. Not until one of the
1294          * sysctls are changed, or the surplus pages go out of use.
1295          */
1296         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1297         min_count = max(count, min_count);
1298         try_to_free_low(h, min_count, nodes_allowed);
1299         while (min_count < persistent_huge_pages(h)) {
1300                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1301                         break;
1302         }
1303         while (count < persistent_huge_pages(h)) {
1304                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1305                         break;
1306         }
1307 out:
1308         ret = persistent_huge_pages(h);
1309         spin_unlock(&hugetlb_lock);
1310         return ret;
1311 }
1312
1313 #define HSTATE_ATTR_RO(_name) \
1314         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1315
1316 #define HSTATE_ATTR(_name) \
1317         static struct kobj_attribute _name##_attr = \
1318                 __ATTR(_name, 0644, _name##_show, _name##_store)
1319
1320 static struct kobject *hugepages_kobj;
1321 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1322
1323 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1324 {
1325         int i;
1326         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1327                 if (hstate_kobjs[i] == kobj)
1328                         return &hstates[i];
1329         BUG();
1330         return NULL;
1331 }
1332
1333 static ssize_t nr_hugepages_show(struct kobject *kobj,
1334                                         struct kobj_attribute *attr, char *buf)
1335 {
1336         struct hstate *h = kobj_to_hstate(kobj);
1337         return sprintf(buf, "%lu\n", h->nr_huge_pages);
1338 }
1339 static ssize_t nr_hugepages_store(struct kobject *kobj,
1340                 struct kobj_attribute *attr, const char *buf, size_t count)
1341 {
1342         int err;
1343         unsigned long input;
1344         struct hstate *h = kobj_to_hstate(kobj);
1345
1346         err = strict_strtoul(buf, 10, &input);
1347         if (err)
1348                 return 0;
1349
1350         h->max_huge_pages = set_max_huge_pages(h, input, &node_online_map);
1351
1352         return count;
1353 }
1354 HSTATE_ATTR(nr_hugepages);
1355
1356 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1357                                         struct kobj_attribute *attr, char *buf)
1358 {
1359         struct hstate *h = kobj_to_hstate(kobj);
1360         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1361 }
1362 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1363                 struct kobj_attribute *attr, const char *buf, size_t count)
1364 {
1365         int err;
1366         unsigned long input;
1367         struct hstate *h = kobj_to_hstate(kobj);
1368
1369         err = strict_strtoul(buf, 10, &input);
1370         if (err)
1371                 return 0;
1372
1373         spin_lock(&hugetlb_lock);
1374         h->nr_overcommit_huge_pages = input;
1375         spin_unlock(&hugetlb_lock);
1376
1377         return count;
1378 }
1379 HSTATE_ATTR(nr_overcommit_hugepages);
1380
1381 static ssize_t free_hugepages_show(struct kobject *kobj,
1382                                         struct kobj_attribute *attr, char *buf)
1383 {
1384         struct hstate *h = kobj_to_hstate(kobj);
1385         return sprintf(buf, "%lu\n", h->free_huge_pages);
1386 }
1387 HSTATE_ATTR_RO(free_hugepages);
1388
1389 static ssize_t resv_hugepages_show(struct kobject *kobj,
1390                                         struct kobj_attribute *attr, char *buf)
1391 {
1392         struct hstate *h = kobj_to_hstate(kobj);
1393         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1394 }
1395 HSTATE_ATTR_RO(resv_hugepages);
1396
1397 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1398                                         struct kobj_attribute *attr, char *buf)
1399 {
1400         struct hstate *h = kobj_to_hstate(kobj);
1401         return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1402 }
1403 HSTATE_ATTR_RO(surplus_hugepages);
1404
1405 static struct attribute *hstate_attrs[] = {
1406         &nr_hugepages_attr.attr,
1407         &nr_overcommit_hugepages_attr.attr,
1408         &free_hugepages_attr.attr,
1409         &resv_hugepages_attr.attr,
1410         &surplus_hugepages_attr.attr,
1411         NULL,
1412 };
1413
1414 static struct attribute_group hstate_attr_group = {
1415         .attrs = hstate_attrs,
1416 };
1417
1418 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1419 {
1420         int retval;
1421
1422         hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1423                                                         hugepages_kobj);
1424         if (!hstate_kobjs[h - hstates])
1425                 return -ENOMEM;
1426
1427         retval = sysfs_create_group(hstate_kobjs[h - hstates],
1428                                                         &hstate_attr_group);
1429         if (retval)
1430                 kobject_put(hstate_kobjs[h - hstates]);
1431
1432         return retval;
1433 }
1434
1435 static void __init hugetlb_sysfs_init(void)
1436 {
1437         struct hstate *h;
1438         int err;
1439
1440         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1441         if (!hugepages_kobj)
1442                 return;
1443
1444         for_each_hstate(h) {
1445                 err = hugetlb_sysfs_add_hstate(h);
1446                 if (err)
1447                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1448                                                                 h->name);
1449         }
1450 }
1451
1452 static void __exit hugetlb_exit(void)
1453 {
1454         struct hstate *h;
1455
1456         for_each_hstate(h) {
1457                 kobject_put(hstate_kobjs[h - hstates]);
1458         }
1459
1460         kobject_put(hugepages_kobj);
1461 }
1462 module_exit(hugetlb_exit);
1463
1464 static int __init hugetlb_init(void)
1465 {
1466         /* Some platform decide whether they support huge pages at boot
1467          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1468          * there is no such support
1469          */
1470         if (HPAGE_SHIFT == 0)
1471                 return 0;
1472
1473         if (!size_to_hstate(default_hstate_size)) {
1474                 default_hstate_size = HPAGE_SIZE;
1475                 if (!size_to_hstate(default_hstate_size))
1476                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1477         }
1478         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1479         if (default_hstate_max_huge_pages)
1480                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1481
1482         hugetlb_init_hstates();
1483
1484         gather_bootmem_prealloc();
1485
1486         report_hugepages();
1487
1488         hugetlb_sysfs_init();
1489
1490         return 0;
1491 }
1492 module_init(hugetlb_init);
1493
1494 /* Should be called on processing a hugepagesz=... option */
1495 void __init hugetlb_add_hstate(unsigned order)
1496 {
1497         struct hstate *h;
1498         unsigned long i;
1499
1500         if (size_to_hstate(PAGE_SIZE << order)) {
1501                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1502                 return;
1503         }
1504         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1505         BUG_ON(order == 0);
1506         h = &hstates[max_hstate++];
1507         h->order = order;
1508         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1509         h->nr_huge_pages = 0;
1510         h->free_huge_pages = 0;
1511         for (i = 0; i < MAX_NUMNODES; ++i)
1512                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1513         h->next_nid_to_alloc = first_node(node_online_map);
1514         h->next_nid_to_free = first_node(node_online_map);
1515         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1516                                         huge_page_size(h)/1024);
1517
1518         parsed_hstate = h;
1519 }
1520
1521 static int __init hugetlb_nrpages_setup(char *s)
1522 {
1523         unsigned long *mhp;
1524         static unsigned long *last_mhp;
1525
1526         /*
1527          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1528          * so this hugepages= parameter goes to the "default hstate".
1529          */
1530         if (!max_hstate)
1531                 mhp = &default_hstate_max_huge_pages;
1532         else
1533                 mhp = &parsed_hstate->max_huge_pages;
1534
1535         if (mhp == last_mhp) {
1536                 printk(KERN_WARNING "hugepages= specified twice without "
1537                         "interleaving hugepagesz=, ignoring\n");
1538                 return 1;
1539         }
1540
1541         if (sscanf(s, "%lu", mhp) <= 0)
1542                 *mhp = 0;
1543
1544         /*
1545          * Global state is always initialized later in hugetlb_init.
1546          * But we need to allocate >= MAX_ORDER hstates here early to still
1547          * use the bootmem allocator.
1548          */
1549         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1550                 hugetlb_hstate_alloc_pages(parsed_hstate);
1551
1552         last_mhp = mhp;
1553
1554         return 1;
1555 }
1556 __setup("hugepages=", hugetlb_nrpages_setup);
1557
1558 static int __init hugetlb_default_setup(char *s)
1559 {
1560         default_hstate_size = memparse(s, &s);
1561         return 1;
1562 }
1563 __setup("default_hugepagesz=", hugetlb_default_setup);
1564
1565 static unsigned int cpuset_mems_nr(unsigned int *array)
1566 {
1567         int node;
1568         unsigned int nr = 0;
1569
1570         for_each_node_mask(node, cpuset_current_mems_allowed)
1571                 nr += array[node];
1572
1573         return nr;
1574 }
1575
1576 #ifdef CONFIG_SYSCTL
1577 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1578                            void __user *buffer,
1579                            size_t *length, loff_t *ppos)
1580 {
1581         struct hstate *h = &default_hstate;
1582         unsigned long tmp;
1583
1584         if (!write)
1585                 tmp = h->max_huge_pages;
1586
1587         table->data = &tmp;
1588         table->maxlen = sizeof(unsigned long);
1589         proc_doulongvec_minmax(table, write, buffer, length, ppos);
1590
1591         if (write)
1592                 h->max_huge_pages = set_max_huge_pages(h, tmp,
1593                                                         &node_online_map);
1594
1595         return 0;
1596 }
1597
1598 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1599                         void __user *buffer,
1600                         size_t *length, loff_t *ppos)
1601 {
1602         proc_dointvec(table, write, buffer, length, ppos);
1603         if (hugepages_treat_as_movable)
1604                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1605         else
1606                 htlb_alloc_mask = GFP_HIGHUSER;
1607         return 0;
1608 }
1609
1610 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1611                         void __user *buffer,
1612                         size_t *length, loff_t *ppos)
1613 {
1614         struct hstate *h = &default_hstate;
1615         unsigned long tmp;
1616
1617         if (!write)
1618                 tmp = h->nr_overcommit_huge_pages;
1619
1620         table->data = &tmp;
1621         table->maxlen = sizeof(unsigned long);
1622         proc_doulongvec_minmax(table, write, buffer, length, ppos);
1623
1624         if (write) {
1625                 spin_lock(&hugetlb_lock);
1626                 h->nr_overcommit_huge_pages = tmp;
1627                 spin_unlock(&hugetlb_lock);
1628         }
1629
1630         return 0;
1631 }
1632
1633 #endif /* CONFIG_SYSCTL */
1634
1635 void hugetlb_report_meminfo(struct seq_file *m)
1636 {
1637         struct hstate *h = &default_hstate;
1638         seq_printf(m,
1639                         "HugePages_Total:   %5lu\n"
1640                         "HugePages_Free:    %5lu\n"
1641                         "HugePages_Rsvd:    %5lu\n"
1642                         "HugePages_Surp:    %5lu\n"
1643                         "Hugepagesize:   %8lu kB\n",
1644                         h->nr_huge_pages,
1645                         h->free_huge_pages,
1646                         h->resv_huge_pages,
1647                         h->surplus_huge_pages,
1648                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1649 }
1650
1651 int hugetlb_report_node_meminfo(int nid, char *buf)
1652 {
1653         struct hstate *h = &default_hstate;
1654         return sprintf(buf,
1655                 "Node %d HugePages_Total: %5u\n"
1656                 "Node %d HugePages_Free:  %5u\n"
1657                 "Node %d HugePages_Surp:  %5u\n",
1658                 nid, h->nr_huge_pages_node[nid],
1659                 nid, h->free_huge_pages_node[nid],
1660                 nid, h->surplus_huge_pages_node[nid]);
1661 }
1662
1663 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1664 unsigned long hugetlb_total_pages(void)
1665 {
1666         struct hstate *h = &default_hstate;
1667         return h->nr_huge_pages * pages_per_huge_page(h);
1668 }
1669
1670 static int hugetlb_acct_memory(struct hstate *h, long delta)
1671 {
1672         int ret = -ENOMEM;
1673
1674         spin_lock(&hugetlb_lock);
1675         /*
1676          * When cpuset is configured, it breaks the strict hugetlb page
1677          * reservation as the accounting is done on a global variable. Such
1678          * reservation is completely rubbish in the presence of cpuset because
1679          * the reservation is not checked against page availability for the
1680          * current cpuset. Application can still potentially OOM'ed by kernel
1681          * with lack of free htlb page in cpuset that the task is in.
1682          * Attempt to enforce strict accounting with cpuset is almost
1683          * impossible (or too ugly) because cpuset is too fluid that
1684          * task or memory node can be dynamically moved between cpusets.
1685          *
1686          * The change of semantics for shared hugetlb mapping with cpuset is
1687          * undesirable. However, in order to preserve some of the semantics,
1688          * we fall back to check against current free page availability as
1689          * a best attempt and hopefully to minimize the impact of changing
1690          * semantics that cpuset has.
1691          */
1692         if (delta > 0) {
1693                 if (gather_surplus_pages(h, delta) < 0)
1694                         goto out;
1695
1696                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1697                         return_unused_surplus_pages(h, delta);
1698                         goto out;
1699                 }
1700         }
1701
1702         ret = 0;
1703         if (delta < 0)
1704                 return_unused_surplus_pages(h, (unsigned long) -delta);
1705
1706 out:
1707         spin_unlock(&hugetlb_lock);
1708         return ret;
1709 }
1710
1711 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1712 {
1713         struct resv_map *reservations = vma_resv_map(vma);
1714
1715         /*
1716          * This new VMA should share its siblings reservation map if present.
1717          * The VMA will only ever have a valid reservation map pointer where
1718          * it is being copied for another still existing VMA.  As that VMA
1719          * has a reference to the reservation map it cannot dissappear until
1720          * after this open call completes.  It is therefore safe to take a
1721          * new reference here without additional locking.
1722          */
1723         if (reservations)
1724                 kref_get(&reservations->refs);
1725 }
1726
1727 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1728 {
1729         struct hstate *h = hstate_vma(vma);
1730         struct resv_map *reservations = vma_resv_map(vma);
1731         unsigned long reserve;
1732         unsigned long start;
1733         unsigned long end;
1734
1735         if (reservations) {
1736                 start = vma_hugecache_offset(h, vma, vma->vm_start);
1737                 end = vma_hugecache_offset(h, vma, vma->vm_end);
1738
1739                 reserve = (end - start) -
1740                         region_count(&reservations->regions, start, end);
1741
1742                 kref_put(&reservations->refs, resv_map_release);
1743
1744                 if (reserve) {
1745                         hugetlb_acct_memory(h, -reserve);
1746                         hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1747                 }
1748         }
1749 }
1750
1751 /*
1752  * We cannot handle pagefaults against hugetlb pages at all.  They cause
1753  * handle_mm_fault() to try to instantiate regular-sized pages in the
1754  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
1755  * this far.
1756  */
1757 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1758 {
1759         BUG();
1760         return 0;
1761 }
1762
1763 const struct vm_operations_struct hugetlb_vm_ops = {
1764         .fault = hugetlb_vm_op_fault,
1765         .open = hugetlb_vm_op_open,
1766         .close = hugetlb_vm_op_close,
1767 };
1768
1769 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1770                                 int writable)
1771 {
1772         pte_t entry;
1773
1774         if (writable) {
1775                 entry =
1776                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1777         } else {
1778                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1779         }
1780         entry = pte_mkyoung(entry);
1781         entry = pte_mkhuge(entry);
1782
1783         return entry;
1784 }
1785
1786 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1787                                    unsigned long address, pte_t *ptep)
1788 {
1789         pte_t entry;
1790
1791         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1792         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1793                 update_mmu_cache(vma, address, entry);
1794         }
1795 }
1796
1797
1798 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1799                             struct vm_area_struct *vma)
1800 {
1801         pte_t *src_pte, *dst_pte, entry;
1802         struct page *ptepage;
1803         unsigned long addr;
1804         int cow;
1805         struct hstate *h = hstate_vma(vma);
1806         unsigned long sz = huge_page_size(h);
1807
1808         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1809
1810         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1811                 src_pte = huge_pte_offset(src, addr);
1812                 if (!src_pte)
1813                         continue;
1814                 dst_pte = huge_pte_alloc(dst, addr, sz);
1815                 if (!dst_pte)
1816                         goto nomem;
1817
1818                 /* If the pagetables are shared don't copy or take references */
1819                 if (dst_pte == src_pte)
1820                         continue;
1821
1822                 spin_lock(&dst->page_table_lock);
1823                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1824                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1825                         if (cow)
1826                                 huge_ptep_set_wrprotect(src, addr, src_pte);
1827                         entry = huge_ptep_get(src_pte);
1828                         ptepage = pte_page(entry);
1829                         get_page(ptepage);
1830                         set_huge_pte_at(dst, addr, dst_pte, entry);
1831                 }
1832                 spin_unlock(&src->page_table_lock);
1833                 spin_unlock(&dst->page_table_lock);
1834         }
1835         return 0;
1836
1837 nomem:
1838         return -ENOMEM;
1839 }
1840
1841 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1842                             unsigned long end, struct page *ref_page)
1843 {
1844         struct mm_struct *mm = vma->vm_mm;
1845         unsigned long address;
1846         pte_t *ptep;
1847         pte_t pte;
1848         struct page *page;
1849         struct page *tmp;
1850         struct hstate *h = hstate_vma(vma);
1851         unsigned long sz = huge_page_size(h);
1852
1853         /*
1854          * A page gathering list, protected by per file i_mmap_lock. The
1855          * lock is used to avoid list corruption from multiple unmapping
1856          * of the same page since we are using page->lru.
1857          */
1858         LIST_HEAD(page_list);
1859
1860         WARN_ON(!is_vm_hugetlb_page(vma));
1861         BUG_ON(start & ~huge_page_mask(h));
1862         BUG_ON(end & ~huge_page_mask(h));
1863
1864         mmu_notifier_invalidate_range_start(mm, start, end);
1865         spin_lock(&mm->page_table_lock);
1866         for (address = start; address < end; address += sz) {
1867                 ptep = huge_pte_offset(mm, address);
1868                 if (!ptep)
1869                         continue;
1870
1871                 if (huge_pmd_unshare(mm, &address, ptep))
1872                         continue;
1873
1874                 /*
1875                  * If a reference page is supplied, it is because a specific
1876                  * page is being unmapped, not a range. Ensure the page we
1877                  * are about to unmap is the actual page of interest.
1878                  */
1879                 if (ref_page) {
1880                         pte = huge_ptep_get(ptep);
1881                         if (huge_pte_none(pte))
1882                                 continue;
1883                         page = pte_page(pte);
1884                         if (page != ref_page)
1885                                 continue;
1886
1887                         /*
1888                          * Mark the VMA as having unmapped its page so that
1889                          * future faults in this VMA will fail rather than
1890                          * looking like data was lost
1891                          */
1892                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1893                 }
1894
1895                 pte = huge_ptep_get_and_clear(mm, address, ptep);
1896                 if (huge_pte_none(pte))
1897                         continue;
1898
1899                 page = pte_page(pte);
1900                 if (pte_dirty(pte))
1901                         set_page_dirty(page);
1902                 list_add(&page->lru, &page_list);
1903         }
1904         spin_unlock(&mm->page_table_lock);
1905         flush_tlb_range(vma, start, end);
1906         mmu_notifier_invalidate_range_end(mm, start, end);
1907         list_for_each_entry_safe(page, tmp, &page_list, lru) {
1908                 list_del(&page->lru);
1909                 put_page(page);
1910         }
1911 }
1912
1913 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1914                           unsigned long end, struct page *ref_page)
1915 {
1916         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1917         __unmap_hugepage_range(vma, start, end, ref_page);
1918         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1919 }
1920
1921 /*
1922  * This is called when the original mapper is failing to COW a MAP_PRIVATE
1923  * mappping it owns the reserve page for. The intention is to unmap the page
1924  * from other VMAs and let the children be SIGKILLed if they are faulting the
1925  * same region.
1926  */
1927 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1928                                 struct page *page, unsigned long address)
1929 {
1930         struct hstate *h = hstate_vma(vma);
1931         struct vm_area_struct *iter_vma;
1932         struct address_space *mapping;
1933         struct prio_tree_iter iter;
1934         pgoff_t pgoff;
1935
1936         /*
1937          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
1938          * from page cache lookup which is in HPAGE_SIZE units.
1939          */
1940         address = address & huge_page_mask(h);
1941         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
1942                 + (vma->vm_pgoff >> PAGE_SHIFT);
1943         mapping = (struct address_space *)page_private(page);
1944
1945         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1946                 /* Do not unmap the current VMA */
1947                 if (iter_vma == vma)
1948                         continue;
1949
1950                 /*
1951                  * Unmap the page from other VMAs without their own reserves.
1952                  * They get marked to be SIGKILLed if they fault in these
1953                  * areas. This is because a future no-page fault on this VMA
1954                  * could insert a zeroed page instead of the data existing
1955                  * from the time of fork. This would look like data corruption
1956                  */
1957                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
1958                         unmap_hugepage_range(iter_vma,
1959                                 address, address + huge_page_size(h),
1960                                 page);
1961         }
1962
1963         return 1;
1964 }
1965
1966 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1967                         unsigned long address, pte_t *ptep, pte_t pte,
1968                         struct page *pagecache_page)
1969 {
1970         struct hstate *h = hstate_vma(vma);
1971         struct page *old_page, *new_page;
1972         int avoidcopy;
1973         int outside_reserve = 0;
1974
1975         old_page = pte_page(pte);
1976
1977 retry_avoidcopy:
1978         /* If no-one else is actually using this page, avoid the copy
1979          * and just make the page writable */
1980         avoidcopy = (page_count(old_page) == 1);
1981         if (avoidcopy) {
1982                 set_huge_ptep_writable(vma, address, ptep);
1983                 return 0;
1984         }
1985
1986         /*
1987          * If the process that created a MAP_PRIVATE mapping is about to
1988          * perform a COW due to a shared page count, attempt to satisfy
1989          * the allocation without using the existing reserves. The pagecache
1990          * page is used to determine if the reserve at this address was
1991          * consumed or not. If reserves were used, a partial faulted mapping
1992          * at the time of fork() could consume its reserves on COW instead
1993          * of the full address range.
1994          */
1995         if (!(vma->vm_flags & VM_MAYSHARE) &&
1996                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
1997                         old_page != pagecache_page)
1998                 outside_reserve = 1;
1999
2000         page_cache_get(old_page);
2001         new_page = alloc_huge_page(vma, address, outside_reserve);
2002
2003         if (IS_ERR(new_page)) {
2004                 page_cache_release(old_page);
2005
2006                 /*
2007                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2008                  * it is due to references held by a child and an insufficient
2009                  * huge page pool. To guarantee the original mappers
2010                  * reliability, unmap the page from child processes. The child
2011                  * may get SIGKILLed if it later faults.
2012                  */
2013                 if (outside_reserve) {
2014                         BUG_ON(huge_pte_none(pte));
2015                         if (unmap_ref_private(mm, vma, old_page, address)) {
2016                                 BUG_ON(page_count(old_page) != 1);
2017                                 BUG_ON(huge_pte_none(pte));
2018                                 goto retry_avoidcopy;
2019                         }
2020                         WARN_ON_ONCE(1);
2021                 }
2022
2023                 return -PTR_ERR(new_page);
2024         }
2025
2026         spin_unlock(&mm->page_table_lock);
2027         copy_huge_page(new_page, old_page, address, vma);
2028         __SetPageUptodate(new_page);
2029         spin_lock(&mm->page_table_lock);
2030
2031         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2032         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2033                 /* Break COW */
2034                 huge_ptep_clear_flush(vma, address, ptep);
2035                 set_huge_pte_at(mm, address, ptep,
2036                                 make_huge_pte(vma, new_page, 1));
2037                 /* Make the old page be freed below */
2038                 new_page = old_page;
2039         }
2040         page_cache_release(new_page);
2041         page_cache_release(old_page);
2042         return 0;
2043 }
2044
2045 /* Return the pagecache page at a given address within a VMA */
2046 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2047                         struct vm_area_struct *vma, unsigned long address)
2048 {
2049         struct address_space *mapping;
2050         pgoff_t idx;
2051
2052         mapping = vma->vm_file->f_mapping;
2053         idx = vma_hugecache_offset(h, vma, address);
2054
2055         return find_lock_page(mapping, idx);
2056 }
2057
2058 /*
2059  * Return whether there is a pagecache page to back given address within VMA.
2060  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2061  */
2062 static bool hugetlbfs_pagecache_present(struct hstate *h,
2063                         struct vm_area_struct *vma, unsigned long address)
2064 {
2065         struct address_space *mapping;
2066         pgoff_t idx;
2067         struct page *page;
2068
2069         mapping = vma->vm_file->f_mapping;
2070         idx = vma_hugecache_offset(h, vma, address);
2071
2072         page = find_get_page(mapping, idx);
2073         if (page)
2074                 put_page(page);
2075         return page != NULL;
2076 }
2077
2078 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2079                         unsigned long address, pte_t *ptep, unsigned int flags)
2080 {
2081         struct hstate *h = hstate_vma(vma);
2082         int ret = VM_FAULT_SIGBUS;
2083         pgoff_t idx;
2084         unsigned long size;
2085         struct page *page;
2086         struct address_space *mapping;
2087         pte_t new_pte;
2088
2089         /*
2090          * Currently, we are forced to kill the process in the event the
2091          * original mapper has unmapped pages from the child due to a failed
2092          * COW. Warn that such a situation has occured as it may not be obvious
2093          */
2094         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2095                 printk(KERN_WARNING
2096                         "PID %d killed due to inadequate hugepage pool\n",
2097                         current->pid);
2098                 return ret;
2099         }
2100
2101         mapping = vma->vm_file->f_mapping;
2102         idx = vma_hugecache_offset(h, vma, address);
2103
2104         /*
2105          * Use page lock to guard against racing truncation
2106          * before we get page_table_lock.
2107          */
2108 retry:
2109         page = find_lock_page(mapping, idx);
2110         if (!page) {
2111                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2112                 if (idx >= size)
2113                         goto out;
2114                 page = alloc_huge_page(vma, address, 0);
2115                 if (IS_ERR(page)) {
2116                         ret = -PTR_ERR(page);
2117                         goto out;
2118                 }
2119                 clear_huge_page(page, address, huge_page_size(h));
2120                 __SetPageUptodate(page);
2121
2122                 if (vma->vm_flags & VM_MAYSHARE) {
2123                         int err;
2124                         struct inode *inode = mapping->host;
2125
2126                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2127                         if (err) {
2128                                 put_page(page);
2129                                 if (err == -EEXIST)
2130                                         goto retry;
2131                                 goto out;
2132                         }
2133
2134                         spin_lock(&inode->i_lock);
2135                         inode->i_blocks += blocks_per_huge_page(h);
2136                         spin_unlock(&inode->i_lock);
2137                 } else
2138                         lock_page(page);
2139         }
2140
2141         /*
2142          * If we are going to COW a private mapping later, we examine the
2143          * pending reservations for this page now. This will ensure that
2144          * any allocations necessary to record that reservation occur outside
2145          * the spinlock.
2146          */
2147         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2148                 if (vma_needs_reservation(h, vma, address) < 0) {
2149                         ret = VM_FAULT_OOM;
2150                         goto backout_unlocked;
2151                 }
2152
2153         spin_lock(&mm->page_table_lock);
2154         size = i_size_read(mapping->host) >> huge_page_shift(h);
2155         if (idx >= size)
2156                 goto backout;
2157
2158         ret = 0;
2159         if (!huge_pte_none(huge_ptep_get(ptep)))
2160                 goto backout;
2161
2162         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2163                                 && (vma->vm_flags & VM_SHARED)));
2164         set_huge_pte_at(mm, address, ptep, new_pte);
2165
2166         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2167                 /* Optimization, do the COW without a second fault */
2168                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2169         }
2170
2171         spin_unlock(&mm->page_table_lock);
2172         unlock_page(page);
2173 out:
2174         return ret;
2175
2176 backout:
2177         spin_unlock(&mm->page_table_lock);
2178 backout_unlocked:
2179         unlock_page(page);
2180         put_page(page);
2181         goto out;
2182 }
2183
2184 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2185                         unsigned long address, unsigned int flags)
2186 {
2187         pte_t *ptep;
2188         pte_t entry;
2189         int ret;
2190         struct page *pagecache_page = NULL;
2191         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2192         struct hstate *h = hstate_vma(vma);
2193
2194         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2195         if (!ptep)
2196                 return VM_FAULT_OOM;
2197
2198         /*
2199          * Serialize hugepage allocation and instantiation, so that we don't
2200          * get spurious allocation failures if two CPUs race to instantiate
2201          * the same page in the page cache.
2202          */
2203         mutex_lock(&hugetlb_instantiation_mutex);
2204         entry = huge_ptep_get(ptep);
2205         if (huge_pte_none(entry)) {
2206                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2207                 goto out_mutex;
2208         }
2209
2210         ret = 0;
2211
2212         /*
2213          * If we are going to COW the mapping later, we examine the pending
2214          * reservations for this page now. This will ensure that any
2215          * allocations necessary to record that reservation occur outside the
2216          * spinlock. For private mappings, we also lookup the pagecache
2217          * page now as it is used to determine if a reservation has been
2218          * consumed.
2219          */
2220         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2221                 if (vma_needs_reservation(h, vma, address) < 0) {
2222                         ret = VM_FAULT_OOM;
2223                         goto out_mutex;
2224                 }
2225
2226                 if (!(vma->vm_flags & VM_MAYSHARE))
2227                         pagecache_page = hugetlbfs_pagecache_page(h,
2228                                                                 vma, address);
2229         }
2230
2231         spin_lock(&mm->page_table_lock);
2232         /* Check for a racing update before calling hugetlb_cow */
2233         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2234                 goto out_page_table_lock;
2235
2236
2237         if (flags & FAULT_FLAG_WRITE) {
2238                 if (!pte_write(entry)) {
2239                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2240                                                         pagecache_page);
2241                         goto out_page_table_lock;
2242                 }
2243                 entry = pte_mkdirty(entry);
2244         }
2245         entry = pte_mkyoung(entry);
2246         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2247                                                 flags & FAULT_FLAG_WRITE))
2248                 update_mmu_cache(vma, address, entry);
2249
2250 out_page_table_lock:
2251         spin_unlock(&mm->page_table_lock);
2252
2253         if (pagecache_page) {
2254                 unlock_page(pagecache_page);
2255                 put_page(pagecache_page);
2256         }
2257
2258 out_mutex:
2259         mutex_unlock(&hugetlb_instantiation_mutex);
2260
2261         return ret;
2262 }
2263
2264 /* Can be overriden by architectures */
2265 __attribute__((weak)) struct page *
2266 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2267                pud_t *pud, int write)
2268 {
2269         BUG();
2270         return NULL;
2271 }
2272
2273 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2274                         struct page **pages, struct vm_area_struct **vmas,
2275                         unsigned long *position, int *length, int i,
2276                         unsigned int flags)
2277 {
2278         unsigned long pfn_offset;
2279         unsigned long vaddr = *position;
2280         int remainder = *length;
2281         struct hstate *h = hstate_vma(vma);
2282
2283         spin_lock(&mm->page_table_lock);
2284         while (vaddr < vma->vm_end && remainder) {
2285                 pte_t *pte;
2286                 int absent;
2287                 struct page *page;
2288
2289                 /*
2290                  * Some archs (sparc64, sh*) have multiple pte_ts to
2291                  * each hugepage.  We have to make sure we get the
2292                  * first, for the page indexing below to work.
2293                  */
2294                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2295                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2296
2297                 /*
2298                  * When coredumping, it suits get_dump_page if we just return
2299                  * an error where there's an empty slot with no huge pagecache
2300                  * to back it.  This way, we avoid allocating a hugepage, and
2301                  * the sparse dumpfile avoids allocating disk blocks, but its
2302                  * huge holes still show up with zeroes where they need to be.
2303                  */
2304                 if (absent && (flags & FOLL_DUMP) &&
2305                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2306                         remainder = 0;
2307                         break;
2308                 }
2309
2310                 if (absent ||
2311                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2312                         int ret;
2313
2314                         spin_unlock(&mm->page_table_lock);
2315                         ret = hugetlb_fault(mm, vma, vaddr,
2316                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2317                         spin_lock(&mm->page_table_lock);
2318                         if (!(ret & VM_FAULT_ERROR))
2319                                 continue;
2320
2321                         remainder = 0;
2322                         break;
2323                 }
2324
2325                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2326                 page = pte_page(huge_ptep_get(pte));
2327 same_page:
2328                 if (pages) {
2329                         pages[i] = mem_map_offset(page, pfn_offset);
2330                         get_page(pages[i]);
2331                 }
2332
2333                 if (vmas)
2334                         vmas[i] = vma;
2335
2336                 vaddr += PAGE_SIZE;
2337                 ++pfn_offset;
2338                 --remainder;
2339                 ++i;
2340                 if (vaddr < vma->vm_end && remainder &&
2341                                 pfn_offset < pages_per_huge_page(h)) {
2342                         /*
2343                          * We use pfn_offset to avoid touching the pageframes
2344                          * of this compound page.
2345                          */
2346                         goto same_page;
2347                 }
2348         }
2349         spin_unlock(&mm->page_table_lock);
2350         *length = remainder;
2351         *position = vaddr;
2352
2353         return i ? i : -EFAULT;
2354 }
2355
2356 void hugetlb_change_protection(struct vm_area_struct *vma,
2357                 unsigned long address, unsigned long end, pgprot_t newprot)
2358 {
2359         struct mm_struct *mm = vma->vm_mm;
2360         unsigned long start = address;
2361         pte_t *ptep;
2362         pte_t pte;
2363         struct hstate *h = hstate_vma(vma);
2364
2365         BUG_ON(address >= end);
2366         flush_cache_range(vma, address, end);
2367
2368         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2369         spin_lock(&mm->page_table_lock);
2370         for (; address < end; address += huge_page_size(h)) {
2371                 ptep = huge_pte_offset(mm, address);
2372                 if (!ptep)
2373                         continue;
2374                 if (huge_pmd_unshare(mm, &address, ptep))
2375                         continue;
2376                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2377                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2378                         pte = pte_mkhuge(pte_modify(pte, newprot));
2379                         set_huge_pte_at(mm, address, ptep, pte);
2380                 }
2381         }
2382         spin_unlock(&mm->page_table_lock);
2383         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2384
2385         flush_tlb_range(vma, start, end);
2386 }
2387
2388 int hugetlb_reserve_pages(struct inode *inode,
2389                                         long from, long to,
2390                                         struct vm_area_struct *vma,
2391                                         int acctflag)
2392 {
2393         long ret, chg;
2394         struct hstate *h = hstate_inode(inode);
2395
2396         /*
2397          * Only apply hugepage reservation if asked. At fault time, an
2398          * attempt will be made for VM_NORESERVE to allocate a page
2399          * and filesystem quota without using reserves
2400          */
2401         if (acctflag & VM_NORESERVE)
2402                 return 0;
2403
2404         /*
2405          * Shared mappings base their reservation on the number of pages that
2406          * are already allocated on behalf of the file. Private mappings need
2407          * to reserve the full area even if read-only as mprotect() may be
2408          * called to make the mapping read-write. Assume !vma is a shm mapping
2409          */
2410         if (!vma || vma->vm_flags & VM_MAYSHARE)
2411                 chg = region_chg(&inode->i_mapping->private_list, from, to);
2412         else {
2413                 struct resv_map *resv_map = resv_map_alloc();
2414                 if (!resv_map)
2415                         return -ENOMEM;
2416
2417                 chg = to - from;
2418
2419                 set_vma_resv_map(vma, resv_map);
2420                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2421         }
2422
2423         if (chg < 0)
2424                 return chg;
2425
2426         /* There must be enough filesystem quota for the mapping */
2427         if (hugetlb_get_quota(inode->i_mapping, chg))
2428                 return -ENOSPC;
2429
2430         /*
2431          * Check enough hugepages are available for the reservation.
2432          * Hand back the quota if there are not
2433          */
2434         ret = hugetlb_acct_memory(h, chg);
2435         if (ret < 0) {
2436                 hugetlb_put_quota(inode->i_mapping, chg);
2437                 return ret;
2438         }
2439
2440         /*
2441          * Account for the reservations made. Shared mappings record regions
2442          * that have reservations as they are shared by multiple VMAs.
2443          * When the last VMA disappears, the region map says how much
2444          * the reservation was and the page cache tells how much of
2445          * the reservation was consumed. Private mappings are per-VMA and
2446          * only the consumed reservations are tracked. When the VMA
2447          * disappears, the original reservation is the VMA size and the
2448          * consumed reservations are stored in the map. Hence, nothing
2449          * else has to be done for private mappings here
2450          */
2451         if (!vma || vma->vm_flags & VM_MAYSHARE)
2452                 region_add(&inode->i_mapping->private_list, from, to);
2453         return 0;
2454 }
2455
2456 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2457 {
2458         struct hstate *h = hstate_inode(inode);
2459         long chg = region_truncate(&inode->i_mapping->private_list, offset);
2460
2461         spin_lock(&inode->i_lock);
2462         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2463         spin_unlock(&inode->i_lock);
2464
2465         hugetlb_put_quota(inode->i_mapping, (chg - freed));
2466         hugetlb_acct_memory(h, -(chg - freed));
2467 }