futex: Sanitize cmpxchg_futex_value_locked API
[linux-flexiantxendom0.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62
63 #include <asm/futex.h>
64
65 #include "rtmutex_common.h"
66
67 int __read_mostly futex_cmpxchg_enabled;
68
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71 /*
72  * Futex flags used to encode options to functions and preserve them across
73  * restarts.
74  */
75 #define FLAGS_SHARED            0x01
76 #define FLAGS_CLOCKRT           0x02
77 #define FLAGS_HAS_TIMEOUT       0x04
78
79 /*
80  * Priority Inheritance state:
81  */
82 struct futex_pi_state {
83         /*
84          * list of 'owned' pi_state instances - these have to be
85          * cleaned up in do_exit() if the task exits prematurely:
86          */
87         struct list_head list;
88
89         /*
90          * The PI object:
91          */
92         struct rt_mutex pi_mutex;
93
94         struct task_struct *owner;
95         atomic_t refcount;
96
97         union futex_key key;
98 };
99
100 /**
101  * struct futex_q - The hashed futex queue entry, one per waiting task
102  * @list:               priority-sorted list of tasks waiting on this futex
103  * @task:               the task waiting on the futex
104  * @lock_ptr:           the hash bucket lock
105  * @key:                the key the futex is hashed on
106  * @pi_state:           optional priority inheritance state
107  * @rt_waiter:          rt_waiter storage for use with requeue_pi
108  * @requeue_pi_key:     the requeue_pi target futex key
109  * @bitset:             bitset for the optional bitmasked wakeup
110  *
111  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
112  * we can wake only the relevant ones (hashed queues may be shared).
113  *
114  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
115  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
116  * The order of wakeup is always to make the first condition true, then
117  * the second.
118  *
119  * PI futexes are typically woken before they are removed from the hash list via
120  * the rt_mutex code. See unqueue_me_pi().
121  */
122 struct futex_q {
123         struct plist_node list;
124
125         struct task_struct *task;
126         spinlock_t *lock_ptr;
127         union futex_key key;
128         struct futex_pi_state *pi_state;
129         struct rt_mutex_waiter *rt_waiter;
130         union futex_key *requeue_pi_key;
131         u32 bitset;
132 };
133
134 static const struct futex_q futex_q_init = {
135         /* list gets initialized in queue_me()*/
136         .key = FUTEX_KEY_INIT,
137         .bitset = FUTEX_BITSET_MATCH_ANY
138 };
139
140 /*
141  * Hash buckets are shared by all the futex_keys that hash to the same
142  * location.  Each key may have multiple futex_q structures, one for each task
143  * waiting on a futex.
144  */
145 struct futex_hash_bucket {
146         spinlock_t lock;
147         struct plist_head chain;
148 };
149
150 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
151
152 /*
153  * We hash on the keys returned from get_futex_key (see below).
154  */
155 static struct futex_hash_bucket *hash_futex(union futex_key *key)
156 {
157         u32 hash = jhash2((u32*)&key->both.word,
158                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
159                           key->both.offset);
160         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
161 }
162
163 /*
164  * Return 1 if two futex_keys are equal, 0 otherwise.
165  */
166 static inline int match_futex(union futex_key *key1, union futex_key *key2)
167 {
168         return (key1 && key2
169                 && key1->both.word == key2->both.word
170                 && key1->both.ptr == key2->both.ptr
171                 && key1->both.offset == key2->both.offset);
172 }
173
174 /*
175  * Take a reference to the resource addressed by a key.
176  * Can be called while holding spinlocks.
177  *
178  */
179 static void get_futex_key_refs(union futex_key *key)
180 {
181         if (!key->both.ptr)
182                 return;
183
184         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
185         case FUT_OFF_INODE:
186                 ihold(key->shared.inode);
187                 break;
188         case FUT_OFF_MMSHARED:
189                 atomic_inc(&key->private.mm->mm_count);
190                 break;
191         }
192 }
193
194 /*
195  * Drop a reference to the resource addressed by a key.
196  * The hash bucket spinlock must not be held.
197  */
198 static void drop_futex_key_refs(union futex_key *key)
199 {
200         if (!key->both.ptr) {
201                 /* If we're here then we tried to put a key we failed to get */
202                 WARN_ON_ONCE(1);
203                 return;
204         }
205
206         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
207         case FUT_OFF_INODE:
208                 iput(key->shared.inode);
209                 break;
210         case FUT_OFF_MMSHARED:
211                 mmdrop(key->private.mm);
212                 break;
213         }
214 }
215
216 /**
217  * get_futex_key() - Get parameters which are the keys for a futex
218  * @uaddr:      virtual address of the futex
219  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
220  * @key:        address where result is stored.
221  *
222  * Returns a negative error code or 0
223  * The key words are stored in *key on success.
224  *
225  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
226  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
227  * We can usually work out the index without swapping in the page.
228  *
229  * lock_page() might sleep, the caller should not hold a spinlock.
230  */
231 static int
232 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
233 {
234         unsigned long address = (unsigned long)uaddr;
235         struct mm_struct *mm = current->mm;
236         struct page *page, *page_head;
237         int err;
238
239         /*
240          * The futex address must be "naturally" aligned.
241          */
242         key->both.offset = address % PAGE_SIZE;
243         if (unlikely((address % sizeof(u32)) != 0))
244                 return -EINVAL;
245         address -= key->both.offset;
246
247         /*
248          * PROCESS_PRIVATE futexes are fast.
249          * As the mm cannot disappear under us and the 'key' only needs
250          * virtual address, we dont even have to find the underlying vma.
251          * Note : We do have to check 'uaddr' is a valid user address,
252          *        but access_ok() should be faster than find_vma()
253          */
254         if (!fshared) {
255                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
256                         return -EFAULT;
257                 key->private.mm = mm;
258                 key->private.address = address;
259                 get_futex_key_refs(key);
260                 return 0;
261         }
262
263 again:
264         err = get_user_pages_fast(address, 1, 1, &page);
265         if (err < 0)
266                 return err;
267
268 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
269         page_head = page;
270         if (unlikely(PageTail(page))) {
271                 put_page(page);
272                 /* serialize against __split_huge_page_splitting() */
273                 local_irq_disable();
274                 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
275                         page_head = compound_head(page);
276                         /*
277                          * page_head is valid pointer but we must pin
278                          * it before taking the PG_lock and/or
279                          * PG_compound_lock. The moment we re-enable
280                          * irqs __split_huge_page_splitting() can
281                          * return and the head page can be freed from
282                          * under us. We can't take the PG_lock and/or
283                          * PG_compound_lock on a page that could be
284                          * freed from under us.
285                          */
286                         if (page != page_head) {
287                                 get_page(page_head);
288                                 put_page(page);
289                         }
290                         local_irq_enable();
291                 } else {
292                         local_irq_enable();
293                         goto again;
294                 }
295         }
296 #else
297         page_head = compound_head(page);
298         if (page != page_head) {
299                 get_page(page_head);
300                 put_page(page);
301         }
302 #endif
303
304         lock_page(page_head);
305         if (!page_head->mapping) {
306                 unlock_page(page_head);
307                 put_page(page_head);
308                 goto again;
309         }
310
311         /*
312          * Private mappings are handled in a simple way.
313          *
314          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
315          * it's a read-only handle, it's expected that futexes attach to
316          * the object not the particular process.
317          */
318         if (PageAnon(page_head)) {
319                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
320                 key->private.mm = mm;
321                 key->private.address = address;
322         } else {
323                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
324                 key->shared.inode = page_head->mapping->host;
325                 key->shared.pgoff = page_head->index;
326         }
327
328         get_futex_key_refs(key);
329
330         unlock_page(page_head);
331         put_page(page_head);
332         return 0;
333 }
334
335 static inline void put_futex_key(union futex_key *key)
336 {
337         drop_futex_key_refs(key);
338 }
339
340 /**
341  * fault_in_user_writeable() - Fault in user address and verify RW access
342  * @uaddr:      pointer to faulting user space address
343  *
344  * Slow path to fixup the fault we just took in the atomic write
345  * access to @uaddr.
346  *
347  * We have no generic implementation of a non-destructive write to the
348  * user address. We know that we faulted in the atomic pagefault
349  * disabled section so we can as well avoid the #PF overhead by
350  * calling get_user_pages() right away.
351  */
352 static int fault_in_user_writeable(u32 __user *uaddr)
353 {
354         struct mm_struct *mm = current->mm;
355         int ret;
356
357         down_read(&mm->mmap_sem);
358         ret = get_user_pages(current, mm, (unsigned long)uaddr,
359                              1, 1, 0, NULL, NULL);
360         up_read(&mm->mmap_sem);
361
362         return ret < 0 ? ret : 0;
363 }
364
365 /**
366  * futex_top_waiter() - Return the highest priority waiter on a futex
367  * @hb:         the hash bucket the futex_q's reside in
368  * @key:        the futex key (to distinguish it from other futex futex_q's)
369  *
370  * Must be called with the hb lock held.
371  */
372 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
373                                         union futex_key *key)
374 {
375         struct futex_q *this;
376
377         plist_for_each_entry(this, &hb->chain, list) {
378                 if (match_futex(&this->key, key))
379                         return this;
380         }
381         return NULL;
382 }
383
384 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
385                                       u32 uval, u32 newval)
386 {
387         int ret;
388
389         pagefault_disable();
390         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
391         pagefault_enable();
392
393         return ret;
394 }
395
396 static int get_futex_value_locked(u32 *dest, u32 __user *from)
397 {
398         int ret;
399
400         pagefault_disable();
401         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
402         pagefault_enable();
403
404         return ret ? -EFAULT : 0;
405 }
406
407
408 /*
409  * PI code:
410  */
411 static int refill_pi_state_cache(void)
412 {
413         struct futex_pi_state *pi_state;
414
415         if (likely(current->pi_state_cache))
416                 return 0;
417
418         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
419
420         if (!pi_state)
421                 return -ENOMEM;
422
423         INIT_LIST_HEAD(&pi_state->list);
424         /* pi_mutex gets initialized later */
425         pi_state->owner = NULL;
426         atomic_set(&pi_state->refcount, 1);
427         pi_state->key = FUTEX_KEY_INIT;
428
429         current->pi_state_cache = pi_state;
430
431         return 0;
432 }
433
434 static struct futex_pi_state * alloc_pi_state(void)
435 {
436         struct futex_pi_state *pi_state = current->pi_state_cache;
437
438         WARN_ON(!pi_state);
439         current->pi_state_cache = NULL;
440
441         return pi_state;
442 }
443
444 static void free_pi_state(struct futex_pi_state *pi_state)
445 {
446         if (!atomic_dec_and_test(&pi_state->refcount))
447                 return;
448
449         /*
450          * If pi_state->owner is NULL, the owner is most probably dying
451          * and has cleaned up the pi_state already
452          */
453         if (pi_state->owner) {
454                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
455                 list_del_init(&pi_state->list);
456                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
457
458                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
459         }
460
461         if (current->pi_state_cache)
462                 kfree(pi_state);
463         else {
464                 /*
465                  * pi_state->list is already empty.
466                  * clear pi_state->owner.
467                  * refcount is at 0 - put it back to 1.
468                  */
469                 pi_state->owner = NULL;
470                 atomic_set(&pi_state->refcount, 1);
471                 current->pi_state_cache = pi_state;
472         }
473 }
474
475 /*
476  * Look up the task based on what TID userspace gave us.
477  * We dont trust it.
478  */
479 static struct task_struct * futex_find_get_task(pid_t pid)
480 {
481         struct task_struct *p;
482
483         rcu_read_lock();
484         p = find_task_by_vpid(pid);
485         if (p)
486                 get_task_struct(p);
487
488         rcu_read_unlock();
489
490         return p;
491 }
492
493 /*
494  * This task is holding PI mutexes at exit time => bad.
495  * Kernel cleans up PI-state, but userspace is likely hosed.
496  * (Robust-futex cleanup is separate and might save the day for userspace.)
497  */
498 void exit_pi_state_list(struct task_struct *curr)
499 {
500         struct list_head *next, *head = &curr->pi_state_list;
501         struct futex_pi_state *pi_state;
502         struct futex_hash_bucket *hb;
503         union futex_key key = FUTEX_KEY_INIT;
504
505         if (!futex_cmpxchg_enabled)
506                 return;
507         /*
508          * We are a ZOMBIE and nobody can enqueue itself on
509          * pi_state_list anymore, but we have to be careful
510          * versus waiters unqueueing themselves:
511          */
512         raw_spin_lock_irq(&curr->pi_lock);
513         while (!list_empty(head)) {
514
515                 next = head->next;
516                 pi_state = list_entry(next, struct futex_pi_state, list);
517                 key = pi_state->key;
518                 hb = hash_futex(&key);
519                 raw_spin_unlock_irq(&curr->pi_lock);
520
521                 spin_lock(&hb->lock);
522
523                 raw_spin_lock_irq(&curr->pi_lock);
524                 /*
525                  * We dropped the pi-lock, so re-check whether this
526                  * task still owns the PI-state:
527                  */
528                 if (head->next != next) {
529                         spin_unlock(&hb->lock);
530                         continue;
531                 }
532
533                 WARN_ON(pi_state->owner != curr);
534                 WARN_ON(list_empty(&pi_state->list));
535                 list_del_init(&pi_state->list);
536                 pi_state->owner = NULL;
537                 raw_spin_unlock_irq(&curr->pi_lock);
538
539                 rt_mutex_unlock(&pi_state->pi_mutex);
540
541                 spin_unlock(&hb->lock);
542
543                 raw_spin_lock_irq(&curr->pi_lock);
544         }
545         raw_spin_unlock_irq(&curr->pi_lock);
546 }
547
548 static int
549 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
550                 union futex_key *key, struct futex_pi_state **ps)
551 {
552         struct futex_pi_state *pi_state = NULL;
553         struct futex_q *this, *next;
554         struct plist_head *head;
555         struct task_struct *p;
556         pid_t pid = uval & FUTEX_TID_MASK;
557
558         head = &hb->chain;
559
560         plist_for_each_entry_safe(this, next, head, list) {
561                 if (match_futex(&this->key, key)) {
562                         /*
563                          * Another waiter already exists - bump up
564                          * the refcount and return its pi_state:
565                          */
566                         pi_state = this->pi_state;
567                         /*
568                          * Userspace might have messed up non-PI and PI futexes
569                          */
570                         if (unlikely(!pi_state))
571                                 return -EINVAL;
572
573                         WARN_ON(!atomic_read(&pi_state->refcount));
574
575                         /*
576                          * When pi_state->owner is NULL then the owner died
577                          * and another waiter is on the fly. pi_state->owner
578                          * is fixed up by the task which acquires
579                          * pi_state->rt_mutex.
580                          *
581                          * We do not check for pid == 0 which can happen when
582                          * the owner died and robust_list_exit() cleared the
583                          * TID.
584                          */
585                         if (pid && pi_state->owner) {
586                                 /*
587                                  * Bail out if user space manipulated the
588                                  * futex value.
589                                  */
590                                 if (pid != task_pid_vnr(pi_state->owner))
591                                         return -EINVAL;
592                         }
593
594                         atomic_inc(&pi_state->refcount);
595                         *ps = pi_state;
596
597                         return 0;
598                 }
599         }
600
601         /*
602          * We are the first waiter - try to look up the real owner and attach
603          * the new pi_state to it, but bail out when TID = 0
604          */
605         if (!pid)
606                 return -ESRCH;
607         p = futex_find_get_task(pid);
608         if (!p)
609                 return -ESRCH;
610
611         /*
612          * We need to look at the task state flags to figure out,
613          * whether the task is exiting. To protect against the do_exit
614          * change of the task flags, we do this protected by
615          * p->pi_lock:
616          */
617         raw_spin_lock_irq(&p->pi_lock);
618         if (unlikely(p->flags & PF_EXITING)) {
619                 /*
620                  * The task is on the way out. When PF_EXITPIDONE is
621                  * set, we know that the task has finished the
622                  * cleanup:
623                  */
624                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
625
626                 raw_spin_unlock_irq(&p->pi_lock);
627                 put_task_struct(p);
628                 return ret;
629         }
630
631         pi_state = alloc_pi_state();
632
633         /*
634          * Initialize the pi_mutex in locked state and make 'p'
635          * the owner of it:
636          */
637         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
638
639         /* Store the key for possible exit cleanups: */
640         pi_state->key = *key;
641
642         WARN_ON(!list_empty(&pi_state->list));
643         list_add(&pi_state->list, &p->pi_state_list);
644         pi_state->owner = p;
645         raw_spin_unlock_irq(&p->pi_lock);
646
647         put_task_struct(p);
648
649         *ps = pi_state;
650
651         return 0;
652 }
653
654 /**
655  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
656  * @uaddr:              the pi futex user address
657  * @hb:                 the pi futex hash bucket
658  * @key:                the futex key associated with uaddr and hb
659  * @ps:                 the pi_state pointer where we store the result of the
660  *                      lookup
661  * @task:               the task to perform the atomic lock work for.  This will
662  *                      be "current" except in the case of requeue pi.
663  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
664  *
665  * Returns:
666  *  0 - ready to wait
667  *  1 - acquired the lock
668  * <0 - error
669  *
670  * The hb->lock and futex_key refs shall be held by the caller.
671  */
672 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
673                                 union futex_key *key,
674                                 struct futex_pi_state **ps,
675                                 struct task_struct *task, int set_waiters)
676 {
677         int lock_taken, ret, ownerdied = 0;
678         u32 uval, newval, curval, vpid = task_pid_vnr(task);
679
680 retry:
681         ret = lock_taken = 0;
682
683         /*
684          * To avoid races, we attempt to take the lock here again
685          * (by doing a 0 -> TID atomic cmpxchg), while holding all
686          * the locks. It will most likely not succeed.
687          */
688         newval = vpid;
689         if (set_waiters)
690                 newval |= FUTEX_WAITERS;
691
692         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
693                 return -EFAULT;
694
695         /*
696          * Detect deadlocks.
697          */
698         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
699                 return -EDEADLK;
700
701         /*
702          * Surprise - we got the lock. Just return to userspace:
703          */
704         if (unlikely(!curval))
705                 return 1;
706
707         uval = curval;
708
709         /*
710          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
711          * to wake at the next unlock.
712          */
713         newval = curval | FUTEX_WAITERS;
714
715         /*
716          * There are two cases, where a futex might have no owner (the
717          * owner TID is 0): OWNER_DIED. We take over the futex in this
718          * case. We also do an unconditional take over, when the owner
719          * of the futex died.
720          *
721          * This is safe as we are protected by the hash bucket lock !
722          */
723         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
724                 /* Keep the OWNER_DIED bit */
725                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
726                 ownerdied = 0;
727                 lock_taken = 1;
728         }
729
730         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
731                 return -EFAULT;
732         if (unlikely(curval != uval))
733                 goto retry;
734
735         /*
736          * We took the lock due to owner died take over.
737          */
738         if (unlikely(lock_taken))
739                 return 1;
740
741         /*
742          * We dont have the lock. Look up the PI state (or create it if
743          * we are the first waiter):
744          */
745         ret = lookup_pi_state(uval, hb, key, ps);
746
747         if (unlikely(ret)) {
748                 switch (ret) {
749                 case -ESRCH:
750                         /*
751                          * No owner found for this futex. Check if the
752                          * OWNER_DIED bit is set to figure out whether
753                          * this is a robust futex or not.
754                          */
755                         if (get_futex_value_locked(&curval, uaddr))
756                                 return -EFAULT;
757
758                         /*
759                          * We simply start over in case of a robust
760                          * futex. The code above will take the futex
761                          * and return happy.
762                          */
763                         if (curval & FUTEX_OWNER_DIED) {
764                                 ownerdied = 1;
765                                 goto retry;
766                         }
767                 default:
768                         break;
769                 }
770         }
771
772         return ret;
773 }
774
775 /*
776  * The hash bucket lock must be held when this is called.
777  * Afterwards, the futex_q must not be accessed.
778  */
779 static void wake_futex(struct futex_q *q)
780 {
781         struct task_struct *p = q->task;
782
783         /*
784          * We set q->lock_ptr = NULL _before_ we wake up the task. If
785          * a non-futex wake up happens on another CPU then the task
786          * might exit and p would dereference a non-existing task
787          * struct. Prevent this by holding a reference on p across the
788          * wake up.
789          */
790         get_task_struct(p);
791
792         plist_del(&q->list, &q->list.plist);
793         /*
794          * The waiting task can free the futex_q as soon as
795          * q->lock_ptr = NULL is written, without taking any locks. A
796          * memory barrier is required here to prevent the following
797          * store to lock_ptr from getting ahead of the plist_del.
798          */
799         smp_wmb();
800         q->lock_ptr = NULL;
801
802         wake_up_state(p, TASK_NORMAL);
803         put_task_struct(p);
804 }
805
806 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
807 {
808         struct task_struct *new_owner;
809         struct futex_pi_state *pi_state = this->pi_state;
810         u32 curval, newval;
811
812         if (!pi_state)
813                 return -EINVAL;
814
815         /*
816          * If current does not own the pi_state then the futex is
817          * inconsistent and user space fiddled with the futex value.
818          */
819         if (pi_state->owner != current)
820                 return -EINVAL;
821
822         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
823         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
824
825         /*
826          * It is possible that the next waiter (the one that brought
827          * this owner to the kernel) timed out and is no longer
828          * waiting on the lock.
829          */
830         if (!new_owner)
831                 new_owner = this->task;
832
833         /*
834          * We pass it to the next owner. (The WAITERS bit is always
835          * kept enabled while there is PI state around. We must also
836          * preserve the owner died bit.)
837          */
838         if (!(uval & FUTEX_OWNER_DIED)) {
839                 int ret = 0;
840
841                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
842
843                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
844                         ret = -EFAULT;
845                 else if (curval != uval)
846                         ret = -EINVAL;
847                 if (ret) {
848                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
849                         return ret;
850                 }
851         }
852
853         raw_spin_lock_irq(&pi_state->owner->pi_lock);
854         WARN_ON(list_empty(&pi_state->list));
855         list_del_init(&pi_state->list);
856         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
857
858         raw_spin_lock_irq(&new_owner->pi_lock);
859         WARN_ON(!list_empty(&pi_state->list));
860         list_add(&pi_state->list, &new_owner->pi_state_list);
861         pi_state->owner = new_owner;
862         raw_spin_unlock_irq(&new_owner->pi_lock);
863
864         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
865         rt_mutex_unlock(&pi_state->pi_mutex);
866
867         return 0;
868 }
869
870 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
871 {
872         u32 oldval;
873
874         /*
875          * There is no waiter, so we unlock the futex. The owner died
876          * bit has not to be preserved here. We are the owner:
877          */
878         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
879                 return -EFAULT;
880         if (oldval != uval)
881                 return -EAGAIN;
882
883         return 0;
884 }
885
886 /*
887  * Express the locking dependencies for lockdep:
888  */
889 static inline void
890 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
891 {
892         if (hb1 <= hb2) {
893                 spin_lock(&hb1->lock);
894                 if (hb1 < hb2)
895                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
896         } else { /* hb1 > hb2 */
897                 spin_lock(&hb2->lock);
898                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
899         }
900 }
901
902 static inline void
903 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
904 {
905         spin_unlock(&hb1->lock);
906         if (hb1 != hb2)
907                 spin_unlock(&hb2->lock);
908 }
909
910 /*
911  * Wake up waiters matching bitset queued on this futex (uaddr).
912  */
913 static int
914 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
915 {
916         struct futex_hash_bucket *hb;
917         struct futex_q *this, *next;
918         struct plist_head *head;
919         union futex_key key = FUTEX_KEY_INIT;
920         int ret;
921
922         if (!bitset)
923                 return -EINVAL;
924
925         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
926         if (unlikely(ret != 0))
927                 goto out;
928
929         hb = hash_futex(&key);
930         spin_lock(&hb->lock);
931         head = &hb->chain;
932
933         plist_for_each_entry_safe(this, next, head, list) {
934                 if (match_futex (&this->key, &key)) {
935                         if (this->pi_state || this->rt_waiter) {
936                                 ret = -EINVAL;
937                                 break;
938                         }
939
940                         /* Check if one of the bits is set in both bitsets */
941                         if (!(this->bitset & bitset))
942                                 continue;
943
944                         wake_futex(this);
945                         if (++ret >= nr_wake)
946                                 break;
947                 }
948         }
949
950         spin_unlock(&hb->lock);
951         put_futex_key(&key);
952 out:
953         return ret;
954 }
955
956 /*
957  * Wake up all waiters hashed on the physical page that is mapped
958  * to this virtual address:
959  */
960 static int
961 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
962               int nr_wake, int nr_wake2, int op)
963 {
964         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
965         struct futex_hash_bucket *hb1, *hb2;
966         struct plist_head *head;
967         struct futex_q *this, *next;
968         int ret, op_ret;
969
970 retry:
971         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
972         if (unlikely(ret != 0))
973                 goto out;
974         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
975         if (unlikely(ret != 0))
976                 goto out_put_key1;
977
978         hb1 = hash_futex(&key1);
979         hb2 = hash_futex(&key2);
980
981 retry_private:
982         double_lock_hb(hb1, hb2);
983         op_ret = futex_atomic_op_inuser(op, uaddr2);
984         if (unlikely(op_ret < 0)) {
985
986                 double_unlock_hb(hb1, hb2);
987
988 #ifndef CONFIG_MMU
989                 /*
990                  * we don't get EFAULT from MMU faults if we don't have an MMU,
991                  * but we might get them from range checking
992                  */
993                 ret = op_ret;
994                 goto out_put_keys;
995 #endif
996
997                 if (unlikely(op_ret != -EFAULT)) {
998                         ret = op_ret;
999                         goto out_put_keys;
1000                 }
1001
1002                 ret = fault_in_user_writeable(uaddr2);
1003                 if (ret)
1004                         goto out_put_keys;
1005
1006                 if (!(flags & FLAGS_SHARED))
1007                         goto retry_private;
1008
1009                 put_futex_key(&key2);
1010                 put_futex_key(&key1);
1011                 goto retry;
1012         }
1013
1014         head = &hb1->chain;
1015
1016         plist_for_each_entry_safe(this, next, head, list) {
1017                 if (match_futex (&this->key, &key1)) {
1018                         wake_futex(this);
1019                         if (++ret >= nr_wake)
1020                                 break;
1021                 }
1022         }
1023
1024         if (op_ret > 0) {
1025                 head = &hb2->chain;
1026
1027                 op_ret = 0;
1028                 plist_for_each_entry_safe(this, next, head, list) {
1029                         if (match_futex (&this->key, &key2)) {
1030                                 wake_futex(this);
1031                                 if (++op_ret >= nr_wake2)
1032                                         break;
1033                         }
1034                 }
1035                 ret += op_ret;
1036         }
1037
1038         double_unlock_hb(hb1, hb2);
1039 out_put_keys:
1040         put_futex_key(&key2);
1041 out_put_key1:
1042         put_futex_key(&key1);
1043 out:
1044         return ret;
1045 }
1046
1047 /**
1048  * requeue_futex() - Requeue a futex_q from one hb to another
1049  * @q:          the futex_q to requeue
1050  * @hb1:        the source hash_bucket
1051  * @hb2:        the target hash_bucket
1052  * @key2:       the new key for the requeued futex_q
1053  */
1054 static inline
1055 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1056                    struct futex_hash_bucket *hb2, union futex_key *key2)
1057 {
1058
1059         /*
1060          * If key1 and key2 hash to the same bucket, no need to
1061          * requeue.
1062          */
1063         if (likely(&hb1->chain != &hb2->chain)) {
1064                 plist_del(&q->list, &hb1->chain);
1065                 plist_add(&q->list, &hb2->chain);
1066                 q->lock_ptr = &hb2->lock;
1067 #ifdef CONFIG_DEBUG_PI_LIST
1068                 q->list.plist.spinlock = &hb2->lock;
1069 #endif
1070         }
1071         get_futex_key_refs(key2);
1072         q->key = *key2;
1073 }
1074
1075 /**
1076  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1077  * @q:          the futex_q
1078  * @key:        the key of the requeue target futex
1079  * @hb:         the hash_bucket of the requeue target futex
1080  *
1081  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1082  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1083  * to the requeue target futex so the waiter can detect the wakeup on the right
1084  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1085  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1086  * to protect access to the pi_state to fixup the owner later.  Must be called
1087  * with both q->lock_ptr and hb->lock held.
1088  */
1089 static inline
1090 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1091                            struct futex_hash_bucket *hb)
1092 {
1093         get_futex_key_refs(key);
1094         q->key = *key;
1095
1096         WARN_ON(plist_node_empty(&q->list));
1097         plist_del(&q->list, &q->list.plist);
1098
1099         WARN_ON(!q->rt_waiter);
1100         q->rt_waiter = NULL;
1101
1102         q->lock_ptr = &hb->lock;
1103 #ifdef CONFIG_DEBUG_PI_LIST
1104         q->list.plist.spinlock = &hb->lock;
1105 #endif
1106
1107         wake_up_state(q->task, TASK_NORMAL);
1108 }
1109
1110 /**
1111  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1112  * @pifutex:            the user address of the to futex
1113  * @hb1:                the from futex hash bucket, must be locked by the caller
1114  * @hb2:                the to futex hash bucket, must be locked by the caller
1115  * @key1:               the from futex key
1116  * @key2:               the to futex key
1117  * @ps:                 address to store the pi_state pointer
1118  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1119  *
1120  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1121  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1122  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1123  * hb1 and hb2 must be held by the caller.
1124  *
1125  * Returns:
1126  *  0 - failed to acquire the lock atomicly
1127  *  1 - acquired the lock
1128  * <0 - error
1129  */
1130 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1131                                  struct futex_hash_bucket *hb1,
1132                                  struct futex_hash_bucket *hb2,
1133                                  union futex_key *key1, union futex_key *key2,
1134                                  struct futex_pi_state **ps, int set_waiters)
1135 {
1136         struct futex_q *top_waiter = NULL;
1137         u32 curval;
1138         int ret;
1139
1140         if (get_futex_value_locked(&curval, pifutex))
1141                 return -EFAULT;
1142
1143         /*
1144          * Find the top_waiter and determine if there are additional waiters.
1145          * If the caller intends to requeue more than 1 waiter to pifutex,
1146          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1147          * as we have means to handle the possible fault.  If not, don't set
1148          * the bit unecessarily as it will force the subsequent unlock to enter
1149          * the kernel.
1150          */
1151         top_waiter = futex_top_waiter(hb1, key1);
1152
1153         /* There are no waiters, nothing for us to do. */
1154         if (!top_waiter)
1155                 return 0;
1156
1157         /* Ensure we requeue to the expected futex. */
1158         if (!match_futex(top_waiter->requeue_pi_key, key2))
1159                 return -EINVAL;
1160
1161         /*
1162          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1163          * the contended case or if set_waiters is 1.  The pi_state is returned
1164          * in ps in contended cases.
1165          */
1166         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1167                                    set_waiters);
1168         if (ret == 1)
1169                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1170
1171         return ret;
1172 }
1173
1174 /**
1175  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1176  * @uaddr1:     source futex user address
1177  * @flags:      futex flags (FLAGS_SHARED, etc.)
1178  * @uaddr2:     target futex user address
1179  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1180  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1181  * @cmpval:     @uaddr1 expected value (or %NULL)
1182  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1183  *              pi futex (pi to pi requeue is not supported)
1184  *
1185  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1186  * uaddr2 atomically on behalf of the top waiter.
1187  *
1188  * Returns:
1189  * >=0 - on success, the number of tasks requeued or woken
1190  *  <0 - on error
1191  */
1192 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1193                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1194                          u32 *cmpval, int requeue_pi)
1195 {
1196         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1197         int drop_count = 0, task_count = 0, ret;
1198         struct futex_pi_state *pi_state = NULL;
1199         struct futex_hash_bucket *hb1, *hb2;
1200         struct plist_head *head1;
1201         struct futex_q *this, *next;
1202         u32 curval2;
1203
1204         if (requeue_pi) {
1205                 /*
1206                  * requeue_pi requires a pi_state, try to allocate it now
1207                  * without any locks in case it fails.
1208                  */
1209                 if (refill_pi_state_cache())
1210                         return -ENOMEM;
1211                 /*
1212                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1213                  * + nr_requeue, since it acquires the rt_mutex prior to
1214                  * returning to userspace, so as to not leave the rt_mutex with
1215                  * waiters and no owner.  However, second and third wake-ups
1216                  * cannot be predicted as they involve race conditions with the
1217                  * first wake and a fault while looking up the pi_state.  Both
1218                  * pthread_cond_signal() and pthread_cond_broadcast() should
1219                  * use nr_wake=1.
1220                  */
1221                 if (nr_wake != 1)
1222                         return -EINVAL;
1223         }
1224
1225 retry:
1226         if (pi_state != NULL) {
1227                 /*
1228                  * We will have to lookup the pi_state again, so free this one
1229                  * to keep the accounting correct.
1230                  */
1231                 free_pi_state(pi_state);
1232                 pi_state = NULL;
1233         }
1234
1235         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
1236         if (unlikely(ret != 0))
1237                 goto out;
1238         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
1239         if (unlikely(ret != 0))
1240                 goto out_put_key1;
1241
1242         hb1 = hash_futex(&key1);
1243         hb2 = hash_futex(&key2);
1244
1245 retry_private:
1246         double_lock_hb(hb1, hb2);
1247
1248         if (likely(cmpval != NULL)) {
1249                 u32 curval;
1250
1251                 ret = get_futex_value_locked(&curval, uaddr1);
1252
1253                 if (unlikely(ret)) {
1254                         double_unlock_hb(hb1, hb2);
1255
1256                         ret = get_user(curval, uaddr1);
1257                         if (ret)
1258                                 goto out_put_keys;
1259
1260                         if (!(flags & FLAGS_SHARED))
1261                                 goto retry_private;
1262
1263                         put_futex_key(&key2);
1264                         put_futex_key(&key1);
1265                         goto retry;
1266                 }
1267                 if (curval != *cmpval) {
1268                         ret = -EAGAIN;
1269                         goto out_unlock;
1270                 }
1271         }
1272
1273         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1274                 /*
1275                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1276                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1277                  * bit.  We force this here where we are able to easily handle
1278                  * faults rather in the requeue loop below.
1279                  */
1280                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1281                                                  &key2, &pi_state, nr_requeue);
1282
1283                 /*
1284                  * At this point the top_waiter has either taken uaddr2 or is
1285                  * waiting on it.  If the former, then the pi_state will not
1286                  * exist yet, look it up one more time to ensure we have a
1287                  * reference to it.
1288                  */
1289                 if (ret == 1) {
1290                         WARN_ON(pi_state);
1291                         drop_count++;
1292                         task_count++;
1293                         ret = get_futex_value_locked(&curval2, uaddr2);
1294                         if (!ret)
1295                                 ret = lookup_pi_state(curval2, hb2, &key2,
1296                                                       &pi_state);
1297                 }
1298
1299                 switch (ret) {
1300                 case 0:
1301                         break;
1302                 case -EFAULT:
1303                         double_unlock_hb(hb1, hb2);
1304                         put_futex_key(&key2);
1305                         put_futex_key(&key1);
1306                         ret = fault_in_user_writeable(uaddr2);
1307                         if (!ret)
1308                                 goto retry;
1309                         goto out;
1310                 case -EAGAIN:
1311                         /* The owner was exiting, try again. */
1312                         double_unlock_hb(hb1, hb2);
1313                         put_futex_key(&key2);
1314                         put_futex_key(&key1);
1315                         cond_resched();
1316                         goto retry;
1317                 default:
1318                         goto out_unlock;
1319                 }
1320         }
1321
1322         head1 = &hb1->chain;
1323         plist_for_each_entry_safe(this, next, head1, list) {
1324                 if (task_count - nr_wake >= nr_requeue)
1325                         break;
1326
1327                 if (!match_futex(&this->key, &key1))
1328                         continue;
1329
1330                 /*
1331                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1332                  * be paired with each other and no other futex ops.
1333                  */
1334                 if ((requeue_pi && !this->rt_waiter) ||
1335                     (!requeue_pi && this->rt_waiter)) {
1336                         ret = -EINVAL;
1337                         break;
1338                 }
1339
1340                 /*
1341                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1342                  * lock, we already woke the top_waiter.  If not, it will be
1343                  * woken by futex_unlock_pi().
1344                  */
1345                 if (++task_count <= nr_wake && !requeue_pi) {
1346                         wake_futex(this);
1347                         continue;
1348                 }
1349
1350                 /* Ensure we requeue to the expected futex for requeue_pi. */
1351                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1352                         ret = -EINVAL;
1353                         break;
1354                 }
1355
1356                 /*
1357                  * Requeue nr_requeue waiters and possibly one more in the case
1358                  * of requeue_pi if we couldn't acquire the lock atomically.
1359                  */
1360                 if (requeue_pi) {
1361                         /* Prepare the waiter to take the rt_mutex. */
1362                         atomic_inc(&pi_state->refcount);
1363                         this->pi_state = pi_state;
1364                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1365                                                         this->rt_waiter,
1366                                                         this->task, 1);
1367                         if (ret == 1) {
1368                                 /* We got the lock. */
1369                                 requeue_pi_wake_futex(this, &key2, hb2);
1370                                 drop_count++;
1371                                 continue;
1372                         } else if (ret) {
1373                                 /* -EDEADLK */
1374                                 this->pi_state = NULL;
1375                                 free_pi_state(pi_state);
1376                                 goto out_unlock;
1377                         }
1378                 }
1379                 requeue_futex(this, hb1, hb2, &key2);
1380                 drop_count++;
1381         }
1382
1383 out_unlock:
1384         double_unlock_hb(hb1, hb2);
1385
1386         /*
1387          * drop_futex_key_refs() must be called outside the spinlocks. During
1388          * the requeue we moved futex_q's from the hash bucket at key1 to the
1389          * one at key2 and updated their key pointer.  We no longer need to
1390          * hold the references to key1.
1391          */
1392         while (--drop_count >= 0)
1393                 drop_futex_key_refs(&key1);
1394
1395 out_put_keys:
1396         put_futex_key(&key2);
1397 out_put_key1:
1398         put_futex_key(&key1);
1399 out:
1400         if (pi_state != NULL)
1401                 free_pi_state(pi_state);
1402         return ret ? ret : task_count;
1403 }
1404
1405 /* The key must be already stored in q->key. */
1406 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1407         __acquires(&hb->lock)
1408 {
1409         struct futex_hash_bucket *hb;
1410
1411         hb = hash_futex(&q->key);
1412         q->lock_ptr = &hb->lock;
1413
1414         spin_lock(&hb->lock);
1415         return hb;
1416 }
1417
1418 static inline void
1419 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1420         __releases(&hb->lock)
1421 {
1422         spin_unlock(&hb->lock);
1423 }
1424
1425 /**
1426  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1427  * @q:  The futex_q to enqueue
1428  * @hb: The destination hash bucket
1429  *
1430  * The hb->lock must be held by the caller, and is released here. A call to
1431  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1432  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1433  * or nothing if the unqueue is done as part of the wake process and the unqueue
1434  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1435  * an example).
1436  */
1437 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1438         __releases(&hb->lock)
1439 {
1440         int prio;
1441
1442         /*
1443          * The priority used to register this element is
1444          * - either the real thread-priority for the real-time threads
1445          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1446          * - or MAX_RT_PRIO for non-RT threads.
1447          * Thus, all RT-threads are woken first in priority order, and
1448          * the others are woken last, in FIFO order.
1449          */
1450         prio = min(current->normal_prio, MAX_RT_PRIO);
1451
1452         plist_node_init(&q->list, prio);
1453 #ifdef CONFIG_DEBUG_PI_LIST
1454         q->list.plist.spinlock = &hb->lock;
1455 #endif
1456         plist_add(&q->list, &hb->chain);
1457         q->task = current;
1458         spin_unlock(&hb->lock);
1459 }
1460
1461 /**
1462  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1463  * @q:  The futex_q to unqueue
1464  *
1465  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1466  * be paired with exactly one earlier call to queue_me().
1467  *
1468  * Returns:
1469  *   1 - if the futex_q was still queued (and we removed unqueued it)
1470  *   0 - if the futex_q was already removed by the waking thread
1471  */
1472 static int unqueue_me(struct futex_q *q)
1473 {
1474         spinlock_t *lock_ptr;
1475         int ret = 0;
1476
1477         /* In the common case we don't take the spinlock, which is nice. */
1478 retry:
1479         lock_ptr = q->lock_ptr;
1480         barrier();
1481         if (lock_ptr != NULL) {
1482                 spin_lock(lock_ptr);
1483                 /*
1484                  * q->lock_ptr can change between reading it and
1485                  * spin_lock(), causing us to take the wrong lock.  This
1486                  * corrects the race condition.
1487                  *
1488                  * Reasoning goes like this: if we have the wrong lock,
1489                  * q->lock_ptr must have changed (maybe several times)
1490                  * between reading it and the spin_lock().  It can
1491                  * change again after the spin_lock() but only if it was
1492                  * already changed before the spin_lock().  It cannot,
1493                  * however, change back to the original value.  Therefore
1494                  * we can detect whether we acquired the correct lock.
1495                  */
1496                 if (unlikely(lock_ptr != q->lock_ptr)) {
1497                         spin_unlock(lock_ptr);
1498                         goto retry;
1499                 }
1500                 WARN_ON(plist_node_empty(&q->list));
1501                 plist_del(&q->list, &q->list.plist);
1502
1503                 BUG_ON(q->pi_state);
1504
1505                 spin_unlock(lock_ptr);
1506                 ret = 1;
1507         }
1508
1509         drop_futex_key_refs(&q->key);
1510         return ret;
1511 }
1512
1513 /*
1514  * PI futexes can not be requeued and must remove themself from the
1515  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1516  * and dropped here.
1517  */
1518 static void unqueue_me_pi(struct futex_q *q)
1519         __releases(q->lock_ptr)
1520 {
1521         WARN_ON(plist_node_empty(&q->list));
1522         plist_del(&q->list, &q->list.plist);
1523
1524         BUG_ON(!q->pi_state);
1525         free_pi_state(q->pi_state);
1526         q->pi_state = NULL;
1527
1528         spin_unlock(q->lock_ptr);
1529 }
1530
1531 /*
1532  * Fixup the pi_state owner with the new owner.
1533  *
1534  * Must be called with hash bucket lock held and mm->sem held for non
1535  * private futexes.
1536  */
1537 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1538                                 struct task_struct *newowner)
1539 {
1540         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1541         struct futex_pi_state *pi_state = q->pi_state;
1542         struct task_struct *oldowner = pi_state->owner;
1543         u32 uval, curval, newval;
1544         int ret;
1545
1546         /* Owner died? */
1547         if (!pi_state->owner)
1548                 newtid |= FUTEX_OWNER_DIED;
1549
1550         /*
1551          * We are here either because we stole the rtmutex from the
1552          * pending owner or we are the pending owner which failed to
1553          * get the rtmutex. We have to replace the pending owner TID
1554          * in the user space variable. This must be atomic as we have
1555          * to preserve the owner died bit here.
1556          *
1557          * Note: We write the user space value _before_ changing the pi_state
1558          * because we can fault here. Imagine swapped out pages or a fork
1559          * that marked all the anonymous memory readonly for cow.
1560          *
1561          * Modifying pi_state _before_ the user space value would
1562          * leave the pi_state in an inconsistent state when we fault
1563          * here, because we need to drop the hash bucket lock to
1564          * handle the fault. This might be observed in the PID check
1565          * in lookup_pi_state.
1566          */
1567 retry:
1568         if (get_futex_value_locked(&uval, uaddr))
1569                 goto handle_fault;
1570
1571         while (1) {
1572                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1573
1574                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1575                         goto handle_fault;
1576                 if (curval == uval)
1577                         break;
1578                 uval = curval;
1579         }
1580
1581         /*
1582          * We fixed up user space. Now we need to fix the pi_state
1583          * itself.
1584          */
1585         if (pi_state->owner != NULL) {
1586                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1587                 WARN_ON(list_empty(&pi_state->list));
1588                 list_del_init(&pi_state->list);
1589                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1590         }
1591
1592         pi_state->owner = newowner;
1593
1594         raw_spin_lock_irq(&newowner->pi_lock);
1595         WARN_ON(!list_empty(&pi_state->list));
1596         list_add(&pi_state->list, &newowner->pi_state_list);
1597         raw_spin_unlock_irq(&newowner->pi_lock);
1598         return 0;
1599
1600         /*
1601          * To handle the page fault we need to drop the hash bucket
1602          * lock here. That gives the other task (either the pending
1603          * owner itself or the task which stole the rtmutex) the
1604          * chance to try the fixup of the pi_state. So once we are
1605          * back from handling the fault we need to check the pi_state
1606          * after reacquiring the hash bucket lock and before trying to
1607          * do another fixup. When the fixup has been done already we
1608          * simply return.
1609          */
1610 handle_fault:
1611         spin_unlock(q->lock_ptr);
1612
1613         ret = fault_in_user_writeable(uaddr);
1614
1615         spin_lock(q->lock_ptr);
1616
1617         /*
1618          * Check if someone else fixed it for us:
1619          */
1620         if (pi_state->owner != oldowner)
1621                 return 0;
1622
1623         if (ret)
1624                 return ret;
1625
1626         goto retry;
1627 }
1628
1629 static long futex_wait_restart(struct restart_block *restart);
1630
1631 /**
1632  * fixup_owner() - Post lock pi_state and corner case management
1633  * @uaddr:      user address of the futex
1634  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1635  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1636  *
1637  * After attempting to lock an rt_mutex, this function is called to cleanup
1638  * the pi_state owner as well as handle race conditions that may allow us to
1639  * acquire the lock. Must be called with the hb lock held.
1640  *
1641  * Returns:
1642  *  1 - success, lock taken
1643  *  0 - success, lock not taken
1644  * <0 - on error (-EFAULT)
1645  */
1646 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1647 {
1648         struct task_struct *owner;
1649         int ret = 0;
1650
1651         if (locked) {
1652                 /*
1653                  * Got the lock. We might not be the anticipated owner if we
1654                  * did a lock-steal - fix up the PI-state in that case:
1655                  */
1656                 if (q->pi_state->owner != current)
1657                         ret = fixup_pi_state_owner(uaddr, q, current);
1658                 goto out;
1659         }
1660
1661         /*
1662          * Catch the rare case, where the lock was released when we were on the
1663          * way back before we locked the hash bucket.
1664          */
1665         if (q->pi_state->owner == current) {
1666                 /*
1667                  * Try to get the rt_mutex now. This might fail as some other
1668                  * task acquired the rt_mutex after we removed ourself from the
1669                  * rt_mutex waiters list.
1670                  */
1671                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1672                         locked = 1;
1673                         goto out;
1674                 }
1675
1676                 /*
1677                  * pi_state is incorrect, some other task did a lock steal and
1678                  * we returned due to timeout or signal without taking the
1679                  * rt_mutex. Too late. We can access the rt_mutex_owner without
1680                  * locking, as the other task is now blocked on the hash bucket
1681                  * lock. Fix the state up.
1682                  */
1683                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1684                 ret = fixup_pi_state_owner(uaddr, q, owner);
1685                 goto out;
1686         }
1687
1688         /*
1689          * Paranoia check. If we did not take the lock, then we should not be
1690          * the owner, nor the pending owner, of the rt_mutex.
1691          */
1692         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1693                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1694                                 "pi-state %p\n", ret,
1695                                 q->pi_state->pi_mutex.owner,
1696                                 q->pi_state->owner);
1697
1698 out:
1699         return ret ? ret : locked;
1700 }
1701
1702 /**
1703  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1704  * @hb:         the futex hash bucket, must be locked by the caller
1705  * @q:          the futex_q to queue up on
1706  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1707  */
1708 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1709                                 struct hrtimer_sleeper *timeout)
1710 {
1711         /*
1712          * The task state is guaranteed to be set before another task can
1713          * wake it. set_current_state() is implemented using set_mb() and
1714          * queue_me() calls spin_unlock() upon completion, both serializing
1715          * access to the hash list and forcing another memory barrier.
1716          */
1717         set_current_state(TASK_INTERRUPTIBLE);
1718         queue_me(q, hb);
1719
1720         /* Arm the timer */
1721         if (timeout) {
1722                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1723                 if (!hrtimer_active(&timeout->timer))
1724                         timeout->task = NULL;
1725         }
1726
1727         /*
1728          * If we have been removed from the hash list, then another task
1729          * has tried to wake us, and we can skip the call to schedule().
1730          */
1731         if (likely(!plist_node_empty(&q->list))) {
1732                 /*
1733                  * If the timer has already expired, current will already be
1734                  * flagged for rescheduling. Only call schedule if there
1735                  * is no timeout, or if it has yet to expire.
1736                  */
1737                 if (!timeout || timeout->task)
1738                         schedule();
1739         }
1740         __set_current_state(TASK_RUNNING);
1741 }
1742
1743 /**
1744  * futex_wait_setup() - Prepare to wait on a futex
1745  * @uaddr:      the futex userspace address
1746  * @val:        the expected value
1747  * @flags:      futex flags (FLAGS_SHARED, etc.)
1748  * @q:          the associated futex_q
1749  * @hb:         storage for hash_bucket pointer to be returned to caller
1750  *
1751  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1752  * compare it with the expected value.  Handle atomic faults internally.
1753  * Return with the hb lock held and a q.key reference on success, and unlocked
1754  * with no q.key reference on failure.
1755  *
1756  * Returns:
1757  *  0 - uaddr contains val and hb has been locked
1758  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1759  */
1760 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1761                            struct futex_q *q, struct futex_hash_bucket **hb)
1762 {
1763         u32 uval;
1764         int ret;
1765
1766         /*
1767          * Access the page AFTER the hash-bucket is locked.
1768          * Order is important:
1769          *
1770          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1771          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1772          *
1773          * The basic logical guarantee of a futex is that it blocks ONLY
1774          * if cond(var) is known to be true at the time of blocking, for
1775          * any cond.  If we locked the hash-bucket after testing *uaddr, that
1776          * would open a race condition where we could block indefinitely with
1777          * cond(var) false, which would violate the guarantee.
1778          *
1779          * On the other hand, we insert q and release the hash-bucket only
1780          * after testing *uaddr.  This guarantees that futex_wait() will NOT
1781          * absorb a wakeup if *uaddr does not match the desired values
1782          * while the syscall executes.
1783          */
1784 retry:
1785         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key);
1786         if (unlikely(ret != 0))
1787                 return ret;
1788
1789 retry_private:
1790         *hb = queue_lock(q);
1791
1792         ret = get_futex_value_locked(&uval, uaddr);
1793
1794         if (ret) {
1795                 queue_unlock(q, *hb);
1796
1797                 ret = get_user(uval, uaddr);
1798                 if (ret)
1799                         goto out;
1800
1801                 if (!(flags & FLAGS_SHARED))
1802                         goto retry_private;
1803
1804                 put_futex_key(&q->key);
1805                 goto retry;
1806         }
1807
1808         if (uval != val) {
1809                 queue_unlock(q, *hb);
1810                 ret = -EWOULDBLOCK;
1811         }
1812
1813 out:
1814         if (ret)
1815                 put_futex_key(&q->key);
1816         return ret;
1817 }
1818
1819 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1820                       ktime_t *abs_time, u32 bitset)
1821 {
1822         struct hrtimer_sleeper timeout, *to = NULL;
1823         struct restart_block *restart;
1824         struct futex_hash_bucket *hb;
1825         struct futex_q q = futex_q_init;
1826         int ret;
1827
1828         if (!bitset)
1829                 return -EINVAL;
1830         q.bitset = bitset;
1831
1832         if (abs_time) {
1833                 to = &timeout;
1834
1835                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1836                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
1837                                       HRTIMER_MODE_ABS);
1838                 hrtimer_init_sleeper(to, current);
1839                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1840                                              current->timer_slack_ns);
1841         }
1842
1843 retry:
1844         /*
1845          * Prepare to wait on uaddr. On success, holds hb lock and increments
1846          * q.key refs.
1847          */
1848         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1849         if (ret)
1850                 goto out;
1851
1852         /* queue_me and wait for wakeup, timeout, or a signal. */
1853         futex_wait_queue_me(hb, &q, to);
1854
1855         /* If we were woken (and unqueued), we succeeded, whatever. */
1856         ret = 0;
1857         /* unqueue_me() drops q.key ref */
1858         if (!unqueue_me(&q))
1859                 goto out;
1860         ret = -ETIMEDOUT;
1861         if (to && !to->task)
1862                 goto out;
1863
1864         /*
1865          * We expect signal_pending(current), but we might be the
1866          * victim of a spurious wakeup as well.
1867          */
1868         if (!signal_pending(current))
1869                 goto retry;
1870
1871         ret = -ERESTARTSYS;
1872         if (!abs_time)
1873                 goto out;
1874
1875         restart = &current_thread_info()->restart_block;
1876         restart->fn = futex_wait_restart;
1877         restart->futex.uaddr = uaddr;
1878         restart->futex.val = val;
1879         restart->futex.time = abs_time->tv64;
1880         restart->futex.bitset = bitset;
1881         restart->futex.flags = flags;
1882
1883         ret = -ERESTART_RESTARTBLOCK;
1884
1885 out:
1886         if (to) {
1887                 hrtimer_cancel(&to->timer);
1888                 destroy_hrtimer_on_stack(&to->timer);
1889         }
1890         return ret;
1891 }
1892
1893
1894 static long futex_wait_restart(struct restart_block *restart)
1895 {
1896         u32 __user *uaddr = restart->futex.uaddr;
1897         ktime_t t, *tp = NULL;
1898
1899         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1900                 t.tv64 = restart->futex.time;
1901                 tp = &t;
1902         }
1903         restart->fn = do_no_restart_syscall;
1904
1905         return (long)futex_wait(uaddr, restart->futex.flags,
1906                                 restart->futex.val, tp, restart->futex.bitset);
1907 }
1908
1909
1910 /*
1911  * Userspace tried a 0 -> TID atomic transition of the futex value
1912  * and failed. The kernel side here does the whole locking operation:
1913  * if there are waiters then it will block, it does PI, etc. (Due to
1914  * races the kernel might see a 0 value of the futex too.)
1915  */
1916 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1917                          ktime_t *time, int trylock)
1918 {
1919         struct hrtimer_sleeper timeout, *to = NULL;
1920         struct futex_hash_bucket *hb;
1921         struct futex_q q = futex_q_init;
1922         int res, ret;
1923
1924         if (refill_pi_state_cache())
1925                 return -ENOMEM;
1926
1927         if (time) {
1928                 to = &timeout;
1929                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1930                                       HRTIMER_MODE_ABS);
1931                 hrtimer_init_sleeper(to, current);
1932                 hrtimer_set_expires(&to->timer, *time);
1933         }
1934
1935 retry:
1936         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key);
1937         if (unlikely(ret != 0))
1938                 goto out;
1939
1940 retry_private:
1941         hb = queue_lock(&q);
1942
1943         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1944         if (unlikely(ret)) {
1945                 switch (ret) {
1946                 case 1:
1947                         /* We got the lock. */
1948                         ret = 0;
1949                         goto out_unlock_put_key;
1950                 case -EFAULT:
1951                         goto uaddr_faulted;
1952                 case -EAGAIN:
1953                         /*
1954                          * Task is exiting and we just wait for the
1955                          * exit to complete.
1956                          */
1957                         queue_unlock(&q, hb);
1958                         put_futex_key(&q.key);
1959                         cond_resched();
1960                         goto retry;
1961                 default:
1962                         goto out_unlock_put_key;
1963                 }
1964         }
1965
1966         /*
1967          * Only actually queue now that the atomic ops are done:
1968          */
1969         queue_me(&q, hb);
1970
1971         WARN_ON(!q.pi_state);
1972         /*
1973          * Block on the PI mutex:
1974          */
1975         if (!trylock)
1976                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1977         else {
1978                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1979                 /* Fixup the trylock return value: */
1980                 ret = ret ? 0 : -EWOULDBLOCK;
1981         }
1982
1983         spin_lock(q.lock_ptr);
1984         /*
1985          * Fixup the pi_state owner and possibly acquire the lock if we
1986          * haven't already.
1987          */
1988         res = fixup_owner(uaddr, &q, !ret);
1989         /*
1990          * If fixup_owner() returned an error, proprogate that.  If it acquired
1991          * the lock, clear our -ETIMEDOUT or -EINTR.
1992          */
1993         if (res)
1994                 ret = (res < 0) ? res : 0;
1995
1996         /*
1997          * If fixup_owner() faulted and was unable to handle the fault, unlock
1998          * it and return the fault to userspace.
1999          */
2000         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2001                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2002
2003         /* Unqueue and drop the lock */
2004         unqueue_me_pi(&q);
2005
2006         goto out_put_key;
2007
2008 out_unlock_put_key:
2009         queue_unlock(&q, hb);
2010
2011 out_put_key:
2012         put_futex_key(&q.key);
2013 out:
2014         if (to)
2015                 destroy_hrtimer_on_stack(&to->timer);
2016         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2017
2018 uaddr_faulted:
2019         queue_unlock(&q, hb);
2020
2021         ret = fault_in_user_writeable(uaddr);
2022         if (ret)
2023                 goto out_put_key;
2024
2025         if (!(flags & FLAGS_SHARED))
2026                 goto retry_private;
2027
2028         put_futex_key(&q.key);
2029         goto retry;
2030 }
2031
2032 /*
2033  * Userspace attempted a TID -> 0 atomic transition, and failed.
2034  * This is the in-kernel slowpath: we look up the PI state (if any),
2035  * and do the rt-mutex unlock.
2036  */
2037 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2038 {
2039         struct futex_hash_bucket *hb;
2040         struct futex_q *this, *next;
2041         struct plist_head *head;
2042         union futex_key key = FUTEX_KEY_INIT;
2043         u32 uval, vpid = task_pid_vnr(current);
2044         int ret;
2045
2046 retry:
2047         if (get_user(uval, uaddr))
2048                 return -EFAULT;
2049         /*
2050          * We release only a lock we actually own:
2051          */
2052         if ((uval & FUTEX_TID_MASK) != vpid)
2053                 return -EPERM;
2054
2055         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
2056         if (unlikely(ret != 0))
2057                 goto out;
2058
2059         hb = hash_futex(&key);
2060         spin_lock(&hb->lock);
2061
2062         /*
2063          * To avoid races, try to do the TID -> 0 atomic transition
2064          * again. If it succeeds then we can return without waking
2065          * anyone else up:
2066          */
2067         if (!(uval & FUTEX_OWNER_DIED) &&
2068             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2069                 goto pi_faulted;
2070         /*
2071          * Rare case: we managed to release the lock atomically,
2072          * no need to wake anyone else up:
2073          */
2074         if (unlikely(uval == vpid))
2075                 goto out_unlock;
2076
2077         /*
2078          * Ok, other tasks may need to be woken up - check waiters
2079          * and do the wakeup if necessary:
2080          */
2081         head = &hb->chain;
2082
2083         plist_for_each_entry_safe(this, next, head, list) {
2084                 if (!match_futex (&this->key, &key))
2085                         continue;
2086                 ret = wake_futex_pi(uaddr, uval, this);
2087                 /*
2088                  * The atomic access to the futex value
2089                  * generated a pagefault, so retry the
2090                  * user-access and the wakeup:
2091                  */
2092                 if (ret == -EFAULT)
2093                         goto pi_faulted;
2094                 goto out_unlock;
2095         }
2096         /*
2097          * No waiters - kernel unlocks the futex:
2098          */
2099         if (!(uval & FUTEX_OWNER_DIED)) {
2100                 ret = unlock_futex_pi(uaddr, uval);
2101                 if (ret == -EFAULT)
2102                         goto pi_faulted;
2103         }
2104
2105 out_unlock:
2106         spin_unlock(&hb->lock);
2107         put_futex_key(&key);
2108
2109 out:
2110         return ret;
2111
2112 pi_faulted:
2113         spin_unlock(&hb->lock);
2114         put_futex_key(&key);
2115
2116         ret = fault_in_user_writeable(uaddr);
2117         if (!ret)
2118                 goto retry;
2119
2120         return ret;
2121 }
2122
2123 /**
2124  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2125  * @hb:         the hash_bucket futex_q was original enqueued on
2126  * @q:          the futex_q woken while waiting to be requeued
2127  * @key2:       the futex_key of the requeue target futex
2128  * @timeout:    the timeout associated with the wait (NULL if none)
2129  *
2130  * Detect if the task was woken on the initial futex as opposed to the requeue
2131  * target futex.  If so, determine if it was a timeout or a signal that caused
2132  * the wakeup and return the appropriate error code to the caller.  Must be
2133  * called with the hb lock held.
2134  *
2135  * Returns
2136  *  0 - no early wakeup detected
2137  * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2138  */
2139 static inline
2140 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2141                                    struct futex_q *q, union futex_key *key2,
2142                                    struct hrtimer_sleeper *timeout)
2143 {
2144         int ret = 0;
2145
2146         /*
2147          * With the hb lock held, we avoid races while we process the wakeup.
2148          * We only need to hold hb (and not hb2) to ensure atomicity as the
2149          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2150          * It can't be requeued from uaddr2 to something else since we don't
2151          * support a PI aware source futex for requeue.
2152          */
2153         if (!match_futex(&q->key, key2)) {
2154                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2155                 /*
2156                  * We were woken prior to requeue by a timeout or a signal.
2157                  * Unqueue the futex_q and determine which it was.
2158                  */
2159                 plist_del(&q->list, &q->list.plist);
2160
2161                 /* Handle spurious wakeups gracefully */
2162                 ret = -EWOULDBLOCK;
2163                 if (timeout && !timeout->task)
2164                         ret = -ETIMEDOUT;
2165                 else if (signal_pending(current))
2166                         ret = -ERESTARTNOINTR;
2167         }
2168         return ret;
2169 }
2170
2171 /**
2172  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2173  * @uaddr:      the futex we initially wait on (non-pi)
2174  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2175  *              the same type, no requeueing from private to shared, etc.
2176  * @val:        the expected value of uaddr
2177  * @abs_time:   absolute timeout
2178  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2179  * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2180  * @uaddr2:     the pi futex we will take prior to returning to user-space
2181  *
2182  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2183  * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
2184  * complete the acquisition of the rt_mutex prior to returning to userspace.
2185  * This ensures the rt_mutex maintains an owner when it has waiters; without
2186  * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2187  * need to.
2188  *
2189  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2190  * via the following:
2191  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2192  * 2) wakeup on uaddr2 after a requeue
2193  * 3) signal
2194  * 4) timeout
2195  *
2196  * If 3, cleanup and return -ERESTARTNOINTR.
2197  *
2198  * If 2, we may then block on trying to take the rt_mutex and return via:
2199  * 5) successful lock
2200  * 6) signal
2201  * 7) timeout
2202  * 8) other lock acquisition failure
2203  *
2204  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2205  *
2206  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2207  *
2208  * Returns:
2209  *  0 - On success
2210  * <0 - On error
2211  */
2212 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2213                                  u32 val, ktime_t *abs_time, u32 bitset,
2214                                  u32 __user *uaddr2)
2215 {
2216         struct hrtimer_sleeper timeout, *to = NULL;
2217         struct rt_mutex_waiter rt_waiter;
2218         struct rt_mutex *pi_mutex = NULL;
2219         struct futex_hash_bucket *hb;
2220         union futex_key key2 = FUTEX_KEY_INIT;
2221         struct futex_q q = futex_q_init;
2222         int res, ret;
2223
2224         if (!bitset)
2225                 return -EINVAL;
2226
2227         if (abs_time) {
2228                 to = &timeout;
2229                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2230                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2231                                       HRTIMER_MODE_ABS);
2232                 hrtimer_init_sleeper(to, current);
2233                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2234                                              current->timer_slack_ns);
2235         }
2236
2237         /*
2238          * The waiter is allocated on our stack, manipulated by the requeue
2239          * code while we sleep on uaddr.
2240          */
2241         debug_rt_mutex_init_waiter(&rt_waiter);
2242         rt_waiter.task = NULL;
2243
2244         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
2245         if (unlikely(ret != 0))
2246                 goto out;
2247
2248         q.bitset = bitset;
2249         q.rt_waiter = &rt_waiter;
2250         q.requeue_pi_key = &key2;
2251
2252         /*
2253          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2254          * count.
2255          */
2256         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2257         if (ret)
2258                 goto out_key2;
2259
2260         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2261         futex_wait_queue_me(hb, &q, to);
2262
2263         spin_lock(&hb->lock);
2264         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2265         spin_unlock(&hb->lock);
2266         if (ret)
2267                 goto out_put_keys;
2268
2269         /*
2270          * In order for us to be here, we know our q.key == key2, and since
2271          * we took the hb->lock above, we also know that futex_requeue() has
2272          * completed and we no longer have to concern ourselves with a wakeup
2273          * race with the atomic proxy lock acquisition by the requeue code. The
2274          * futex_requeue dropped our key1 reference and incremented our key2
2275          * reference count.
2276          */
2277
2278         /* Check if the requeue code acquired the second futex for us. */
2279         if (!q.rt_waiter) {
2280                 /*
2281                  * Got the lock. We might not be the anticipated owner if we
2282                  * did a lock-steal - fix up the PI-state in that case.
2283                  */
2284                 if (q.pi_state && (q.pi_state->owner != current)) {
2285                         spin_lock(q.lock_ptr);
2286                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2287                         spin_unlock(q.lock_ptr);
2288                 }
2289         } else {
2290                 /*
2291                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2292                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2293                  * the pi_state.
2294                  */
2295                 WARN_ON(!&q.pi_state);
2296                 pi_mutex = &q.pi_state->pi_mutex;
2297                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2298                 debug_rt_mutex_free_waiter(&rt_waiter);
2299
2300                 spin_lock(q.lock_ptr);
2301                 /*
2302                  * Fixup the pi_state owner and possibly acquire the lock if we
2303                  * haven't already.
2304                  */
2305                 res = fixup_owner(uaddr2, &q, !ret);
2306                 /*
2307                  * If fixup_owner() returned an error, proprogate that.  If it
2308                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2309                  */
2310                 if (res)
2311                         ret = (res < 0) ? res : 0;
2312
2313                 /* Unqueue and drop the lock. */
2314                 unqueue_me_pi(&q);
2315         }
2316
2317         /*
2318          * If fixup_pi_state_owner() faulted and was unable to handle the
2319          * fault, unlock the rt_mutex and return the fault to userspace.
2320          */
2321         if (ret == -EFAULT) {
2322                 if (rt_mutex_owner(pi_mutex) == current)
2323                         rt_mutex_unlock(pi_mutex);
2324         } else if (ret == -EINTR) {
2325                 /*
2326                  * We've already been requeued, but cannot restart by calling
2327                  * futex_lock_pi() directly. We could restart this syscall, but
2328                  * it would detect that the user space "val" changed and return
2329                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2330                  * -EWOULDBLOCK directly.
2331                  */
2332                 ret = -EWOULDBLOCK;
2333         }
2334
2335 out_put_keys:
2336         put_futex_key(&q.key);
2337 out_key2:
2338         put_futex_key(&key2);
2339
2340 out:
2341         if (to) {
2342                 hrtimer_cancel(&to->timer);
2343                 destroy_hrtimer_on_stack(&to->timer);
2344         }
2345         return ret;
2346 }
2347
2348 /*
2349  * Support for robust futexes: the kernel cleans up held futexes at
2350  * thread exit time.
2351  *
2352  * Implementation: user-space maintains a per-thread list of locks it
2353  * is holding. Upon do_exit(), the kernel carefully walks this list,
2354  * and marks all locks that are owned by this thread with the
2355  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2356  * always manipulated with the lock held, so the list is private and
2357  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2358  * field, to allow the kernel to clean up if the thread dies after
2359  * acquiring the lock, but just before it could have added itself to
2360  * the list. There can only be one such pending lock.
2361  */
2362
2363 /**
2364  * sys_set_robust_list() - Set the robust-futex list head of a task
2365  * @head:       pointer to the list-head
2366  * @len:        length of the list-head, as userspace expects
2367  */
2368 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2369                 size_t, len)
2370 {
2371         if (!futex_cmpxchg_enabled)
2372                 return -ENOSYS;
2373         /*
2374          * The kernel knows only one size for now:
2375          */
2376         if (unlikely(len != sizeof(*head)))
2377                 return -EINVAL;
2378
2379         current->robust_list = head;
2380
2381         return 0;
2382 }
2383
2384 /**
2385  * sys_get_robust_list() - Get the robust-futex list head of a task
2386  * @pid:        pid of the process [zero for current task]
2387  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2388  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2389  */
2390 SYSCALL_DEFINE3(get_robust_list, int, pid,
2391                 struct robust_list_head __user * __user *, head_ptr,
2392                 size_t __user *, len_ptr)
2393 {
2394         struct robust_list_head __user *head;
2395         unsigned long ret;
2396         const struct cred *cred = current_cred(), *pcred;
2397
2398         if (!futex_cmpxchg_enabled)
2399                 return -ENOSYS;
2400
2401         if (!pid)
2402                 head = current->robust_list;
2403         else {
2404                 struct task_struct *p;
2405
2406                 ret = -ESRCH;
2407                 rcu_read_lock();
2408                 p = find_task_by_vpid(pid);
2409                 if (!p)
2410                         goto err_unlock;
2411                 ret = -EPERM;
2412                 pcred = __task_cred(p);
2413                 if (cred->euid != pcred->euid &&
2414                     cred->euid != pcred->uid &&
2415                     !capable(CAP_SYS_PTRACE))
2416                         goto err_unlock;
2417                 head = p->robust_list;
2418                 rcu_read_unlock();
2419         }
2420
2421         if (put_user(sizeof(*head), len_ptr))
2422                 return -EFAULT;
2423         return put_user(head, head_ptr);
2424
2425 err_unlock:
2426         rcu_read_unlock();
2427
2428         return ret;
2429 }
2430
2431 /*
2432  * Process a futex-list entry, check whether it's owned by the
2433  * dying task, and do notification if so:
2434  */
2435 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2436 {
2437         u32 uval, nval, mval;
2438
2439 retry:
2440         if (get_user(uval, uaddr))
2441                 return -1;
2442
2443         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2444                 /*
2445                  * Ok, this dying thread is truly holding a futex
2446                  * of interest. Set the OWNER_DIED bit atomically
2447                  * via cmpxchg, and if the value had FUTEX_WAITERS
2448                  * set, wake up a waiter (if any). (We have to do a
2449                  * futex_wake() even if OWNER_DIED is already set -
2450                  * to handle the rare but possible case of recursive
2451                  * thread-death.) The rest of the cleanup is done in
2452                  * userspace.
2453                  */
2454                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2455                 if (futex_atomic_cmpxchg_inatomic(&nval, uaddr, uval, mval))
2456                         return -1;
2457
2458                 if (nval != uval)
2459                         goto retry;
2460
2461                 /*
2462                  * Wake robust non-PI futexes here. The wakeup of
2463                  * PI futexes happens in exit_pi_state():
2464                  */
2465                 if (!pi && (uval & FUTEX_WAITERS))
2466                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2467         }
2468         return 0;
2469 }
2470
2471 /*
2472  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2473  */
2474 static inline int fetch_robust_entry(struct robust_list __user **entry,
2475                                      struct robust_list __user * __user *head,
2476                                      unsigned int *pi)
2477 {
2478         unsigned long uentry;
2479
2480         if (get_user(uentry, (unsigned long __user *)head))
2481                 return -EFAULT;
2482
2483         *entry = (void __user *)(uentry & ~1UL);
2484         *pi = uentry & 1;
2485
2486         return 0;
2487 }
2488
2489 /*
2490  * Walk curr->robust_list (very carefully, it's a userspace list!)
2491  * and mark any locks found there dead, and notify any waiters.
2492  *
2493  * We silently return on any sign of list-walking problem.
2494  */
2495 void exit_robust_list(struct task_struct *curr)
2496 {
2497         struct robust_list_head __user *head = curr->robust_list;
2498         struct robust_list __user *entry, *next_entry, *pending;
2499         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2500         unsigned int uninitialized_var(next_pi);
2501         unsigned long futex_offset;
2502         int rc;
2503
2504         if (!futex_cmpxchg_enabled)
2505                 return;
2506
2507         /*
2508          * Fetch the list head (which was registered earlier, via
2509          * sys_set_robust_list()):
2510          */
2511         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2512                 return;
2513         /*
2514          * Fetch the relative futex offset:
2515          */
2516         if (get_user(futex_offset, &head->futex_offset))
2517                 return;
2518         /*
2519          * Fetch any possibly pending lock-add first, and handle it
2520          * if it exists:
2521          */
2522         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2523                 return;
2524
2525         next_entry = NULL;      /* avoid warning with gcc */
2526         while (entry != &head->list) {
2527                 /*
2528                  * Fetch the next entry in the list before calling
2529                  * handle_futex_death:
2530                  */
2531                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2532                 /*
2533                  * A pending lock might already be on the list, so
2534                  * don't process it twice:
2535                  */
2536                 if (entry != pending)
2537                         if (handle_futex_death((void __user *)entry + futex_offset,
2538                                                 curr, pi))
2539                                 return;
2540                 if (rc)
2541                         return;
2542                 entry = next_entry;
2543                 pi = next_pi;
2544                 /*
2545                  * Avoid excessively long or circular lists:
2546                  */
2547                 if (!--limit)
2548                         break;
2549
2550                 cond_resched();
2551         }
2552
2553         if (pending)
2554                 handle_futex_death((void __user *)pending + futex_offset,
2555                                    curr, pip);
2556 }
2557
2558 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2559                 u32 __user *uaddr2, u32 val2, u32 val3)
2560 {
2561         int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2562         unsigned int flags = 0;
2563
2564         if (!(op & FUTEX_PRIVATE_FLAG))
2565                 flags |= FLAGS_SHARED;
2566
2567         if (op & FUTEX_CLOCK_REALTIME) {
2568                 flags |= FLAGS_CLOCKRT;
2569                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2570                         return -ENOSYS;
2571         }
2572
2573         switch (cmd) {
2574         case FUTEX_WAIT:
2575                 val3 = FUTEX_BITSET_MATCH_ANY;
2576         case FUTEX_WAIT_BITSET:
2577                 ret = futex_wait(uaddr, flags, val, timeout, val3);
2578                 break;
2579         case FUTEX_WAKE:
2580                 val3 = FUTEX_BITSET_MATCH_ANY;
2581         case FUTEX_WAKE_BITSET:
2582                 ret = futex_wake(uaddr, flags, val, val3);
2583                 break;
2584         case FUTEX_REQUEUE:
2585                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2586                 break;
2587         case FUTEX_CMP_REQUEUE:
2588                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2589                 break;
2590         case FUTEX_WAKE_OP:
2591                 ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2592                 break;
2593         case FUTEX_LOCK_PI:
2594                 if (futex_cmpxchg_enabled)
2595                         ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2596                 break;
2597         case FUTEX_UNLOCK_PI:
2598                 if (futex_cmpxchg_enabled)
2599                         ret = futex_unlock_pi(uaddr, flags);
2600                 break;
2601         case FUTEX_TRYLOCK_PI:
2602                 if (futex_cmpxchg_enabled)
2603                         ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2604                 break;
2605         case FUTEX_WAIT_REQUEUE_PI:
2606                 val3 = FUTEX_BITSET_MATCH_ANY;
2607                 ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2608                                             uaddr2);
2609                 break;
2610         case FUTEX_CMP_REQUEUE_PI:
2611                 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2612                 break;
2613         default:
2614                 ret = -ENOSYS;
2615         }
2616         return ret;
2617 }
2618
2619
2620 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2621                 struct timespec __user *, utime, u32 __user *, uaddr2,
2622                 u32, val3)
2623 {
2624         struct timespec ts;
2625         ktime_t t, *tp = NULL;
2626         u32 val2 = 0;
2627         int cmd = op & FUTEX_CMD_MASK;
2628
2629         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2630                       cmd == FUTEX_WAIT_BITSET ||
2631                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2632                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2633                         return -EFAULT;
2634                 if (!timespec_valid(&ts))
2635                         return -EINVAL;
2636
2637                 t = timespec_to_ktime(ts);
2638                 if (cmd == FUTEX_WAIT)
2639                         t = ktime_add_safe(ktime_get(), t);
2640                 tp = &t;
2641         }
2642         /*
2643          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2644          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2645          */
2646         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2647             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2648                 val2 = (u32) (unsigned long) utime;
2649
2650         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2651 }
2652
2653 static int __init futex_init(void)
2654 {
2655         u32 curval;
2656         int i;
2657
2658         /*
2659          * This will fail and we want it. Some arch implementations do
2660          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2661          * functionality. We want to know that before we call in any
2662          * of the complex code paths. Also we want to prevent
2663          * registration of robust lists in that case. NULL is
2664          * guaranteed to fault and we get -EFAULT on functional
2665          * implementation, the non-functional ones will return
2666          * -ENOSYS.
2667          */
2668         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2669                 futex_cmpxchg_enabled = 1;
2670
2671         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2672                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2673                 spin_lock_init(&futex_queues[i].lock);
2674         }
2675
2676         return 0;
2677 }
2678 __initcall(futex_init);