spi-topcliff-pch: Support new device LAPIS Semiconductor ML7831 IOH
[linux-flexiantxendom0.git] / drivers / spi / spi-topcliff-pch.c
1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
33
34 /* Register offsets */
35 #define PCH_SPCR                0x00    /* SPI control register */
36 #define PCH_SPBRR               0x04    /* SPI baud rate register */
37 #define PCH_SPSR                0x08    /* SPI status register */
38 #define PCH_SPDWR               0x0C    /* SPI write data register */
39 #define PCH_SPDRR               0x10    /* SPI read data register */
40 #define PCH_SSNXCR              0x18    /* SSN Expand Control Register */
41 #define PCH_SRST                0x1C    /* SPI reset register */
42 #define PCH_ADDRESS_SIZE        0x20
43
44 #define PCH_SPSR_TFD            0x000007C0
45 #define PCH_SPSR_RFD            0x0000F800
46
47 #define PCH_READABLE(x)         (((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x)         (((x) & PCH_SPSR_TFD)>>6)
49
50 #define PCH_RX_THOLD            7
51 #define PCH_RX_THOLD_MAX        15
52
53 #define PCH_TX_THOLD            2
54
55 #define PCH_MAX_BAUDRATE        5000000
56 #define PCH_MAX_FIFO_DEPTH      16
57
58 #define STATUS_RUNNING          1
59 #define STATUS_EXITING          2
60 #define PCH_SLEEP_TIME          10
61
62 #define SSN_LOW                 0x02U
63 #define SSN_HIGH                0x03U
64 #define SSN_NO_CONTROL          0x00U
65 #define PCH_MAX_CS              0xFF
66 #define PCI_DEVICE_ID_GE_SPI    0x8816
67
68 #define SPCR_SPE_BIT            (1 << 0)
69 #define SPCR_MSTR_BIT           (1 << 1)
70 #define SPCR_LSBF_BIT           (1 << 4)
71 #define SPCR_CPHA_BIT           (1 << 5)
72 #define SPCR_CPOL_BIT           (1 << 6)
73 #define SPCR_TFIE_BIT           (1 << 8)
74 #define SPCR_RFIE_BIT           (1 << 9)
75 #define SPCR_FIE_BIT            (1 << 10)
76 #define SPCR_ORIE_BIT           (1 << 11)
77 #define SPCR_MDFIE_BIT          (1 << 12)
78 #define SPCR_FICLR_BIT          (1 << 24)
79 #define SPSR_TFI_BIT            (1 << 0)
80 #define SPSR_RFI_BIT            (1 << 1)
81 #define SPSR_FI_BIT             (1 << 2)
82 #define SPSR_ORF_BIT            (1 << 3)
83 #define SPBRR_SIZE_BIT          (1 << 10)
84
85 #define PCH_ALL                 (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
86                                 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
87
88 #define SPCR_RFIC_FIELD         20
89 #define SPCR_TFIC_FIELD         16
90
91 #define MASK_SPBRR_SPBR_BITS    ((1 << 10) - 1)
92 #define MASK_RFIC_SPCR_BITS     (0xf << SPCR_RFIC_FIELD)
93 #define MASK_TFIC_SPCR_BITS     (0xf << SPCR_TFIC_FIELD)
94
95 #define PCH_CLOCK_HZ            50000000
96 #define PCH_MAX_SPBR            1023
97
98 /* Definition for ML7213/ML7831 by OKI SEMICONDUCTOR */
99 #define PCI_VENDOR_ID_ROHM              0x10DB
100 #define PCI_DEVICE_ID_ML7213_SPI        0x802c
101 #define PCI_DEVICE_ID_ML7223_SPI        0x800F
102 #define PCI_DEVICE_ID_ML7831_SPI        0x8816
103
104 /*
105  * Set the number of SPI instance max
106  * Intel EG20T PCH :            1ch
107  * OKI SEMICONDUCTOR ML7213 IOH :       2ch
108  * OKI SEMICONDUCTOR ML7223 IOH :       1ch
109  * OKI SEMICONDUCTOR ML7831 IOH :       1ch
110 */
111 #define PCH_SPI_MAX_DEV                 2
112
113 #define PCH_BUF_SIZE            4096
114 #define PCH_DMA_TRANS_SIZE      12
115
116 static int use_dma = 1;
117
118 struct pch_spi_dma_ctrl {
119         struct dma_async_tx_descriptor  *desc_tx;
120         struct dma_async_tx_descriptor  *desc_rx;
121         struct pch_dma_slave            param_tx;
122         struct pch_dma_slave            param_rx;
123         struct dma_chan         *chan_tx;
124         struct dma_chan         *chan_rx;
125         struct scatterlist              *sg_tx_p;
126         struct scatterlist              *sg_rx_p;
127         struct scatterlist              sg_tx;
128         struct scatterlist              sg_rx;
129         int                             nent;
130         void                            *tx_buf_virt;
131         void                            *rx_buf_virt;
132         dma_addr_t                      tx_buf_dma;
133         dma_addr_t                      rx_buf_dma;
134 };
135 /**
136  * struct pch_spi_data - Holds the SPI channel specific details
137  * @io_remap_addr:              The remapped PCI base address
138  * @master:                     Pointer to the SPI master structure
139  * @work:                       Reference to work queue handler
140  * @wk:                         Workqueue for carrying out execution of the
141  *                              requests
142  * @wait:                       Wait queue for waking up upon receiving an
143  *                              interrupt.
144  * @transfer_complete:          Status of SPI Transfer
145  * @bcurrent_msg_processing:    Status flag for message processing
146  * @lock:                       Lock for protecting this structure
147  * @queue:                      SPI Message queue
148  * @status:                     Status of the SPI driver
149  * @bpw_len:                    Length of data to be transferred in bits per
150  *                              word
151  * @transfer_active:            Flag showing active transfer
152  * @tx_index:                   Transmit data count; for bookkeeping during
153  *                              transfer
154  * @rx_index:                   Receive data count; for bookkeeping during
155  *                              transfer
156  * @tx_buff:                    Buffer for data to be transmitted
157  * @rx_index:                   Buffer for Received data
158  * @n_curnt_chip:               The chip number that this SPI driver currently
159  *                              operates on
160  * @current_chip:               Reference to the current chip that this SPI
161  *                              driver currently operates on
162  * @current_msg:                The current message that this SPI driver is
163  *                              handling
164  * @cur_trans:                  The current transfer that this SPI driver is
165  *                              handling
166  * @board_dat:                  Reference to the SPI device data structure
167  * @plat_dev:                   platform_device structure
168  * @ch:                         SPI channel number
169  * @irq_reg_sts:                Status of IRQ registration
170  */
171 struct pch_spi_data {
172         void __iomem *io_remap_addr;
173         unsigned long io_base_addr;
174         struct spi_master *master;
175         struct work_struct work;
176         struct workqueue_struct *wk;
177         wait_queue_head_t wait;
178         u8 transfer_complete;
179         u8 bcurrent_msg_processing;
180         spinlock_t lock;
181         struct list_head queue;
182         u8 status;
183         u32 bpw_len;
184         u8 transfer_active;
185         u32 tx_index;
186         u32 rx_index;
187         u16 *pkt_tx_buff;
188         u16 *pkt_rx_buff;
189         u8 n_curnt_chip;
190         struct spi_device *current_chip;
191         struct spi_message *current_msg;
192         struct spi_transfer *cur_trans;
193         struct pch_spi_board_data *board_dat;
194         struct platform_device  *plat_dev;
195         int ch;
196         struct pch_spi_dma_ctrl dma;
197         int use_dma;
198         u8 irq_reg_sts;
199 };
200
201 /**
202  * struct pch_spi_board_data - Holds the SPI device specific details
203  * @pdev:               Pointer to the PCI device
204  * @suspend_sts:        Status of suspend
205  * @num:                The number of SPI device instance
206  */
207 struct pch_spi_board_data {
208         struct pci_dev *pdev;
209         u8 suspend_sts;
210         int num;
211 };
212
213 struct pch_pd_dev_save {
214         int num;
215         struct platform_device *pd_save[PCH_SPI_MAX_DEV];
216         struct pch_spi_board_data *board_dat;
217 };
218
219 static struct pci_device_id pch_spi_pcidev_id[] = {
220         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
221         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
222         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
223         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
224         { }
225 };
226
227 /**
228  * pch_spi_writereg() - Performs  register writes
229  * @master:     Pointer to struct spi_master.
230  * @idx:        Register offset.
231  * @val:        Value to be written to register.
232  */
233 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
234 {
235         struct pch_spi_data *data = spi_master_get_devdata(master);
236         iowrite32(val, (data->io_remap_addr + idx));
237 }
238
239 /**
240  * pch_spi_readreg() - Performs register reads
241  * @master:     Pointer to struct spi_master.
242  * @idx:        Register offset.
243  */
244 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
245 {
246         struct pch_spi_data *data = spi_master_get_devdata(master);
247         return ioread32(data->io_remap_addr + idx);
248 }
249
250 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
251                                       u32 set, u32 clr)
252 {
253         u32 tmp = pch_spi_readreg(master, idx);
254         tmp = (tmp & ~clr) | set;
255         pch_spi_writereg(master, idx, tmp);
256 }
257
258 static void pch_spi_set_master_mode(struct spi_master *master)
259 {
260         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
261 }
262
263 /**
264  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
265  * @master:     Pointer to struct spi_master.
266  */
267 static void pch_spi_clear_fifo(struct spi_master *master)
268 {
269         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
270         pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
271 }
272
273 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
274                                 void __iomem *io_remap_addr)
275 {
276         u32 n_read, tx_index, rx_index, bpw_len;
277         u16 *pkt_rx_buffer, *pkt_tx_buff;
278         int read_cnt;
279         u32 reg_spcr_val;
280         void __iomem *spsr;
281         void __iomem *spdrr;
282         void __iomem *spdwr;
283
284         spsr = io_remap_addr + PCH_SPSR;
285         iowrite32(reg_spsr_val, spsr);
286
287         if (data->transfer_active) {
288                 rx_index = data->rx_index;
289                 tx_index = data->tx_index;
290                 bpw_len = data->bpw_len;
291                 pkt_rx_buffer = data->pkt_rx_buff;
292                 pkt_tx_buff = data->pkt_tx_buff;
293
294                 spdrr = io_remap_addr + PCH_SPDRR;
295                 spdwr = io_remap_addr + PCH_SPDWR;
296
297                 n_read = PCH_READABLE(reg_spsr_val);
298
299                 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
300                         pkt_rx_buffer[rx_index++] = ioread32(spdrr);
301                         if (tx_index < bpw_len)
302                                 iowrite32(pkt_tx_buff[tx_index++], spdwr);
303                 }
304
305                 /* disable RFI if not needed */
306                 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
307                         reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
308                         reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
309
310                         /* reset rx threshold */
311                         reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
312                         reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
313
314                         iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
315                 }
316
317                 /* update counts */
318                 data->tx_index = tx_index;
319                 data->rx_index = rx_index;
320
321                 /* if transfer complete interrupt */
322                 if (reg_spsr_val & SPSR_FI_BIT) {
323                         if ((tx_index == bpw_len) && (rx_index == tx_index)) {
324                                 /* disable interrupts */
325                                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
326                                                    PCH_ALL);
327
328                                 /* transfer is completed;
329                                    inform pch_spi_process_messages */
330                                 data->transfer_complete = true;
331                                 data->transfer_active = false;
332                                 wake_up(&data->wait);
333                         } else {
334                                 dev_err(&data->master->dev,
335                                         "%s : Transfer is not completed",
336                                         __func__);
337                         }
338                 }
339         }
340 }
341
342 /**
343  * pch_spi_handler() - Interrupt handler
344  * @irq:        The interrupt number.
345  * @dev_id:     Pointer to struct pch_spi_board_data.
346  */
347 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
348 {
349         u32 reg_spsr_val;
350         void __iomem *spsr;
351         void __iomem *io_remap_addr;
352         irqreturn_t ret = IRQ_NONE;
353         struct pch_spi_data *data = dev_id;
354         struct pch_spi_board_data *board_dat = data->board_dat;
355
356         if (board_dat->suspend_sts) {
357                 dev_dbg(&board_dat->pdev->dev,
358                         "%s returning due to suspend\n", __func__);
359                 return IRQ_NONE;
360         }
361
362         io_remap_addr = data->io_remap_addr;
363         spsr = io_remap_addr + PCH_SPSR;
364
365         reg_spsr_val = ioread32(spsr);
366
367         if (reg_spsr_val & SPSR_ORF_BIT) {
368                 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
369                 if (data->current_msg->complete != 0) {
370                         data->transfer_complete = true;
371                         data->current_msg->status = -EIO;
372                         data->current_msg->complete(data->current_msg->context);
373                         data->bcurrent_msg_processing = false;
374                         data->current_msg = NULL;
375                         data->cur_trans = NULL;
376                 }
377         }
378
379         if (data->use_dma)
380                 return IRQ_NONE;
381
382         /* Check if the interrupt is for SPI device */
383         if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
384                 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
385                 ret = IRQ_HANDLED;
386         }
387
388         dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
389                 __func__, ret);
390
391         return ret;
392 }
393
394 /**
395  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
396  * @master:     Pointer to struct spi_master.
397  * @speed_hz:   Baud rate.
398  */
399 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
400 {
401         u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
402
403         /* if baud rate is less than we can support limit it */
404         if (n_spbr > PCH_MAX_SPBR)
405                 n_spbr = PCH_MAX_SPBR;
406
407         pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
408 }
409
410 /**
411  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
412  * @master:             Pointer to struct spi_master.
413  * @bits_per_word:      Bits per word for SPI transfer.
414  */
415 static void pch_spi_set_bits_per_word(struct spi_master *master,
416                                       u8 bits_per_word)
417 {
418         if (bits_per_word == 8)
419                 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
420         else
421                 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
422 }
423
424 /**
425  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
426  * @spi:        Pointer to struct spi_device.
427  */
428 static void pch_spi_setup_transfer(struct spi_device *spi)
429 {
430         u32 flags = 0;
431
432         dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
433                 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
434                 spi->max_speed_hz);
435         pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
436
437         /* set bits per word */
438         pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
439
440         if (!(spi->mode & SPI_LSB_FIRST))
441                 flags |= SPCR_LSBF_BIT;
442         if (spi->mode & SPI_CPOL)
443                 flags |= SPCR_CPOL_BIT;
444         if (spi->mode & SPI_CPHA)
445                 flags |= SPCR_CPHA_BIT;
446         pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
447                            (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
448
449         /* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
450         pch_spi_clear_fifo(spi->master);
451 }
452
453 /**
454  * pch_spi_reset() - Clears SPI registers
455  * @master:     Pointer to struct spi_master.
456  */
457 static void pch_spi_reset(struct spi_master *master)
458 {
459         /* write 1 to reset SPI */
460         pch_spi_writereg(master, PCH_SRST, 0x1);
461
462         /* clear reset */
463         pch_spi_writereg(master, PCH_SRST, 0x0);
464 }
465
466 static int pch_spi_setup(struct spi_device *pspi)
467 {
468         /* check bits per word */
469         if (pspi->bits_per_word == 0) {
470                 pspi->bits_per_word = 8;
471                 dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
472         }
473
474         if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
475                 dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
476                 return -EINVAL;
477         }
478
479         /* Check baud rate setting */
480         /* if baud rate of chip is greater than
481            max we can support,return error */
482         if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
483                 pspi->max_speed_hz = PCH_MAX_BAUDRATE;
484
485         dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
486                 (pspi->mode) & (SPI_CPOL | SPI_CPHA));
487
488         return 0;
489 }
490
491 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
492 {
493
494         struct spi_transfer *transfer;
495         struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
496         int retval;
497         unsigned long flags;
498
499         /* validate spi message and baud rate */
500         if (unlikely(list_empty(&pmsg->transfers) == 1)) {
501                 dev_err(&pspi->dev, "%s list empty\n", __func__);
502                 retval = -EINVAL;
503                 goto err_out;
504         }
505
506         if (unlikely(pspi->max_speed_hz == 0)) {
507                 dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
508                         __func__, pspi->max_speed_hz);
509                 retval = -EINVAL;
510                 goto err_out;
511         }
512
513         dev_dbg(&pspi->dev, "%s Transfer List not empty. "
514                 "Transfer Speed is set.\n", __func__);
515
516         spin_lock_irqsave(&data->lock, flags);
517         /* validate Tx/Rx buffers and Transfer length */
518         list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
519                 if (!transfer->tx_buf && !transfer->rx_buf) {
520                         dev_err(&pspi->dev,
521                                 "%s Tx and Rx buffer NULL\n", __func__);
522                         retval = -EINVAL;
523                         goto err_return_spinlock;
524                 }
525
526                 if (!transfer->len) {
527                         dev_err(&pspi->dev, "%s Transfer length invalid\n",
528                                 __func__);
529                         retval = -EINVAL;
530                         goto err_return_spinlock;
531                 }
532
533                 dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
534                         " valid\n", __func__);
535
536                 /* if baud rate has been specified validate the same */
537                 if (transfer->speed_hz > PCH_MAX_BAUDRATE)
538                         transfer->speed_hz = PCH_MAX_BAUDRATE;
539
540                 /* if bits per word has been specified validate the same */
541                 if (transfer->bits_per_word) {
542                         if ((transfer->bits_per_word != 8)
543                             && (transfer->bits_per_word != 16)) {
544                                 retval = -EINVAL;
545                                 dev_err(&pspi->dev,
546                                         "%s Invalid bits per word\n", __func__);
547                                 goto err_return_spinlock;
548                         }
549                 }
550         }
551         spin_unlock_irqrestore(&data->lock, flags);
552
553         /* We won't process any messages if we have been asked to terminate */
554         if (data->status == STATUS_EXITING) {
555                 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
556                 retval = -ESHUTDOWN;
557                 goto err_out;
558         }
559
560         /* If suspended ,return -EINVAL */
561         if (data->board_dat->suspend_sts) {
562                 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
563                 retval = -EINVAL;
564                 goto err_out;
565         }
566
567         /* set status of message */
568         pmsg->actual_length = 0;
569         dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
570
571         pmsg->status = -EINPROGRESS;
572         spin_lock_irqsave(&data->lock, flags);
573         /* add message to queue */
574         list_add_tail(&pmsg->queue, &data->queue);
575         spin_unlock_irqrestore(&data->lock, flags);
576
577         dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
578
579         /* schedule work queue to run */
580         queue_work(data->wk, &data->work);
581         dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
582
583         retval = 0;
584
585 err_out:
586         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
587         return retval;
588 err_return_spinlock:
589         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
590         spin_unlock_irqrestore(&data->lock, flags);
591         return retval;
592 }
593
594 static inline void pch_spi_select_chip(struct pch_spi_data *data,
595                                        struct spi_device *pspi)
596 {
597         if (data->current_chip != NULL) {
598                 if (pspi->chip_select != data->n_curnt_chip) {
599                         dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
600                         data->current_chip = NULL;
601                 }
602         }
603
604         data->current_chip = pspi;
605
606         data->n_curnt_chip = data->current_chip->chip_select;
607
608         dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
609         pch_spi_setup_transfer(pspi);
610 }
611
612 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
613 {
614         int size;
615         u32 n_writes;
616         int j;
617         struct spi_message *pmsg;
618         const u8 *tx_buf;
619         const u16 *tx_sbuf;
620
621         /* set baud rate if needed */
622         if (data->cur_trans->speed_hz) {
623                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
624                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
625         }
626
627         /* set bits per word if needed */
628         if (data->cur_trans->bits_per_word &&
629             (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
630                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
631                 pch_spi_set_bits_per_word(data->master,
632                                           data->cur_trans->bits_per_word);
633                 *bpw = data->cur_trans->bits_per_word;
634         } else {
635                 *bpw = data->current_msg->spi->bits_per_word;
636         }
637
638         /* reset Tx/Rx index */
639         data->tx_index = 0;
640         data->rx_index = 0;
641
642         data->bpw_len = data->cur_trans->len / (*bpw / 8);
643
644         /* find alloc size */
645         size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
646
647         /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
648         data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
649         if (data->pkt_tx_buff != NULL) {
650                 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
651                 if (!data->pkt_rx_buff)
652                         kfree(data->pkt_tx_buff);
653         }
654
655         if (!data->pkt_rx_buff) {
656                 /* flush queue and set status of all transfers to -ENOMEM */
657                 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
658                 list_for_each_entry(pmsg, data->queue.next, queue) {
659                         pmsg->status = -ENOMEM;
660
661                         if (pmsg->complete != 0)
662                                 pmsg->complete(pmsg->context);
663
664                         /* delete from queue */
665                         list_del_init(&pmsg->queue);
666                 }
667                 return;
668         }
669
670         /* copy Tx Data */
671         if (data->cur_trans->tx_buf != NULL) {
672                 if (*bpw == 8) {
673                         tx_buf = data->cur_trans->tx_buf;
674                         for (j = 0; j < data->bpw_len; j++)
675                                 data->pkt_tx_buff[j] = *tx_buf++;
676                 } else {
677                         tx_sbuf = data->cur_trans->tx_buf;
678                         for (j = 0; j < data->bpw_len; j++)
679                                 data->pkt_tx_buff[j] = *tx_sbuf++;
680                 }
681         }
682
683         /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
684         n_writes = data->bpw_len;
685         if (n_writes > PCH_MAX_FIFO_DEPTH)
686                 n_writes = PCH_MAX_FIFO_DEPTH;
687
688         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
689                 "0x2 to SSNXCR\n", __func__);
690         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
691
692         for (j = 0; j < n_writes; j++)
693                 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
694
695         /* update tx_index */
696         data->tx_index = j;
697
698         /* reset transfer complete flag */
699         data->transfer_complete = false;
700         data->transfer_active = true;
701 }
702
703 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
704 {
705         struct spi_message *pmsg;
706         dev_dbg(&data->master->dev, "%s called\n", __func__);
707         /* Invoke complete callback
708          * [To the spi core..indicating end of transfer] */
709         data->current_msg->status = 0;
710
711         if (data->current_msg->complete != 0) {
712                 dev_dbg(&data->master->dev,
713                         "%s:Invoking callback of SPI core\n", __func__);
714                 data->current_msg->complete(data->current_msg->context);
715         }
716
717         /* update status in global variable */
718         data->bcurrent_msg_processing = false;
719
720         dev_dbg(&data->master->dev,
721                 "%s:data->bcurrent_msg_processing = false\n", __func__);
722
723         data->current_msg = NULL;
724         data->cur_trans = NULL;
725
726         /* check if we have items in list and not suspending
727          * return 1 if list empty */
728         if ((list_empty(&data->queue) == 0) &&
729             (!data->board_dat->suspend_sts) &&
730             (data->status != STATUS_EXITING)) {
731                 /* We have some more work to do (either there is more tranint
732                  * bpw;sfer requests in the current message or there are
733                  *more messages)
734                  */
735                 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
736                 queue_work(data->wk, &data->work);
737         } else if (data->board_dat->suspend_sts ||
738                    data->status == STATUS_EXITING) {
739                 dev_dbg(&data->master->dev,
740                         "%s suspend/remove initiated, flushing queue\n",
741                         __func__);
742                 list_for_each_entry(pmsg, data->queue.next, queue) {
743                         pmsg->status = -EIO;
744
745                         if (pmsg->complete)
746                                 pmsg->complete(pmsg->context);
747
748                         /* delete from queue */
749                         list_del_init(&pmsg->queue);
750                 }
751         }
752 }
753
754 static void pch_spi_set_ir(struct pch_spi_data *data)
755 {
756         /* enable interrupts, set threshold, enable SPI */
757         if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
758                 /* set receive threshold to PCH_RX_THOLD */
759                 pch_spi_setclr_reg(data->master, PCH_SPCR,
760                                    PCH_RX_THOLD << SPCR_RFIC_FIELD |
761                                    SPCR_FIE_BIT | SPCR_RFIE_BIT |
762                                    SPCR_ORIE_BIT | SPCR_SPE_BIT,
763                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
764         else
765                 /* set receive threshold to maximum */
766                 pch_spi_setclr_reg(data->master, PCH_SPCR,
767                                    PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
768                                    SPCR_FIE_BIT | SPCR_ORIE_BIT |
769                                    SPCR_SPE_BIT,
770                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
771
772         /* Wait until the transfer completes; go to sleep after
773                                  initiating the transfer. */
774         dev_dbg(&data->master->dev,
775                 "%s:waiting for transfer to get over\n", __func__);
776
777         wait_event_interruptible(data->wait, data->transfer_complete);
778
779         /* clear all interrupts */
780         pch_spi_writereg(data->master, PCH_SPSR,
781                          pch_spi_readreg(data->master, PCH_SPSR));
782         /* Disable interrupts and SPI transfer */
783         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
784         /* clear FIFO */
785         pch_spi_clear_fifo(data->master);
786 }
787
788 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
789 {
790         int j;
791         u8 *rx_buf;
792         u16 *rx_sbuf;
793
794         /* copy Rx Data */
795         if (!data->cur_trans->rx_buf)
796                 return;
797
798         if (bpw == 8) {
799                 rx_buf = data->cur_trans->rx_buf;
800                 for (j = 0; j < data->bpw_len; j++)
801                         *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
802         } else {
803                 rx_sbuf = data->cur_trans->rx_buf;
804                 for (j = 0; j < data->bpw_len; j++)
805                         *rx_sbuf++ = data->pkt_rx_buff[j];
806         }
807 }
808
809 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
810 {
811         int j;
812         u8 *rx_buf;
813         u16 *rx_sbuf;
814         const u8 *rx_dma_buf;
815         const u16 *rx_dma_sbuf;
816
817         /* copy Rx Data */
818         if (!data->cur_trans->rx_buf)
819                 return;
820
821         if (bpw == 8) {
822                 rx_buf = data->cur_trans->rx_buf;
823                 rx_dma_buf = data->dma.rx_buf_virt;
824                 for (j = 0; j < data->bpw_len; j++)
825                         *rx_buf++ = *rx_dma_buf++ & 0xFF;
826         } else {
827                 rx_sbuf = data->cur_trans->rx_buf;
828                 rx_dma_sbuf = data->dma.rx_buf_virt;
829                 for (j = 0; j < data->bpw_len; j++)
830                         *rx_sbuf++ = *rx_dma_sbuf++;
831         }
832 }
833
834 static int pch_spi_start_transfer(struct pch_spi_data *data)
835 {
836         struct pch_spi_dma_ctrl *dma;
837         unsigned long flags;
838         int rtn;
839
840         dma = &data->dma;
841
842         spin_lock_irqsave(&data->lock, flags);
843
844         /* disable interrupts, SPI set enable */
845         pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
846
847         spin_unlock_irqrestore(&data->lock, flags);
848
849         /* Wait until the transfer completes; go to sleep after
850                                  initiating the transfer. */
851         dev_dbg(&data->master->dev,
852                 "%s:waiting for transfer to get over\n", __func__);
853         rtn = wait_event_interruptible_timeout(data->wait,
854                                                data->transfer_complete,
855                                                msecs_to_jiffies(2 * HZ));
856
857         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
858                             DMA_FROM_DEVICE);
859
860         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
861                             DMA_FROM_DEVICE);
862         memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
863
864         async_tx_ack(dma->desc_rx);
865         async_tx_ack(dma->desc_tx);
866         kfree(dma->sg_tx_p);
867         kfree(dma->sg_rx_p);
868
869         spin_lock_irqsave(&data->lock, flags);
870
871         /* clear fifo threshold, disable interrupts, disable SPI transfer */
872         pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
873                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
874                            SPCR_SPE_BIT);
875         /* clear all interrupts */
876         pch_spi_writereg(data->master, PCH_SPSR,
877                          pch_spi_readreg(data->master, PCH_SPSR));
878         /* clear FIFO */
879         pch_spi_clear_fifo(data->master);
880
881         spin_unlock_irqrestore(&data->lock, flags);
882
883         return rtn;
884 }
885
886 static void pch_dma_rx_complete(void *arg)
887 {
888         struct pch_spi_data *data = arg;
889
890         /* transfer is completed;inform pch_spi_process_messages_dma */
891         data->transfer_complete = true;
892         wake_up_interruptible(&data->wait);
893 }
894
895 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
896 {
897         struct pch_dma_slave *param = slave;
898
899         if ((chan->chan_id == param->chan_id) &&
900             (param->dma_dev == chan->device->dev)) {
901                 chan->private = param;
902                 return true;
903         } else {
904                 return false;
905         }
906 }
907
908 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
909 {
910         dma_cap_mask_t mask;
911         struct dma_chan *chan;
912         struct pci_dev *dma_dev;
913         struct pch_dma_slave *param;
914         struct pch_spi_dma_ctrl *dma;
915         unsigned int width;
916
917         if (bpw == 8)
918                 width = PCH_DMA_WIDTH_1_BYTE;
919         else
920                 width = PCH_DMA_WIDTH_2_BYTES;
921
922         dma = &data->dma;
923         dma_cap_zero(mask);
924         dma_cap_set(DMA_SLAVE, mask);
925
926         /* Get DMA's dev information */
927         dma_dev = pci_get_bus_and_slot(2, PCI_DEVFN(12, 0));
928
929         /* Set Tx DMA */
930         param = &dma->param_tx;
931         param->dma_dev = &dma_dev->dev;
932         param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
933         param->tx_reg = data->io_base_addr + PCH_SPDWR;
934         param->width = width;
935         chan = dma_request_channel(mask, pch_spi_filter, param);
936         if (!chan) {
937                 dev_err(&data->master->dev,
938                         "ERROR: dma_request_channel FAILS(Tx)\n");
939                 data->use_dma = 0;
940                 return;
941         }
942         dma->chan_tx = chan;
943
944         /* Set Rx DMA */
945         param = &dma->param_rx;
946         param->dma_dev = &dma_dev->dev;
947         param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
948         param->rx_reg = data->io_base_addr + PCH_SPDRR;
949         param->width = width;
950         chan = dma_request_channel(mask, pch_spi_filter, param);
951         if (!chan) {
952                 dev_err(&data->master->dev,
953                         "ERROR: dma_request_channel FAILS(Rx)\n");
954                 dma_release_channel(dma->chan_tx);
955                 dma->chan_tx = NULL;
956                 data->use_dma = 0;
957                 return;
958         }
959         dma->chan_rx = chan;
960 }
961
962 static void pch_spi_release_dma(struct pch_spi_data *data)
963 {
964         struct pch_spi_dma_ctrl *dma;
965
966         dma = &data->dma;
967         if (dma->chan_tx) {
968                 dma_release_channel(dma->chan_tx);
969                 dma->chan_tx = NULL;
970         }
971         if (dma->chan_rx) {
972                 dma_release_channel(dma->chan_rx);
973                 dma->chan_rx = NULL;
974         }
975         return;
976 }
977
978 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
979 {
980         const u8 *tx_buf;
981         const u16 *tx_sbuf;
982         u8 *tx_dma_buf;
983         u16 *tx_dma_sbuf;
984         struct scatterlist *sg;
985         struct dma_async_tx_descriptor *desc_tx;
986         struct dma_async_tx_descriptor *desc_rx;
987         int num;
988         int i;
989         int size;
990         int rem;
991         unsigned long flags;
992         struct pch_spi_dma_ctrl *dma;
993
994         dma = &data->dma;
995
996         /* set baud rate if needed */
997         if (data->cur_trans->speed_hz) {
998                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
999                 spin_lock_irqsave(&data->lock, flags);
1000                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
1001                 spin_unlock_irqrestore(&data->lock, flags);
1002         }
1003
1004         /* set bits per word if needed */
1005         if (data->cur_trans->bits_per_word &&
1006             (data->current_msg->spi->bits_per_word !=
1007              data->cur_trans->bits_per_word)) {
1008                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
1009                 spin_lock_irqsave(&data->lock, flags);
1010                 pch_spi_set_bits_per_word(data->master,
1011                                           data->cur_trans->bits_per_word);
1012                 spin_unlock_irqrestore(&data->lock, flags);
1013                 *bpw = data->cur_trans->bits_per_word;
1014         } else {
1015                 *bpw = data->current_msg->spi->bits_per_word;
1016         }
1017         data->bpw_len = data->cur_trans->len / (*bpw / 8);
1018
1019         /* copy Tx Data */
1020         if (data->cur_trans->tx_buf != NULL) {
1021                 if (*bpw == 8) {
1022                         tx_buf = data->cur_trans->tx_buf;
1023                         tx_dma_buf = dma->tx_buf_virt;
1024                         for (i = 0; i < data->bpw_len; i++)
1025                                 *tx_dma_buf++ = *tx_buf++;
1026                 } else {
1027                         tx_sbuf = data->cur_trans->tx_buf;
1028                         tx_dma_sbuf = dma->tx_buf_virt;
1029                         for (i = 0; i < data->bpw_len; i++)
1030                                 *tx_dma_sbuf++ = *tx_sbuf++;
1031                 }
1032         }
1033         if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1034                 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1035                 size = PCH_DMA_TRANS_SIZE;
1036                 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1037         } else {
1038                 num = 1;
1039                 size = data->bpw_len;
1040                 rem = data->bpw_len;
1041         }
1042         dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1043                 __func__, num, size, rem);
1044         spin_lock_irqsave(&data->lock, flags);
1045
1046         /* set receive fifo threshold and transmit fifo threshold */
1047         pch_spi_setclr_reg(data->master, PCH_SPCR,
1048                            ((size - 1) << SPCR_RFIC_FIELD) |
1049                            (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1050                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1051
1052         spin_unlock_irqrestore(&data->lock, flags);
1053
1054         /* RX */
1055         dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1056         sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1057         /* offset, length setting */
1058         sg = dma->sg_rx_p;
1059         for (i = 0; i < num; i++, sg++) {
1060                 if (i == (num - 2)) {
1061                         sg->offset = size * i;
1062                         sg->offset = sg->offset * (*bpw / 8);
1063                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1064                                     sg->offset);
1065                         sg_dma_len(sg) = rem;
1066                 } else if (i == (num - 1)) {
1067                         sg->offset = size * (i - 1) + rem;
1068                         sg->offset = sg->offset * (*bpw / 8);
1069                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1070                                     sg->offset);
1071                         sg_dma_len(sg) = size;
1072                 } else {
1073                         sg->offset = size * i;
1074                         sg->offset = sg->offset * (*bpw / 8);
1075                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1076                                     sg->offset);
1077                         sg_dma_len(sg) = size;
1078                 }
1079                 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1080         }
1081         sg = dma->sg_rx_p;
1082         desc_rx = dma->chan_rx->device->device_prep_slave_sg(dma->chan_rx, sg,
1083                                         num, DMA_FROM_DEVICE,
1084                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1085         if (!desc_rx) {
1086                 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1087                         __func__);
1088                 return;
1089         }
1090         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1091         desc_rx->callback = pch_dma_rx_complete;
1092         desc_rx->callback_param = data;
1093         dma->nent = num;
1094         dma->desc_rx = desc_rx;
1095
1096         /* TX */
1097         if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1098                 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1099                 size = PCH_DMA_TRANS_SIZE;
1100                 rem = 16;
1101         } else {
1102                 num = 1;
1103                 size = data->bpw_len;
1104                 rem = data->bpw_len;
1105         }
1106
1107         dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1108         sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1109         /* offset, length setting */
1110         sg = dma->sg_tx_p;
1111         for (i = 0; i < num; i++, sg++) {
1112                 if (i == 0) {
1113                         sg->offset = 0;
1114                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1115                                     sg->offset);
1116                         sg_dma_len(sg) = rem;
1117                 } else {
1118                         sg->offset = rem + size * (i - 1);
1119                         sg->offset = sg->offset * (*bpw / 8);
1120                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1121                                     sg->offset);
1122                         sg_dma_len(sg) = size;
1123                 }
1124                 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1125         }
1126         sg = dma->sg_tx_p;
1127         desc_tx = dma->chan_tx->device->device_prep_slave_sg(dma->chan_tx,
1128                                         sg, num, DMA_TO_DEVICE,
1129                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1130         if (!desc_tx) {
1131                 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1132                         __func__);
1133                 return;
1134         }
1135         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1136         desc_tx->callback = NULL;
1137         desc_tx->callback_param = data;
1138         dma->nent = num;
1139         dma->desc_tx = desc_tx;
1140
1141         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1142                 "0x2 to SSNXCR\n", __func__);
1143
1144         spin_lock_irqsave(&data->lock, flags);
1145         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1146         desc_rx->tx_submit(desc_rx);
1147         desc_tx->tx_submit(desc_tx);
1148         spin_unlock_irqrestore(&data->lock, flags);
1149
1150         /* reset transfer complete flag */
1151         data->transfer_complete = false;
1152 }
1153
1154 static void pch_spi_process_messages(struct work_struct *pwork)
1155 {
1156         struct spi_message *pmsg;
1157         struct pch_spi_data *data;
1158         int bpw;
1159
1160         data = container_of(pwork, struct pch_spi_data, work);
1161         dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1162
1163         spin_lock(&data->lock);
1164         /* check if suspend has been initiated;if yes flush queue */
1165         if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1166                 dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
1167                         "flushing queue\n", __func__);
1168                 list_for_each_entry(pmsg, data->queue.next, queue) {
1169                         pmsg->status = -EIO;
1170
1171                         if (pmsg->complete != 0) {
1172                                 spin_unlock(&data->lock);
1173                                 pmsg->complete(pmsg->context);
1174                                 spin_lock(&data->lock);
1175                         }
1176
1177                         /* delete from queue */
1178                         list_del_init(&pmsg->queue);
1179                 }
1180
1181                 spin_unlock(&data->lock);
1182                 return;
1183         }
1184
1185         data->bcurrent_msg_processing = true;
1186         dev_dbg(&data->master->dev,
1187                 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1188
1189         /* Get the message from the queue and delete it from there. */
1190         data->current_msg = list_entry(data->queue.next, struct spi_message,
1191                                         queue);
1192
1193         list_del_init(&data->current_msg->queue);
1194
1195         data->current_msg->status = 0;
1196
1197         pch_spi_select_chip(data, data->current_msg->spi);
1198
1199         spin_unlock(&data->lock);
1200
1201         if (data->use_dma)
1202                 pch_spi_request_dma(data,
1203                                     data->current_msg->spi->bits_per_word);
1204         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1205         do {
1206                 /* If we are already processing a message get the next
1207                 transfer structure from the message otherwise retrieve
1208                 the 1st transfer request from the message. */
1209                 spin_lock(&data->lock);
1210                 if (data->cur_trans == NULL) {
1211                         data->cur_trans =
1212                                 list_entry(data->current_msg->transfers.next,
1213                                            struct spi_transfer, transfer_list);
1214                         dev_dbg(&data->master->dev, "%s "
1215                                 ":Getting 1st transfer message\n", __func__);
1216                 } else {
1217                         data->cur_trans =
1218                                 list_entry(data->cur_trans->transfer_list.next,
1219                                            struct spi_transfer, transfer_list);
1220                         dev_dbg(&data->master->dev, "%s "
1221                                 ":Getting next transfer message\n", __func__);
1222                 }
1223                 spin_unlock(&data->lock);
1224
1225                 if (data->use_dma) {
1226                         pch_spi_handle_dma(data, &bpw);
1227                         if (!pch_spi_start_transfer(data))
1228                                 goto out;
1229                         pch_spi_copy_rx_data_for_dma(data, bpw);
1230                 } else {
1231                         pch_spi_set_tx(data, &bpw);
1232                         pch_spi_set_ir(data);
1233                         pch_spi_copy_rx_data(data, bpw);
1234                         kfree(data->pkt_rx_buff);
1235                         data->pkt_rx_buff = NULL;
1236                         kfree(data->pkt_tx_buff);
1237                         data->pkt_tx_buff = NULL;
1238                 }
1239                 /* increment message count */
1240                 data->current_msg->actual_length += data->cur_trans->len;
1241
1242                 dev_dbg(&data->master->dev,
1243                         "%s:data->current_msg->actual_length=%d\n",
1244                         __func__, data->current_msg->actual_length);
1245
1246                 /* check for delay */
1247                 if (data->cur_trans->delay_usecs) {
1248                         dev_dbg(&data->master->dev, "%s:"
1249                                 "delay in usec=%d\n", __func__,
1250                                 data->cur_trans->delay_usecs);
1251                         udelay(data->cur_trans->delay_usecs);
1252                 }
1253
1254                 spin_lock(&data->lock);
1255
1256                 /* No more transfer in this message. */
1257                 if ((data->cur_trans->transfer_list.next) ==
1258                     &(data->current_msg->transfers)) {
1259                         pch_spi_nomore_transfer(data);
1260                 }
1261
1262                 spin_unlock(&data->lock);
1263
1264         } while (data->cur_trans != NULL);
1265
1266 out:
1267         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1268         if (data->use_dma)
1269                 pch_spi_release_dma(data);
1270 }
1271
1272 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1273                                    struct pch_spi_data *data)
1274 {
1275         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1276
1277         /* free workqueue */
1278         if (data->wk != NULL) {
1279                 destroy_workqueue(data->wk);
1280                 data->wk = NULL;
1281                 dev_dbg(&board_dat->pdev->dev,
1282                         "%s destroy_workqueue invoked successfully\n",
1283                         __func__);
1284         }
1285 }
1286
1287 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1288                                  struct pch_spi_data *data)
1289 {
1290         int retval = 0;
1291
1292         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1293
1294         /* create workqueue */
1295         data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1296         if (!data->wk) {
1297                 dev_err(&board_dat->pdev->dev,
1298                         "%s create_singlet hread_workqueue failed\n", __func__);
1299                 retval = -EBUSY;
1300                 goto err_return;
1301         }
1302
1303         /* reset PCH SPI h/w */
1304         pch_spi_reset(data->master);
1305         dev_dbg(&board_dat->pdev->dev,
1306                 "%s pch_spi_reset invoked successfully\n", __func__);
1307
1308         dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1309
1310 err_return:
1311         if (retval != 0) {
1312                 dev_err(&board_dat->pdev->dev,
1313                         "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1314                 pch_spi_free_resources(board_dat, data);
1315         }
1316
1317         dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1318
1319         return retval;
1320 }
1321
1322 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1323                              struct pch_spi_data *data)
1324 {
1325         struct pch_spi_dma_ctrl *dma;
1326
1327         dma = &data->dma;
1328         if (dma->tx_buf_dma)
1329                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1330                                   dma->tx_buf_virt, dma->tx_buf_dma);
1331         if (dma->rx_buf_dma)
1332                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1333                                   dma->rx_buf_virt, dma->rx_buf_dma);
1334         return;
1335 }
1336
1337 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1338                               struct pch_spi_data *data)
1339 {
1340         struct pch_spi_dma_ctrl *dma;
1341
1342         dma = &data->dma;
1343         /* Get Consistent memory for Tx DMA */
1344         dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1345                                 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1346         /* Get Consistent memory for Rx DMA */
1347         dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1348                                 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1349 }
1350
1351 static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
1352 {
1353         int ret;
1354         struct spi_master *master;
1355         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1356         struct pch_spi_data *data;
1357
1358         dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1359
1360         master = spi_alloc_master(&board_dat->pdev->dev,
1361                                   sizeof(struct pch_spi_data));
1362         if (!master) {
1363                 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1364                         plat_dev->id);
1365                 return -ENOMEM;
1366         }
1367
1368         data = spi_master_get_devdata(master);
1369         data->master = master;
1370
1371         platform_set_drvdata(plat_dev, data);
1372
1373         /* baseaddress + address offset) */
1374         data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1375                                          PCH_ADDRESS_SIZE * plat_dev->id;
1376         data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
1377                                          PCH_ADDRESS_SIZE * plat_dev->id;
1378         if (!data->io_remap_addr) {
1379                 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1380                 ret = -ENOMEM;
1381                 goto err_pci_iomap;
1382         }
1383
1384         dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1385                 plat_dev->id, data->io_remap_addr);
1386
1387         /* initialize members of SPI master */
1388         master->bus_num = -1;
1389         master->num_chipselect = PCH_MAX_CS;
1390         master->setup = pch_spi_setup;
1391         master->transfer = pch_spi_transfer;
1392
1393         data->board_dat = board_dat;
1394         data->plat_dev = plat_dev;
1395         data->n_curnt_chip = 255;
1396         data->status = STATUS_RUNNING;
1397         data->ch = plat_dev->id;
1398         data->use_dma = use_dma;
1399
1400         INIT_LIST_HEAD(&data->queue);
1401         spin_lock_init(&data->lock);
1402         INIT_WORK(&data->work, pch_spi_process_messages);
1403         init_waitqueue_head(&data->wait);
1404
1405         ret = pch_spi_get_resources(board_dat, data);
1406         if (ret) {
1407                 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1408                 goto err_spi_get_resources;
1409         }
1410
1411         ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1412                           IRQF_SHARED, KBUILD_MODNAME, data);
1413         if (ret) {
1414                 dev_err(&plat_dev->dev,
1415                         "%s request_irq failed\n", __func__);
1416                 goto err_request_irq;
1417         }
1418         data->irq_reg_sts = true;
1419
1420         pch_spi_set_master_mode(master);
1421
1422         ret = spi_register_master(master);
1423         if (ret != 0) {
1424                 dev_err(&plat_dev->dev,
1425                         "%s spi_register_master FAILED\n", __func__);
1426                 goto err_spi_register_master;
1427         }
1428
1429         if (use_dma) {
1430                 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1431                 pch_alloc_dma_buf(board_dat, data);
1432         }
1433
1434         return 0;
1435
1436 err_spi_register_master:
1437         free_irq(board_dat->pdev->irq, board_dat);
1438 err_request_irq:
1439         pch_spi_free_resources(board_dat, data);
1440 err_spi_get_resources:
1441         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1442 err_pci_iomap:
1443         spi_master_put(master);
1444
1445         return ret;
1446 }
1447
1448 static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
1449 {
1450         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1451         struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1452         int count;
1453         unsigned long flags;
1454
1455         dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1456                 __func__, plat_dev->id, board_dat->pdev->irq);
1457
1458         if (use_dma)
1459                 pch_free_dma_buf(board_dat, data);
1460
1461         /* check for any pending messages; no action is taken if the queue
1462          * is still full; but at least we tried.  Unload anyway */
1463         count = 500;
1464         spin_lock_irqsave(&data->lock, flags);
1465         data->status = STATUS_EXITING;
1466         while ((list_empty(&data->queue) == 0) && --count) {
1467                 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1468                         __func__);
1469                 spin_unlock_irqrestore(&data->lock, flags);
1470                 msleep(PCH_SLEEP_TIME);
1471                 spin_lock_irqsave(&data->lock, flags);
1472         }
1473         spin_unlock_irqrestore(&data->lock, flags);
1474
1475         pch_spi_free_resources(board_dat, data);
1476         /* disable interrupts & free IRQ */
1477         if (data->irq_reg_sts) {
1478                 /* disable interrupts */
1479                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1480                 data->irq_reg_sts = false;
1481                 free_irq(board_dat->pdev->irq, data);
1482         }
1483
1484         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1485         spi_unregister_master(data->master);
1486         spi_master_put(data->master);
1487         platform_set_drvdata(plat_dev, NULL);
1488
1489         return 0;
1490 }
1491 #ifdef CONFIG_PM
1492 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1493                               pm_message_t state)
1494 {
1495         u8 count;
1496         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1497         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1498
1499         dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1500
1501         if (!board_dat) {
1502                 dev_err(&pd_dev->dev,
1503                         "%s pci_get_drvdata returned NULL\n", __func__);
1504                 return -EFAULT;
1505         }
1506
1507         /* check if the current message is processed:
1508            Only after thats done the transfer will be suspended */
1509         count = 255;
1510         while ((--count) > 0) {
1511                 if (!(data->bcurrent_msg_processing))
1512                         break;
1513                 msleep(PCH_SLEEP_TIME);
1514         }
1515
1516         /* Free IRQ */
1517         if (data->irq_reg_sts) {
1518                 /* disable all interrupts */
1519                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1520                 pch_spi_reset(data->master);
1521                 free_irq(board_dat->pdev->irq, data);
1522
1523                 data->irq_reg_sts = false;
1524                 dev_dbg(&pd_dev->dev,
1525                         "%s free_irq invoked successfully.\n", __func__);
1526         }
1527
1528         return 0;
1529 }
1530
1531 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1532 {
1533         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1534         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1535         int retval;
1536
1537         if (!board_dat) {
1538                 dev_err(&pd_dev->dev,
1539                         "%s pci_get_drvdata returned NULL\n", __func__);
1540                 return -EFAULT;
1541         }
1542
1543         if (!data->irq_reg_sts) {
1544                 /* register IRQ */
1545                 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1546                                      IRQF_SHARED, KBUILD_MODNAME, data);
1547                 if (retval < 0) {
1548                         dev_err(&pd_dev->dev,
1549                                 "%s request_irq failed\n", __func__);
1550                         return retval;
1551                 }
1552
1553                 /* reset PCH SPI h/w */
1554                 pch_spi_reset(data->master);
1555                 pch_spi_set_master_mode(data->master);
1556                 data->irq_reg_sts = true;
1557         }
1558         return 0;
1559 }
1560 #else
1561 #define pch_spi_pd_suspend NULL
1562 #define pch_spi_pd_resume NULL
1563 #endif
1564
1565 static struct platform_driver pch_spi_pd_driver = {
1566         .driver = {
1567                 .name = "pch-spi",
1568                 .owner = THIS_MODULE,
1569         },
1570         .probe = pch_spi_pd_probe,
1571         .remove = __devexit_p(pch_spi_pd_remove),
1572         .suspend = pch_spi_pd_suspend,
1573         .resume = pch_spi_pd_resume
1574 };
1575
1576 static int __devinit pch_spi_probe(struct pci_dev *pdev,
1577                                    const struct pci_device_id *id)
1578 {
1579         struct pch_spi_board_data *board_dat;
1580         struct platform_device *pd_dev = NULL;
1581         int retval;
1582         int i;
1583         struct pch_pd_dev_save *pd_dev_save;
1584
1585         pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1586         if (!pd_dev_save) {
1587                 dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1588                 return -ENOMEM;
1589         }
1590
1591         board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1592         if (!board_dat) {
1593                 dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1594                 retval = -ENOMEM;
1595                 goto err_no_mem;
1596         }
1597
1598         retval = pci_request_regions(pdev, KBUILD_MODNAME);
1599         if (retval) {
1600                 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1601                 goto pci_request_regions;
1602         }
1603
1604         board_dat->pdev = pdev;
1605         board_dat->num = id->driver_data;
1606         pd_dev_save->num = id->driver_data;
1607         pd_dev_save->board_dat = board_dat;
1608
1609         retval = pci_enable_device(pdev);
1610         if (retval) {
1611                 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1612                 goto pci_enable_device;
1613         }
1614
1615         for (i = 0; i < board_dat->num; i++) {
1616                 pd_dev = platform_device_alloc("pch-spi", i);
1617                 if (!pd_dev) {
1618                         dev_err(&pdev->dev, "platform_device_alloc failed\n");
1619                         goto err_platform_device;
1620                 }
1621                 pd_dev_save->pd_save[i] = pd_dev;
1622                 pd_dev->dev.parent = &pdev->dev;
1623
1624                 retval = platform_device_add_data(pd_dev, board_dat,
1625                                                   sizeof(*board_dat));
1626                 if (retval) {
1627                         dev_err(&pdev->dev,
1628                                 "platform_device_add_data failed\n");
1629                         platform_device_put(pd_dev);
1630                         goto err_platform_device;
1631                 }
1632
1633                 retval = platform_device_add(pd_dev);
1634                 if (retval) {
1635                         dev_err(&pdev->dev, "platform_device_add failed\n");
1636                         platform_device_put(pd_dev);
1637                         goto err_platform_device;
1638                 }
1639         }
1640
1641         pci_set_drvdata(pdev, pd_dev_save);
1642
1643         return 0;
1644
1645 err_platform_device:
1646         pci_disable_device(pdev);
1647 pci_enable_device:
1648         pci_release_regions(pdev);
1649 pci_request_regions:
1650         kfree(board_dat);
1651 err_no_mem:
1652         kfree(pd_dev_save);
1653
1654         return retval;
1655 }
1656
1657 static void __devexit pch_spi_remove(struct pci_dev *pdev)
1658 {
1659         int i;
1660         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1661
1662         dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1663
1664         for (i = 0; i < pd_dev_save->num; i++)
1665                 platform_device_unregister(pd_dev_save->pd_save[i]);
1666
1667         pci_disable_device(pdev);
1668         pci_release_regions(pdev);
1669         kfree(pd_dev_save->board_dat);
1670         kfree(pd_dev_save);
1671 }
1672
1673 #ifdef CONFIG_PM
1674 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1675 {
1676         int retval;
1677         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1678
1679         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1680
1681         pd_dev_save->board_dat->suspend_sts = true;
1682
1683         /* save config space */
1684         retval = pci_save_state(pdev);
1685         if (retval == 0) {
1686                 pci_enable_wake(pdev, PCI_D3hot, 0);
1687                 pci_disable_device(pdev);
1688                 pci_set_power_state(pdev, PCI_D3hot);
1689         } else {
1690                 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1691         }
1692
1693         return retval;
1694 }
1695
1696 static int pch_spi_resume(struct pci_dev *pdev)
1697 {
1698         int retval;
1699         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1700         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1701
1702         pci_set_power_state(pdev, PCI_D0);
1703         pci_restore_state(pdev);
1704
1705         retval = pci_enable_device(pdev);
1706         if (retval < 0) {
1707                 dev_err(&pdev->dev,
1708                         "%s pci_enable_device failed\n", __func__);
1709         } else {
1710                 pci_enable_wake(pdev, PCI_D3hot, 0);
1711
1712                 /* set suspend status to false */
1713                 pd_dev_save->board_dat->suspend_sts = false;
1714         }
1715
1716         return retval;
1717 }
1718 #else
1719 #define pch_spi_suspend NULL
1720 #define pch_spi_resume NULL
1721
1722 #endif
1723
1724 static struct pci_driver pch_spi_pcidev_driver = {
1725         .name = "pch_spi",
1726         .id_table = pch_spi_pcidev_id,
1727         .probe = pch_spi_probe,
1728         .remove = pch_spi_remove,
1729         .suspend = pch_spi_suspend,
1730         .resume = pch_spi_resume,
1731 };
1732
1733 static int __init pch_spi_init(void)
1734 {
1735         int ret;
1736         ret = platform_driver_register(&pch_spi_pd_driver);
1737         if (ret)
1738                 return ret;
1739
1740         ret = pci_register_driver(&pch_spi_pcidev_driver);
1741         if (ret)
1742                 return ret;
1743
1744         return 0;
1745 }
1746 module_init(pch_spi_init);
1747
1748 static void __exit pch_spi_exit(void)
1749 {
1750         pci_unregister_driver(&pch_spi_pcidev_driver);
1751         platform_driver_unregister(&pch_spi_pd_driver);
1752 }
1753 module_exit(pch_spi_exit);
1754
1755 module_param(use_dma, int, 0644);
1756 MODULE_PARM_DESC(use_dma,
1757                  "to use DMA for data transfers pass 1 else 0; default 1");
1758
1759 MODULE_LICENSE("GPL");
1760 MODULE_DESCRIPTION("Intel EG20T PCH/OKI SEMICONDUCTOR ML7xxx IOH SPI Driver");