KVM: call cache_all_regs() only once during instruction emulation
[linux-flexiantxendom0.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61
62 #define MAX_IO_MSRS 256
63 #define KVM_MAX_MCE_BANKS 32
64 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
65
66 #define emul_to_vcpu(ctxt) \
67         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
68
69 /* EFER defaults:
70  * - enable syscall per default because its emulated by KVM
71  * - enable LME and LMA per default on 64 bit KVM
72  */
73 #ifdef CONFIG_X86_64
74 static
75 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
76 #else
77 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
78 #endif
79
80 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
81 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
82
83 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
84 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
85                                     struct kvm_cpuid_entry2 __user *entries);
86
87 struct kvm_x86_ops *kvm_x86_ops;
88 EXPORT_SYMBOL_GPL(kvm_x86_ops);
89
90 int ignore_msrs = 0;
91 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
92
93 bool kvm_has_tsc_control;
94 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
95 u32  kvm_max_guest_tsc_khz;
96 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
97
98 #define KVM_NR_SHARED_MSRS 16
99
100 struct kvm_shared_msrs_global {
101         int nr;
102         u32 msrs[KVM_NR_SHARED_MSRS];
103 };
104
105 struct kvm_shared_msrs {
106         struct user_return_notifier urn;
107         bool registered;
108         struct kvm_shared_msr_values {
109                 u64 host;
110                 u64 curr;
111         } values[KVM_NR_SHARED_MSRS];
112 };
113
114 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
115 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
116
117 struct kvm_stats_debugfs_item debugfs_entries[] = {
118         { "pf_fixed", VCPU_STAT(pf_fixed) },
119         { "pf_guest", VCPU_STAT(pf_guest) },
120         { "tlb_flush", VCPU_STAT(tlb_flush) },
121         { "invlpg", VCPU_STAT(invlpg) },
122         { "exits", VCPU_STAT(exits) },
123         { "io_exits", VCPU_STAT(io_exits) },
124         { "mmio_exits", VCPU_STAT(mmio_exits) },
125         { "signal_exits", VCPU_STAT(signal_exits) },
126         { "irq_window", VCPU_STAT(irq_window_exits) },
127         { "nmi_window", VCPU_STAT(nmi_window_exits) },
128         { "halt_exits", VCPU_STAT(halt_exits) },
129         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
130         { "hypercalls", VCPU_STAT(hypercalls) },
131         { "request_irq", VCPU_STAT(request_irq_exits) },
132         { "irq_exits", VCPU_STAT(irq_exits) },
133         { "host_state_reload", VCPU_STAT(host_state_reload) },
134         { "efer_reload", VCPU_STAT(efer_reload) },
135         { "fpu_reload", VCPU_STAT(fpu_reload) },
136         { "insn_emulation", VCPU_STAT(insn_emulation) },
137         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
138         { "irq_injections", VCPU_STAT(irq_injections) },
139         { "nmi_injections", VCPU_STAT(nmi_injections) },
140         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
141         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
142         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
143         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
144         { "mmu_flooded", VM_STAT(mmu_flooded) },
145         { "mmu_recycled", VM_STAT(mmu_recycled) },
146         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
147         { "mmu_unsync", VM_STAT(mmu_unsync) },
148         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
149         { "largepages", VM_STAT(lpages) },
150         { NULL }
151 };
152
153 u64 __read_mostly host_xcr0;
154
155 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
156
157 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
158 {
159         int i;
160         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
161                 vcpu->arch.apf.gfns[i] = ~0;
162 }
163
164 static void kvm_on_user_return(struct user_return_notifier *urn)
165 {
166         unsigned slot;
167         struct kvm_shared_msrs *locals
168                 = container_of(urn, struct kvm_shared_msrs, urn);
169         struct kvm_shared_msr_values *values;
170
171         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
172                 values = &locals->values[slot];
173                 if (values->host != values->curr) {
174                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
175                         values->curr = values->host;
176                 }
177         }
178         locals->registered = false;
179         user_return_notifier_unregister(urn);
180 }
181
182 static void shared_msr_update(unsigned slot, u32 msr)
183 {
184         struct kvm_shared_msrs *smsr;
185         u64 value;
186
187         smsr = &__get_cpu_var(shared_msrs);
188         /* only read, and nobody should modify it at this time,
189          * so don't need lock */
190         if (slot >= shared_msrs_global.nr) {
191                 printk(KERN_ERR "kvm: invalid MSR slot!");
192                 return;
193         }
194         rdmsrl_safe(msr, &value);
195         smsr->values[slot].host = value;
196         smsr->values[slot].curr = value;
197 }
198
199 void kvm_define_shared_msr(unsigned slot, u32 msr)
200 {
201         if (slot >= shared_msrs_global.nr)
202                 shared_msrs_global.nr = slot + 1;
203         shared_msrs_global.msrs[slot] = msr;
204         /* we need ensured the shared_msr_global have been updated */
205         smp_wmb();
206 }
207 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
208
209 static void kvm_shared_msr_cpu_online(void)
210 {
211         unsigned i;
212
213         for (i = 0; i < shared_msrs_global.nr; ++i)
214                 shared_msr_update(i, shared_msrs_global.msrs[i]);
215 }
216
217 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
218 {
219         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
220
221         if (((value ^ smsr->values[slot].curr) & mask) == 0)
222                 return;
223         smsr->values[slot].curr = value;
224         wrmsrl(shared_msrs_global.msrs[slot], value);
225         if (!smsr->registered) {
226                 smsr->urn.on_user_return = kvm_on_user_return;
227                 user_return_notifier_register(&smsr->urn);
228                 smsr->registered = true;
229         }
230 }
231 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
232
233 static void drop_user_return_notifiers(void *ignore)
234 {
235         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
236
237         if (smsr->registered)
238                 kvm_on_user_return(&smsr->urn);
239 }
240
241 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
242 {
243         if (irqchip_in_kernel(vcpu->kvm))
244                 return vcpu->arch.apic_base;
245         else
246                 return vcpu->arch.apic_base;
247 }
248 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
249
250 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
251 {
252         /* TODO: reserve bits check */
253         if (irqchip_in_kernel(vcpu->kvm))
254                 kvm_lapic_set_base(vcpu, data);
255         else
256                 vcpu->arch.apic_base = data;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
259
260 #define EXCPT_BENIGN            0
261 #define EXCPT_CONTRIBUTORY      1
262 #define EXCPT_PF                2
263
264 static int exception_class(int vector)
265 {
266         switch (vector) {
267         case PF_VECTOR:
268                 return EXCPT_PF;
269         case DE_VECTOR:
270         case TS_VECTOR:
271         case NP_VECTOR:
272         case SS_VECTOR:
273         case GP_VECTOR:
274                 return EXCPT_CONTRIBUTORY;
275         default:
276                 break;
277         }
278         return EXCPT_BENIGN;
279 }
280
281 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
282                 unsigned nr, bool has_error, u32 error_code,
283                 bool reinject)
284 {
285         u32 prev_nr;
286         int class1, class2;
287
288         kvm_make_request(KVM_REQ_EVENT, vcpu);
289
290         if (!vcpu->arch.exception.pending) {
291         queue:
292                 vcpu->arch.exception.pending = true;
293                 vcpu->arch.exception.has_error_code = has_error;
294                 vcpu->arch.exception.nr = nr;
295                 vcpu->arch.exception.error_code = error_code;
296                 vcpu->arch.exception.reinject = reinject;
297                 return;
298         }
299
300         /* to check exception */
301         prev_nr = vcpu->arch.exception.nr;
302         if (prev_nr == DF_VECTOR) {
303                 /* triple fault -> shutdown */
304                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
305                 return;
306         }
307         class1 = exception_class(prev_nr);
308         class2 = exception_class(nr);
309         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
310                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
311                 /* generate double fault per SDM Table 5-5 */
312                 vcpu->arch.exception.pending = true;
313                 vcpu->arch.exception.has_error_code = true;
314                 vcpu->arch.exception.nr = DF_VECTOR;
315                 vcpu->arch.exception.error_code = 0;
316         } else
317                 /* replace previous exception with a new one in a hope
318                    that instruction re-execution will regenerate lost
319                    exception */
320                 goto queue;
321 }
322
323 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
324 {
325         kvm_multiple_exception(vcpu, nr, false, 0, false);
326 }
327 EXPORT_SYMBOL_GPL(kvm_queue_exception);
328
329 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331         kvm_multiple_exception(vcpu, nr, false, 0, true);
332 }
333 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
334
335 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
336 {
337         if (err)
338                 kvm_inject_gp(vcpu, 0);
339         else
340                 kvm_x86_ops->skip_emulated_instruction(vcpu);
341 }
342 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
343
344 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
345 {
346         ++vcpu->stat.pf_guest;
347         vcpu->arch.cr2 = fault->address;
348         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
349 }
350
351 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
352 {
353         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
354                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
355         else
356                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
357 }
358
359 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
360 {
361         kvm_make_request(KVM_REQ_EVENT, vcpu);
362         vcpu->arch.nmi_pending = 1;
363 }
364 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
365
366 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
367 {
368         kvm_multiple_exception(vcpu, nr, true, error_code, false);
369 }
370 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
371
372 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
373 {
374         kvm_multiple_exception(vcpu, nr, true, error_code, true);
375 }
376 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
377
378 /*
379  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
380  * a #GP and return false.
381  */
382 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
383 {
384         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
385                 return true;
386         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
387         return false;
388 }
389 EXPORT_SYMBOL_GPL(kvm_require_cpl);
390
391 /*
392  * This function will be used to read from the physical memory of the currently
393  * running guest. The difference to kvm_read_guest_page is that this function
394  * can read from guest physical or from the guest's guest physical memory.
395  */
396 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
397                             gfn_t ngfn, void *data, int offset, int len,
398                             u32 access)
399 {
400         gfn_t real_gfn;
401         gpa_t ngpa;
402
403         ngpa     = gfn_to_gpa(ngfn);
404         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
405         if (real_gfn == UNMAPPED_GVA)
406                 return -EFAULT;
407
408         real_gfn = gpa_to_gfn(real_gfn);
409
410         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
411 }
412 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
413
414 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
415                                void *data, int offset, int len, u32 access)
416 {
417         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
418                                        data, offset, len, access);
419 }
420
421 /*
422  * Load the pae pdptrs.  Return true is they are all valid.
423  */
424 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
425 {
426         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
427         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
428         int i;
429         int ret;
430         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
431
432         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
433                                       offset * sizeof(u64), sizeof(pdpte),
434                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
435         if (ret < 0) {
436                 ret = 0;
437                 goto out;
438         }
439         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
440                 if (is_present_gpte(pdpte[i]) &&
441                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
442                         ret = 0;
443                         goto out;
444                 }
445         }
446         ret = 1;
447
448         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
449         __set_bit(VCPU_EXREG_PDPTR,
450                   (unsigned long *)&vcpu->arch.regs_avail);
451         __set_bit(VCPU_EXREG_PDPTR,
452                   (unsigned long *)&vcpu->arch.regs_dirty);
453 out:
454
455         return ret;
456 }
457 EXPORT_SYMBOL_GPL(load_pdptrs);
458
459 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
460 {
461         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
462         bool changed = true;
463         int offset;
464         gfn_t gfn;
465         int r;
466
467         if (is_long_mode(vcpu) || !is_pae(vcpu))
468                 return false;
469
470         if (!test_bit(VCPU_EXREG_PDPTR,
471                       (unsigned long *)&vcpu->arch.regs_avail))
472                 return true;
473
474         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
475         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
476         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
477                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
478         if (r < 0)
479                 goto out;
480         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
481 out:
482
483         return changed;
484 }
485
486 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
487 {
488         unsigned long old_cr0 = kvm_read_cr0(vcpu);
489         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
490                                     X86_CR0_CD | X86_CR0_NW;
491
492         cr0 |= X86_CR0_ET;
493
494 #ifdef CONFIG_X86_64
495         if (cr0 & 0xffffffff00000000UL)
496                 return 1;
497 #endif
498
499         cr0 &= ~CR0_RESERVED_BITS;
500
501         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
502                 return 1;
503
504         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
505                 return 1;
506
507         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
508 #ifdef CONFIG_X86_64
509                 if ((vcpu->arch.efer & EFER_LME)) {
510                         int cs_db, cs_l;
511
512                         if (!is_pae(vcpu))
513                                 return 1;
514                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
515                         if (cs_l)
516                                 return 1;
517                 } else
518 #endif
519                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
520                                                  kvm_read_cr3(vcpu)))
521                         return 1;
522         }
523
524         kvm_x86_ops->set_cr0(vcpu, cr0);
525
526         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
527                 kvm_clear_async_pf_completion_queue(vcpu);
528                 kvm_async_pf_hash_reset(vcpu);
529         }
530
531         if ((cr0 ^ old_cr0) & update_bits)
532                 kvm_mmu_reset_context(vcpu);
533         return 0;
534 }
535 EXPORT_SYMBOL_GPL(kvm_set_cr0);
536
537 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
538 {
539         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
540 }
541 EXPORT_SYMBOL_GPL(kvm_lmsw);
542
543 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
544 {
545         u64 xcr0;
546
547         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
548         if (index != XCR_XFEATURE_ENABLED_MASK)
549                 return 1;
550         xcr0 = xcr;
551         if (kvm_x86_ops->get_cpl(vcpu) != 0)
552                 return 1;
553         if (!(xcr0 & XSTATE_FP))
554                 return 1;
555         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
556                 return 1;
557         if (xcr0 & ~host_xcr0)
558                 return 1;
559         vcpu->arch.xcr0 = xcr0;
560         vcpu->guest_xcr0_loaded = 0;
561         return 0;
562 }
563
564 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
565 {
566         if (__kvm_set_xcr(vcpu, index, xcr)) {
567                 kvm_inject_gp(vcpu, 0);
568                 return 1;
569         }
570         return 0;
571 }
572 EXPORT_SYMBOL_GPL(kvm_set_xcr);
573
574 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
575 {
576         struct kvm_cpuid_entry2 *best;
577
578         best = kvm_find_cpuid_entry(vcpu, 1, 0);
579         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
580 }
581
582 static void update_cpuid(struct kvm_vcpu *vcpu)
583 {
584         struct kvm_cpuid_entry2 *best;
585
586         best = kvm_find_cpuid_entry(vcpu, 1, 0);
587         if (!best)
588                 return;
589
590         /* Update OSXSAVE bit */
591         if (cpu_has_xsave && best->function == 0x1) {
592                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
593                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
594                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
595         }
596 }
597
598 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
599 {
600         unsigned long old_cr4 = kvm_read_cr4(vcpu);
601         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
602
603         if (cr4 & CR4_RESERVED_BITS)
604                 return 1;
605
606         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
607                 return 1;
608
609         if (is_long_mode(vcpu)) {
610                 if (!(cr4 & X86_CR4_PAE))
611                         return 1;
612         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
613                    && ((cr4 ^ old_cr4) & pdptr_bits)
614                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
615                                    kvm_read_cr3(vcpu)))
616                 return 1;
617
618         if (cr4 & X86_CR4_VMXE)
619                 return 1;
620
621         kvm_x86_ops->set_cr4(vcpu, cr4);
622
623         if ((cr4 ^ old_cr4) & pdptr_bits)
624                 kvm_mmu_reset_context(vcpu);
625
626         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627                 update_cpuid(vcpu);
628
629         return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
632
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634 {
635         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636                 kvm_mmu_sync_roots(vcpu);
637                 kvm_mmu_flush_tlb(vcpu);
638                 return 0;
639         }
640
641         if (is_long_mode(vcpu)) {
642                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
643                         return 1;
644         } else {
645                 if (is_pae(vcpu)) {
646                         if (cr3 & CR3_PAE_RESERVED_BITS)
647                                 return 1;
648                         if (is_paging(vcpu) &&
649                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
650                                 return 1;
651                 }
652                 /*
653                  * We don't check reserved bits in nonpae mode, because
654                  * this isn't enforced, and VMware depends on this.
655                  */
656         }
657
658         /*
659          * Does the new cr3 value map to physical memory? (Note, we
660          * catch an invalid cr3 even in real-mode, because it would
661          * cause trouble later on when we turn on paging anyway.)
662          *
663          * A real CPU would silently accept an invalid cr3 and would
664          * attempt to use it - with largely undefined (and often hard
665          * to debug) behavior on the guest side.
666          */
667         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
668                 return 1;
669         vcpu->arch.cr3 = cr3;
670         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
671         vcpu->arch.mmu.new_cr3(vcpu);
672         return 0;
673 }
674 EXPORT_SYMBOL_GPL(kvm_set_cr3);
675
676 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
677 {
678         if (cr8 & CR8_RESERVED_BITS)
679                 return 1;
680         if (irqchip_in_kernel(vcpu->kvm))
681                 kvm_lapic_set_tpr(vcpu, cr8);
682         else
683                 vcpu->arch.cr8 = cr8;
684         return 0;
685 }
686 EXPORT_SYMBOL_GPL(kvm_set_cr8);
687
688 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
689 {
690         if (irqchip_in_kernel(vcpu->kvm))
691                 return kvm_lapic_get_cr8(vcpu);
692         else
693                 return vcpu->arch.cr8;
694 }
695 EXPORT_SYMBOL_GPL(kvm_get_cr8);
696
697 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
698 {
699         switch (dr) {
700         case 0 ... 3:
701                 vcpu->arch.db[dr] = val;
702                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
703                         vcpu->arch.eff_db[dr] = val;
704                 break;
705         case 4:
706                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
707                         return 1; /* #UD */
708                 /* fall through */
709         case 6:
710                 if (val & 0xffffffff00000000ULL)
711                         return -1; /* #GP */
712                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
713                 break;
714         case 5:
715                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
716                         return 1; /* #UD */
717                 /* fall through */
718         default: /* 7 */
719                 if (val & 0xffffffff00000000ULL)
720                         return -1; /* #GP */
721                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
722                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
723                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
724                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
725                 }
726                 break;
727         }
728
729         return 0;
730 }
731
732 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
733 {
734         int res;
735
736         res = __kvm_set_dr(vcpu, dr, val);
737         if (res > 0)
738                 kvm_queue_exception(vcpu, UD_VECTOR);
739         else if (res < 0)
740                 kvm_inject_gp(vcpu, 0);
741
742         return res;
743 }
744 EXPORT_SYMBOL_GPL(kvm_set_dr);
745
746 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
747 {
748         switch (dr) {
749         case 0 ... 3:
750                 *val = vcpu->arch.db[dr];
751                 break;
752         case 4:
753                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
754                         return 1;
755                 /* fall through */
756         case 6:
757                 *val = vcpu->arch.dr6;
758                 break;
759         case 5:
760                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
761                         return 1;
762                 /* fall through */
763         default: /* 7 */
764                 *val = vcpu->arch.dr7;
765                 break;
766         }
767
768         return 0;
769 }
770
771 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
772 {
773         if (_kvm_get_dr(vcpu, dr, val)) {
774                 kvm_queue_exception(vcpu, UD_VECTOR);
775                 return 1;
776         }
777         return 0;
778 }
779 EXPORT_SYMBOL_GPL(kvm_get_dr);
780
781 /*
782  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
783  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
784  *
785  * This list is modified at module load time to reflect the
786  * capabilities of the host cpu. This capabilities test skips MSRs that are
787  * kvm-specific. Those are put in the beginning of the list.
788  */
789
790 #define KVM_SAVE_MSRS_BEGIN     8
791 static u32 msrs_to_save[] = {
792         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
793         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
794         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
795         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
796         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
797         MSR_STAR,
798 #ifdef CONFIG_X86_64
799         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
800 #endif
801         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
802 };
803
804 static unsigned num_msrs_to_save;
805
806 static u32 emulated_msrs[] = {
807         MSR_IA32_MISC_ENABLE,
808         MSR_IA32_MCG_STATUS,
809         MSR_IA32_MCG_CTL,
810 };
811
812 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
813 {
814         u64 old_efer = vcpu->arch.efer;
815
816         if (efer & efer_reserved_bits)
817                 return 1;
818
819         if (is_paging(vcpu)
820             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
821                 return 1;
822
823         if (efer & EFER_FFXSR) {
824                 struct kvm_cpuid_entry2 *feat;
825
826                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
827                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
828                         return 1;
829         }
830
831         if (efer & EFER_SVME) {
832                 struct kvm_cpuid_entry2 *feat;
833
834                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
835                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
836                         return 1;
837         }
838
839         efer &= ~EFER_LMA;
840         efer |= vcpu->arch.efer & EFER_LMA;
841
842         kvm_x86_ops->set_efer(vcpu, efer);
843
844         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
845
846         /* Update reserved bits */
847         if ((efer ^ old_efer) & EFER_NX)
848                 kvm_mmu_reset_context(vcpu);
849
850         return 0;
851 }
852
853 void kvm_enable_efer_bits(u64 mask)
854 {
855        efer_reserved_bits &= ~mask;
856 }
857 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
858
859
860 /*
861  * Writes msr value into into the appropriate "register".
862  * Returns 0 on success, non-0 otherwise.
863  * Assumes vcpu_load() was already called.
864  */
865 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
866 {
867         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
868 }
869
870 /*
871  * Adapt set_msr() to msr_io()'s calling convention
872  */
873 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
874 {
875         return kvm_set_msr(vcpu, index, *data);
876 }
877
878 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
879 {
880         int version;
881         int r;
882         struct pvclock_wall_clock wc;
883         struct timespec boot;
884
885         if (!wall_clock)
886                 return;
887
888         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
889         if (r)
890                 return;
891
892         if (version & 1)
893                 ++version;  /* first time write, random junk */
894
895         ++version;
896
897         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
898
899         /*
900          * The guest calculates current wall clock time by adding
901          * system time (updated by kvm_guest_time_update below) to the
902          * wall clock specified here.  guest system time equals host
903          * system time for us, thus we must fill in host boot time here.
904          */
905         getboottime(&boot);
906
907         wc.sec = boot.tv_sec;
908         wc.nsec = boot.tv_nsec;
909         wc.version = version;
910
911         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
912
913         version++;
914         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
915 }
916
917 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
918 {
919         uint32_t quotient, remainder;
920
921         /* Don't try to replace with do_div(), this one calculates
922          * "(dividend << 32) / divisor" */
923         __asm__ ( "divl %4"
924                   : "=a" (quotient), "=d" (remainder)
925                   : "0" (0), "1" (dividend), "r" (divisor) );
926         return quotient;
927 }
928
929 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
930                                s8 *pshift, u32 *pmultiplier)
931 {
932         uint64_t scaled64;
933         int32_t  shift = 0;
934         uint64_t tps64;
935         uint32_t tps32;
936
937         tps64 = base_khz * 1000LL;
938         scaled64 = scaled_khz * 1000LL;
939         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
940                 tps64 >>= 1;
941                 shift--;
942         }
943
944         tps32 = (uint32_t)tps64;
945         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
946                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
947                         scaled64 >>= 1;
948                 else
949                         tps32 <<= 1;
950                 shift++;
951         }
952
953         *pshift = shift;
954         *pmultiplier = div_frac(scaled64, tps32);
955
956         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
957                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
958 }
959
960 static inline u64 get_kernel_ns(void)
961 {
962         struct timespec ts;
963
964         WARN_ON(preemptible());
965         ktime_get_ts(&ts);
966         monotonic_to_bootbased(&ts);
967         return timespec_to_ns(&ts);
968 }
969
970 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
971 unsigned long max_tsc_khz;
972
973 static inline int kvm_tsc_changes_freq(void)
974 {
975         int cpu = get_cpu();
976         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
977                   cpufreq_quick_get(cpu) != 0;
978         put_cpu();
979         return ret;
980 }
981
982 static u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
983 {
984         if (vcpu->arch.virtual_tsc_khz)
985                 return vcpu->arch.virtual_tsc_khz;
986         else
987                 return __this_cpu_read(cpu_tsc_khz);
988 }
989
990 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
991 {
992         u64 ret;
993
994         WARN_ON(preemptible());
995         if (kvm_tsc_changes_freq())
996                 printk_once(KERN_WARNING
997                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
998         ret = nsec * vcpu_tsc_khz(vcpu);
999         do_div(ret, USEC_PER_SEC);
1000         return ret;
1001 }
1002
1003 static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1004 {
1005         /* Compute a scale to convert nanoseconds in TSC cycles */
1006         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1007                            &vcpu->arch.tsc_catchup_shift,
1008                            &vcpu->arch.tsc_catchup_mult);
1009 }
1010
1011 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1012 {
1013         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1014                                       vcpu->arch.tsc_catchup_mult,
1015                                       vcpu->arch.tsc_catchup_shift);
1016         tsc += vcpu->arch.last_tsc_write;
1017         return tsc;
1018 }
1019
1020 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1021 {
1022         struct kvm *kvm = vcpu->kvm;
1023         u64 offset, ns, elapsed;
1024         unsigned long flags;
1025         s64 sdiff;
1026
1027         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1028         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1029         ns = get_kernel_ns();
1030         elapsed = ns - kvm->arch.last_tsc_nsec;
1031         sdiff = data - kvm->arch.last_tsc_write;
1032         if (sdiff < 0)
1033                 sdiff = -sdiff;
1034
1035         /*
1036          * Special case: close write to TSC within 5 seconds of
1037          * another CPU is interpreted as an attempt to synchronize
1038          * The 5 seconds is to accommodate host load / swapping as
1039          * well as any reset of TSC during the boot process.
1040          *
1041          * In that case, for a reliable TSC, we can match TSC offsets,
1042          * or make a best guest using elapsed value.
1043          */
1044         if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1045             elapsed < 5ULL * NSEC_PER_SEC) {
1046                 if (!check_tsc_unstable()) {
1047                         offset = kvm->arch.last_tsc_offset;
1048                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1049                 } else {
1050                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1051                         offset += delta;
1052                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1053                 }
1054                 ns = kvm->arch.last_tsc_nsec;
1055         }
1056         kvm->arch.last_tsc_nsec = ns;
1057         kvm->arch.last_tsc_write = data;
1058         kvm->arch.last_tsc_offset = offset;
1059         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1060         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1061
1062         /* Reset of TSC must disable overshoot protection below */
1063         vcpu->arch.hv_clock.tsc_timestamp = 0;
1064         vcpu->arch.last_tsc_write = data;
1065         vcpu->arch.last_tsc_nsec = ns;
1066 }
1067 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1068
1069 static int kvm_guest_time_update(struct kvm_vcpu *v)
1070 {
1071         unsigned long flags;
1072         struct kvm_vcpu_arch *vcpu = &v->arch;
1073         void *shared_kaddr;
1074         unsigned long this_tsc_khz;
1075         s64 kernel_ns, max_kernel_ns;
1076         u64 tsc_timestamp;
1077
1078         /* Keep irq disabled to prevent changes to the clock */
1079         local_irq_save(flags);
1080         kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1081         kernel_ns = get_kernel_ns();
1082         this_tsc_khz = vcpu_tsc_khz(v);
1083         if (unlikely(this_tsc_khz == 0)) {
1084                 local_irq_restore(flags);
1085                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1086                 return 1;
1087         }
1088
1089         /*
1090          * We may have to catch up the TSC to match elapsed wall clock
1091          * time for two reasons, even if kvmclock is used.
1092          *   1) CPU could have been running below the maximum TSC rate
1093          *   2) Broken TSC compensation resets the base at each VCPU
1094          *      entry to avoid unknown leaps of TSC even when running
1095          *      again on the same CPU.  This may cause apparent elapsed
1096          *      time to disappear, and the guest to stand still or run
1097          *      very slowly.
1098          */
1099         if (vcpu->tsc_catchup) {
1100                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1101                 if (tsc > tsc_timestamp) {
1102                         kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1103                         tsc_timestamp = tsc;
1104                 }
1105         }
1106
1107         local_irq_restore(flags);
1108
1109         if (!vcpu->time_page)
1110                 return 0;
1111
1112         /*
1113          * Time as measured by the TSC may go backwards when resetting the base
1114          * tsc_timestamp.  The reason for this is that the TSC resolution is
1115          * higher than the resolution of the other clock scales.  Thus, many
1116          * possible measurments of the TSC correspond to one measurement of any
1117          * other clock, and so a spread of values is possible.  This is not a
1118          * problem for the computation of the nanosecond clock; with TSC rates
1119          * around 1GHZ, there can only be a few cycles which correspond to one
1120          * nanosecond value, and any path through this code will inevitably
1121          * take longer than that.  However, with the kernel_ns value itself,
1122          * the precision may be much lower, down to HZ granularity.  If the
1123          * first sampling of TSC against kernel_ns ends in the low part of the
1124          * range, and the second in the high end of the range, we can get:
1125          *
1126          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1127          *
1128          * As the sampling errors potentially range in the thousands of cycles,
1129          * it is possible such a time value has already been observed by the
1130          * guest.  To protect against this, we must compute the system time as
1131          * observed by the guest and ensure the new system time is greater.
1132          */
1133         max_kernel_ns = 0;
1134         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1135                 max_kernel_ns = vcpu->last_guest_tsc -
1136                                 vcpu->hv_clock.tsc_timestamp;
1137                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1138                                     vcpu->hv_clock.tsc_to_system_mul,
1139                                     vcpu->hv_clock.tsc_shift);
1140                 max_kernel_ns += vcpu->last_kernel_ns;
1141         }
1142
1143         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1144                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1145                                    &vcpu->hv_clock.tsc_shift,
1146                                    &vcpu->hv_clock.tsc_to_system_mul);
1147                 vcpu->hw_tsc_khz = this_tsc_khz;
1148         }
1149
1150         if (max_kernel_ns > kernel_ns)
1151                 kernel_ns = max_kernel_ns;
1152
1153         /* With all the info we got, fill in the values */
1154         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1155         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1156         vcpu->last_kernel_ns = kernel_ns;
1157         vcpu->last_guest_tsc = tsc_timestamp;
1158         vcpu->hv_clock.flags = 0;
1159
1160         /*
1161          * The interface expects us to write an even number signaling that the
1162          * update is finished. Since the guest won't see the intermediate
1163          * state, we just increase by 2 at the end.
1164          */
1165         vcpu->hv_clock.version += 2;
1166
1167         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1168
1169         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1170                sizeof(vcpu->hv_clock));
1171
1172         kunmap_atomic(shared_kaddr, KM_USER0);
1173
1174         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1175         return 0;
1176 }
1177
1178 static bool msr_mtrr_valid(unsigned msr)
1179 {
1180         switch (msr) {
1181         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1182         case MSR_MTRRfix64K_00000:
1183         case MSR_MTRRfix16K_80000:
1184         case MSR_MTRRfix16K_A0000:
1185         case MSR_MTRRfix4K_C0000:
1186         case MSR_MTRRfix4K_C8000:
1187         case MSR_MTRRfix4K_D0000:
1188         case MSR_MTRRfix4K_D8000:
1189         case MSR_MTRRfix4K_E0000:
1190         case MSR_MTRRfix4K_E8000:
1191         case MSR_MTRRfix4K_F0000:
1192         case MSR_MTRRfix4K_F8000:
1193         case MSR_MTRRdefType:
1194         case MSR_IA32_CR_PAT:
1195                 return true;
1196         case 0x2f8:
1197                 return true;
1198         }
1199         return false;
1200 }
1201
1202 static bool valid_pat_type(unsigned t)
1203 {
1204         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1205 }
1206
1207 static bool valid_mtrr_type(unsigned t)
1208 {
1209         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1210 }
1211
1212 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1213 {
1214         int i;
1215
1216         if (!msr_mtrr_valid(msr))
1217                 return false;
1218
1219         if (msr == MSR_IA32_CR_PAT) {
1220                 for (i = 0; i < 8; i++)
1221                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1222                                 return false;
1223                 return true;
1224         } else if (msr == MSR_MTRRdefType) {
1225                 if (data & ~0xcff)
1226                         return false;
1227                 return valid_mtrr_type(data & 0xff);
1228         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1229                 for (i = 0; i < 8 ; i++)
1230                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1231                                 return false;
1232                 return true;
1233         }
1234
1235         /* variable MTRRs */
1236         return valid_mtrr_type(data & 0xff);
1237 }
1238
1239 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1240 {
1241         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1242
1243         if (!mtrr_valid(vcpu, msr, data))
1244                 return 1;
1245
1246         if (msr == MSR_MTRRdefType) {
1247                 vcpu->arch.mtrr_state.def_type = data;
1248                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1249         } else if (msr == MSR_MTRRfix64K_00000)
1250                 p[0] = data;
1251         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1252                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1253         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1254                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1255         else if (msr == MSR_IA32_CR_PAT)
1256                 vcpu->arch.pat = data;
1257         else {  /* Variable MTRRs */
1258                 int idx, is_mtrr_mask;
1259                 u64 *pt;
1260
1261                 idx = (msr - 0x200) / 2;
1262                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1263                 if (!is_mtrr_mask)
1264                         pt =
1265                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1266                 else
1267                         pt =
1268                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1269                 *pt = data;
1270         }
1271
1272         kvm_mmu_reset_context(vcpu);
1273         return 0;
1274 }
1275
1276 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1277 {
1278         u64 mcg_cap = vcpu->arch.mcg_cap;
1279         unsigned bank_num = mcg_cap & 0xff;
1280
1281         switch (msr) {
1282         case MSR_IA32_MCG_STATUS:
1283                 vcpu->arch.mcg_status = data;
1284                 break;
1285         case MSR_IA32_MCG_CTL:
1286                 if (!(mcg_cap & MCG_CTL_P))
1287                         return 1;
1288                 if (data != 0 && data != ~(u64)0)
1289                         return -1;
1290                 vcpu->arch.mcg_ctl = data;
1291                 break;
1292         default:
1293                 if (msr >= MSR_IA32_MC0_CTL &&
1294                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1295                         u32 offset = msr - MSR_IA32_MC0_CTL;
1296                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1297                          * some Linux kernels though clear bit 10 in bank 4 to
1298                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1299                          * this to avoid an uncatched #GP in the guest
1300                          */
1301                         if ((offset & 0x3) == 0 &&
1302                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1303                                 return -1;
1304                         vcpu->arch.mce_banks[offset] = data;
1305                         break;
1306                 }
1307                 return 1;
1308         }
1309         return 0;
1310 }
1311
1312 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1313 {
1314         struct kvm *kvm = vcpu->kvm;
1315         int lm = is_long_mode(vcpu);
1316         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1317                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1318         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1319                 : kvm->arch.xen_hvm_config.blob_size_32;
1320         u32 page_num = data & ~PAGE_MASK;
1321         u64 page_addr = data & PAGE_MASK;
1322         u8 *page;
1323         int r;
1324
1325         r = -E2BIG;
1326         if (page_num >= blob_size)
1327                 goto out;
1328         r = -ENOMEM;
1329         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1330         if (!page)
1331                 goto out;
1332         r = -EFAULT;
1333         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1334                 goto out_free;
1335         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1336                 goto out_free;
1337         r = 0;
1338 out_free:
1339         kfree(page);
1340 out:
1341         return r;
1342 }
1343
1344 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1345 {
1346         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1347 }
1348
1349 static bool kvm_hv_msr_partition_wide(u32 msr)
1350 {
1351         bool r = false;
1352         switch (msr) {
1353         case HV_X64_MSR_GUEST_OS_ID:
1354         case HV_X64_MSR_HYPERCALL:
1355                 r = true;
1356                 break;
1357         }
1358
1359         return r;
1360 }
1361
1362 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1363 {
1364         struct kvm *kvm = vcpu->kvm;
1365
1366         switch (msr) {
1367         case HV_X64_MSR_GUEST_OS_ID:
1368                 kvm->arch.hv_guest_os_id = data;
1369                 /* setting guest os id to zero disables hypercall page */
1370                 if (!kvm->arch.hv_guest_os_id)
1371                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1372                 break;
1373         case HV_X64_MSR_HYPERCALL: {
1374                 u64 gfn;
1375                 unsigned long addr;
1376                 u8 instructions[4];
1377
1378                 /* if guest os id is not set hypercall should remain disabled */
1379                 if (!kvm->arch.hv_guest_os_id)
1380                         break;
1381                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1382                         kvm->arch.hv_hypercall = data;
1383                         break;
1384                 }
1385                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1386                 addr = gfn_to_hva(kvm, gfn);
1387                 if (kvm_is_error_hva(addr))
1388                         return 1;
1389                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1390                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1391                 if (copy_to_user((void __user *)addr, instructions, 4))
1392                         return 1;
1393                 kvm->arch.hv_hypercall = data;
1394                 break;
1395         }
1396         default:
1397                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1398                           "data 0x%llx\n", msr, data);
1399                 return 1;
1400         }
1401         return 0;
1402 }
1403
1404 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1405 {
1406         switch (msr) {
1407         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1408                 unsigned long addr;
1409
1410                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1411                         vcpu->arch.hv_vapic = data;
1412                         break;
1413                 }
1414                 addr = gfn_to_hva(vcpu->kvm, data >>
1415                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1416                 if (kvm_is_error_hva(addr))
1417                         return 1;
1418                 if (clear_user((void __user *)addr, PAGE_SIZE))
1419                         return 1;
1420                 vcpu->arch.hv_vapic = data;
1421                 break;
1422         }
1423         case HV_X64_MSR_EOI:
1424                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1425         case HV_X64_MSR_ICR:
1426                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1427         case HV_X64_MSR_TPR:
1428                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1429         default:
1430                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1431                           "data 0x%llx\n", msr, data);
1432                 return 1;
1433         }
1434
1435         return 0;
1436 }
1437
1438 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1439 {
1440         gpa_t gpa = data & ~0x3f;
1441
1442         /* Bits 2:5 are resrved, Should be zero */
1443         if (data & 0x3c)
1444                 return 1;
1445
1446         vcpu->arch.apf.msr_val = data;
1447
1448         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1449                 kvm_clear_async_pf_completion_queue(vcpu);
1450                 kvm_async_pf_hash_reset(vcpu);
1451                 return 0;
1452         }
1453
1454         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1455                 return 1;
1456
1457         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1458         kvm_async_pf_wakeup_all(vcpu);
1459         return 0;
1460 }
1461
1462 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1463 {
1464         if (vcpu->arch.time_page) {
1465                 kvm_release_page_dirty(vcpu->arch.time_page);
1466                 vcpu->arch.time_page = NULL;
1467         }
1468 }
1469
1470 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1471 {
1472         switch (msr) {
1473         case MSR_EFER:
1474                 return set_efer(vcpu, data);
1475         case MSR_K7_HWCR:
1476                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1477                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1478                 if (data != 0) {
1479                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1480                                 data);
1481                         return 1;
1482                 }
1483                 break;
1484         case MSR_FAM10H_MMIO_CONF_BASE:
1485                 if (data != 0) {
1486                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1487                                 "0x%llx\n", data);
1488                         return 1;
1489                 }
1490                 break;
1491         case MSR_AMD64_NB_CFG:
1492                 break;
1493         case MSR_IA32_DEBUGCTLMSR:
1494                 if (!data) {
1495                         /* We support the non-activated case already */
1496                         break;
1497                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1498                         /* Values other than LBR and BTF are vendor-specific,
1499                            thus reserved and should throw a #GP */
1500                         return 1;
1501                 }
1502                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1503                         __func__, data);
1504                 break;
1505         case MSR_IA32_UCODE_REV:
1506         case MSR_IA32_UCODE_WRITE:
1507         case MSR_VM_HSAVE_PA:
1508         case MSR_AMD64_PATCH_LOADER:
1509                 break;
1510         case 0x200 ... 0x2ff:
1511                 return set_msr_mtrr(vcpu, msr, data);
1512         case MSR_IA32_APICBASE:
1513                 kvm_set_apic_base(vcpu, data);
1514                 break;
1515         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1516                 return kvm_x2apic_msr_write(vcpu, msr, data);
1517         case MSR_IA32_MISC_ENABLE:
1518                 vcpu->arch.ia32_misc_enable_msr = data;
1519                 break;
1520         case MSR_KVM_WALL_CLOCK_NEW:
1521         case MSR_KVM_WALL_CLOCK:
1522                 vcpu->kvm->arch.wall_clock = data;
1523                 kvm_write_wall_clock(vcpu->kvm, data);
1524                 break;
1525         case MSR_KVM_SYSTEM_TIME_NEW:
1526         case MSR_KVM_SYSTEM_TIME: {
1527                 kvmclock_reset(vcpu);
1528
1529                 vcpu->arch.time = data;
1530                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1531
1532                 /* we verify if the enable bit is set... */
1533                 if (!(data & 1))
1534                         break;
1535
1536                 /* ...but clean it before doing the actual write */
1537                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1538
1539                 vcpu->arch.time_page =
1540                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1541
1542                 if (is_error_page(vcpu->arch.time_page)) {
1543                         kvm_release_page_clean(vcpu->arch.time_page);
1544                         vcpu->arch.time_page = NULL;
1545                 }
1546                 break;
1547         }
1548         case MSR_KVM_ASYNC_PF_EN:
1549                 if (kvm_pv_enable_async_pf(vcpu, data))
1550                         return 1;
1551                 break;
1552         case MSR_IA32_MCG_CTL:
1553         case MSR_IA32_MCG_STATUS:
1554         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1555                 return set_msr_mce(vcpu, msr, data);
1556
1557         /* Performance counters are not protected by a CPUID bit,
1558          * so we should check all of them in the generic path for the sake of
1559          * cross vendor migration.
1560          * Writing a zero into the event select MSRs disables them,
1561          * which we perfectly emulate ;-). Any other value should be at least
1562          * reported, some guests depend on them.
1563          */
1564         case MSR_P6_EVNTSEL0:
1565         case MSR_P6_EVNTSEL1:
1566         case MSR_K7_EVNTSEL0:
1567         case MSR_K7_EVNTSEL1:
1568         case MSR_K7_EVNTSEL2:
1569         case MSR_K7_EVNTSEL3:
1570                 if (data != 0)
1571                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1572                                 "0x%x data 0x%llx\n", msr, data);
1573                 break;
1574         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1575          * so we ignore writes to make it happy.
1576          */
1577         case MSR_P6_PERFCTR0:
1578         case MSR_P6_PERFCTR1:
1579         case MSR_K7_PERFCTR0:
1580         case MSR_K7_PERFCTR1:
1581         case MSR_K7_PERFCTR2:
1582         case MSR_K7_PERFCTR3:
1583                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1584                         "0x%x data 0x%llx\n", msr, data);
1585                 break;
1586         case MSR_K7_CLK_CTL:
1587                 /*
1588                  * Ignore all writes to this no longer documented MSR.
1589                  * Writes are only relevant for old K7 processors,
1590                  * all pre-dating SVM, but a recommended workaround from
1591                  * AMD for these chips. It is possible to speicify the
1592                  * affected processor models on the command line, hence
1593                  * the need to ignore the workaround.
1594                  */
1595                 break;
1596         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1597                 if (kvm_hv_msr_partition_wide(msr)) {
1598                         int r;
1599                         mutex_lock(&vcpu->kvm->lock);
1600                         r = set_msr_hyperv_pw(vcpu, msr, data);
1601                         mutex_unlock(&vcpu->kvm->lock);
1602                         return r;
1603                 } else
1604                         return set_msr_hyperv(vcpu, msr, data);
1605                 break;
1606         case MSR_IA32_BBL_CR_CTL3:
1607                 /* Drop writes to this legacy MSR -- see rdmsr
1608                  * counterpart for further detail.
1609                  */
1610                 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1611                 break;
1612         default:
1613                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1614                         return xen_hvm_config(vcpu, data);
1615                 if (!ignore_msrs) {
1616                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1617                                 msr, data);
1618                         return 1;
1619                 } else {
1620                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1621                                 msr, data);
1622                         break;
1623                 }
1624         }
1625         return 0;
1626 }
1627 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1628
1629
1630 /*
1631  * Reads an msr value (of 'msr_index') into 'pdata'.
1632  * Returns 0 on success, non-0 otherwise.
1633  * Assumes vcpu_load() was already called.
1634  */
1635 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1636 {
1637         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1638 }
1639
1640 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1641 {
1642         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1643
1644         if (!msr_mtrr_valid(msr))
1645                 return 1;
1646
1647         if (msr == MSR_MTRRdefType)
1648                 *pdata = vcpu->arch.mtrr_state.def_type +
1649                          (vcpu->arch.mtrr_state.enabled << 10);
1650         else if (msr == MSR_MTRRfix64K_00000)
1651                 *pdata = p[0];
1652         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1653                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1654         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1655                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1656         else if (msr == MSR_IA32_CR_PAT)
1657                 *pdata = vcpu->arch.pat;
1658         else {  /* Variable MTRRs */
1659                 int idx, is_mtrr_mask;
1660                 u64 *pt;
1661
1662                 idx = (msr - 0x200) / 2;
1663                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1664                 if (!is_mtrr_mask)
1665                         pt =
1666                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1667                 else
1668                         pt =
1669                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1670                 *pdata = *pt;
1671         }
1672
1673         return 0;
1674 }
1675
1676 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1677 {
1678         u64 data;
1679         u64 mcg_cap = vcpu->arch.mcg_cap;
1680         unsigned bank_num = mcg_cap & 0xff;
1681
1682         switch (msr) {
1683         case MSR_IA32_P5_MC_ADDR:
1684         case MSR_IA32_P5_MC_TYPE:
1685                 data = 0;
1686                 break;
1687         case MSR_IA32_MCG_CAP:
1688                 data = vcpu->arch.mcg_cap;
1689                 break;
1690         case MSR_IA32_MCG_CTL:
1691                 if (!(mcg_cap & MCG_CTL_P))
1692                         return 1;
1693                 data = vcpu->arch.mcg_ctl;
1694                 break;
1695         case MSR_IA32_MCG_STATUS:
1696                 data = vcpu->arch.mcg_status;
1697                 break;
1698         default:
1699                 if (msr >= MSR_IA32_MC0_CTL &&
1700                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1701                         u32 offset = msr - MSR_IA32_MC0_CTL;
1702                         data = vcpu->arch.mce_banks[offset];
1703                         break;
1704                 }
1705                 return 1;
1706         }
1707         *pdata = data;
1708         return 0;
1709 }
1710
1711 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1712 {
1713         u64 data = 0;
1714         struct kvm *kvm = vcpu->kvm;
1715
1716         switch (msr) {
1717         case HV_X64_MSR_GUEST_OS_ID:
1718                 data = kvm->arch.hv_guest_os_id;
1719                 break;
1720         case HV_X64_MSR_HYPERCALL:
1721                 data = kvm->arch.hv_hypercall;
1722                 break;
1723         default:
1724                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1725                 return 1;
1726         }
1727
1728         *pdata = data;
1729         return 0;
1730 }
1731
1732 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1733 {
1734         u64 data = 0;
1735
1736         switch (msr) {
1737         case HV_X64_MSR_VP_INDEX: {
1738                 int r;
1739                 struct kvm_vcpu *v;
1740                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1741                         if (v == vcpu)
1742                                 data = r;
1743                 break;
1744         }
1745         case HV_X64_MSR_EOI:
1746                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1747         case HV_X64_MSR_ICR:
1748                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1749         case HV_X64_MSR_TPR:
1750                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1751         default:
1752                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1753                 return 1;
1754         }
1755         *pdata = data;
1756         return 0;
1757 }
1758
1759 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1760 {
1761         u64 data;
1762
1763         switch (msr) {
1764         case MSR_IA32_PLATFORM_ID:
1765         case MSR_IA32_UCODE_REV:
1766         case MSR_IA32_EBL_CR_POWERON:
1767         case MSR_IA32_DEBUGCTLMSR:
1768         case MSR_IA32_LASTBRANCHFROMIP:
1769         case MSR_IA32_LASTBRANCHTOIP:
1770         case MSR_IA32_LASTINTFROMIP:
1771         case MSR_IA32_LASTINTTOIP:
1772         case MSR_K8_SYSCFG:
1773         case MSR_K7_HWCR:
1774         case MSR_VM_HSAVE_PA:
1775         case MSR_P6_PERFCTR0:
1776         case MSR_P6_PERFCTR1:
1777         case MSR_P6_EVNTSEL0:
1778         case MSR_P6_EVNTSEL1:
1779         case MSR_K7_EVNTSEL0:
1780         case MSR_K7_PERFCTR0:
1781         case MSR_K8_INT_PENDING_MSG:
1782         case MSR_AMD64_NB_CFG:
1783         case MSR_FAM10H_MMIO_CONF_BASE:
1784                 data = 0;
1785                 break;
1786         case MSR_MTRRcap:
1787                 data = 0x500 | KVM_NR_VAR_MTRR;
1788                 break;
1789         case 0x200 ... 0x2ff:
1790                 return get_msr_mtrr(vcpu, msr, pdata);
1791         case 0xcd: /* fsb frequency */
1792                 data = 3;
1793                 break;
1794                 /*
1795                  * MSR_EBC_FREQUENCY_ID
1796                  * Conservative value valid for even the basic CPU models.
1797                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1798                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1799                  * and 266MHz for model 3, or 4. Set Core Clock
1800                  * Frequency to System Bus Frequency Ratio to 1 (bits
1801                  * 31:24) even though these are only valid for CPU
1802                  * models > 2, however guests may end up dividing or
1803                  * multiplying by zero otherwise.
1804                  */
1805         case MSR_EBC_FREQUENCY_ID:
1806                 data = 1 << 24;
1807                 break;
1808         case MSR_IA32_APICBASE:
1809                 data = kvm_get_apic_base(vcpu);
1810                 break;
1811         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1812                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1813                 break;
1814         case MSR_IA32_MISC_ENABLE:
1815                 data = vcpu->arch.ia32_misc_enable_msr;
1816                 break;
1817         case MSR_IA32_PERF_STATUS:
1818                 /* TSC increment by tick */
1819                 data = 1000ULL;
1820                 /* CPU multiplier */
1821                 data |= (((uint64_t)4ULL) << 40);
1822                 break;
1823         case MSR_EFER:
1824                 data = vcpu->arch.efer;
1825                 break;
1826         case MSR_KVM_WALL_CLOCK:
1827         case MSR_KVM_WALL_CLOCK_NEW:
1828                 data = vcpu->kvm->arch.wall_clock;
1829                 break;
1830         case MSR_KVM_SYSTEM_TIME:
1831         case MSR_KVM_SYSTEM_TIME_NEW:
1832                 data = vcpu->arch.time;
1833                 break;
1834         case MSR_KVM_ASYNC_PF_EN:
1835                 data = vcpu->arch.apf.msr_val;
1836                 break;
1837         case MSR_IA32_P5_MC_ADDR:
1838         case MSR_IA32_P5_MC_TYPE:
1839         case MSR_IA32_MCG_CAP:
1840         case MSR_IA32_MCG_CTL:
1841         case MSR_IA32_MCG_STATUS:
1842         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1843                 return get_msr_mce(vcpu, msr, pdata);
1844         case MSR_K7_CLK_CTL:
1845                 /*
1846                  * Provide expected ramp-up count for K7. All other
1847                  * are set to zero, indicating minimum divisors for
1848                  * every field.
1849                  *
1850                  * This prevents guest kernels on AMD host with CPU
1851                  * type 6, model 8 and higher from exploding due to
1852                  * the rdmsr failing.
1853                  */
1854                 data = 0x20000000;
1855                 break;
1856         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1857                 if (kvm_hv_msr_partition_wide(msr)) {
1858                         int r;
1859                         mutex_lock(&vcpu->kvm->lock);
1860                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1861                         mutex_unlock(&vcpu->kvm->lock);
1862                         return r;
1863                 } else
1864                         return get_msr_hyperv(vcpu, msr, pdata);
1865                 break;
1866         case MSR_IA32_BBL_CR_CTL3:
1867                 /* This legacy MSR exists but isn't fully documented in current
1868                  * silicon.  It is however accessed by winxp in very narrow
1869                  * scenarios where it sets bit #19, itself documented as
1870                  * a "reserved" bit.  Best effort attempt to source coherent
1871                  * read data here should the balance of the register be
1872                  * interpreted by the guest:
1873                  *
1874                  * L2 cache control register 3: 64GB range, 256KB size,
1875                  * enabled, latency 0x1, configured
1876                  */
1877                 data = 0xbe702111;
1878                 break;
1879         default:
1880                 if (!ignore_msrs) {
1881                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1882                         return 1;
1883                 } else {
1884                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1885                         data = 0;
1886                 }
1887                 break;
1888         }
1889         *pdata = data;
1890         return 0;
1891 }
1892 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1893
1894 /*
1895  * Read or write a bunch of msrs. All parameters are kernel addresses.
1896  *
1897  * @return number of msrs set successfully.
1898  */
1899 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1900                     struct kvm_msr_entry *entries,
1901                     int (*do_msr)(struct kvm_vcpu *vcpu,
1902                                   unsigned index, u64 *data))
1903 {
1904         int i, idx;
1905
1906         idx = srcu_read_lock(&vcpu->kvm->srcu);
1907         for (i = 0; i < msrs->nmsrs; ++i)
1908                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1909                         break;
1910         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1911
1912         return i;
1913 }
1914
1915 /*
1916  * Read or write a bunch of msrs. Parameters are user addresses.
1917  *
1918  * @return number of msrs set successfully.
1919  */
1920 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1921                   int (*do_msr)(struct kvm_vcpu *vcpu,
1922                                 unsigned index, u64 *data),
1923                   int writeback)
1924 {
1925         struct kvm_msrs msrs;
1926         struct kvm_msr_entry *entries;
1927         int r, n;
1928         unsigned size;
1929
1930         r = -EFAULT;
1931         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1932                 goto out;
1933
1934         r = -E2BIG;
1935         if (msrs.nmsrs >= MAX_IO_MSRS)
1936                 goto out;
1937
1938         r = -ENOMEM;
1939         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1940         entries = kmalloc(size, GFP_KERNEL);
1941         if (!entries)
1942                 goto out;
1943
1944         r = -EFAULT;
1945         if (copy_from_user(entries, user_msrs->entries, size))
1946                 goto out_free;
1947
1948         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1949         if (r < 0)
1950                 goto out_free;
1951
1952         r = -EFAULT;
1953         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1954                 goto out_free;
1955
1956         r = n;
1957
1958 out_free:
1959         kfree(entries);
1960 out:
1961         return r;
1962 }
1963
1964 int kvm_dev_ioctl_check_extension(long ext)
1965 {
1966         int r;
1967
1968         switch (ext) {
1969         case KVM_CAP_IRQCHIP:
1970         case KVM_CAP_HLT:
1971         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1972         case KVM_CAP_SET_TSS_ADDR:
1973         case KVM_CAP_EXT_CPUID:
1974         case KVM_CAP_CLOCKSOURCE:
1975         case KVM_CAP_PIT:
1976         case KVM_CAP_NOP_IO_DELAY:
1977         case KVM_CAP_MP_STATE:
1978         case KVM_CAP_SYNC_MMU:
1979         case KVM_CAP_USER_NMI:
1980         case KVM_CAP_REINJECT_CONTROL:
1981         case KVM_CAP_IRQ_INJECT_STATUS:
1982         case KVM_CAP_ASSIGN_DEV_IRQ:
1983         case KVM_CAP_IRQFD:
1984         case KVM_CAP_IOEVENTFD:
1985         case KVM_CAP_PIT2:
1986         case KVM_CAP_PIT_STATE2:
1987         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1988         case KVM_CAP_XEN_HVM:
1989         case KVM_CAP_ADJUST_CLOCK:
1990         case KVM_CAP_VCPU_EVENTS:
1991         case KVM_CAP_HYPERV:
1992         case KVM_CAP_HYPERV_VAPIC:
1993         case KVM_CAP_HYPERV_SPIN:
1994         case KVM_CAP_PCI_SEGMENT:
1995         case KVM_CAP_DEBUGREGS:
1996         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1997         case KVM_CAP_XSAVE:
1998         case KVM_CAP_ASYNC_PF:
1999         case KVM_CAP_GET_TSC_KHZ:
2000                 r = 1;
2001                 break;
2002         case KVM_CAP_COALESCED_MMIO:
2003                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2004                 break;
2005         case KVM_CAP_VAPIC:
2006                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2007                 break;
2008         case KVM_CAP_NR_VCPUS:
2009                 r = KVM_MAX_VCPUS;
2010                 break;
2011         case KVM_CAP_NR_MEMSLOTS:
2012                 r = KVM_MEMORY_SLOTS;
2013                 break;
2014         case KVM_CAP_PV_MMU:    /* obsolete */
2015                 r = 0;
2016                 break;
2017         case KVM_CAP_IOMMU:
2018                 r = iommu_found();
2019                 break;
2020         case KVM_CAP_MCE:
2021                 r = KVM_MAX_MCE_BANKS;
2022                 break;
2023         case KVM_CAP_XCRS:
2024                 r = cpu_has_xsave;
2025                 break;
2026         case KVM_CAP_TSC_CONTROL:
2027                 r = kvm_has_tsc_control;
2028                 break;
2029         default:
2030                 r = 0;
2031                 break;
2032         }
2033         return r;
2034
2035 }
2036
2037 long kvm_arch_dev_ioctl(struct file *filp,
2038                         unsigned int ioctl, unsigned long arg)
2039 {
2040         void __user *argp = (void __user *)arg;
2041         long r;
2042
2043         switch (ioctl) {
2044         case KVM_GET_MSR_INDEX_LIST: {
2045                 struct kvm_msr_list __user *user_msr_list = argp;
2046                 struct kvm_msr_list msr_list;
2047                 unsigned n;
2048
2049                 r = -EFAULT;
2050                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2051                         goto out;
2052                 n = msr_list.nmsrs;
2053                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2054                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2055                         goto out;
2056                 r = -E2BIG;
2057                 if (n < msr_list.nmsrs)
2058                         goto out;
2059                 r = -EFAULT;
2060                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2061                                  num_msrs_to_save * sizeof(u32)))
2062                         goto out;
2063                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2064                                  &emulated_msrs,
2065                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2066                         goto out;
2067                 r = 0;
2068                 break;
2069         }
2070         case KVM_GET_SUPPORTED_CPUID: {
2071                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2072                 struct kvm_cpuid2 cpuid;
2073
2074                 r = -EFAULT;
2075                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2076                         goto out;
2077                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2078                                                       cpuid_arg->entries);
2079                 if (r)
2080                         goto out;
2081
2082                 r = -EFAULT;
2083                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2084                         goto out;
2085                 r = 0;
2086                 break;
2087         }
2088         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2089                 u64 mce_cap;
2090
2091                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2092                 r = -EFAULT;
2093                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2094                         goto out;
2095                 r = 0;
2096                 break;
2097         }
2098         default:
2099                 r = -EINVAL;
2100         }
2101 out:
2102         return r;
2103 }
2104
2105 static void wbinvd_ipi(void *garbage)
2106 {
2107         wbinvd();
2108 }
2109
2110 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2111 {
2112         return vcpu->kvm->arch.iommu_domain &&
2113                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2114 }
2115
2116 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2117 {
2118         /* Address WBINVD may be executed by guest */
2119         if (need_emulate_wbinvd(vcpu)) {
2120                 if (kvm_x86_ops->has_wbinvd_exit())
2121                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2122                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2123                         smp_call_function_single(vcpu->cpu,
2124                                         wbinvd_ipi, NULL, 1);
2125         }
2126
2127         kvm_x86_ops->vcpu_load(vcpu, cpu);
2128         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2129                 /* Make sure TSC doesn't go backwards */
2130                 s64 tsc_delta;
2131                 u64 tsc;
2132
2133                 kvm_get_msr(vcpu, MSR_IA32_TSC, &tsc);
2134                 tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2135                              tsc - vcpu->arch.last_guest_tsc;
2136
2137                 if (tsc_delta < 0)
2138                         mark_tsc_unstable("KVM discovered backwards TSC");
2139                 if (check_tsc_unstable()) {
2140                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2141                         vcpu->arch.tsc_catchup = 1;
2142                 }
2143                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2144                 if (vcpu->cpu != cpu)
2145                         kvm_migrate_timers(vcpu);
2146                 vcpu->cpu = cpu;
2147         }
2148 }
2149
2150 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2151 {
2152         kvm_x86_ops->vcpu_put(vcpu);
2153         kvm_put_guest_fpu(vcpu);
2154         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
2155 }
2156
2157 static int is_efer_nx(void)
2158 {
2159         unsigned long long efer = 0;
2160
2161         rdmsrl_safe(MSR_EFER, &efer);
2162         return efer & EFER_NX;
2163 }
2164
2165 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2166 {
2167         int i;
2168         struct kvm_cpuid_entry2 *e, *entry;
2169
2170         entry = NULL;
2171         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2172                 e = &vcpu->arch.cpuid_entries[i];
2173                 if (e->function == 0x80000001) {
2174                         entry = e;
2175                         break;
2176                 }
2177         }
2178         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2179                 entry->edx &= ~(1 << 20);
2180                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2181         }
2182 }
2183
2184 /* when an old userspace process fills a new kernel module */
2185 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2186                                     struct kvm_cpuid *cpuid,
2187                                     struct kvm_cpuid_entry __user *entries)
2188 {
2189         int r, i;
2190         struct kvm_cpuid_entry *cpuid_entries;
2191
2192         r = -E2BIG;
2193         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2194                 goto out;
2195         r = -ENOMEM;
2196         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2197         if (!cpuid_entries)
2198                 goto out;
2199         r = -EFAULT;
2200         if (copy_from_user(cpuid_entries, entries,
2201                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2202                 goto out_free;
2203         for (i = 0; i < cpuid->nent; i++) {
2204                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2205                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2206                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2207                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2208                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2209                 vcpu->arch.cpuid_entries[i].index = 0;
2210                 vcpu->arch.cpuid_entries[i].flags = 0;
2211                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2212                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2213                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2214         }
2215         vcpu->arch.cpuid_nent = cpuid->nent;
2216         cpuid_fix_nx_cap(vcpu);
2217         r = 0;
2218         kvm_apic_set_version(vcpu);
2219         kvm_x86_ops->cpuid_update(vcpu);
2220         update_cpuid(vcpu);
2221
2222 out_free:
2223         vfree(cpuid_entries);
2224 out:
2225         return r;
2226 }
2227
2228 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2229                                      struct kvm_cpuid2 *cpuid,
2230                                      struct kvm_cpuid_entry2 __user *entries)
2231 {
2232         int r;
2233
2234         r = -E2BIG;
2235         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2236                 goto out;
2237         r = -EFAULT;
2238         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2239                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2240                 goto out;
2241         vcpu->arch.cpuid_nent = cpuid->nent;
2242         kvm_apic_set_version(vcpu);
2243         kvm_x86_ops->cpuid_update(vcpu);
2244         update_cpuid(vcpu);
2245         return 0;
2246
2247 out:
2248         return r;
2249 }
2250
2251 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2252                                      struct kvm_cpuid2 *cpuid,
2253                                      struct kvm_cpuid_entry2 __user *entries)
2254 {
2255         int r;
2256
2257         r = -E2BIG;
2258         if (cpuid->nent < vcpu->arch.cpuid_nent)
2259                 goto out;
2260         r = -EFAULT;
2261         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2262                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2263                 goto out;
2264         return 0;
2265
2266 out:
2267         cpuid->nent = vcpu->arch.cpuid_nent;
2268         return r;
2269 }
2270
2271 static void cpuid_mask(u32 *word, int wordnum)
2272 {
2273         *word &= boot_cpu_data.x86_capability[wordnum];
2274 }
2275
2276 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2277                            u32 index)
2278 {
2279         entry->function = function;
2280         entry->index = index;
2281         cpuid_count(entry->function, entry->index,
2282                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2283         entry->flags = 0;
2284 }
2285
2286 #define F(x) bit(X86_FEATURE_##x)
2287
2288 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2289                          u32 index, int *nent, int maxnent)
2290 {
2291         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2292 #ifdef CONFIG_X86_64
2293         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2294                                 ? F(GBPAGES) : 0;
2295         unsigned f_lm = F(LM);
2296 #else
2297         unsigned f_gbpages = 0;
2298         unsigned f_lm = 0;
2299 #endif
2300         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2301
2302         /* cpuid 1.edx */
2303         const u32 kvm_supported_word0_x86_features =
2304                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2305                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2306                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2307                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2308                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2309                 0 /* Reserved, DS, ACPI */ | F(MMX) |
2310                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2311                 0 /* HTT, TM, Reserved, PBE */;
2312         /* cpuid 0x80000001.edx */
2313         const u32 kvm_supported_word1_x86_features =
2314                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2315                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2316                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2317                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2318                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2319                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2320                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2321                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2322         /* cpuid 1.ecx */
2323         const u32 kvm_supported_word4_x86_features =
2324                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2325                 0 /* DS-CPL, VMX, SMX, EST */ |
2326                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2327                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2328                 0 /* Reserved, DCA */ | F(XMM4_1) |
2329                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2330                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2331                 F(F16C);
2332         /* cpuid 0x80000001.ecx */
2333         const u32 kvm_supported_word6_x86_features =
2334                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2335                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2336                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2337                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2338
2339         /* all calls to cpuid_count() should be made on the same cpu */
2340         get_cpu();
2341         do_cpuid_1_ent(entry, function, index);
2342         ++*nent;
2343
2344         switch (function) {
2345         case 0:
2346                 entry->eax = min(entry->eax, (u32)0xd);
2347                 break;
2348         case 1:
2349                 entry->edx &= kvm_supported_word0_x86_features;
2350                 cpuid_mask(&entry->edx, 0);
2351                 entry->ecx &= kvm_supported_word4_x86_features;
2352                 cpuid_mask(&entry->ecx, 4);
2353                 /* we support x2apic emulation even if host does not support
2354                  * it since we emulate x2apic in software */
2355                 entry->ecx |= F(X2APIC);
2356                 break;
2357         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2358          * may return different values. This forces us to get_cpu() before
2359          * issuing the first command, and also to emulate this annoying behavior
2360          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2361         case 2: {
2362                 int t, times = entry->eax & 0xff;
2363
2364                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2365                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2366                 for (t = 1; t < times && *nent < maxnent; ++t) {
2367                         do_cpuid_1_ent(&entry[t], function, 0);
2368                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2369                         ++*nent;
2370                 }
2371                 break;
2372         }
2373         /* function 4 and 0xb have additional index. */
2374         case 4: {
2375                 int i, cache_type;
2376
2377                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2378                 /* read more entries until cache_type is zero */
2379                 for (i = 1; *nent < maxnent; ++i) {
2380                         cache_type = entry[i - 1].eax & 0x1f;
2381                         if (!cache_type)
2382                                 break;
2383                         do_cpuid_1_ent(&entry[i], function, i);
2384                         entry[i].flags |=
2385                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2386                         ++*nent;
2387                 }
2388                 break;
2389         }
2390         case 0xb: {
2391                 int i, level_type;
2392
2393                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2394                 /* read more entries until level_type is zero */
2395                 for (i = 1; *nent < maxnent; ++i) {
2396                         level_type = entry[i - 1].ecx & 0xff00;
2397                         if (!level_type)
2398                                 break;
2399                         do_cpuid_1_ent(&entry[i], function, i);
2400                         entry[i].flags |=
2401                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2402                         ++*nent;
2403                 }
2404                 break;
2405         }
2406         case 0xd: {
2407                 int i;
2408
2409                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2410                 for (i = 1; *nent < maxnent && i < 64; ++i) {
2411                         if (entry[i].eax == 0)
2412                                 continue;
2413                         do_cpuid_1_ent(&entry[i], function, i);
2414                         entry[i].flags |=
2415                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2416                         ++*nent;
2417                 }
2418                 break;
2419         }
2420         case KVM_CPUID_SIGNATURE: {
2421                 char signature[12] = "KVMKVMKVM\0\0";
2422                 u32 *sigptr = (u32 *)signature;
2423                 entry->eax = 0;
2424                 entry->ebx = sigptr[0];
2425                 entry->ecx = sigptr[1];
2426                 entry->edx = sigptr[2];
2427                 break;
2428         }
2429         case KVM_CPUID_FEATURES:
2430                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2431                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2432                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2433                              (1 << KVM_FEATURE_ASYNC_PF) |
2434                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2435                 entry->ebx = 0;
2436                 entry->ecx = 0;
2437                 entry->edx = 0;
2438                 break;
2439         case 0x80000000:
2440                 entry->eax = min(entry->eax, 0x8000001a);
2441                 break;
2442         case 0x80000001:
2443                 entry->edx &= kvm_supported_word1_x86_features;
2444                 cpuid_mask(&entry->edx, 1);
2445                 entry->ecx &= kvm_supported_word6_x86_features;
2446                 cpuid_mask(&entry->ecx, 6);
2447                 break;
2448         }
2449
2450         kvm_x86_ops->set_supported_cpuid(function, entry);
2451
2452         put_cpu();
2453 }
2454
2455 #undef F
2456
2457 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2458                                      struct kvm_cpuid_entry2 __user *entries)
2459 {
2460         struct kvm_cpuid_entry2 *cpuid_entries;
2461         int limit, nent = 0, r = -E2BIG;
2462         u32 func;
2463
2464         if (cpuid->nent < 1)
2465                 goto out;
2466         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2467                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2468         r = -ENOMEM;
2469         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2470         if (!cpuid_entries)
2471                 goto out;
2472
2473         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2474         limit = cpuid_entries[0].eax;
2475         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2476                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2477                              &nent, cpuid->nent);
2478         r = -E2BIG;
2479         if (nent >= cpuid->nent)
2480                 goto out_free;
2481
2482         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2483         limit = cpuid_entries[nent - 1].eax;
2484         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2485                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2486                              &nent, cpuid->nent);
2487
2488
2489
2490         r = -E2BIG;
2491         if (nent >= cpuid->nent)
2492                 goto out_free;
2493
2494         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2495                      cpuid->nent);
2496
2497         r = -E2BIG;
2498         if (nent >= cpuid->nent)
2499                 goto out_free;
2500
2501         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2502                      cpuid->nent);
2503
2504         r = -E2BIG;
2505         if (nent >= cpuid->nent)
2506                 goto out_free;
2507
2508         r = -EFAULT;
2509         if (copy_to_user(entries, cpuid_entries,
2510                          nent * sizeof(struct kvm_cpuid_entry2)))
2511                 goto out_free;
2512         cpuid->nent = nent;
2513         r = 0;
2514
2515 out_free:
2516         vfree(cpuid_entries);
2517 out:
2518         return r;
2519 }
2520
2521 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2522                                     struct kvm_lapic_state *s)
2523 {
2524         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2525
2526         return 0;
2527 }
2528
2529 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2530                                     struct kvm_lapic_state *s)
2531 {
2532         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2533         kvm_apic_post_state_restore(vcpu);
2534         update_cr8_intercept(vcpu);
2535
2536         return 0;
2537 }
2538
2539 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2540                                     struct kvm_interrupt *irq)
2541 {
2542         if (irq->irq < 0 || irq->irq >= 256)
2543                 return -EINVAL;
2544         if (irqchip_in_kernel(vcpu->kvm))
2545                 return -ENXIO;
2546
2547         kvm_queue_interrupt(vcpu, irq->irq, false);
2548         kvm_make_request(KVM_REQ_EVENT, vcpu);
2549
2550         return 0;
2551 }
2552
2553 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2554 {
2555         kvm_inject_nmi(vcpu);
2556
2557         return 0;
2558 }
2559
2560 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2561                                            struct kvm_tpr_access_ctl *tac)
2562 {
2563         if (tac->flags)
2564                 return -EINVAL;
2565         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2566         return 0;
2567 }
2568
2569 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2570                                         u64 mcg_cap)
2571 {
2572         int r;
2573         unsigned bank_num = mcg_cap & 0xff, bank;
2574
2575         r = -EINVAL;
2576         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2577                 goto out;
2578         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2579                 goto out;
2580         r = 0;
2581         vcpu->arch.mcg_cap = mcg_cap;
2582         /* Init IA32_MCG_CTL to all 1s */
2583         if (mcg_cap & MCG_CTL_P)
2584                 vcpu->arch.mcg_ctl = ~(u64)0;
2585         /* Init IA32_MCi_CTL to all 1s */
2586         for (bank = 0; bank < bank_num; bank++)
2587                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2588 out:
2589         return r;
2590 }
2591
2592 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2593                                       struct kvm_x86_mce *mce)
2594 {
2595         u64 mcg_cap = vcpu->arch.mcg_cap;
2596         unsigned bank_num = mcg_cap & 0xff;
2597         u64 *banks = vcpu->arch.mce_banks;
2598
2599         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2600                 return -EINVAL;
2601         /*
2602          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2603          * reporting is disabled
2604          */
2605         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2606             vcpu->arch.mcg_ctl != ~(u64)0)
2607                 return 0;
2608         banks += 4 * mce->bank;
2609         /*
2610          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2611          * reporting is disabled for the bank
2612          */
2613         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2614                 return 0;
2615         if (mce->status & MCI_STATUS_UC) {
2616                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2617                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2618                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2619                         return 0;
2620                 }
2621                 if (banks[1] & MCI_STATUS_VAL)
2622                         mce->status |= MCI_STATUS_OVER;
2623                 banks[2] = mce->addr;
2624                 banks[3] = mce->misc;
2625                 vcpu->arch.mcg_status = mce->mcg_status;
2626                 banks[1] = mce->status;
2627                 kvm_queue_exception(vcpu, MC_VECTOR);
2628         } else if (!(banks[1] & MCI_STATUS_VAL)
2629                    || !(banks[1] & MCI_STATUS_UC)) {
2630                 if (banks[1] & MCI_STATUS_VAL)
2631                         mce->status |= MCI_STATUS_OVER;
2632                 banks[2] = mce->addr;
2633                 banks[3] = mce->misc;
2634                 banks[1] = mce->status;
2635         } else
2636                 banks[1] |= MCI_STATUS_OVER;
2637         return 0;
2638 }
2639
2640 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2641                                                struct kvm_vcpu_events *events)
2642 {
2643         events->exception.injected =
2644                 vcpu->arch.exception.pending &&
2645                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2646         events->exception.nr = vcpu->arch.exception.nr;
2647         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2648         events->exception.pad = 0;
2649         events->exception.error_code = vcpu->arch.exception.error_code;
2650
2651         events->interrupt.injected =
2652                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2653         events->interrupt.nr = vcpu->arch.interrupt.nr;
2654         events->interrupt.soft = 0;
2655         events->interrupt.shadow =
2656                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2657                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2658
2659         events->nmi.injected = vcpu->arch.nmi_injected;
2660         events->nmi.pending = vcpu->arch.nmi_pending;
2661         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2662         events->nmi.pad = 0;
2663
2664         events->sipi_vector = vcpu->arch.sipi_vector;
2665
2666         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2667                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2668                          | KVM_VCPUEVENT_VALID_SHADOW);
2669         memset(&events->reserved, 0, sizeof(events->reserved));
2670 }
2671
2672 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2673                                               struct kvm_vcpu_events *events)
2674 {
2675         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2676                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2677                               | KVM_VCPUEVENT_VALID_SHADOW))
2678                 return -EINVAL;
2679
2680         vcpu->arch.exception.pending = events->exception.injected;
2681         vcpu->arch.exception.nr = events->exception.nr;
2682         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2683         vcpu->arch.exception.error_code = events->exception.error_code;
2684
2685         vcpu->arch.interrupt.pending = events->interrupt.injected;
2686         vcpu->arch.interrupt.nr = events->interrupt.nr;
2687         vcpu->arch.interrupt.soft = events->interrupt.soft;
2688         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2689                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2690                                                   events->interrupt.shadow);
2691
2692         vcpu->arch.nmi_injected = events->nmi.injected;
2693         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2694                 vcpu->arch.nmi_pending = events->nmi.pending;
2695         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2696
2697         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2698                 vcpu->arch.sipi_vector = events->sipi_vector;
2699
2700         kvm_make_request(KVM_REQ_EVENT, vcpu);
2701
2702         return 0;
2703 }
2704
2705 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2706                                              struct kvm_debugregs *dbgregs)
2707 {
2708         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2709         dbgregs->dr6 = vcpu->arch.dr6;
2710         dbgregs->dr7 = vcpu->arch.dr7;
2711         dbgregs->flags = 0;
2712         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2713 }
2714
2715 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2716                                             struct kvm_debugregs *dbgregs)
2717 {
2718         if (dbgregs->flags)
2719                 return -EINVAL;
2720
2721         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2722         vcpu->arch.dr6 = dbgregs->dr6;
2723         vcpu->arch.dr7 = dbgregs->dr7;
2724
2725         return 0;
2726 }
2727
2728 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2729                                          struct kvm_xsave *guest_xsave)
2730 {
2731         if (cpu_has_xsave)
2732                 memcpy(guest_xsave->region,
2733                         &vcpu->arch.guest_fpu.state->xsave,
2734                         xstate_size);
2735         else {
2736                 memcpy(guest_xsave->region,
2737                         &vcpu->arch.guest_fpu.state->fxsave,
2738                         sizeof(struct i387_fxsave_struct));
2739                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2740                         XSTATE_FPSSE;
2741         }
2742 }
2743
2744 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2745                                         struct kvm_xsave *guest_xsave)
2746 {
2747         u64 xstate_bv =
2748                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2749
2750         if (cpu_has_xsave)
2751                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2752                         guest_xsave->region, xstate_size);
2753         else {
2754                 if (xstate_bv & ~XSTATE_FPSSE)
2755                         return -EINVAL;
2756                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2757                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2758         }
2759         return 0;
2760 }
2761
2762 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2763                                         struct kvm_xcrs *guest_xcrs)
2764 {
2765         if (!cpu_has_xsave) {
2766                 guest_xcrs->nr_xcrs = 0;
2767                 return;
2768         }
2769
2770         guest_xcrs->nr_xcrs = 1;
2771         guest_xcrs->flags = 0;
2772         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2773         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2774 }
2775
2776 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2777                                        struct kvm_xcrs *guest_xcrs)
2778 {
2779         int i, r = 0;
2780
2781         if (!cpu_has_xsave)
2782                 return -EINVAL;
2783
2784         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2785                 return -EINVAL;
2786
2787         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2788                 /* Only support XCR0 currently */
2789                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2790                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2791                                 guest_xcrs->xcrs[0].value);
2792                         break;
2793                 }
2794         if (r)
2795                 r = -EINVAL;
2796         return r;
2797 }
2798
2799 long kvm_arch_vcpu_ioctl(struct file *filp,
2800                          unsigned int ioctl, unsigned long arg)
2801 {
2802         struct kvm_vcpu *vcpu = filp->private_data;
2803         void __user *argp = (void __user *)arg;
2804         int r;
2805         union {
2806                 struct kvm_lapic_state *lapic;
2807                 struct kvm_xsave *xsave;
2808                 struct kvm_xcrs *xcrs;
2809                 void *buffer;
2810         } u;
2811
2812         u.buffer = NULL;
2813         switch (ioctl) {
2814         case KVM_GET_LAPIC: {
2815                 r = -EINVAL;
2816                 if (!vcpu->arch.apic)
2817                         goto out;
2818                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2819
2820                 r = -ENOMEM;
2821                 if (!u.lapic)
2822                         goto out;
2823                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2824                 if (r)
2825                         goto out;
2826                 r = -EFAULT;
2827                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2828                         goto out;
2829                 r = 0;
2830                 break;
2831         }
2832         case KVM_SET_LAPIC: {
2833                 r = -EINVAL;
2834                 if (!vcpu->arch.apic)
2835                         goto out;
2836                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2837                 r = -ENOMEM;
2838                 if (!u.lapic)
2839                         goto out;
2840                 r = -EFAULT;
2841                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2842                         goto out;
2843                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2844                 if (r)
2845                         goto out;
2846                 r = 0;
2847                 break;
2848         }
2849         case KVM_INTERRUPT: {
2850                 struct kvm_interrupt irq;
2851
2852                 r = -EFAULT;
2853                 if (copy_from_user(&irq, argp, sizeof irq))
2854                         goto out;
2855                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2856                 if (r)
2857                         goto out;
2858                 r = 0;
2859                 break;
2860         }
2861         case KVM_NMI: {
2862                 r = kvm_vcpu_ioctl_nmi(vcpu);
2863                 if (r)
2864                         goto out;
2865                 r = 0;
2866                 break;
2867         }
2868         case KVM_SET_CPUID: {
2869                 struct kvm_cpuid __user *cpuid_arg = argp;
2870                 struct kvm_cpuid cpuid;
2871
2872                 r = -EFAULT;
2873                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2874                         goto out;
2875                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2876                 if (r)
2877                         goto out;
2878                 break;
2879         }
2880         case KVM_SET_CPUID2: {
2881                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2882                 struct kvm_cpuid2 cpuid;
2883
2884                 r = -EFAULT;
2885                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2886                         goto out;
2887                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2888                                               cpuid_arg->entries);
2889                 if (r)
2890                         goto out;
2891                 break;
2892         }
2893         case KVM_GET_CPUID2: {
2894                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2895                 struct kvm_cpuid2 cpuid;
2896
2897                 r = -EFAULT;
2898                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2899                         goto out;
2900                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2901                                               cpuid_arg->entries);
2902                 if (r)
2903                         goto out;
2904                 r = -EFAULT;
2905                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2906                         goto out;
2907                 r = 0;
2908                 break;
2909         }
2910         case KVM_GET_MSRS:
2911                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2912                 break;
2913         case KVM_SET_MSRS:
2914                 r = msr_io(vcpu, argp, do_set_msr, 0);
2915                 break;
2916         case KVM_TPR_ACCESS_REPORTING: {
2917                 struct kvm_tpr_access_ctl tac;
2918
2919                 r = -EFAULT;
2920                 if (copy_from_user(&tac, argp, sizeof tac))
2921                         goto out;
2922                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2923                 if (r)
2924                         goto out;
2925                 r = -EFAULT;
2926                 if (copy_to_user(argp, &tac, sizeof tac))
2927                         goto out;
2928                 r = 0;
2929                 break;
2930         };
2931         case KVM_SET_VAPIC_ADDR: {
2932                 struct kvm_vapic_addr va;
2933
2934                 r = -EINVAL;
2935                 if (!irqchip_in_kernel(vcpu->kvm))
2936                         goto out;
2937                 r = -EFAULT;
2938                 if (copy_from_user(&va, argp, sizeof va))
2939                         goto out;
2940                 r = 0;
2941                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2942                 break;
2943         }
2944         case KVM_X86_SETUP_MCE: {
2945                 u64 mcg_cap;
2946
2947                 r = -EFAULT;
2948                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2949                         goto out;
2950                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2951                 break;
2952         }
2953         case KVM_X86_SET_MCE: {
2954                 struct kvm_x86_mce mce;
2955
2956                 r = -EFAULT;
2957                 if (copy_from_user(&mce, argp, sizeof mce))
2958                         goto out;
2959                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2960                 break;
2961         }
2962         case KVM_GET_VCPU_EVENTS: {
2963                 struct kvm_vcpu_events events;
2964
2965                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2966
2967                 r = -EFAULT;
2968                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2969                         break;
2970                 r = 0;
2971                 break;
2972         }
2973         case KVM_SET_VCPU_EVENTS: {
2974                 struct kvm_vcpu_events events;
2975
2976                 r = -EFAULT;
2977                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2978                         break;
2979
2980                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2981                 break;
2982         }
2983         case KVM_GET_DEBUGREGS: {
2984                 struct kvm_debugregs dbgregs;
2985
2986                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2987
2988                 r = -EFAULT;
2989                 if (copy_to_user(argp, &dbgregs,
2990                                  sizeof(struct kvm_debugregs)))
2991                         break;
2992                 r = 0;
2993                 break;
2994         }
2995         case KVM_SET_DEBUGREGS: {
2996                 struct kvm_debugregs dbgregs;
2997
2998                 r = -EFAULT;
2999                 if (copy_from_user(&dbgregs, argp,
3000                                    sizeof(struct kvm_debugregs)))
3001                         break;
3002
3003                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3004                 break;
3005         }
3006         case KVM_GET_XSAVE: {
3007                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3008                 r = -ENOMEM;
3009                 if (!u.xsave)
3010                         break;
3011
3012                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3013
3014                 r = -EFAULT;
3015                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3016                         break;
3017                 r = 0;
3018                 break;
3019         }
3020         case KVM_SET_XSAVE: {
3021                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3022                 r = -ENOMEM;
3023                 if (!u.xsave)
3024                         break;
3025
3026                 r = -EFAULT;
3027                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3028                         break;
3029
3030                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3031                 break;
3032         }
3033         case KVM_GET_XCRS: {
3034                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3035                 r = -ENOMEM;
3036                 if (!u.xcrs)
3037                         break;
3038
3039                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3040
3041                 r = -EFAULT;
3042                 if (copy_to_user(argp, u.xcrs,
3043                                  sizeof(struct kvm_xcrs)))
3044                         break;
3045                 r = 0;
3046                 break;
3047         }
3048         case KVM_SET_XCRS: {
3049                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3050                 r = -ENOMEM;
3051                 if (!u.xcrs)
3052                         break;
3053
3054                 r = -EFAULT;
3055                 if (copy_from_user(u.xcrs, argp,
3056                                    sizeof(struct kvm_xcrs)))
3057                         break;
3058
3059                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3060                 break;
3061         }
3062         case KVM_SET_TSC_KHZ: {
3063                 u32 user_tsc_khz;
3064
3065                 r = -EINVAL;
3066                 if (!kvm_has_tsc_control)
3067                         break;
3068
3069                 user_tsc_khz = (u32)arg;
3070
3071                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3072                         goto out;
3073
3074                 kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
3075
3076                 r = 0;
3077                 goto out;
3078         }
3079         case KVM_GET_TSC_KHZ: {
3080                 r = -EIO;
3081                 if (check_tsc_unstable())
3082                         goto out;
3083
3084                 r = vcpu_tsc_khz(vcpu);
3085
3086                 goto out;
3087         }
3088         default:
3089                 r = -EINVAL;
3090         }
3091 out:
3092         kfree(u.buffer);
3093         return r;
3094 }
3095
3096 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3097 {
3098         int ret;
3099
3100         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3101                 return -1;
3102         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3103         return ret;
3104 }
3105
3106 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3107                                               u64 ident_addr)
3108 {
3109         kvm->arch.ept_identity_map_addr = ident_addr;
3110         return 0;
3111 }
3112
3113 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3114                                           u32 kvm_nr_mmu_pages)
3115 {
3116         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3117                 return -EINVAL;
3118
3119         mutex_lock(&kvm->slots_lock);
3120         spin_lock(&kvm->mmu_lock);
3121
3122         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3123         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3124
3125         spin_unlock(&kvm->mmu_lock);
3126         mutex_unlock(&kvm->slots_lock);
3127         return 0;
3128 }
3129
3130 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3131 {
3132         return kvm->arch.n_max_mmu_pages;
3133 }
3134
3135 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3136 {
3137         int r;
3138
3139         r = 0;
3140         switch (chip->chip_id) {
3141         case KVM_IRQCHIP_PIC_MASTER:
3142                 memcpy(&chip->chip.pic,
3143                         &pic_irqchip(kvm)->pics[0],
3144                         sizeof(struct kvm_pic_state));
3145                 break;
3146         case KVM_IRQCHIP_PIC_SLAVE:
3147                 memcpy(&chip->chip.pic,
3148                         &pic_irqchip(kvm)->pics[1],
3149                         sizeof(struct kvm_pic_state));
3150                 break;
3151         case KVM_IRQCHIP_IOAPIC:
3152                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3153                 break;
3154         default:
3155                 r = -EINVAL;
3156                 break;
3157         }
3158         return r;
3159 }
3160
3161 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3162 {
3163         int r;
3164
3165         r = 0;
3166         switch (chip->chip_id) {
3167         case KVM_IRQCHIP_PIC_MASTER:
3168                 spin_lock(&pic_irqchip(kvm)->lock);
3169                 memcpy(&pic_irqchip(kvm)->pics[0],
3170                         &chip->chip.pic,
3171                         sizeof(struct kvm_pic_state));
3172                 spin_unlock(&pic_irqchip(kvm)->lock);
3173                 break;
3174         case KVM_IRQCHIP_PIC_SLAVE:
3175                 spin_lock(&pic_irqchip(kvm)->lock);
3176                 memcpy(&pic_irqchip(kvm)->pics[1],
3177                         &chip->chip.pic,
3178                         sizeof(struct kvm_pic_state));
3179                 spin_unlock(&pic_irqchip(kvm)->lock);
3180                 break;
3181         case KVM_IRQCHIP_IOAPIC:
3182                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3183                 break;
3184         default:
3185                 r = -EINVAL;
3186                 break;
3187         }
3188         kvm_pic_update_irq(pic_irqchip(kvm));
3189         return r;
3190 }
3191
3192 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3193 {
3194         int r = 0;
3195
3196         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3197         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3198         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3199         return r;
3200 }
3201
3202 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3203 {
3204         int r = 0;
3205
3206         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3207         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3208         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3209         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3210         return r;
3211 }
3212
3213 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3214 {
3215         int r = 0;
3216
3217         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3218         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3219                 sizeof(ps->channels));
3220         ps->flags = kvm->arch.vpit->pit_state.flags;
3221         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3222         memset(&ps->reserved, 0, sizeof(ps->reserved));
3223         return r;
3224 }
3225
3226 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3227 {
3228         int r = 0, start = 0;
3229         u32 prev_legacy, cur_legacy;
3230         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3231         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3232         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3233         if (!prev_legacy && cur_legacy)
3234                 start = 1;
3235         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3236                sizeof(kvm->arch.vpit->pit_state.channels));
3237         kvm->arch.vpit->pit_state.flags = ps->flags;
3238         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3239         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3240         return r;
3241 }
3242
3243 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3244                                  struct kvm_reinject_control *control)
3245 {
3246         if (!kvm->arch.vpit)
3247                 return -ENXIO;
3248         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3249         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3250         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3251         return 0;
3252 }
3253
3254 /*
3255  * Get (and clear) the dirty memory log for a memory slot.
3256  */
3257 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3258                                       struct kvm_dirty_log *log)
3259 {
3260         int r, i;
3261         struct kvm_memory_slot *memslot;
3262         unsigned long n;
3263         unsigned long is_dirty = 0;
3264
3265         mutex_lock(&kvm->slots_lock);
3266
3267         r = -EINVAL;
3268         if (log->slot >= KVM_MEMORY_SLOTS)
3269                 goto out;
3270
3271         memslot = &kvm->memslots->memslots[log->slot];
3272         r = -ENOENT;
3273         if (!memslot->dirty_bitmap)
3274                 goto out;
3275
3276         n = kvm_dirty_bitmap_bytes(memslot);
3277
3278         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3279                 is_dirty = memslot->dirty_bitmap[i];
3280
3281         /* If nothing is dirty, don't bother messing with page tables. */
3282         if (is_dirty) {
3283                 struct kvm_memslots *slots, *old_slots;
3284                 unsigned long *dirty_bitmap;
3285
3286                 dirty_bitmap = memslot->dirty_bitmap_head;
3287                 if (memslot->dirty_bitmap == dirty_bitmap)
3288                         dirty_bitmap += n / sizeof(long);
3289                 memset(dirty_bitmap, 0, n);
3290
3291                 r = -ENOMEM;
3292                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3293                 if (!slots)
3294                         goto out;
3295                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3296                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3297                 slots->generation++;
3298
3299                 old_slots = kvm->memslots;
3300                 rcu_assign_pointer(kvm->memslots, slots);
3301                 synchronize_srcu_expedited(&kvm->srcu);
3302                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3303                 kfree(old_slots);
3304
3305                 spin_lock(&kvm->mmu_lock);
3306                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3307                 spin_unlock(&kvm->mmu_lock);
3308
3309                 r = -EFAULT;
3310                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3311                         goto out;
3312         } else {
3313                 r = -EFAULT;
3314                 if (clear_user(log->dirty_bitmap, n))
3315                         goto out;
3316         }
3317
3318         r = 0;
3319 out:
3320         mutex_unlock(&kvm->slots_lock);
3321         return r;
3322 }
3323
3324 long kvm_arch_vm_ioctl(struct file *filp,
3325                        unsigned int ioctl, unsigned long arg)
3326 {
3327         struct kvm *kvm = filp->private_data;
3328         void __user *argp = (void __user *)arg;
3329         int r = -ENOTTY;
3330         /*
3331          * This union makes it completely explicit to gcc-3.x
3332          * that these two variables' stack usage should be
3333          * combined, not added together.
3334          */
3335         union {
3336                 struct kvm_pit_state ps;
3337                 struct kvm_pit_state2 ps2;
3338                 struct kvm_pit_config pit_config;
3339         } u;
3340
3341         switch (ioctl) {
3342         case KVM_SET_TSS_ADDR:
3343                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3344                 if (r < 0)
3345                         goto out;
3346                 break;
3347         case KVM_SET_IDENTITY_MAP_ADDR: {
3348                 u64 ident_addr;
3349
3350                 r = -EFAULT;
3351                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3352                         goto out;
3353                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3354                 if (r < 0)
3355                         goto out;
3356                 break;
3357         }
3358         case KVM_SET_NR_MMU_PAGES:
3359                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3360                 if (r)
3361                         goto out;
3362                 break;
3363         case KVM_GET_NR_MMU_PAGES:
3364                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3365                 break;
3366         case KVM_CREATE_IRQCHIP: {
3367                 struct kvm_pic *vpic;
3368
3369                 mutex_lock(&kvm->lock);
3370                 r = -EEXIST;
3371                 if (kvm->arch.vpic)
3372                         goto create_irqchip_unlock;
3373                 r = -ENOMEM;
3374                 vpic = kvm_create_pic(kvm);
3375                 if (vpic) {
3376                         r = kvm_ioapic_init(kvm);
3377                         if (r) {
3378                                 mutex_lock(&kvm->slots_lock);
3379                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3380                                                           &vpic->dev);
3381                                 mutex_unlock(&kvm->slots_lock);
3382                                 kfree(vpic);
3383                                 goto create_irqchip_unlock;
3384                         }
3385                 } else
3386                         goto create_irqchip_unlock;
3387                 smp_wmb();
3388                 kvm->arch.vpic = vpic;
3389                 smp_wmb();
3390                 r = kvm_setup_default_irq_routing(kvm);
3391                 if (r) {
3392                         mutex_lock(&kvm->slots_lock);
3393                         mutex_lock(&kvm->irq_lock);
3394                         kvm_ioapic_destroy(kvm);
3395                         kvm_destroy_pic(kvm);
3396                         mutex_unlock(&kvm->irq_lock);
3397                         mutex_unlock(&kvm->slots_lock);
3398                 }
3399         create_irqchip_unlock:
3400                 mutex_unlock(&kvm->lock);
3401                 break;
3402         }
3403         case KVM_CREATE_PIT:
3404                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3405                 goto create_pit;
3406         case KVM_CREATE_PIT2:
3407                 r = -EFAULT;
3408                 if (copy_from_user(&u.pit_config, argp,
3409                                    sizeof(struct kvm_pit_config)))
3410                         goto out;
3411         create_pit:
3412                 mutex_lock(&kvm->slots_lock);
3413                 r = -EEXIST;
3414                 if (kvm->arch.vpit)
3415                         goto create_pit_unlock;
3416                 r = -ENOMEM;
3417                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3418                 if (kvm->arch.vpit)
3419                         r = 0;
3420         create_pit_unlock:
3421                 mutex_unlock(&kvm->slots_lock);
3422                 break;
3423         case KVM_IRQ_LINE_STATUS:
3424         case KVM_IRQ_LINE: {
3425                 struct kvm_irq_level irq_event;
3426
3427                 r = -EFAULT;
3428                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3429                         goto out;
3430                 r = -ENXIO;
3431                 if (irqchip_in_kernel(kvm)) {
3432                         __s32 status;
3433                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3434                                         irq_event.irq, irq_event.level);
3435                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3436                                 r = -EFAULT;
3437                                 irq_event.status = status;
3438                                 if (copy_to_user(argp, &irq_event,
3439                                                         sizeof irq_event))
3440                                         goto out;
3441                         }
3442                         r = 0;
3443                 }
3444                 break;
3445         }
3446         case KVM_GET_IRQCHIP: {
3447                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3448                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3449
3450                 r = -ENOMEM;
3451                 if (!chip)
3452                         goto out;
3453                 r = -EFAULT;
3454                 if (copy_from_user(chip, argp, sizeof *chip))
3455                         goto get_irqchip_out;
3456                 r = -ENXIO;
3457                 if (!irqchip_in_kernel(kvm))
3458                         goto get_irqchip_out;
3459                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3460                 if (r)
3461                         goto get_irqchip_out;
3462                 r = -EFAULT;
3463                 if (copy_to_user(argp, chip, sizeof *chip))
3464                         goto get_irqchip_out;
3465                 r = 0;
3466         get_irqchip_out:
3467                 kfree(chip);
3468                 if (r)
3469                         goto out;
3470                 break;
3471         }
3472         case KVM_SET_IRQCHIP: {
3473                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3474                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3475
3476                 r = -ENOMEM;
3477                 if (!chip)
3478                         goto out;
3479                 r = -EFAULT;
3480                 if (copy_from_user(chip, argp, sizeof *chip))
3481                         goto set_irqchip_out;
3482                 r = -ENXIO;
3483                 if (!irqchip_in_kernel(kvm))
3484                         goto set_irqchip_out;
3485                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3486                 if (r)
3487                         goto set_irqchip_out;
3488                 r = 0;
3489         set_irqchip_out:
3490                 kfree(chip);
3491                 if (r)
3492                         goto out;
3493                 break;
3494         }
3495         case KVM_GET_PIT: {
3496                 r = -EFAULT;
3497                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3498                         goto out;
3499                 r = -ENXIO;
3500                 if (!kvm->arch.vpit)
3501                         goto out;
3502                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3503                 if (r)
3504                         goto out;
3505                 r = -EFAULT;
3506                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3507                         goto out;
3508                 r = 0;
3509                 break;
3510         }
3511         case KVM_SET_PIT: {
3512                 r = -EFAULT;
3513                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3514                         goto out;
3515                 r = -ENXIO;
3516                 if (!kvm->arch.vpit)
3517                         goto out;
3518                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3519                 if (r)
3520                         goto out;
3521                 r = 0;
3522                 break;
3523         }
3524         case KVM_GET_PIT2: {
3525                 r = -ENXIO;
3526                 if (!kvm->arch.vpit)
3527                         goto out;
3528                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3529                 if (r)
3530                         goto out;
3531                 r = -EFAULT;
3532                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3533                         goto out;
3534                 r = 0;
3535                 break;
3536         }
3537         case KVM_SET_PIT2: {
3538                 r = -EFAULT;
3539                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3540                         goto out;
3541                 r = -ENXIO;
3542                 if (!kvm->arch.vpit)
3543                         goto out;
3544                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3545                 if (r)
3546                         goto out;
3547                 r = 0;
3548                 break;
3549         }
3550         case KVM_REINJECT_CONTROL: {
3551                 struct kvm_reinject_control control;
3552                 r =  -EFAULT;
3553                 if (copy_from_user(&control, argp, sizeof(control)))
3554                         goto out;
3555                 r = kvm_vm_ioctl_reinject(kvm, &control);
3556                 if (r)
3557                         goto out;
3558                 r = 0;
3559                 break;
3560         }
3561         case KVM_XEN_HVM_CONFIG: {
3562                 r = -EFAULT;
3563                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3564                                    sizeof(struct kvm_xen_hvm_config)))
3565                         goto out;
3566                 r = -EINVAL;
3567                 if (kvm->arch.xen_hvm_config.flags)
3568                         goto out;
3569                 r = 0;
3570                 break;
3571         }
3572         case KVM_SET_CLOCK: {
3573                 struct kvm_clock_data user_ns;
3574                 u64 now_ns;
3575                 s64 delta;
3576
3577                 r = -EFAULT;
3578                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3579                         goto out;
3580
3581                 r = -EINVAL;
3582                 if (user_ns.flags)
3583                         goto out;
3584
3585                 r = 0;
3586                 local_irq_disable();
3587                 now_ns = get_kernel_ns();
3588                 delta = user_ns.clock - now_ns;
3589                 local_irq_enable();
3590                 kvm->arch.kvmclock_offset = delta;
3591                 break;
3592         }
3593         case KVM_GET_CLOCK: {
3594                 struct kvm_clock_data user_ns;
3595                 u64 now_ns;
3596
3597                 local_irq_disable();
3598                 now_ns = get_kernel_ns();
3599                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3600                 local_irq_enable();
3601                 user_ns.flags = 0;
3602                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3603
3604                 r = -EFAULT;
3605                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3606                         goto out;
3607                 r = 0;
3608                 break;
3609         }
3610
3611         default:
3612                 ;
3613         }
3614 out:
3615         return r;
3616 }
3617
3618 static void kvm_init_msr_list(void)
3619 {
3620         u32 dummy[2];
3621         unsigned i, j;
3622
3623         /* skip the first msrs in the list. KVM-specific */
3624         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3625                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3626                         continue;
3627                 if (j < i)
3628                         msrs_to_save[j] = msrs_to_save[i];
3629                 j++;
3630         }
3631         num_msrs_to_save = j;
3632 }
3633
3634 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3635                            const void *v)
3636 {
3637         int handled = 0;
3638         int n;
3639
3640         do {
3641                 n = min(len, 8);
3642                 if (!(vcpu->arch.apic &&
3643                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3644                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3645                         break;
3646                 handled += n;
3647                 addr += n;
3648                 len -= n;
3649                 v += n;
3650         } while (len);
3651
3652         return handled;
3653 }
3654
3655 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3656 {
3657         int handled = 0;
3658         int n;
3659
3660         do {
3661                 n = min(len, 8);
3662                 if (!(vcpu->arch.apic &&
3663                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3664                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3665                         break;
3666                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3667                 handled += n;
3668                 addr += n;
3669                 len -= n;
3670                 v += n;
3671         } while (len);
3672
3673         return handled;
3674 }
3675
3676 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3677                         struct kvm_segment *var, int seg)
3678 {
3679         kvm_x86_ops->set_segment(vcpu, var, seg);
3680 }
3681
3682 void kvm_get_segment(struct kvm_vcpu *vcpu,
3683                      struct kvm_segment *var, int seg)
3684 {
3685         kvm_x86_ops->get_segment(vcpu, var, seg);
3686 }
3687
3688 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3689 {
3690         return gpa;
3691 }
3692
3693 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3694 {
3695         gpa_t t_gpa;
3696         struct x86_exception exception;
3697
3698         BUG_ON(!mmu_is_nested(vcpu));
3699
3700         /* NPT walks are always user-walks */
3701         access |= PFERR_USER_MASK;
3702         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3703
3704         return t_gpa;
3705 }
3706
3707 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3708                               struct x86_exception *exception)
3709 {
3710         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3711         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3712 }
3713
3714  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3715                                 struct x86_exception *exception)
3716 {
3717         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3718         access |= PFERR_FETCH_MASK;
3719         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3720 }
3721
3722 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3723                                struct x86_exception *exception)
3724 {
3725         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3726         access |= PFERR_WRITE_MASK;
3727         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3728 }
3729
3730 /* uses this to access any guest's mapped memory without checking CPL */
3731 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3732                                 struct x86_exception *exception)
3733 {
3734         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3735 }
3736
3737 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3738                                       struct kvm_vcpu *vcpu, u32 access,
3739                                       struct x86_exception *exception)
3740 {
3741         void *data = val;
3742         int r = X86EMUL_CONTINUE;
3743
3744         while (bytes) {
3745                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3746                                                             exception);
3747                 unsigned offset = addr & (PAGE_SIZE-1);
3748                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3749                 int ret;
3750
3751                 if (gpa == UNMAPPED_GVA)
3752                         return X86EMUL_PROPAGATE_FAULT;
3753                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3754                 if (ret < 0) {
3755                         r = X86EMUL_IO_NEEDED;
3756                         goto out;
3757                 }
3758
3759                 bytes -= toread;
3760                 data += toread;
3761                 addr += toread;
3762         }
3763 out:
3764         return r;
3765 }
3766
3767 /* used for instruction fetching */
3768 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3769                                 gva_t addr, void *val, unsigned int bytes,
3770                                 struct x86_exception *exception)
3771 {
3772         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3773         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3774
3775         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3776                                           access | PFERR_FETCH_MASK,
3777                                           exception);
3778 }
3779
3780 static int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3781                                gva_t addr, void *val, unsigned int bytes,
3782                                struct x86_exception *exception)
3783 {
3784         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3785         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3786
3787         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3788                                           exception);
3789 }
3790
3791 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3792                                       gva_t addr, void *val, unsigned int bytes,
3793                                       struct x86_exception *exception)
3794 {
3795         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3796         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3797 }
3798
3799 static int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3800                                        gva_t addr, void *val,
3801                                        unsigned int bytes,
3802                                        struct x86_exception *exception)
3803 {
3804         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3805         void *data = val;
3806         int r = X86EMUL_CONTINUE;
3807
3808         while (bytes) {
3809                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3810                                                              PFERR_WRITE_MASK,
3811                                                              exception);
3812                 unsigned offset = addr & (PAGE_SIZE-1);
3813                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3814                 int ret;
3815
3816                 if (gpa == UNMAPPED_GVA)
3817                         return X86EMUL_PROPAGATE_FAULT;
3818                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3819                 if (ret < 0) {
3820                         r = X86EMUL_IO_NEEDED;
3821                         goto out;
3822                 }
3823
3824                 bytes -= towrite;
3825                 data += towrite;
3826                 addr += towrite;
3827         }
3828 out:
3829         return r;
3830 }
3831
3832 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3833                                   unsigned long addr,
3834                                   void *val,
3835                                   unsigned int bytes,
3836                                   struct x86_exception *exception)
3837 {
3838         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3839         gpa_t                 gpa;
3840         int handled;
3841
3842         if (vcpu->mmio_read_completed) {
3843                 memcpy(val, vcpu->mmio_data, bytes);
3844                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3845                                vcpu->mmio_phys_addr, *(u64 *)val);
3846                 vcpu->mmio_read_completed = 0;
3847                 return X86EMUL_CONTINUE;
3848         }
3849
3850         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
3851
3852         if (gpa == UNMAPPED_GVA)
3853                 return X86EMUL_PROPAGATE_FAULT;
3854
3855         /* For APIC access vmexit */
3856         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3857                 goto mmio;
3858
3859         if (kvm_read_guest_virt(ctxt, addr, val, bytes, exception)
3860             == X86EMUL_CONTINUE)
3861                 return X86EMUL_CONTINUE;
3862
3863 mmio:
3864         /*
3865          * Is this MMIO handled locally?
3866          */
3867         handled = vcpu_mmio_read(vcpu, gpa, bytes, val);
3868
3869         if (handled == bytes)
3870                 return X86EMUL_CONTINUE;
3871
3872         gpa += handled;
3873         bytes -= handled;
3874         val += handled;
3875
3876         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3877
3878         vcpu->mmio_needed = 1;
3879         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3880         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3881         vcpu->mmio_size = bytes;
3882         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3883         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3884         vcpu->mmio_index = 0;
3885
3886         return X86EMUL_IO_NEEDED;
3887 }
3888
3889 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3890                         const void *val, int bytes)
3891 {
3892         int ret;
3893
3894         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3895         if (ret < 0)
3896                 return 0;
3897         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3898         return 1;
3899 }
3900
3901 static int emulator_write_emulated_onepage(unsigned long addr,
3902                                            const void *val,
3903                                            unsigned int bytes,
3904                                            struct x86_exception *exception,
3905                                            struct kvm_vcpu *vcpu)
3906 {
3907         gpa_t                 gpa;
3908         int handled;
3909
3910         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
3911
3912         if (gpa == UNMAPPED_GVA)
3913                 return X86EMUL_PROPAGATE_FAULT;
3914
3915         /* For APIC access vmexit */
3916         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3917                 goto mmio;
3918
3919         if (emulator_write_phys(vcpu, gpa, val, bytes))
3920                 return X86EMUL_CONTINUE;
3921
3922 mmio:
3923         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3924         /*
3925          * Is this MMIO handled locally?
3926          */
3927         handled = vcpu_mmio_write(vcpu, gpa, bytes, val);
3928         if (handled == bytes)
3929                 return X86EMUL_CONTINUE;
3930
3931         gpa += handled;
3932         bytes -= handled;
3933         val += handled;
3934
3935         vcpu->mmio_needed = 1;
3936         memcpy(vcpu->mmio_data, val, bytes);
3937         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3938         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3939         vcpu->mmio_size = bytes;
3940         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3941         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3942         memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3943         vcpu->mmio_index = 0;
3944
3945         return X86EMUL_CONTINUE;
3946 }
3947
3948 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3949                             unsigned long addr,
3950                             const void *val,
3951                             unsigned int bytes,
3952                             struct x86_exception *exception)
3953 {
3954         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3955
3956         /* Crossing a page boundary? */
3957         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3958                 int rc, now;
3959
3960                 now = -addr & ~PAGE_MASK;
3961                 rc = emulator_write_emulated_onepage(addr, val, now, exception,
3962                                                      vcpu);
3963                 if (rc != X86EMUL_CONTINUE)
3964                         return rc;
3965                 addr += now;
3966                 val += now;
3967                 bytes -= now;
3968         }
3969         return emulator_write_emulated_onepage(addr, val, bytes, exception,
3970                                                vcpu);
3971 }
3972
3973 #define CMPXCHG_TYPE(t, ptr, old, new) \
3974         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3975
3976 #ifdef CONFIG_X86_64
3977 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3978 #else
3979 #  define CMPXCHG64(ptr, old, new) \
3980         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3981 #endif
3982
3983 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3984                                      unsigned long addr,
3985                                      const void *old,
3986                                      const void *new,
3987                                      unsigned int bytes,
3988                                      struct x86_exception *exception)
3989 {
3990         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3991         gpa_t gpa;
3992         struct page *page;
3993         char *kaddr;
3994         bool exchanged;
3995
3996         /* guests cmpxchg8b have to be emulated atomically */
3997         if (bytes > 8 || (bytes & (bytes - 1)))
3998                 goto emul_write;
3999
4000         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4001
4002         if (gpa == UNMAPPED_GVA ||
4003             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4004                 goto emul_write;
4005
4006         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4007                 goto emul_write;
4008
4009         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4010         if (is_error_page(page)) {
4011                 kvm_release_page_clean(page);
4012                 goto emul_write;
4013         }
4014
4015         kaddr = kmap_atomic(page, KM_USER0);
4016         kaddr += offset_in_page(gpa);
4017         switch (bytes) {
4018         case 1:
4019                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4020                 break;
4021         case 2:
4022                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4023                 break;
4024         case 4:
4025                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4026                 break;
4027         case 8:
4028                 exchanged = CMPXCHG64(kaddr, old, new);
4029                 break;
4030         default:
4031                 BUG();
4032         }
4033         kunmap_atomic(kaddr, KM_USER0);
4034         kvm_release_page_dirty(page);
4035
4036         if (!exchanged)
4037                 return X86EMUL_CMPXCHG_FAILED;
4038
4039         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
4040
4041         return X86EMUL_CONTINUE;
4042
4043 emul_write:
4044         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4045
4046         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4047 }
4048
4049 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4050 {
4051         /* TODO: String I/O for in kernel device */
4052         int r;
4053
4054         if (vcpu->arch.pio.in)
4055                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4056                                     vcpu->arch.pio.size, pd);
4057         else
4058                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4059                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4060                                      pd);
4061         return r;
4062 }
4063
4064
4065 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4066                                     int size, unsigned short port, void *val,
4067                                     unsigned int count)
4068 {
4069         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4070
4071         if (vcpu->arch.pio.count)
4072                 goto data_avail;
4073
4074         trace_kvm_pio(0, port, size, count);
4075
4076         vcpu->arch.pio.port = port;
4077         vcpu->arch.pio.in = 1;
4078         vcpu->arch.pio.count  = count;
4079         vcpu->arch.pio.size = size;
4080
4081         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4082         data_avail:
4083                 memcpy(val, vcpu->arch.pio_data, size * count);
4084                 vcpu->arch.pio.count = 0;
4085                 return 1;
4086         }
4087
4088         vcpu->run->exit_reason = KVM_EXIT_IO;
4089         vcpu->run->io.direction = KVM_EXIT_IO_IN;
4090         vcpu->run->io.size = size;
4091         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4092         vcpu->run->io.count = count;
4093         vcpu->run->io.port = port;
4094
4095         return 0;
4096 }
4097
4098 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4099                                      int size, unsigned short port,
4100                                      const void *val, unsigned int count)
4101 {
4102         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4103
4104         trace_kvm_pio(1, port, size, count);
4105
4106         vcpu->arch.pio.port = port;
4107         vcpu->arch.pio.in = 0;
4108         vcpu->arch.pio.count = count;
4109         vcpu->arch.pio.size = size;
4110
4111         memcpy(vcpu->arch.pio_data, val, size * count);
4112
4113         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4114                 vcpu->arch.pio.count = 0;
4115                 return 1;
4116         }
4117
4118         vcpu->run->exit_reason = KVM_EXIT_IO;
4119         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4120         vcpu->run->io.size = size;
4121         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4122         vcpu->run->io.count = count;
4123         vcpu->run->io.port = port;
4124
4125         return 0;
4126 }
4127
4128 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4129 {
4130         return kvm_x86_ops->get_segment_base(vcpu, seg);
4131 }
4132
4133 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4134 {
4135         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4136 }
4137
4138 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4139 {
4140         if (!need_emulate_wbinvd(vcpu))
4141                 return X86EMUL_CONTINUE;
4142
4143         if (kvm_x86_ops->has_wbinvd_exit()) {
4144                 int cpu = get_cpu();
4145
4146                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4147                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4148                                 wbinvd_ipi, NULL, 1);
4149                 put_cpu();
4150                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4151         } else
4152                 wbinvd();
4153         return X86EMUL_CONTINUE;
4154 }
4155 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4156
4157 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4158 {
4159         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4160 }
4161
4162 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4163 {
4164         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4165 }
4166
4167 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4168 {
4169
4170         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4171 }
4172
4173 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4174 {
4175         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4176 }
4177
4178 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4179 {
4180         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4181         unsigned long value;
4182
4183         switch (cr) {
4184         case 0:
4185                 value = kvm_read_cr0(vcpu);
4186                 break;
4187         case 2:
4188                 value = vcpu->arch.cr2;
4189                 break;
4190         case 3:
4191                 value = kvm_read_cr3(vcpu);
4192                 break;
4193         case 4:
4194                 value = kvm_read_cr4(vcpu);
4195                 break;
4196         case 8:
4197                 value = kvm_get_cr8(vcpu);
4198                 break;
4199         default:
4200                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4201                 return 0;
4202         }
4203
4204         return value;
4205 }
4206
4207 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4208 {
4209         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4210         int res = 0;
4211
4212         switch (cr) {
4213         case 0:
4214                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4215                 break;
4216         case 2:
4217                 vcpu->arch.cr2 = val;
4218                 break;
4219         case 3:
4220                 res = kvm_set_cr3(vcpu, val);
4221                 break;
4222         case 4:
4223                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4224                 break;
4225         case 8:
4226                 res = kvm_set_cr8(vcpu, val);
4227                 break;
4228         default:
4229                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4230                 res = -1;
4231         }
4232
4233         return res;
4234 }
4235
4236 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4237 {
4238         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4239 }
4240
4241 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4242 {
4243         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4244 }
4245
4246 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4247 {
4248         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4249 }
4250
4251 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4252 {
4253         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4254 }
4255
4256 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4257 {
4258         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4259 }
4260
4261 static unsigned long emulator_get_cached_segment_base(
4262         struct x86_emulate_ctxt *ctxt, int seg)
4263 {
4264         return get_segment_base(emul_to_vcpu(ctxt), seg);
4265 }
4266
4267 static bool emulator_get_cached_descriptor(struct x86_emulate_ctxt *ctxt,
4268                                            struct desc_struct *desc, u32 *base3,
4269                                            int seg)
4270 {
4271         struct kvm_segment var;
4272
4273         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4274
4275         if (var.unusable)
4276                 return false;
4277
4278         if (var.g)
4279                 var.limit >>= 12;
4280         set_desc_limit(desc, var.limit);
4281         set_desc_base(desc, (unsigned long)var.base);
4282 #ifdef CONFIG_X86_64
4283         if (base3)
4284                 *base3 = var.base >> 32;
4285 #endif
4286         desc->type = var.type;
4287         desc->s = var.s;
4288         desc->dpl = var.dpl;
4289         desc->p = var.present;
4290         desc->avl = var.avl;
4291         desc->l = var.l;
4292         desc->d = var.db;
4293         desc->g = var.g;
4294
4295         return true;
4296 }
4297
4298 static void emulator_set_cached_descriptor(struct x86_emulate_ctxt *ctxt,
4299                                            struct desc_struct *desc, u32 base3,
4300                                            int seg)
4301 {
4302         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4303         struct kvm_segment var;
4304
4305         /* needed to preserve selector */
4306         kvm_get_segment(vcpu, &var, seg);
4307
4308         var.base = get_desc_base(desc);
4309 #ifdef CONFIG_X86_64
4310         var.base |= ((u64)base3) << 32;
4311 #endif
4312         var.limit = get_desc_limit(desc);
4313         if (desc->g)
4314                 var.limit = (var.limit << 12) | 0xfff;
4315         var.type = desc->type;
4316         var.present = desc->p;
4317         var.dpl = desc->dpl;
4318         var.db = desc->d;
4319         var.s = desc->s;
4320         var.l = desc->l;
4321         var.g = desc->g;
4322         var.avl = desc->avl;
4323         var.present = desc->p;
4324         var.unusable = !var.present;
4325         var.padding = 0;
4326
4327         kvm_set_segment(vcpu, &var, seg);
4328         return;
4329 }
4330
4331 static u16 emulator_get_segment_selector(struct x86_emulate_ctxt *ctxt, int seg)
4332 {
4333         struct kvm_segment kvm_seg;
4334
4335         kvm_get_segment(emul_to_vcpu(ctxt), &kvm_seg, seg);
4336         return kvm_seg.selector;
4337 }
4338
4339 static void emulator_set_segment_selector(struct x86_emulate_ctxt *ctxt,
4340                                           u16 sel, int seg)
4341 {
4342         struct kvm_segment kvm_seg;
4343
4344         kvm_get_segment(emul_to_vcpu(ctxt), &kvm_seg, seg);
4345         kvm_seg.selector = sel;
4346         kvm_set_segment(emul_to_vcpu(ctxt), &kvm_seg, seg);
4347 }
4348
4349 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4350                             u32 msr_index, u64 *pdata)
4351 {
4352         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4353 }
4354
4355 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4356                             u32 msr_index, u64 data)
4357 {
4358         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4359 }
4360
4361 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4362 {
4363         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4364 }
4365
4366 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4367 {
4368         preempt_disable();
4369         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4370         /*
4371          * CR0.TS may reference the host fpu state, not the guest fpu state,
4372          * so it may be clear at this point.
4373          */
4374         clts();
4375 }
4376
4377 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4378 {
4379         preempt_enable();
4380 }
4381
4382 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4383                               struct x86_instruction_info *info,
4384                               enum x86_intercept_stage stage)
4385 {
4386         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4387 }
4388
4389 static struct x86_emulate_ops emulate_ops = {
4390         .read_std            = kvm_read_guest_virt_system,
4391         .write_std           = kvm_write_guest_virt_system,
4392         .fetch               = kvm_fetch_guest_virt,
4393         .read_emulated       = emulator_read_emulated,
4394         .write_emulated      = emulator_write_emulated,
4395         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4396         .invlpg              = emulator_invlpg,
4397         .pio_in_emulated     = emulator_pio_in_emulated,
4398         .pio_out_emulated    = emulator_pio_out_emulated,
4399         .get_cached_descriptor = emulator_get_cached_descriptor,
4400         .set_cached_descriptor = emulator_set_cached_descriptor,
4401         .get_segment_selector = emulator_get_segment_selector,
4402         .set_segment_selector = emulator_set_segment_selector,
4403         .get_cached_segment_base = emulator_get_cached_segment_base,
4404         .get_gdt             = emulator_get_gdt,
4405         .get_idt             = emulator_get_idt,
4406         .set_gdt             = emulator_set_gdt,
4407         .set_idt             = emulator_set_idt,
4408         .get_cr              = emulator_get_cr,
4409         .set_cr              = emulator_set_cr,
4410         .cpl                 = emulator_get_cpl,
4411         .get_dr              = emulator_get_dr,
4412         .set_dr              = emulator_set_dr,
4413         .set_msr             = emulator_set_msr,
4414         .get_msr             = emulator_get_msr,
4415         .halt                = emulator_halt,
4416         .wbinvd              = emulator_wbinvd,
4417         .fix_hypercall       = emulator_fix_hypercall,
4418         .get_fpu             = emulator_get_fpu,
4419         .put_fpu             = emulator_put_fpu,
4420         .intercept           = emulator_intercept,
4421 };
4422
4423 static void cache_all_regs(struct kvm_vcpu *vcpu)
4424 {
4425         kvm_register_read(vcpu, VCPU_REGS_RAX);
4426         kvm_register_read(vcpu, VCPU_REGS_RSP);
4427         kvm_register_read(vcpu, VCPU_REGS_RIP);
4428         vcpu->arch.regs_dirty = ~0;
4429 }
4430
4431 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4432 {
4433         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4434         /*
4435          * an sti; sti; sequence only disable interrupts for the first
4436          * instruction. So, if the last instruction, be it emulated or
4437          * not, left the system with the INT_STI flag enabled, it
4438          * means that the last instruction is an sti. We should not
4439          * leave the flag on in this case. The same goes for mov ss
4440          */
4441         if (!(int_shadow & mask))
4442                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4443 }
4444
4445 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4446 {
4447         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4448         if (ctxt->exception.vector == PF_VECTOR)
4449                 kvm_propagate_fault(vcpu, &ctxt->exception);
4450         else if (ctxt->exception.error_code_valid)
4451                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4452                                       ctxt->exception.error_code);
4453         else
4454                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4455 }
4456
4457 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4458 {
4459         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4460         int cs_db, cs_l;
4461
4462         /*
4463          * TODO: fix emulate.c to use guest_read/write_register
4464          * instead of direct ->regs accesses, can save hundred cycles
4465          * on Intel for instructions that don't read/change RSP, for
4466          * for example.
4467          */
4468         cache_all_regs(vcpu);
4469
4470         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4471
4472         vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
4473         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4474         vcpu->arch.emulate_ctxt.mode =
4475                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4476                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4477                 ? X86EMUL_MODE_VM86 : cs_l
4478                 ? X86EMUL_MODE_PROT64 : cs_db
4479                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4480         vcpu->arch.emulate_ctxt.guest_mode = is_guest_mode(vcpu);
4481         memset(c, 0, sizeof(struct decode_cache));
4482         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4483         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4484 }
4485
4486 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4487 {
4488         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4489         int ret;
4490
4491         init_emulate_ctxt(vcpu);
4492
4493         vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4494         vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4495         vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip +
4496                                                                  inc_eip;
4497         ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4498
4499         if (ret != X86EMUL_CONTINUE)
4500                 return EMULATE_FAIL;
4501
4502         vcpu->arch.emulate_ctxt.eip = c->eip;
4503         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4504         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4505         kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4506
4507         if (irq == NMI_VECTOR)
4508                 vcpu->arch.nmi_pending = false;
4509         else
4510                 vcpu->arch.interrupt.pending = false;
4511
4512         return EMULATE_DONE;
4513 }
4514 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4515
4516 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4517 {
4518         int r = EMULATE_DONE;
4519
4520         ++vcpu->stat.insn_emulation_fail;
4521         trace_kvm_emulate_insn_failed(vcpu);
4522         if (!is_guest_mode(vcpu)) {
4523                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4524                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4525                 vcpu->run->internal.ndata = 0;
4526                 r = EMULATE_FAIL;
4527         }
4528         kvm_queue_exception(vcpu, UD_VECTOR);
4529
4530         return r;
4531 }
4532
4533 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4534 {
4535         gpa_t gpa;
4536
4537         if (tdp_enabled)
4538                 return false;
4539
4540         /*
4541          * if emulation was due to access to shadowed page table
4542          * and it failed try to unshadow page and re-entetr the
4543          * guest to let CPU execute the instruction.
4544          */
4545         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4546                 return true;
4547
4548         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4549
4550         if (gpa == UNMAPPED_GVA)
4551                 return true; /* let cpu generate fault */
4552
4553         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4554                 return true;
4555
4556         return false;
4557 }
4558
4559 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4560                             unsigned long cr2,
4561                             int emulation_type,
4562                             void *insn,
4563                             int insn_len)
4564 {
4565         int r;
4566         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4567         bool writeback = true;
4568
4569         kvm_clear_exception_queue(vcpu);
4570
4571         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4572                 init_emulate_ctxt(vcpu);
4573                 vcpu->arch.emulate_ctxt.interruptibility = 0;
4574                 vcpu->arch.emulate_ctxt.have_exception = false;
4575                 vcpu->arch.emulate_ctxt.perm_ok = false;
4576
4577                 vcpu->arch.emulate_ctxt.only_vendor_specific_insn
4578                         = emulation_type & EMULTYPE_TRAP_UD;
4579
4580                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
4581
4582                 trace_kvm_emulate_insn_start(vcpu);
4583                 ++vcpu->stat.insn_emulation;
4584                 if (r)  {
4585                         if (emulation_type & EMULTYPE_TRAP_UD)
4586                                 return EMULATE_FAIL;
4587                         if (reexecute_instruction(vcpu, cr2))
4588                                 return EMULATE_DONE;
4589                         if (emulation_type & EMULTYPE_SKIP)
4590                                 return EMULATE_FAIL;
4591                         return handle_emulation_failure(vcpu);
4592                 }
4593         }
4594
4595         if (emulation_type & EMULTYPE_SKIP) {
4596                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4597                 return EMULATE_DONE;
4598         }
4599
4600         /* this is needed for vmware backdoor interface to work since it
4601            changes registers values  during IO operation */
4602         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4603                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4604                 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4605         }
4606
4607 restart:
4608         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4609
4610         if (r == EMULATION_INTERCEPTED)
4611                 return EMULATE_DONE;
4612
4613         if (r == EMULATION_FAILED) {
4614                 if (reexecute_instruction(vcpu, cr2))
4615                         return EMULATE_DONE;
4616
4617                 return handle_emulation_failure(vcpu);
4618         }
4619
4620         if (vcpu->arch.emulate_ctxt.have_exception) {
4621                 inject_emulated_exception(vcpu);
4622                 r = EMULATE_DONE;
4623         } else if (vcpu->arch.pio.count) {
4624                 if (!vcpu->arch.pio.in)
4625                         vcpu->arch.pio.count = 0;
4626                 else
4627                         writeback = false;
4628                 r = EMULATE_DO_MMIO;
4629         } else if (vcpu->mmio_needed) {
4630                 if (!vcpu->mmio_is_write)
4631                         writeback = false;
4632                 r = EMULATE_DO_MMIO;
4633         } else if (r == EMULATION_RESTART)
4634                 goto restart;
4635         else
4636                 r = EMULATE_DONE;
4637
4638         if (writeback) {
4639                 toggle_interruptibility(vcpu,
4640                                 vcpu->arch.emulate_ctxt.interruptibility);
4641                 kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4642                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4643                 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4644                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4645                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4646         } else
4647                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4648
4649         return r;
4650 }
4651 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4652
4653 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4654 {
4655         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4656         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4657                                             size, port, &val, 1);
4658         /* do not return to emulator after return from userspace */
4659         vcpu->arch.pio.count = 0;
4660         return ret;
4661 }
4662 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4663
4664 static void tsc_bad(void *info)
4665 {
4666         __this_cpu_write(cpu_tsc_khz, 0);
4667 }
4668
4669 static void tsc_khz_changed(void *data)
4670 {
4671         struct cpufreq_freqs *freq = data;
4672         unsigned long khz = 0;
4673
4674         if (data)
4675                 khz = freq->new;
4676         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4677                 khz = cpufreq_quick_get(raw_smp_processor_id());
4678         if (!khz)
4679                 khz = tsc_khz;
4680         __this_cpu_write(cpu_tsc_khz, khz);
4681 }
4682
4683 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4684                                      void *data)
4685 {
4686         struct cpufreq_freqs *freq = data;
4687         struct kvm *kvm;
4688         struct kvm_vcpu *vcpu;
4689         int i, send_ipi = 0;
4690
4691         /*
4692          * We allow guests to temporarily run on slowing clocks,
4693          * provided we notify them after, or to run on accelerating
4694          * clocks, provided we notify them before.  Thus time never
4695          * goes backwards.
4696          *
4697          * However, we have a problem.  We can't atomically update
4698          * the frequency of a given CPU from this function; it is
4699          * merely a notifier, which can be called from any CPU.
4700          * Changing the TSC frequency at arbitrary points in time
4701          * requires a recomputation of local variables related to
4702          * the TSC for each VCPU.  We must flag these local variables
4703          * to be updated and be sure the update takes place with the
4704          * new frequency before any guests proceed.
4705          *
4706          * Unfortunately, the combination of hotplug CPU and frequency
4707          * change creates an intractable locking scenario; the order
4708          * of when these callouts happen is undefined with respect to
4709          * CPU hotplug, and they can race with each other.  As such,
4710          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4711          * undefined; you can actually have a CPU frequency change take
4712          * place in between the computation of X and the setting of the
4713          * variable.  To protect against this problem, all updates of
4714          * the per_cpu tsc_khz variable are done in an interrupt
4715          * protected IPI, and all callers wishing to update the value
4716          * must wait for a synchronous IPI to complete (which is trivial
4717          * if the caller is on the CPU already).  This establishes the
4718          * necessary total order on variable updates.
4719          *
4720          * Note that because a guest time update may take place
4721          * anytime after the setting of the VCPU's request bit, the
4722          * correct TSC value must be set before the request.  However,
4723          * to ensure the update actually makes it to any guest which
4724          * starts running in hardware virtualization between the set
4725          * and the acquisition of the spinlock, we must also ping the
4726          * CPU after setting the request bit.
4727          *
4728          */
4729
4730         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4731                 return 0;
4732         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4733                 return 0;
4734
4735         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4736
4737         raw_spin_lock(&kvm_lock);
4738         list_for_each_entry(kvm, &vm_list, vm_list) {
4739                 kvm_for_each_vcpu(i, vcpu, kvm) {
4740                         if (vcpu->cpu != freq->cpu)
4741                                 continue;
4742                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4743                         if (vcpu->cpu != smp_processor_id())
4744                                 send_ipi = 1;
4745                 }
4746         }
4747         raw_spin_unlock(&kvm_lock);
4748
4749         if (freq->old < freq->new && send_ipi) {
4750                 /*
4751                  * We upscale the frequency.  Must make the guest
4752                  * doesn't see old kvmclock values while running with
4753                  * the new frequency, otherwise we risk the guest sees
4754                  * time go backwards.
4755                  *
4756                  * In case we update the frequency for another cpu
4757                  * (which might be in guest context) send an interrupt
4758                  * to kick the cpu out of guest context.  Next time
4759                  * guest context is entered kvmclock will be updated,
4760                  * so the guest will not see stale values.
4761                  */
4762                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4763         }
4764         return 0;
4765 }
4766
4767 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4768         .notifier_call  = kvmclock_cpufreq_notifier
4769 };
4770
4771 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4772                                         unsigned long action, void *hcpu)
4773 {
4774         unsigned int cpu = (unsigned long)hcpu;
4775
4776         switch (action) {
4777                 case CPU_ONLINE:
4778                 case CPU_DOWN_FAILED:
4779                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4780                         break;
4781                 case CPU_DOWN_PREPARE:
4782                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4783                         break;
4784         }
4785         return NOTIFY_OK;
4786 }
4787
4788 static struct notifier_block kvmclock_cpu_notifier_block = {
4789         .notifier_call  = kvmclock_cpu_notifier,
4790         .priority = -INT_MAX
4791 };
4792
4793 static void kvm_timer_init(void)
4794 {
4795         int cpu;
4796
4797         max_tsc_khz = tsc_khz;
4798         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4799         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4800 #ifdef CONFIG_CPU_FREQ
4801                 struct cpufreq_policy policy;
4802                 memset(&policy, 0, sizeof(policy));
4803                 cpu = get_cpu();
4804                 cpufreq_get_policy(&policy, cpu);
4805                 if (policy.cpuinfo.max_freq)
4806                         max_tsc_khz = policy.cpuinfo.max_freq;
4807                 put_cpu();
4808 #endif
4809                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4810                                           CPUFREQ_TRANSITION_NOTIFIER);
4811         }
4812         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4813         for_each_online_cpu(cpu)
4814                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4815 }
4816
4817 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4818
4819 static int kvm_is_in_guest(void)
4820 {
4821         return percpu_read(current_vcpu) != NULL;
4822 }
4823
4824 static int kvm_is_user_mode(void)
4825 {
4826         int user_mode = 3;
4827
4828         if (percpu_read(current_vcpu))
4829                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4830
4831         return user_mode != 0;
4832 }
4833
4834 static unsigned long kvm_get_guest_ip(void)
4835 {
4836         unsigned long ip = 0;
4837
4838         if (percpu_read(current_vcpu))
4839                 ip = kvm_rip_read(percpu_read(current_vcpu));
4840
4841         return ip;
4842 }
4843
4844 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4845         .is_in_guest            = kvm_is_in_guest,
4846         .is_user_mode           = kvm_is_user_mode,
4847         .get_guest_ip           = kvm_get_guest_ip,
4848 };
4849
4850 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4851 {
4852         percpu_write(current_vcpu, vcpu);
4853 }
4854 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4855
4856 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4857 {
4858         percpu_write(current_vcpu, NULL);
4859 }
4860 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4861
4862 int kvm_arch_init(void *opaque)
4863 {
4864         int r;
4865         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4866
4867         if (kvm_x86_ops) {
4868                 printk(KERN_ERR "kvm: already loaded the other module\n");
4869                 r = -EEXIST;
4870                 goto out;
4871         }
4872
4873         if (!ops->cpu_has_kvm_support()) {
4874                 printk(KERN_ERR "kvm: no hardware support\n");
4875                 r = -EOPNOTSUPP;
4876                 goto out;
4877         }
4878         if (ops->disabled_by_bios()) {
4879                 printk(KERN_ERR "kvm: disabled by bios\n");
4880                 r = -EOPNOTSUPP;
4881                 goto out;
4882         }
4883
4884         r = kvm_mmu_module_init();
4885         if (r)
4886                 goto out;
4887
4888         kvm_init_msr_list();
4889
4890         kvm_x86_ops = ops;
4891         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4892         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4893                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4894
4895         kvm_timer_init();
4896
4897         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4898
4899         if (cpu_has_xsave)
4900                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4901
4902         return 0;
4903
4904 out:
4905         return r;
4906 }
4907
4908 void kvm_arch_exit(void)
4909 {
4910         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4911
4912         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4913                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4914                                             CPUFREQ_TRANSITION_NOTIFIER);
4915         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4916         kvm_x86_ops = NULL;
4917         kvm_mmu_module_exit();
4918 }
4919
4920 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4921 {
4922         ++vcpu->stat.halt_exits;
4923         if (irqchip_in_kernel(vcpu->kvm)) {
4924                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4925                 return 1;
4926         } else {
4927                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4928                 return 0;
4929         }
4930 }
4931 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4932
4933 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4934                            unsigned long a1)
4935 {
4936         if (is_long_mode(vcpu))
4937                 return a0;
4938         else
4939                 return a0 | ((gpa_t)a1 << 32);
4940 }
4941
4942 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4943 {
4944         u64 param, ingpa, outgpa, ret;
4945         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4946         bool fast, longmode;
4947         int cs_db, cs_l;
4948
4949         /*
4950          * hypercall generates UD from non zero cpl and real mode
4951          * per HYPER-V spec
4952          */
4953         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4954                 kvm_queue_exception(vcpu, UD_VECTOR);
4955                 return 0;
4956         }
4957
4958         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4959         longmode = is_long_mode(vcpu) && cs_l == 1;
4960
4961         if (!longmode) {
4962                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4963                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4964                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4965                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4966                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4967                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4968         }
4969 #ifdef CONFIG_X86_64
4970         else {
4971                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4972                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4973                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4974         }
4975 #endif
4976
4977         code = param & 0xffff;
4978         fast = (param >> 16) & 0x1;
4979         rep_cnt = (param >> 32) & 0xfff;
4980         rep_idx = (param >> 48) & 0xfff;
4981
4982         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4983
4984         switch (code) {
4985         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4986                 kvm_vcpu_on_spin(vcpu);
4987                 break;
4988         default:
4989                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4990                 break;
4991         }
4992
4993         ret = res | (((u64)rep_done & 0xfff) << 32);
4994         if (longmode) {
4995                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4996         } else {
4997                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4998                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4999         }
5000
5001         return 1;
5002 }
5003
5004 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5005 {
5006         unsigned long nr, a0, a1, a2, a3, ret;
5007         int r = 1;
5008
5009         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5010                 return kvm_hv_hypercall(vcpu);
5011
5012         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5013         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5014         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5015         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5016         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5017
5018         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5019
5020         if (!is_long_mode(vcpu)) {
5021                 nr &= 0xFFFFFFFF;
5022                 a0 &= 0xFFFFFFFF;
5023                 a1 &= 0xFFFFFFFF;
5024                 a2 &= 0xFFFFFFFF;
5025                 a3 &= 0xFFFFFFFF;
5026         }
5027
5028         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5029                 ret = -KVM_EPERM;
5030                 goto out;
5031         }
5032
5033         switch (nr) {
5034         case KVM_HC_VAPIC_POLL_IRQ:
5035                 ret = 0;
5036                 break;
5037         case KVM_HC_MMU_OP:
5038                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
5039                 break;
5040         default:
5041                 ret = -KVM_ENOSYS;
5042                 break;
5043         }
5044 out:
5045         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5046         ++vcpu->stat.hypercalls;
5047         return r;
5048 }
5049 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5050
5051 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5052 {
5053         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5054         char instruction[3];
5055         unsigned long rip = kvm_rip_read(vcpu);
5056
5057         /*
5058          * Blow out the MMU to ensure that no other VCPU has an active mapping
5059          * to ensure that the updated hypercall appears atomically across all
5060          * VCPUs.
5061          */
5062         kvm_mmu_zap_all(vcpu->kvm);
5063
5064         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5065
5066         return emulator_write_emulated(&vcpu->arch.emulate_ctxt,
5067                                        rip, instruction, 3, NULL);
5068 }
5069
5070 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
5071 {
5072         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
5073         int j, nent = vcpu->arch.cpuid_nent;
5074
5075         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
5076         /* when no next entry is found, the current entry[i] is reselected */
5077         for (j = i + 1; ; j = (j + 1) % nent) {
5078                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
5079                 if (ej->function == e->function) {
5080                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
5081                         return j;
5082                 }
5083         }
5084         return 0; /* silence gcc, even though control never reaches here */
5085 }
5086
5087 /* find an entry with matching function, matching index (if needed), and that
5088  * should be read next (if it's stateful) */
5089 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
5090         u32 function, u32 index)
5091 {
5092         if (e->function != function)
5093                 return 0;
5094         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
5095                 return 0;
5096         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
5097             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
5098                 return 0;
5099         return 1;
5100 }
5101
5102 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
5103                                               u32 function, u32 index)
5104 {
5105         int i;
5106         struct kvm_cpuid_entry2 *best = NULL;
5107
5108         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
5109                 struct kvm_cpuid_entry2 *e;
5110
5111                 e = &vcpu->arch.cpuid_entries[i];
5112                 if (is_matching_cpuid_entry(e, function, index)) {
5113                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
5114                                 move_to_next_stateful_cpuid_entry(vcpu, i);
5115                         best = e;
5116                         break;
5117                 }
5118         }
5119         return best;
5120 }
5121 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
5122
5123 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
5124 {
5125         struct kvm_cpuid_entry2 *best;
5126
5127         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
5128         if (!best || best->eax < 0x80000008)
5129                 goto not_found;
5130         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
5131         if (best)
5132                 return best->eax & 0xff;
5133 not_found:
5134         return 36;
5135 }
5136
5137 /*
5138  * If no match is found, check whether we exceed the vCPU's limit
5139  * and return the content of the highest valid _standard_ leaf instead.
5140  * This is to satisfy the CPUID specification.
5141  */
5142 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
5143                                                   u32 function, u32 index)
5144 {
5145         struct kvm_cpuid_entry2 *maxlevel;
5146
5147         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
5148         if (!maxlevel || maxlevel->eax >= function)
5149                 return NULL;
5150         if (function & 0x80000000) {
5151                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
5152                 if (!maxlevel)
5153                         return NULL;
5154         }
5155         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
5156 }
5157
5158 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
5159 {
5160         u32 function, index;
5161         struct kvm_cpuid_entry2 *best;
5162
5163         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
5164         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5165         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
5166         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
5167         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
5168         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
5169         best = kvm_find_cpuid_entry(vcpu, function, index);
5170
5171         if (!best)
5172                 best = check_cpuid_limit(vcpu, function, index);
5173
5174         if (best) {
5175                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5176                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5177                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5178                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5179         }
5180         kvm_x86_ops->skip_emulated_instruction(vcpu);
5181         trace_kvm_cpuid(function,
5182                         kvm_register_read(vcpu, VCPU_REGS_RAX),
5183                         kvm_register_read(vcpu, VCPU_REGS_RBX),
5184                         kvm_register_read(vcpu, VCPU_REGS_RCX),
5185                         kvm_register_read(vcpu, VCPU_REGS_RDX));
5186 }
5187 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5188
5189 /*
5190  * Check if userspace requested an interrupt window, and that the
5191  * interrupt window is open.
5192  *
5193  * No need to exit to userspace if we already have an interrupt queued.
5194  */
5195 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5196 {
5197         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5198                 vcpu->run->request_interrupt_window &&
5199                 kvm_arch_interrupt_allowed(vcpu));
5200 }
5201
5202 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5203 {
5204         struct kvm_run *kvm_run = vcpu->run;
5205
5206         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5207         kvm_run->cr8 = kvm_get_cr8(vcpu);
5208         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5209         if (irqchip_in_kernel(vcpu->kvm))
5210                 kvm_run->ready_for_interrupt_injection = 1;
5211         else
5212                 kvm_run->ready_for_interrupt_injection =
5213                         kvm_arch_interrupt_allowed(vcpu) &&
5214                         !kvm_cpu_has_interrupt(vcpu) &&
5215                         !kvm_event_needs_reinjection(vcpu);
5216 }
5217
5218 static void vapic_enter(struct kvm_vcpu *vcpu)
5219 {
5220         struct kvm_lapic *apic = vcpu->arch.apic;
5221         struct page *page;
5222
5223         if (!apic || !apic->vapic_addr)
5224                 return;
5225
5226         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5227
5228         vcpu->arch.apic->vapic_page = page;
5229 }
5230
5231 static void vapic_exit(struct kvm_vcpu *vcpu)
5232 {
5233         struct kvm_lapic *apic = vcpu->arch.apic;
5234         int idx;
5235
5236         if (!apic || !apic->vapic_addr)
5237                 return;
5238
5239         idx = srcu_read_lock(&vcpu->kvm->srcu);
5240         kvm_release_page_dirty(apic->vapic_page);
5241         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5242         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5243 }
5244
5245 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5246 {
5247         int max_irr, tpr;
5248
5249         if (!kvm_x86_ops->update_cr8_intercept)
5250                 return;
5251
5252         if (!vcpu->arch.apic)
5253                 return;
5254
5255         if (!vcpu->arch.apic->vapic_addr)
5256                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5257         else
5258                 max_irr = -1;
5259
5260         if (max_irr != -1)
5261                 max_irr >>= 4;
5262
5263         tpr = kvm_lapic_get_cr8(vcpu);
5264
5265         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5266 }
5267
5268 static void inject_pending_event(struct kvm_vcpu *vcpu)
5269 {
5270         /* try to reinject previous events if any */
5271         if (vcpu->arch.exception.pending) {
5272                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5273                                         vcpu->arch.exception.has_error_code,
5274                                         vcpu->arch.exception.error_code);
5275                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5276                                           vcpu->arch.exception.has_error_code,
5277                                           vcpu->arch.exception.error_code,
5278                                           vcpu->arch.exception.reinject);
5279                 return;
5280         }
5281
5282         if (vcpu->arch.nmi_injected) {
5283                 kvm_x86_ops->set_nmi(vcpu);
5284                 return;
5285         }
5286
5287         if (vcpu->arch.interrupt.pending) {
5288                 kvm_x86_ops->set_irq(vcpu);
5289                 return;
5290         }
5291
5292         /* try to inject new event if pending */
5293         if (vcpu->arch.nmi_pending) {
5294                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5295                         vcpu->arch.nmi_pending = false;
5296                         vcpu->arch.nmi_injected = true;
5297                         kvm_x86_ops->set_nmi(vcpu);
5298                 }
5299         } else if (kvm_cpu_has_interrupt(vcpu)) {
5300                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5301                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5302                                             false);
5303                         kvm_x86_ops->set_irq(vcpu);
5304                 }
5305         }
5306 }
5307
5308 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5309 {
5310         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5311                         !vcpu->guest_xcr0_loaded) {
5312                 /* kvm_set_xcr() also depends on this */
5313                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5314                 vcpu->guest_xcr0_loaded = 1;
5315         }
5316 }
5317
5318 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5319 {
5320         if (vcpu->guest_xcr0_loaded) {
5321                 if (vcpu->arch.xcr0 != host_xcr0)
5322                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5323                 vcpu->guest_xcr0_loaded = 0;
5324         }
5325 }
5326
5327 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5328 {
5329         int r;
5330         bool nmi_pending;
5331         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5332                 vcpu->run->request_interrupt_window;
5333
5334         if (vcpu->requests) {
5335                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5336                         kvm_mmu_unload(vcpu);
5337                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5338                         __kvm_migrate_timers(vcpu);
5339                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5340                         r = kvm_guest_time_update(vcpu);
5341                         if (unlikely(r))
5342                                 goto out;
5343                 }
5344                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5345                         kvm_mmu_sync_roots(vcpu);
5346                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5347                         kvm_x86_ops->tlb_flush(vcpu);
5348                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5349                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5350                         r = 0;
5351                         goto out;
5352                 }
5353                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5354                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5355                         r = 0;
5356                         goto out;
5357                 }
5358                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5359                         vcpu->fpu_active = 0;
5360                         kvm_x86_ops->fpu_deactivate(vcpu);
5361                 }
5362                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5363                         /* Page is swapped out. Do synthetic halt */
5364                         vcpu->arch.apf.halted = true;
5365                         r = 1;
5366                         goto out;
5367                 }
5368         }
5369
5370         r = kvm_mmu_reload(vcpu);
5371         if (unlikely(r))
5372                 goto out;
5373
5374         /*
5375          * An NMI can be injected between local nmi_pending read and
5376          * vcpu->arch.nmi_pending read inside inject_pending_event().
5377          * But in that case, KVM_REQ_EVENT will be set, which makes
5378          * the race described above benign.
5379          */
5380         nmi_pending = ACCESS_ONCE(vcpu->arch.nmi_pending);
5381
5382         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5383                 inject_pending_event(vcpu);
5384
5385                 /* enable NMI/IRQ window open exits if needed */
5386                 if (nmi_pending)
5387                         kvm_x86_ops->enable_nmi_window(vcpu);
5388                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5389                         kvm_x86_ops->enable_irq_window(vcpu);
5390
5391                 if (kvm_lapic_enabled(vcpu)) {
5392                         update_cr8_intercept(vcpu);
5393                         kvm_lapic_sync_to_vapic(vcpu);
5394                 }
5395         }
5396
5397         preempt_disable();
5398
5399         kvm_x86_ops->prepare_guest_switch(vcpu);
5400         if (vcpu->fpu_active)
5401                 kvm_load_guest_fpu(vcpu);
5402         kvm_load_guest_xcr0(vcpu);
5403
5404         vcpu->mode = IN_GUEST_MODE;
5405
5406         /* We should set ->mode before check ->requests,
5407          * see the comment in make_all_cpus_request.
5408          */
5409         smp_mb();
5410
5411         local_irq_disable();
5412
5413         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5414             || need_resched() || signal_pending(current)) {
5415                 vcpu->mode = OUTSIDE_GUEST_MODE;
5416                 smp_wmb();
5417                 local_irq_enable();
5418                 preempt_enable();
5419                 kvm_x86_ops->cancel_injection(vcpu);
5420                 r = 1;
5421                 goto out;
5422         }
5423
5424         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5425
5426         kvm_guest_enter();
5427
5428         if (unlikely(vcpu->arch.switch_db_regs)) {
5429                 set_debugreg(0, 7);
5430                 set_debugreg(vcpu->arch.eff_db[0], 0);
5431                 set_debugreg(vcpu->arch.eff_db[1], 1);
5432                 set_debugreg(vcpu->arch.eff_db[2], 2);
5433                 set_debugreg(vcpu->arch.eff_db[3], 3);
5434         }
5435
5436         trace_kvm_entry(vcpu->vcpu_id);
5437         kvm_x86_ops->run(vcpu);
5438
5439         /*
5440          * If the guest has used debug registers, at least dr7
5441          * will be disabled while returning to the host.
5442          * If we don't have active breakpoints in the host, we don't
5443          * care about the messed up debug address registers. But if
5444          * we have some of them active, restore the old state.
5445          */
5446         if (hw_breakpoint_active())
5447                 hw_breakpoint_restore();
5448
5449         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5450
5451         vcpu->mode = OUTSIDE_GUEST_MODE;
5452         smp_wmb();
5453         local_irq_enable();
5454
5455         ++vcpu->stat.exits;
5456
5457         /*
5458          * We must have an instruction between local_irq_enable() and
5459          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5460          * the interrupt shadow.  The stat.exits increment will do nicely.
5461          * But we need to prevent reordering, hence this barrier():
5462          */
5463         barrier();
5464
5465         kvm_guest_exit();
5466
5467         preempt_enable();
5468
5469         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5470
5471         /*
5472          * Profile KVM exit RIPs:
5473          */
5474         if (unlikely(prof_on == KVM_PROFILING)) {
5475                 unsigned long rip = kvm_rip_read(vcpu);
5476                 profile_hit(KVM_PROFILING, (void *)rip);
5477         }
5478
5479
5480         kvm_lapic_sync_from_vapic(vcpu);
5481
5482         r = kvm_x86_ops->handle_exit(vcpu);
5483 out:
5484         return r;
5485 }
5486
5487
5488 static int __vcpu_run(struct kvm_vcpu *vcpu)
5489 {
5490         int r;
5491         struct kvm *kvm = vcpu->kvm;
5492
5493         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5494                 pr_debug("vcpu %d received sipi with vector # %x\n",
5495                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5496                 kvm_lapic_reset(vcpu);
5497                 r = kvm_arch_vcpu_reset(vcpu);
5498                 if (r)
5499                         return r;
5500                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5501         }
5502
5503         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5504         vapic_enter(vcpu);
5505
5506         r = 1;
5507         while (r > 0) {
5508                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5509                     !vcpu->arch.apf.halted)
5510                         r = vcpu_enter_guest(vcpu);
5511                 else {
5512                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5513                         kvm_vcpu_block(vcpu);
5514                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5515                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5516                         {
5517                                 switch(vcpu->arch.mp_state) {
5518                                 case KVM_MP_STATE_HALTED:
5519                                         vcpu->arch.mp_state =
5520                                                 KVM_MP_STATE_RUNNABLE;
5521                                 case KVM_MP_STATE_RUNNABLE:
5522                                         vcpu->arch.apf.halted = false;
5523                                         break;
5524                                 case KVM_MP_STATE_SIPI_RECEIVED:
5525                                 default:
5526                                         r = -EINTR;
5527                                         break;
5528                                 }
5529                         }
5530                 }
5531
5532                 if (r <= 0)
5533                         break;
5534
5535                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5536                 if (kvm_cpu_has_pending_timer(vcpu))
5537                         kvm_inject_pending_timer_irqs(vcpu);
5538
5539                 if (dm_request_for_irq_injection(vcpu)) {
5540                         r = -EINTR;
5541                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5542                         ++vcpu->stat.request_irq_exits;
5543                 }
5544
5545                 kvm_check_async_pf_completion(vcpu);
5546
5547                 if (signal_pending(current)) {
5548                         r = -EINTR;
5549                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5550                         ++vcpu->stat.signal_exits;
5551                 }
5552                 if (need_resched()) {
5553                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5554                         kvm_resched(vcpu);
5555                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5556                 }
5557         }
5558
5559         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5560
5561         vapic_exit(vcpu);
5562
5563         return r;
5564 }
5565
5566 static int complete_mmio(struct kvm_vcpu *vcpu)
5567 {
5568         struct kvm_run *run = vcpu->run;
5569         int r;
5570
5571         if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5572                 return 1;
5573
5574         if (vcpu->mmio_needed) {
5575                 vcpu->mmio_needed = 0;
5576                 if (!vcpu->mmio_is_write)
5577                         memcpy(vcpu->mmio_data + vcpu->mmio_index,
5578                                run->mmio.data, 8);
5579                 vcpu->mmio_index += 8;
5580                 if (vcpu->mmio_index < vcpu->mmio_size) {
5581                         run->exit_reason = KVM_EXIT_MMIO;
5582                         run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5583                         memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5584                         run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5585                         run->mmio.is_write = vcpu->mmio_is_write;
5586                         vcpu->mmio_needed = 1;
5587                         return 0;
5588                 }
5589                 if (vcpu->mmio_is_write)
5590                         return 1;
5591                 vcpu->mmio_read_completed = 1;
5592         }
5593         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5594         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5595         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5596         if (r != EMULATE_DONE)
5597                 return 0;
5598         return 1;
5599 }
5600
5601 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5602 {
5603         int r;
5604         sigset_t sigsaved;
5605
5606         if (!tsk_used_math(current) && init_fpu(current))
5607                 return -ENOMEM;
5608
5609         if (vcpu->sigset_active)
5610                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5611
5612         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5613                 kvm_vcpu_block(vcpu);
5614                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5615                 r = -EAGAIN;
5616                 goto out;
5617         }
5618
5619         /* re-sync apic's tpr */
5620         if (!irqchip_in_kernel(vcpu->kvm)) {
5621                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5622                         r = -EINVAL;
5623                         goto out;
5624                 }
5625         }
5626
5627         r = complete_mmio(vcpu);
5628         if (r <= 0)
5629                 goto out;
5630
5631         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5632                 kvm_register_write(vcpu, VCPU_REGS_RAX,
5633                                      kvm_run->hypercall.ret);
5634
5635         r = __vcpu_run(vcpu);
5636
5637 out:
5638         post_kvm_run_save(vcpu);
5639         if (vcpu->sigset_active)
5640                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5641
5642         return r;
5643 }
5644
5645 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5646 {
5647         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5648                 /*
5649                  * We are here if userspace calls get_regs() in the middle of
5650                  * instruction emulation. Registers state needs to be copied
5651                  * back from emulation context to vcpu. Usrapace shouldn't do
5652                  * that usually, but some bad designed PV devices (vmware
5653                  * backdoor interface) need this to work
5654                  */
5655                 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5656                 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5657                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5658         }
5659         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5660         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5661         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5662         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5663         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5664         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5665         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5666         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5667 #ifdef CONFIG_X86_64
5668         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5669         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5670         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5671         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5672         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5673         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5674         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5675         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5676 #endif
5677
5678         regs->rip = kvm_rip_read(vcpu);
5679         regs->rflags = kvm_get_rflags(vcpu);
5680
5681         return 0;
5682 }
5683
5684 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5685 {
5686         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5687         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5688
5689         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5690         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5691         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5692         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5693         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5694         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5695         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5696         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5697 #ifdef CONFIG_X86_64
5698         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5699         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5700         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5701         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5702         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5703         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5704         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5705         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5706 #endif
5707
5708         kvm_rip_write(vcpu, regs->rip);
5709         kvm_set_rflags(vcpu, regs->rflags);
5710
5711         vcpu->arch.exception.pending = false;
5712
5713         kvm_make_request(KVM_REQ_EVENT, vcpu);
5714
5715         return 0;
5716 }
5717
5718 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5719 {
5720         struct kvm_segment cs;
5721
5722         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5723         *db = cs.db;
5724         *l = cs.l;
5725 }
5726 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5727
5728 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5729                                   struct kvm_sregs *sregs)
5730 {
5731         struct desc_ptr dt;
5732
5733         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5734         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5735         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5736         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5737         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5738         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5739
5740         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5741         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5742
5743         kvm_x86_ops->get_idt(vcpu, &dt);
5744         sregs->idt.limit = dt.size;
5745         sregs->idt.base = dt.address;
5746         kvm_x86_ops->get_gdt(vcpu, &dt);
5747         sregs->gdt.limit = dt.size;
5748         sregs->gdt.base = dt.address;
5749
5750         sregs->cr0 = kvm_read_cr0(vcpu);
5751         sregs->cr2 = vcpu->arch.cr2;
5752         sregs->cr3 = kvm_read_cr3(vcpu);
5753         sregs->cr4 = kvm_read_cr4(vcpu);
5754         sregs->cr8 = kvm_get_cr8(vcpu);
5755         sregs->efer = vcpu->arch.efer;
5756         sregs->apic_base = kvm_get_apic_base(vcpu);
5757
5758         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5759
5760         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5761                 set_bit(vcpu->arch.interrupt.nr,
5762                         (unsigned long *)sregs->interrupt_bitmap);
5763
5764         return 0;
5765 }
5766
5767 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5768                                     struct kvm_mp_state *mp_state)
5769 {
5770         mp_state->mp_state = vcpu->arch.mp_state;
5771         return 0;
5772 }
5773
5774 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5775                                     struct kvm_mp_state *mp_state)
5776 {
5777         vcpu->arch.mp_state = mp_state->mp_state;
5778         kvm_make_request(KVM_REQ_EVENT, vcpu);
5779         return 0;
5780 }
5781
5782 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5783                     bool has_error_code, u32 error_code)
5784 {
5785         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5786         int ret;
5787
5788         init_emulate_ctxt(vcpu);
5789
5790         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5791                                    tss_selector, reason, has_error_code,
5792                                    error_code);
5793
5794         if (ret)
5795                 return EMULATE_FAIL;
5796
5797         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5798         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5799         kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5800         kvm_make_request(KVM_REQ_EVENT, vcpu);
5801         return EMULATE_DONE;
5802 }
5803 EXPORT_SYMBOL_GPL(kvm_task_switch);
5804
5805 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5806                                   struct kvm_sregs *sregs)
5807 {
5808         int mmu_reset_needed = 0;
5809         int pending_vec, max_bits, idx;
5810         struct desc_ptr dt;
5811
5812         dt.size = sregs->idt.limit;
5813         dt.address = sregs->idt.base;
5814         kvm_x86_ops->set_idt(vcpu, &dt);
5815         dt.size = sregs->gdt.limit;
5816         dt.address = sregs->gdt.base;
5817         kvm_x86_ops->set_gdt(vcpu, &dt);
5818
5819         vcpu->arch.cr2 = sregs->cr2;
5820         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5821         vcpu->arch.cr3 = sregs->cr3;
5822         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5823
5824         kvm_set_cr8(vcpu, sregs->cr8);
5825
5826         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5827         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5828         kvm_set_apic_base(vcpu, sregs->apic_base);
5829
5830         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5831         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5832         vcpu->arch.cr0 = sregs->cr0;
5833
5834         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5835         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5836         if (sregs->cr4 & X86_CR4_OSXSAVE)
5837                 update_cpuid(vcpu);
5838
5839         idx = srcu_read_lock(&vcpu->kvm->srcu);
5840         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5841                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5842                 mmu_reset_needed = 1;
5843         }
5844         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5845
5846         if (mmu_reset_needed)
5847                 kvm_mmu_reset_context(vcpu);
5848
5849         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5850         pending_vec = find_first_bit(
5851                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5852         if (pending_vec < max_bits) {
5853                 kvm_queue_interrupt(vcpu, pending_vec, false);
5854                 pr_debug("Set back pending irq %d\n", pending_vec);
5855         }
5856
5857         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5858         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5859         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5860         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5861         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5862         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5863
5864         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5865         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5866
5867         update_cr8_intercept(vcpu);
5868
5869         /* Older userspace won't unhalt the vcpu on reset. */
5870         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5871             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5872             !is_protmode(vcpu))
5873                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5874
5875         kvm_make_request(KVM_REQ_EVENT, vcpu);
5876
5877         return 0;
5878 }
5879
5880 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5881                                         struct kvm_guest_debug *dbg)
5882 {
5883         unsigned long rflags;
5884         int i, r;
5885
5886         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5887                 r = -EBUSY;
5888                 if (vcpu->arch.exception.pending)
5889                         goto out;
5890                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5891                         kvm_queue_exception(vcpu, DB_VECTOR);
5892                 else
5893                         kvm_queue_exception(vcpu, BP_VECTOR);
5894         }
5895
5896         /*
5897          * Read rflags as long as potentially injected trace flags are still
5898          * filtered out.
5899          */
5900         rflags = kvm_get_rflags(vcpu);
5901
5902         vcpu->guest_debug = dbg->control;
5903         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5904                 vcpu->guest_debug = 0;
5905
5906         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5907                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5908                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5909                 vcpu->arch.switch_db_regs =
5910                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5911         } else {
5912                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5913                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5914                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5915         }
5916
5917         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5918                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5919                         get_segment_base(vcpu, VCPU_SREG_CS);
5920
5921         /*
5922          * Trigger an rflags update that will inject or remove the trace
5923          * flags.
5924          */
5925         kvm_set_rflags(vcpu, rflags);
5926
5927         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5928
5929         r = 0;
5930
5931 out:
5932
5933         return r;
5934 }
5935
5936 /*
5937  * Translate a guest virtual address to a guest physical address.
5938  */
5939 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5940                                     struct kvm_translation *tr)
5941 {
5942         unsigned long vaddr = tr->linear_address;
5943         gpa_t gpa;
5944         int idx;
5945
5946         idx = srcu_read_lock(&vcpu->kvm->srcu);
5947         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5948         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5949         tr->physical_address = gpa;
5950         tr->valid = gpa != UNMAPPED_GVA;
5951         tr->writeable = 1;
5952         tr->usermode = 0;
5953
5954         return 0;
5955 }
5956
5957 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5958 {
5959         struct i387_fxsave_struct *fxsave =
5960                         &vcpu->arch.guest_fpu.state->fxsave;
5961
5962         memcpy(fpu->fpr, fxsave->st_space, 128);
5963         fpu->fcw = fxsave->cwd;
5964         fpu->fsw = fxsave->swd;
5965         fpu->ftwx = fxsave->twd;
5966         fpu->last_opcode = fxsave->fop;
5967         fpu->last_ip = fxsave->rip;
5968         fpu->last_dp = fxsave->rdp;
5969         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5970
5971         return 0;
5972 }
5973
5974 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5975 {
5976         struct i387_fxsave_struct *fxsave =
5977                         &vcpu->arch.guest_fpu.state->fxsave;
5978
5979         memcpy(fxsave->st_space, fpu->fpr, 128);
5980         fxsave->cwd = fpu->fcw;
5981         fxsave->swd = fpu->fsw;
5982         fxsave->twd = fpu->ftwx;
5983         fxsave->fop = fpu->last_opcode;
5984         fxsave->rip = fpu->last_ip;
5985         fxsave->rdp = fpu->last_dp;
5986         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5987
5988         return 0;
5989 }
5990
5991 int fx_init(struct kvm_vcpu *vcpu)
5992 {
5993         int err;
5994
5995         err = fpu_alloc(&vcpu->arch.guest_fpu);
5996         if (err)
5997                 return err;
5998
5999         fpu_finit(&vcpu->arch.guest_fpu);
6000
6001         /*
6002          * Ensure guest xcr0 is valid for loading
6003          */
6004         vcpu->arch.xcr0 = XSTATE_FP;
6005
6006         vcpu->arch.cr0 |= X86_CR0_ET;
6007
6008         return 0;
6009 }
6010 EXPORT_SYMBOL_GPL(fx_init);
6011
6012 static void fx_free(struct kvm_vcpu *vcpu)
6013 {
6014         fpu_free(&vcpu->arch.guest_fpu);
6015 }
6016
6017 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6018 {
6019         if (vcpu->guest_fpu_loaded)
6020                 return;
6021
6022         /*
6023          * Restore all possible states in the guest,
6024          * and assume host would use all available bits.
6025          * Guest xcr0 would be loaded later.
6026          */
6027         kvm_put_guest_xcr0(vcpu);
6028         vcpu->guest_fpu_loaded = 1;
6029         unlazy_fpu(current);
6030         fpu_restore_checking(&vcpu->arch.guest_fpu);
6031         trace_kvm_fpu(1);
6032 }
6033
6034 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6035 {
6036         kvm_put_guest_xcr0(vcpu);
6037
6038         if (!vcpu->guest_fpu_loaded)
6039                 return;
6040
6041         vcpu->guest_fpu_loaded = 0;
6042         fpu_save_init(&vcpu->arch.guest_fpu);
6043         ++vcpu->stat.fpu_reload;
6044         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6045         trace_kvm_fpu(0);
6046 }
6047
6048 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6049 {
6050         kvmclock_reset(vcpu);
6051
6052         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6053         fx_free(vcpu);
6054         kvm_x86_ops->vcpu_free(vcpu);
6055 }
6056
6057 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6058                                                 unsigned int id)
6059 {
6060         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6061                 printk_once(KERN_WARNING
6062                 "kvm: SMP vm created on host with unstable TSC; "
6063                 "guest TSC will not be reliable\n");
6064         return kvm_x86_ops->vcpu_create(kvm, id);
6065 }
6066
6067 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6068 {
6069         int r;
6070
6071         vcpu->arch.mtrr_state.have_fixed = 1;
6072         vcpu_load(vcpu);
6073         r = kvm_arch_vcpu_reset(vcpu);
6074         if (r == 0)
6075                 r = kvm_mmu_setup(vcpu);
6076         vcpu_put(vcpu);
6077         if (r < 0)
6078                 goto free_vcpu;
6079
6080         return 0;
6081 free_vcpu:
6082         kvm_x86_ops->vcpu_free(vcpu);
6083         return r;
6084 }
6085
6086 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6087 {
6088         vcpu->arch.apf.msr_val = 0;
6089
6090         vcpu_load(vcpu);
6091         kvm_mmu_unload(vcpu);
6092         vcpu_put(vcpu);
6093
6094         fx_free(vcpu);
6095         kvm_x86_ops->vcpu_free(vcpu);
6096 }
6097
6098 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6099 {
6100         vcpu->arch.nmi_pending = false;
6101         vcpu->arch.nmi_injected = false;
6102
6103         vcpu->arch.switch_db_regs = 0;
6104         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6105         vcpu->arch.dr6 = DR6_FIXED_1;
6106         vcpu->arch.dr7 = DR7_FIXED_1;
6107
6108         kvm_make_request(KVM_REQ_EVENT, vcpu);
6109         vcpu->arch.apf.msr_val = 0;
6110
6111         kvmclock_reset(vcpu);
6112
6113         kvm_clear_async_pf_completion_queue(vcpu);
6114         kvm_async_pf_hash_reset(vcpu);
6115         vcpu->arch.apf.halted = false;
6116
6117         return kvm_x86_ops->vcpu_reset(vcpu);
6118 }
6119
6120 int kvm_arch_hardware_enable(void *garbage)
6121 {
6122         struct kvm *kvm;
6123         struct kvm_vcpu *vcpu;
6124         int i;
6125
6126         kvm_shared_msr_cpu_online();
6127         list_for_each_entry(kvm, &vm_list, vm_list)
6128                 kvm_for_each_vcpu(i, vcpu, kvm)
6129                         if (vcpu->cpu == smp_processor_id())
6130                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6131         return kvm_x86_ops->hardware_enable(garbage);
6132 }
6133
6134 void kvm_arch_hardware_disable(void *garbage)
6135 {
6136         kvm_x86_ops->hardware_disable(garbage);
6137         drop_user_return_notifiers(garbage);
6138 }
6139
6140 int kvm_arch_hardware_setup(void)
6141 {
6142         return kvm_x86_ops->hardware_setup();
6143 }
6144
6145 void kvm_arch_hardware_unsetup(void)
6146 {
6147         kvm_x86_ops->hardware_unsetup();
6148 }
6149
6150 void kvm_arch_check_processor_compat(void *rtn)
6151 {
6152         kvm_x86_ops->check_processor_compatibility(rtn);
6153 }
6154
6155 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6156 {
6157         struct page *page;
6158         struct kvm *kvm;
6159         int r;
6160
6161         BUG_ON(vcpu->kvm == NULL);
6162         kvm = vcpu->kvm;
6163
6164         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6165         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
6166         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
6167         vcpu->arch.mmu.translate_gpa = translate_gpa;
6168         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6169         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6170                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6171         else
6172                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6173
6174         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6175         if (!page) {
6176                 r = -ENOMEM;
6177                 goto fail;
6178         }
6179         vcpu->arch.pio_data = page_address(page);
6180
6181         kvm_init_tsc_catchup(vcpu, max_tsc_khz);
6182
6183         r = kvm_mmu_create(vcpu);
6184         if (r < 0)
6185                 goto fail_free_pio_data;
6186
6187         if (irqchip_in_kernel(kvm)) {
6188                 r = kvm_create_lapic(vcpu);
6189                 if (r < 0)
6190                         goto fail_mmu_destroy;
6191         }
6192
6193         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6194                                        GFP_KERNEL);
6195         if (!vcpu->arch.mce_banks) {
6196                 r = -ENOMEM;
6197                 goto fail_free_lapic;
6198         }
6199         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6200
6201         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6202                 goto fail_free_mce_banks;
6203
6204         kvm_async_pf_hash_reset(vcpu);
6205
6206         return 0;
6207 fail_free_mce_banks:
6208         kfree(vcpu->arch.mce_banks);
6209 fail_free_lapic:
6210         kvm_free_lapic(vcpu);
6211 fail_mmu_destroy:
6212         kvm_mmu_destroy(vcpu);
6213 fail_free_pio_data:
6214         free_page((unsigned long)vcpu->arch.pio_data);
6215 fail:
6216         return r;
6217 }
6218
6219 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6220 {
6221         int idx;
6222
6223         kfree(vcpu->arch.mce_banks);
6224         kvm_free_lapic(vcpu);
6225         idx = srcu_read_lock(&vcpu->kvm->srcu);
6226         kvm_mmu_destroy(vcpu);
6227         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6228         free_page((unsigned long)vcpu->arch.pio_data);
6229 }
6230
6231 int kvm_arch_init_vm(struct kvm *kvm)
6232 {
6233         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6234         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6235
6236         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6237         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6238
6239         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6240
6241         return 0;
6242 }
6243
6244 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6245 {
6246         vcpu_load(vcpu);
6247         kvm_mmu_unload(vcpu);
6248         vcpu_put(vcpu);
6249 }
6250
6251 static void kvm_free_vcpus(struct kvm *kvm)
6252 {
6253         unsigned int i;
6254         struct kvm_vcpu *vcpu;
6255
6256         /*
6257          * Unpin any mmu pages first.
6258          */
6259         kvm_for_each_vcpu(i, vcpu, kvm) {
6260                 kvm_clear_async_pf_completion_queue(vcpu);
6261                 kvm_unload_vcpu_mmu(vcpu);
6262         }
6263         kvm_for_each_vcpu(i, vcpu, kvm)
6264                 kvm_arch_vcpu_free(vcpu);
6265
6266         mutex_lock(&kvm->lock);
6267         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6268                 kvm->vcpus[i] = NULL;
6269
6270         atomic_set(&kvm->online_vcpus, 0);
6271         mutex_unlock(&kvm->lock);
6272 }
6273
6274 void kvm_arch_sync_events(struct kvm *kvm)
6275 {
6276         kvm_free_all_assigned_devices(kvm);
6277         kvm_free_pit(kvm);
6278 }
6279
6280 void kvm_arch_destroy_vm(struct kvm *kvm)
6281 {
6282         kvm_iommu_unmap_guest(kvm);
6283         kfree(kvm->arch.vpic);
6284         kfree(kvm->arch.vioapic);
6285         kvm_free_vcpus(kvm);
6286         if (kvm->arch.apic_access_page)
6287                 put_page(kvm->arch.apic_access_page);
6288         if (kvm->arch.ept_identity_pagetable)
6289                 put_page(kvm->arch.ept_identity_pagetable);
6290 }
6291
6292 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6293                                 struct kvm_memory_slot *memslot,
6294                                 struct kvm_memory_slot old,
6295                                 struct kvm_userspace_memory_region *mem,
6296                                 int user_alloc)
6297 {
6298         int npages = memslot->npages;
6299         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6300
6301         /* Prevent internal slot pages from being moved by fork()/COW. */
6302         if (memslot->id >= KVM_MEMORY_SLOTS)
6303                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6304
6305         /*To keep backward compatibility with older userspace,
6306          *x86 needs to hanlde !user_alloc case.
6307          */
6308         if (!user_alloc) {
6309                 if (npages && !old.rmap) {
6310                         unsigned long userspace_addr;
6311
6312                         down_write(&current->mm->mmap_sem);
6313                         userspace_addr = do_mmap(NULL, 0,
6314                                                  npages * PAGE_SIZE,
6315                                                  PROT_READ | PROT_WRITE,
6316                                                  map_flags,
6317                                                  0);
6318                         up_write(&current->mm->mmap_sem);
6319
6320                         if (IS_ERR((void *)userspace_addr))
6321                                 return PTR_ERR((void *)userspace_addr);
6322
6323                         memslot->userspace_addr = userspace_addr;
6324                 }
6325         }
6326
6327
6328         return 0;
6329 }
6330
6331 void kvm_arch_commit_memory_region(struct kvm *kvm,
6332                                 struct kvm_userspace_memory_region *mem,
6333                                 struct kvm_memory_slot old,
6334                                 int user_alloc)
6335 {
6336
6337         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6338
6339         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6340                 int ret;
6341
6342                 down_write(&current->mm->mmap_sem);
6343                 ret = do_munmap(current->mm, old.userspace_addr,
6344                                 old.npages * PAGE_SIZE);
6345                 up_write(&current->mm->mmap_sem);
6346                 if (ret < 0)
6347                         printk(KERN_WARNING
6348                                "kvm_vm_ioctl_set_memory_region: "
6349                                "failed to munmap memory\n");
6350         }
6351
6352         if (!kvm->arch.n_requested_mmu_pages)
6353                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6354
6355         spin_lock(&kvm->mmu_lock);
6356         if (nr_mmu_pages)
6357                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6358         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6359         spin_unlock(&kvm->mmu_lock);
6360 }
6361
6362 void kvm_arch_flush_shadow(struct kvm *kvm)
6363 {
6364         kvm_mmu_zap_all(kvm);
6365         kvm_reload_remote_mmus(kvm);
6366 }
6367
6368 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6369 {
6370         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6371                 !vcpu->arch.apf.halted)
6372                 || !list_empty_careful(&vcpu->async_pf.done)
6373                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6374                 || vcpu->arch.nmi_pending ||
6375                 (kvm_arch_interrupt_allowed(vcpu) &&
6376                  kvm_cpu_has_interrupt(vcpu));
6377 }
6378
6379 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6380 {
6381         int me;
6382         int cpu = vcpu->cpu;
6383
6384         if (waitqueue_active(&vcpu->wq)) {
6385                 wake_up_interruptible(&vcpu->wq);
6386                 ++vcpu->stat.halt_wakeup;
6387         }
6388
6389         me = get_cpu();
6390         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6391                 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6392                         smp_send_reschedule(cpu);
6393         put_cpu();
6394 }
6395
6396 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6397 {
6398         return kvm_x86_ops->interrupt_allowed(vcpu);
6399 }
6400
6401 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6402 {
6403         unsigned long current_rip = kvm_rip_read(vcpu) +
6404                 get_segment_base(vcpu, VCPU_SREG_CS);
6405
6406         return current_rip == linear_rip;
6407 }
6408 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6409
6410 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6411 {
6412         unsigned long rflags;
6413
6414         rflags = kvm_x86_ops->get_rflags(vcpu);
6415         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6416                 rflags &= ~X86_EFLAGS_TF;
6417         return rflags;
6418 }
6419 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6420
6421 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6422 {
6423         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6424             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6425                 rflags |= X86_EFLAGS_TF;
6426         kvm_x86_ops->set_rflags(vcpu, rflags);
6427         kvm_make_request(KVM_REQ_EVENT, vcpu);
6428 }
6429 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6430
6431 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6432 {
6433         int r;
6434
6435         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6436               is_error_page(work->page))
6437                 return;
6438
6439         r = kvm_mmu_reload(vcpu);
6440         if (unlikely(r))
6441                 return;
6442
6443         if (!vcpu->arch.mmu.direct_map &&
6444               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6445                 return;
6446
6447         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6448 }
6449
6450 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6451 {
6452         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6453 }
6454
6455 static inline u32 kvm_async_pf_next_probe(u32 key)
6456 {
6457         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6458 }
6459
6460 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6461 {
6462         u32 key = kvm_async_pf_hash_fn(gfn);
6463
6464         while (vcpu->arch.apf.gfns[key] != ~0)
6465                 key = kvm_async_pf_next_probe(key);
6466
6467         vcpu->arch.apf.gfns[key] = gfn;
6468 }
6469
6470 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6471 {
6472         int i;
6473         u32 key = kvm_async_pf_hash_fn(gfn);
6474
6475         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6476                      (vcpu->arch.apf.gfns[key] != gfn &&
6477                       vcpu->arch.apf.gfns[key] != ~0); i++)
6478                 key = kvm_async_pf_next_probe(key);
6479
6480         return key;
6481 }
6482
6483 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6484 {
6485         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6486 }
6487
6488 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6489 {
6490         u32 i, j, k;
6491
6492         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6493         while (true) {
6494                 vcpu->arch.apf.gfns[i] = ~0;
6495                 do {
6496                         j = kvm_async_pf_next_probe(j);
6497                         if (vcpu->arch.apf.gfns[j] == ~0)
6498                                 return;
6499                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6500                         /*
6501                          * k lies cyclically in ]i,j]
6502                          * |    i.k.j |
6503                          * |....j i.k.| or  |.k..j i...|
6504                          */
6505                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6506                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6507                 i = j;
6508         }
6509 }
6510
6511 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6512 {
6513
6514         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6515                                       sizeof(val));
6516 }
6517
6518 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6519                                      struct kvm_async_pf *work)
6520 {
6521         struct x86_exception fault;
6522
6523         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6524         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6525
6526         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6527             (vcpu->arch.apf.send_user_only &&
6528              kvm_x86_ops->get_cpl(vcpu) == 0))
6529                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6530         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6531                 fault.vector = PF_VECTOR;
6532                 fault.error_code_valid = true;
6533                 fault.error_code = 0;
6534                 fault.nested_page_fault = false;
6535                 fault.address = work->arch.token;
6536                 kvm_inject_page_fault(vcpu, &fault);
6537         }
6538 }
6539
6540 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6541                                  struct kvm_async_pf *work)
6542 {
6543         struct x86_exception fault;
6544
6545         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6546         if (is_error_page(work->page))
6547                 work->arch.token = ~0; /* broadcast wakeup */
6548         else
6549                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6550
6551         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6552             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6553                 fault.vector = PF_VECTOR;
6554                 fault.error_code_valid = true;
6555                 fault.error_code = 0;
6556                 fault.nested_page_fault = false;
6557                 fault.address = work->arch.token;
6558                 kvm_inject_page_fault(vcpu, &fault);
6559         }
6560         vcpu->arch.apf.halted = false;
6561 }
6562
6563 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6564 {
6565         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6566                 return true;
6567         else
6568                 return !kvm_event_needs_reinjection(vcpu) &&
6569                         kvm_x86_ops->interrupt_allowed(vcpu);
6570 }
6571
6572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);