KVM: ia64: Flush all TLBs once guest's memory mapping changes.
[linux-flexiantxendom0.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/fs.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/gcc_intrin.h>
39 #include <asm/pal.h>
40 #include <asm/cacheflush.h>
41 #include <asm/div64.h>
42 #include <asm/tlb.h>
43 #include <asm/elf.h>
44 #include <asm/sn/addrs.h>
45 #include <asm/sn/clksupport.h>
46 #include <asm/sn/shub_mmr.h>
47
48 #include "misc.h"
49 #include "vti.h"
50 #include "iodev.h"
51 #include "ioapic.h"
52 #include "lapic.h"
53 #include "irq.h"
54
55 static unsigned long kvm_vmm_base;
56 static unsigned long kvm_vsa_base;
57 static unsigned long kvm_vm_buffer;
58 static unsigned long kvm_vm_buffer_size;
59 unsigned long kvm_vmm_gp;
60
61 static long vp_env_info;
62
63 static struct kvm_vmm_info *kvm_vmm_info;
64
65 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
66
67 struct kvm_stats_debugfs_item debugfs_entries[] = {
68         { NULL }
69 };
70
71 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
72 {
73 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
74         if (vcpu->kvm->arch.is_sn2)
75                 return rtc_time();
76         else
77 #endif
78                 return ia64_getreg(_IA64_REG_AR_ITC);
79 }
80
81 static void kvm_flush_icache(unsigned long start, unsigned long len)
82 {
83         int l;
84
85         for (l = 0; l < (len + 32); l += 32)
86                 ia64_fc((void *)(start + l));
87
88         ia64_sync_i();
89         ia64_srlz_i();
90 }
91
92 static void kvm_flush_tlb_all(void)
93 {
94         unsigned long i, j, count0, count1, stride0, stride1, addr;
95         long flags;
96
97         addr    = local_cpu_data->ptce_base;
98         count0  = local_cpu_data->ptce_count[0];
99         count1  = local_cpu_data->ptce_count[1];
100         stride0 = local_cpu_data->ptce_stride[0];
101         stride1 = local_cpu_data->ptce_stride[1];
102
103         local_irq_save(flags);
104         for (i = 0; i < count0; ++i) {
105                 for (j = 0; j < count1; ++j) {
106                         ia64_ptce(addr);
107                         addr += stride1;
108                 }
109                 addr += stride0;
110         }
111         local_irq_restore(flags);
112         ia64_srlz_i();                  /* srlz.i implies srlz.d */
113 }
114
115 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
116 {
117         struct ia64_pal_retval iprv;
118
119         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
120                         (u64)opt_handler);
121
122         return iprv.status;
123 }
124
125 static  DEFINE_SPINLOCK(vp_lock);
126
127 void kvm_arch_hardware_enable(void *garbage)
128 {
129         long  status;
130         long  tmp_base;
131         unsigned long pte;
132         unsigned long saved_psr;
133         int slot;
134
135         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
136         local_irq_save(saved_psr);
137         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
138         local_irq_restore(saved_psr);
139         if (slot < 0)
140                 return;
141
142         spin_lock(&vp_lock);
143         status = ia64_pal_vp_init_env(kvm_vsa_base ?
144                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
145                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
146         if (status != 0) {
147                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
148                 return ;
149         }
150
151         if (!kvm_vsa_base) {
152                 kvm_vsa_base = tmp_base;
153                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
154         }
155         spin_unlock(&vp_lock);
156         ia64_ptr_entry(0x3, slot);
157 }
158
159 void kvm_arch_hardware_disable(void *garbage)
160 {
161
162         long status;
163         int slot;
164         unsigned long pte;
165         unsigned long saved_psr;
166         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
167
168         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
169                                 PAGE_KERNEL));
170
171         local_irq_save(saved_psr);
172         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
173         local_irq_restore(saved_psr);
174         if (slot < 0)
175                 return;
176
177         status = ia64_pal_vp_exit_env(host_iva);
178         if (status)
179                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
180                                 status);
181         ia64_ptr_entry(0x3, slot);
182 }
183
184 void kvm_arch_check_processor_compat(void *rtn)
185 {
186         *(int *)rtn = 0;
187 }
188
189 int kvm_dev_ioctl_check_extension(long ext)
190 {
191
192         int r;
193
194         switch (ext) {
195         case KVM_CAP_IRQCHIP:
196         case KVM_CAP_MP_STATE:
197         case KVM_CAP_IRQ_INJECT_STATUS:
198                 r = 1;
199                 break;
200         case KVM_CAP_COALESCED_MMIO:
201                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
202                 break;
203         case KVM_CAP_IOMMU:
204                 r = iommu_found();
205                 break;
206         default:
207                 r = 0;
208         }
209         return r;
210
211 }
212
213 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
214                                         gpa_t addr, int len, int is_write)
215 {
216         struct kvm_io_device *dev;
217
218         dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
219
220         return dev;
221 }
222
223 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
224 {
225         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
226         kvm_run->hw.hardware_exit_reason = 1;
227         return 0;
228 }
229
230 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
231 {
232         struct kvm_mmio_req *p;
233         struct kvm_io_device *mmio_dev;
234
235         p = kvm_get_vcpu_ioreq(vcpu);
236
237         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
238                 goto mmio;
239         vcpu->mmio_needed = 1;
240         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
241         vcpu->mmio_size = kvm_run->mmio.len = p->size;
242         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
243
244         if (vcpu->mmio_is_write)
245                 memcpy(vcpu->mmio_data, &p->data, p->size);
246         memcpy(kvm_run->mmio.data, &p->data, p->size);
247         kvm_run->exit_reason = KVM_EXIT_MMIO;
248         return 0;
249 mmio:
250         mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
251         if (mmio_dev) {
252                 if (!p->dir)
253                         kvm_iodevice_write(mmio_dev, p->addr, p->size,
254                                                 &p->data);
255                 else
256                         kvm_iodevice_read(mmio_dev, p->addr, p->size,
257                                                 &p->data);
258
259         } else
260                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
261         p->state = STATE_IORESP_READY;
262
263         return 1;
264 }
265
266 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
267 {
268         struct exit_ctl_data *p;
269
270         p = kvm_get_exit_data(vcpu);
271
272         if (p->exit_reason == EXIT_REASON_PAL_CALL)
273                 return kvm_pal_emul(vcpu, kvm_run);
274         else {
275                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
276                 kvm_run->hw.hardware_exit_reason = 2;
277                 return 0;
278         }
279 }
280
281 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
282 {
283         struct exit_ctl_data *p;
284
285         p = kvm_get_exit_data(vcpu);
286
287         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
288                 kvm_sal_emul(vcpu);
289                 return 1;
290         } else {
291                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
292                 kvm_run->hw.hardware_exit_reason = 3;
293                 return 0;
294         }
295
296 }
297
298 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
299 {
300         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
301
302         if (!test_and_set_bit(vector, &vpd->irr[0])) {
303                 vcpu->arch.irq_new_pending = 1;
304                 kvm_vcpu_kick(vcpu);
305                 return 1;
306         }
307         return 0;
308 }
309
310 /*
311  *  offset: address offset to IPI space.
312  *  value:  deliver value.
313  */
314 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
315                                 uint64_t vector)
316 {
317         switch (dm) {
318         case SAPIC_FIXED:
319                 break;
320         case SAPIC_NMI:
321                 vector = 2;
322                 break;
323         case SAPIC_EXTINT:
324                 vector = 0;
325                 break;
326         case SAPIC_INIT:
327         case SAPIC_PMI:
328         default:
329                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
330                 return;
331         }
332         __apic_accept_irq(vcpu, vector);
333 }
334
335 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
336                         unsigned long eid)
337 {
338         union ia64_lid lid;
339         int i;
340
341         for (i = 0; i < kvm->arch.online_vcpus; i++) {
342                 if (kvm->vcpus[i]) {
343                         lid.val = VCPU_LID(kvm->vcpus[i]);
344                         if (lid.id == id && lid.eid == eid)
345                                 return kvm->vcpus[i];
346                 }
347         }
348
349         return NULL;
350 }
351
352 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
353 {
354         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
355         struct kvm_vcpu *target_vcpu;
356         struct kvm_pt_regs *regs;
357         union ia64_ipi_a addr = p->u.ipi_data.addr;
358         union ia64_ipi_d data = p->u.ipi_data.data;
359
360         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
361         if (!target_vcpu)
362                 return handle_vm_error(vcpu, kvm_run);
363
364         if (!target_vcpu->arch.launched) {
365                 regs = vcpu_regs(target_vcpu);
366
367                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
368                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
369
370                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
371                 if (waitqueue_active(&target_vcpu->wq))
372                         wake_up_interruptible(&target_vcpu->wq);
373         } else {
374                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
375                 if (target_vcpu != vcpu)
376                         kvm_vcpu_kick(target_vcpu);
377         }
378
379         return 1;
380 }
381
382 struct call_data {
383         struct kvm_ptc_g ptc_g_data;
384         struct kvm_vcpu *vcpu;
385 };
386
387 static void vcpu_global_purge(void *info)
388 {
389         struct call_data *p = (struct call_data *)info;
390         struct kvm_vcpu *vcpu = p->vcpu;
391
392         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
393                 return;
394
395         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
396         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
397                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
398                                                         p->ptc_g_data;
399         } else {
400                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
401                 vcpu->arch.ptc_g_count = 0;
402                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
403         }
404 }
405
406 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
407 {
408         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
409         struct kvm *kvm = vcpu->kvm;
410         struct call_data call_data;
411         int i;
412
413         call_data.ptc_g_data = p->u.ptc_g_data;
414
415         for (i = 0; i < kvm->arch.online_vcpus; i++) {
416                 if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
417                                                 KVM_MP_STATE_UNINITIALIZED ||
418                                         vcpu == kvm->vcpus[i])
419                         continue;
420
421                 if (waitqueue_active(&kvm->vcpus[i]->wq))
422                         wake_up_interruptible(&kvm->vcpus[i]->wq);
423
424                 if (kvm->vcpus[i]->cpu != -1) {
425                         call_data.vcpu = kvm->vcpus[i];
426                         smp_call_function_single(kvm->vcpus[i]->cpu,
427                                         vcpu_global_purge, &call_data, 1);
428                 } else
429                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
430
431         }
432         return 1;
433 }
434
435 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
436 {
437         return 1;
438 }
439
440 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
441 {
442         unsigned long pte, rtc_phys_addr, map_addr;
443         int slot;
444
445         map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
446         rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
447         pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
448         slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
449         vcpu->arch.sn_rtc_tr_slot = slot;
450         if (slot < 0) {
451                 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
452                 slot = 0;
453         }
454         return slot;
455 }
456
457 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
458 {
459
460         ktime_t kt;
461         long itc_diff;
462         unsigned long vcpu_now_itc;
463         unsigned long expires;
464         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
465         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
466         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
467
468         if (irqchip_in_kernel(vcpu->kvm)) {
469
470                 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
471
472                 if (time_after(vcpu_now_itc, vpd->itm)) {
473                         vcpu->arch.timer_check = 1;
474                         return 1;
475                 }
476                 itc_diff = vpd->itm - vcpu_now_itc;
477                 if (itc_diff < 0)
478                         itc_diff = -itc_diff;
479
480                 expires = div64_u64(itc_diff, cyc_per_usec);
481                 kt = ktime_set(0, 1000 * expires);
482
483                 vcpu->arch.ht_active = 1;
484                 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
485
486                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
487                 kvm_vcpu_block(vcpu);
488                 hrtimer_cancel(p_ht);
489                 vcpu->arch.ht_active = 0;
490
491                 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
492                                 kvm_cpu_has_pending_timer(vcpu))
493                         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
494                                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
495
496                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
497                         return -EINTR;
498                 return 1;
499         } else {
500                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
501                 return 0;
502         }
503 }
504
505 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
506                 struct kvm_run *kvm_run)
507 {
508         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
509         return 0;
510 }
511
512 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
513                 struct kvm_run *kvm_run)
514 {
515         return 1;
516 }
517
518 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
519                                 struct kvm_run *kvm_run)
520 {
521         printk("VMM: %s", vcpu->arch.log_buf);
522         return 1;
523 }
524
525 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
526                 struct kvm_run *kvm_run) = {
527         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
528         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
529         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
530         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
531         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
532         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
533         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
534         [EXIT_REASON_IPI]                   = handle_ipi,
535         [EXIT_REASON_PTC_G]                 = handle_global_purge,
536         [EXIT_REASON_DEBUG]                 = handle_vcpu_debug,
537
538 };
539
540 static const int kvm_vti_max_exit_handlers =
541                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
542
543 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
544 {
545         struct exit_ctl_data *p_exit_data;
546
547         p_exit_data = kvm_get_exit_data(vcpu);
548         return p_exit_data->exit_reason;
549 }
550
551 /*
552  * The guest has exited.  See if we can fix it or if we need userspace
553  * assistance.
554  */
555 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
556 {
557         u32 exit_reason = kvm_get_exit_reason(vcpu);
558         vcpu->arch.last_exit = exit_reason;
559
560         if (exit_reason < kvm_vti_max_exit_handlers
561                         && kvm_vti_exit_handlers[exit_reason])
562                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
563         else {
564                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
565                 kvm_run->hw.hardware_exit_reason = exit_reason;
566         }
567         return 0;
568 }
569
570 static inline void vti_set_rr6(unsigned long rr6)
571 {
572         ia64_set_rr(RR6, rr6);
573         ia64_srlz_i();
574 }
575
576 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
577 {
578         unsigned long pte;
579         struct kvm *kvm = vcpu->kvm;
580         int r;
581
582         /*Insert a pair of tr to map vmm*/
583         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
584         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
585         if (r < 0)
586                 goto out;
587         vcpu->arch.vmm_tr_slot = r;
588         /*Insert a pairt of tr to map data of vm*/
589         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
590         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
591                                         pte, KVM_VM_DATA_SHIFT);
592         if (r < 0)
593                 goto out;
594         vcpu->arch.vm_tr_slot = r;
595
596 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
597         if (kvm->arch.is_sn2) {
598                 r = kvm_sn2_setup_mappings(vcpu);
599                 if (r < 0)
600                         goto out;
601         }
602 #endif
603
604         r = 0;
605 out:
606         return r;
607 }
608
609 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
610 {
611         struct kvm *kvm = vcpu->kvm;
612         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
613         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
614 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
615         if (kvm->arch.is_sn2)
616                 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
617 #endif
618 }
619
620 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
621 {
622         int cpu = smp_processor_id();
623
624         if (vcpu->arch.last_run_cpu != cpu ||
625                         per_cpu(last_vcpu, cpu) != vcpu) {
626                 per_cpu(last_vcpu, cpu) = vcpu;
627                 vcpu->arch.last_run_cpu = cpu;
628                 kvm_flush_tlb_all();
629         }
630
631         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
632         vti_set_rr6(vcpu->arch.vmm_rr);
633         return kvm_insert_vmm_mapping(vcpu);
634 }
635
636 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
637 {
638         kvm_purge_vmm_mapping(vcpu);
639         vti_set_rr6(vcpu->arch.host_rr6);
640 }
641
642 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
643 {
644         union context *host_ctx, *guest_ctx;
645         int r;
646
647         /*
648          * down_read() may sleep and return with interrupts enabled
649          */
650         down_read(&vcpu->kvm->slots_lock);
651
652 again:
653         if (signal_pending(current)) {
654                 r = -EINTR;
655                 kvm_run->exit_reason = KVM_EXIT_INTR;
656                 goto out;
657         }
658
659         preempt_disable();
660         local_irq_disable();
661
662         /*Get host and guest context with guest address space.*/
663         host_ctx = kvm_get_host_context(vcpu);
664         guest_ctx = kvm_get_guest_context(vcpu);
665
666         vcpu->guest_mode = 1;
667
668         r = kvm_vcpu_pre_transition(vcpu);
669         if (r < 0)
670                 goto vcpu_run_fail;
671
672         up_read(&vcpu->kvm->slots_lock);
673         kvm_guest_enter();
674
675         /*
676          * Transition to the guest
677          */
678         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
679
680         kvm_vcpu_post_transition(vcpu);
681
682         vcpu->arch.launched = 1;
683         vcpu->guest_mode = 0;
684         local_irq_enable();
685
686         /*
687          * We must have an instruction between local_irq_enable() and
688          * kvm_guest_exit(), so the timer interrupt isn't delayed by
689          * the interrupt shadow.  The stat.exits increment will do nicely.
690          * But we need to prevent reordering, hence this barrier():
691          */
692         barrier();
693         kvm_guest_exit();
694         preempt_enable();
695
696         down_read(&vcpu->kvm->slots_lock);
697
698         r = kvm_handle_exit(kvm_run, vcpu);
699
700         if (r > 0) {
701                 if (!need_resched())
702                         goto again;
703         }
704
705 out:
706         up_read(&vcpu->kvm->slots_lock);
707         if (r > 0) {
708                 kvm_resched(vcpu);
709                 down_read(&vcpu->kvm->slots_lock);
710                 goto again;
711         }
712
713         return r;
714
715 vcpu_run_fail:
716         local_irq_enable();
717         preempt_enable();
718         kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
719         goto out;
720 }
721
722 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
723 {
724         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
725
726         if (!vcpu->mmio_is_write)
727                 memcpy(&p->data, vcpu->mmio_data, 8);
728         p->state = STATE_IORESP_READY;
729 }
730
731 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
732 {
733         int r;
734         sigset_t sigsaved;
735
736         vcpu_load(vcpu);
737
738         if (vcpu->sigset_active)
739                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
740
741         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
742                 kvm_vcpu_block(vcpu);
743                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
744                 r = -EAGAIN;
745                 goto out;
746         }
747
748         if (vcpu->mmio_needed) {
749                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
750                 kvm_set_mmio_data(vcpu);
751                 vcpu->mmio_read_completed = 1;
752                 vcpu->mmio_needed = 0;
753         }
754         r = __vcpu_run(vcpu, kvm_run);
755 out:
756         if (vcpu->sigset_active)
757                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
758
759         vcpu_put(vcpu);
760         return r;
761 }
762
763 static struct kvm *kvm_alloc_kvm(void)
764 {
765
766         struct kvm *kvm;
767         uint64_t  vm_base;
768
769         BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
770
771         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
772
773         if (!vm_base)
774                 return ERR_PTR(-ENOMEM);
775
776         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
777         kvm = (struct kvm *)(vm_base +
778                         offsetof(struct kvm_vm_data, kvm_vm_struct));
779         kvm->arch.vm_base = vm_base;
780         printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
781
782         return kvm;
783 }
784
785 struct kvm_io_range {
786         unsigned long start;
787         unsigned long size;
788         unsigned long type;
789 };
790
791 static const struct kvm_io_range io_ranges[] = {
792         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
793         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
794         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
795         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
796         {PIB_START, PIB_SIZE, GPFN_PIB},
797 };
798
799 static void kvm_build_io_pmt(struct kvm *kvm)
800 {
801         unsigned long i, j;
802
803         /* Mark I/O ranges */
804         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
805                                                         i++) {
806                 for (j = io_ranges[i].start;
807                                 j < io_ranges[i].start + io_ranges[i].size;
808                                 j += PAGE_SIZE)
809                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
810                                         io_ranges[i].type, 0);
811         }
812
813 }
814
815 /*Use unused rids to virtualize guest rid.*/
816 #define GUEST_PHYSICAL_RR0      0x1739
817 #define GUEST_PHYSICAL_RR4      0x2739
818 #define VMM_INIT_RR             0x1660
819
820 static void kvm_init_vm(struct kvm *kvm)
821 {
822         BUG_ON(!kvm);
823
824         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
825         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
826         kvm->arch.vmm_init_rr = VMM_INIT_RR;
827
828         /*
829          *Fill P2M entries for MMIO/IO ranges
830          */
831         kvm_build_io_pmt(kvm);
832
833         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
834
835         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
836         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
837 }
838
839 struct  kvm *kvm_arch_create_vm(void)
840 {
841         struct kvm *kvm = kvm_alloc_kvm();
842
843         if (IS_ERR(kvm))
844                 return ERR_PTR(-ENOMEM);
845
846         kvm->arch.is_sn2 = ia64_platform_is("sn2");
847
848         kvm_init_vm(kvm);
849
850         kvm->arch.online_vcpus = 0;
851
852         return kvm;
853
854 }
855
856 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
857                                         struct kvm_irqchip *chip)
858 {
859         int r;
860
861         r = 0;
862         switch (chip->chip_id) {
863         case KVM_IRQCHIP_IOAPIC:
864                 memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
865                                 sizeof(struct kvm_ioapic_state));
866                 break;
867         default:
868                 r = -EINVAL;
869                 break;
870         }
871         return r;
872 }
873
874 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
875 {
876         int r;
877
878         r = 0;
879         switch (chip->chip_id) {
880         case KVM_IRQCHIP_IOAPIC:
881                 memcpy(ioapic_irqchip(kvm),
882                                 &chip->chip.ioapic,
883                                 sizeof(struct kvm_ioapic_state));
884                 break;
885         default:
886                 r = -EINVAL;
887                 break;
888         }
889         return r;
890 }
891
892 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
893
894 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
895 {
896         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
897         int i;
898
899         vcpu_load(vcpu);
900
901         for (i = 0; i < 16; i++) {
902                 vpd->vgr[i] = regs->vpd.vgr[i];
903                 vpd->vbgr[i] = regs->vpd.vbgr[i];
904         }
905         for (i = 0; i < 128; i++)
906                 vpd->vcr[i] = regs->vpd.vcr[i];
907         vpd->vhpi = regs->vpd.vhpi;
908         vpd->vnat = regs->vpd.vnat;
909         vpd->vbnat = regs->vpd.vbnat;
910         vpd->vpsr = regs->vpd.vpsr;
911
912         vpd->vpr = regs->vpd.vpr;
913
914         memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
915
916         RESTORE_REGS(mp_state);
917         RESTORE_REGS(vmm_rr);
918         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
919         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
920         RESTORE_REGS(itr_regions);
921         RESTORE_REGS(dtr_regions);
922         RESTORE_REGS(tc_regions);
923         RESTORE_REGS(irq_check);
924         RESTORE_REGS(itc_check);
925         RESTORE_REGS(timer_check);
926         RESTORE_REGS(timer_pending);
927         RESTORE_REGS(last_itc);
928         for (i = 0; i < 8; i++) {
929                 vcpu->arch.vrr[i] = regs->vrr[i];
930                 vcpu->arch.ibr[i] = regs->ibr[i];
931                 vcpu->arch.dbr[i] = regs->dbr[i];
932         }
933         for (i = 0; i < 4; i++)
934                 vcpu->arch.insvc[i] = regs->insvc[i];
935         RESTORE_REGS(xtp);
936         RESTORE_REGS(metaphysical_rr0);
937         RESTORE_REGS(metaphysical_rr4);
938         RESTORE_REGS(metaphysical_saved_rr0);
939         RESTORE_REGS(metaphysical_saved_rr4);
940         RESTORE_REGS(fp_psr);
941         RESTORE_REGS(saved_gp);
942
943         vcpu->arch.irq_new_pending = 1;
944         vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
945         set_bit(KVM_REQ_RESUME, &vcpu->requests);
946
947         vcpu_put(vcpu);
948
949         return 0;
950 }
951
952 long kvm_arch_vm_ioctl(struct file *filp,
953                 unsigned int ioctl, unsigned long arg)
954 {
955         struct kvm *kvm = filp->private_data;
956         void __user *argp = (void __user *)arg;
957         int r = -EINVAL;
958
959         switch (ioctl) {
960         case KVM_SET_MEMORY_REGION: {
961                 struct kvm_memory_region kvm_mem;
962                 struct kvm_userspace_memory_region kvm_userspace_mem;
963
964                 r = -EFAULT;
965                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
966                         goto out;
967                 kvm_userspace_mem.slot = kvm_mem.slot;
968                 kvm_userspace_mem.flags = kvm_mem.flags;
969                 kvm_userspace_mem.guest_phys_addr =
970                                         kvm_mem.guest_phys_addr;
971                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
972                 r = kvm_vm_ioctl_set_memory_region(kvm,
973                                         &kvm_userspace_mem, 0);
974                 if (r)
975                         goto out;
976                 break;
977                 }
978         case KVM_CREATE_IRQCHIP:
979                 r = -EFAULT;
980                 r = kvm_ioapic_init(kvm);
981                 if (r)
982                         goto out;
983                 r = kvm_setup_default_irq_routing(kvm);
984                 if (r) {
985                         kfree(kvm->arch.vioapic);
986                         goto out;
987                 }
988                 break;
989         case KVM_IRQ_LINE_STATUS:
990         case KVM_IRQ_LINE: {
991                 struct kvm_irq_level irq_event;
992
993                 r = -EFAULT;
994                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
995                         goto out;
996                 if (irqchip_in_kernel(kvm)) {
997                         __s32 status;
998                         mutex_lock(&kvm->lock);
999                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1000                                     irq_event.irq, irq_event.level);
1001                         mutex_unlock(&kvm->lock);
1002                         if (ioctl == KVM_IRQ_LINE_STATUS) {
1003                                 irq_event.status = status;
1004                                 if (copy_to_user(argp, &irq_event,
1005                                                         sizeof irq_event))
1006                                         goto out;
1007                         }
1008                         r = 0;
1009                 }
1010                 break;
1011                 }
1012         case KVM_GET_IRQCHIP: {
1013                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1014                 struct kvm_irqchip chip;
1015
1016                 r = -EFAULT;
1017                 if (copy_from_user(&chip, argp, sizeof chip))
1018                                 goto out;
1019                 r = -ENXIO;
1020                 if (!irqchip_in_kernel(kvm))
1021                         goto out;
1022                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1023                 if (r)
1024                         goto out;
1025                 r = -EFAULT;
1026                 if (copy_to_user(argp, &chip, sizeof chip))
1027                                 goto out;
1028                 r = 0;
1029                 break;
1030                 }
1031         case KVM_SET_IRQCHIP: {
1032                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1033                 struct kvm_irqchip chip;
1034
1035                 r = -EFAULT;
1036                 if (copy_from_user(&chip, argp, sizeof chip))
1037                                 goto out;
1038                 r = -ENXIO;
1039                 if (!irqchip_in_kernel(kvm))
1040                         goto out;
1041                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1042                 if (r)
1043                         goto out;
1044                 r = 0;
1045                 break;
1046                 }
1047         default:
1048                 ;
1049         }
1050 out:
1051         return r;
1052 }
1053
1054 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1055                 struct kvm_sregs *sregs)
1056 {
1057         return -EINVAL;
1058 }
1059
1060 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1061                 struct kvm_sregs *sregs)
1062 {
1063         return -EINVAL;
1064
1065 }
1066 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1067                 struct kvm_translation *tr)
1068 {
1069
1070         return -EINVAL;
1071 }
1072
1073 static int kvm_alloc_vmm_area(void)
1074 {
1075         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1076                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1077                                 get_order(KVM_VMM_SIZE));
1078                 if (!kvm_vmm_base)
1079                         return -ENOMEM;
1080
1081                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1082                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1083
1084                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1085                                 kvm_vmm_base, kvm_vm_buffer);
1086         }
1087
1088         return 0;
1089 }
1090
1091 static void kvm_free_vmm_area(void)
1092 {
1093         if (kvm_vmm_base) {
1094                 /*Zero this area before free to avoid bits leak!!*/
1095                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1096                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1097                 kvm_vmm_base  = 0;
1098                 kvm_vm_buffer = 0;
1099                 kvm_vsa_base = 0;
1100         }
1101 }
1102
1103 static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1104 {
1105 }
1106
1107 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1108 {
1109         int i;
1110         union cpuid3_t cpuid3;
1111         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1112
1113         if (IS_ERR(vpd))
1114                 return PTR_ERR(vpd);
1115
1116         /* CPUID init */
1117         for (i = 0; i < 5; i++)
1118                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1119
1120         /* Limit the CPUID number to 5 */
1121         cpuid3.value = vpd->vcpuid[3];
1122         cpuid3.number = 4;      /* 5 - 1 */
1123         vpd->vcpuid[3] = cpuid3.value;
1124
1125         /*Set vac and vdc fields*/
1126         vpd->vac.a_from_int_cr = 1;
1127         vpd->vac.a_to_int_cr = 1;
1128         vpd->vac.a_from_psr = 1;
1129         vpd->vac.a_from_cpuid = 1;
1130         vpd->vac.a_cover = 1;
1131         vpd->vac.a_bsw = 1;
1132         vpd->vac.a_int = 1;
1133         vpd->vdc.d_vmsw = 1;
1134
1135         /*Set virtual buffer*/
1136         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1137
1138         return 0;
1139 }
1140
1141 static int vti_create_vp(struct kvm_vcpu *vcpu)
1142 {
1143         long ret;
1144         struct vpd *vpd = vcpu->arch.vpd;
1145         unsigned long  vmm_ivt;
1146
1147         vmm_ivt = kvm_vmm_info->vmm_ivt;
1148
1149         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1150
1151         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1152
1153         if (ret) {
1154                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1155                 return -EINVAL;
1156         }
1157         return 0;
1158 }
1159
1160 static void init_ptce_info(struct kvm_vcpu *vcpu)
1161 {
1162         ia64_ptce_info_t ptce = {0};
1163
1164         ia64_get_ptce(&ptce);
1165         vcpu->arch.ptce_base = ptce.base;
1166         vcpu->arch.ptce_count[0] = ptce.count[0];
1167         vcpu->arch.ptce_count[1] = ptce.count[1];
1168         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1169         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1170 }
1171
1172 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1173 {
1174         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1175
1176         if (hrtimer_cancel(p_ht))
1177                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1178 }
1179
1180 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1181 {
1182         struct kvm_vcpu *vcpu;
1183         wait_queue_head_t *q;
1184
1185         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1186         q = &vcpu->wq;
1187
1188         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1189                 goto out;
1190
1191         if (waitqueue_active(q))
1192                 wake_up_interruptible(q);
1193
1194 out:
1195         vcpu->arch.timer_fired = 1;
1196         vcpu->arch.timer_check = 1;
1197         return HRTIMER_NORESTART;
1198 }
1199
1200 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1201
1202 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1203 {
1204         struct kvm_vcpu *v;
1205         int r;
1206         int i;
1207         long itc_offset;
1208         struct kvm *kvm = vcpu->kvm;
1209         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1210
1211         union context *p_ctx = &vcpu->arch.guest;
1212         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1213
1214         /*Init vcpu context for first run.*/
1215         if (IS_ERR(vmm_vcpu))
1216                 return PTR_ERR(vmm_vcpu);
1217
1218         if (vcpu->vcpu_id == 0) {
1219                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1220
1221                 /*Set entry address for first run.*/
1222                 regs->cr_iip = PALE_RESET_ENTRY;
1223
1224                 /*Initialize itc offset for vcpus*/
1225                 itc_offset = 0UL - kvm_get_itc(vcpu);
1226                 for (i = 0; i < kvm->arch.online_vcpus; i++) {
1227                         v = (struct kvm_vcpu *)((char *)vcpu +
1228                                         sizeof(struct kvm_vcpu_data) * i);
1229                         v->arch.itc_offset = itc_offset;
1230                         v->arch.last_itc = 0;
1231                 }
1232         } else
1233                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1234
1235         r = -ENOMEM;
1236         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1237         if (!vcpu->arch.apic)
1238                 goto out;
1239         vcpu->arch.apic->vcpu = vcpu;
1240
1241         p_ctx->gr[1] = 0;
1242         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1243         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1244         p_ctx->psr = 0x1008522000UL;
1245         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1246         p_ctx->caller_unat = 0;
1247         p_ctx->pr = 0x0;
1248         p_ctx->ar[36] = 0x0; /*unat*/
1249         p_ctx->ar[19] = 0x0; /*rnat*/
1250         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1251                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1252         p_ctx->ar[64] = 0x0; /*pfs*/
1253         p_ctx->cr[0] = 0x7e04UL;
1254         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1255         p_ctx->cr[8] = 0x3c;
1256
1257         /*Initilize region register*/
1258         p_ctx->rr[0] = 0x30;
1259         p_ctx->rr[1] = 0x30;
1260         p_ctx->rr[2] = 0x30;
1261         p_ctx->rr[3] = 0x30;
1262         p_ctx->rr[4] = 0x30;
1263         p_ctx->rr[5] = 0x30;
1264         p_ctx->rr[7] = 0x30;
1265
1266         /*Initilize branch register 0*/
1267         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1268
1269         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1270         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1271         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1272
1273         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1274         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1275
1276         vcpu->arch.last_run_cpu = -1;
1277         vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1278         vcpu->arch.vsa_base = kvm_vsa_base;
1279         vcpu->arch.__gp = kvm_vmm_gp;
1280         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1281         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1282         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1283         init_ptce_info(vcpu);
1284
1285         r = 0;
1286 out:
1287         return r;
1288 }
1289
1290 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1291 {
1292         unsigned long psr;
1293         int r;
1294
1295         local_irq_save(psr);
1296         r = kvm_insert_vmm_mapping(vcpu);
1297         if (r)
1298                 goto fail;
1299         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1300         if (r)
1301                 goto fail;
1302
1303         r = vti_init_vpd(vcpu);
1304         if (r) {
1305                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1306                 goto uninit;
1307         }
1308
1309         r = vti_create_vp(vcpu);
1310         if (r)
1311                 goto uninit;
1312
1313         kvm_purge_vmm_mapping(vcpu);
1314         local_irq_restore(psr);
1315
1316         return 0;
1317 uninit:
1318         kvm_vcpu_uninit(vcpu);
1319 fail:
1320         local_irq_restore(psr);
1321         return r;
1322 }
1323
1324 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1325                 unsigned int id)
1326 {
1327         struct kvm_vcpu *vcpu;
1328         unsigned long vm_base = kvm->arch.vm_base;
1329         int r;
1330         int cpu;
1331
1332         BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1333
1334         r = -EINVAL;
1335         if (id >= KVM_MAX_VCPUS) {
1336                 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1337                                 KVM_MAX_VCPUS);
1338                 goto fail;
1339         }
1340
1341         r = -ENOMEM;
1342         if (!vm_base) {
1343                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1344                 goto fail;
1345         }
1346         vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1347                                         vcpu_data[id].vcpu_struct));
1348         vcpu->kvm = kvm;
1349
1350         cpu = get_cpu();
1351         vti_vcpu_load(vcpu, cpu);
1352         r = vti_vcpu_setup(vcpu, id);
1353         put_cpu();
1354
1355         if (r) {
1356                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1357                 goto fail;
1358         }
1359
1360         kvm->arch.online_vcpus++;
1361
1362         return vcpu;
1363 fail:
1364         return ERR_PTR(r);
1365 }
1366
1367 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1368 {
1369         return 0;
1370 }
1371
1372 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1373 {
1374         return -EINVAL;
1375 }
1376
1377 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1378 {
1379         return -EINVAL;
1380 }
1381
1382 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1383                                         struct kvm_guest_debug *dbg)
1384 {
1385         return -EINVAL;
1386 }
1387
1388 static void free_kvm(struct kvm *kvm)
1389 {
1390         unsigned long vm_base = kvm->arch.vm_base;
1391
1392         if (vm_base) {
1393                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1394                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1395         }
1396
1397 }
1398
1399 static void kvm_release_vm_pages(struct kvm *kvm)
1400 {
1401         struct kvm_memory_slot *memslot;
1402         int i, j;
1403         unsigned long base_gfn;
1404
1405         for (i = 0; i < kvm->nmemslots; i++) {
1406                 memslot = &kvm->memslots[i];
1407                 base_gfn = memslot->base_gfn;
1408
1409                 for (j = 0; j < memslot->npages; j++) {
1410                         if (memslot->rmap[j])
1411                                 put_page((struct page *)memslot->rmap[j]);
1412                 }
1413         }
1414 }
1415
1416 void kvm_arch_sync_events(struct kvm *kvm)
1417 {
1418 }
1419
1420 void kvm_arch_destroy_vm(struct kvm *kvm)
1421 {
1422         kvm_iommu_unmap_guest(kvm);
1423 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1424         kvm_free_all_assigned_devices(kvm);
1425 #endif
1426         kfree(kvm->arch.vioapic);
1427         kvm_release_vm_pages(kvm);
1428         kvm_free_physmem(kvm);
1429         free_kvm(kvm);
1430 }
1431
1432 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1433 {
1434 }
1435
1436 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1437 {
1438         if (cpu != vcpu->cpu) {
1439                 vcpu->cpu = cpu;
1440                 if (vcpu->arch.ht_active)
1441                         kvm_migrate_hlt_timer(vcpu);
1442         }
1443 }
1444
1445 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1446
1447 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1448 {
1449         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1450         int i;
1451
1452         vcpu_load(vcpu);
1453
1454         for (i = 0; i < 16; i++) {
1455                 regs->vpd.vgr[i] = vpd->vgr[i];
1456                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1457         }
1458         for (i = 0; i < 128; i++)
1459                 regs->vpd.vcr[i] = vpd->vcr[i];
1460         regs->vpd.vhpi = vpd->vhpi;
1461         regs->vpd.vnat = vpd->vnat;
1462         regs->vpd.vbnat = vpd->vbnat;
1463         regs->vpd.vpsr = vpd->vpsr;
1464         regs->vpd.vpr = vpd->vpr;
1465
1466         memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1467
1468         SAVE_REGS(mp_state);
1469         SAVE_REGS(vmm_rr);
1470         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1471         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1472         SAVE_REGS(itr_regions);
1473         SAVE_REGS(dtr_regions);
1474         SAVE_REGS(tc_regions);
1475         SAVE_REGS(irq_check);
1476         SAVE_REGS(itc_check);
1477         SAVE_REGS(timer_check);
1478         SAVE_REGS(timer_pending);
1479         SAVE_REGS(last_itc);
1480         for (i = 0; i < 8; i++) {
1481                 regs->vrr[i] = vcpu->arch.vrr[i];
1482                 regs->ibr[i] = vcpu->arch.ibr[i];
1483                 regs->dbr[i] = vcpu->arch.dbr[i];
1484         }
1485         for (i = 0; i < 4; i++)
1486                 regs->insvc[i] = vcpu->arch.insvc[i];
1487         regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1488         SAVE_REGS(xtp);
1489         SAVE_REGS(metaphysical_rr0);
1490         SAVE_REGS(metaphysical_rr4);
1491         SAVE_REGS(metaphysical_saved_rr0);
1492         SAVE_REGS(metaphysical_saved_rr4);
1493         SAVE_REGS(fp_psr);
1494         SAVE_REGS(saved_gp);
1495
1496         vcpu_put(vcpu);
1497         return 0;
1498 }
1499
1500 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1501                                   struct kvm_ia64_vcpu_stack *stack)
1502 {
1503         memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1504         return 0;
1505 }
1506
1507 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1508                                   struct kvm_ia64_vcpu_stack *stack)
1509 {
1510         memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1511                sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1512
1513         vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1514         return 0;
1515 }
1516
1517 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1518 {
1519
1520         hrtimer_cancel(&vcpu->arch.hlt_timer);
1521         kfree(vcpu->arch.apic);
1522 }
1523
1524
1525 long kvm_arch_vcpu_ioctl(struct file *filp,
1526                          unsigned int ioctl, unsigned long arg)
1527 {
1528         struct kvm_vcpu *vcpu = filp->private_data;
1529         void __user *argp = (void __user *)arg;
1530         struct kvm_ia64_vcpu_stack *stack = NULL;
1531         long r;
1532
1533         switch (ioctl) {
1534         case KVM_IA64_VCPU_GET_STACK: {
1535                 struct kvm_ia64_vcpu_stack __user *user_stack;
1536                 void __user *first_p = argp;
1537
1538                 r = -EFAULT;
1539                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1540                         goto out;
1541
1542                 if (!access_ok(VERIFY_WRITE, user_stack,
1543                                sizeof(struct kvm_ia64_vcpu_stack))) {
1544                         printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1545                                "Illegal user destination address for stack\n");
1546                         goto out;
1547                 }
1548                 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1549                 if (!stack) {
1550                         r = -ENOMEM;
1551                         goto out;
1552                 }
1553
1554                 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1555                 if (r)
1556                         goto out;
1557
1558                 if (copy_to_user(user_stack, stack,
1559                                  sizeof(struct kvm_ia64_vcpu_stack)))
1560                         goto out;
1561
1562                 break;
1563         }
1564         case KVM_IA64_VCPU_SET_STACK: {
1565                 struct kvm_ia64_vcpu_stack __user *user_stack;
1566                 void __user *first_p = argp;
1567
1568                 r = -EFAULT;
1569                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1570                         goto out;
1571
1572                 if (!access_ok(VERIFY_READ, user_stack,
1573                             sizeof(struct kvm_ia64_vcpu_stack))) {
1574                         printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1575                                "Illegal user address for stack\n");
1576                         goto out;
1577                 }
1578                 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1579                 if (!stack) {
1580                         r = -ENOMEM;
1581                         goto out;
1582                 }
1583                 if (copy_from_user(stack, user_stack,
1584                                    sizeof(struct kvm_ia64_vcpu_stack)))
1585                         goto out;
1586
1587                 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1588                 break;
1589         }
1590
1591         default:
1592                 r = -EINVAL;
1593         }
1594
1595 out:
1596         kfree(stack);
1597         return r;
1598 }
1599
1600 int kvm_arch_set_memory_region(struct kvm *kvm,
1601                 struct kvm_userspace_memory_region *mem,
1602                 struct kvm_memory_slot old,
1603                 int user_alloc)
1604 {
1605         unsigned long i;
1606         unsigned long pfn;
1607         int npages = mem->memory_size >> PAGE_SHIFT;
1608         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
1609         unsigned long base_gfn = memslot->base_gfn;
1610
1611         if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1612                 return -ENOMEM;
1613
1614         for (i = 0; i < npages; i++) {
1615                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1616                 if (!kvm_is_mmio_pfn(pfn)) {
1617                         kvm_set_pmt_entry(kvm, base_gfn + i,
1618                                         pfn << PAGE_SHIFT,
1619                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1620                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1621                 } else {
1622                         kvm_set_pmt_entry(kvm, base_gfn + i,
1623                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1624                                         _PAGE_MA_UC);
1625                         memslot->rmap[i] = 0;
1626                         }
1627         }
1628
1629         return 0;
1630 }
1631
1632 void kvm_arch_flush_shadow(struct kvm *kvm)
1633 {
1634         kvm_flush_remote_tlbs(kvm);
1635 }
1636
1637 long kvm_arch_dev_ioctl(struct file *filp,
1638                         unsigned int ioctl, unsigned long arg)
1639 {
1640         return -EINVAL;
1641 }
1642
1643 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1644 {
1645         kvm_vcpu_uninit(vcpu);
1646 }
1647
1648 static int vti_cpu_has_kvm_support(void)
1649 {
1650         long  avail = 1, status = 1, control = 1;
1651         long ret;
1652
1653         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1654         if (ret)
1655                 goto out;
1656
1657         if (!(avail & PAL_PROC_VM_BIT))
1658                 goto out;
1659
1660         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1661
1662         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1663         if (ret)
1664                 goto out;
1665         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1666
1667         if (!(vp_env_info & VP_OPCODE)) {
1668                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1669                                 "vm_env_info:0x%lx\n", vp_env_info);
1670         }
1671
1672         return 1;
1673 out:
1674         return 0;
1675 }
1676
1677
1678 /*
1679  * On SN2, the ITC isn't stable, so copy in fast path code to use the
1680  * SN2 RTC, replacing the ITC based default verion.
1681  */
1682 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1683                           struct module *module)
1684 {
1685         unsigned long new_ar, new_ar_sn2;
1686         unsigned long module_base;
1687
1688         if (!ia64_platform_is("sn2"))
1689                 return;
1690
1691         module_base = (unsigned long)module->module_core;
1692
1693         new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1694         new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1695
1696         printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1697                "as source\n");
1698
1699         /*
1700          * Copy the SN2 version of mov_ar into place. They are both
1701          * the same size, so 6 bundles is sufficient (6 * 0x10).
1702          */
1703         memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1704 }
1705
1706 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1707                             struct module *module)
1708 {
1709         unsigned long module_base;
1710         unsigned long vmm_size;
1711
1712         unsigned long vmm_offset, func_offset, fdesc_offset;
1713         struct fdesc *p_fdesc;
1714
1715         BUG_ON(!module);
1716
1717         if (!kvm_vmm_base) {
1718                 printk("kvm: kvm area hasn't been initilized yet!!\n");
1719                 return -EFAULT;
1720         }
1721
1722         /*Calculate new position of relocated vmm module.*/
1723         module_base = (unsigned long)module->module_core;
1724         vmm_size = module->core_size;
1725         if (unlikely(vmm_size > KVM_VMM_SIZE))
1726                 return -EFAULT;
1727
1728         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1729         kvm_patch_vmm(vmm_info, module);
1730         kvm_flush_icache(kvm_vmm_base, vmm_size);
1731
1732         /*Recalculate kvm_vmm_info based on new VMM*/
1733         vmm_offset = vmm_info->vmm_ivt - module_base;
1734         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1735         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1736                         kvm_vmm_info->vmm_ivt);
1737
1738         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1739         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1740                                                         fdesc_offset);
1741         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1742         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1743         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1744         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1745
1746         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1747                         KVM_VMM_BASE+func_offset);
1748
1749         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1750         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1751                         fdesc_offset);
1752         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1753         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1754         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1755         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1756
1757         kvm_vmm_gp = p_fdesc->gp;
1758
1759         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1760                                                 kvm_vmm_info->vmm_entry);
1761         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1762                                                 KVM_VMM_BASE + func_offset);
1763
1764         return 0;
1765 }
1766
1767 int kvm_arch_init(void *opaque)
1768 {
1769         int r;
1770         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1771
1772         if (!vti_cpu_has_kvm_support()) {
1773                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1774                 r = -EOPNOTSUPP;
1775                 goto out;
1776         }
1777
1778         if (kvm_vmm_info) {
1779                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1780                 r = -EEXIST;
1781                 goto out;
1782         }
1783
1784         r = -ENOMEM;
1785         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1786         if (!kvm_vmm_info)
1787                 goto out;
1788
1789         if (kvm_alloc_vmm_area())
1790                 goto out_free0;
1791
1792         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1793         if (r)
1794                 goto out_free1;
1795
1796         return 0;
1797
1798 out_free1:
1799         kvm_free_vmm_area();
1800 out_free0:
1801         kfree(kvm_vmm_info);
1802 out:
1803         return r;
1804 }
1805
1806 void kvm_arch_exit(void)
1807 {
1808         kvm_free_vmm_area();
1809         kfree(kvm_vmm_info);
1810         kvm_vmm_info = NULL;
1811 }
1812
1813 static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
1814                 struct kvm_dirty_log *log)
1815 {
1816         struct kvm_memory_slot *memslot;
1817         int r, i;
1818         long n, base;
1819         unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1820                         offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1821
1822         r = -EINVAL;
1823         if (log->slot >= KVM_MEMORY_SLOTS)
1824                 goto out;
1825
1826         memslot = &kvm->memslots[log->slot];
1827         r = -ENOENT;
1828         if (!memslot->dirty_bitmap)
1829                 goto out;
1830
1831         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1832         base = memslot->base_gfn / BITS_PER_LONG;
1833
1834         for (i = 0; i < n/sizeof(long); ++i) {
1835                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1836                 dirty_bitmap[base + i] = 0;
1837         }
1838         r = 0;
1839 out:
1840         return r;
1841 }
1842
1843 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1844                 struct kvm_dirty_log *log)
1845 {
1846         int r;
1847         int n;
1848         struct kvm_memory_slot *memslot;
1849         int is_dirty = 0;
1850
1851         spin_lock(&kvm->arch.dirty_log_lock);
1852
1853         r = kvm_ia64_sync_dirty_log(kvm, log);
1854         if (r)
1855                 goto out;
1856
1857         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1858         if (r)
1859                 goto out;
1860
1861         /* If nothing is dirty, don't bother messing with page tables. */
1862         if (is_dirty) {
1863                 kvm_flush_remote_tlbs(kvm);
1864                 memslot = &kvm->memslots[log->slot];
1865                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1866                 memset(memslot->dirty_bitmap, 0, n);
1867         }
1868         r = 0;
1869 out:
1870         spin_unlock(&kvm->arch.dirty_log_lock);
1871         return r;
1872 }
1873
1874 int kvm_arch_hardware_setup(void)
1875 {
1876         return 0;
1877 }
1878
1879 void kvm_arch_hardware_unsetup(void)
1880 {
1881 }
1882
1883 static void vcpu_kick_intr(void *info)
1884 {
1885 #ifdef DEBUG
1886         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
1887         printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
1888 #endif
1889 }
1890
1891 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1892 {
1893         int ipi_pcpu = vcpu->cpu;
1894         int cpu = get_cpu();
1895
1896         if (waitqueue_active(&vcpu->wq))
1897                 wake_up_interruptible(&vcpu->wq);
1898
1899         if (vcpu->guest_mode && cpu != ipi_pcpu)
1900                 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
1901         put_cpu();
1902 }
1903
1904 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1905 {
1906         return __apic_accept_irq(vcpu, irq->vector);
1907 }
1908
1909 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1910 {
1911         return apic->vcpu->vcpu_id == dest;
1912 }
1913
1914 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1915 {
1916         return 0;
1917 }
1918
1919 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1920 {
1921         return vcpu1->arch.xtp - vcpu2->arch.xtp;
1922 }
1923
1924 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1925                 int short_hand, int dest, int dest_mode)
1926 {
1927         struct kvm_lapic *target = vcpu->arch.apic;
1928         return (dest_mode == 0) ?
1929                 kvm_apic_match_physical_addr(target, dest) :
1930                 kvm_apic_match_logical_addr(target, dest);
1931 }
1932
1933 static int find_highest_bits(int *dat)
1934 {
1935         u32  bits, bitnum;
1936         int i;
1937
1938         /* loop for all 256 bits */
1939         for (i = 7; i >= 0 ; i--) {
1940                 bits = dat[i];
1941                 if (bits) {
1942                         bitnum = fls(bits);
1943                         return i * 32 + bitnum - 1;
1944                 }
1945         }
1946
1947         return -1;
1948 }
1949
1950 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1951 {
1952     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1953
1954     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1955                 return NMI_VECTOR;
1956     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1957                 return ExtINT_VECTOR;
1958
1959     return find_highest_bits((int *)&vpd->irr[0]);
1960 }
1961
1962 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
1963 {
1964         if (kvm_highest_pending_irq(vcpu) != -1)
1965                 return 1;
1966         return 0;
1967 }
1968
1969 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
1970 {
1971         /* do real check here */
1972         return 1;
1973 }
1974
1975 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1976 {
1977         return vcpu->arch.timer_fired;
1978 }
1979
1980 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1981 {
1982         return gfn;
1983 }
1984
1985 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1986 {
1987         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
1988 }
1989
1990 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1991                                     struct kvm_mp_state *mp_state)
1992 {
1993         vcpu_load(vcpu);
1994         mp_state->mp_state = vcpu->arch.mp_state;
1995         vcpu_put(vcpu);
1996         return 0;
1997 }
1998
1999 static int vcpu_reset(struct kvm_vcpu *vcpu)
2000 {
2001         int r;
2002         long psr;
2003         local_irq_save(psr);
2004         r = kvm_insert_vmm_mapping(vcpu);
2005         if (r)
2006                 goto fail;
2007
2008         vcpu->arch.launched = 0;
2009         kvm_arch_vcpu_uninit(vcpu);
2010         r = kvm_arch_vcpu_init(vcpu);
2011         if (r)
2012                 goto fail;
2013
2014         kvm_purge_vmm_mapping(vcpu);
2015         r = 0;
2016 fail:
2017         local_irq_restore(psr);
2018         return r;
2019 }
2020
2021 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2022                                     struct kvm_mp_state *mp_state)
2023 {
2024         int r = 0;
2025
2026         vcpu_load(vcpu);
2027         vcpu->arch.mp_state = mp_state->mp_state;
2028         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
2029                 r = vcpu_reset(vcpu);
2030         vcpu_put(vcpu);
2031         return r;
2032 }