43f4c92816ef9760f68849611cea83ea8d0799aa
[linux-flexiantxendom0.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36 #include <linux/pci.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/gcc_intrin.h>
40 #include <asm/pal.h>
41 #include <asm/cacheflush.h>
42 #include <asm/div64.h>
43 #include <asm/tlb.h>
44 #include <asm/elf.h>
45 #include <asm/sn/addrs.h>
46 #include <asm/sn/clksupport.h>
47 #include <asm/sn/shub_mmr.h>
48
49 #include "misc.h"
50 #include "vti.h"
51 #include "iodev.h"
52 #include "ioapic.h"
53 #include "lapic.h"
54 #include "irq.h"
55
56 static unsigned long kvm_vmm_base;
57 static unsigned long kvm_vsa_base;
58 static unsigned long kvm_vm_buffer;
59 static unsigned long kvm_vm_buffer_size;
60 unsigned long kvm_vmm_gp;
61
62 static long vp_env_info;
63
64 static struct kvm_vmm_info *kvm_vmm_info;
65
66 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
67
68 struct kvm_stats_debugfs_item debugfs_entries[] = {
69         { NULL }
70 };
71
72 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
73 {
74 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
75         if (vcpu->kvm->arch.is_sn2)
76                 return rtc_time();
77         else
78 #endif
79                 return ia64_getreg(_IA64_REG_AR_ITC);
80 }
81
82 static void kvm_flush_icache(unsigned long start, unsigned long len)
83 {
84         int l;
85
86         for (l = 0; l < (len + 32); l += 32)
87                 ia64_fc((void *)(start + l));
88
89         ia64_sync_i();
90         ia64_srlz_i();
91 }
92
93 static void kvm_flush_tlb_all(void)
94 {
95         unsigned long i, j, count0, count1, stride0, stride1, addr;
96         long flags;
97
98         addr    = local_cpu_data->ptce_base;
99         count0  = local_cpu_data->ptce_count[0];
100         count1  = local_cpu_data->ptce_count[1];
101         stride0 = local_cpu_data->ptce_stride[0];
102         stride1 = local_cpu_data->ptce_stride[1];
103
104         local_irq_save(flags);
105         for (i = 0; i < count0; ++i) {
106                 for (j = 0; j < count1; ++j) {
107                         ia64_ptce(addr);
108                         addr += stride1;
109                 }
110                 addr += stride0;
111         }
112         local_irq_restore(flags);
113         ia64_srlz_i();                  /* srlz.i implies srlz.d */
114 }
115
116 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
117 {
118         struct ia64_pal_retval iprv;
119
120         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
121                         (u64)opt_handler);
122
123         return iprv.status;
124 }
125
126 static  DEFINE_SPINLOCK(vp_lock);
127
128 int kvm_arch_hardware_enable(void *garbage)
129 {
130         long  status;
131         long  tmp_base;
132         unsigned long pte;
133         unsigned long saved_psr;
134         int slot;
135
136         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
137         local_irq_save(saved_psr);
138         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
139         local_irq_restore(saved_psr);
140         if (slot < 0)
141                 return -EINVAL;
142
143         spin_lock(&vp_lock);
144         status = ia64_pal_vp_init_env(kvm_vsa_base ?
145                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
146                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
147         if (status != 0) {
148                 spin_unlock(&vp_lock);
149                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
150                 return -EINVAL;
151         }
152
153         if (!kvm_vsa_base) {
154                 kvm_vsa_base = tmp_base;
155                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
156         }
157         spin_unlock(&vp_lock);
158         ia64_ptr_entry(0x3, slot);
159
160         return 0;
161 }
162
163 void kvm_arch_hardware_disable(void *garbage)
164 {
165
166         long status;
167         int slot;
168         unsigned long pte;
169         unsigned long saved_psr;
170         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
171
172         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
173                                 PAGE_KERNEL));
174
175         local_irq_save(saved_psr);
176         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
177         local_irq_restore(saved_psr);
178         if (slot < 0)
179                 return;
180
181         status = ia64_pal_vp_exit_env(host_iva);
182         if (status)
183                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
184                                 status);
185         ia64_ptr_entry(0x3, slot);
186 }
187
188 void kvm_arch_check_processor_compat(void *rtn)
189 {
190         *(int *)rtn = 0;
191 }
192
193 int kvm_dev_ioctl_check_extension(long ext)
194 {
195
196         int r;
197
198         switch (ext) {
199         case KVM_CAP_IRQCHIP:
200         case KVM_CAP_MP_STATE:
201         case KVM_CAP_IRQ_INJECT_STATUS:
202                 r = 1;
203                 break;
204         case KVM_CAP_COALESCED_MMIO:
205                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
206                 break;
207         case KVM_CAP_IOMMU:
208                 r = iommu_present(&pci_bus_type);
209                 break;
210         default:
211                 r = 0;
212         }
213         return r;
214
215 }
216
217 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
218 {
219         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
220         kvm_run->hw.hardware_exit_reason = 1;
221         return 0;
222 }
223
224 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
225 {
226         struct kvm_mmio_req *p;
227         struct kvm_io_device *mmio_dev;
228         int r;
229
230         p = kvm_get_vcpu_ioreq(vcpu);
231
232         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
233                 goto mmio;
234         vcpu->mmio_needed = 1;
235         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
236         vcpu->mmio_size = kvm_run->mmio.len = p->size;
237         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
238
239         if (vcpu->mmio_is_write)
240                 memcpy(vcpu->mmio_data, &p->data, p->size);
241         memcpy(kvm_run->mmio.data, &p->data, p->size);
242         kvm_run->exit_reason = KVM_EXIT_MMIO;
243         return 0;
244 mmio:
245         if (p->dir)
246                 r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
247                                     p->size, &p->data);
248         else
249                 r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
250                                      p->size, &p->data);
251         if (r)
252                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
253         p->state = STATE_IORESP_READY;
254
255         return 1;
256 }
257
258 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
259 {
260         struct exit_ctl_data *p;
261
262         p = kvm_get_exit_data(vcpu);
263
264         if (p->exit_reason == EXIT_REASON_PAL_CALL)
265                 return kvm_pal_emul(vcpu, kvm_run);
266         else {
267                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
268                 kvm_run->hw.hardware_exit_reason = 2;
269                 return 0;
270         }
271 }
272
273 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
274 {
275         struct exit_ctl_data *p;
276
277         p = kvm_get_exit_data(vcpu);
278
279         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
280                 kvm_sal_emul(vcpu);
281                 return 1;
282         } else {
283                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
284                 kvm_run->hw.hardware_exit_reason = 3;
285                 return 0;
286         }
287
288 }
289
290 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
291 {
292         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
293
294         if (!test_and_set_bit(vector, &vpd->irr[0])) {
295                 vcpu->arch.irq_new_pending = 1;
296                 kvm_vcpu_kick(vcpu);
297                 return 1;
298         }
299         return 0;
300 }
301
302 /*
303  *  offset: address offset to IPI space.
304  *  value:  deliver value.
305  */
306 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
307                                 uint64_t vector)
308 {
309         switch (dm) {
310         case SAPIC_FIXED:
311                 break;
312         case SAPIC_NMI:
313                 vector = 2;
314                 break;
315         case SAPIC_EXTINT:
316                 vector = 0;
317                 break;
318         case SAPIC_INIT:
319         case SAPIC_PMI:
320         default:
321                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
322                 return;
323         }
324         __apic_accept_irq(vcpu, vector);
325 }
326
327 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
328                         unsigned long eid)
329 {
330         union ia64_lid lid;
331         int i;
332         struct kvm_vcpu *vcpu;
333
334         kvm_for_each_vcpu(i, vcpu, kvm) {
335                 lid.val = VCPU_LID(vcpu);
336                 if (lid.id == id && lid.eid == eid)
337                         return vcpu;
338         }
339
340         return NULL;
341 }
342
343 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
344 {
345         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
346         struct kvm_vcpu *target_vcpu;
347         struct kvm_pt_regs *regs;
348         union ia64_ipi_a addr = p->u.ipi_data.addr;
349         union ia64_ipi_d data = p->u.ipi_data.data;
350
351         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
352         if (!target_vcpu)
353                 return handle_vm_error(vcpu, kvm_run);
354
355         if (!target_vcpu->arch.launched) {
356                 regs = vcpu_regs(target_vcpu);
357
358                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
359                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
360
361                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
362                 if (waitqueue_active(&target_vcpu->wq))
363                         wake_up_interruptible(&target_vcpu->wq);
364         } else {
365                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
366                 if (target_vcpu != vcpu)
367                         kvm_vcpu_kick(target_vcpu);
368         }
369
370         return 1;
371 }
372
373 struct call_data {
374         struct kvm_ptc_g ptc_g_data;
375         struct kvm_vcpu *vcpu;
376 };
377
378 static void vcpu_global_purge(void *info)
379 {
380         struct call_data *p = (struct call_data *)info;
381         struct kvm_vcpu *vcpu = p->vcpu;
382
383         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
384                 return;
385
386         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
387         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
388                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
389                                                         p->ptc_g_data;
390         } else {
391                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
392                 vcpu->arch.ptc_g_count = 0;
393                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
394         }
395 }
396
397 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
398 {
399         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
400         struct kvm *kvm = vcpu->kvm;
401         struct call_data call_data;
402         int i;
403         struct kvm_vcpu *vcpui;
404
405         call_data.ptc_g_data = p->u.ptc_g_data;
406
407         kvm_for_each_vcpu(i, vcpui, kvm) {
408                 if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
409                                 vcpu == vcpui)
410                         continue;
411
412                 if (waitqueue_active(&vcpui->wq))
413                         wake_up_interruptible(&vcpui->wq);
414
415                 if (vcpui->cpu != -1) {
416                         call_data.vcpu = vcpui;
417                         smp_call_function_single(vcpui->cpu,
418                                         vcpu_global_purge, &call_data, 1);
419                 } else
420                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
421
422         }
423         return 1;
424 }
425
426 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
427 {
428         return 1;
429 }
430
431 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
432 {
433         unsigned long pte, rtc_phys_addr, map_addr;
434         int slot;
435
436         map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
437         rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
438         pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
439         slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
440         vcpu->arch.sn_rtc_tr_slot = slot;
441         if (slot < 0) {
442                 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
443                 slot = 0;
444         }
445         return slot;
446 }
447
448 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
449 {
450
451         ktime_t kt;
452         long itc_diff;
453         unsigned long vcpu_now_itc;
454         unsigned long expires;
455         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
456         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
457         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
458
459         if (irqchip_in_kernel(vcpu->kvm)) {
460
461                 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
462
463                 if (time_after(vcpu_now_itc, vpd->itm)) {
464                         vcpu->arch.timer_check = 1;
465                         return 1;
466                 }
467                 itc_diff = vpd->itm - vcpu_now_itc;
468                 if (itc_diff < 0)
469                         itc_diff = -itc_diff;
470
471                 expires = div64_u64(itc_diff, cyc_per_usec);
472                 kt = ktime_set(0, 1000 * expires);
473
474                 vcpu->arch.ht_active = 1;
475                 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
476
477                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
478                 kvm_vcpu_block(vcpu);
479                 hrtimer_cancel(p_ht);
480                 vcpu->arch.ht_active = 0;
481
482                 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
483                                 kvm_cpu_has_pending_timer(vcpu))
484                         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
485                                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
486
487                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
488                         return -EINTR;
489                 return 1;
490         } else {
491                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
492                 return 0;
493         }
494 }
495
496 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
497                 struct kvm_run *kvm_run)
498 {
499         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
500         return 0;
501 }
502
503 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
504                 struct kvm_run *kvm_run)
505 {
506         return 1;
507 }
508
509 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
510                                 struct kvm_run *kvm_run)
511 {
512         printk("VMM: %s", vcpu->arch.log_buf);
513         return 1;
514 }
515
516 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
517                 struct kvm_run *kvm_run) = {
518         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
519         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
520         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
521         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
522         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
523         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
524         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
525         [EXIT_REASON_IPI]                   = handle_ipi,
526         [EXIT_REASON_PTC_G]                 = handle_global_purge,
527         [EXIT_REASON_DEBUG]                 = handle_vcpu_debug,
528
529 };
530
531 static const int kvm_vti_max_exit_handlers =
532                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
533
534 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
535 {
536         struct exit_ctl_data *p_exit_data;
537
538         p_exit_data = kvm_get_exit_data(vcpu);
539         return p_exit_data->exit_reason;
540 }
541
542 /*
543  * The guest has exited.  See if we can fix it or if we need userspace
544  * assistance.
545  */
546 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
547 {
548         u32 exit_reason = kvm_get_exit_reason(vcpu);
549         vcpu->arch.last_exit = exit_reason;
550
551         if (exit_reason < kvm_vti_max_exit_handlers
552                         && kvm_vti_exit_handlers[exit_reason])
553                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
554         else {
555                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
556                 kvm_run->hw.hardware_exit_reason = exit_reason;
557         }
558         return 0;
559 }
560
561 static inline void vti_set_rr6(unsigned long rr6)
562 {
563         ia64_set_rr(RR6, rr6);
564         ia64_srlz_i();
565 }
566
567 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
568 {
569         unsigned long pte;
570         struct kvm *kvm = vcpu->kvm;
571         int r;
572
573         /*Insert a pair of tr to map vmm*/
574         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
575         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
576         if (r < 0)
577                 goto out;
578         vcpu->arch.vmm_tr_slot = r;
579         /*Insert a pairt of tr to map data of vm*/
580         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
581         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
582                                         pte, KVM_VM_DATA_SHIFT);
583         if (r < 0)
584                 goto out;
585         vcpu->arch.vm_tr_slot = r;
586
587 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
588         if (kvm->arch.is_sn2) {
589                 r = kvm_sn2_setup_mappings(vcpu);
590                 if (r < 0)
591                         goto out;
592         }
593 #endif
594
595         r = 0;
596 out:
597         return r;
598 }
599
600 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
601 {
602         struct kvm *kvm = vcpu->kvm;
603         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
604         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
605 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
606         if (kvm->arch.is_sn2)
607                 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
608 #endif
609 }
610
611 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
612 {
613         unsigned long psr;
614         int r;
615         int cpu = smp_processor_id();
616
617         if (vcpu->arch.last_run_cpu != cpu ||
618                         per_cpu(last_vcpu, cpu) != vcpu) {
619                 per_cpu(last_vcpu, cpu) = vcpu;
620                 vcpu->arch.last_run_cpu = cpu;
621                 kvm_flush_tlb_all();
622         }
623
624         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
625         vti_set_rr6(vcpu->arch.vmm_rr);
626         local_irq_save(psr);
627         r = kvm_insert_vmm_mapping(vcpu);
628         local_irq_restore(psr);
629         return r;
630 }
631
632 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
633 {
634         kvm_purge_vmm_mapping(vcpu);
635         vti_set_rr6(vcpu->arch.host_rr6);
636 }
637
638 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
639 {
640         union context *host_ctx, *guest_ctx;
641         int r, idx;
642
643         idx = srcu_read_lock(&vcpu->kvm->srcu);
644
645 again:
646         if (signal_pending(current)) {
647                 r = -EINTR;
648                 kvm_run->exit_reason = KVM_EXIT_INTR;
649                 goto out;
650         }
651
652         preempt_disable();
653         local_irq_disable();
654
655         /*Get host and guest context with guest address space.*/
656         host_ctx = kvm_get_host_context(vcpu);
657         guest_ctx = kvm_get_guest_context(vcpu);
658
659         clear_bit(KVM_REQ_KICK, &vcpu->requests);
660
661         r = kvm_vcpu_pre_transition(vcpu);
662         if (r < 0)
663                 goto vcpu_run_fail;
664
665         srcu_read_unlock(&vcpu->kvm->srcu, idx);
666         vcpu->mode = IN_GUEST_MODE;
667         kvm_guest_enter();
668
669         /*
670          * Transition to the guest
671          */
672         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
673
674         kvm_vcpu_post_transition(vcpu);
675
676         vcpu->arch.launched = 1;
677         set_bit(KVM_REQ_KICK, &vcpu->requests);
678         local_irq_enable();
679
680         /*
681          * We must have an instruction between local_irq_enable() and
682          * kvm_guest_exit(), so the timer interrupt isn't delayed by
683          * the interrupt shadow.  The stat.exits increment will do nicely.
684          * But we need to prevent reordering, hence this barrier():
685          */
686         barrier();
687         kvm_guest_exit();
688         vcpu->mode = OUTSIDE_GUEST_MODE;
689         preempt_enable();
690
691         idx = srcu_read_lock(&vcpu->kvm->srcu);
692
693         r = kvm_handle_exit(kvm_run, vcpu);
694
695         if (r > 0) {
696                 if (!need_resched())
697                         goto again;
698         }
699
700 out:
701         srcu_read_unlock(&vcpu->kvm->srcu, idx);
702         if (r > 0) {
703                 kvm_resched(vcpu);
704                 idx = srcu_read_lock(&vcpu->kvm->srcu);
705                 goto again;
706         }
707
708         return r;
709
710 vcpu_run_fail:
711         local_irq_enable();
712         preempt_enable();
713         kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
714         goto out;
715 }
716
717 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
718 {
719         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
720
721         if (!vcpu->mmio_is_write)
722                 memcpy(&p->data, vcpu->mmio_data, 8);
723         p->state = STATE_IORESP_READY;
724 }
725
726 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
727 {
728         int r;
729         sigset_t sigsaved;
730
731         if (vcpu->sigset_active)
732                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
733
734         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
735                 kvm_vcpu_block(vcpu);
736                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
737                 r = -EAGAIN;
738                 goto out;
739         }
740
741         if (vcpu->mmio_needed) {
742                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
743                 kvm_set_mmio_data(vcpu);
744                 vcpu->mmio_read_completed = 1;
745                 vcpu->mmio_needed = 0;
746         }
747         r = __vcpu_run(vcpu, kvm_run);
748 out:
749         if (vcpu->sigset_active)
750                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
751
752         return r;
753 }
754
755 struct kvm *kvm_arch_alloc_vm(void)
756 {
757
758         struct kvm *kvm;
759         uint64_t  vm_base;
760
761         BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
762
763         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
764
765         if (!vm_base)
766                 return NULL;
767
768         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
769         kvm = (struct kvm *)(vm_base +
770                         offsetof(struct kvm_vm_data, kvm_vm_struct));
771         kvm->arch.vm_base = vm_base;
772         printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
773
774         return kvm;
775 }
776
777 struct kvm_io_range {
778         unsigned long start;
779         unsigned long size;
780         unsigned long type;
781 };
782
783 static const struct kvm_io_range io_ranges[] = {
784         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
785         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
786         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
787         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
788         {PIB_START, PIB_SIZE, GPFN_PIB},
789 };
790
791 static void kvm_build_io_pmt(struct kvm *kvm)
792 {
793         unsigned long i, j;
794
795         /* Mark I/O ranges */
796         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
797                                                         i++) {
798                 for (j = io_ranges[i].start;
799                                 j < io_ranges[i].start + io_ranges[i].size;
800                                 j += PAGE_SIZE)
801                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
802                                         io_ranges[i].type, 0);
803         }
804
805 }
806
807 /*Use unused rids to virtualize guest rid.*/
808 #define GUEST_PHYSICAL_RR0      0x1739
809 #define GUEST_PHYSICAL_RR4      0x2739
810 #define VMM_INIT_RR             0x1660
811
812 int kvm_arch_init_vm(struct kvm *kvm)
813 {
814         BUG_ON(!kvm);
815
816         kvm->arch.is_sn2 = ia64_platform_is("sn2");
817
818         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
819         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
820         kvm->arch.vmm_init_rr = VMM_INIT_RR;
821
822         /*
823          *Fill P2M entries for MMIO/IO ranges
824          */
825         kvm_build_io_pmt(kvm);
826
827         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
828
829         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
830         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
831
832         return 0;
833 }
834
835 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
836                                         struct kvm_irqchip *chip)
837 {
838         int r;
839
840         r = 0;
841         switch (chip->chip_id) {
842         case KVM_IRQCHIP_IOAPIC:
843                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
844                 break;
845         default:
846                 r = -EINVAL;
847                 break;
848         }
849         return r;
850 }
851
852 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
853 {
854         int r;
855
856         r = 0;
857         switch (chip->chip_id) {
858         case KVM_IRQCHIP_IOAPIC:
859                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
860                 break;
861         default:
862                 r = -EINVAL;
863                 break;
864         }
865         return r;
866 }
867
868 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
869
870 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
871 {
872         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
873         int i;
874
875         for (i = 0; i < 16; i++) {
876                 vpd->vgr[i] = regs->vpd.vgr[i];
877                 vpd->vbgr[i] = regs->vpd.vbgr[i];
878         }
879         for (i = 0; i < 128; i++)
880                 vpd->vcr[i] = regs->vpd.vcr[i];
881         vpd->vhpi = regs->vpd.vhpi;
882         vpd->vnat = regs->vpd.vnat;
883         vpd->vbnat = regs->vpd.vbnat;
884         vpd->vpsr = regs->vpd.vpsr;
885
886         vpd->vpr = regs->vpd.vpr;
887
888         memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
889
890         RESTORE_REGS(mp_state);
891         RESTORE_REGS(vmm_rr);
892         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
893         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
894         RESTORE_REGS(itr_regions);
895         RESTORE_REGS(dtr_regions);
896         RESTORE_REGS(tc_regions);
897         RESTORE_REGS(irq_check);
898         RESTORE_REGS(itc_check);
899         RESTORE_REGS(timer_check);
900         RESTORE_REGS(timer_pending);
901         RESTORE_REGS(last_itc);
902         for (i = 0; i < 8; i++) {
903                 vcpu->arch.vrr[i] = regs->vrr[i];
904                 vcpu->arch.ibr[i] = regs->ibr[i];
905                 vcpu->arch.dbr[i] = regs->dbr[i];
906         }
907         for (i = 0; i < 4; i++)
908                 vcpu->arch.insvc[i] = regs->insvc[i];
909         RESTORE_REGS(xtp);
910         RESTORE_REGS(metaphysical_rr0);
911         RESTORE_REGS(metaphysical_rr4);
912         RESTORE_REGS(metaphysical_saved_rr0);
913         RESTORE_REGS(metaphysical_saved_rr4);
914         RESTORE_REGS(fp_psr);
915         RESTORE_REGS(saved_gp);
916
917         vcpu->arch.irq_new_pending = 1;
918         vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
919         set_bit(KVM_REQ_RESUME, &vcpu->requests);
920
921         return 0;
922 }
923
924 long kvm_arch_vm_ioctl(struct file *filp,
925                 unsigned int ioctl, unsigned long arg)
926 {
927         struct kvm *kvm = filp->private_data;
928         void __user *argp = (void __user *)arg;
929         int r = -ENOTTY;
930
931         switch (ioctl) {
932         case KVM_SET_MEMORY_REGION: {
933                 struct kvm_memory_region kvm_mem;
934                 struct kvm_userspace_memory_region kvm_userspace_mem;
935
936                 r = -EFAULT;
937                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
938                         goto out;
939                 kvm_userspace_mem.slot = kvm_mem.slot;
940                 kvm_userspace_mem.flags = kvm_mem.flags;
941                 kvm_userspace_mem.guest_phys_addr =
942                                         kvm_mem.guest_phys_addr;
943                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
944                 r = kvm_vm_ioctl_set_memory_region(kvm,
945                                         &kvm_userspace_mem, 0);
946                 if (r)
947                         goto out;
948                 break;
949                 }
950         case KVM_CREATE_IRQCHIP:
951                 r = -EFAULT;
952                 r = kvm_ioapic_init(kvm);
953                 if (r)
954                         goto out;
955                 r = kvm_setup_default_irq_routing(kvm);
956                 if (r) {
957                         mutex_lock(&kvm->slots_lock);
958                         kvm_ioapic_destroy(kvm);
959                         mutex_unlock(&kvm->slots_lock);
960                         goto out;
961                 }
962                 break;
963         case KVM_IRQ_LINE_STATUS:
964         case KVM_IRQ_LINE: {
965                 struct kvm_irq_level irq_event;
966
967                 r = -EFAULT;
968                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
969                         goto out;
970                 r = -ENXIO;
971                 if (irqchip_in_kernel(kvm)) {
972                         __s32 status;
973                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
974                                     irq_event.irq, irq_event.level);
975                         if (ioctl == KVM_IRQ_LINE_STATUS) {
976                                 r = -EFAULT;
977                                 irq_event.status = status;
978                                 if (copy_to_user(argp, &irq_event,
979                                                         sizeof irq_event))
980                                         goto out;
981                         }
982                         r = 0;
983                 }
984                 break;
985                 }
986         case KVM_GET_IRQCHIP: {
987                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
988                 struct kvm_irqchip chip;
989
990                 r = -EFAULT;
991                 if (copy_from_user(&chip, argp, sizeof chip))
992                                 goto out;
993                 r = -ENXIO;
994                 if (!irqchip_in_kernel(kvm))
995                         goto out;
996                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
997                 if (r)
998                         goto out;
999                 r = -EFAULT;
1000                 if (copy_to_user(argp, &chip, sizeof chip))
1001                                 goto out;
1002                 r = 0;
1003                 break;
1004                 }
1005         case KVM_SET_IRQCHIP: {
1006                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1007                 struct kvm_irqchip chip;
1008
1009                 r = -EFAULT;
1010                 if (copy_from_user(&chip, argp, sizeof chip))
1011                                 goto out;
1012                 r = -ENXIO;
1013                 if (!irqchip_in_kernel(kvm))
1014                         goto out;
1015                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1016                 if (r)
1017                         goto out;
1018                 r = 0;
1019                 break;
1020                 }
1021         default:
1022                 ;
1023         }
1024 out:
1025         return r;
1026 }
1027
1028 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1029                 struct kvm_sregs *sregs)
1030 {
1031         return -EINVAL;
1032 }
1033
1034 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1035                 struct kvm_sregs *sregs)
1036 {
1037         return -EINVAL;
1038
1039 }
1040 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1041                 struct kvm_translation *tr)
1042 {
1043
1044         return -EINVAL;
1045 }
1046
1047 static int kvm_alloc_vmm_area(void)
1048 {
1049         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1050                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1051                                 get_order(KVM_VMM_SIZE));
1052                 if (!kvm_vmm_base)
1053                         return -ENOMEM;
1054
1055                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1056                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1057
1058                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1059                                 kvm_vmm_base, kvm_vm_buffer);
1060         }
1061
1062         return 0;
1063 }
1064
1065 static void kvm_free_vmm_area(void)
1066 {
1067         if (kvm_vmm_base) {
1068                 /*Zero this area before free to avoid bits leak!!*/
1069                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1070                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1071                 kvm_vmm_base  = 0;
1072                 kvm_vm_buffer = 0;
1073                 kvm_vsa_base = 0;
1074         }
1075 }
1076
1077 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1078 {
1079         int i;
1080         union cpuid3_t cpuid3;
1081         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1082
1083         if (IS_ERR(vpd))
1084                 return PTR_ERR(vpd);
1085
1086         /* CPUID init */
1087         for (i = 0; i < 5; i++)
1088                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1089
1090         /* Limit the CPUID number to 5 */
1091         cpuid3.value = vpd->vcpuid[3];
1092         cpuid3.number = 4;      /* 5 - 1 */
1093         vpd->vcpuid[3] = cpuid3.value;
1094
1095         /*Set vac and vdc fields*/
1096         vpd->vac.a_from_int_cr = 1;
1097         vpd->vac.a_to_int_cr = 1;
1098         vpd->vac.a_from_psr = 1;
1099         vpd->vac.a_from_cpuid = 1;
1100         vpd->vac.a_cover = 1;
1101         vpd->vac.a_bsw = 1;
1102         vpd->vac.a_int = 1;
1103         vpd->vdc.d_vmsw = 1;
1104
1105         /*Set virtual buffer*/
1106         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1107
1108         return 0;
1109 }
1110
1111 static int vti_create_vp(struct kvm_vcpu *vcpu)
1112 {
1113         long ret;
1114         struct vpd *vpd = vcpu->arch.vpd;
1115         unsigned long  vmm_ivt;
1116
1117         vmm_ivt = kvm_vmm_info->vmm_ivt;
1118
1119         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1120
1121         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1122
1123         if (ret) {
1124                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1125                 return -EINVAL;
1126         }
1127         return 0;
1128 }
1129
1130 static void init_ptce_info(struct kvm_vcpu *vcpu)
1131 {
1132         ia64_ptce_info_t ptce = {0};
1133
1134         ia64_get_ptce(&ptce);
1135         vcpu->arch.ptce_base = ptce.base;
1136         vcpu->arch.ptce_count[0] = ptce.count[0];
1137         vcpu->arch.ptce_count[1] = ptce.count[1];
1138         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1139         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1140 }
1141
1142 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1143 {
1144         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1145
1146         if (hrtimer_cancel(p_ht))
1147                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1148 }
1149
1150 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1151 {
1152         struct kvm_vcpu *vcpu;
1153         wait_queue_head_t *q;
1154
1155         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1156         q = &vcpu->wq;
1157
1158         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1159                 goto out;
1160
1161         if (waitqueue_active(q))
1162                 wake_up_interruptible(q);
1163
1164 out:
1165         vcpu->arch.timer_fired = 1;
1166         vcpu->arch.timer_check = 1;
1167         return HRTIMER_NORESTART;
1168 }
1169
1170 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1171
1172 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1173 {
1174         struct kvm_vcpu *v;
1175         int r;
1176         int i;
1177         long itc_offset;
1178         struct kvm *kvm = vcpu->kvm;
1179         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1180
1181         union context *p_ctx = &vcpu->arch.guest;
1182         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1183
1184         /*Init vcpu context for first run.*/
1185         if (IS_ERR(vmm_vcpu))
1186                 return PTR_ERR(vmm_vcpu);
1187
1188         if (kvm_vcpu_is_bsp(vcpu)) {
1189                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1190
1191                 /*Set entry address for first run.*/
1192                 regs->cr_iip = PALE_RESET_ENTRY;
1193
1194                 /*Initialize itc offset for vcpus*/
1195                 itc_offset = 0UL - kvm_get_itc(vcpu);
1196                 for (i = 0; i < KVM_MAX_VCPUS; i++) {
1197                         v = (struct kvm_vcpu *)((char *)vcpu +
1198                                         sizeof(struct kvm_vcpu_data) * i);
1199                         v->arch.itc_offset = itc_offset;
1200                         v->arch.last_itc = 0;
1201                 }
1202         } else
1203                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1204
1205         r = -ENOMEM;
1206         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1207         if (!vcpu->arch.apic)
1208                 goto out;
1209         vcpu->arch.apic->vcpu = vcpu;
1210
1211         p_ctx->gr[1] = 0;
1212         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1213         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1214         p_ctx->psr = 0x1008522000UL;
1215         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1216         p_ctx->caller_unat = 0;
1217         p_ctx->pr = 0x0;
1218         p_ctx->ar[36] = 0x0; /*unat*/
1219         p_ctx->ar[19] = 0x0; /*rnat*/
1220         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1221                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1222         p_ctx->ar[64] = 0x0; /*pfs*/
1223         p_ctx->cr[0] = 0x7e04UL;
1224         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1225         p_ctx->cr[8] = 0x3c;
1226
1227         /*Initialize region register*/
1228         p_ctx->rr[0] = 0x30;
1229         p_ctx->rr[1] = 0x30;
1230         p_ctx->rr[2] = 0x30;
1231         p_ctx->rr[3] = 0x30;
1232         p_ctx->rr[4] = 0x30;
1233         p_ctx->rr[5] = 0x30;
1234         p_ctx->rr[7] = 0x30;
1235
1236         /*Initialize branch register 0*/
1237         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1238
1239         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1240         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1241         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1242
1243         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1244         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1245
1246         vcpu->arch.last_run_cpu = -1;
1247         vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1248         vcpu->arch.vsa_base = kvm_vsa_base;
1249         vcpu->arch.__gp = kvm_vmm_gp;
1250         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1251         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1252         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1253         init_ptce_info(vcpu);
1254
1255         r = 0;
1256 out:
1257         return r;
1258 }
1259
1260 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1261 {
1262         unsigned long psr;
1263         int r;
1264
1265         local_irq_save(psr);
1266         r = kvm_insert_vmm_mapping(vcpu);
1267         local_irq_restore(psr);
1268         if (r)
1269                 goto fail;
1270         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1271         if (r)
1272                 goto fail;
1273
1274         r = vti_init_vpd(vcpu);
1275         if (r) {
1276                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1277                 goto uninit;
1278         }
1279
1280         r = vti_create_vp(vcpu);
1281         if (r)
1282                 goto uninit;
1283
1284         kvm_purge_vmm_mapping(vcpu);
1285
1286         return 0;
1287 uninit:
1288         kvm_vcpu_uninit(vcpu);
1289 fail:
1290         return r;
1291 }
1292
1293 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1294                 unsigned int id)
1295 {
1296         struct kvm_vcpu *vcpu;
1297         unsigned long vm_base = kvm->arch.vm_base;
1298         int r;
1299         int cpu;
1300
1301         BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1302
1303         r = -EINVAL;
1304         if (id >= KVM_MAX_VCPUS) {
1305                 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1306                                 KVM_MAX_VCPUS);
1307                 goto fail;
1308         }
1309
1310         r = -ENOMEM;
1311         if (!vm_base) {
1312                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1313                 goto fail;
1314         }
1315         vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1316                                         vcpu_data[id].vcpu_struct));
1317         vcpu->kvm = kvm;
1318
1319         cpu = get_cpu();
1320         r = vti_vcpu_setup(vcpu, id);
1321         put_cpu();
1322
1323         if (r) {
1324                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1325                 goto fail;
1326         }
1327
1328         return vcpu;
1329 fail:
1330         return ERR_PTR(r);
1331 }
1332
1333 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1334 {
1335         return 0;
1336 }
1337
1338 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1339 {
1340         return -EINVAL;
1341 }
1342
1343 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1344 {
1345         return -EINVAL;
1346 }
1347
1348 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1349                                         struct kvm_guest_debug *dbg)
1350 {
1351         return -EINVAL;
1352 }
1353
1354 void kvm_arch_free_vm(struct kvm *kvm)
1355 {
1356         unsigned long vm_base = kvm->arch.vm_base;
1357
1358         if (vm_base) {
1359                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1360                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1361         }
1362
1363 }
1364
1365 static void kvm_release_vm_pages(struct kvm *kvm)
1366 {
1367         struct kvm_memslots *slots;
1368         struct kvm_memory_slot *memslot;
1369         int i, j;
1370         unsigned long base_gfn;
1371
1372         slots = kvm_memslots(kvm);
1373         for (i = 0; i < slots->nmemslots; i++) {
1374                 memslot = &slots->memslots[i];
1375                 base_gfn = memslot->base_gfn;
1376
1377                 for (j = 0; j < memslot->npages; j++) {
1378                         if (memslot->rmap[j])
1379                                 put_page((struct page *)memslot->rmap[j]);
1380                 }
1381         }
1382 }
1383
1384 void kvm_arch_sync_events(struct kvm *kvm)
1385 {
1386 }
1387
1388 void kvm_arch_destroy_vm(struct kvm *kvm)
1389 {
1390         kvm_iommu_unmap_guest(kvm);
1391 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1392         kvm_free_all_assigned_devices(kvm);
1393 #endif
1394         kfree(kvm->arch.vioapic);
1395         kvm_release_vm_pages(kvm);
1396 }
1397
1398 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1399 {
1400 }
1401
1402 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1403 {
1404         if (cpu != vcpu->cpu) {
1405                 vcpu->cpu = cpu;
1406                 if (vcpu->arch.ht_active)
1407                         kvm_migrate_hlt_timer(vcpu);
1408         }
1409 }
1410
1411 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1412
1413 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1414 {
1415         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1416         int i;
1417
1418         vcpu_load(vcpu);
1419
1420         for (i = 0; i < 16; i++) {
1421                 regs->vpd.vgr[i] = vpd->vgr[i];
1422                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1423         }
1424         for (i = 0; i < 128; i++)
1425                 regs->vpd.vcr[i] = vpd->vcr[i];
1426         regs->vpd.vhpi = vpd->vhpi;
1427         regs->vpd.vnat = vpd->vnat;
1428         regs->vpd.vbnat = vpd->vbnat;
1429         regs->vpd.vpsr = vpd->vpsr;
1430         regs->vpd.vpr = vpd->vpr;
1431
1432         memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1433
1434         SAVE_REGS(mp_state);
1435         SAVE_REGS(vmm_rr);
1436         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1437         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1438         SAVE_REGS(itr_regions);
1439         SAVE_REGS(dtr_regions);
1440         SAVE_REGS(tc_regions);
1441         SAVE_REGS(irq_check);
1442         SAVE_REGS(itc_check);
1443         SAVE_REGS(timer_check);
1444         SAVE_REGS(timer_pending);
1445         SAVE_REGS(last_itc);
1446         for (i = 0; i < 8; i++) {
1447                 regs->vrr[i] = vcpu->arch.vrr[i];
1448                 regs->ibr[i] = vcpu->arch.ibr[i];
1449                 regs->dbr[i] = vcpu->arch.dbr[i];
1450         }
1451         for (i = 0; i < 4; i++)
1452                 regs->insvc[i] = vcpu->arch.insvc[i];
1453         regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1454         SAVE_REGS(xtp);
1455         SAVE_REGS(metaphysical_rr0);
1456         SAVE_REGS(metaphysical_rr4);
1457         SAVE_REGS(metaphysical_saved_rr0);
1458         SAVE_REGS(metaphysical_saved_rr4);
1459         SAVE_REGS(fp_psr);
1460         SAVE_REGS(saved_gp);
1461
1462         vcpu_put(vcpu);
1463         return 0;
1464 }
1465
1466 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1467                                   struct kvm_ia64_vcpu_stack *stack)
1468 {
1469         memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1470         return 0;
1471 }
1472
1473 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1474                                   struct kvm_ia64_vcpu_stack *stack)
1475 {
1476         memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1477                sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1478
1479         vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1480         return 0;
1481 }
1482
1483 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1484 {
1485
1486         hrtimer_cancel(&vcpu->arch.hlt_timer);
1487         kfree(vcpu->arch.apic);
1488 }
1489
1490
1491 long kvm_arch_vcpu_ioctl(struct file *filp,
1492                          unsigned int ioctl, unsigned long arg)
1493 {
1494         struct kvm_vcpu *vcpu = filp->private_data;
1495         void __user *argp = (void __user *)arg;
1496         struct kvm_ia64_vcpu_stack *stack = NULL;
1497         long r;
1498
1499         switch (ioctl) {
1500         case KVM_IA64_VCPU_GET_STACK: {
1501                 struct kvm_ia64_vcpu_stack __user *user_stack;
1502                 void __user *first_p = argp;
1503
1504                 r = -EFAULT;
1505                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1506                         goto out;
1507
1508                 if (!access_ok(VERIFY_WRITE, user_stack,
1509                                sizeof(struct kvm_ia64_vcpu_stack))) {
1510                         printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1511                                "Illegal user destination address for stack\n");
1512                         goto out;
1513                 }
1514                 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1515                 if (!stack) {
1516                         r = -ENOMEM;
1517                         goto out;
1518                 }
1519
1520                 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1521                 if (r)
1522                         goto out;
1523
1524                 if (copy_to_user(user_stack, stack,
1525                                  sizeof(struct kvm_ia64_vcpu_stack))) {
1526                         r = -EFAULT;
1527                         goto out;
1528                 }
1529
1530                 break;
1531         }
1532         case KVM_IA64_VCPU_SET_STACK: {
1533                 struct kvm_ia64_vcpu_stack __user *user_stack;
1534                 void __user *first_p = argp;
1535
1536                 r = -EFAULT;
1537                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1538                         goto out;
1539
1540                 if (!access_ok(VERIFY_READ, user_stack,
1541                             sizeof(struct kvm_ia64_vcpu_stack))) {
1542                         printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1543                                "Illegal user address for stack\n");
1544                         goto out;
1545                 }
1546                 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1547                 if (!stack) {
1548                         r = -ENOMEM;
1549                         goto out;
1550                 }
1551                 if (copy_from_user(stack, user_stack,
1552                                    sizeof(struct kvm_ia64_vcpu_stack)))
1553                         goto out;
1554
1555                 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1556                 break;
1557         }
1558
1559         default:
1560                 r = -EINVAL;
1561         }
1562
1563 out:
1564         kfree(stack);
1565         return r;
1566 }
1567
1568 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1569                 struct kvm_memory_slot *memslot,
1570                 struct kvm_memory_slot old,
1571                 struct kvm_userspace_memory_region *mem,
1572                 int user_alloc)
1573 {
1574         unsigned long i;
1575         unsigned long pfn;
1576         int npages = memslot->npages;
1577         unsigned long base_gfn = memslot->base_gfn;
1578
1579         if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1580                 return -ENOMEM;
1581
1582         for (i = 0; i < npages; i++) {
1583                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1584                 if (!kvm_is_mmio_pfn(pfn)) {
1585                         kvm_set_pmt_entry(kvm, base_gfn + i,
1586                                         pfn << PAGE_SHIFT,
1587                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1588                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1589                 } else {
1590                         kvm_set_pmt_entry(kvm, base_gfn + i,
1591                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1592                                         _PAGE_MA_UC);
1593                         memslot->rmap[i] = 0;
1594                         }
1595         }
1596
1597         return 0;
1598 }
1599
1600 void kvm_arch_commit_memory_region(struct kvm *kvm,
1601                 struct kvm_userspace_memory_region *mem,
1602                 struct kvm_memory_slot old,
1603                 int user_alloc)
1604 {
1605         return;
1606 }
1607
1608 void kvm_arch_flush_shadow(struct kvm *kvm)
1609 {
1610         kvm_flush_remote_tlbs(kvm);
1611 }
1612
1613 long kvm_arch_dev_ioctl(struct file *filp,
1614                         unsigned int ioctl, unsigned long arg)
1615 {
1616         return -EINVAL;
1617 }
1618
1619 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1620 {
1621         kvm_vcpu_uninit(vcpu);
1622 }
1623
1624 static int vti_cpu_has_kvm_support(void)
1625 {
1626         long  avail = 1, status = 1, control = 1;
1627         long ret;
1628
1629         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1630         if (ret)
1631                 goto out;
1632
1633         if (!(avail & PAL_PROC_VM_BIT))
1634                 goto out;
1635
1636         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1637
1638         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1639         if (ret)
1640                 goto out;
1641         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1642
1643         if (!(vp_env_info & VP_OPCODE)) {
1644                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1645                                 "vm_env_info:0x%lx\n", vp_env_info);
1646         }
1647
1648         return 1;
1649 out:
1650         return 0;
1651 }
1652
1653
1654 /*
1655  * On SN2, the ITC isn't stable, so copy in fast path code to use the
1656  * SN2 RTC, replacing the ITC based default verion.
1657  */
1658 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1659                           struct module *module)
1660 {
1661         unsigned long new_ar, new_ar_sn2;
1662         unsigned long module_base;
1663
1664         if (!ia64_platform_is("sn2"))
1665                 return;
1666
1667         module_base = (unsigned long)module->module_core;
1668
1669         new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1670         new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1671
1672         printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1673                "as source\n");
1674
1675         /*
1676          * Copy the SN2 version of mov_ar into place. They are both
1677          * the same size, so 6 bundles is sufficient (6 * 0x10).
1678          */
1679         memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1680 }
1681
1682 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1683                             struct module *module)
1684 {
1685         unsigned long module_base;
1686         unsigned long vmm_size;
1687
1688         unsigned long vmm_offset, func_offset, fdesc_offset;
1689         struct fdesc *p_fdesc;
1690
1691         BUG_ON(!module);
1692
1693         if (!kvm_vmm_base) {
1694                 printk("kvm: kvm area hasn't been initialized yet!!\n");
1695                 return -EFAULT;
1696         }
1697
1698         /*Calculate new position of relocated vmm module.*/
1699         module_base = (unsigned long)module->module_core;
1700         vmm_size = module->core_size;
1701         if (unlikely(vmm_size > KVM_VMM_SIZE))
1702                 return -EFAULT;
1703
1704         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1705         kvm_patch_vmm(vmm_info, module);
1706         kvm_flush_icache(kvm_vmm_base, vmm_size);
1707
1708         /*Recalculate kvm_vmm_info based on new VMM*/
1709         vmm_offset = vmm_info->vmm_ivt - module_base;
1710         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1711         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1712                         kvm_vmm_info->vmm_ivt);
1713
1714         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1715         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1716                                                         fdesc_offset);
1717         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1718         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1719         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1720         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1721
1722         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1723                         KVM_VMM_BASE+func_offset);
1724
1725         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1726         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1727                         fdesc_offset);
1728         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1729         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1730         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1731         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1732
1733         kvm_vmm_gp = p_fdesc->gp;
1734
1735         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1736                                                 kvm_vmm_info->vmm_entry);
1737         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1738                                                 KVM_VMM_BASE + func_offset);
1739
1740         return 0;
1741 }
1742
1743 int kvm_arch_init(void *opaque)
1744 {
1745         int r;
1746         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1747
1748         if (!vti_cpu_has_kvm_support()) {
1749                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1750                 r = -EOPNOTSUPP;
1751                 goto out;
1752         }
1753
1754         if (kvm_vmm_info) {
1755                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1756                 r = -EEXIST;
1757                 goto out;
1758         }
1759
1760         r = -ENOMEM;
1761         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1762         if (!kvm_vmm_info)
1763                 goto out;
1764
1765         if (kvm_alloc_vmm_area())
1766                 goto out_free0;
1767
1768         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1769         if (r)
1770                 goto out_free1;
1771
1772         return 0;
1773
1774 out_free1:
1775         kvm_free_vmm_area();
1776 out_free0:
1777         kfree(kvm_vmm_info);
1778 out:
1779         return r;
1780 }
1781
1782 void kvm_arch_exit(void)
1783 {
1784         kvm_free_vmm_area();
1785         kfree(kvm_vmm_info);
1786         kvm_vmm_info = NULL;
1787 }
1788
1789 static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
1790                                     struct kvm_memory_slot *memslot)
1791 {
1792         int i;
1793         long base;
1794         unsigned long n;
1795         unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1796                         offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1797
1798         n = kvm_dirty_bitmap_bytes(memslot);
1799         base = memslot->base_gfn / BITS_PER_LONG;
1800
1801         spin_lock(&kvm->arch.dirty_log_lock);
1802         for (i = 0; i < n/sizeof(long); ++i) {
1803                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1804                 dirty_bitmap[base + i] = 0;
1805         }
1806         spin_unlock(&kvm->arch.dirty_log_lock);
1807 }
1808
1809 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1810                 struct kvm_dirty_log *log)
1811 {
1812         int r;
1813         unsigned long n;
1814         struct kvm_memory_slot *memslot;
1815         int is_dirty = 0;
1816
1817         mutex_lock(&kvm->slots_lock);
1818
1819         r = -EINVAL;
1820         if (log->slot >= KVM_MEMORY_SLOTS)
1821                 goto out;
1822
1823         memslot = &kvm->memslots->memslots[log->slot];
1824         r = -ENOENT;
1825         if (!memslot->dirty_bitmap)
1826                 goto out;
1827
1828         kvm_ia64_sync_dirty_log(kvm, memslot);
1829         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1830         if (r)
1831                 goto out;
1832
1833         /* If nothing is dirty, don't bother messing with page tables. */
1834         if (is_dirty) {
1835                 kvm_flush_remote_tlbs(kvm);
1836                 n = kvm_dirty_bitmap_bytes(memslot);
1837                 memset(memslot->dirty_bitmap, 0, n);
1838         }
1839         r = 0;
1840 out:
1841         mutex_unlock(&kvm->slots_lock);
1842         return r;
1843 }
1844
1845 int kvm_arch_hardware_setup(void)
1846 {
1847         return 0;
1848 }
1849
1850 void kvm_arch_hardware_unsetup(void)
1851 {
1852 }
1853
1854 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1855 {
1856         int me;
1857         int cpu = vcpu->cpu;
1858
1859         if (waitqueue_active(&vcpu->wq))
1860                 wake_up_interruptible(&vcpu->wq);
1861
1862         me = get_cpu();
1863         if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
1864                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
1865                         smp_send_reschedule(cpu);
1866         put_cpu();
1867 }
1868
1869 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1870 {
1871         return __apic_accept_irq(vcpu, irq->vector);
1872 }
1873
1874 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1875 {
1876         return apic->vcpu->vcpu_id == dest;
1877 }
1878
1879 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1880 {
1881         return 0;
1882 }
1883
1884 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1885 {
1886         return vcpu1->arch.xtp - vcpu2->arch.xtp;
1887 }
1888
1889 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1890                 int short_hand, int dest, int dest_mode)
1891 {
1892         struct kvm_lapic *target = vcpu->arch.apic;
1893         return (dest_mode == 0) ?
1894                 kvm_apic_match_physical_addr(target, dest) :
1895                 kvm_apic_match_logical_addr(target, dest);
1896 }
1897
1898 static int find_highest_bits(int *dat)
1899 {
1900         u32  bits, bitnum;
1901         int i;
1902
1903         /* loop for all 256 bits */
1904         for (i = 7; i >= 0 ; i--) {
1905                 bits = dat[i];
1906                 if (bits) {
1907                         bitnum = fls(bits);
1908                         return i * 32 + bitnum - 1;
1909                 }
1910         }
1911
1912         return -1;
1913 }
1914
1915 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1916 {
1917     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1918
1919     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1920                 return NMI_VECTOR;
1921     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1922                 return ExtINT_VECTOR;
1923
1924     return find_highest_bits((int *)&vpd->irr[0]);
1925 }
1926
1927 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1928 {
1929         return vcpu->arch.timer_fired;
1930 }
1931
1932 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1933 {
1934         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
1935                 (kvm_highest_pending_irq(vcpu) != -1);
1936 }
1937
1938 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1939                                     struct kvm_mp_state *mp_state)
1940 {
1941         mp_state->mp_state = vcpu->arch.mp_state;
1942         return 0;
1943 }
1944
1945 static int vcpu_reset(struct kvm_vcpu *vcpu)
1946 {
1947         int r;
1948         long psr;
1949         local_irq_save(psr);
1950         r = kvm_insert_vmm_mapping(vcpu);
1951         local_irq_restore(psr);
1952         if (r)
1953                 goto fail;
1954
1955         vcpu->arch.launched = 0;
1956         kvm_arch_vcpu_uninit(vcpu);
1957         r = kvm_arch_vcpu_init(vcpu);
1958         if (r)
1959                 goto fail;
1960
1961         kvm_purge_vmm_mapping(vcpu);
1962         r = 0;
1963 fail:
1964         return r;
1965 }
1966
1967 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1968                                     struct kvm_mp_state *mp_state)
1969 {
1970         int r = 0;
1971
1972         vcpu->arch.mp_state = mp_state->mp_state;
1973         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1974                 r = vcpu_reset(vcpu);
1975         return r;
1976 }