drm/i915: Force explicit bpp selection for intel_dp_link_required
[linux-flexiantxendom0.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "intel_drv.h"
36 #include "i915_drm.h"
37 #include "i915_drv.h"
38 #include "drm_dp_helper.h"
39
40 #define DP_RECEIVER_CAP_SIZE    0xf
41 #define DP_LINK_STATUS_SIZE     6
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 #define DP_LINK_CONFIGURATION_SIZE      9
45
46 struct intel_dp {
47         struct intel_encoder base;
48         uint32_t output_reg;
49         uint32_t DP;
50         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
51         bool has_audio;
52         int force_audio;
53         uint32_t color_range;
54         int dpms_mode;
55         uint8_t link_bw;
56         uint8_t lane_count;
57         uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
58         struct i2c_adapter adapter;
59         struct i2c_algo_dp_aux_data algo;
60         bool is_pch_edp;
61         uint8_t train_set[4];
62         int panel_power_up_delay;
63         int panel_power_down_delay;
64         int panel_power_cycle_delay;
65         int backlight_on_delay;
66         int backlight_off_delay;
67         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
68         struct delayed_work panel_vdd_work;
69         bool want_panel_vdd;
70 };
71
72 /**
73  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
74  * @intel_dp: DP struct
75  *
76  * If a CPU or PCH DP output is attached to an eDP panel, this function
77  * will return true, and false otherwise.
78  */
79 static bool is_edp(struct intel_dp *intel_dp)
80 {
81         return intel_dp->base.type == INTEL_OUTPUT_EDP;
82 }
83
84 /**
85  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
86  * @intel_dp: DP struct
87  *
88  * Returns true if the given DP struct corresponds to a PCH DP port attached
89  * to an eDP panel, false otherwise.  Helpful for determining whether we
90  * may need FDI resources for a given DP output or not.
91  */
92 static bool is_pch_edp(struct intel_dp *intel_dp)
93 {
94         return intel_dp->is_pch_edp;
95 }
96
97 /**
98  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
99  * @intel_dp: DP struct
100  *
101  * Returns true if the given DP struct corresponds to a CPU eDP port.
102  */
103 static bool is_cpu_edp(struct intel_dp *intel_dp)
104 {
105         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
106 }
107
108 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
109 {
110         return container_of(encoder, struct intel_dp, base.base);
111 }
112
113 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
114 {
115         return container_of(intel_attached_encoder(connector),
116                             struct intel_dp, base);
117 }
118
119 /**
120  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
121  * @encoder: DRM encoder
122  *
123  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
124  * by intel_display.c.
125  */
126 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
127 {
128         struct intel_dp *intel_dp;
129
130         if (!encoder)
131                 return false;
132
133         intel_dp = enc_to_intel_dp(encoder);
134
135         return is_pch_edp(intel_dp);
136 }
137
138 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
139 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
140 static void intel_dp_link_down(struct intel_dp *intel_dp);
141
142 void
143 intel_edp_link_config(struct intel_encoder *intel_encoder,
144                        int *lane_num, int *link_bw)
145 {
146         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
147
148         *lane_num = intel_dp->lane_count;
149         if (intel_dp->link_bw == DP_LINK_BW_1_62)
150                 *link_bw = 162000;
151         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
152                 *link_bw = 270000;
153 }
154
155 static int
156 intel_dp_max_lane_count(struct intel_dp *intel_dp)
157 {
158         int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
159         switch (max_lane_count) {
160         case 1: case 2: case 4:
161                 break;
162         default:
163                 max_lane_count = 4;
164         }
165         return max_lane_count;
166 }
167
168 static int
169 intel_dp_max_link_bw(struct intel_dp *intel_dp)
170 {
171         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
172
173         switch (max_link_bw) {
174         case DP_LINK_BW_1_62:
175         case DP_LINK_BW_2_7:
176                 break;
177         default:
178                 max_link_bw = DP_LINK_BW_1_62;
179                 break;
180         }
181         return max_link_bw;
182 }
183
184 static int
185 intel_dp_link_clock(uint8_t link_bw)
186 {
187         if (link_bw == DP_LINK_BW_2_7)
188                 return 270000;
189         else
190                 return 162000;
191 }
192
193 /*
194  * The units on the numbers in the next two are... bizarre.  Examples will
195  * make it clearer; this one parallels an example in the eDP spec.
196  *
197  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
198  *
199  *     270000 * 1 * 8 / 10 == 216000
200  *
201  * The actual data capacity of that configuration is 2.16Gbit/s, so the
202  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
203  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
204  * 119000.  At 18bpp that's 2142000 kilobits per second.
205  *
206  * Thus the strange-looking division by 10 in intel_dp_link_required, to
207  * get the result in decakilobits instead of kilobits.
208  */
209
210 static int
211 intel_dp_link_required(int pixel_clock, int bpp)
212 {
213         return (pixel_clock * bpp + 9) / 10;
214 }
215
216 static int
217 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
218 {
219         return (max_link_clock * max_lanes * 8) / 10;
220 }
221
222 static int
223 intel_dp_mode_valid(struct drm_connector *connector,
224                     struct drm_display_mode *mode)
225 {
226         struct intel_dp *intel_dp = intel_attached_dp(connector);
227         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
228         int max_lanes = intel_dp_max_lane_count(intel_dp);
229         int max_rate, mode_rate;
230
231         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
232                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
233                         return MODE_PANEL;
234
235                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
236                         return MODE_PANEL;
237         }
238
239         mode_rate = intel_dp_link_required(mode->clock, 24);
240         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
241
242         if (mode_rate > max_rate) {
243                         mode_rate = intel_dp_link_required(mode->clock, 18);
244                         if (mode_rate > max_rate)
245                                 return MODE_CLOCK_HIGH;
246                         else
247                                 mode->private_flags |= INTEL_MODE_DP_FORCE_6BPC;
248         }
249
250         if (mode->clock < 10000)
251                 return MODE_CLOCK_LOW;
252
253         return MODE_OK;
254 }
255
256 static uint32_t
257 pack_aux(uint8_t *src, int src_bytes)
258 {
259         int     i;
260         uint32_t v = 0;
261
262         if (src_bytes > 4)
263                 src_bytes = 4;
264         for (i = 0; i < src_bytes; i++)
265                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
266         return v;
267 }
268
269 static void
270 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
271 {
272         int i;
273         if (dst_bytes > 4)
274                 dst_bytes = 4;
275         for (i = 0; i < dst_bytes; i++)
276                 dst[i] = src >> ((3-i) * 8);
277 }
278
279 /* hrawclock is 1/4 the FSB frequency */
280 static int
281 intel_hrawclk(struct drm_device *dev)
282 {
283         struct drm_i915_private *dev_priv = dev->dev_private;
284         uint32_t clkcfg;
285
286         clkcfg = I915_READ(CLKCFG);
287         switch (clkcfg & CLKCFG_FSB_MASK) {
288         case CLKCFG_FSB_400:
289                 return 100;
290         case CLKCFG_FSB_533:
291                 return 133;
292         case CLKCFG_FSB_667:
293                 return 166;
294         case CLKCFG_FSB_800:
295                 return 200;
296         case CLKCFG_FSB_1067:
297                 return 266;
298         case CLKCFG_FSB_1333:
299                 return 333;
300         /* these two are just a guess; one of them might be right */
301         case CLKCFG_FSB_1600:
302         case CLKCFG_FSB_1600_ALT:
303                 return 400;
304         default:
305                 return 133;
306         }
307 }
308
309 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
310 {
311         struct drm_device *dev = intel_dp->base.base.dev;
312         struct drm_i915_private *dev_priv = dev->dev_private;
313
314         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
315 }
316
317 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
318 {
319         struct drm_device *dev = intel_dp->base.base.dev;
320         struct drm_i915_private *dev_priv = dev->dev_private;
321
322         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
323 }
324
325 static void
326 intel_dp_check_edp(struct intel_dp *intel_dp)
327 {
328         struct drm_device *dev = intel_dp->base.base.dev;
329         struct drm_i915_private *dev_priv = dev->dev_private;
330
331         if (!is_edp(intel_dp))
332                 return;
333         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
334                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
335                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
336                               I915_READ(PCH_PP_STATUS),
337                               I915_READ(PCH_PP_CONTROL));
338         }
339 }
340
341 static int
342 intel_dp_aux_ch(struct intel_dp *intel_dp,
343                 uint8_t *send, int send_bytes,
344                 uint8_t *recv, int recv_size)
345 {
346         uint32_t output_reg = intel_dp->output_reg;
347         struct drm_device *dev = intel_dp->base.base.dev;
348         struct drm_i915_private *dev_priv = dev->dev_private;
349         uint32_t ch_ctl = output_reg + 0x10;
350         uint32_t ch_data = ch_ctl + 4;
351         int i;
352         int recv_bytes;
353         uint32_t status;
354         uint32_t aux_clock_divider;
355         int try, precharge;
356
357         intel_dp_check_edp(intel_dp);
358         /* The clock divider is based off the hrawclk,
359          * and would like to run at 2MHz. So, take the
360          * hrawclk value and divide by 2 and use that
361          *
362          * Note that PCH attached eDP panels should use a 125MHz input
363          * clock divider.
364          */
365         if (is_cpu_edp(intel_dp)) {
366                 if (IS_GEN6(dev) || IS_GEN7(dev))
367                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
368                 else
369                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
370         } else if (HAS_PCH_SPLIT(dev))
371                 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
372         else
373                 aux_clock_divider = intel_hrawclk(dev) / 2;
374
375         if (IS_GEN6(dev))
376                 precharge = 3;
377         else
378                 precharge = 5;
379
380         /* Try to wait for any previous AUX channel activity */
381         for (try = 0; try < 3; try++) {
382                 status = I915_READ(ch_ctl);
383                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
384                         break;
385                 msleep(1);
386         }
387
388         if (try == 3) {
389                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
390                      I915_READ(ch_ctl));
391                 return -EBUSY;
392         }
393
394         /* Must try at least 3 times according to DP spec */
395         for (try = 0; try < 5; try++) {
396                 /* Load the send data into the aux channel data registers */
397                 for (i = 0; i < send_bytes; i += 4)
398                         I915_WRITE(ch_data + i,
399                                    pack_aux(send + i, send_bytes - i));
400
401                 /* Send the command and wait for it to complete */
402                 I915_WRITE(ch_ctl,
403                            DP_AUX_CH_CTL_SEND_BUSY |
404                            DP_AUX_CH_CTL_TIME_OUT_400us |
405                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
406                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
407                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
408                            DP_AUX_CH_CTL_DONE |
409                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
410                            DP_AUX_CH_CTL_RECEIVE_ERROR);
411                 for (;;) {
412                         status = I915_READ(ch_ctl);
413                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
414                                 break;
415                         udelay(100);
416                 }
417
418                 /* Clear done status and any errors */
419                 I915_WRITE(ch_ctl,
420                            status |
421                            DP_AUX_CH_CTL_DONE |
422                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
423                            DP_AUX_CH_CTL_RECEIVE_ERROR);
424                 if (status & DP_AUX_CH_CTL_DONE)
425                         break;
426         }
427
428         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
429                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
430                 return -EBUSY;
431         }
432
433         /* Check for timeout or receive error.
434          * Timeouts occur when the sink is not connected
435          */
436         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
437                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
438                 return -EIO;
439         }
440
441         /* Timeouts occur when the device isn't connected, so they're
442          * "normal" -- don't fill the kernel log with these */
443         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
444                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
445                 return -ETIMEDOUT;
446         }
447
448         /* Unload any bytes sent back from the other side */
449         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
450                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
451         if (recv_bytes > recv_size)
452                 recv_bytes = recv_size;
453
454         for (i = 0; i < recv_bytes; i += 4)
455                 unpack_aux(I915_READ(ch_data + i),
456                            recv + i, recv_bytes - i);
457
458         return recv_bytes;
459 }
460
461 /* Write data to the aux channel in native mode */
462 static int
463 intel_dp_aux_native_write(struct intel_dp *intel_dp,
464                           uint16_t address, uint8_t *send, int send_bytes)
465 {
466         int ret;
467         uint8_t msg[20];
468         int msg_bytes;
469         uint8_t ack;
470
471         intel_dp_check_edp(intel_dp);
472         if (send_bytes > 16)
473                 return -1;
474         msg[0] = AUX_NATIVE_WRITE << 4;
475         msg[1] = address >> 8;
476         msg[2] = address & 0xff;
477         msg[3] = send_bytes - 1;
478         memcpy(&msg[4], send, send_bytes);
479         msg_bytes = send_bytes + 4;
480         for (;;) {
481                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
482                 if (ret < 0)
483                         return ret;
484                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
485                         break;
486                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
487                         udelay(100);
488                 else
489                         return -EIO;
490         }
491         return send_bytes;
492 }
493
494 /* Write a single byte to the aux channel in native mode */
495 static int
496 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
497                             uint16_t address, uint8_t byte)
498 {
499         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
500 }
501
502 /* read bytes from a native aux channel */
503 static int
504 intel_dp_aux_native_read(struct intel_dp *intel_dp,
505                          uint16_t address, uint8_t *recv, int recv_bytes)
506 {
507         uint8_t msg[4];
508         int msg_bytes;
509         uint8_t reply[20];
510         int reply_bytes;
511         uint8_t ack;
512         int ret;
513
514         intel_dp_check_edp(intel_dp);
515         msg[0] = AUX_NATIVE_READ << 4;
516         msg[1] = address >> 8;
517         msg[2] = address & 0xff;
518         msg[3] = recv_bytes - 1;
519
520         msg_bytes = 4;
521         reply_bytes = recv_bytes + 1;
522
523         for (;;) {
524                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
525                                       reply, reply_bytes);
526                 if (ret == 0)
527                         return -EPROTO;
528                 if (ret < 0)
529                         return ret;
530                 ack = reply[0];
531                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
532                         memcpy(recv, reply + 1, ret - 1);
533                         return ret - 1;
534                 }
535                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
536                         udelay(100);
537                 else
538                         return -EIO;
539         }
540 }
541
542 static int
543 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
544                     uint8_t write_byte, uint8_t *read_byte)
545 {
546         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
547         struct intel_dp *intel_dp = container_of(adapter,
548                                                 struct intel_dp,
549                                                 adapter);
550         uint16_t address = algo_data->address;
551         uint8_t msg[5];
552         uint8_t reply[2];
553         unsigned retry;
554         int msg_bytes;
555         int reply_bytes;
556         int ret;
557
558         intel_dp_check_edp(intel_dp);
559         /* Set up the command byte */
560         if (mode & MODE_I2C_READ)
561                 msg[0] = AUX_I2C_READ << 4;
562         else
563                 msg[0] = AUX_I2C_WRITE << 4;
564
565         if (!(mode & MODE_I2C_STOP))
566                 msg[0] |= AUX_I2C_MOT << 4;
567
568         msg[1] = address >> 8;
569         msg[2] = address;
570
571         switch (mode) {
572         case MODE_I2C_WRITE:
573                 msg[3] = 0;
574                 msg[4] = write_byte;
575                 msg_bytes = 5;
576                 reply_bytes = 1;
577                 break;
578         case MODE_I2C_READ:
579                 msg[3] = 0;
580                 msg_bytes = 4;
581                 reply_bytes = 2;
582                 break;
583         default:
584                 msg_bytes = 3;
585                 reply_bytes = 1;
586                 break;
587         }
588
589         for (retry = 0; retry < 5; retry++) {
590                 ret = intel_dp_aux_ch(intel_dp,
591                                       msg, msg_bytes,
592                                       reply, reply_bytes);
593                 if (ret < 0) {
594                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
595                         return ret;
596                 }
597
598                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
599                 case AUX_NATIVE_REPLY_ACK:
600                         /* I2C-over-AUX Reply field is only valid
601                          * when paired with AUX ACK.
602                          */
603                         break;
604                 case AUX_NATIVE_REPLY_NACK:
605                         DRM_DEBUG_KMS("aux_ch native nack\n");
606                         return -EREMOTEIO;
607                 case AUX_NATIVE_REPLY_DEFER:
608                         udelay(100);
609                         continue;
610                 default:
611                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
612                                   reply[0]);
613                         return -EREMOTEIO;
614                 }
615
616                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
617                 case AUX_I2C_REPLY_ACK:
618                         if (mode == MODE_I2C_READ) {
619                                 *read_byte = reply[1];
620                         }
621                         return reply_bytes - 1;
622                 case AUX_I2C_REPLY_NACK:
623                         DRM_DEBUG_KMS("aux_i2c nack\n");
624                         return -EREMOTEIO;
625                 case AUX_I2C_REPLY_DEFER:
626                         DRM_DEBUG_KMS("aux_i2c defer\n");
627                         udelay(100);
628                         break;
629                 default:
630                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
631                         return -EREMOTEIO;
632                 }
633         }
634
635         DRM_ERROR("too many retries, giving up\n");
636         return -EREMOTEIO;
637 }
638
639 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
640 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
641
642 static int
643 intel_dp_i2c_init(struct intel_dp *intel_dp,
644                   struct intel_connector *intel_connector, const char *name)
645 {
646         int     ret;
647
648         DRM_DEBUG_KMS("i2c_init %s\n", name);
649         intel_dp->algo.running = false;
650         intel_dp->algo.address = 0;
651         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
652
653         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
654         intel_dp->adapter.owner = THIS_MODULE;
655         intel_dp->adapter.class = I2C_CLASS_DDC;
656         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
657         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
658         intel_dp->adapter.algo_data = &intel_dp->algo;
659         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
660
661         ironlake_edp_panel_vdd_on(intel_dp);
662         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
663         ironlake_edp_panel_vdd_off(intel_dp, false);
664         return ret;
665 }
666
667 static bool
668 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
669                     struct drm_display_mode *adjusted_mode)
670 {
671         struct drm_device *dev = encoder->dev;
672         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
673         int lane_count, clock;
674         int max_lane_count = intel_dp_max_lane_count(intel_dp);
675         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
676         int bpp = mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
677         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
678
679         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
680                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
681                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
682                                         mode, adjusted_mode);
683                 /*
684                  * the mode->clock is used to calculate the Data&Link M/N
685                  * of the pipe. For the eDP the fixed clock should be used.
686                  */
687                 mode->clock = intel_dp->panel_fixed_mode->clock;
688         }
689
690         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
691                 for (clock = 0; clock <= max_clock; clock++) {
692                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
693
694                         if (intel_dp_link_required(mode->clock, bpp)
695                                         <= link_avail) {
696                                 intel_dp->link_bw = bws[clock];
697                                 intel_dp->lane_count = lane_count;
698                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
699                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
700                                                 "count %d clock %d\n",
701                                        intel_dp->link_bw, intel_dp->lane_count,
702                                        adjusted_mode->clock);
703                                 return true;
704                         }
705                 }
706         }
707
708         return false;
709 }
710
711 struct intel_dp_m_n {
712         uint32_t        tu;
713         uint32_t        gmch_m;
714         uint32_t        gmch_n;
715         uint32_t        link_m;
716         uint32_t        link_n;
717 };
718
719 static void
720 intel_reduce_ratio(uint32_t *num, uint32_t *den)
721 {
722         while (*num > 0xffffff || *den > 0xffffff) {
723                 *num >>= 1;
724                 *den >>= 1;
725         }
726 }
727
728 static void
729 intel_dp_compute_m_n(int bpp,
730                      int nlanes,
731                      int pixel_clock,
732                      int link_clock,
733                      struct intel_dp_m_n *m_n)
734 {
735         m_n->tu = 64;
736         m_n->gmch_m = (pixel_clock * bpp) >> 3;
737         m_n->gmch_n = link_clock * nlanes;
738         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
739         m_n->link_m = pixel_clock;
740         m_n->link_n = link_clock;
741         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
742 }
743
744 void
745 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
746                  struct drm_display_mode *adjusted_mode)
747 {
748         struct drm_device *dev = crtc->dev;
749         struct drm_mode_config *mode_config = &dev->mode_config;
750         struct drm_encoder *encoder;
751         struct drm_i915_private *dev_priv = dev->dev_private;
752         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
753         int lane_count = 4;
754         struct intel_dp_m_n m_n;
755         int pipe = intel_crtc->pipe;
756
757         /*
758          * Find the lane count in the intel_encoder private
759          */
760         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
761                 struct intel_dp *intel_dp;
762
763                 if (encoder->crtc != crtc)
764                         continue;
765
766                 intel_dp = enc_to_intel_dp(encoder);
767                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
768                     intel_dp->base.type == INTEL_OUTPUT_EDP)
769                 {
770                         lane_count = intel_dp->lane_count;
771                         break;
772                 }
773         }
774
775         /*
776          * Compute the GMCH and Link ratios. The '3' here is
777          * the number of bytes_per_pixel post-LUT, which we always
778          * set up for 8-bits of R/G/B, or 3 bytes total.
779          */
780         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
781                              mode->clock, adjusted_mode->clock, &m_n);
782
783         if (HAS_PCH_SPLIT(dev)) {
784                 I915_WRITE(TRANSDATA_M1(pipe),
785                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
786                            m_n.gmch_m);
787                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
788                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
789                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
790         } else {
791                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
792                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
793                            m_n.gmch_m);
794                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
795                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
796                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
797         }
798 }
799
800 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
801 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
802
803 static void
804 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
805                   struct drm_display_mode *adjusted_mode)
806 {
807         struct drm_device *dev = encoder->dev;
808         struct drm_i915_private *dev_priv = dev->dev_private;
809         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
810         struct drm_crtc *crtc = intel_dp->base.base.crtc;
811         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
812
813         /* Turn on the eDP PLL if needed */
814         if (is_edp(intel_dp)) {
815                 if (!is_pch_edp(intel_dp))
816                         ironlake_edp_pll_on(encoder);
817                 else
818                         ironlake_edp_pll_off(encoder);
819         }
820
821         /*
822          * There are four kinds of DP registers:
823          *
824          *      IBX PCH
825          *      SNB CPU
826          *      IVB CPU
827          *      CPT PCH
828          *
829          * IBX PCH and CPU are the same for almost everything,
830          * except that the CPU DP PLL is configured in this
831          * register
832          *
833          * CPT PCH is quite different, having many bits moved
834          * to the TRANS_DP_CTL register instead. That
835          * configuration happens (oddly) in ironlake_pch_enable
836          */
837
838         /* Preserve the BIOS-computed detected bit. This is
839          * supposed to be read-only.
840          */
841         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
842         intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
843
844         /* Handle DP bits in common between all three register formats */
845
846         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
847
848         switch (intel_dp->lane_count) {
849         case 1:
850                 intel_dp->DP |= DP_PORT_WIDTH_1;
851                 break;
852         case 2:
853                 intel_dp->DP |= DP_PORT_WIDTH_2;
854                 break;
855         case 4:
856                 intel_dp->DP |= DP_PORT_WIDTH_4;
857                 break;
858         }
859         if (intel_dp->has_audio) {
860                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
861                                  pipe_name(intel_crtc->pipe));
862                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
863                 intel_write_eld(encoder, adjusted_mode);
864         }
865         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
866         intel_dp->link_configuration[0] = intel_dp->link_bw;
867         intel_dp->link_configuration[1] = intel_dp->lane_count;
868         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
869         /*
870          * Check for DPCD version > 1.1 and enhanced framing support
871          */
872         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
873             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
874                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
875         }
876
877         /* Split out the IBX/CPU vs CPT settings */
878
879         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
880                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
881                         intel_dp->DP |= DP_SYNC_HS_HIGH;
882                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
883                         intel_dp->DP |= DP_SYNC_VS_HIGH;
884                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
885
886                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
887                         intel_dp->DP |= DP_ENHANCED_FRAMING;
888
889                 intel_dp->DP |= intel_crtc->pipe << 29;
890
891                 /* don't miss out required setting for eDP */
892                 intel_dp->DP |= DP_PLL_ENABLE;
893                 if (adjusted_mode->clock < 200000)
894                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
895                 else
896                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
897         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
898                 intel_dp->DP |= intel_dp->color_range;
899
900                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
901                         intel_dp->DP |= DP_SYNC_HS_HIGH;
902                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
903                         intel_dp->DP |= DP_SYNC_VS_HIGH;
904                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
905
906                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
907                         intel_dp->DP |= DP_ENHANCED_FRAMING;
908
909                 if (intel_crtc->pipe == 1)
910                         intel_dp->DP |= DP_PIPEB_SELECT;
911
912                 if (is_cpu_edp(intel_dp)) {
913                         /* don't miss out required setting for eDP */
914                         intel_dp->DP |= DP_PLL_ENABLE;
915                         if (adjusted_mode->clock < 200000)
916                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
917                         else
918                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
919                 }
920         } else {
921                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
922         }
923 }
924
925 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
926 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
927
928 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
929 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
930
931 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
932 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
933
934 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
935                                        u32 mask,
936                                        u32 value)
937 {
938         struct drm_device *dev = intel_dp->base.base.dev;
939         struct drm_i915_private *dev_priv = dev->dev_private;
940
941         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
942                       mask, value,
943                       I915_READ(PCH_PP_STATUS),
944                       I915_READ(PCH_PP_CONTROL));
945
946         if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
947                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
948                           I915_READ(PCH_PP_STATUS),
949                           I915_READ(PCH_PP_CONTROL));
950         }
951 }
952
953 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
954 {
955         DRM_DEBUG_KMS("Wait for panel power on\n");
956         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
957 }
958
959 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
960 {
961         DRM_DEBUG_KMS("Wait for panel power off time\n");
962         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
963 }
964
965 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
966 {
967         DRM_DEBUG_KMS("Wait for panel power cycle\n");
968         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
969 }
970
971
972 /* Read the current pp_control value, unlocking the register if it
973  * is locked
974  */
975
976 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
977 {
978         u32     control = I915_READ(PCH_PP_CONTROL);
979
980         control &= ~PANEL_UNLOCK_MASK;
981         control |= PANEL_UNLOCK_REGS;
982         return control;
983 }
984
985 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
986 {
987         struct drm_device *dev = intel_dp->base.base.dev;
988         struct drm_i915_private *dev_priv = dev->dev_private;
989         u32 pp;
990
991         if (!is_edp(intel_dp))
992                 return;
993         DRM_DEBUG_KMS("Turn eDP VDD on\n");
994
995         WARN(intel_dp->want_panel_vdd,
996              "eDP VDD already requested on\n");
997
998         intel_dp->want_panel_vdd = true;
999
1000         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1001                 DRM_DEBUG_KMS("eDP VDD already on\n");
1002                 return;
1003         }
1004
1005         if (!ironlake_edp_have_panel_power(intel_dp))
1006                 ironlake_wait_panel_power_cycle(intel_dp);
1007
1008         pp = ironlake_get_pp_control(dev_priv);
1009         pp |= EDP_FORCE_VDD;
1010         I915_WRITE(PCH_PP_CONTROL, pp);
1011         POSTING_READ(PCH_PP_CONTROL);
1012         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1013                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1014
1015         /*
1016          * If the panel wasn't on, delay before accessing aux channel
1017          */
1018         if (!ironlake_edp_have_panel_power(intel_dp)) {
1019                 DRM_DEBUG_KMS("eDP was not running\n");
1020                 msleep(intel_dp->panel_power_up_delay);
1021         }
1022 }
1023
1024 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1025 {
1026         struct drm_device *dev = intel_dp->base.base.dev;
1027         struct drm_i915_private *dev_priv = dev->dev_private;
1028         u32 pp;
1029
1030         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1031                 pp = ironlake_get_pp_control(dev_priv);
1032                 pp &= ~EDP_FORCE_VDD;
1033                 I915_WRITE(PCH_PP_CONTROL, pp);
1034                 POSTING_READ(PCH_PP_CONTROL);
1035
1036                 /* Make sure sequencer is idle before allowing subsequent activity */
1037                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1038                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1039
1040                 msleep(intel_dp->panel_power_down_delay);
1041         }
1042 }
1043
1044 static void ironlake_panel_vdd_work(struct work_struct *__work)
1045 {
1046         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1047                                                  struct intel_dp, panel_vdd_work);
1048         struct drm_device *dev = intel_dp->base.base.dev;
1049
1050         mutex_lock(&dev->mode_config.mutex);
1051         ironlake_panel_vdd_off_sync(intel_dp);
1052         mutex_unlock(&dev->mode_config.mutex);
1053 }
1054
1055 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1056 {
1057         if (!is_edp(intel_dp))
1058                 return;
1059
1060         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1061         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1062
1063         intel_dp->want_panel_vdd = false;
1064
1065         if (sync) {
1066                 ironlake_panel_vdd_off_sync(intel_dp);
1067         } else {
1068                 /*
1069                  * Queue the timer to fire a long
1070                  * time from now (relative to the power down delay)
1071                  * to keep the panel power up across a sequence of operations
1072                  */
1073                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1074                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1075         }
1076 }
1077
1078 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1079 {
1080         struct drm_device *dev = intel_dp->base.base.dev;
1081         struct drm_i915_private *dev_priv = dev->dev_private;
1082         u32 pp;
1083
1084         if (!is_edp(intel_dp))
1085                 return;
1086
1087         DRM_DEBUG_KMS("Turn eDP power on\n");
1088
1089         if (ironlake_edp_have_panel_power(intel_dp)) {
1090                 DRM_DEBUG_KMS("eDP power already on\n");
1091                 return;
1092         }
1093
1094         ironlake_wait_panel_power_cycle(intel_dp);
1095
1096         pp = ironlake_get_pp_control(dev_priv);
1097         if (IS_GEN5(dev)) {
1098                 /* ILK workaround: disable reset around power sequence */
1099                 pp &= ~PANEL_POWER_RESET;
1100                 I915_WRITE(PCH_PP_CONTROL, pp);
1101                 POSTING_READ(PCH_PP_CONTROL);
1102         }
1103
1104         pp |= POWER_TARGET_ON;
1105         if (!IS_GEN5(dev))
1106                 pp |= PANEL_POWER_RESET;
1107
1108         I915_WRITE(PCH_PP_CONTROL, pp);
1109         POSTING_READ(PCH_PP_CONTROL);
1110
1111         ironlake_wait_panel_on(intel_dp);
1112
1113         if (IS_GEN5(dev)) {
1114                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1115                 I915_WRITE(PCH_PP_CONTROL, pp);
1116                 POSTING_READ(PCH_PP_CONTROL);
1117         }
1118 }
1119
1120 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1121 {
1122         struct drm_device *dev = intel_dp->base.base.dev;
1123         struct drm_i915_private *dev_priv = dev->dev_private;
1124         u32 pp;
1125
1126         if (!is_edp(intel_dp))
1127                 return;
1128
1129         DRM_DEBUG_KMS("Turn eDP power off\n");
1130
1131         WARN(intel_dp->want_panel_vdd, "Cannot turn power off while VDD is on\n");
1132
1133         pp = ironlake_get_pp_control(dev_priv);
1134         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1135         I915_WRITE(PCH_PP_CONTROL, pp);
1136         POSTING_READ(PCH_PP_CONTROL);
1137
1138         ironlake_wait_panel_off(intel_dp);
1139 }
1140
1141 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1142 {
1143         struct drm_device *dev = intel_dp->base.base.dev;
1144         struct drm_i915_private *dev_priv = dev->dev_private;
1145         u32 pp;
1146
1147         if (!is_edp(intel_dp))
1148                 return;
1149
1150         DRM_DEBUG_KMS("\n");
1151         /*
1152          * If we enable the backlight right away following a panel power
1153          * on, we may see slight flicker as the panel syncs with the eDP
1154          * link.  So delay a bit to make sure the image is solid before
1155          * allowing it to appear.
1156          */
1157         msleep(intel_dp->backlight_on_delay);
1158         pp = ironlake_get_pp_control(dev_priv);
1159         pp |= EDP_BLC_ENABLE;
1160         I915_WRITE(PCH_PP_CONTROL, pp);
1161         POSTING_READ(PCH_PP_CONTROL);
1162 }
1163
1164 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1165 {
1166         struct drm_device *dev = intel_dp->base.base.dev;
1167         struct drm_i915_private *dev_priv = dev->dev_private;
1168         u32 pp;
1169
1170         if (!is_edp(intel_dp))
1171                 return;
1172
1173         DRM_DEBUG_KMS("\n");
1174         pp = ironlake_get_pp_control(dev_priv);
1175         pp &= ~EDP_BLC_ENABLE;
1176         I915_WRITE(PCH_PP_CONTROL, pp);
1177         POSTING_READ(PCH_PP_CONTROL);
1178         msleep(intel_dp->backlight_off_delay);
1179 }
1180
1181 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1182 {
1183         struct drm_device *dev = encoder->dev;
1184         struct drm_i915_private *dev_priv = dev->dev_private;
1185         u32 dpa_ctl;
1186
1187         DRM_DEBUG_KMS("\n");
1188         dpa_ctl = I915_READ(DP_A);
1189         dpa_ctl |= DP_PLL_ENABLE;
1190         I915_WRITE(DP_A, dpa_ctl);
1191         POSTING_READ(DP_A);
1192         udelay(200);
1193 }
1194
1195 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1196 {
1197         struct drm_device *dev = encoder->dev;
1198         struct drm_i915_private *dev_priv = dev->dev_private;
1199         u32 dpa_ctl;
1200
1201         dpa_ctl = I915_READ(DP_A);
1202         dpa_ctl &= ~DP_PLL_ENABLE;
1203         I915_WRITE(DP_A, dpa_ctl);
1204         POSTING_READ(DP_A);
1205         udelay(200);
1206 }
1207
1208 /* If the sink supports it, try to set the power state appropriately */
1209 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1210 {
1211         int ret, i;
1212
1213         /* Should have a valid DPCD by this point */
1214         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1215                 return;
1216
1217         if (mode != DRM_MODE_DPMS_ON) {
1218                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1219                                                   DP_SET_POWER_D3);
1220                 if (ret != 1)
1221                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1222         } else {
1223                 /*
1224                  * When turning on, we need to retry for 1ms to give the sink
1225                  * time to wake up.
1226                  */
1227                 for (i = 0; i < 3; i++) {
1228                         ret = intel_dp_aux_native_write_1(intel_dp,
1229                                                           DP_SET_POWER,
1230                                                           DP_SET_POWER_D0);
1231                         if (ret == 1)
1232                                 break;
1233                         msleep(1);
1234                 }
1235         }
1236 }
1237
1238 static void intel_dp_prepare(struct drm_encoder *encoder)
1239 {
1240         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1241
1242         ironlake_edp_backlight_off(intel_dp);
1243         ironlake_edp_panel_off(intel_dp);
1244
1245         /* Wake up the sink first */
1246         ironlake_edp_panel_vdd_on(intel_dp);
1247         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1248         intel_dp_link_down(intel_dp);
1249         ironlake_edp_panel_vdd_off(intel_dp, false);
1250
1251         /* Make sure the panel is off before trying to
1252          * change the mode
1253          */
1254 }
1255
1256 static void intel_dp_commit(struct drm_encoder *encoder)
1257 {
1258         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1259         struct drm_device *dev = encoder->dev;
1260         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1261
1262         ironlake_edp_panel_vdd_on(intel_dp);
1263         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1264         intel_dp_start_link_train(intel_dp);
1265         ironlake_edp_panel_on(intel_dp);
1266         ironlake_edp_panel_vdd_off(intel_dp, true);
1267         intel_dp_complete_link_train(intel_dp);
1268         ironlake_edp_backlight_on(intel_dp);
1269
1270         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1271
1272         if (HAS_PCH_CPT(dev))
1273                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1274 }
1275
1276 static void
1277 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1278 {
1279         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1280         struct drm_device *dev = encoder->dev;
1281         struct drm_i915_private *dev_priv = dev->dev_private;
1282         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1283
1284         if (mode != DRM_MODE_DPMS_ON) {
1285                 ironlake_edp_backlight_off(intel_dp);
1286                 ironlake_edp_panel_off(intel_dp);
1287
1288                 ironlake_edp_panel_vdd_on(intel_dp);
1289                 intel_dp_sink_dpms(intel_dp, mode);
1290                 intel_dp_link_down(intel_dp);
1291                 ironlake_edp_panel_vdd_off(intel_dp, false);
1292
1293                 if (is_cpu_edp(intel_dp))
1294                         ironlake_edp_pll_off(encoder);
1295         } else {
1296                 if (is_cpu_edp(intel_dp))
1297                         ironlake_edp_pll_on(encoder);
1298
1299                 ironlake_edp_panel_vdd_on(intel_dp);
1300                 intel_dp_sink_dpms(intel_dp, mode);
1301                 if (!(dp_reg & DP_PORT_EN)) {
1302                         intel_dp_start_link_train(intel_dp);
1303                         ironlake_edp_panel_on(intel_dp);
1304                         ironlake_edp_panel_vdd_off(intel_dp, true);
1305                         intel_dp_complete_link_train(intel_dp);
1306                 } else
1307                         ironlake_edp_panel_vdd_off(intel_dp, false);
1308                 ironlake_edp_backlight_on(intel_dp);
1309         }
1310         intel_dp->dpms_mode = mode;
1311 }
1312
1313 /*
1314  * Native read with retry for link status and receiver capability reads for
1315  * cases where the sink may still be asleep.
1316  */
1317 static bool
1318 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1319                                uint8_t *recv, int recv_bytes)
1320 {
1321         int ret, i;
1322
1323         /*
1324          * Sinks are *supposed* to come up within 1ms from an off state,
1325          * but we're also supposed to retry 3 times per the spec.
1326          */
1327         for (i = 0; i < 3; i++) {
1328                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1329                                                recv_bytes);
1330                 if (ret == recv_bytes)
1331                         return true;
1332                 msleep(1);
1333         }
1334
1335         return false;
1336 }
1337
1338 /*
1339  * Fetch AUX CH registers 0x202 - 0x207 which contain
1340  * link status information
1341  */
1342 static bool
1343 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1344 {
1345         return intel_dp_aux_native_read_retry(intel_dp,
1346                                               DP_LANE0_1_STATUS,
1347                                               link_status,
1348                                               DP_LINK_STATUS_SIZE);
1349 }
1350
1351 static uint8_t
1352 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1353                      int r)
1354 {
1355         return link_status[r - DP_LANE0_1_STATUS];
1356 }
1357
1358 static uint8_t
1359 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1360                                  int lane)
1361 {
1362         int         s = ((lane & 1) ?
1363                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1364                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1365         uint8_t l = adjust_request[lane>>1];
1366
1367         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1368 }
1369
1370 static uint8_t
1371 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1372                                       int lane)
1373 {
1374         int         s = ((lane & 1) ?
1375                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1376                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1377         uint8_t l = adjust_request[lane>>1];
1378
1379         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1380 }
1381
1382
1383 #if 0
1384 static char     *voltage_names[] = {
1385         "0.4V", "0.6V", "0.8V", "1.2V"
1386 };
1387 static char     *pre_emph_names[] = {
1388         "0dB", "3.5dB", "6dB", "9.5dB"
1389 };
1390 static char     *link_train_names[] = {
1391         "pattern 1", "pattern 2", "idle", "off"
1392 };
1393 #endif
1394
1395 /*
1396  * These are source-specific values; current Intel hardware supports
1397  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1398  */
1399
1400 static uint8_t
1401 intel_dp_voltage_max(struct intel_dp *intel_dp)
1402 {
1403         struct drm_device *dev = intel_dp->base.base.dev;
1404
1405         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1406                 return DP_TRAIN_VOLTAGE_SWING_800;
1407         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1408                 return DP_TRAIN_VOLTAGE_SWING_1200;
1409         else
1410                 return DP_TRAIN_VOLTAGE_SWING_800;
1411 }
1412
1413 static uint8_t
1414 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1415 {
1416         struct drm_device *dev = intel_dp->base.base.dev;
1417
1418         if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1419                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1420                 case DP_TRAIN_VOLTAGE_SWING_400:
1421                         return DP_TRAIN_PRE_EMPHASIS_6;
1422                 case DP_TRAIN_VOLTAGE_SWING_600:
1423                 case DP_TRAIN_VOLTAGE_SWING_800:
1424                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1425                 default:
1426                         return DP_TRAIN_PRE_EMPHASIS_0;
1427                 }
1428         } else {
1429                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1430                 case DP_TRAIN_VOLTAGE_SWING_400:
1431                         return DP_TRAIN_PRE_EMPHASIS_6;
1432                 case DP_TRAIN_VOLTAGE_SWING_600:
1433                         return DP_TRAIN_PRE_EMPHASIS_6;
1434                 case DP_TRAIN_VOLTAGE_SWING_800:
1435                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1436                 case DP_TRAIN_VOLTAGE_SWING_1200:
1437                 default:
1438                         return DP_TRAIN_PRE_EMPHASIS_0;
1439                 }
1440         }
1441 }
1442
1443 static void
1444 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1445 {
1446         uint8_t v = 0;
1447         uint8_t p = 0;
1448         int lane;
1449         uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1450         uint8_t voltage_max;
1451         uint8_t preemph_max;
1452
1453         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1454                 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1455                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1456
1457                 if (this_v > v)
1458                         v = this_v;
1459                 if (this_p > p)
1460                         p = this_p;
1461         }
1462
1463         voltage_max = intel_dp_voltage_max(intel_dp);
1464         if (v >= voltage_max)
1465                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1466
1467         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1468         if (p >= preemph_max)
1469                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1470
1471         for (lane = 0; lane < 4; lane++)
1472                 intel_dp->train_set[lane] = v | p;
1473 }
1474
1475 static uint32_t
1476 intel_dp_signal_levels(uint8_t train_set)
1477 {
1478         uint32_t        signal_levels = 0;
1479
1480         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1481         case DP_TRAIN_VOLTAGE_SWING_400:
1482         default:
1483                 signal_levels |= DP_VOLTAGE_0_4;
1484                 break;
1485         case DP_TRAIN_VOLTAGE_SWING_600:
1486                 signal_levels |= DP_VOLTAGE_0_6;
1487                 break;
1488         case DP_TRAIN_VOLTAGE_SWING_800:
1489                 signal_levels |= DP_VOLTAGE_0_8;
1490                 break;
1491         case DP_TRAIN_VOLTAGE_SWING_1200:
1492                 signal_levels |= DP_VOLTAGE_1_2;
1493                 break;
1494         }
1495         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1496         case DP_TRAIN_PRE_EMPHASIS_0:
1497         default:
1498                 signal_levels |= DP_PRE_EMPHASIS_0;
1499                 break;
1500         case DP_TRAIN_PRE_EMPHASIS_3_5:
1501                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1502                 break;
1503         case DP_TRAIN_PRE_EMPHASIS_6:
1504                 signal_levels |= DP_PRE_EMPHASIS_6;
1505                 break;
1506         case DP_TRAIN_PRE_EMPHASIS_9_5:
1507                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1508                 break;
1509         }
1510         return signal_levels;
1511 }
1512
1513 /* Gen6's DP voltage swing and pre-emphasis control */
1514 static uint32_t
1515 intel_gen6_edp_signal_levels(uint8_t train_set)
1516 {
1517         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1518                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1519         switch (signal_levels) {
1520         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1521         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1522                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1523         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1524                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1525         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1526         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1527                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1528         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1529         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1530                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1531         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1532         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1533                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1534         default:
1535                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1536                               "0x%x\n", signal_levels);
1537                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1538         }
1539 }
1540
1541 /* Gen7's DP voltage swing and pre-emphasis control */
1542 static uint32_t
1543 intel_gen7_edp_signal_levels(uint8_t train_set)
1544 {
1545         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1546                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1547         switch (signal_levels) {
1548         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1549                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1550         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1551                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1552         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1553                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1554
1555         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1556                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1557         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1558                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1559
1560         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1561                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1562         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1563                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1564
1565         default:
1566                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1567                               "0x%x\n", signal_levels);
1568                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1569         }
1570 }
1571
1572 static uint8_t
1573 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1574                       int lane)
1575 {
1576         int s = (lane & 1) * 4;
1577         uint8_t l = link_status[lane>>1];
1578
1579         return (l >> s) & 0xf;
1580 }
1581
1582 /* Check for clock recovery is done on all channels */
1583 static bool
1584 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1585 {
1586         int lane;
1587         uint8_t lane_status;
1588
1589         for (lane = 0; lane < lane_count; lane++) {
1590                 lane_status = intel_get_lane_status(link_status, lane);
1591                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1592                         return false;
1593         }
1594         return true;
1595 }
1596
1597 /* Check to see if channel eq is done on all channels */
1598 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1599                          DP_LANE_CHANNEL_EQ_DONE|\
1600                          DP_LANE_SYMBOL_LOCKED)
1601 static bool
1602 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1603 {
1604         uint8_t lane_align;
1605         uint8_t lane_status;
1606         int lane;
1607
1608         lane_align = intel_dp_link_status(link_status,
1609                                           DP_LANE_ALIGN_STATUS_UPDATED);
1610         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1611                 return false;
1612         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1613                 lane_status = intel_get_lane_status(link_status, lane);
1614                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1615                         return false;
1616         }
1617         return true;
1618 }
1619
1620 static bool
1621 intel_dp_set_link_train(struct intel_dp *intel_dp,
1622                         uint32_t dp_reg_value,
1623                         uint8_t dp_train_pat)
1624 {
1625         struct drm_device *dev = intel_dp->base.base.dev;
1626         struct drm_i915_private *dev_priv = dev->dev_private;
1627         int ret;
1628
1629         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1630         POSTING_READ(intel_dp->output_reg);
1631
1632         intel_dp_aux_native_write_1(intel_dp,
1633                                     DP_TRAINING_PATTERN_SET,
1634                                     dp_train_pat);
1635
1636         ret = intel_dp_aux_native_write(intel_dp,
1637                                         DP_TRAINING_LANE0_SET,
1638                                         intel_dp->train_set,
1639                                         intel_dp->lane_count);
1640         if (ret != intel_dp->lane_count)
1641                 return false;
1642
1643         return true;
1644 }
1645
1646 /* Enable corresponding port and start training pattern 1 */
1647 static void
1648 intel_dp_start_link_train(struct intel_dp *intel_dp)
1649 {
1650         struct drm_device *dev = intel_dp->base.base.dev;
1651         struct drm_i915_private *dev_priv = dev->dev_private;
1652         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1653         int i;
1654         uint8_t voltage;
1655         bool clock_recovery = false;
1656         int voltage_tries, loop_tries;
1657         u32 reg;
1658         uint32_t DP = intel_dp->DP;
1659
1660         /*
1661          * On CPT we have to enable the port in training pattern 1, which
1662          * will happen below in intel_dp_set_link_train.  Otherwise, enable
1663          * the port and wait for it to become active.
1664          */
1665         if (!HAS_PCH_CPT(dev)) {
1666                 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1667                 POSTING_READ(intel_dp->output_reg);
1668                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1669         }
1670
1671         /* Write the link configuration data */
1672         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1673                                   intel_dp->link_configuration,
1674                                   DP_LINK_CONFIGURATION_SIZE);
1675
1676         DP |= DP_PORT_EN;
1677
1678         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1679                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1680         else
1681                 DP &= ~DP_LINK_TRAIN_MASK;
1682         memset(intel_dp->train_set, 0, 4);
1683         voltage = 0xff;
1684         voltage_tries = 0;
1685         loop_tries = 0;
1686         clock_recovery = false;
1687         for (;;) {
1688                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1689                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1690                 uint32_t    signal_levels;
1691
1692
1693                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1694                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1695                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1696                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1697                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1698                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1699                 } else {
1700                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1701                         DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1702                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1703                 }
1704
1705                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1706                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1707                 else
1708                         reg = DP | DP_LINK_TRAIN_PAT_1;
1709
1710                 if (!intel_dp_set_link_train(intel_dp, reg,
1711                                              DP_TRAINING_PATTERN_1 |
1712                                              DP_LINK_SCRAMBLING_DISABLE))
1713                         break;
1714                 /* Set training pattern 1 */
1715
1716                 udelay(100);
1717                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1718                         DRM_ERROR("failed to get link status\n");
1719                         break;
1720                 }
1721
1722                 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1723                         DRM_DEBUG_KMS("clock recovery OK\n");
1724                         clock_recovery = true;
1725                         break;
1726                 }
1727
1728                 /* Check to see if we've tried the max voltage */
1729                 for (i = 0; i < intel_dp->lane_count; i++)
1730                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1731                                 break;
1732                 if (i == intel_dp->lane_count) {
1733                         ++loop_tries;
1734                         if (loop_tries == 5) {
1735                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1736                                 break;
1737                         }
1738                         memset(intel_dp->train_set, 0, 4);
1739                         voltage_tries = 0;
1740                         continue;
1741                 }
1742
1743                 /* Check to see if we've tried the same voltage 5 times */
1744                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1745                         ++voltage_tries;
1746                         if (voltage_tries == 5) {
1747                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1748                                 break;
1749                         }
1750                 } else
1751                         voltage_tries = 0;
1752                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1753
1754                 /* Compute new intel_dp->train_set as requested by target */
1755                 intel_get_adjust_train(intel_dp, link_status);
1756         }
1757
1758         intel_dp->DP = DP;
1759 }
1760
1761 static void
1762 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1763 {
1764         struct drm_device *dev = intel_dp->base.base.dev;
1765         struct drm_i915_private *dev_priv = dev->dev_private;
1766         bool channel_eq = false;
1767         int tries, cr_tries;
1768         u32 reg;
1769         uint32_t DP = intel_dp->DP;
1770
1771         /* channel equalization */
1772         tries = 0;
1773         cr_tries = 0;
1774         channel_eq = false;
1775         for (;;) {
1776                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1777                 uint32_t    signal_levels;
1778                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1779
1780                 if (cr_tries > 5) {
1781                         DRM_ERROR("failed to train DP, aborting\n");
1782                         intel_dp_link_down(intel_dp);
1783                         break;
1784                 }
1785
1786                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1787                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1788                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1789                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1790                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1791                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1792                 } else {
1793                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1794                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1795                 }
1796
1797                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1798                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1799                 else
1800                         reg = DP | DP_LINK_TRAIN_PAT_2;
1801
1802                 /* channel eq pattern */
1803                 if (!intel_dp_set_link_train(intel_dp, reg,
1804                                              DP_TRAINING_PATTERN_2 |
1805                                              DP_LINK_SCRAMBLING_DISABLE))
1806                         break;
1807
1808                 udelay(400);
1809                 if (!intel_dp_get_link_status(intel_dp, link_status))
1810                         break;
1811
1812                 /* Make sure clock is still ok */
1813                 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1814                         intel_dp_start_link_train(intel_dp);
1815                         cr_tries++;
1816                         continue;
1817                 }
1818
1819                 if (intel_channel_eq_ok(intel_dp, link_status)) {
1820                         channel_eq = true;
1821                         break;
1822                 }
1823
1824                 /* Try 5 times, then try clock recovery if that fails */
1825                 if (tries > 5) {
1826                         intel_dp_link_down(intel_dp);
1827                         intel_dp_start_link_train(intel_dp);
1828                         tries = 0;
1829                         cr_tries++;
1830                         continue;
1831                 }
1832
1833                 /* Compute new intel_dp->train_set as requested by target */
1834                 intel_get_adjust_train(intel_dp, link_status);
1835                 ++tries;
1836         }
1837
1838         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1839                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1840         else
1841                 reg = DP | DP_LINK_TRAIN_OFF;
1842
1843         I915_WRITE(intel_dp->output_reg, reg);
1844         POSTING_READ(intel_dp->output_reg);
1845         intel_dp_aux_native_write_1(intel_dp,
1846                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1847 }
1848
1849 static void
1850 intel_dp_link_down(struct intel_dp *intel_dp)
1851 {
1852         struct drm_device *dev = intel_dp->base.base.dev;
1853         struct drm_i915_private *dev_priv = dev->dev_private;
1854         uint32_t DP = intel_dp->DP;
1855
1856         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1857                 return;
1858
1859         DRM_DEBUG_KMS("\n");
1860
1861         if (is_edp(intel_dp)) {
1862                 DP &= ~DP_PLL_ENABLE;
1863                 I915_WRITE(intel_dp->output_reg, DP);
1864                 POSTING_READ(intel_dp->output_reg);
1865                 udelay(100);
1866         }
1867
1868         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1869                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1870                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1871         } else {
1872                 DP &= ~DP_LINK_TRAIN_MASK;
1873                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1874         }
1875         POSTING_READ(intel_dp->output_reg);
1876
1877         msleep(17);
1878
1879         if (is_edp(intel_dp)) {
1880                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1881                         DP |= DP_LINK_TRAIN_OFF_CPT;
1882                 else
1883                         DP |= DP_LINK_TRAIN_OFF;
1884         }
1885
1886         if (!HAS_PCH_CPT(dev) &&
1887             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1888                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1889
1890                 /* Hardware workaround: leaving our transcoder select
1891                  * set to transcoder B while it's off will prevent the
1892                  * corresponding HDMI output on transcoder A.
1893                  *
1894                  * Combine this with another hardware workaround:
1895                  * transcoder select bit can only be cleared while the
1896                  * port is enabled.
1897                  */
1898                 DP &= ~DP_PIPEB_SELECT;
1899                 I915_WRITE(intel_dp->output_reg, DP);
1900
1901                 /* Changes to enable or select take place the vblank
1902                  * after being written.
1903                  */
1904                 if (crtc == NULL) {
1905                         /* We can arrive here never having been attached
1906                          * to a CRTC, for instance, due to inheriting
1907                          * random state from the BIOS.
1908                          *
1909                          * If the pipe is not running, play safe and
1910                          * wait for the clocks to stabilise before
1911                          * continuing.
1912                          */
1913                         POSTING_READ(intel_dp->output_reg);
1914                         msleep(50);
1915                 } else
1916                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1917         }
1918
1919         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1920         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1921         POSTING_READ(intel_dp->output_reg);
1922         msleep(intel_dp->panel_power_down_delay);
1923 }
1924
1925 static bool
1926 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1927 {
1928         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1929                                            sizeof(intel_dp->dpcd)) &&
1930             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1931                 return true;
1932         }
1933
1934         return false;
1935 }
1936
1937 static bool
1938 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1939 {
1940         int ret;
1941
1942         ret = intel_dp_aux_native_read_retry(intel_dp,
1943                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
1944                                              sink_irq_vector, 1);
1945         if (!ret)
1946                 return false;
1947
1948         return true;
1949 }
1950
1951 static void
1952 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1953 {
1954         /* NAK by default */
1955         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1956 }
1957
1958 /*
1959  * According to DP spec
1960  * 5.1.2:
1961  *  1. Read DPCD
1962  *  2. Configure link according to Receiver Capabilities
1963  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1964  *  4. Check link status on receipt of hot-plug interrupt
1965  */
1966
1967 static void
1968 intel_dp_check_link_status(struct intel_dp *intel_dp)
1969 {
1970         u8 sink_irq_vector;
1971         u8 link_status[DP_LINK_STATUS_SIZE];
1972
1973         if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1974                 return;
1975
1976         if (!intel_dp->base.base.crtc)
1977                 return;
1978
1979         /* Try to read receiver status if the link appears to be up */
1980         if (!intel_dp_get_link_status(intel_dp, link_status)) {
1981                 intel_dp_link_down(intel_dp);
1982                 return;
1983         }
1984
1985         /* Now read the DPCD to see if it's actually running */
1986         if (!intel_dp_get_dpcd(intel_dp)) {
1987                 intel_dp_link_down(intel_dp);
1988                 return;
1989         }
1990
1991         /* Try to read the source of the interrupt */
1992         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1993             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1994                 /* Clear interrupt source */
1995                 intel_dp_aux_native_write_1(intel_dp,
1996                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
1997                                             sink_irq_vector);
1998
1999                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2000                         intel_dp_handle_test_request(intel_dp);
2001                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2002                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2003         }
2004
2005         if (!intel_channel_eq_ok(intel_dp, link_status)) {
2006                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2007                               drm_get_encoder_name(&intel_dp->base.base));
2008                 intel_dp_start_link_train(intel_dp);
2009                 intel_dp_complete_link_train(intel_dp);
2010         }
2011 }
2012
2013 static enum drm_connector_status
2014 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2015 {
2016         if (intel_dp_get_dpcd(intel_dp))
2017                 return connector_status_connected;
2018         return connector_status_disconnected;
2019 }
2020
2021 static enum drm_connector_status
2022 ironlake_dp_detect(struct intel_dp *intel_dp)
2023 {
2024         enum drm_connector_status status;
2025
2026         /* Can't disconnect eDP, but you can close the lid... */
2027         if (is_edp(intel_dp)) {
2028                 status = intel_panel_detect(intel_dp->base.base.dev);
2029                 if (status == connector_status_unknown)
2030                         status = connector_status_connected;
2031                 return status;
2032         }
2033
2034         return intel_dp_detect_dpcd(intel_dp);
2035 }
2036
2037 static enum drm_connector_status
2038 g4x_dp_detect(struct intel_dp *intel_dp)
2039 {
2040         struct drm_device *dev = intel_dp->base.base.dev;
2041         struct drm_i915_private *dev_priv = dev->dev_private;
2042         uint32_t temp, bit;
2043
2044         switch (intel_dp->output_reg) {
2045         case DP_B:
2046                 bit = DPB_HOTPLUG_INT_STATUS;
2047                 break;
2048         case DP_C:
2049                 bit = DPC_HOTPLUG_INT_STATUS;
2050                 break;
2051         case DP_D:
2052                 bit = DPD_HOTPLUG_INT_STATUS;
2053                 break;
2054         default:
2055                 return connector_status_unknown;
2056         }
2057
2058         temp = I915_READ(PORT_HOTPLUG_STAT);
2059
2060         if ((temp & bit) == 0)
2061                 return connector_status_disconnected;
2062
2063         return intel_dp_detect_dpcd(intel_dp);
2064 }
2065
2066 static struct edid *
2067 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2068 {
2069         struct intel_dp *intel_dp = intel_attached_dp(connector);
2070         struct edid     *edid;
2071
2072         ironlake_edp_panel_vdd_on(intel_dp);
2073         edid = drm_get_edid(connector, adapter);
2074         ironlake_edp_panel_vdd_off(intel_dp, false);
2075         return edid;
2076 }
2077
2078 static int
2079 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2080 {
2081         struct intel_dp *intel_dp = intel_attached_dp(connector);
2082         int     ret;
2083
2084         ironlake_edp_panel_vdd_on(intel_dp);
2085         ret = intel_ddc_get_modes(connector, adapter);
2086         ironlake_edp_panel_vdd_off(intel_dp, false);
2087         return ret;
2088 }
2089
2090
2091 /**
2092  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2093  *
2094  * \return true if DP port is connected.
2095  * \return false if DP port is disconnected.
2096  */
2097 static enum drm_connector_status
2098 intel_dp_detect(struct drm_connector *connector, bool force)
2099 {
2100         struct intel_dp *intel_dp = intel_attached_dp(connector);
2101         struct drm_device *dev = intel_dp->base.base.dev;
2102         enum drm_connector_status status;
2103         struct edid *edid = NULL;
2104
2105         intel_dp->has_audio = false;
2106
2107         if (HAS_PCH_SPLIT(dev))
2108                 status = ironlake_dp_detect(intel_dp);
2109         else
2110                 status = g4x_dp_detect(intel_dp);
2111
2112         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2113                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2114                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2115                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
2116
2117         if (status != connector_status_connected)
2118                 return status;
2119
2120         if (intel_dp->force_audio) {
2121                 intel_dp->has_audio = intel_dp->force_audio > 0;
2122         } else {
2123                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2124                 if (edid) {
2125                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2126                         connector->display_info.raw_edid = NULL;
2127                         kfree(edid);
2128                 }
2129         }
2130
2131         return connector_status_connected;
2132 }
2133
2134 static int intel_dp_get_modes(struct drm_connector *connector)
2135 {
2136         struct intel_dp *intel_dp = intel_attached_dp(connector);
2137         struct drm_device *dev = intel_dp->base.base.dev;
2138         struct drm_i915_private *dev_priv = dev->dev_private;
2139         int ret;
2140
2141         /* We should parse the EDID data and find out if it has an audio sink
2142          */
2143
2144         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2145         if (ret) {
2146                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2147                         struct drm_display_mode *newmode;
2148                         list_for_each_entry(newmode, &connector->probed_modes,
2149                                             head) {
2150                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2151                                         intel_dp->panel_fixed_mode =
2152                                                 drm_mode_duplicate(dev, newmode);
2153                                         break;
2154                                 }
2155                         }
2156                 }
2157                 return ret;
2158         }
2159
2160         /* if eDP has no EDID, try to use fixed panel mode from VBT */
2161         if (is_edp(intel_dp)) {
2162                 /* initialize panel mode from VBT if available for eDP */
2163                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2164                         intel_dp->panel_fixed_mode =
2165                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2166                         if (intel_dp->panel_fixed_mode) {
2167                                 intel_dp->panel_fixed_mode->type |=
2168                                         DRM_MODE_TYPE_PREFERRED;
2169                         }
2170                 }
2171                 if (intel_dp->panel_fixed_mode) {
2172                         struct drm_display_mode *mode;
2173                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2174                         drm_mode_probed_add(connector, mode);
2175                         return 1;
2176                 }
2177         }
2178         return 0;
2179 }
2180
2181 static bool
2182 intel_dp_detect_audio(struct drm_connector *connector)
2183 {
2184         struct intel_dp *intel_dp = intel_attached_dp(connector);
2185         struct edid *edid;
2186         bool has_audio = false;
2187
2188         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2189         if (edid) {
2190                 has_audio = drm_detect_monitor_audio(edid);
2191
2192                 connector->display_info.raw_edid = NULL;
2193                 kfree(edid);
2194         }
2195
2196         return has_audio;
2197 }
2198
2199 static int
2200 intel_dp_set_property(struct drm_connector *connector,
2201                       struct drm_property *property,
2202                       uint64_t val)
2203 {
2204         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2205         struct intel_dp *intel_dp = intel_attached_dp(connector);
2206         int ret;
2207
2208         ret = drm_connector_property_set_value(connector, property, val);
2209         if (ret)
2210                 return ret;
2211
2212         if (property == dev_priv->force_audio_property) {
2213                 int i = val;
2214                 bool has_audio;
2215
2216                 if (i == intel_dp->force_audio)
2217                         return 0;
2218
2219                 intel_dp->force_audio = i;
2220
2221                 if (i == 0)
2222                         has_audio = intel_dp_detect_audio(connector);
2223                 else
2224                         has_audio = i > 0;
2225
2226                 if (has_audio == intel_dp->has_audio)
2227                         return 0;
2228
2229                 intel_dp->has_audio = has_audio;
2230                 goto done;
2231         }
2232
2233         if (property == dev_priv->broadcast_rgb_property) {
2234                 if (val == !!intel_dp->color_range)
2235                         return 0;
2236
2237                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2238                 goto done;
2239         }
2240
2241         return -EINVAL;
2242
2243 done:
2244         if (intel_dp->base.base.crtc) {
2245                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2246                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2247                                          crtc->x, crtc->y,
2248                                          crtc->fb);
2249         }
2250
2251         return 0;
2252 }
2253
2254 static void
2255 intel_dp_destroy(struct drm_connector *connector)
2256 {
2257         struct drm_device *dev = connector->dev;
2258
2259         if (intel_dpd_is_edp(dev))
2260                 intel_panel_destroy_backlight(dev);
2261
2262         drm_sysfs_connector_remove(connector);
2263         drm_connector_cleanup(connector);
2264         kfree(connector);
2265 }
2266
2267 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2268 {
2269         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2270
2271         i2c_del_adapter(&intel_dp->adapter);
2272         drm_encoder_cleanup(encoder);
2273         if (is_edp(intel_dp)) {
2274                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2275                 ironlake_panel_vdd_off_sync(intel_dp);
2276         }
2277         kfree(intel_dp);
2278 }
2279
2280 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2281         .dpms = intel_dp_dpms,
2282         .mode_fixup = intel_dp_mode_fixup,
2283         .prepare = intel_dp_prepare,
2284         .mode_set = intel_dp_mode_set,
2285         .commit = intel_dp_commit,
2286 };
2287
2288 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2289         .dpms = drm_helper_connector_dpms,
2290         .detect = intel_dp_detect,
2291         .fill_modes = drm_helper_probe_single_connector_modes,
2292         .set_property = intel_dp_set_property,
2293         .destroy = intel_dp_destroy,
2294 };
2295
2296 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2297         .get_modes = intel_dp_get_modes,
2298         .mode_valid = intel_dp_mode_valid,
2299         .best_encoder = intel_best_encoder,
2300 };
2301
2302 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2303         .destroy = intel_dp_encoder_destroy,
2304 };
2305
2306 static void
2307 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2308 {
2309         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2310
2311         intel_dp_check_link_status(intel_dp);
2312 }
2313
2314 /* Return which DP Port should be selected for Transcoder DP control */
2315 int
2316 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2317 {
2318         struct drm_device *dev = crtc->dev;
2319         struct drm_mode_config *mode_config = &dev->mode_config;
2320         struct drm_encoder *encoder;
2321
2322         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2323                 struct intel_dp *intel_dp;
2324
2325                 if (encoder->crtc != crtc)
2326                         continue;
2327
2328                 intel_dp = enc_to_intel_dp(encoder);
2329                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2330                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2331                         return intel_dp->output_reg;
2332         }
2333
2334         return -1;
2335 }
2336
2337 /* check the VBT to see whether the eDP is on DP-D port */
2338 bool intel_dpd_is_edp(struct drm_device *dev)
2339 {
2340         struct drm_i915_private *dev_priv = dev->dev_private;
2341         struct child_device_config *p_child;
2342         int i;
2343
2344         if (!dev_priv->child_dev_num)
2345                 return false;
2346
2347         for (i = 0; i < dev_priv->child_dev_num; i++) {
2348                 p_child = dev_priv->child_dev + i;
2349
2350                 if (p_child->dvo_port == PORT_IDPD &&
2351                     p_child->device_type == DEVICE_TYPE_eDP)
2352                         return true;
2353         }
2354         return false;
2355 }
2356
2357 static void
2358 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2359 {
2360         intel_attach_force_audio_property(connector);
2361         intel_attach_broadcast_rgb_property(connector);
2362 }
2363
2364 void
2365 intel_dp_init(struct drm_device *dev, int output_reg)
2366 {
2367         struct drm_i915_private *dev_priv = dev->dev_private;
2368         struct drm_connector *connector;
2369         struct intel_dp *intel_dp;
2370         struct intel_encoder *intel_encoder;
2371         struct intel_connector *intel_connector;
2372         const char *name = NULL;
2373         int type;
2374
2375         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2376         if (!intel_dp)
2377                 return;
2378
2379         intel_dp->output_reg = output_reg;
2380         intel_dp->dpms_mode = -1;
2381
2382         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2383         if (!intel_connector) {
2384                 kfree(intel_dp);
2385                 return;
2386         }
2387         intel_encoder = &intel_dp->base;
2388
2389         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2390                 if (intel_dpd_is_edp(dev))
2391                         intel_dp->is_pch_edp = true;
2392
2393         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2394                 type = DRM_MODE_CONNECTOR_eDP;
2395                 intel_encoder->type = INTEL_OUTPUT_EDP;
2396         } else {
2397                 type = DRM_MODE_CONNECTOR_DisplayPort;
2398                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2399         }
2400
2401         connector = &intel_connector->base;
2402         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2403         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2404
2405         connector->polled = DRM_CONNECTOR_POLL_HPD;
2406
2407         if (output_reg == DP_B || output_reg == PCH_DP_B)
2408                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2409         else if (output_reg == DP_C || output_reg == PCH_DP_C)
2410                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2411         else if (output_reg == DP_D || output_reg == PCH_DP_D)
2412                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2413
2414         if (is_edp(intel_dp)) {
2415                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2416                 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2417                                   ironlake_panel_vdd_work);
2418         }
2419
2420         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2421         connector->interlace_allowed = true;
2422         connector->doublescan_allowed = 0;
2423
2424         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2425                          DRM_MODE_ENCODER_TMDS);
2426         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2427
2428         intel_connector_attach_encoder(intel_connector, intel_encoder);
2429         drm_sysfs_connector_add(connector);
2430
2431         /* Set up the DDC bus. */
2432         switch (output_reg) {
2433                 case DP_A:
2434                         name = "DPDDC-A";
2435                         break;
2436                 case DP_B:
2437                 case PCH_DP_B:
2438                         dev_priv->hotplug_supported_mask |=
2439                                 HDMIB_HOTPLUG_INT_STATUS;
2440                         name = "DPDDC-B";
2441                         break;
2442                 case DP_C:
2443                 case PCH_DP_C:
2444                         dev_priv->hotplug_supported_mask |=
2445                                 HDMIC_HOTPLUG_INT_STATUS;
2446                         name = "DPDDC-C";
2447                         break;
2448                 case DP_D:
2449                 case PCH_DP_D:
2450                         dev_priv->hotplug_supported_mask |=
2451                                 HDMID_HOTPLUG_INT_STATUS;
2452                         name = "DPDDC-D";
2453                         break;
2454         }
2455
2456         /* Cache some DPCD data in the eDP case */
2457         if (is_edp(intel_dp)) {
2458                 bool ret;
2459                 struct edp_power_seq    cur, vbt;
2460                 u32 pp_on, pp_off, pp_div;
2461
2462                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2463                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2464                 pp_div = I915_READ(PCH_PP_DIVISOR);
2465
2466                 /* Pull timing values out of registers */
2467                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2468                         PANEL_POWER_UP_DELAY_SHIFT;
2469
2470                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2471                         PANEL_LIGHT_ON_DELAY_SHIFT;
2472
2473                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2474                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2475
2476                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2477                         PANEL_POWER_DOWN_DELAY_SHIFT;
2478
2479                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2480                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2481
2482                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2483                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2484
2485                 vbt = dev_priv->edp.pps;
2486
2487                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2488                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2489
2490 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2491
2492                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2493                 intel_dp->backlight_on_delay = get_delay(t8);
2494                 intel_dp->backlight_off_delay = get_delay(t9);
2495                 intel_dp->panel_power_down_delay = get_delay(t10);
2496                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2497
2498                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2499                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2500                               intel_dp->panel_power_cycle_delay);
2501
2502                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2503                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2504
2505                 ironlake_edp_panel_vdd_on(intel_dp);
2506                 ret = intel_dp_get_dpcd(intel_dp);
2507                 ironlake_edp_panel_vdd_off(intel_dp, false);
2508
2509                 if (ret) {
2510                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2511                                 dev_priv->no_aux_handshake =
2512                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2513                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2514                 } else {
2515                         /* if this fails, presume the device is a ghost */
2516                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2517                         intel_dp_encoder_destroy(&intel_dp->base.base);
2518                         intel_dp_destroy(&intel_connector->base);
2519                         return;
2520                 }
2521         }
2522
2523         intel_dp_i2c_init(intel_dp, intel_connector, name);
2524
2525         intel_encoder->hot_plug = intel_dp_hot_plug;
2526
2527         if (is_edp(intel_dp)) {
2528                 dev_priv->int_edp_connector = connector;
2529                 intel_panel_setup_backlight(dev);
2530         }
2531
2532         intel_dp_add_properties(intel_dp, connector);
2533
2534         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2535          * 0xd.  Failure to do so will result in spurious interrupts being
2536          * generated on the port when a cable is not attached.
2537          */
2538         if (IS_G4X(dev) && !IS_GM45(dev)) {
2539                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2540                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2541         }
2542 }