KVM: X86: Let kvm-clock report the right tsc frequency
[linux-flexiantxendom0.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61
62 #define MAX_IO_MSRS 256
63 #define KVM_MAX_MCE_BANKS 32
64 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
65
66 /* EFER defaults:
67  * - enable syscall per default because its emulated by KVM
68  * - enable LME and LMA per default on 64 bit KVM
69  */
70 #ifdef CONFIG_X86_64
71 static
72 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
73 #else
74 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
75 #endif
76
77 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
78 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
79
80 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
81 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
82                                     struct kvm_cpuid_entry2 __user *entries);
83
84 struct kvm_x86_ops *kvm_x86_ops;
85 EXPORT_SYMBOL_GPL(kvm_x86_ops);
86
87 int ignore_msrs = 0;
88 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
89
90 #define KVM_NR_SHARED_MSRS 16
91
92 struct kvm_shared_msrs_global {
93         int nr;
94         u32 msrs[KVM_NR_SHARED_MSRS];
95 };
96
97 struct kvm_shared_msrs {
98         struct user_return_notifier urn;
99         bool registered;
100         struct kvm_shared_msr_values {
101                 u64 host;
102                 u64 curr;
103         } values[KVM_NR_SHARED_MSRS];
104 };
105
106 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
107 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
108
109 struct kvm_stats_debugfs_item debugfs_entries[] = {
110         { "pf_fixed", VCPU_STAT(pf_fixed) },
111         { "pf_guest", VCPU_STAT(pf_guest) },
112         { "tlb_flush", VCPU_STAT(tlb_flush) },
113         { "invlpg", VCPU_STAT(invlpg) },
114         { "exits", VCPU_STAT(exits) },
115         { "io_exits", VCPU_STAT(io_exits) },
116         { "mmio_exits", VCPU_STAT(mmio_exits) },
117         { "signal_exits", VCPU_STAT(signal_exits) },
118         { "irq_window", VCPU_STAT(irq_window_exits) },
119         { "nmi_window", VCPU_STAT(nmi_window_exits) },
120         { "halt_exits", VCPU_STAT(halt_exits) },
121         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
122         { "hypercalls", VCPU_STAT(hypercalls) },
123         { "request_irq", VCPU_STAT(request_irq_exits) },
124         { "irq_exits", VCPU_STAT(irq_exits) },
125         { "host_state_reload", VCPU_STAT(host_state_reload) },
126         { "efer_reload", VCPU_STAT(efer_reload) },
127         { "fpu_reload", VCPU_STAT(fpu_reload) },
128         { "insn_emulation", VCPU_STAT(insn_emulation) },
129         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
130         { "irq_injections", VCPU_STAT(irq_injections) },
131         { "nmi_injections", VCPU_STAT(nmi_injections) },
132         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
133         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
134         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
135         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
136         { "mmu_flooded", VM_STAT(mmu_flooded) },
137         { "mmu_recycled", VM_STAT(mmu_recycled) },
138         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
139         { "mmu_unsync", VM_STAT(mmu_unsync) },
140         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
141         { "largepages", VM_STAT(lpages) },
142         { NULL }
143 };
144
145 u64 __read_mostly host_xcr0;
146
147 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
148 {
149         int i;
150         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
151                 vcpu->arch.apf.gfns[i] = ~0;
152 }
153
154 static void kvm_on_user_return(struct user_return_notifier *urn)
155 {
156         unsigned slot;
157         struct kvm_shared_msrs *locals
158                 = container_of(urn, struct kvm_shared_msrs, urn);
159         struct kvm_shared_msr_values *values;
160
161         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
162                 values = &locals->values[slot];
163                 if (values->host != values->curr) {
164                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
165                         values->curr = values->host;
166                 }
167         }
168         locals->registered = false;
169         user_return_notifier_unregister(urn);
170 }
171
172 static void shared_msr_update(unsigned slot, u32 msr)
173 {
174         struct kvm_shared_msrs *smsr;
175         u64 value;
176
177         smsr = &__get_cpu_var(shared_msrs);
178         /* only read, and nobody should modify it at this time,
179          * so don't need lock */
180         if (slot >= shared_msrs_global.nr) {
181                 printk(KERN_ERR "kvm: invalid MSR slot!");
182                 return;
183         }
184         rdmsrl_safe(msr, &value);
185         smsr->values[slot].host = value;
186         smsr->values[slot].curr = value;
187 }
188
189 void kvm_define_shared_msr(unsigned slot, u32 msr)
190 {
191         if (slot >= shared_msrs_global.nr)
192                 shared_msrs_global.nr = slot + 1;
193         shared_msrs_global.msrs[slot] = msr;
194         /* we need ensured the shared_msr_global have been updated */
195         smp_wmb();
196 }
197 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
198
199 static void kvm_shared_msr_cpu_online(void)
200 {
201         unsigned i;
202
203         for (i = 0; i < shared_msrs_global.nr; ++i)
204                 shared_msr_update(i, shared_msrs_global.msrs[i]);
205 }
206
207 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
208 {
209         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
210
211         if (((value ^ smsr->values[slot].curr) & mask) == 0)
212                 return;
213         smsr->values[slot].curr = value;
214         wrmsrl(shared_msrs_global.msrs[slot], value);
215         if (!smsr->registered) {
216                 smsr->urn.on_user_return = kvm_on_user_return;
217                 user_return_notifier_register(&smsr->urn);
218                 smsr->registered = true;
219         }
220 }
221 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
222
223 static void drop_user_return_notifiers(void *ignore)
224 {
225         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
226
227         if (smsr->registered)
228                 kvm_on_user_return(&smsr->urn);
229 }
230
231 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
232 {
233         if (irqchip_in_kernel(vcpu->kvm))
234                 return vcpu->arch.apic_base;
235         else
236                 return vcpu->arch.apic_base;
237 }
238 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
239
240 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
241 {
242         /* TODO: reserve bits check */
243         if (irqchip_in_kernel(vcpu->kvm))
244                 kvm_lapic_set_base(vcpu, data);
245         else
246                 vcpu->arch.apic_base = data;
247 }
248 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
249
250 #define EXCPT_BENIGN            0
251 #define EXCPT_CONTRIBUTORY      1
252 #define EXCPT_PF                2
253
254 static int exception_class(int vector)
255 {
256         switch (vector) {
257         case PF_VECTOR:
258                 return EXCPT_PF;
259         case DE_VECTOR:
260         case TS_VECTOR:
261         case NP_VECTOR:
262         case SS_VECTOR:
263         case GP_VECTOR:
264                 return EXCPT_CONTRIBUTORY;
265         default:
266                 break;
267         }
268         return EXCPT_BENIGN;
269 }
270
271 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
272                 unsigned nr, bool has_error, u32 error_code,
273                 bool reinject)
274 {
275         u32 prev_nr;
276         int class1, class2;
277
278         kvm_make_request(KVM_REQ_EVENT, vcpu);
279
280         if (!vcpu->arch.exception.pending) {
281         queue:
282                 vcpu->arch.exception.pending = true;
283                 vcpu->arch.exception.has_error_code = has_error;
284                 vcpu->arch.exception.nr = nr;
285                 vcpu->arch.exception.error_code = error_code;
286                 vcpu->arch.exception.reinject = reinject;
287                 return;
288         }
289
290         /* to check exception */
291         prev_nr = vcpu->arch.exception.nr;
292         if (prev_nr == DF_VECTOR) {
293                 /* triple fault -> shutdown */
294                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
295                 return;
296         }
297         class1 = exception_class(prev_nr);
298         class2 = exception_class(nr);
299         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
300                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
301                 /* generate double fault per SDM Table 5-5 */
302                 vcpu->arch.exception.pending = true;
303                 vcpu->arch.exception.has_error_code = true;
304                 vcpu->arch.exception.nr = DF_VECTOR;
305                 vcpu->arch.exception.error_code = 0;
306         } else
307                 /* replace previous exception with a new one in a hope
308                    that instruction re-execution will regenerate lost
309                    exception */
310                 goto queue;
311 }
312
313 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
314 {
315         kvm_multiple_exception(vcpu, nr, false, 0, false);
316 }
317 EXPORT_SYMBOL_GPL(kvm_queue_exception);
318
319 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
320 {
321         kvm_multiple_exception(vcpu, nr, false, 0, true);
322 }
323 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
324
325 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
326 {
327         if (err)
328                 kvm_inject_gp(vcpu, 0);
329         else
330                 kvm_x86_ops->skip_emulated_instruction(vcpu);
331 }
332 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
333
334 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
335 {
336         ++vcpu->stat.pf_guest;
337         vcpu->arch.cr2 = fault->address;
338         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
339 }
340
341 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
342 {
343         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
344                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
345         else
346                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
347 }
348
349 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
350 {
351         kvm_make_request(KVM_REQ_EVENT, vcpu);
352         vcpu->arch.nmi_pending = 1;
353 }
354 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
355
356 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
357 {
358         kvm_multiple_exception(vcpu, nr, true, error_code, false);
359 }
360 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
361
362 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
363 {
364         kvm_multiple_exception(vcpu, nr, true, error_code, true);
365 }
366 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
367
368 /*
369  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
370  * a #GP and return false.
371  */
372 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
373 {
374         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
375                 return true;
376         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
377         return false;
378 }
379 EXPORT_SYMBOL_GPL(kvm_require_cpl);
380
381 /*
382  * This function will be used to read from the physical memory of the currently
383  * running guest. The difference to kvm_read_guest_page is that this function
384  * can read from guest physical or from the guest's guest physical memory.
385  */
386 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
387                             gfn_t ngfn, void *data, int offset, int len,
388                             u32 access)
389 {
390         gfn_t real_gfn;
391         gpa_t ngpa;
392
393         ngpa     = gfn_to_gpa(ngfn);
394         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
395         if (real_gfn == UNMAPPED_GVA)
396                 return -EFAULT;
397
398         real_gfn = gpa_to_gfn(real_gfn);
399
400         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
401 }
402 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
403
404 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
405                                void *data, int offset, int len, u32 access)
406 {
407         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
408                                        data, offset, len, access);
409 }
410
411 /*
412  * Load the pae pdptrs.  Return true is they are all valid.
413  */
414 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
415 {
416         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
417         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
418         int i;
419         int ret;
420         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
421
422         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
423                                       offset * sizeof(u64), sizeof(pdpte),
424                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
425         if (ret < 0) {
426                 ret = 0;
427                 goto out;
428         }
429         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
430                 if (is_present_gpte(pdpte[i]) &&
431                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
432                         ret = 0;
433                         goto out;
434                 }
435         }
436         ret = 1;
437
438         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
439         __set_bit(VCPU_EXREG_PDPTR,
440                   (unsigned long *)&vcpu->arch.regs_avail);
441         __set_bit(VCPU_EXREG_PDPTR,
442                   (unsigned long *)&vcpu->arch.regs_dirty);
443 out:
444
445         return ret;
446 }
447 EXPORT_SYMBOL_GPL(load_pdptrs);
448
449 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
450 {
451         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
452         bool changed = true;
453         int offset;
454         gfn_t gfn;
455         int r;
456
457         if (is_long_mode(vcpu) || !is_pae(vcpu))
458                 return false;
459
460         if (!test_bit(VCPU_EXREG_PDPTR,
461                       (unsigned long *)&vcpu->arch.regs_avail))
462                 return true;
463
464         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
465         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
466         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
467                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
468         if (r < 0)
469                 goto out;
470         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
471 out:
472
473         return changed;
474 }
475
476 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
477 {
478         unsigned long old_cr0 = kvm_read_cr0(vcpu);
479         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
480                                     X86_CR0_CD | X86_CR0_NW;
481
482         cr0 |= X86_CR0_ET;
483
484 #ifdef CONFIG_X86_64
485         if (cr0 & 0xffffffff00000000UL)
486                 return 1;
487 #endif
488
489         cr0 &= ~CR0_RESERVED_BITS;
490
491         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
492                 return 1;
493
494         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
495                 return 1;
496
497         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
498 #ifdef CONFIG_X86_64
499                 if ((vcpu->arch.efer & EFER_LME)) {
500                         int cs_db, cs_l;
501
502                         if (!is_pae(vcpu))
503                                 return 1;
504                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
505                         if (cs_l)
506                                 return 1;
507                 } else
508 #endif
509                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
510                                                  kvm_read_cr3(vcpu)))
511                         return 1;
512         }
513
514         kvm_x86_ops->set_cr0(vcpu, cr0);
515
516         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
517                 kvm_clear_async_pf_completion_queue(vcpu);
518                 kvm_async_pf_hash_reset(vcpu);
519         }
520
521         if ((cr0 ^ old_cr0) & update_bits)
522                 kvm_mmu_reset_context(vcpu);
523         return 0;
524 }
525 EXPORT_SYMBOL_GPL(kvm_set_cr0);
526
527 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
528 {
529         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
530 }
531 EXPORT_SYMBOL_GPL(kvm_lmsw);
532
533 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
534 {
535         u64 xcr0;
536
537         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
538         if (index != XCR_XFEATURE_ENABLED_MASK)
539                 return 1;
540         xcr0 = xcr;
541         if (kvm_x86_ops->get_cpl(vcpu) != 0)
542                 return 1;
543         if (!(xcr0 & XSTATE_FP))
544                 return 1;
545         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
546                 return 1;
547         if (xcr0 & ~host_xcr0)
548                 return 1;
549         vcpu->arch.xcr0 = xcr0;
550         vcpu->guest_xcr0_loaded = 0;
551         return 0;
552 }
553
554 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
555 {
556         if (__kvm_set_xcr(vcpu, index, xcr)) {
557                 kvm_inject_gp(vcpu, 0);
558                 return 1;
559         }
560         return 0;
561 }
562 EXPORT_SYMBOL_GPL(kvm_set_xcr);
563
564 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
565 {
566         struct kvm_cpuid_entry2 *best;
567
568         best = kvm_find_cpuid_entry(vcpu, 1, 0);
569         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
570 }
571
572 static void update_cpuid(struct kvm_vcpu *vcpu)
573 {
574         struct kvm_cpuid_entry2 *best;
575
576         best = kvm_find_cpuid_entry(vcpu, 1, 0);
577         if (!best)
578                 return;
579
580         /* Update OSXSAVE bit */
581         if (cpu_has_xsave && best->function == 0x1) {
582                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
583                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
584                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
585         }
586 }
587
588 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
589 {
590         unsigned long old_cr4 = kvm_read_cr4(vcpu);
591         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
592
593         if (cr4 & CR4_RESERVED_BITS)
594                 return 1;
595
596         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
597                 return 1;
598
599         if (is_long_mode(vcpu)) {
600                 if (!(cr4 & X86_CR4_PAE))
601                         return 1;
602         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
603                    && ((cr4 ^ old_cr4) & pdptr_bits)
604                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
605                                    kvm_read_cr3(vcpu)))
606                 return 1;
607
608         if (cr4 & X86_CR4_VMXE)
609                 return 1;
610
611         kvm_x86_ops->set_cr4(vcpu, cr4);
612
613         if ((cr4 ^ old_cr4) & pdptr_bits)
614                 kvm_mmu_reset_context(vcpu);
615
616         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
617                 update_cpuid(vcpu);
618
619         return 0;
620 }
621 EXPORT_SYMBOL_GPL(kvm_set_cr4);
622
623 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
624 {
625         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
626                 kvm_mmu_sync_roots(vcpu);
627                 kvm_mmu_flush_tlb(vcpu);
628                 return 0;
629         }
630
631         if (is_long_mode(vcpu)) {
632                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
633                         return 1;
634         } else {
635                 if (is_pae(vcpu)) {
636                         if (cr3 & CR3_PAE_RESERVED_BITS)
637                                 return 1;
638                         if (is_paging(vcpu) &&
639                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
640                                 return 1;
641                 }
642                 /*
643                  * We don't check reserved bits in nonpae mode, because
644                  * this isn't enforced, and VMware depends on this.
645                  */
646         }
647
648         /*
649          * Does the new cr3 value map to physical memory? (Note, we
650          * catch an invalid cr3 even in real-mode, because it would
651          * cause trouble later on when we turn on paging anyway.)
652          *
653          * A real CPU would silently accept an invalid cr3 and would
654          * attempt to use it - with largely undefined (and often hard
655          * to debug) behavior on the guest side.
656          */
657         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
658                 return 1;
659         vcpu->arch.cr3 = cr3;
660         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
661         vcpu->arch.mmu.new_cr3(vcpu);
662         return 0;
663 }
664 EXPORT_SYMBOL_GPL(kvm_set_cr3);
665
666 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
667 {
668         if (cr8 & CR8_RESERVED_BITS)
669                 return 1;
670         if (irqchip_in_kernel(vcpu->kvm))
671                 kvm_lapic_set_tpr(vcpu, cr8);
672         else
673                 vcpu->arch.cr8 = cr8;
674         return 0;
675 }
676 EXPORT_SYMBOL_GPL(kvm_set_cr8);
677
678 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
679 {
680         if (irqchip_in_kernel(vcpu->kvm))
681                 return kvm_lapic_get_cr8(vcpu);
682         else
683                 return vcpu->arch.cr8;
684 }
685 EXPORT_SYMBOL_GPL(kvm_get_cr8);
686
687 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
688 {
689         switch (dr) {
690         case 0 ... 3:
691                 vcpu->arch.db[dr] = val;
692                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
693                         vcpu->arch.eff_db[dr] = val;
694                 break;
695         case 4:
696                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
697                         return 1; /* #UD */
698                 /* fall through */
699         case 6:
700                 if (val & 0xffffffff00000000ULL)
701                         return -1; /* #GP */
702                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
703                 break;
704         case 5:
705                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
706                         return 1; /* #UD */
707                 /* fall through */
708         default: /* 7 */
709                 if (val & 0xffffffff00000000ULL)
710                         return -1; /* #GP */
711                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
712                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
713                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
714                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
715                 }
716                 break;
717         }
718
719         return 0;
720 }
721
722 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
723 {
724         int res;
725
726         res = __kvm_set_dr(vcpu, dr, val);
727         if (res > 0)
728                 kvm_queue_exception(vcpu, UD_VECTOR);
729         else if (res < 0)
730                 kvm_inject_gp(vcpu, 0);
731
732         return res;
733 }
734 EXPORT_SYMBOL_GPL(kvm_set_dr);
735
736 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
737 {
738         switch (dr) {
739         case 0 ... 3:
740                 *val = vcpu->arch.db[dr];
741                 break;
742         case 4:
743                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
744                         return 1;
745                 /* fall through */
746         case 6:
747                 *val = vcpu->arch.dr6;
748                 break;
749         case 5:
750                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
751                         return 1;
752                 /* fall through */
753         default: /* 7 */
754                 *val = vcpu->arch.dr7;
755                 break;
756         }
757
758         return 0;
759 }
760
761 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
762 {
763         if (_kvm_get_dr(vcpu, dr, val)) {
764                 kvm_queue_exception(vcpu, UD_VECTOR);
765                 return 1;
766         }
767         return 0;
768 }
769 EXPORT_SYMBOL_GPL(kvm_get_dr);
770
771 /*
772  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
773  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
774  *
775  * This list is modified at module load time to reflect the
776  * capabilities of the host cpu. This capabilities test skips MSRs that are
777  * kvm-specific. Those are put in the beginning of the list.
778  */
779
780 #define KVM_SAVE_MSRS_BEGIN     8
781 static u32 msrs_to_save[] = {
782         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
783         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
784         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
785         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
786         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
787         MSR_STAR,
788 #ifdef CONFIG_X86_64
789         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
790 #endif
791         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
792 };
793
794 static unsigned num_msrs_to_save;
795
796 static u32 emulated_msrs[] = {
797         MSR_IA32_MISC_ENABLE,
798         MSR_IA32_MCG_STATUS,
799         MSR_IA32_MCG_CTL,
800 };
801
802 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
803 {
804         u64 old_efer = vcpu->arch.efer;
805
806         if (efer & efer_reserved_bits)
807                 return 1;
808
809         if (is_paging(vcpu)
810             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
811                 return 1;
812
813         if (efer & EFER_FFXSR) {
814                 struct kvm_cpuid_entry2 *feat;
815
816                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
817                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
818                         return 1;
819         }
820
821         if (efer & EFER_SVME) {
822                 struct kvm_cpuid_entry2 *feat;
823
824                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
825                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
826                         return 1;
827         }
828
829         efer &= ~EFER_LMA;
830         efer |= vcpu->arch.efer & EFER_LMA;
831
832         kvm_x86_ops->set_efer(vcpu, efer);
833
834         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
835
836         /* Update reserved bits */
837         if ((efer ^ old_efer) & EFER_NX)
838                 kvm_mmu_reset_context(vcpu);
839
840         return 0;
841 }
842
843 void kvm_enable_efer_bits(u64 mask)
844 {
845        efer_reserved_bits &= ~mask;
846 }
847 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
848
849
850 /*
851  * Writes msr value into into the appropriate "register".
852  * Returns 0 on success, non-0 otherwise.
853  * Assumes vcpu_load() was already called.
854  */
855 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
856 {
857         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
858 }
859
860 /*
861  * Adapt set_msr() to msr_io()'s calling convention
862  */
863 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
864 {
865         return kvm_set_msr(vcpu, index, *data);
866 }
867
868 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
869 {
870         int version;
871         int r;
872         struct pvclock_wall_clock wc;
873         struct timespec boot;
874
875         if (!wall_clock)
876                 return;
877
878         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
879         if (r)
880                 return;
881
882         if (version & 1)
883                 ++version;  /* first time write, random junk */
884
885         ++version;
886
887         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
888
889         /*
890          * The guest calculates current wall clock time by adding
891          * system time (updated by kvm_guest_time_update below) to the
892          * wall clock specified here.  guest system time equals host
893          * system time for us, thus we must fill in host boot time here.
894          */
895         getboottime(&boot);
896
897         wc.sec = boot.tv_sec;
898         wc.nsec = boot.tv_nsec;
899         wc.version = version;
900
901         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
902
903         version++;
904         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
905 }
906
907 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
908 {
909         uint32_t quotient, remainder;
910
911         /* Don't try to replace with do_div(), this one calculates
912          * "(dividend << 32) / divisor" */
913         __asm__ ( "divl %4"
914                   : "=a" (quotient), "=d" (remainder)
915                   : "0" (0), "1" (dividend), "r" (divisor) );
916         return quotient;
917 }
918
919 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
920                                s8 *pshift, u32 *pmultiplier)
921 {
922         uint64_t scaled64;
923         int32_t  shift = 0;
924         uint64_t tps64;
925         uint32_t tps32;
926
927         tps64 = base_khz * 1000LL;
928         scaled64 = scaled_khz * 1000LL;
929         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
930                 tps64 >>= 1;
931                 shift--;
932         }
933
934         tps32 = (uint32_t)tps64;
935         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
936                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
937                         scaled64 >>= 1;
938                 else
939                         tps32 <<= 1;
940                 shift++;
941         }
942
943         *pshift = shift;
944         *pmultiplier = div_frac(scaled64, tps32);
945
946         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
947                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
948 }
949
950 static inline u64 get_kernel_ns(void)
951 {
952         struct timespec ts;
953
954         WARN_ON(preemptible());
955         ktime_get_ts(&ts);
956         monotonic_to_bootbased(&ts);
957         return timespec_to_ns(&ts);
958 }
959
960 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
961 unsigned long max_tsc_khz;
962
963 static inline int kvm_tsc_changes_freq(void)
964 {
965         int cpu = get_cpu();
966         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
967                   cpufreq_quick_get(cpu) != 0;
968         put_cpu();
969         return ret;
970 }
971
972 static u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
973 {
974         if (vcpu->arch.virtual_tsc_khz)
975                 return vcpu->arch.virtual_tsc_khz;
976         else
977                 return __this_cpu_read(cpu_tsc_khz);
978 }
979
980 static inline u64 nsec_to_cycles(u64 nsec)
981 {
982         u64 ret;
983
984         WARN_ON(preemptible());
985         if (kvm_tsc_changes_freq())
986                 printk_once(KERN_WARNING
987                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
988         ret = nsec * __this_cpu_read(cpu_tsc_khz);
989         do_div(ret, USEC_PER_SEC);
990         return ret;
991 }
992
993 static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
994 {
995         /* Compute a scale to convert nanoseconds in TSC cycles */
996         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
997                            &vcpu->arch.tsc_catchup_shift,
998                            &vcpu->arch.tsc_catchup_mult);
999 }
1000
1001 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1002 {
1003         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1004                                       vcpu->arch.tsc_catchup_mult,
1005                                       vcpu->arch.tsc_catchup_shift);
1006         tsc += vcpu->arch.last_tsc_write;
1007         return tsc;
1008 }
1009
1010 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1011 {
1012         struct kvm *kvm = vcpu->kvm;
1013         u64 offset, ns, elapsed;
1014         unsigned long flags;
1015         s64 sdiff;
1016
1017         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1018         offset = data - native_read_tsc();
1019         ns = get_kernel_ns();
1020         elapsed = ns - kvm->arch.last_tsc_nsec;
1021         sdiff = data - kvm->arch.last_tsc_write;
1022         if (sdiff < 0)
1023                 sdiff = -sdiff;
1024
1025         /*
1026          * Special case: close write to TSC within 5 seconds of
1027          * another CPU is interpreted as an attempt to synchronize
1028          * The 5 seconds is to accommodate host load / swapping as
1029          * well as any reset of TSC during the boot process.
1030          *
1031          * In that case, for a reliable TSC, we can match TSC offsets,
1032          * or make a best guest using elapsed value.
1033          */
1034         if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1035             elapsed < 5ULL * NSEC_PER_SEC) {
1036                 if (!check_tsc_unstable()) {
1037                         offset = kvm->arch.last_tsc_offset;
1038                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1039                 } else {
1040                         u64 delta = nsec_to_cycles(elapsed);
1041                         offset += delta;
1042                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1043                 }
1044                 ns = kvm->arch.last_tsc_nsec;
1045         }
1046         kvm->arch.last_tsc_nsec = ns;
1047         kvm->arch.last_tsc_write = data;
1048         kvm->arch.last_tsc_offset = offset;
1049         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1050         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1051
1052         /* Reset of TSC must disable overshoot protection below */
1053         vcpu->arch.hv_clock.tsc_timestamp = 0;
1054         vcpu->arch.last_tsc_write = data;
1055         vcpu->arch.last_tsc_nsec = ns;
1056 }
1057 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1058
1059 static int kvm_guest_time_update(struct kvm_vcpu *v)
1060 {
1061         unsigned long flags;
1062         struct kvm_vcpu_arch *vcpu = &v->arch;
1063         void *shared_kaddr;
1064         unsigned long this_tsc_khz;
1065         s64 kernel_ns, max_kernel_ns;
1066         u64 tsc_timestamp;
1067
1068         /* Keep irq disabled to prevent changes to the clock */
1069         local_irq_save(flags);
1070         kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1071         kernel_ns = get_kernel_ns();
1072         this_tsc_khz = vcpu_tsc_khz(v);
1073         if (unlikely(this_tsc_khz == 0)) {
1074                 local_irq_restore(flags);
1075                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1076                 return 1;
1077         }
1078
1079         /*
1080          * We may have to catch up the TSC to match elapsed wall clock
1081          * time for two reasons, even if kvmclock is used.
1082          *   1) CPU could have been running below the maximum TSC rate
1083          *   2) Broken TSC compensation resets the base at each VCPU
1084          *      entry to avoid unknown leaps of TSC even when running
1085          *      again on the same CPU.  This may cause apparent elapsed
1086          *      time to disappear, and the guest to stand still or run
1087          *      very slowly.
1088          */
1089         if (vcpu->tsc_catchup) {
1090                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1091                 if (tsc > tsc_timestamp) {
1092                         kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1093                         tsc_timestamp = tsc;
1094                 }
1095         }
1096
1097         local_irq_restore(flags);
1098
1099         if (!vcpu->time_page)
1100                 return 0;
1101
1102         /*
1103          * Time as measured by the TSC may go backwards when resetting the base
1104          * tsc_timestamp.  The reason for this is that the TSC resolution is
1105          * higher than the resolution of the other clock scales.  Thus, many
1106          * possible measurments of the TSC correspond to one measurement of any
1107          * other clock, and so a spread of values is possible.  This is not a
1108          * problem for the computation of the nanosecond clock; with TSC rates
1109          * around 1GHZ, there can only be a few cycles which correspond to one
1110          * nanosecond value, and any path through this code will inevitably
1111          * take longer than that.  However, with the kernel_ns value itself,
1112          * the precision may be much lower, down to HZ granularity.  If the
1113          * first sampling of TSC against kernel_ns ends in the low part of the
1114          * range, and the second in the high end of the range, we can get:
1115          *
1116          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1117          *
1118          * As the sampling errors potentially range in the thousands of cycles,
1119          * it is possible such a time value has already been observed by the
1120          * guest.  To protect against this, we must compute the system time as
1121          * observed by the guest and ensure the new system time is greater.
1122          */
1123         max_kernel_ns = 0;
1124         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1125                 max_kernel_ns = vcpu->last_guest_tsc -
1126                                 vcpu->hv_clock.tsc_timestamp;
1127                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1128                                     vcpu->hv_clock.tsc_to_system_mul,
1129                                     vcpu->hv_clock.tsc_shift);
1130                 max_kernel_ns += vcpu->last_kernel_ns;
1131         }
1132
1133         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1134                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1135                                    &vcpu->hv_clock.tsc_shift,
1136                                    &vcpu->hv_clock.tsc_to_system_mul);
1137                 vcpu->hw_tsc_khz = this_tsc_khz;
1138         }
1139
1140         if (max_kernel_ns > kernel_ns)
1141                 kernel_ns = max_kernel_ns;
1142
1143         /* With all the info we got, fill in the values */
1144         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1145         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1146         vcpu->last_kernel_ns = kernel_ns;
1147         vcpu->last_guest_tsc = tsc_timestamp;
1148         vcpu->hv_clock.flags = 0;
1149
1150         /*
1151          * The interface expects us to write an even number signaling that the
1152          * update is finished. Since the guest won't see the intermediate
1153          * state, we just increase by 2 at the end.
1154          */
1155         vcpu->hv_clock.version += 2;
1156
1157         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1158
1159         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1160                sizeof(vcpu->hv_clock));
1161
1162         kunmap_atomic(shared_kaddr, KM_USER0);
1163
1164         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1165         return 0;
1166 }
1167
1168 static bool msr_mtrr_valid(unsigned msr)
1169 {
1170         switch (msr) {
1171         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1172         case MSR_MTRRfix64K_00000:
1173         case MSR_MTRRfix16K_80000:
1174         case MSR_MTRRfix16K_A0000:
1175         case MSR_MTRRfix4K_C0000:
1176         case MSR_MTRRfix4K_C8000:
1177         case MSR_MTRRfix4K_D0000:
1178         case MSR_MTRRfix4K_D8000:
1179         case MSR_MTRRfix4K_E0000:
1180         case MSR_MTRRfix4K_E8000:
1181         case MSR_MTRRfix4K_F0000:
1182         case MSR_MTRRfix4K_F8000:
1183         case MSR_MTRRdefType:
1184         case MSR_IA32_CR_PAT:
1185                 return true;
1186         case 0x2f8:
1187                 return true;
1188         }
1189         return false;
1190 }
1191
1192 static bool valid_pat_type(unsigned t)
1193 {
1194         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1195 }
1196
1197 static bool valid_mtrr_type(unsigned t)
1198 {
1199         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1200 }
1201
1202 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1203 {
1204         int i;
1205
1206         if (!msr_mtrr_valid(msr))
1207                 return false;
1208
1209         if (msr == MSR_IA32_CR_PAT) {
1210                 for (i = 0; i < 8; i++)
1211                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1212                                 return false;
1213                 return true;
1214         } else if (msr == MSR_MTRRdefType) {
1215                 if (data & ~0xcff)
1216                         return false;
1217                 return valid_mtrr_type(data & 0xff);
1218         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1219                 for (i = 0; i < 8 ; i++)
1220                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1221                                 return false;
1222                 return true;
1223         }
1224
1225         /* variable MTRRs */
1226         return valid_mtrr_type(data & 0xff);
1227 }
1228
1229 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1230 {
1231         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1232
1233         if (!mtrr_valid(vcpu, msr, data))
1234                 return 1;
1235
1236         if (msr == MSR_MTRRdefType) {
1237                 vcpu->arch.mtrr_state.def_type = data;
1238                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1239         } else if (msr == MSR_MTRRfix64K_00000)
1240                 p[0] = data;
1241         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1242                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1243         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1244                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1245         else if (msr == MSR_IA32_CR_PAT)
1246                 vcpu->arch.pat = data;
1247         else {  /* Variable MTRRs */
1248                 int idx, is_mtrr_mask;
1249                 u64 *pt;
1250
1251                 idx = (msr - 0x200) / 2;
1252                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1253                 if (!is_mtrr_mask)
1254                         pt =
1255                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1256                 else
1257                         pt =
1258                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1259                 *pt = data;
1260         }
1261
1262         kvm_mmu_reset_context(vcpu);
1263         return 0;
1264 }
1265
1266 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1267 {
1268         u64 mcg_cap = vcpu->arch.mcg_cap;
1269         unsigned bank_num = mcg_cap & 0xff;
1270
1271         switch (msr) {
1272         case MSR_IA32_MCG_STATUS:
1273                 vcpu->arch.mcg_status = data;
1274                 break;
1275         case MSR_IA32_MCG_CTL:
1276                 if (!(mcg_cap & MCG_CTL_P))
1277                         return 1;
1278                 if (data != 0 && data != ~(u64)0)
1279                         return -1;
1280                 vcpu->arch.mcg_ctl = data;
1281                 break;
1282         default:
1283                 if (msr >= MSR_IA32_MC0_CTL &&
1284                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1285                         u32 offset = msr - MSR_IA32_MC0_CTL;
1286                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1287                          * some Linux kernels though clear bit 10 in bank 4 to
1288                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1289                          * this to avoid an uncatched #GP in the guest
1290                          */
1291                         if ((offset & 0x3) == 0 &&
1292                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1293                                 return -1;
1294                         vcpu->arch.mce_banks[offset] = data;
1295                         break;
1296                 }
1297                 return 1;
1298         }
1299         return 0;
1300 }
1301
1302 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1303 {
1304         struct kvm *kvm = vcpu->kvm;
1305         int lm = is_long_mode(vcpu);
1306         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1307                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1308         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1309                 : kvm->arch.xen_hvm_config.blob_size_32;
1310         u32 page_num = data & ~PAGE_MASK;
1311         u64 page_addr = data & PAGE_MASK;
1312         u8 *page;
1313         int r;
1314
1315         r = -E2BIG;
1316         if (page_num >= blob_size)
1317                 goto out;
1318         r = -ENOMEM;
1319         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1320         if (!page)
1321                 goto out;
1322         r = -EFAULT;
1323         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1324                 goto out_free;
1325         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1326                 goto out_free;
1327         r = 0;
1328 out_free:
1329         kfree(page);
1330 out:
1331         return r;
1332 }
1333
1334 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1335 {
1336         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1337 }
1338
1339 static bool kvm_hv_msr_partition_wide(u32 msr)
1340 {
1341         bool r = false;
1342         switch (msr) {
1343         case HV_X64_MSR_GUEST_OS_ID:
1344         case HV_X64_MSR_HYPERCALL:
1345                 r = true;
1346                 break;
1347         }
1348
1349         return r;
1350 }
1351
1352 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1353 {
1354         struct kvm *kvm = vcpu->kvm;
1355
1356         switch (msr) {
1357         case HV_X64_MSR_GUEST_OS_ID:
1358                 kvm->arch.hv_guest_os_id = data;
1359                 /* setting guest os id to zero disables hypercall page */
1360                 if (!kvm->arch.hv_guest_os_id)
1361                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1362                 break;
1363         case HV_X64_MSR_HYPERCALL: {
1364                 u64 gfn;
1365                 unsigned long addr;
1366                 u8 instructions[4];
1367
1368                 /* if guest os id is not set hypercall should remain disabled */
1369                 if (!kvm->arch.hv_guest_os_id)
1370                         break;
1371                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1372                         kvm->arch.hv_hypercall = data;
1373                         break;
1374                 }
1375                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1376                 addr = gfn_to_hva(kvm, gfn);
1377                 if (kvm_is_error_hva(addr))
1378                         return 1;
1379                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1380                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1381                 if (copy_to_user((void __user *)addr, instructions, 4))
1382                         return 1;
1383                 kvm->arch.hv_hypercall = data;
1384                 break;
1385         }
1386         default:
1387                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1388                           "data 0x%llx\n", msr, data);
1389                 return 1;
1390         }
1391         return 0;
1392 }
1393
1394 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1395 {
1396         switch (msr) {
1397         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1398                 unsigned long addr;
1399
1400                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1401                         vcpu->arch.hv_vapic = data;
1402                         break;
1403                 }
1404                 addr = gfn_to_hva(vcpu->kvm, data >>
1405                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1406                 if (kvm_is_error_hva(addr))
1407                         return 1;
1408                 if (clear_user((void __user *)addr, PAGE_SIZE))
1409                         return 1;
1410                 vcpu->arch.hv_vapic = data;
1411                 break;
1412         }
1413         case HV_X64_MSR_EOI:
1414                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1415         case HV_X64_MSR_ICR:
1416                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1417         case HV_X64_MSR_TPR:
1418                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1419         default:
1420                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1421                           "data 0x%llx\n", msr, data);
1422                 return 1;
1423         }
1424
1425         return 0;
1426 }
1427
1428 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1429 {
1430         gpa_t gpa = data & ~0x3f;
1431
1432         /* Bits 2:5 are resrved, Should be zero */
1433         if (data & 0x3c)
1434                 return 1;
1435
1436         vcpu->arch.apf.msr_val = data;
1437
1438         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1439                 kvm_clear_async_pf_completion_queue(vcpu);
1440                 kvm_async_pf_hash_reset(vcpu);
1441                 return 0;
1442         }
1443
1444         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1445                 return 1;
1446
1447         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1448         kvm_async_pf_wakeup_all(vcpu);
1449         return 0;
1450 }
1451
1452 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1453 {
1454         if (vcpu->arch.time_page) {
1455                 kvm_release_page_dirty(vcpu->arch.time_page);
1456                 vcpu->arch.time_page = NULL;
1457         }
1458 }
1459
1460 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1461 {
1462         switch (msr) {
1463         case MSR_EFER:
1464                 return set_efer(vcpu, data);
1465         case MSR_K7_HWCR:
1466                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1467                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1468                 if (data != 0) {
1469                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1470                                 data);
1471                         return 1;
1472                 }
1473                 break;
1474         case MSR_FAM10H_MMIO_CONF_BASE:
1475                 if (data != 0) {
1476                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1477                                 "0x%llx\n", data);
1478                         return 1;
1479                 }
1480                 break;
1481         case MSR_AMD64_NB_CFG:
1482                 break;
1483         case MSR_IA32_DEBUGCTLMSR:
1484                 if (!data) {
1485                         /* We support the non-activated case already */
1486                         break;
1487                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1488                         /* Values other than LBR and BTF are vendor-specific,
1489                            thus reserved and should throw a #GP */
1490                         return 1;
1491                 }
1492                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1493                         __func__, data);
1494                 break;
1495         case MSR_IA32_UCODE_REV:
1496         case MSR_IA32_UCODE_WRITE:
1497         case MSR_VM_HSAVE_PA:
1498         case MSR_AMD64_PATCH_LOADER:
1499                 break;
1500         case 0x200 ... 0x2ff:
1501                 return set_msr_mtrr(vcpu, msr, data);
1502         case MSR_IA32_APICBASE:
1503                 kvm_set_apic_base(vcpu, data);
1504                 break;
1505         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1506                 return kvm_x2apic_msr_write(vcpu, msr, data);
1507         case MSR_IA32_MISC_ENABLE:
1508                 vcpu->arch.ia32_misc_enable_msr = data;
1509                 break;
1510         case MSR_KVM_WALL_CLOCK_NEW:
1511         case MSR_KVM_WALL_CLOCK:
1512                 vcpu->kvm->arch.wall_clock = data;
1513                 kvm_write_wall_clock(vcpu->kvm, data);
1514                 break;
1515         case MSR_KVM_SYSTEM_TIME_NEW:
1516         case MSR_KVM_SYSTEM_TIME: {
1517                 kvmclock_reset(vcpu);
1518
1519                 vcpu->arch.time = data;
1520                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1521
1522                 /* we verify if the enable bit is set... */
1523                 if (!(data & 1))
1524                         break;
1525
1526                 /* ...but clean it before doing the actual write */
1527                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1528
1529                 vcpu->arch.time_page =
1530                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1531
1532                 if (is_error_page(vcpu->arch.time_page)) {
1533                         kvm_release_page_clean(vcpu->arch.time_page);
1534                         vcpu->arch.time_page = NULL;
1535                 }
1536                 break;
1537         }
1538         case MSR_KVM_ASYNC_PF_EN:
1539                 if (kvm_pv_enable_async_pf(vcpu, data))
1540                         return 1;
1541                 break;
1542         case MSR_IA32_MCG_CTL:
1543         case MSR_IA32_MCG_STATUS:
1544         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1545                 return set_msr_mce(vcpu, msr, data);
1546
1547         /* Performance counters are not protected by a CPUID bit,
1548          * so we should check all of them in the generic path for the sake of
1549          * cross vendor migration.
1550          * Writing a zero into the event select MSRs disables them,
1551          * which we perfectly emulate ;-). Any other value should be at least
1552          * reported, some guests depend on them.
1553          */
1554         case MSR_P6_EVNTSEL0:
1555         case MSR_P6_EVNTSEL1:
1556         case MSR_K7_EVNTSEL0:
1557         case MSR_K7_EVNTSEL1:
1558         case MSR_K7_EVNTSEL2:
1559         case MSR_K7_EVNTSEL3:
1560                 if (data != 0)
1561                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1562                                 "0x%x data 0x%llx\n", msr, data);
1563                 break;
1564         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1565          * so we ignore writes to make it happy.
1566          */
1567         case MSR_P6_PERFCTR0:
1568         case MSR_P6_PERFCTR1:
1569         case MSR_K7_PERFCTR0:
1570         case MSR_K7_PERFCTR1:
1571         case MSR_K7_PERFCTR2:
1572         case MSR_K7_PERFCTR3:
1573                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1574                         "0x%x data 0x%llx\n", msr, data);
1575                 break;
1576         case MSR_K7_CLK_CTL:
1577                 /*
1578                  * Ignore all writes to this no longer documented MSR.
1579                  * Writes are only relevant for old K7 processors,
1580                  * all pre-dating SVM, but a recommended workaround from
1581                  * AMD for these chips. It is possible to speicify the
1582                  * affected processor models on the command line, hence
1583                  * the need to ignore the workaround.
1584                  */
1585                 break;
1586         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1587                 if (kvm_hv_msr_partition_wide(msr)) {
1588                         int r;
1589                         mutex_lock(&vcpu->kvm->lock);
1590                         r = set_msr_hyperv_pw(vcpu, msr, data);
1591                         mutex_unlock(&vcpu->kvm->lock);
1592                         return r;
1593                 } else
1594                         return set_msr_hyperv(vcpu, msr, data);
1595                 break;
1596         case MSR_IA32_BBL_CR_CTL3:
1597                 /* Drop writes to this legacy MSR -- see rdmsr
1598                  * counterpart for further detail.
1599                  */
1600                 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1601                 break;
1602         default:
1603                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1604                         return xen_hvm_config(vcpu, data);
1605                 if (!ignore_msrs) {
1606                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1607                                 msr, data);
1608                         return 1;
1609                 } else {
1610                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1611                                 msr, data);
1612                         break;
1613                 }
1614         }
1615         return 0;
1616 }
1617 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1618
1619
1620 /*
1621  * Reads an msr value (of 'msr_index') into 'pdata'.
1622  * Returns 0 on success, non-0 otherwise.
1623  * Assumes vcpu_load() was already called.
1624  */
1625 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1626 {
1627         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1628 }
1629
1630 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1631 {
1632         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1633
1634         if (!msr_mtrr_valid(msr))
1635                 return 1;
1636
1637         if (msr == MSR_MTRRdefType)
1638                 *pdata = vcpu->arch.mtrr_state.def_type +
1639                          (vcpu->arch.mtrr_state.enabled << 10);
1640         else if (msr == MSR_MTRRfix64K_00000)
1641                 *pdata = p[0];
1642         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1643                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1644         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1645                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1646         else if (msr == MSR_IA32_CR_PAT)
1647                 *pdata = vcpu->arch.pat;
1648         else {  /* Variable MTRRs */
1649                 int idx, is_mtrr_mask;
1650                 u64 *pt;
1651
1652                 idx = (msr - 0x200) / 2;
1653                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1654                 if (!is_mtrr_mask)
1655                         pt =
1656                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1657                 else
1658                         pt =
1659                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1660                 *pdata = *pt;
1661         }
1662
1663         return 0;
1664 }
1665
1666 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1667 {
1668         u64 data;
1669         u64 mcg_cap = vcpu->arch.mcg_cap;
1670         unsigned bank_num = mcg_cap & 0xff;
1671
1672         switch (msr) {
1673         case MSR_IA32_P5_MC_ADDR:
1674         case MSR_IA32_P5_MC_TYPE:
1675                 data = 0;
1676                 break;
1677         case MSR_IA32_MCG_CAP:
1678                 data = vcpu->arch.mcg_cap;
1679                 break;
1680         case MSR_IA32_MCG_CTL:
1681                 if (!(mcg_cap & MCG_CTL_P))
1682                         return 1;
1683                 data = vcpu->arch.mcg_ctl;
1684                 break;
1685         case MSR_IA32_MCG_STATUS:
1686                 data = vcpu->arch.mcg_status;
1687                 break;
1688         default:
1689                 if (msr >= MSR_IA32_MC0_CTL &&
1690                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1691                         u32 offset = msr - MSR_IA32_MC0_CTL;
1692                         data = vcpu->arch.mce_banks[offset];
1693                         break;
1694                 }
1695                 return 1;
1696         }
1697         *pdata = data;
1698         return 0;
1699 }
1700
1701 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1702 {
1703         u64 data = 0;
1704         struct kvm *kvm = vcpu->kvm;
1705
1706         switch (msr) {
1707         case HV_X64_MSR_GUEST_OS_ID:
1708                 data = kvm->arch.hv_guest_os_id;
1709                 break;
1710         case HV_X64_MSR_HYPERCALL:
1711                 data = kvm->arch.hv_hypercall;
1712                 break;
1713         default:
1714                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1715                 return 1;
1716         }
1717
1718         *pdata = data;
1719         return 0;
1720 }
1721
1722 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1723 {
1724         u64 data = 0;
1725
1726         switch (msr) {
1727         case HV_X64_MSR_VP_INDEX: {
1728                 int r;
1729                 struct kvm_vcpu *v;
1730                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1731                         if (v == vcpu)
1732                                 data = r;
1733                 break;
1734         }
1735         case HV_X64_MSR_EOI:
1736                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1737         case HV_X64_MSR_ICR:
1738                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1739         case HV_X64_MSR_TPR:
1740                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1741         default:
1742                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1743                 return 1;
1744         }
1745         *pdata = data;
1746         return 0;
1747 }
1748
1749 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1750 {
1751         u64 data;
1752
1753         switch (msr) {
1754         case MSR_IA32_PLATFORM_ID:
1755         case MSR_IA32_UCODE_REV:
1756         case MSR_IA32_EBL_CR_POWERON:
1757         case MSR_IA32_DEBUGCTLMSR:
1758         case MSR_IA32_LASTBRANCHFROMIP:
1759         case MSR_IA32_LASTBRANCHTOIP:
1760         case MSR_IA32_LASTINTFROMIP:
1761         case MSR_IA32_LASTINTTOIP:
1762         case MSR_K8_SYSCFG:
1763         case MSR_K7_HWCR:
1764         case MSR_VM_HSAVE_PA:
1765         case MSR_P6_PERFCTR0:
1766         case MSR_P6_PERFCTR1:
1767         case MSR_P6_EVNTSEL0:
1768         case MSR_P6_EVNTSEL1:
1769         case MSR_K7_EVNTSEL0:
1770         case MSR_K7_PERFCTR0:
1771         case MSR_K8_INT_PENDING_MSG:
1772         case MSR_AMD64_NB_CFG:
1773         case MSR_FAM10H_MMIO_CONF_BASE:
1774                 data = 0;
1775                 break;
1776         case MSR_MTRRcap:
1777                 data = 0x500 | KVM_NR_VAR_MTRR;
1778                 break;
1779         case 0x200 ... 0x2ff:
1780                 return get_msr_mtrr(vcpu, msr, pdata);
1781         case 0xcd: /* fsb frequency */
1782                 data = 3;
1783                 break;
1784                 /*
1785                  * MSR_EBC_FREQUENCY_ID
1786                  * Conservative value valid for even the basic CPU models.
1787                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1788                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1789                  * and 266MHz for model 3, or 4. Set Core Clock
1790                  * Frequency to System Bus Frequency Ratio to 1 (bits
1791                  * 31:24) even though these are only valid for CPU
1792                  * models > 2, however guests may end up dividing or
1793                  * multiplying by zero otherwise.
1794                  */
1795         case MSR_EBC_FREQUENCY_ID:
1796                 data = 1 << 24;
1797                 break;
1798         case MSR_IA32_APICBASE:
1799                 data = kvm_get_apic_base(vcpu);
1800                 break;
1801         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1802                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1803                 break;
1804         case MSR_IA32_MISC_ENABLE:
1805                 data = vcpu->arch.ia32_misc_enable_msr;
1806                 break;
1807         case MSR_IA32_PERF_STATUS:
1808                 /* TSC increment by tick */
1809                 data = 1000ULL;
1810                 /* CPU multiplier */
1811                 data |= (((uint64_t)4ULL) << 40);
1812                 break;
1813         case MSR_EFER:
1814                 data = vcpu->arch.efer;
1815                 break;
1816         case MSR_KVM_WALL_CLOCK:
1817         case MSR_KVM_WALL_CLOCK_NEW:
1818                 data = vcpu->kvm->arch.wall_clock;
1819                 break;
1820         case MSR_KVM_SYSTEM_TIME:
1821         case MSR_KVM_SYSTEM_TIME_NEW:
1822                 data = vcpu->arch.time;
1823                 break;
1824         case MSR_KVM_ASYNC_PF_EN:
1825                 data = vcpu->arch.apf.msr_val;
1826                 break;
1827         case MSR_IA32_P5_MC_ADDR:
1828         case MSR_IA32_P5_MC_TYPE:
1829         case MSR_IA32_MCG_CAP:
1830         case MSR_IA32_MCG_CTL:
1831         case MSR_IA32_MCG_STATUS:
1832         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1833                 return get_msr_mce(vcpu, msr, pdata);
1834         case MSR_K7_CLK_CTL:
1835                 /*
1836                  * Provide expected ramp-up count for K7. All other
1837                  * are set to zero, indicating minimum divisors for
1838                  * every field.
1839                  *
1840                  * This prevents guest kernels on AMD host with CPU
1841                  * type 6, model 8 and higher from exploding due to
1842                  * the rdmsr failing.
1843                  */
1844                 data = 0x20000000;
1845                 break;
1846         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1847                 if (kvm_hv_msr_partition_wide(msr)) {
1848                         int r;
1849                         mutex_lock(&vcpu->kvm->lock);
1850                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1851                         mutex_unlock(&vcpu->kvm->lock);
1852                         return r;
1853                 } else
1854                         return get_msr_hyperv(vcpu, msr, pdata);
1855                 break;
1856         case MSR_IA32_BBL_CR_CTL3:
1857                 /* This legacy MSR exists but isn't fully documented in current
1858                  * silicon.  It is however accessed by winxp in very narrow
1859                  * scenarios where it sets bit #19, itself documented as
1860                  * a "reserved" bit.  Best effort attempt to source coherent
1861                  * read data here should the balance of the register be
1862                  * interpreted by the guest:
1863                  *
1864                  * L2 cache control register 3: 64GB range, 256KB size,
1865                  * enabled, latency 0x1, configured
1866                  */
1867                 data = 0xbe702111;
1868                 break;
1869         default:
1870                 if (!ignore_msrs) {
1871                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1872                         return 1;
1873                 } else {
1874                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1875                         data = 0;
1876                 }
1877                 break;
1878         }
1879         *pdata = data;
1880         return 0;
1881 }
1882 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1883
1884 /*
1885  * Read or write a bunch of msrs. All parameters are kernel addresses.
1886  *
1887  * @return number of msrs set successfully.
1888  */
1889 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1890                     struct kvm_msr_entry *entries,
1891                     int (*do_msr)(struct kvm_vcpu *vcpu,
1892                                   unsigned index, u64 *data))
1893 {
1894         int i, idx;
1895
1896         idx = srcu_read_lock(&vcpu->kvm->srcu);
1897         for (i = 0; i < msrs->nmsrs; ++i)
1898                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1899                         break;
1900         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1901
1902         return i;
1903 }
1904
1905 /*
1906  * Read or write a bunch of msrs. Parameters are user addresses.
1907  *
1908  * @return number of msrs set successfully.
1909  */
1910 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1911                   int (*do_msr)(struct kvm_vcpu *vcpu,
1912                                 unsigned index, u64 *data),
1913                   int writeback)
1914 {
1915         struct kvm_msrs msrs;
1916         struct kvm_msr_entry *entries;
1917         int r, n;
1918         unsigned size;
1919
1920         r = -EFAULT;
1921         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1922                 goto out;
1923
1924         r = -E2BIG;
1925         if (msrs.nmsrs >= MAX_IO_MSRS)
1926                 goto out;
1927
1928         r = -ENOMEM;
1929         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1930         entries = kmalloc(size, GFP_KERNEL);
1931         if (!entries)
1932                 goto out;
1933
1934         r = -EFAULT;
1935         if (copy_from_user(entries, user_msrs->entries, size))
1936                 goto out_free;
1937
1938         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1939         if (r < 0)
1940                 goto out_free;
1941
1942         r = -EFAULT;
1943         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1944                 goto out_free;
1945
1946         r = n;
1947
1948 out_free:
1949         kfree(entries);
1950 out:
1951         return r;
1952 }
1953
1954 int kvm_dev_ioctl_check_extension(long ext)
1955 {
1956         int r;
1957
1958         switch (ext) {
1959         case KVM_CAP_IRQCHIP:
1960         case KVM_CAP_HLT:
1961         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1962         case KVM_CAP_SET_TSS_ADDR:
1963         case KVM_CAP_EXT_CPUID:
1964         case KVM_CAP_CLOCKSOURCE:
1965         case KVM_CAP_PIT:
1966         case KVM_CAP_NOP_IO_DELAY:
1967         case KVM_CAP_MP_STATE:
1968         case KVM_CAP_SYNC_MMU:
1969         case KVM_CAP_USER_NMI:
1970         case KVM_CAP_REINJECT_CONTROL:
1971         case KVM_CAP_IRQ_INJECT_STATUS:
1972         case KVM_CAP_ASSIGN_DEV_IRQ:
1973         case KVM_CAP_IRQFD:
1974         case KVM_CAP_IOEVENTFD:
1975         case KVM_CAP_PIT2:
1976         case KVM_CAP_PIT_STATE2:
1977         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1978         case KVM_CAP_XEN_HVM:
1979         case KVM_CAP_ADJUST_CLOCK:
1980         case KVM_CAP_VCPU_EVENTS:
1981         case KVM_CAP_HYPERV:
1982         case KVM_CAP_HYPERV_VAPIC:
1983         case KVM_CAP_HYPERV_SPIN:
1984         case KVM_CAP_PCI_SEGMENT:
1985         case KVM_CAP_DEBUGREGS:
1986         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1987         case KVM_CAP_XSAVE:
1988         case KVM_CAP_ASYNC_PF:
1989                 r = 1;
1990                 break;
1991         case KVM_CAP_COALESCED_MMIO:
1992                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1993                 break;
1994         case KVM_CAP_VAPIC:
1995                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1996                 break;
1997         case KVM_CAP_NR_VCPUS:
1998                 r = KVM_MAX_VCPUS;
1999                 break;
2000         case KVM_CAP_NR_MEMSLOTS:
2001                 r = KVM_MEMORY_SLOTS;
2002                 break;
2003         case KVM_CAP_PV_MMU:    /* obsolete */
2004                 r = 0;
2005                 break;
2006         case KVM_CAP_IOMMU:
2007                 r = iommu_found();
2008                 break;
2009         case KVM_CAP_MCE:
2010                 r = KVM_MAX_MCE_BANKS;
2011                 break;
2012         case KVM_CAP_XCRS:
2013                 r = cpu_has_xsave;
2014                 break;
2015         default:
2016                 r = 0;
2017                 break;
2018         }
2019         return r;
2020
2021 }
2022
2023 long kvm_arch_dev_ioctl(struct file *filp,
2024                         unsigned int ioctl, unsigned long arg)
2025 {
2026         void __user *argp = (void __user *)arg;
2027         long r;
2028
2029         switch (ioctl) {
2030         case KVM_GET_MSR_INDEX_LIST: {
2031                 struct kvm_msr_list __user *user_msr_list = argp;
2032                 struct kvm_msr_list msr_list;
2033                 unsigned n;
2034
2035                 r = -EFAULT;
2036                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2037                         goto out;
2038                 n = msr_list.nmsrs;
2039                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2040                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2041                         goto out;
2042                 r = -E2BIG;
2043                 if (n < msr_list.nmsrs)
2044                         goto out;
2045                 r = -EFAULT;
2046                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2047                                  num_msrs_to_save * sizeof(u32)))
2048                         goto out;
2049                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2050                                  &emulated_msrs,
2051                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2052                         goto out;
2053                 r = 0;
2054                 break;
2055         }
2056         case KVM_GET_SUPPORTED_CPUID: {
2057                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2058                 struct kvm_cpuid2 cpuid;
2059
2060                 r = -EFAULT;
2061                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2062                         goto out;
2063                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2064                                                       cpuid_arg->entries);
2065                 if (r)
2066                         goto out;
2067
2068                 r = -EFAULT;
2069                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2070                         goto out;
2071                 r = 0;
2072                 break;
2073         }
2074         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2075                 u64 mce_cap;
2076
2077                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2078                 r = -EFAULT;
2079                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2080                         goto out;
2081                 r = 0;
2082                 break;
2083         }
2084         default:
2085                 r = -EINVAL;
2086         }
2087 out:
2088         return r;
2089 }
2090
2091 static void wbinvd_ipi(void *garbage)
2092 {
2093         wbinvd();
2094 }
2095
2096 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2097 {
2098         return vcpu->kvm->arch.iommu_domain &&
2099                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2100 }
2101
2102 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2103 {
2104         /* Address WBINVD may be executed by guest */
2105         if (need_emulate_wbinvd(vcpu)) {
2106                 if (kvm_x86_ops->has_wbinvd_exit())
2107                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2108                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2109                         smp_call_function_single(vcpu->cpu,
2110                                         wbinvd_ipi, NULL, 1);
2111         }
2112
2113         kvm_x86_ops->vcpu_load(vcpu, cpu);
2114         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2115                 /* Make sure TSC doesn't go backwards */
2116                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2117                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2118                 if (tsc_delta < 0)
2119                         mark_tsc_unstable("KVM discovered backwards TSC");
2120                 if (check_tsc_unstable()) {
2121                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2122                         vcpu->arch.tsc_catchup = 1;
2123                 }
2124                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2125                 if (vcpu->cpu != cpu)
2126                         kvm_migrate_timers(vcpu);
2127                 vcpu->cpu = cpu;
2128         }
2129 }
2130
2131 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2132 {
2133         kvm_x86_ops->vcpu_put(vcpu);
2134         kvm_put_guest_fpu(vcpu);
2135         vcpu->arch.last_host_tsc = native_read_tsc();
2136 }
2137
2138 static int is_efer_nx(void)
2139 {
2140         unsigned long long efer = 0;
2141
2142         rdmsrl_safe(MSR_EFER, &efer);
2143         return efer & EFER_NX;
2144 }
2145
2146 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2147 {
2148         int i;
2149         struct kvm_cpuid_entry2 *e, *entry;
2150
2151         entry = NULL;
2152         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2153                 e = &vcpu->arch.cpuid_entries[i];
2154                 if (e->function == 0x80000001) {
2155                         entry = e;
2156                         break;
2157                 }
2158         }
2159         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2160                 entry->edx &= ~(1 << 20);
2161                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2162         }
2163 }
2164
2165 /* when an old userspace process fills a new kernel module */
2166 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2167                                     struct kvm_cpuid *cpuid,
2168                                     struct kvm_cpuid_entry __user *entries)
2169 {
2170         int r, i;
2171         struct kvm_cpuid_entry *cpuid_entries;
2172
2173         r = -E2BIG;
2174         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2175                 goto out;
2176         r = -ENOMEM;
2177         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2178         if (!cpuid_entries)
2179                 goto out;
2180         r = -EFAULT;
2181         if (copy_from_user(cpuid_entries, entries,
2182                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2183                 goto out_free;
2184         for (i = 0; i < cpuid->nent; i++) {
2185                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2186                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2187                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2188                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2189                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2190                 vcpu->arch.cpuid_entries[i].index = 0;
2191                 vcpu->arch.cpuid_entries[i].flags = 0;
2192                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2193                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2194                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2195         }
2196         vcpu->arch.cpuid_nent = cpuid->nent;
2197         cpuid_fix_nx_cap(vcpu);
2198         r = 0;
2199         kvm_apic_set_version(vcpu);
2200         kvm_x86_ops->cpuid_update(vcpu);
2201         update_cpuid(vcpu);
2202
2203 out_free:
2204         vfree(cpuid_entries);
2205 out:
2206         return r;
2207 }
2208
2209 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2210                                      struct kvm_cpuid2 *cpuid,
2211                                      struct kvm_cpuid_entry2 __user *entries)
2212 {
2213         int r;
2214
2215         r = -E2BIG;
2216         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2217                 goto out;
2218         r = -EFAULT;
2219         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2220                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2221                 goto out;
2222         vcpu->arch.cpuid_nent = cpuid->nent;
2223         kvm_apic_set_version(vcpu);
2224         kvm_x86_ops->cpuid_update(vcpu);
2225         update_cpuid(vcpu);
2226         return 0;
2227
2228 out:
2229         return r;
2230 }
2231
2232 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2233                                      struct kvm_cpuid2 *cpuid,
2234                                      struct kvm_cpuid_entry2 __user *entries)
2235 {
2236         int r;
2237
2238         r = -E2BIG;
2239         if (cpuid->nent < vcpu->arch.cpuid_nent)
2240                 goto out;
2241         r = -EFAULT;
2242         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2243                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2244                 goto out;
2245         return 0;
2246
2247 out:
2248         cpuid->nent = vcpu->arch.cpuid_nent;
2249         return r;
2250 }
2251
2252 static void cpuid_mask(u32 *word, int wordnum)
2253 {
2254         *word &= boot_cpu_data.x86_capability[wordnum];
2255 }
2256
2257 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2258                            u32 index)
2259 {
2260         entry->function = function;
2261         entry->index = index;
2262         cpuid_count(entry->function, entry->index,
2263                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2264         entry->flags = 0;
2265 }
2266
2267 #define F(x) bit(X86_FEATURE_##x)
2268
2269 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2270                          u32 index, int *nent, int maxnent)
2271 {
2272         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2273 #ifdef CONFIG_X86_64
2274         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2275                                 ? F(GBPAGES) : 0;
2276         unsigned f_lm = F(LM);
2277 #else
2278         unsigned f_gbpages = 0;
2279         unsigned f_lm = 0;
2280 #endif
2281         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2282
2283         /* cpuid 1.edx */
2284         const u32 kvm_supported_word0_x86_features =
2285                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2286                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2287                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2288                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2289                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2290                 0 /* Reserved, DS, ACPI */ | F(MMX) |
2291                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2292                 0 /* HTT, TM, Reserved, PBE */;
2293         /* cpuid 0x80000001.edx */
2294         const u32 kvm_supported_word1_x86_features =
2295                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2296                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2297                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2298                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2299                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2300                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2301                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2302                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2303         /* cpuid 1.ecx */
2304         const u32 kvm_supported_word4_x86_features =
2305                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2306                 0 /* DS-CPL, VMX, SMX, EST */ |
2307                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2308                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2309                 0 /* Reserved, DCA */ | F(XMM4_1) |
2310                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2311                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2312                 F(F16C);
2313         /* cpuid 0x80000001.ecx */
2314         const u32 kvm_supported_word6_x86_features =
2315                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2316                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2317                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2318                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2319
2320         /* all calls to cpuid_count() should be made on the same cpu */
2321         get_cpu();
2322         do_cpuid_1_ent(entry, function, index);
2323         ++*nent;
2324
2325         switch (function) {
2326         case 0:
2327                 entry->eax = min(entry->eax, (u32)0xd);
2328                 break;
2329         case 1:
2330                 entry->edx &= kvm_supported_word0_x86_features;
2331                 cpuid_mask(&entry->edx, 0);
2332                 entry->ecx &= kvm_supported_word4_x86_features;
2333                 cpuid_mask(&entry->ecx, 4);
2334                 /* we support x2apic emulation even if host does not support
2335                  * it since we emulate x2apic in software */
2336                 entry->ecx |= F(X2APIC);
2337                 break;
2338         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2339          * may return different values. This forces us to get_cpu() before
2340          * issuing the first command, and also to emulate this annoying behavior
2341          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2342         case 2: {
2343                 int t, times = entry->eax & 0xff;
2344
2345                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2346                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2347                 for (t = 1; t < times && *nent < maxnent; ++t) {
2348                         do_cpuid_1_ent(&entry[t], function, 0);
2349                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2350                         ++*nent;
2351                 }
2352                 break;
2353         }
2354         /* function 4 and 0xb have additional index. */
2355         case 4: {
2356                 int i, cache_type;
2357
2358                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2359                 /* read more entries until cache_type is zero */
2360                 for (i = 1; *nent < maxnent; ++i) {
2361                         cache_type = entry[i - 1].eax & 0x1f;
2362                         if (!cache_type)
2363                                 break;
2364                         do_cpuid_1_ent(&entry[i], function, i);
2365                         entry[i].flags |=
2366                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2367                         ++*nent;
2368                 }
2369                 break;
2370         }
2371         case 0xb: {
2372                 int i, level_type;
2373
2374                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2375                 /* read more entries until level_type is zero */
2376                 for (i = 1; *nent < maxnent; ++i) {
2377                         level_type = entry[i - 1].ecx & 0xff00;
2378                         if (!level_type)
2379                                 break;
2380                         do_cpuid_1_ent(&entry[i], function, i);
2381                         entry[i].flags |=
2382                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2383                         ++*nent;
2384                 }
2385                 break;
2386         }
2387         case 0xd: {
2388                 int i;
2389
2390                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2391                 for (i = 1; *nent < maxnent && i < 64; ++i) {
2392                         if (entry[i].eax == 0)
2393                                 continue;
2394                         do_cpuid_1_ent(&entry[i], function, i);
2395                         entry[i].flags |=
2396                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2397                         ++*nent;
2398                 }
2399                 break;
2400         }
2401         case KVM_CPUID_SIGNATURE: {
2402                 char signature[12] = "KVMKVMKVM\0\0";
2403                 u32 *sigptr = (u32 *)signature;
2404                 entry->eax = 0;
2405                 entry->ebx = sigptr[0];
2406                 entry->ecx = sigptr[1];
2407                 entry->edx = sigptr[2];
2408                 break;
2409         }
2410         case KVM_CPUID_FEATURES:
2411                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2412                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2413                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2414                              (1 << KVM_FEATURE_ASYNC_PF) |
2415                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2416                 entry->ebx = 0;
2417                 entry->ecx = 0;
2418                 entry->edx = 0;
2419                 break;
2420         case 0x80000000:
2421                 entry->eax = min(entry->eax, 0x8000001a);
2422                 break;
2423         case 0x80000001:
2424                 entry->edx &= kvm_supported_word1_x86_features;
2425                 cpuid_mask(&entry->edx, 1);
2426                 entry->ecx &= kvm_supported_word6_x86_features;
2427                 cpuid_mask(&entry->ecx, 6);
2428                 break;
2429         }
2430
2431         kvm_x86_ops->set_supported_cpuid(function, entry);
2432
2433         put_cpu();
2434 }
2435
2436 #undef F
2437
2438 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2439                                      struct kvm_cpuid_entry2 __user *entries)
2440 {
2441         struct kvm_cpuid_entry2 *cpuid_entries;
2442         int limit, nent = 0, r = -E2BIG;
2443         u32 func;
2444
2445         if (cpuid->nent < 1)
2446                 goto out;
2447         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2448                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2449         r = -ENOMEM;
2450         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2451         if (!cpuid_entries)
2452                 goto out;
2453
2454         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2455         limit = cpuid_entries[0].eax;
2456         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2457                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2458                              &nent, cpuid->nent);
2459         r = -E2BIG;
2460         if (nent >= cpuid->nent)
2461                 goto out_free;
2462
2463         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2464         limit = cpuid_entries[nent - 1].eax;
2465         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2466                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2467                              &nent, cpuid->nent);
2468
2469
2470
2471         r = -E2BIG;
2472         if (nent >= cpuid->nent)
2473                 goto out_free;
2474
2475         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2476                      cpuid->nent);
2477
2478         r = -E2BIG;
2479         if (nent >= cpuid->nent)
2480                 goto out_free;
2481
2482         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2483                      cpuid->nent);
2484
2485         r = -E2BIG;
2486         if (nent >= cpuid->nent)
2487                 goto out_free;
2488
2489         r = -EFAULT;
2490         if (copy_to_user(entries, cpuid_entries,
2491                          nent * sizeof(struct kvm_cpuid_entry2)))
2492                 goto out_free;
2493         cpuid->nent = nent;
2494         r = 0;
2495
2496 out_free:
2497         vfree(cpuid_entries);
2498 out:
2499         return r;
2500 }
2501
2502 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2503                                     struct kvm_lapic_state *s)
2504 {
2505         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2506
2507         return 0;
2508 }
2509
2510 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2511                                     struct kvm_lapic_state *s)
2512 {
2513         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2514         kvm_apic_post_state_restore(vcpu);
2515         update_cr8_intercept(vcpu);
2516
2517         return 0;
2518 }
2519
2520 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2521                                     struct kvm_interrupt *irq)
2522 {
2523         if (irq->irq < 0 || irq->irq >= 256)
2524                 return -EINVAL;
2525         if (irqchip_in_kernel(vcpu->kvm))
2526                 return -ENXIO;
2527
2528         kvm_queue_interrupt(vcpu, irq->irq, false);
2529         kvm_make_request(KVM_REQ_EVENT, vcpu);
2530
2531         return 0;
2532 }
2533
2534 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2535 {
2536         kvm_inject_nmi(vcpu);
2537
2538         return 0;
2539 }
2540
2541 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2542                                            struct kvm_tpr_access_ctl *tac)
2543 {
2544         if (tac->flags)
2545                 return -EINVAL;
2546         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2547         return 0;
2548 }
2549
2550 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2551                                         u64 mcg_cap)
2552 {
2553         int r;
2554         unsigned bank_num = mcg_cap & 0xff, bank;
2555
2556         r = -EINVAL;
2557         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2558                 goto out;
2559         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2560                 goto out;
2561         r = 0;
2562         vcpu->arch.mcg_cap = mcg_cap;
2563         /* Init IA32_MCG_CTL to all 1s */
2564         if (mcg_cap & MCG_CTL_P)
2565                 vcpu->arch.mcg_ctl = ~(u64)0;
2566         /* Init IA32_MCi_CTL to all 1s */
2567         for (bank = 0; bank < bank_num; bank++)
2568                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2569 out:
2570         return r;
2571 }
2572
2573 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2574                                       struct kvm_x86_mce *mce)
2575 {
2576         u64 mcg_cap = vcpu->arch.mcg_cap;
2577         unsigned bank_num = mcg_cap & 0xff;
2578         u64 *banks = vcpu->arch.mce_banks;
2579
2580         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2581                 return -EINVAL;
2582         /*
2583          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2584          * reporting is disabled
2585          */
2586         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2587             vcpu->arch.mcg_ctl != ~(u64)0)
2588                 return 0;
2589         banks += 4 * mce->bank;
2590         /*
2591          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2592          * reporting is disabled for the bank
2593          */
2594         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2595                 return 0;
2596         if (mce->status & MCI_STATUS_UC) {
2597                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2598                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2599                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2600                         return 0;
2601                 }
2602                 if (banks[1] & MCI_STATUS_VAL)
2603                         mce->status |= MCI_STATUS_OVER;
2604                 banks[2] = mce->addr;
2605                 banks[3] = mce->misc;
2606                 vcpu->arch.mcg_status = mce->mcg_status;
2607                 banks[1] = mce->status;
2608                 kvm_queue_exception(vcpu, MC_VECTOR);
2609         } else if (!(banks[1] & MCI_STATUS_VAL)
2610                    || !(banks[1] & MCI_STATUS_UC)) {
2611                 if (banks[1] & MCI_STATUS_VAL)
2612                         mce->status |= MCI_STATUS_OVER;
2613                 banks[2] = mce->addr;
2614                 banks[3] = mce->misc;
2615                 banks[1] = mce->status;
2616         } else
2617                 banks[1] |= MCI_STATUS_OVER;
2618         return 0;
2619 }
2620
2621 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2622                                                struct kvm_vcpu_events *events)
2623 {
2624         events->exception.injected =
2625                 vcpu->arch.exception.pending &&
2626                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2627         events->exception.nr = vcpu->arch.exception.nr;
2628         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2629         events->exception.pad = 0;
2630         events->exception.error_code = vcpu->arch.exception.error_code;
2631
2632         events->interrupt.injected =
2633                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2634         events->interrupt.nr = vcpu->arch.interrupt.nr;
2635         events->interrupt.soft = 0;
2636         events->interrupt.shadow =
2637                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2638                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2639
2640         events->nmi.injected = vcpu->arch.nmi_injected;
2641         events->nmi.pending = vcpu->arch.nmi_pending;
2642         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2643         events->nmi.pad = 0;
2644
2645         events->sipi_vector = vcpu->arch.sipi_vector;
2646
2647         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2648                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2649                          | KVM_VCPUEVENT_VALID_SHADOW);
2650         memset(&events->reserved, 0, sizeof(events->reserved));
2651 }
2652
2653 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2654                                               struct kvm_vcpu_events *events)
2655 {
2656         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2657                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2658                               | KVM_VCPUEVENT_VALID_SHADOW))
2659                 return -EINVAL;
2660
2661         vcpu->arch.exception.pending = events->exception.injected;
2662         vcpu->arch.exception.nr = events->exception.nr;
2663         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2664         vcpu->arch.exception.error_code = events->exception.error_code;
2665
2666         vcpu->arch.interrupt.pending = events->interrupt.injected;
2667         vcpu->arch.interrupt.nr = events->interrupt.nr;
2668         vcpu->arch.interrupt.soft = events->interrupt.soft;
2669         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2670                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2671                                                   events->interrupt.shadow);
2672
2673         vcpu->arch.nmi_injected = events->nmi.injected;
2674         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2675                 vcpu->arch.nmi_pending = events->nmi.pending;
2676         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2677
2678         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2679                 vcpu->arch.sipi_vector = events->sipi_vector;
2680
2681         kvm_make_request(KVM_REQ_EVENT, vcpu);
2682
2683         return 0;
2684 }
2685
2686 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2687                                              struct kvm_debugregs *dbgregs)
2688 {
2689         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2690         dbgregs->dr6 = vcpu->arch.dr6;
2691         dbgregs->dr7 = vcpu->arch.dr7;
2692         dbgregs->flags = 0;
2693         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2694 }
2695
2696 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2697                                             struct kvm_debugregs *dbgregs)
2698 {
2699         if (dbgregs->flags)
2700                 return -EINVAL;
2701
2702         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2703         vcpu->arch.dr6 = dbgregs->dr6;
2704         vcpu->arch.dr7 = dbgregs->dr7;
2705
2706         return 0;
2707 }
2708
2709 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2710                                          struct kvm_xsave *guest_xsave)
2711 {
2712         if (cpu_has_xsave)
2713                 memcpy(guest_xsave->region,
2714                         &vcpu->arch.guest_fpu.state->xsave,
2715                         xstate_size);
2716         else {
2717                 memcpy(guest_xsave->region,
2718                         &vcpu->arch.guest_fpu.state->fxsave,
2719                         sizeof(struct i387_fxsave_struct));
2720                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2721                         XSTATE_FPSSE;
2722         }
2723 }
2724
2725 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2726                                         struct kvm_xsave *guest_xsave)
2727 {
2728         u64 xstate_bv =
2729                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2730
2731         if (cpu_has_xsave)
2732                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2733                         guest_xsave->region, xstate_size);
2734         else {
2735                 if (xstate_bv & ~XSTATE_FPSSE)
2736                         return -EINVAL;
2737                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2738                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2739         }
2740         return 0;
2741 }
2742
2743 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2744                                         struct kvm_xcrs *guest_xcrs)
2745 {
2746         if (!cpu_has_xsave) {
2747                 guest_xcrs->nr_xcrs = 0;
2748                 return;
2749         }
2750
2751         guest_xcrs->nr_xcrs = 1;
2752         guest_xcrs->flags = 0;
2753         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2754         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2755 }
2756
2757 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2758                                        struct kvm_xcrs *guest_xcrs)
2759 {
2760         int i, r = 0;
2761
2762         if (!cpu_has_xsave)
2763                 return -EINVAL;
2764
2765         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2766                 return -EINVAL;
2767
2768         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2769                 /* Only support XCR0 currently */
2770                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2771                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2772                                 guest_xcrs->xcrs[0].value);
2773                         break;
2774                 }
2775         if (r)
2776                 r = -EINVAL;
2777         return r;
2778 }
2779
2780 long kvm_arch_vcpu_ioctl(struct file *filp,
2781                          unsigned int ioctl, unsigned long arg)
2782 {
2783         struct kvm_vcpu *vcpu = filp->private_data;
2784         void __user *argp = (void __user *)arg;
2785         int r;
2786         union {
2787                 struct kvm_lapic_state *lapic;
2788                 struct kvm_xsave *xsave;
2789                 struct kvm_xcrs *xcrs;
2790                 void *buffer;
2791         } u;
2792
2793         u.buffer = NULL;
2794         switch (ioctl) {
2795         case KVM_GET_LAPIC: {
2796                 r = -EINVAL;
2797                 if (!vcpu->arch.apic)
2798                         goto out;
2799                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2800
2801                 r = -ENOMEM;
2802                 if (!u.lapic)
2803                         goto out;
2804                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2805                 if (r)
2806                         goto out;
2807                 r = -EFAULT;
2808                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2809                         goto out;
2810                 r = 0;
2811                 break;
2812         }
2813         case KVM_SET_LAPIC: {
2814                 r = -EINVAL;
2815                 if (!vcpu->arch.apic)
2816                         goto out;
2817                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2818                 r = -ENOMEM;
2819                 if (!u.lapic)
2820                         goto out;
2821                 r = -EFAULT;
2822                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2823                         goto out;
2824                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2825                 if (r)
2826                         goto out;
2827                 r = 0;
2828                 break;
2829         }
2830         case KVM_INTERRUPT: {
2831                 struct kvm_interrupt irq;
2832
2833                 r = -EFAULT;
2834                 if (copy_from_user(&irq, argp, sizeof irq))
2835                         goto out;
2836                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2837                 if (r)
2838                         goto out;
2839                 r = 0;
2840                 break;
2841         }
2842         case KVM_NMI: {
2843                 r = kvm_vcpu_ioctl_nmi(vcpu);
2844                 if (r)
2845                         goto out;
2846                 r = 0;
2847                 break;
2848         }
2849         case KVM_SET_CPUID: {
2850                 struct kvm_cpuid __user *cpuid_arg = argp;
2851                 struct kvm_cpuid cpuid;
2852
2853                 r = -EFAULT;
2854                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2855                         goto out;
2856                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2857                 if (r)
2858                         goto out;
2859                 break;
2860         }
2861         case KVM_SET_CPUID2: {
2862                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2863                 struct kvm_cpuid2 cpuid;
2864
2865                 r = -EFAULT;
2866                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2867                         goto out;
2868                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2869                                               cpuid_arg->entries);
2870                 if (r)
2871                         goto out;
2872                 break;
2873         }
2874         case KVM_GET_CPUID2: {
2875                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2876                 struct kvm_cpuid2 cpuid;
2877
2878                 r = -EFAULT;
2879                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2880                         goto out;
2881                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2882                                               cpuid_arg->entries);
2883                 if (r)
2884                         goto out;
2885                 r = -EFAULT;
2886                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2887                         goto out;
2888                 r = 0;
2889                 break;
2890         }
2891         case KVM_GET_MSRS:
2892                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2893                 break;
2894         case KVM_SET_MSRS:
2895                 r = msr_io(vcpu, argp, do_set_msr, 0);
2896                 break;
2897         case KVM_TPR_ACCESS_REPORTING: {
2898                 struct kvm_tpr_access_ctl tac;
2899
2900                 r = -EFAULT;
2901                 if (copy_from_user(&tac, argp, sizeof tac))
2902                         goto out;
2903                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2904                 if (r)
2905                         goto out;
2906                 r = -EFAULT;
2907                 if (copy_to_user(argp, &tac, sizeof tac))
2908                         goto out;
2909                 r = 0;
2910                 break;
2911         };
2912         case KVM_SET_VAPIC_ADDR: {
2913                 struct kvm_vapic_addr va;
2914
2915                 r = -EINVAL;
2916                 if (!irqchip_in_kernel(vcpu->kvm))
2917                         goto out;
2918                 r = -EFAULT;
2919                 if (copy_from_user(&va, argp, sizeof va))
2920                         goto out;
2921                 r = 0;
2922                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2923                 break;
2924         }
2925         case KVM_X86_SETUP_MCE: {
2926                 u64 mcg_cap;
2927
2928                 r = -EFAULT;
2929                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2930                         goto out;
2931                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2932                 break;
2933         }
2934         case KVM_X86_SET_MCE: {
2935                 struct kvm_x86_mce mce;
2936
2937                 r = -EFAULT;
2938                 if (copy_from_user(&mce, argp, sizeof mce))
2939                         goto out;
2940                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2941                 break;
2942         }
2943         case KVM_GET_VCPU_EVENTS: {
2944                 struct kvm_vcpu_events events;
2945
2946                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2947
2948                 r = -EFAULT;
2949                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2950                         break;
2951                 r = 0;
2952                 break;
2953         }
2954         case KVM_SET_VCPU_EVENTS: {
2955                 struct kvm_vcpu_events events;
2956
2957                 r = -EFAULT;
2958                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2959                         break;
2960
2961                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2962                 break;
2963         }
2964         case KVM_GET_DEBUGREGS: {
2965                 struct kvm_debugregs dbgregs;
2966
2967                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2968
2969                 r = -EFAULT;
2970                 if (copy_to_user(argp, &dbgregs,
2971                                  sizeof(struct kvm_debugregs)))
2972                         break;
2973                 r = 0;
2974                 break;
2975         }
2976         case KVM_SET_DEBUGREGS: {
2977                 struct kvm_debugregs dbgregs;
2978
2979                 r = -EFAULT;
2980                 if (copy_from_user(&dbgregs, argp,
2981                                    sizeof(struct kvm_debugregs)))
2982                         break;
2983
2984                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2985                 break;
2986         }
2987         case KVM_GET_XSAVE: {
2988                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2989                 r = -ENOMEM;
2990                 if (!u.xsave)
2991                         break;
2992
2993                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2994
2995                 r = -EFAULT;
2996                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2997                         break;
2998                 r = 0;
2999                 break;
3000         }
3001         case KVM_SET_XSAVE: {
3002                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3003                 r = -ENOMEM;
3004                 if (!u.xsave)
3005                         break;
3006
3007                 r = -EFAULT;
3008                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3009                         break;
3010
3011                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3012                 break;
3013         }
3014         case KVM_GET_XCRS: {
3015                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3016                 r = -ENOMEM;
3017                 if (!u.xcrs)
3018                         break;
3019
3020                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3021
3022                 r = -EFAULT;
3023                 if (copy_to_user(argp, u.xcrs,
3024                                  sizeof(struct kvm_xcrs)))
3025                         break;
3026                 r = 0;
3027                 break;
3028         }
3029         case KVM_SET_XCRS: {
3030                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3031                 r = -ENOMEM;
3032                 if (!u.xcrs)
3033                         break;
3034
3035                 r = -EFAULT;
3036                 if (copy_from_user(u.xcrs, argp,
3037                                    sizeof(struct kvm_xcrs)))
3038                         break;
3039
3040                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3041                 break;
3042         }
3043         default:
3044                 r = -EINVAL;
3045         }
3046 out:
3047         kfree(u.buffer);
3048         return r;
3049 }
3050
3051 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3052 {
3053         int ret;
3054
3055         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3056                 return -1;
3057         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3058         return ret;
3059 }
3060
3061 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3062                                               u64 ident_addr)
3063 {
3064         kvm->arch.ept_identity_map_addr = ident_addr;
3065         return 0;
3066 }
3067
3068 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3069                                           u32 kvm_nr_mmu_pages)
3070 {
3071         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3072                 return -EINVAL;
3073
3074         mutex_lock(&kvm->slots_lock);
3075         spin_lock(&kvm->mmu_lock);
3076
3077         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3078         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3079
3080         spin_unlock(&kvm->mmu_lock);
3081         mutex_unlock(&kvm->slots_lock);
3082         return 0;
3083 }
3084
3085 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3086 {
3087         return kvm->arch.n_max_mmu_pages;
3088 }
3089
3090 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3091 {
3092         int r;
3093
3094         r = 0;
3095         switch (chip->chip_id) {
3096         case KVM_IRQCHIP_PIC_MASTER:
3097                 memcpy(&chip->chip.pic,
3098                         &pic_irqchip(kvm)->pics[0],
3099                         sizeof(struct kvm_pic_state));
3100                 break;
3101         case KVM_IRQCHIP_PIC_SLAVE:
3102                 memcpy(&chip->chip.pic,
3103                         &pic_irqchip(kvm)->pics[1],
3104                         sizeof(struct kvm_pic_state));
3105                 break;
3106         case KVM_IRQCHIP_IOAPIC:
3107                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3108                 break;
3109         default:
3110                 r = -EINVAL;
3111                 break;
3112         }
3113         return r;
3114 }
3115
3116 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3117 {
3118         int r;
3119
3120         r = 0;
3121         switch (chip->chip_id) {
3122         case KVM_IRQCHIP_PIC_MASTER:
3123                 spin_lock(&pic_irqchip(kvm)->lock);
3124                 memcpy(&pic_irqchip(kvm)->pics[0],
3125                         &chip->chip.pic,
3126                         sizeof(struct kvm_pic_state));
3127                 spin_unlock(&pic_irqchip(kvm)->lock);
3128                 break;
3129         case KVM_IRQCHIP_PIC_SLAVE:
3130                 spin_lock(&pic_irqchip(kvm)->lock);
3131                 memcpy(&pic_irqchip(kvm)->pics[1],
3132                         &chip->chip.pic,
3133                         sizeof(struct kvm_pic_state));
3134                 spin_unlock(&pic_irqchip(kvm)->lock);
3135                 break;
3136         case KVM_IRQCHIP_IOAPIC:
3137                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3138                 break;
3139         default:
3140                 r = -EINVAL;
3141                 break;
3142         }
3143         kvm_pic_update_irq(pic_irqchip(kvm));
3144         return r;
3145 }
3146
3147 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3148 {
3149         int r = 0;
3150
3151         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3152         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3153         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3154         return r;
3155 }
3156
3157 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3158 {
3159         int r = 0;
3160
3161         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3162         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3163         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3164         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3165         return r;
3166 }
3167
3168 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3169 {
3170         int r = 0;
3171
3172         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3173         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3174                 sizeof(ps->channels));
3175         ps->flags = kvm->arch.vpit->pit_state.flags;
3176         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3177         memset(&ps->reserved, 0, sizeof(ps->reserved));
3178         return r;
3179 }
3180
3181 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3182 {
3183         int r = 0, start = 0;
3184         u32 prev_legacy, cur_legacy;
3185         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3186         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3187         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3188         if (!prev_legacy && cur_legacy)
3189                 start = 1;
3190         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3191                sizeof(kvm->arch.vpit->pit_state.channels));
3192         kvm->arch.vpit->pit_state.flags = ps->flags;
3193         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3194         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3195         return r;
3196 }
3197
3198 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3199                                  struct kvm_reinject_control *control)
3200 {
3201         if (!kvm->arch.vpit)
3202                 return -ENXIO;
3203         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3204         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3205         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3206         return 0;
3207 }
3208
3209 /*
3210  * Get (and clear) the dirty memory log for a memory slot.
3211  */
3212 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3213                                       struct kvm_dirty_log *log)
3214 {
3215         int r, i;
3216         struct kvm_memory_slot *memslot;
3217         unsigned long n;
3218         unsigned long is_dirty = 0;
3219
3220         mutex_lock(&kvm->slots_lock);
3221
3222         r = -EINVAL;
3223         if (log->slot >= KVM_MEMORY_SLOTS)
3224                 goto out;
3225
3226         memslot = &kvm->memslots->memslots[log->slot];
3227         r = -ENOENT;
3228         if (!memslot->dirty_bitmap)
3229                 goto out;
3230
3231         n = kvm_dirty_bitmap_bytes(memslot);
3232
3233         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3234                 is_dirty = memslot->dirty_bitmap[i];
3235
3236         /* If nothing is dirty, don't bother messing with page tables. */
3237         if (is_dirty) {
3238                 struct kvm_memslots *slots, *old_slots;
3239                 unsigned long *dirty_bitmap;
3240
3241                 dirty_bitmap = memslot->dirty_bitmap_head;
3242                 if (memslot->dirty_bitmap == dirty_bitmap)
3243                         dirty_bitmap += n / sizeof(long);
3244                 memset(dirty_bitmap, 0, n);
3245
3246                 r = -ENOMEM;
3247                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3248                 if (!slots)
3249                         goto out;
3250                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3251                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3252                 slots->generation++;
3253
3254                 old_slots = kvm->memslots;
3255                 rcu_assign_pointer(kvm->memslots, slots);
3256                 synchronize_srcu_expedited(&kvm->srcu);
3257                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3258                 kfree(old_slots);
3259
3260                 spin_lock(&kvm->mmu_lock);
3261                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3262                 spin_unlock(&kvm->mmu_lock);
3263
3264                 r = -EFAULT;
3265                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3266                         goto out;
3267         } else {
3268                 r = -EFAULT;
3269                 if (clear_user(log->dirty_bitmap, n))
3270                         goto out;
3271         }
3272
3273         r = 0;
3274 out:
3275         mutex_unlock(&kvm->slots_lock);
3276         return r;
3277 }
3278
3279 long kvm_arch_vm_ioctl(struct file *filp,
3280                        unsigned int ioctl, unsigned long arg)
3281 {
3282         struct kvm *kvm = filp->private_data;
3283         void __user *argp = (void __user *)arg;
3284         int r = -ENOTTY;
3285         /*
3286          * This union makes it completely explicit to gcc-3.x
3287          * that these two variables' stack usage should be
3288          * combined, not added together.
3289          */
3290         union {
3291                 struct kvm_pit_state ps;
3292                 struct kvm_pit_state2 ps2;
3293                 struct kvm_pit_config pit_config;
3294         } u;
3295
3296         switch (ioctl) {
3297         case KVM_SET_TSS_ADDR:
3298                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3299                 if (r < 0)
3300                         goto out;
3301                 break;
3302         case KVM_SET_IDENTITY_MAP_ADDR: {
3303                 u64 ident_addr;
3304
3305                 r = -EFAULT;
3306                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3307                         goto out;
3308                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3309                 if (r < 0)
3310                         goto out;
3311                 break;
3312         }
3313         case KVM_SET_NR_MMU_PAGES:
3314                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3315                 if (r)
3316                         goto out;
3317                 break;
3318         case KVM_GET_NR_MMU_PAGES:
3319                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3320                 break;
3321         case KVM_CREATE_IRQCHIP: {
3322                 struct kvm_pic *vpic;
3323
3324                 mutex_lock(&kvm->lock);
3325                 r = -EEXIST;
3326                 if (kvm->arch.vpic)
3327                         goto create_irqchip_unlock;
3328                 r = -ENOMEM;
3329                 vpic = kvm_create_pic(kvm);
3330                 if (vpic) {
3331                         r = kvm_ioapic_init(kvm);
3332                         if (r) {
3333                                 mutex_lock(&kvm->slots_lock);
3334                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3335                                                           &vpic->dev);
3336                                 mutex_unlock(&kvm->slots_lock);
3337                                 kfree(vpic);
3338                                 goto create_irqchip_unlock;
3339                         }
3340                 } else
3341                         goto create_irqchip_unlock;
3342                 smp_wmb();
3343                 kvm->arch.vpic = vpic;
3344                 smp_wmb();
3345                 r = kvm_setup_default_irq_routing(kvm);
3346                 if (r) {
3347                         mutex_lock(&kvm->slots_lock);
3348                         mutex_lock(&kvm->irq_lock);
3349                         kvm_ioapic_destroy(kvm);
3350                         kvm_destroy_pic(kvm);
3351                         mutex_unlock(&kvm->irq_lock);
3352                         mutex_unlock(&kvm->slots_lock);
3353                 }
3354         create_irqchip_unlock:
3355                 mutex_unlock(&kvm->lock);
3356                 break;
3357         }
3358         case KVM_CREATE_PIT:
3359                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3360                 goto create_pit;
3361         case KVM_CREATE_PIT2:
3362                 r = -EFAULT;
3363                 if (copy_from_user(&u.pit_config, argp,
3364                                    sizeof(struct kvm_pit_config)))
3365                         goto out;
3366         create_pit:
3367                 mutex_lock(&kvm->slots_lock);
3368                 r = -EEXIST;
3369                 if (kvm->arch.vpit)
3370                         goto create_pit_unlock;
3371                 r = -ENOMEM;
3372                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3373                 if (kvm->arch.vpit)
3374                         r = 0;
3375         create_pit_unlock:
3376                 mutex_unlock(&kvm->slots_lock);
3377                 break;
3378         case KVM_IRQ_LINE_STATUS:
3379         case KVM_IRQ_LINE: {
3380                 struct kvm_irq_level irq_event;
3381
3382                 r = -EFAULT;
3383                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3384                         goto out;
3385                 r = -ENXIO;
3386                 if (irqchip_in_kernel(kvm)) {
3387                         __s32 status;
3388                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3389                                         irq_event.irq, irq_event.level);
3390                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3391                                 r = -EFAULT;
3392                                 irq_event.status = status;
3393                                 if (copy_to_user(argp, &irq_event,
3394                                                         sizeof irq_event))
3395                                         goto out;
3396                         }
3397                         r = 0;
3398                 }
3399                 break;
3400         }
3401         case KVM_GET_IRQCHIP: {
3402                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3403                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3404
3405                 r = -ENOMEM;
3406                 if (!chip)
3407                         goto out;
3408                 r = -EFAULT;
3409                 if (copy_from_user(chip, argp, sizeof *chip))
3410                         goto get_irqchip_out;
3411                 r = -ENXIO;
3412                 if (!irqchip_in_kernel(kvm))
3413                         goto get_irqchip_out;
3414                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3415                 if (r)
3416                         goto get_irqchip_out;
3417                 r = -EFAULT;
3418                 if (copy_to_user(argp, chip, sizeof *chip))
3419                         goto get_irqchip_out;
3420                 r = 0;
3421         get_irqchip_out:
3422                 kfree(chip);
3423                 if (r)
3424                         goto out;
3425                 break;
3426         }
3427         case KVM_SET_IRQCHIP: {
3428                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3429                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3430
3431                 r = -ENOMEM;
3432                 if (!chip)
3433                         goto out;
3434                 r = -EFAULT;
3435                 if (copy_from_user(chip, argp, sizeof *chip))
3436                         goto set_irqchip_out;
3437                 r = -ENXIO;
3438                 if (!irqchip_in_kernel(kvm))
3439                         goto set_irqchip_out;
3440                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3441                 if (r)
3442                         goto set_irqchip_out;
3443                 r = 0;
3444         set_irqchip_out:
3445                 kfree(chip);
3446                 if (r)
3447                         goto out;
3448                 break;
3449         }
3450         case KVM_GET_PIT: {
3451                 r = -EFAULT;
3452                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3453                         goto out;
3454                 r = -ENXIO;
3455                 if (!kvm->arch.vpit)
3456                         goto out;
3457                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3458                 if (r)
3459                         goto out;
3460                 r = -EFAULT;
3461                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3462                         goto out;
3463                 r = 0;
3464                 break;
3465         }
3466         case KVM_SET_PIT: {
3467                 r = -EFAULT;
3468                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3469                         goto out;
3470                 r = -ENXIO;
3471                 if (!kvm->arch.vpit)
3472                         goto out;
3473                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3474                 if (r)
3475                         goto out;
3476                 r = 0;
3477                 break;
3478         }
3479         case KVM_GET_PIT2: {
3480                 r = -ENXIO;
3481                 if (!kvm->arch.vpit)
3482                         goto out;
3483                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3484                 if (r)
3485                         goto out;
3486                 r = -EFAULT;
3487                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3488                         goto out;
3489                 r = 0;
3490                 break;
3491         }
3492         case KVM_SET_PIT2: {
3493                 r = -EFAULT;
3494                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3495                         goto out;
3496                 r = -ENXIO;
3497                 if (!kvm->arch.vpit)
3498                         goto out;
3499                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3500                 if (r)
3501                         goto out;
3502                 r = 0;
3503                 break;
3504         }
3505         case KVM_REINJECT_CONTROL: {
3506                 struct kvm_reinject_control control;
3507                 r =  -EFAULT;
3508                 if (copy_from_user(&control, argp, sizeof(control)))
3509                         goto out;
3510                 r = kvm_vm_ioctl_reinject(kvm, &control);
3511                 if (r)
3512                         goto out;
3513                 r = 0;
3514                 break;
3515         }
3516         case KVM_XEN_HVM_CONFIG: {
3517                 r = -EFAULT;
3518                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3519                                    sizeof(struct kvm_xen_hvm_config)))
3520                         goto out;
3521                 r = -EINVAL;
3522                 if (kvm->arch.xen_hvm_config.flags)
3523                         goto out;
3524                 r = 0;
3525                 break;
3526         }
3527         case KVM_SET_CLOCK: {
3528                 struct kvm_clock_data user_ns;
3529                 u64 now_ns;
3530                 s64 delta;
3531
3532                 r = -EFAULT;
3533                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3534                         goto out;
3535
3536                 r = -EINVAL;
3537                 if (user_ns.flags)
3538                         goto out;
3539
3540                 r = 0;
3541                 local_irq_disable();
3542                 now_ns = get_kernel_ns();
3543                 delta = user_ns.clock - now_ns;
3544                 local_irq_enable();
3545                 kvm->arch.kvmclock_offset = delta;
3546                 break;
3547         }
3548         case KVM_GET_CLOCK: {
3549                 struct kvm_clock_data user_ns;
3550                 u64 now_ns;
3551
3552                 local_irq_disable();
3553                 now_ns = get_kernel_ns();
3554                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3555                 local_irq_enable();
3556                 user_ns.flags = 0;
3557                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3558
3559                 r = -EFAULT;
3560                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3561                         goto out;
3562                 r = 0;
3563                 break;
3564         }
3565
3566         default:
3567                 ;
3568         }
3569 out:
3570         return r;
3571 }
3572
3573 static void kvm_init_msr_list(void)
3574 {
3575         u32 dummy[2];
3576         unsigned i, j;
3577
3578         /* skip the first msrs in the list. KVM-specific */
3579         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3580                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3581                         continue;
3582                 if (j < i)
3583                         msrs_to_save[j] = msrs_to_save[i];
3584                 j++;
3585         }
3586         num_msrs_to_save = j;
3587 }
3588
3589 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3590                            const void *v)
3591 {
3592         int handled = 0;
3593         int n;
3594
3595         do {
3596                 n = min(len, 8);
3597                 if (!(vcpu->arch.apic &&
3598                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3599                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3600                         break;
3601                 handled += n;
3602                 addr += n;
3603                 len -= n;
3604                 v += n;
3605         } while (len);
3606
3607         return handled;
3608 }
3609
3610 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3611 {
3612         int handled = 0;
3613         int n;
3614
3615         do {
3616                 n = min(len, 8);
3617                 if (!(vcpu->arch.apic &&
3618                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3619                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3620                         break;
3621                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3622                 handled += n;
3623                 addr += n;
3624                 len -= n;
3625                 v += n;
3626         } while (len);
3627
3628         return handled;
3629 }
3630
3631 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3632                         struct kvm_segment *var, int seg)
3633 {
3634         kvm_x86_ops->set_segment(vcpu, var, seg);
3635 }
3636
3637 void kvm_get_segment(struct kvm_vcpu *vcpu,
3638                      struct kvm_segment *var, int seg)
3639 {
3640         kvm_x86_ops->get_segment(vcpu, var, seg);
3641 }
3642
3643 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3644 {
3645         return gpa;
3646 }
3647
3648 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3649 {
3650         gpa_t t_gpa;
3651         struct x86_exception exception;
3652
3653         BUG_ON(!mmu_is_nested(vcpu));
3654
3655         /* NPT walks are always user-walks */
3656         access |= PFERR_USER_MASK;
3657         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3658
3659         return t_gpa;
3660 }
3661
3662 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3663                               struct x86_exception *exception)
3664 {
3665         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3666         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3667 }
3668
3669  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3670                                 struct x86_exception *exception)
3671 {
3672         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3673         access |= PFERR_FETCH_MASK;
3674         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3675 }
3676
3677 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3678                                struct x86_exception *exception)
3679 {
3680         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3681         access |= PFERR_WRITE_MASK;
3682         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3683 }
3684
3685 /* uses this to access any guest's mapped memory without checking CPL */
3686 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3687                                 struct x86_exception *exception)
3688 {
3689         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3690 }
3691
3692 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3693                                       struct kvm_vcpu *vcpu, u32 access,
3694                                       struct x86_exception *exception)
3695 {
3696         void *data = val;
3697         int r = X86EMUL_CONTINUE;
3698
3699         while (bytes) {
3700                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3701                                                             exception);
3702                 unsigned offset = addr & (PAGE_SIZE-1);
3703                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3704                 int ret;
3705
3706                 if (gpa == UNMAPPED_GVA)
3707                         return X86EMUL_PROPAGATE_FAULT;
3708                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3709                 if (ret < 0) {
3710                         r = X86EMUL_IO_NEEDED;
3711                         goto out;
3712                 }
3713
3714                 bytes -= toread;
3715                 data += toread;
3716                 addr += toread;
3717         }
3718 out:
3719         return r;
3720 }
3721
3722 /* used for instruction fetching */
3723 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3724                                 struct kvm_vcpu *vcpu,
3725                                 struct x86_exception *exception)
3726 {
3727         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3728         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3729                                           access | PFERR_FETCH_MASK,
3730                                           exception);
3731 }
3732
3733 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3734                                struct kvm_vcpu *vcpu,
3735                                struct x86_exception *exception)
3736 {
3737         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3738         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3739                                           exception);
3740 }
3741
3742 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3743                                       struct kvm_vcpu *vcpu,
3744                                       struct x86_exception *exception)
3745 {
3746         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3747 }
3748
3749 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3750                                        unsigned int bytes,
3751                                        struct kvm_vcpu *vcpu,
3752                                        struct x86_exception *exception)
3753 {
3754         void *data = val;
3755         int r = X86EMUL_CONTINUE;
3756
3757         while (bytes) {
3758                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3759                                                              PFERR_WRITE_MASK,
3760                                                              exception);
3761                 unsigned offset = addr & (PAGE_SIZE-1);
3762                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3763                 int ret;
3764
3765                 if (gpa == UNMAPPED_GVA)
3766                         return X86EMUL_PROPAGATE_FAULT;
3767                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3768                 if (ret < 0) {
3769                         r = X86EMUL_IO_NEEDED;
3770                         goto out;
3771                 }
3772
3773                 bytes -= towrite;
3774                 data += towrite;
3775                 addr += towrite;
3776         }
3777 out:
3778         return r;
3779 }
3780
3781 static int emulator_read_emulated(unsigned long addr,
3782                                   void *val,
3783                                   unsigned int bytes,
3784                                   struct x86_exception *exception,
3785                                   struct kvm_vcpu *vcpu)
3786 {
3787         gpa_t                 gpa;
3788         int handled;
3789
3790         if (vcpu->mmio_read_completed) {
3791                 memcpy(val, vcpu->mmio_data, bytes);
3792                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3793                                vcpu->mmio_phys_addr, *(u64 *)val);
3794                 vcpu->mmio_read_completed = 0;
3795                 return X86EMUL_CONTINUE;
3796         }
3797
3798         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
3799
3800         if (gpa == UNMAPPED_GVA)
3801                 return X86EMUL_PROPAGATE_FAULT;
3802
3803         /* For APIC access vmexit */
3804         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3805                 goto mmio;
3806
3807         if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception)
3808             == X86EMUL_CONTINUE)
3809                 return X86EMUL_CONTINUE;
3810
3811 mmio:
3812         /*
3813          * Is this MMIO handled locally?
3814          */
3815         handled = vcpu_mmio_read(vcpu, gpa, bytes, val);
3816
3817         if (handled == bytes)
3818                 return X86EMUL_CONTINUE;
3819
3820         gpa += handled;
3821         bytes -= handled;
3822         val += handled;
3823
3824         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3825
3826         vcpu->mmio_needed = 1;
3827         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3828         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3829         vcpu->mmio_size = bytes;
3830         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3831         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3832         vcpu->mmio_index = 0;
3833
3834         return X86EMUL_IO_NEEDED;
3835 }
3836
3837 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3838                         const void *val, int bytes)
3839 {
3840         int ret;
3841
3842         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3843         if (ret < 0)
3844                 return 0;
3845         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3846         return 1;
3847 }
3848
3849 static int emulator_write_emulated_onepage(unsigned long addr,
3850                                            const void *val,
3851                                            unsigned int bytes,
3852                                            struct x86_exception *exception,
3853                                            struct kvm_vcpu *vcpu)
3854 {
3855         gpa_t                 gpa;
3856         int handled;
3857
3858         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
3859
3860         if (gpa == UNMAPPED_GVA)
3861                 return X86EMUL_PROPAGATE_FAULT;
3862
3863         /* For APIC access vmexit */
3864         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3865                 goto mmio;
3866
3867         if (emulator_write_phys(vcpu, gpa, val, bytes))
3868                 return X86EMUL_CONTINUE;
3869
3870 mmio:
3871         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3872         /*
3873          * Is this MMIO handled locally?
3874          */
3875         handled = vcpu_mmio_write(vcpu, gpa, bytes, val);
3876         if (handled == bytes)
3877                 return X86EMUL_CONTINUE;
3878
3879         gpa += handled;
3880         bytes -= handled;
3881         val += handled;
3882
3883         vcpu->mmio_needed = 1;
3884         memcpy(vcpu->mmio_data, val, bytes);
3885         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3886         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3887         vcpu->mmio_size = bytes;
3888         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3889         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3890         memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3891         vcpu->mmio_index = 0;
3892
3893         return X86EMUL_CONTINUE;
3894 }
3895
3896 int emulator_write_emulated(unsigned long addr,
3897                             const void *val,
3898                             unsigned int bytes,
3899                             struct x86_exception *exception,
3900                             struct kvm_vcpu *vcpu)
3901 {
3902         /* Crossing a page boundary? */
3903         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3904                 int rc, now;
3905
3906                 now = -addr & ~PAGE_MASK;
3907                 rc = emulator_write_emulated_onepage(addr, val, now, exception,
3908                                                      vcpu);
3909                 if (rc != X86EMUL_CONTINUE)
3910                         return rc;
3911                 addr += now;
3912                 val += now;
3913                 bytes -= now;
3914         }
3915         return emulator_write_emulated_onepage(addr, val, bytes, exception,
3916                                                vcpu);
3917 }
3918
3919 #define CMPXCHG_TYPE(t, ptr, old, new) \
3920         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3921
3922 #ifdef CONFIG_X86_64
3923 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3924 #else
3925 #  define CMPXCHG64(ptr, old, new) \
3926         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3927 #endif
3928
3929 static int emulator_cmpxchg_emulated(unsigned long addr,
3930                                      const void *old,
3931                                      const void *new,
3932                                      unsigned int bytes,
3933                                      struct x86_exception *exception,
3934                                      struct kvm_vcpu *vcpu)
3935 {
3936         gpa_t gpa;
3937         struct page *page;
3938         char *kaddr;
3939         bool exchanged;
3940
3941         /* guests cmpxchg8b have to be emulated atomically */
3942         if (bytes > 8 || (bytes & (bytes - 1)))
3943                 goto emul_write;
3944
3945         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3946
3947         if (gpa == UNMAPPED_GVA ||
3948             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3949                 goto emul_write;
3950
3951         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3952                 goto emul_write;
3953
3954         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3955         if (is_error_page(page)) {
3956                 kvm_release_page_clean(page);
3957                 goto emul_write;
3958         }
3959
3960         kaddr = kmap_atomic(page, KM_USER0);
3961         kaddr += offset_in_page(gpa);
3962         switch (bytes) {
3963         case 1:
3964                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3965                 break;
3966         case 2:
3967                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3968                 break;
3969         case 4:
3970                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3971                 break;
3972         case 8:
3973                 exchanged = CMPXCHG64(kaddr, old, new);
3974                 break;
3975         default:
3976                 BUG();
3977         }
3978         kunmap_atomic(kaddr, KM_USER0);
3979         kvm_release_page_dirty(page);
3980
3981         if (!exchanged)
3982                 return X86EMUL_CMPXCHG_FAILED;
3983
3984         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3985
3986         return X86EMUL_CONTINUE;
3987
3988 emul_write:
3989         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3990
3991         return emulator_write_emulated(addr, new, bytes, exception, vcpu);
3992 }
3993
3994 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3995 {
3996         /* TODO: String I/O for in kernel device */
3997         int r;
3998
3999         if (vcpu->arch.pio.in)
4000                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4001                                     vcpu->arch.pio.size, pd);
4002         else
4003                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4004                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4005                                      pd);
4006         return r;
4007 }
4008
4009
4010 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
4011                              unsigned int count, struct kvm_vcpu *vcpu)
4012 {
4013         if (vcpu->arch.pio.count)
4014                 goto data_avail;
4015
4016         trace_kvm_pio(0, port, size, count);
4017
4018         vcpu->arch.pio.port = port;
4019         vcpu->arch.pio.in = 1;
4020         vcpu->arch.pio.count  = count;
4021         vcpu->arch.pio.size = size;
4022
4023         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4024         data_avail:
4025                 memcpy(val, vcpu->arch.pio_data, size * count);
4026                 vcpu->arch.pio.count = 0;
4027                 return 1;
4028         }
4029
4030         vcpu->run->exit_reason = KVM_EXIT_IO;
4031         vcpu->run->io.direction = KVM_EXIT_IO_IN;
4032         vcpu->run->io.size = size;
4033         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4034         vcpu->run->io.count = count;
4035         vcpu->run->io.port = port;
4036
4037         return 0;
4038 }
4039
4040 static int emulator_pio_out_emulated(int size, unsigned short port,
4041                               const void *val, unsigned int count,
4042                               struct kvm_vcpu *vcpu)
4043 {
4044         trace_kvm_pio(1, port, size, count);
4045
4046         vcpu->arch.pio.port = port;
4047         vcpu->arch.pio.in = 0;
4048         vcpu->arch.pio.count = count;
4049         vcpu->arch.pio.size = size;
4050
4051         memcpy(vcpu->arch.pio_data, val, size * count);
4052
4053         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4054                 vcpu->arch.pio.count = 0;
4055                 return 1;
4056         }
4057
4058         vcpu->run->exit_reason = KVM_EXIT_IO;
4059         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4060         vcpu->run->io.size = size;
4061         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4062         vcpu->run->io.count = count;
4063         vcpu->run->io.port = port;
4064
4065         return 0;
4066 }
4067
4068 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4069 {
4070         return kvm_x86_ops->get_segment_base(vcpu, seg);
4071 }
4072
4073 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
4074 {
4075         kvm_mmu_invlpg(vcpu, address);
4076         return X86EMUL_CONTINUE;
4077 }
4078
4079 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4080 {
4081         if (!need_emulate_wbinvd(vcpu))
4082                 return X86EMUL_CONTINUE;
4083
4084         if (kvm_x86_ops->has_wbinvd_exit()) {
4085                 int cpu = get_cpu();
4086
4087                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4088                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4089                                 wbinvd_ipi, NULL, 1);
4090                 put_cpu();
4091                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4092         } else
4093                 wbinvd();
4094         return X86EMUL_CONTINUE;
4095 }
4096 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4097
4098 int emulate_clts(struct kvm_vcpu *vcpu)
4099 {
4100         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4101         kvm_x86_ops->fpu_activate(vcpu);
4102         return X86EMUL_CONTINUE;
4103 }
4104
4105 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
4106 {
4107         return _kvm_get_dr(vcpu, dr, dest);
4108 }
4109
4110 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4111 {
4112
4113         return __kvm_set_dr(vcpu, dr, value);
4114 }
4115
4116 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4117 {
4118         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4119 }
4120
4121 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4122 {
4123         unsigned long value;
4124
4125         switch (cr) {
4126         case 0:
4127                 value = kvm_read_cr0(vcpu);
4128                 break;
4129         case 2:
4130                 value = vcpu->arch.cr2;
4131                 break;
4132         case 3:
4133                 value = kvm_read_cr3(vcpu);
4134                 break;
4135         case 4:
4136                 value = kvm_read_cr4(vcpu);
4137                 break;
4138         case 8:
4139                 value = kvm_get_cr8(vcpu);
4140                 break;
4141         default:
4142                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4143                 return 0;
4144         }
4145
4146         return value;
4147 }
4148
4149 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4150 {
4151         int res = 0;
4152
4153         switch (cr) {
4154         case 0:
4155                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4156                 break;
4157         case 2:
4158                 vcpu->arch.cr2 = val;
4159                 break;
4160         case 3:
4161                 res = kvm_set_cr3(vcpu, val);
4162                 break;
4163         case 4:
4164                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4165                 break;
4166         case 8:
4167                 res = kvm_set_cr8(vcpu, val);
4168                 break;
4169         default:
4170                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4171                 res = -1;
4172         }
4173
4174         return res;
4175 }
4176
4177 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4178 {
4179         return kvm_x86_ops->get_cpl(vcpu);
4180 }
4181
4182 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4183 {
4184         kvm_x86_ops->get_gdt(vcpu, dt);
4185 }
4186
4187 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4188 {
4189         kvm_x86_ops->get_idt(vcpu, dt);
4190 }
4191
4192 static unsigned long emulator_get_cached_segment_base(int seg,
4193                                                       struct kvm_vcpu *vcpu)
4194 {
4195         return get_segment_base(vcpu, seg);
4196 }
4197
4198 static bool emulator_get_cached_descriptor(struct desc_struct *desc, u32 *base3,
4199                                            int seg, struct kvm_vcpu *vcpu)
4200 {
4201         struct kvm_segment var;
4202
4203         kvm_get_segment(vcpu, &var, seg);
4204
4205         if (var.unusable)
4206                 return false;
4207
4208         if (var.g)
4209                 var.limit >>= 12;
4210         set_desc_limit(desc, var.limit);
4211         set_desc_base(desc, (unsigned long)var.base);
4212 #ifdef CONFIG_X86_64
4213         if (base3)
4214                 *base3 = var.base >> 32;
4215 #endif
4216         desc->type = var.type;
4217         desc->s = var.s;
4218         desc->dpl = var.dpl;
4219         desc->p = var.present;
4220         desc->avl = var.avl;
4221         desc->l = var.l;
4222         desc->d = var.db;
4223         desc->g = var.g;
4224
4225         return true;
4226 }
4227
4228 static void emulator_set_cached_descriptor(struct desc_struct *desc, u32 base3,
4229                                            int seg, struct kvm_vcpu *vcpu)
4230 {
4231         struct kvm_segment var;
4232
4233         /* needed to preserve selector */
4234         kvm_get_segment(vcpu, &var, seg);
4235
4236         var.base = get_desc_base(desc);
4237 #ifdef CONFIG_X86_64
4238         var.base |= ((u64)base3) << 32;
4239 #endif
4240         var.limit = get_desc_limit(desc);
4241         if (desc->g)
4242                 var.limit = (var.limit << 12) | 0xfff;
4243         var.type = desc->type;
4244         var.present = desc->p;
4245         var.dpl = desc->dpl;
4246         var.db = desc->d;
4247         var.s = desc->s;
4248         var.l = desc->l;
4249         var.g = desc->g;
4250         var.avl = desc->avl;
4251         var.present = desc->p;
4252         var.unusable = !var.present;
4253         var.padding = 0;
4254
4255         kvm_set_segment(vcpu, &var, seg);
4256         return;
4257 }
4258
4259 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4260 {
4261         struct kvm_segment kvm_seg;
4262
4263         kvm_get_segment(vcpu, &kvm_seg, seg);
4264         return kvm_seg.selector;
4265 }
4266
4267 static void emulator_set_segment_selector(u16 sel, int seg,
4268                                           struct kvm_vcpu *vcpu)
4269 {
4270         struct kvm_segment kvm_seg;
4271
4272         kvm_get_segment(vcpu, &kvm_seg, seg);
4273         kvm_seg.selector = sel;
4274         kvm_set_segment(vcpu, &kvm_seg, seg);
4275 }
4276
4277 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4278 {
4279         preempt_disable();
4280         kvm_load_guest_fpu(ctxt->vcpu);
4281         /*
4282          * CR0.TS may reference the host fpu state, not the guest fpu state,
4283          * so it may be clear at this point.
4284          */
4285         clts();
4286 }
4287
4288 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4289 {
4290         preempt_enable();
4291 }
4292
4293 static int emulator_intercept(struct kvm_vcpu *vcpu,
4294                               struct x86_instruction_info *info,
4295                               enum x86_intercept_stage stage)
4296 {
4297         return kvm_x86_ops->check_intercept(vcpu, info, stage);
4298 }
4299
4300 static struct x86_emulate_ops emulate_ops = {
4301         .read_std            = kvm_read_guest_virt_system,
4302         .write_std           = kvm_write_guest_virt_system,
4303         .fetch               = kvm_fetch_guest_virt,
4304         .read_emulated       = emulator_read_emulated,
4305         .write_emulated      = emulator_write_emulated,
4306         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4307         .pio_in_emulated     = emulator_pio_in_emulated,
4308         .pio_out_emulated    = emulator_pio_out_emulated,
4309         .get_cached_descriptor = emulator_get_cached_descriptor,
4310         .set_cached_descriptor = emulator_set_cached_descriptor,
4311         .get_segment_selector = emulator_get_segment_selector,
4312         .set_segment_selector = emulator_set_segment_selector,
4313         .get_cached_segment_base = emulator_get_cached_segment_base,
4314         .get_gdt             = emulator_get_gdt,
4315         .get_idt             = emulator_get_idt,
4316         .get_cr              = emulator_get_cr,
4317         .set_cr              = emulator_set_cr,
4318         .cpl                 = emulator_get_cpl,
4319         .get_dr              = emulator_get_dr,
4320         .set_dr              = emulator_set_dr,
4321         .set_msr             = kvm_set_msr,
4322         .get_msr             = kvm_get_msr,
4323         .get_fpu             = emulator_get_fpu,
4324         .put_fpu             = emulator_put_fpu,
4325         .intercept           = emulator_intercept,
4326 };
4327
4328 static void cache_all_regs(struct kvm_vcpu *vcpu)
4329 {
4330         kvm_register_read(vcpu, VCPU_REGS_RAX);
4331         kvm_register_read(vcpu, VCPU_REGS_RSP);
4332         kvm_register_read(vcpu, VCPU_REGS_RIP);
4333         vcpu->arch.regs_dirty = ~0;
4334 }
4335
4336 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4337 {
4338         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4339         /*
4340          * an sti; sti; sequence only disable interrupts for the first
4341          * instruction. So, if the last instruction, be it emulated or
4342          * not, left the system with the INT_STI flag enabled, it
4343          * means that the last instruction is an sti. We should not
4344          * leave the flag on in this case. The same goes for mov ss
4345          */
4346         if (!(int_shadow & mask))
4347                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4348 }
4349
4350 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4351 {
4352         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4353         if (ctxt->exception.vector == PF_VECTOR)
4354                 kvm_propagate_fault(vcpu, &ctxt->exception);
4355         else if (ctxt->exception.error_code_valid)
4356                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4357                                       ctxt->exception.error_code);
4358         else
4359                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4360 }
4361
4362 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4363 {
4364         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4365         int cs_db, cs_l;
4366
4367         cache_all_regs(vcpu);
4368
4369         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4370
4371         vcpu->arch.emulate_ctxt.vcpu = vcpu;
4372         vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
4373         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4374         vcpu->arch.emulate_ctxt.mode =
4375                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4376                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4377                 ? X86EMUL_MODE_VM86 : cs_l
4378                 ? X86EMUL_MODE_PROT64 : cs_db
4379                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4380         vcpu->arch.emulate_ctxt.guest_mode = is_guest_mode(vcpu);
4381         memset(c, 0, sizeof(struct decode_cache));
4382         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4383 }
4384
4385 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4386 {
4387         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4388         int ret;
4389
4390         init_emulate_ctxt(vcpu);
4391
4392         vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4393         vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4394         vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4395         ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4396
4397         if (ret != X86EMUL_CONTINUE)
4398                 return EMULATE_FAIL;
4399
4400         vcpu->arch.emulate_ctxt.eip = c->eip;
4401         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4402         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4403         kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4404
4405         if (irq == NMI_VECTOR)
4406                 vcpu->arch.nmi_pending = false;
4407         else
4408                 vcpu->arch.interrupt.pending = false;
4409
4410         return EMULATE_DONE;
4411 }
4412 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4413
4414 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4415 {
4416         int r = EMULATE_DONE;
4417
4418         ++vcpu->stat.insn_emulation_fail;
4419         trace_kvm_emulate_insn_failed(vcpu);
4420         if (!is_guest_mode(vcpu)) {
4421                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4422                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4423                 vcpu->run->internal.ndata = 0;
4424                 r = EMULATE_FAIL;
4425         }
4426         kvm_queue_exception(vcpu, UD_VECTOR);
4427
4428         return r;
4429 }
4430
4431 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4432 {
4433         gpa_t gpa;
4434
4435         if (tdp_enabled)
4436                 return false;
4437
4438         /*
4439          * if emulation was due to access to shadowed page table
4440          * and it failed try to unshadow page and re-entetr the
4441          * guest to let CPU execute the instruction.
4442          */
4443         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4444                 return true;
4445
4446         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4447
4448         if (gpa == UNMAPPED_GVA)
4449                 return true; /* let cpu generate fault */
4450
4451         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4452                 return true;
4453
4454         return false;
4455 }
4456
4457 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4458                             unsigned long cr2,
4459                             int emulation_type,
4460                             void *insn,
4461                             int insn_len)
4462 {
4463         int r;
4464         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4465
4466         kvm_clear_exception_queue(vcpu);
4467         vcpu->arch.mmio_fault_cr2 = cr2;
4468         /*
4469          * TODO: fix emulate.c to use guest_read/write_register
4470          * instead of direct ->regs accesses, can save hundred cycles
4471          * on Intel for instructions that don't read/change RSP, for
4472          * for example.
4473          */
4474         cache_all_regs(vcpu);
4475
4476         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4477                 init_emulate_ctxt(vcpu);
4478                 vcpu->arch.emulate_ctxt.interruptibility = 0;
4479                 vcpu->arch.emulate_ctxt.have_exception = false;
4480                 vcpu->arch.emulate_ctxt.perm_ok = false;
4481
4482                 vcpu->arch.emulate_ctxt.only_vendor_specific_insn
4483                         = emulation_type & EMULTYPE_TRAP_UD;
4484
4485                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
4486
4487                 trace_kvm_emulate_insn_start(vcpu);
4488                 ++vcpu->stat.insn_emulation;
4489                 if (r)  {
4490                         if (emulation_type & EMULTYPE_TRAP_UD)
4491                                 return EMULATE_FAIL;
4492                         if (reexecute_instruction(vcpu, cr2))
4493                                 return EMULATE_DONE;
4494                         if (emulation_type & EMULTYPE_SKIP)
4495                                 return EMULATE_FAIL;
4496                         return handle_emulation_failure(vcpu);
4497                 }
4498         }
4499
4500         if (emulation_type & EMULTYPE_SKIP) {
4501                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4502                 return EMULATE_DONE;
4503         }
4504
4505         /* this is needed for vmware backdor interface to work since it
4506            changes registers values  during IO operation */
4507         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4508
4509 restart:
4510         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4511
4512         if (r == EMULATION_INTERCEPTED)
4513                 return EMULATE_DONE;
4514
4515         if (r == EMULATION_FAILED) {
4516                 if (reexecute_instruction(vcpu, cr2))
4517                         return EMULATE_DONE;
4518
4519                 return handle_emulation_failure(vcpu);
4520         }
4521
4522         if (vcpu->arch.emulate_ctxt.have_exception) {
4523                 inject_emulated_exception(vcpu);
4524                 r = EMULATE_DONE;
4525         } else if (vcpu->arch.pio.count) {
4526                 if (!vcpu->arch.pio.in)
4527                         vcpu->arch.pio.count = 0;
4528                 r = EMULATE_DO_MMIO;
4529         } else if (vcpu->mmio_needed)
4530                 r = EMULATE_DO_MMIO;
4531         else if (r == EMULATION_RESTART)
4532                 goto restart;
4533         else
4534                 r = EMULATE_DONE;
4535
4536         toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4537         kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4538         kvm_make_request(KVM_REQ_EVENT, vcpu);
4539         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4540         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4541
4542         return r;
4543 }
4544 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4545
4546 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4547 {
4548         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4549         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4550         /* do not return to emulator after return from userspace */
4551         vcpu->arch.pio.count = 0;
4552         return ret;
4553 }
4554 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4555
4556 static void tsc_bad(void *info)
4557 {
4558         __this_cpu_write(cpu_tsc_khz, 0);
4559 }
4560
4561 static void tsc_khz_changed(void *data)
4562 {
4563         struct cpufreq_freqs *freq = data;
4564         unsigned long khz = 0;
4565
4566         if (data)
4567                 khz = freq->new;
4568         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4569                 khz = cpufreq_quick_get(raw_smp_processor_id());
4570         if (!khz)
4571                 khz = tsc_khz;
4572         __this_cpu_write(cpu_tsc_khz, khz);
4573 }
4574
4575 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4576                                      void *data)
4577 {
4578         struct cpufreq_freqs *freq = data;
4579         struct kvm *kvm;
4580         struct kvm_vcpu *vcpu;
4581         int i, send_ipi = 0;
4582
4583         /*
4584          * We allow guests to temporarily run on slowing clocks,
4585          * provided we notify them after, or to run on accelerating
4586          * clocks, provided we notify them before.  Thus time never
4587          * goes backwards.
4588          *
4589          * However, we have a problem.  We can't atomically update
4590          * the frequency of a given CPU from this function; it is
4591          * merely a notifier, which can be called from any CPU.
4592          * Changing the TSC frequency at arbitrary points in time
4593          * requires a recomputation of local variables related to
4594          * the TSC for each VCPU.  We must flag these local variables
4595          * to be updated and be sure the update takes place with the
4596          * new frequency before any guests proceed.
4597          *
4598          * Unfortunately, the combination of hotplug CPU and frequency
4599          * change creates an intractable locking scenario; the order
4600          * of when these callouts happen is undefined with respect to
4601          * CPU hotplug, and they can race with each other.  As such,
4602          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4603          * undefined; you can actually have a CPU frequency change take
4604          * place in between the computation of X and the setting of the
4605          * variable.  To protect against this problem, all updates of
4606          * the per_cpu tsc_khz variable are done in an interrupt
4607          * protected IPI, and all callers wishing to update the value
4608          * must wait for a synchronous IPI to complete (which is trivial
4609          * if the caller is on the CPU already).  This establishes the
4610          * necessary total order on variable updates.
4611          *
4612          * Note that because a guest time update may take place
4613          * anytime after the setting of the VCPU's request bit, the
4614          * correct TSC value must be set before the request.  However,
4615          * to ensure the update actually makes it to any guest which
4616          * starts running in hardware virtualization between the set
4617          * and the acquisition of the spinlock, we must also ping the
4618          * CPU after setting the request bit.
4619          *
4620          */
4621
4622         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4623                 return 0;
4624         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4625                 return 0;
4626
4627         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4628
4629         raw_spin_lock(&kvm_lock);
4630         list_for_each_entry(kvm, &vm_list, vm_list) {
4631                 kvm_for_each_vcpu(i, vcpu, kvm) {
4632                         if (vcpu->cpu != freq->cpu)
4633                                 continue;
4634                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4635                         if (vcpu->cpu != smp_processor_id())
4636                                 send_ipi = 1;
4637                 }
4638         }
4639         raw_spin_unlock(&kvm_lock);
4640
4641         if (freq->old < freq->new && send_ipi) {
4642                 /*
4643                  * We upscale the frequency.  Must make the guest
4644                  * doesn't see old kvmclock values while running with
4645                  * the new frequency, otherwise we risk the guest sees
4646                  * time go backwards.
4647                  *
4648                  * In case we update the frequency for another cpu
4649                  * (which might be in guest context) send an interrupt
4650                  * to kick the cpu out of guest context.  Next time
4651                  * guest context is entered kvmclock will be updated,
4652                  * so the guest will not see stale values.
4653                  */
4654                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4655         }
4656         return 0;
4657 }
4658
4659 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4660         .notifier_call  = kvmclock_cpufreq_notifier
4661 };
4662
4663 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4664                                         unsigned long action, void *hcpu)
4665 {
4666         unsigned int cpu = (unsigned long)hcpu;
4667
4668         switch (action) {
4669                 case CPU_ONLINE:
4670                 case CPU_DOWN_FAILED:
4671                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4672                         break;
4673                 case CPU_DOWN_PREPARE:
4674                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4675                         break;
4676         }
4677         return NOTIFY_OK;
4678 }
4679
4680 static struct notifier_block kvmclock_cpu_notifier_block = {
4681         .notifier_call  = kvmclock_cpu_notifier,
4682         .priority = -INT_MAX
4683 };
4684
4685 static void kvm_timer_init(void)
4686 {
4687         int cpu;
4688
4689         max_tsc_khz = tsc_khz;
4690         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4691         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4692 #ifdef CONFIG_CPU_FREQ
4693                 struct cpufreq_policy policy;
4694                 memset(&policy, 0, sizeof(policy));
4695                 cpu = get_cpu();
4696                 cpufreq_get_policy(&policy, cpu);
4697                 if (policy.cpuinfo.max_freq)
4698                         max_tsc_khz = policy.cpuinfo.max_freq;
4699                 put_cpu();
4700 #endif
4701                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4702                                           CPUFREQ_TRANSITION_NOTIFIER);
4703         }
4704         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4705         for_each_online_cpu(cpu)
4706                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4707 }
4708
4709 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4710
4711 static int kvm_is_in_guest(void)
4712 {
4713         return percpu_read(current_vcpu) != NULL;
4714 }
4715
4716 static int kvm_is_user_mode(void)
4717 {
4718         int user_mode = 3;
4719
4720         if (percpu_read(current_vcpu))
4721                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4722
4723         return user_mode != 0;
4724 }
4725
4726 static unsigned long kvm_get_guest_ip(void)
4727 {
4728         unsigned long ip = 0;
4729
4730         if (percpu_read(current_vcpu))
4731                 ip = kvm_rip_read(percpu_read(current_vcpu));
4732
4733         return ip;
4734 }
4735
4736 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4737         .is_in_guest            = kvm_is_in_guest,
4738         .is_user_mode           = kvm_is_user_mode,
4739         .get_guest_ip           = kvm_get_guest_ip,
4740 };
4741
4742 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4743 {
4744         percpu_write(current_vcpu, vcpu);
4745 }
4746 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4747
4748 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4749 {
4750         percpu_write(current_vcpu, NULL);
4751 }
4752 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4753
4754 int kvm_arch_init(void *opaque)
4755 {
4756         int r;
4757         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4758
4759         if (kvm_x86_ops) {
4760                 printk(KERN_ERR "kvm: already loaded the other module\n");
4761                 r = -EEXIST;
4762                 goto out;
4763         }
4764
4765         if (!ops->cpu_has_kvm_support()) {
4766                 printk(KERN_ERR "kvm: no hardware support\n");
4767                 r = -EOPNOTSUPP;
4768                 goto out;
4769         }
4770         if (ops->disabled_by_bios()) {
4771                 printk(KERN_ERR "kvm: disabled by bios\n");
4772                 r = -EOPNOTSUPP;
4773                 goto out;
4774         }
4775
4776         r = kvm_mmu_module_init();
4777         if (r)
4778                 goto out;
4779
4780         kvm_init_msr_list();
4781
4782         kvm_x86_ops = ops;
4783         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4784         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4785                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4786
4787         kvm_timer_init();
4788
4789         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4790
4791         if (cpu_has_xsave)
4792                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4793
4794         return 0;
4795
4796 out:
4797         return r;
4798 }
4799
4800 void kvm_arch_exit(void)
4801 {
4802         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4803
4804         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4805                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4806                                             CPUFREQ_TRANSITION_NOTIFIER);
4807         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4808         kvm_x86_ops = NULL;
4809         kvm_mmu_module_exit();
4810 }
4811
4812 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4813 {
4814         ++vcpu->stat.halt_exits;
4815         if (irqchip_in_kernel(vcpu->kvm)) {
4816                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4817                 return 1;
4818         } else {
4819                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4820                 return 0;
4821         }
4822 }
4823 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4824
4825 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4826                            unsigned long a1)
4827 {
4828         if (is_long_mode(vcpu))
4829                 return a0;
4830         else
4831                 return a0 | ((gpa_t)a1 << 32);
4832 }
4833
4834 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4835 {
4836         u64 param, ingpa, outgpa, ret;
4837         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4838         bool fast, longmode;
4839         int cs_db, cs_l;
4840
4841         /*
4842          * hypercall generates UD from non zero cpl and real mode
4843          * per HYPER-V spec
4844          */
4845         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4846                 kvm_queue_exception(vcpu, UD_VECTOR);
4847                 return 0;
4848         }
4849
4850         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4851         longmode = is_long_mode(vcpu) && cs_l == 1;
4852
4853         if (!longmode) {
4854                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4855                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4856                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4857                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4858                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4859                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4860         }
4861 #ifdef CONFIG_X86_64
4862         else {
4863                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4864                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4865                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4866         }
4867 #endif
4868
4869         code = param & 0xffff;
4870         fast = (param >> 16) & 0x1;
4871         rep_cnt = (param >> 32) & 0xfff;
4872         rep_idx = (param >> 48) & 0xfff;
4873
4874         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4875
4876         switch (code) {
4877         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4878                 kvm_vcpu_on_spin(vcpu);
4879                 break;
4880         default:
4881                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4882                 break;
4883         }
4884
4885         ret = res | (((u64)rep_done & 0xfff) << 32);
4886         if (longmode) {
4887                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4888         } else {
4889                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4890                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4891         }
4892
4893         return 1;
4894 }
4895
4896 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4897 {
4898         unsigned long nr, a0, a1, a2, a3, ret;
4899         int r = 1;
4900
4901         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4902                 return kvm_hv_hypercall(vcpu);
4903
4904         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4905         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4906         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4907         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4908         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4909
4910         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4911
4912         if (!is_long_mode(vcpu)) {
4913                 nr &= 0xFFFFFFFF;
4914                 a0 &= 0xFFFFFFFF;
4915                 a1 &= 0xFFFFFFFF;
4916                 a2 &= 0xFFFFFFFF;
4917                 a3 &= 0xFFFFFFFF;
4918         }
4919
4920         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4921                 ret = -KVM_EPERM;
4922                 goto out;
4923         }
4924
4925         switch (nr) {
4926         case KVM_HC_VAPIC_POLL_IRQ:
4927                 ret = 0;
4928                 break;
4929         case KVM_HC_MMU_OP:
4930                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4931                 break;
4932         default:
4933                 ret = -KVM_ENOSYS;
4934                 break;
4935         }
4936 out:
4937         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4938         ++vcpu->stat.hypercalls;
4939         return r;
4940 }
4941 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4942
4943 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4944 {
4945         char instruction[3];
4946         unsigned long rip = kvm_rip_read(vcpu);
4947
4948         /*
4949          * Blow out the MMU to ensure that no other VCPU has an active mapping
4950          * to ensure that the updated hypercall appears atomically across all
4951          * VCPUs.
4952          */
4953         kvm_mmu_zap_all(vcpu->kvm);
4954
4955         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4956
4957         return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4958 }
4959
4960 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4961 {
4962         struct desc_ptr dt = { limit, base };
4963
4964         kvm_x86_ops->set_gdt(vcpu, &dt);
4965 }
4966
4967 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4968 {
4969         struct desc_ptr dt = { limit, base };
4970
4971         kvm_x86_ops->set_idt(vcpu, &dt);
4972 }
4973
4974 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4975 {
4976         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4977         int j, nent = vcpu->arch.cpuid_nent;
4978
4979         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4980         /* when no next entry is found, the current entry[i] is reselected */
4981         for (j = i + 1; ; j = (j + 1) % nent) {
4982                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4983                 if (ej->function == e->function) {
4984                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4985                         return j;
4986                 }
4987         }
4988         return 0; /* silence gcc, even though control never reaches here */
4989 }
4990
4991 /* find an entry with matching function, matching index (if needed), and that
4992  * should be read next (if it's stateful) */
4993 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4994         u32 function, u32 index)
4995 {
4996         if (e->function != function)
4997                 return 0;
4998         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4999                 return 0;
5000         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
5001             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
5002                 return 0;
5003         return 1;
5004 }
5005
5006 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
5007                                               u32 function, u32 index)
5008 {
5009         int i;
5010         struct kvm_cpuid_entry2 *best = NULL;
5011
5012         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
5013                 struct kvm_cpuid_entry2 *e;
5014
5015                 e = &vcpu->arch.cpuid_entries[i];
5016                 if (is_matching_cpuid_entry(e, function, index)) {
5017                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
5018                                 move_to_next_stateful_cpuid_entry(vcpu, i);
5019                         best = e;
5020                         break;
5021                 }
5022         }
5023         return best;
5024 }
5025 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
5026
5027 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
5028 {
5029         struct kvm_cpuid_entry2 *best;
5030
5031         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
5032         if (!best || best->eax < 0x80000008)
5033                 goto not_found;
5034         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
5035         if (best)
5036                 return best->eax & 0xff;
5037 not_found:
5038         return 36;
5039 }
5040
5041 /*
5042  * If no match is found, check whether we exceed the vCPU's limit
5043  * and return the content of the highest valid _standard_ leaf instead.
5044  * This is to satisfy the CPUID specification.
5045  */
5046 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
5047                                                   u32 function, u32 index)
5048 {
5049         struct kvm_cpuid_entry2 *maxlevel;
5050
5051         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
5052         if (!maxlevel || maxlevel->eax >= function)
5053                 return NULL;
5054         if (function & 0x80000000) {
5055                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
5056                 if (!maxlevel)
5057                         return NULL;
5058         }
5059         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
5060 }
5061
5062 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
5063 {
5064         u32 function, index;
5065         struct kvm_cpuid_entry2 *best;
5066
5067         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
5068         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5069         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
5070         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
5071         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
5072         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
5073         best = kvm_find_cpuid_entry(vcpu, function, index);
5074
5075         if (!best)
5076                 best = check_cpuid_limit(vcpu, function, index);
5077
5078         if (best) {
5079                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5080                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5081                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5082                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5083         }
5084         kvm_x86_ops->skip_emulated_instruction(vcpu);
5085         trace_kvm_cpuid(function,
5086                         kvm_register_read(vcpu, VCPU_REGS_RAX),
5087                         kvm_register_read(vcpu, VCPU_REGS_RBX),
5088                         kvm_register_read(vcpu, VCPU_REGS_RCX),
5089                         kvm_register_read(vcpu, VCPU_REGS_RDX));
5090 }
5091 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5092
5093 /*
5094  * Check if userspace requested an interrupt window, and that the
5095  * interrupt window is open.
5096  *
5097  * No need to exit to userspace if we already have an interrupt queued.
5098  */
5099 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5100 {
5101         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5102                 vcpu->run->request_interrupt_window &&
5103                 kvm_arch_interrupt_allowed(vcpu));
5104 }
5105
5106 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5107 {
5108         struct kvm_run *kvm_run = vcpu->run;
5109
5110         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5111         kvm_run->cr8 = kvm_get_cr8(vcpu);
5112         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5113         if (irqchip_in_kernel(vcpu->kvm))
5114                 kvm_run->ready_for_interrupt_injection = 1;
5115         else
5116                 kvm_run->ready_for_interrupt_injection =
5117                         kvm_arch_interrupt_allowed(vcpu) &&
5118                         !kvm_cpu_has_interrupt(vcpu) &&
5119                         !kvm_event_needs_reinjection(vcpu);
5120 }
5121
5122 static void vapic_enter(struct kvm_vcpu *vcpu)
5123 {
5124         struct kvm_lapic *apic = vcpu->arch.apic;
5125         struct page *page;
5126
5127         if (!apic || !apic->vapic_addr)
5128                 return;
5129
5130         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5131
5132         vcpu->arch.apic->vapic_page = page;
5133 }
5134
5135 static void vapic_exit(struct kvm_vcpu *vcpu)
5136 {
5137         struct kvm_lapic *apic = vcpu->arch.apic;
5138         int idx;
5139
5140         if (!apic || !apic->vapic_addr)
5141                 return;
5142
5143         idx = srcu_read_lock(&vcpu->kvm->srcu);
5144         kvm_release_page_dirty(apic->vapic_page);
5145         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5146         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5147 }
5148
5149 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5150 {
5151         int max_irr, tpr;
5152
5153         if (!kvm_x86_ops->update_cr8_intercept)
5154                 return;
5155
5156         if (!vcpu->arch.apic)
5157                 return;
5158
5159         if (!vcpu->arch.apic->vapic_addr)
5160                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5161         else
5162                 max_irr = -1;
5163
5164         if (max_irr != -1)
5165                 max_irr >>= 4;
5166
5167         tpr = kvm_lapic_get_cr8(vcpu);
5168
5169         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5170 }
5171
5172 static void inject_pending_event(struct kvm_vcpu *vcpu)
5173 {
5174         /* try to reinject previous events if any */
5175         if (vcpu->arch.exception.pending) {
5176                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5177                                         vcpu->arch.exception.has_error_code,
5178                                         vcpu->arch.exception.error_code);
5179                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5180                                           vcpu->arch.exception.has_error_code,
5181                                           vcpu->arch.exception.error_code,
5182                                           vcpu->arch.exception.reinject);
5183                 return;
5184         }
5185
5186         if (vcpu->arch.nmi_injected) {
5187                 kvm_x86_ops->set_nmi(vcpu);
5188                 return;
5189         }
5190
5191         if (vcpu->arch.interrupt.pending) {
5192                 kvm_x86_ops->set_irq(vcpu);
5193                 return;
5194         }
5195
5196         /* try to inject new event if pending */
5197         if (vcpu->arch.nmi_pending) {
5198                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5199                         vcpu->arch.nmi_pending = false;
5200                         vcpu->arch.nmi_injected = true;
5201                         kvm_x86_ops->set_nmi(vcpu);
5202                 }
5203         } else if (kvm_cpu_has_interrupt(vcpu)) {
5204                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5205                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5206                                             false);
5207                         kvm_x86_ops->set_irq(vcpu);
5208                 }
5209         }
5210 }
5211
5212 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5213 {
5214         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5215                         !vcpu->guest_xcr0_loaded) {
5216                 /* kvm_set_xcr() also depends on this */
5217                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5218                 vcpu->guest_xcr0_loaded = 1;
5219         }
5220 }
5221
5222 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5223 {
5224         if (vcpu->guest_xcr0_loaded) {
5225                 if (vcpu->arch.xcr0 != host_xcr0)
5226                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5227                 vcpu->guest_xcr0_loaded = 0;
5228         }
5229 }
5230
5231 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5232 {
5233         int r;
5234         bool nmi_pending;
5235         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5236                 vcpu->run->request_interrupt_window;
5237
5238         if (vcpu->requests) {
5239                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5240                         kvm_mmu_unload(vcpu);
5241                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5242                         __kvm_migrate_timers(vcpu);
5243                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5244                         r = kvm_guest_time_update(vcpu);
5245                         if (unlikely(r))
5246                                 goto out;
5247                 }
5248                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5249                         kvm_mmu_sync_roots(vcpu);
5250                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5251                         kvm_x86_ops->tlb_flush(vcpu);
5252                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5253                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5254                         r = 0;
5255                         goto out;
5256                 }
5257                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5258                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5259                         r = 0;
5260                         goto out;
5261                 }
5262                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5263                         vcpu->fpu_active = 0;
5264                         kvm_x86_ops->fpu_deactivate(vcpu);
5265                 }
5266                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5267                         /* Page is swapped out. Do synthetic halt */
5268                         vcpu->arch.apf.halted = true;
5269                         r = 1;
5270                         goto out;
5271                 }
5272         }
5273
5274         r = kvm_mmu_reload(vcpu);
5275         if (unlikely(r))
5276                 goto out;
5277
5278         /*
5279          * An NMI can be injected between local nmi_pending read and
5280          * vcpu->arch.nmi_pending read inside inject_pending_event().
5281          * But in that case, KVM_REQ_EVENT will be set, which makes
5282          * the race described above benign.
5283          */
5284         nmi_pending = ACCESS_ONCE(vcpu->arch.nmi_pending);
5285
5286         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5287                 inject_pending_event(vcpu);
5288
5289                 /* enable NMI/IRQ window open exits if needed */
5290                 if (nmi_pending)
5291                         kvm_x86_ops->enable_nmi_window(vcpu);
5292                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5293                         kvm_x86_ops->enable_irq_window(vcpu);
5294
5295                 if (kvm_lapic_enabled(vcpu)) {
5296                         update_cr8_intercept(vcpu);
5297                         kvm_lapic_sync_to_vapic(vcpu);
5298                 }
5299         }
5300
5301         preempt_disable();
5302
5303         kvm_x86_ops->prepare_guest_switch(vcpu);
5304         if (vcpu->fpu_active)
5305                 kvm_load_guest_fpu(vcpu);
5306         kvm_load_guest_xcr0(vcpu);
5307
5308         vcpu->mode = IN_GUEST_MODE;
5309
5310         /* We should set ->mode before check ->requests,
5311          * see the comment in make_all_cpus_request.
5312          */
5313         smp_mb();
5314
5315         local_irq_disable();
5316
5317         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5318             || need_resched() || signal_pending(current)) {
5319                 vcpu->mode = OUTSIDE_GUEST_MODE;
5320                 smp_wmb();
5321                 local_irq_enable();
5322                 preempt_enable();
5323                 kvm_x86_ops->cancel_injection(vcpu);
5324                 r = 1;
5325                 goto out;
5326         }
5327
5328         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5329
5330         kvm_guest_enter();
5331
5332         if (unlikely(vcpu->arch.switch_db_regs)) {
5333                 set_debugreg(0, 7);
5334                 set_debugreg(vcpu->arch.eff_db[0], 0);
5335                 set_debugreg(vcpu->arch.eff_db[1], 1);
5336                 set_debugreg(vcpu->arch.eff_db[2], 2);
5337                 set_debugreg(vcpu->arch.eff_db[3], 3);
5338         }
5339
5340         trace_kvm_entry(vcpu->vcpu_id);
5341         kvm_x86_ops->run(vcpu);
5342
5343         /*
5344          * If the guest has used debug registers, at least dr7
5345          * will be disabled while returning to the host.
5346          * If we don't have active breakpoints in the host, we don't
5347          * care about the messed up debug address registers. But if
5348          * we have some of them active, restore the old state.
5349          */
5350         if (hw_breakpoint_active())
5351                 hw_breakpoint_restore();
5352
5353         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5354
5355         vcpu->mode = OUTSIDE_GUEST_MODE;
5356         smp_wmb();
5357         local_irq_enable();
5358
5359         ++vcpu->stat.exits;
5360
5361         /*
5362          * We must have an instruction between local_irq_enable() and
5363          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5364          * the interrupt shadow.  The stat.exits increment will do nicely.
5365          * But we need to prevent reordering, hence this barrier():
5366          */
5367         barrier();
5368
5369         kvm_guest_exit();
5370
5371         preempt_enable();
5372
5373         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5374
5375         /*
5376          * Profile KVM exit RIPs:
5377          */
5378         if (unlikely(prof_on == KVM_PROFILING)) {
5379                 unsigned long rip = kvm_rip_read(vcpu);
5380                 profile_hit(KVM_PROFILING, (void *)rip);
5381         }
5382
5383
5384         kvm_lapic_sync_from_vapic(vcpu);
5385
5386         r = kvm_x86_ops->handle_exit(vcpu);
5387 out:
5388         return r;
5389 }
5390
5391
5392 static int __vcpu_run(struct kvm_vcpu *vcpu)
5393 {
5394         int r;
5395         struct kvm *kvm = vcpu->kvm;
5396
5397         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5398                 pr_debug("vcpu %d received sipi with vector # %x\n",
5399                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5400                 kvm_lapic_reset(vcpu);
5401                 r = kvm_arch_vcpu_reset(vcpu);
5402                 if (r)
5403                         return r;
5404                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5405         }
5406
5407         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5408         vapic_enter(vcpu);
5409
5410         r = 1;
5411         while (r > 0) {
5412                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5413                     !vcpu->arch.apf.halted)
5414                         r = vcpu_enter_guest(vcpu);
5415                 else {
5416                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5417                         kvm_vcpu_block(vcpu);
5418                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5419                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5420                         {
5421                                 switch(vcpu->arch.mp_state) {
5422                                 case KVM_MP_STATE_HALTED:
5423                                         vcpu->arch.mp_state =
5424                                                 KVM_MP_STATE_RUNNABLE;
5425                                 case KVM_MP_STATE_RUNNABLE:
5426                                         vcpu->arch.apf.halted = false;
5427                                         break;
5428                                 case KVM_MP_STATE_SIPI_RECEIVED:
5429                                 default:
5430                                         r = -EINTR;
5431                                         break;
5432                                 }
5433                         }
5434                 }
5435
5436                 if (r <= 0)
5437                         break;
5438
5439                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5440                 if (kvm_cpu_has_pending_timer(vcpu))
5441                         kvm_inject_pending_timer_irqs(vcpu);
5442
5443                 if (dm_request_for_irq_injection(vcpu)) {
5444                         r = -EINTR;
5445                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5446                         ++vcpu->stat.request_irq_exits;
5447                 }
5448
5449                 kvm_check_async_pf_completion(vcpu);
5450
5451                 if (signal_pending(current)) {
5452                         r = -EINTR;
5453                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5454                         ++vcpu->stat.signal_exits;
5455                 }
5456                 if (need_resched()) {
5457                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5458                         kvm_resched(vcpu);
5459                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5460                 }
5461         }
5462
5463         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5464
5465         vapic_exit(vcpu);
5466
5467         return r;
5468 }
5469
5470 static int complete_mmio(struct kvm_vcpu *vcpu)
5471 {
5472         struct kvm_run *run = vcpu->run;
5473         int r;
5474
5475         if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5476                 return 1;
5477
5478         if (vcpu->mmio_needed) {
5479                 vcpu->mmio_needed = 0;
5480                 if (!vcpu->mmio_is_write)
5481                         memcpy(vcpu->mmio_data, run->mmio.data, 8);
5482                 vcpu->mmio_index += 8;
5483                 if (vcpu->mmio_index < vcpu->mmio_size) {
5484                         run->exit_reason = KVM_EXIT_MMIO;
5485                         run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5486                         memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5487                         run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5488                         run->mmio.is_write = vcpu->mmio_is_write;
5489                         vcpu->mmio_needed = 1;
5490                         return 0;
5491                 }
5492                 if (vcpu->mmio_is_write)
5493                         return 1;
5494                 vcpu->mmio_read_completed = 1;
5495         }
5496         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5497         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5498         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5499         if (r != EMULATE_DONE)
5500                 return 0;
5501         return 1;
5502 }
5503
5504 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5505 {
5506         int r;
5507         sigset_t sigsaved;
5508
5509         if (!tsk_used_math(current) && init_fpu(current))
5510                 return -ENOMEM;
5511
5512         if (vcpu->sigset_active)
5513                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5514
5515         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5516                 kvm_vcpu_block(vcpu);
5517                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5518                 r = -EAGAIN;
5519                 goto out;
5520         }
5521
5522         /* re-sync apic's tpr */
5523         if (!irqchip_in_kernel(vcpu->kvm)) {
5524                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5525                         r = -EINVAL;
5526                         goto out;
5527                 }
5528         }
5529
5530         r = complete_mmio(vcpu);
5531         if (r <= 0)
5532                 goto out;
5533
5534         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5535                 kvm_register_write(vcpu, VCPU_REGS_RAX,
5536                                      kvm_run->hypercall.ret);
5537
5538         r = __vcpu_run(vcpu);
5539
5540 out:
5541         post_kvm_run_save(vcpu);
5542         if (vcpu->sigset_active)
5543                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5544
5545         return r;
5546 }
5547
5548 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5549 {
5550         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5551         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5552         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5553         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5554         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5555         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5556         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5557         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5558 #ifdef CONFIG_X86_64
5559         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5560         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5561         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5562         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5563         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5564         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5565         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5566         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5567 #endif
5568
5569         regs->rip = kvm_rip_read(vcpu);
5570         regs->rflags = kvm_get_rflags(vcpu);
5571
5572         return 0;
5573 }
5574
5575 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5576 {
5577         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5578         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5579         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5580         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5581         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5582         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5583         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5584         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5585 #ifdef CONFIG_X86_64
5586         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5587         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5588         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5589         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5590         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5591         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5592         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5593         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5594 #endif
5595
5596         kvm_rip_write(vcpu, regs->rip);
5597         kvm_set_rflags(vcpu, regs->rflags);
5598
5599         vcpu->arch.exception.pending = false;
5600
5601         kvm_make_request(KVM_REQ_EVENT, vcpu);
5602
5603         return 0;
5604 }
5605
5606 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5607 {
5608         struct kvm_segment cs;
5609
5610         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5611         *db = cs.db;
5612         *l = cs.l;
5613 }
5614 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5615
5616 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5617                                   struct kvm_sregs *sregs)
5618 {
5619         struct desc_ptr dt;
5620
5621         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5622         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5623         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5624         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5625         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5626         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5627
5628         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5629         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5630
5631         kvm_x86_ops->get_idt(vcpu, &dt);
5632         sregs->idt.limit = dt.size;
5633         sregs->idt.base = dt.address;
5634         kvm_x86_ops->get_gdt(vcpu, &dt);
5635         sregs->gdt.limit = dt.size;
5636         sregs->gdt.base = dt.address;
5637
5638         sregs->cr0 = kvm_read_cr0(vcpu);
5639         sregs->cr2 = vcpu->arch.cr2;
5640         sregs->cr3 = kvm_read_cr3(vcpu);
5641         sregs->cr4 = kvm_read_cr4(vcpu);
5642         sregs->cr8 = kvm_get_cr8(vcpu);
5643         sregs->efer = vcpu->arch.efer;
5644         sregs->apic_base = kvm_get_apic_base(vcpu);
5645
5646         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5647
5648         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5649                 set_bit(vcpu->arch.interrupt.nr,
5650                         (unsigned long *)sregs->interrupt_bitmap);
5651
5652         return 0;
5653 }
5654
5655 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5656                                     struct kvm_mp_state *mp_state)
5657 {
5658         mp_state->mp_state = vcpu->arch.mp_state;
5659         return 0;
5660 }
5661
5662 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5663                                     struct kvm_mp_state *mp_state)
5664 {
5665         vcpu->arch.mp_state = mp_state->mp_state;
5666         kvm_make_request(KVM_REQ_EVENT, vcpu);
5667         return 0;
5668 }
5669
5670 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5671                     bool has_error_code, u32 error_code)
5672 {
5673         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5674         int ret;
5675
5676         init_emulate_ctxt(vcpu);
5677
5678         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5679                                    tss_selector, reason, has_error_code,
5680                                    error_code);
5681
5682         if (ret)
5683                 return EMULATE_FAIL;
5684
5685         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5686         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5687         kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5688         kvm_make_request(KVM_REQ_EVENT, vcpu);
5689         return EMULATE_DONE;
5690 }
5691 EXPORT_SYMBOL_GPL(kvm_task_switch);
5692
5693 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5694                                   struct kvm_sregs *sregs)
5695 {
5696         int mmu_reset_needed = 0;
5697         int pending_vec, max_bits, idx;
5698         struct desc_ptr dt;
5699
5700         dt.size = sregs->idt.limit;
5701         dt.address = sregs->idt.base;
5702         kvm_x86_ops->set_idt(vcpu, &dt);
5703         dt.size = sregs->gdt.limit;
5704         dt.address = sregs->gdt.base;
5705         kvm_x86_ops->set_gdt(vcpu, &dt);
5706
5707         vcpu->arch.cr2 = sregs->cr2;
5708         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5709         vcpu->arch.cr3 = sregs->cr3;
5710         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5711
5712         kvm_set_cr8(vcpu, sregs->cr8);
5713
5714         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5715         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5716         kvm_set_apic_base(vcpu, sregs->apic_base);
5717
5718         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5719         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5720         vcpu->arch.cr0 = sregs->cr0;
5721
5722         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5723         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5724         if (sregs->cr4 & X86_CR4_OSXSAVE)
5725                 update_cpuid(vcpu);
5726
5727         idx = srcu_read_lock(&vcpu->kvm->srcu);
5728         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5729                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5730                 mmu_reset_needed = 1;
5731         }
5732         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5733
5734         if (mmu_reset_needed)
5735                 kvm_mmu_reset_context(vcpu);
5736
5737         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5738         pending_vec = find_first_bit(
5739                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5740         if (pending_vec < max_bits) {
5741                 kvm_queue_interrupt(vcpu, pending_vec, false);
5742                 pr_debug("Set back pending irq %d\n", pending_vec);
5743         }
5744
5745         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5746         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5747         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5748         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5749         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5750         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5751
5752         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5753         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5754
5755         update_cr8_intercept(vcpu);
5756
5757         /* Older userspace won't unhalt the vcpu on reset. */
5758         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5759             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5760             !is_protmode(vcpu))
5761                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5762
5763         kvm_make_request(KVM_REQ_EVENT, vcpu);
5764
5765         return 0;
5766 }
5767
5768 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5769                                         struct kvm_guest_debug *dbg)
5770 {
5771         unsigned long rflags;
5772         int i, r;
5773
5774         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5775                 r = -EBUSY;
5776                 if (vcpu->arch.exception.pending)
5777                         goto out;
5778                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5779                         kvm_queue_exception(vcpu, DB_VECTOR);
5780                 else
5781                         kvm_queue_exception(vcpu, BP_VECTOR);
5782         }
5783
5784         /*
5785          * Read rflags as long as potentially injected trace flags are still
5786          * filtered out.
5787          */
5788         rflags = kvm_get_rflags(vcpu);
5789
5790         vcpu->guest_debug = dbg->control;
5791         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5792                 vcpu->guest_debug = 0;
5793
5794         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5795                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5796                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5797                 vcpu->arch.switch_db_regs =
5798                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5799         } else {
5800                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5801                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5802                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5803         }
5804
5805         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5806                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5807                         get_segment_base(vcpu, VCPU_SREG_CS);
5808
5809         /*
5810          * Trigger an rflags update that will inject or remove the trace
5811          * flags.
5812          */
5813         kvm_set_rflags(vcpu, rflags);
5814
5815         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5816
5817         r = 0;
5818
5819 out:
5820
5821         return r;
5822 }
5823
5824 /*
5825  * Translate a guest virtual address to a guest physical address.
5826  */
5827 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5828                                     struct kvm_translation *tr)
5829 {
5830         unsigned long vaddr = tr->linear_address;
5831         gpa_t gpa;
5832         int idx;
5833
5834         idx = srcu_read_lock(&vcpu->kvm->srcu);
5835         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5836         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5837         tr->physical_address = gpa;
5838         tr->valid = gpa != UNMAPPED_GVA;
5839         tr->writeable = 1;
5840         tr->usermode = 0;
5841
5842         return 0;
5843 }
5844
5845 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5846 {
5847         struct i387_fxsave_struct *fxsave =
5848                         &vcpu->arch.guest_fpu.state->fxsave;
5849
5850         memcpy(fpu->fpr, fxsave->st_space, 128);
5851         fpu->fcw = fxsave->cwd;
5852         fpu->fsw = fxsave->swd;
5853         fpu->ftwx = fxsave->twd;
5854         fpu->last_opcode = fxsave->fop;
5855         fpu->last_ip = fxsave->rip;
5856         fpu->last_dp = fxsave->rdp;
5857         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5858
5859         return 0;
5860 }
5861
5862 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5863 {
5864         struct i387_fxsave_struct *fxsave =
5865                         &vcpu->arch.guest_fpu.state->fxsave;
5866
5867         memcpy(fxsave->st_space, fpu->fpr, 128);
5868         fxsave->cwd = fpu->fcw;
5869         fxsave->swd = fpu->fsw;
5870         fxsave->twd = fpu->ftwx;
5871         fxsave->fop = fpu->last_opcode;
5872         fxsave->rip = fpu->last_ip;
5873         fxsave->rdp = fpu->last_dp;
5874         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5875
5876         return 0;
5877 }
5878
5879 int fx_init(struct kvm_vcpu *vcpu)
5880 {
5881         int err;
5882
5883         err = fpu_alloc(&vcpu->arch.guest_fpu);
5884         if (err)
5885                 return err;
5886
5887         fpu_finit(&vcpu->arch.guest_fpu);
5888
5889         /*
5890          * Ensure guest xcr0 is valid for loading
5891          */
5892         vcpu->arch.xcr0 = XSTATE_FP;
5893
5894         vcpu->arch.cr0 |= X86_CR0_ET;
5895
5896         return 0;
5897 }
5898 EXPORT_SYMBOL_GPL(fx_init);
5899
5900 static void fx_free(struct kvm_vcpu *vcpu)
5901 {
5902         fpu_free(&vcpu->arch.guest_fpu);
5903 }
5904
5905 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5906 {
5907         if (vcpu->guest_fpu_loaded)
5908                 return;
5909
5910         /*
5911          * Restore all possible states in the guest,
5912          * and assume host would use all available bits.
5913          * Guest xcr0 would be loaded later.
5914          */
5915         kvm_put_guest_xcr0(vcpu);
5916         vcpu->guest_fpu_loaded = 1;
5917         unlazy_fpu(current);
5918         fpu_restore_checking(&vcpu->arch.guest_fpu);
5919         trace_kvm_fpu(1);
5920 }
5921
5922 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5923 {
5924         kvm_put_guest_xcr0(vcpu);
5925
5926         if (!vcpu->guest_fpu_loaded)
5927                 return;
5928
5929         vcpu->guest_fpu_loaded = 0;
5930         fpu_save_init(&vcpu->arch.guest_fpu);
5931         ++vcpu->stat.fpu_reload;
5932         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5933         trace_kvm_fpu(0);
5934 }
5935
5936 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5937 {
5938         kvmclock_reset(vcpu);
5939
5940         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5941         fx_free(vcpu);
5942         kvm_x86_ops->vcpu_free(vcpu);
5943 }
5944
5945 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5946                                                 unsigned int id)
5947 {
5948         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5949                 printk_once(KERN_WARNING
5950                 "kvm: SMP vm created on host with unstable TSC; "
5951                 "guest TSC will not be reliable\n");
5952         return kvm_x86_ops->vcpu_create(kvm, id);
5953 }
5954
5955 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5956 {
5957         int r;
5958
5959         vcpu->arch.mtrr_state.have_fixed = 1;
5960         vcpu_load(vcpu);
5961         r = kvm_arch_vcpu_reset(vcpu);
5962         if (r == 0)
5963                 r = kvm_mmu_setup(vcpu);
5964         vcpu_put(vcpu);
5965         if (r < 0)
5966                 goto free_vcpu;
5967
5968         return 0;
5969 free_vcpu:
5970         kvm_x86_ops->vcpu_free(vcpu);
5971         return r;
5972 }
5973
5974 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5975 {
5976         vcpu->arch.apf.msr_val = 0;
5977
5978         vcpu_load(vcpu);
5979         kvm_mmu_unload(vcpu);
5980         vcpu_put(vcpu);
5981
5982         fx_free(vcpu);
5983         kvm_x86_ops->vcpu_free(vcpu);
5984 }
5985
5986 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5987 {
5988         vcpu->arch.nmi_pending = false;
5989         vcpu->arch.nmi_injected = false;
5990
5991         vcpu->arch.switch_db_regs = 0;
5992         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5993         vcpu->arch.dr6 = DR6_FIXED_1;
5994         vcpu->arch.dr7 = DR7_FIXED_1;
5995
5996         kvm_make_request(KVM_REQ_EVENT, vcpu);
5997         vcpu->arch.apf.msr_val = 0;
5998
5999         kvmclock_reset(vcpu);
6000
6001         kvm_clear_async_pf_completion_queue(vcpu);
6002         kvm_async_pf_hash_reset(vcpu);
6003         vcpu->arch.apf.halted = false;
6004
6005         return kvm_x86_ops->vcpu_reset(vcpu);
6006 }
6007
6008 int kvm_arch_hardware_enable(void *garbage)
6009 {
6010         struct kvm *kvm;
6011         struct kvm_vcpu *vcpu;
6012         int i;
6013
6014         kvm_shared_msr_cpu_online();
6015         list_for_each_entry(kvm, &vm_list, vm_list)
6016                 kvm_for_each_vcpu(i, vcpu, kvm)
6017                         if (vcpu->cpu == smp_processor_id())
6018                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6019         return kvm_x86_ops->hardware_enable(garbage);
6020 }
6021
6022 void kvm_arch_hardware_disable(void *garbage)
6023 {
6024         kvm_x86_ops->hardware_disable(garbage);
6025         drop_user_return_notifiers(garbage);
6026 }
6027
6028 int kvm_arch_hardware_setup(void)
6029 {
6030         return kvm_x86_ops->hardware_setup();
6031 }
6032
6033 void kvm_arch_hardware_unsetup(void)
6034 {
6035         kvm_x86_ops->hardware_unsetup();
6036 }
6037
6038 void kvm_arch_check_processor_compat(void *rtn)
6039 {
6040         kvm_x86_ops->check_processor_compatibility(rtn);
6041 }
6042
6043 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6044 {
6045         struct page *page;
6046         struct kvm *kvm;
6047         int r;
6048
6049         BUG_ON(vcpu->kvm == NULL);
6050         kvm = vcpu->kvm;
6051
6052         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6053         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
6054         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
6055         vcpu->arch.mmu.translate_gpa = translate_gpa;
6056         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6057         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6058                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6059         else
6060                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6061
6062         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6063         if (!page) {
6064                 r = -ENOMEM;
6065                 goto fail;
6066         }
6067         vcpu->arch.pio_data = page_address(page);
6068
6069         kvm_init_tsc_catchup(vcpu, max_tsc_khz);
6070
6071         r = kvm_mmu_create(vcpu);
6072         if (r < 0)
6073                 goto fail_free_pio_data;
6074
6075         if (irqchip_in_kernel(kvm)) {
6076                 r = kvm_create_lapic(vcpu);
6077                 if (r < 0)
6078                         goto fail_mmu_destroy;
6079         }
6080
6081         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6082                                        GFP_KERNEL);
6083         if (!vcpu->arch.mce_banks) {
6084                 r = -ENOMEM;
6085                 goto fail_free_lapic;
6086         }
6087         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6088
6089         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6090                 goto fail_free_mce_banks;
6091
6092         kvm_async_pf_hash_reset(vcpu);
6093
6094         return 0;
6095 fail_free_mce_banks:
6096         kfree(vcpu->arch.mce_banks);
6097 fail_free_lapic:
6098         kvm_free_lapic(vcpu);
6099 fail_mmu_destroy:
6100         kvm_mmu_destroy(vcpu);
6101 fail_free_pio_data:
6102         free_page((unsigned long)vcpu->arch.pio_data);
6103 fail:
6104         return r;
6105 }
6106
6107 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6108 {
6109         int idx;
6110
6111         kfree(vcpu->arch.mce_banks);
6112         kvm_free_lapic(vcpu);
6113         idx = srcu_read_lock(&vcpu->kvm->srcu);
6114         kvm_mmu_destroy(vcpu);
6115         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6116         free_page((unsigned long)vcpu->arch.pio_data);
6117 }
6118
6119 int kvm_arch_init_vm(struct kvm *kvm)
6120 {
6121         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6122         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6123
6124         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6125         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6126
6127         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6128
6129         return 0;
6130 }
6131
6132 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6133 {
6134         vcpu_load(vcpu);
6135         kvm_mmu_unload(vcpu);
6136         vcpu_put(vcpu);
6137 }
6138
6139 static void kvm_free_vcpus(struct kvm *kvm)
6140 {
6141         unsigned int i;
6142         struct kvm_vcpu *vcpu;
6143
6144         /*
6145          * Unpin any mmu pages first.
6146          */
6147         kvm_for_each_vcpu(i, vcpu, kvm) {
6148                 kvm_clear_async_pf_completion_queue(vcpu);
6149                 kvm_unload_vcpu_mmu(vcpu);
6150         }
6151         kvm_for_each_vcpu(i, vcpu, kvm)
6152                 kvm_arch_vcpu_free(vcpu);
6153
6154         mutex_lock(&kvm->lock);
6155         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6156                 kvm->vcpus[i] = NULL;
6157
6158         atomic_set(&kvm->online_vcpus, 0);
6159         mutex_unlock(&kvm->lock);
6160 }
6161
6162 void kvm_arch_sync_events(struct kvm *kvm)
6163 {
6164         kvm_free_all_assigned_devices(kvm);
6165         kvm_free_pit(kvm);
6166 }
6167
6168 void kvm_arch_destroy_vm(struct kvm *kvm)
6169 {
6170         kvm_iommu_unmap_guest(kvm);
6171         kfree(kvm->arch.vpic);
6172         kfree(kvm->arch.vioapic);
6173         kvm_free_vcpus(kvm);
6174         if (kvm->arch.apic_access_page)
6175                 put_page(kvm->arch.apic_access_page);
6176         if (kvm->arch.ept_identity_pagetable)
6177                 put_page(kvm->arch.ept_identity_pagetable);
6178 }
6179
6180 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6181                                 struct kvm_memory_slot *memslot,
6182                                 struct kvm_memory_slot old,
6183                                 struct kvm_userspace_memory_region *mem,
6184                                 int user_alloc)
6185 {
6186         int npages = memslot->npages;
6187         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6188
6189         /* Prevent internal slot pages from being moved by fork()/COW. */
6190         if (memslot->id >= KVM_MEMORY_SLOTS)
6191                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6192
6193         /*To keep backward compatibility with older userspace,
6194          *x86 needs to hanlde !user_alloc case.
6195          */
6196         if (!user_alloc) {
6197                 if (npages && !old.rmap) {
6198                         unsigned long userspace_addr;
6199
6200                         down_write(&current->mm->mmap_sem);
6201                         userspace_addr = do_mmap(NULL, 0,
6202                                                  npages * PAGE_SIZE,
6203                                                  PROT_READ | PROT_WRITE,
6204                                                  map_flags,
6205                                                  0);
6206                         up_write(&current->mm->mmap_sem);
6207
6208                         if (IS_ERR((void *)userspace_addr))
6209                                 return PTR_ERR((void *)userspace_addr);
6210
6211                         memslot->userspace_addr = userspace_addr;
6212                 }
6213         }
6214
6215
6216         return 0;
6217 }
6218
6219 void kvm_arch_commit_memory_region(struct kvm *kvm,
6220                                 struct kvm_userspace_memory_region *mem,
6221                                 struct kvm_memory_slot old,
6222                                 int user_alloc)
6223 {
6224
6225         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6226
6227         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6228                 int ret;
6229
6230                 down_write(&current->mm->mmap_sem);
6231                 ret = do_munmap(current->mm, old.userspace_addr,
6232                                 old.npages * PAGE_SIZE);
6233                 up_write(&current->mm->mmap_sem);
6234                 if (ret < 0)
6235                         printk(KERN_WARNING
6236                                "kvm_vm_ioctl_set_memory_region: "
6237                                "failed to munmap memory\n");
6238         }
6239
6240         if (!kvm->arch.n_requested_mmu_pages)
6241                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6242
6243         spin_lock(&kvm->mmu_lock);
6244         if (nr_mmu_pages)
6245                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6246         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6247         spin_unlock(&kvm->mmu_lock);
6248 }
6249
6250 void kvm_arch_flush_shadow(struct kvm *kvm)
6251 {
6252         kvm_mmu_zap_all(kvm);
6253         kvm_reload_remote_mmus(kvm);
6254 }
6255
6256 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6257 {
6258         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6259                 !vcpu->arch.apf.halted)
6260                 || !list_empty_careful(&vcpu->async_pf.done)
6261                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6262                 || vcpu->arch.nmi_pending ||
6263                 (kvm_arch_interrupt_allowed(vcpu) &&
6264                  kvm_cpu_has_interrupt(vcpu));
6265 }
6266
6267 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6268 {
6269         int me;
6270         int cpu = vcpu->cpu;
6271
6272         if (waitqueue_active(&vcpu->wq)) {
6273                 wake_up_interruptible(&vcpu->wq);
6274                 ++vcpu->stat.halt_wakeup;
6275         }
6276
6277         me = get_cpu();
6278         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6279                 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6280                         smp_send_reschedule(cpu);
6281         put_cpu();
6282 }
6283
6284 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6285 {
6286         return kvm_x86_ops->interrupt_allowed(vcpu);
6287 }
6288
6289 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6290 {
6291         unsigned long current_rip = kvm_rip_read(vcpu) +
6292                 get_segment_base(vcpu, VCPU_SREG_CS);
6293
6294         return current_rip == linear_rip;
6295 }
6296 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6297
6298 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6299 {
6300         unsigned long rflags;
6301
6302         rflags = kvm_x86_ops->get_rflags(vcpu);
6303         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6304                 rflags &= ~X86_EFLAGS_TF;
6305         return rflags;
6306 }
6307 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6308
6309 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6310 {
6311         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6312             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6313                 rflags |= X86_EFLAGS_TF;
6314         kvm_x86_ops->set_rflags(vcpu, rflags);
6315         kvm_make_request(KVM_REQ_EVENT, vcpu);
6316 }
6317 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6318
6319 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6320 {
6321         int r;
6322
6323         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6324               is_error_page(work->page))
6325                 return;
6326
6327         r = kvm_mmu_reload(vcpu);
6328         if (unlikely(r))
6329                 return;
6330
6331         if (!vcpu->arch.mmu.direct_map &&
6332               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6333                 return;
6334
6335         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6336 }
6337
6338 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6339 {
6340         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6341 }
6342
6343 static inline u32 kvm_async_pf_next_probe(u32 key)
6344 {
6345         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6346 }
6347
6348 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6349 {
6350         u32 key = kvm_async_pf_hash_fn(gfn);
6351
6352         while (vcpu->arch.apf.gfns[key] != ~0)
6353                 key = kvm_async_pf_next_probe(key);
6354
6355         vcpu->arch.apf.gfns[key] = gfn;
6356 }
6357
6358 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6359 {
6360         int i;
6361         u32 key = kvm_async_pf_hash_fn(gfn);
6362
6363         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6364                      (vcpu->arch.apf.gfns[key] != gfn &&
6365                       vcpu->arch.apf.gfns[key] != ~0); i++)
6366                 key = kvm_async_pf_next_probe(key);
6367
6368         return key;
6369 }
6370
6371 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6372 {
6373         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6374 }
6375
6376 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6377 {
6378         u32 i, j, k;
6379
6380         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6381         while (true) {
6382                 vcpu->arch.apf.gfns[i] = ~0;
6383                 do {
6384                         j = kvm_async_pf_next_probe(j);
6385                         if (vcpu->arch.apf.gfns[j] == ~0)
6386                                 return;
6387                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6388                         /*
6389                          * k lies cyclically in ]i,j]
6390                          * |    i.k.j |
6391                          * |....j i.k.| or  |.k..j i...|
6392                          */
6393                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6394                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6395                 i = j;
6396         }
6397 }
6398
6399 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6400 {
6401
6402         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6403                                       sizeof(val));
6404 }
6405
6406 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6407                                      struct kvm_async_pf *work)
6408 {
6409         struct x86_exception fault;
6410
6411         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6412         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6413
6414         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6415             (vcpu->arch.apf.send_user_only &&
6416              kvm_x86_ops->get_cpl(vcpu) == 0))
6417                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6418         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6419                 fault.vector = PF_VECTOR;
6420                 fault.error_code_valid = true;
6421                 fault.error_code = 0;
6422                 fault.nested_page_fault = false;
6423                 fault.address = work->arch.token;
6424                 kvm_inject_page_fault(vcpu, &fault);
6425         }
6426 }
6427
6428 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6429                                  struct kvm_async_pf *work)
6430 {
6431         struct x86_exception fault;
6432
6433         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6434         if (is_error_page(work->page))
6435                 work->arch.token = ~0; /* broadcast wakeup */
6436         else
6437                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6438
6439         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6440             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6441                 fault.vector = PF_VECTOR;
6442                 fault.error_code_valid = true;
6443                 fault.error_code = 0;
6444                 fault.nested_page_fault = false;
6445                 fault.address = work->arch.token;
6446                 kvm_inject_page_fault(vcpu, &fault);
6447         }
6448         vcpu->arch.apf.halted = false;
6449 }
6450
6451 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6452 {
6453         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6454                 return true;
6455         else
6456                 return !kvm_event_needs_reinjection(vcpu) &&
6457                         kvm_x86_ops->interrupt_allowed(vcpu);
6458 }
6459
6460 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6461 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6462 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6463 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6464 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6465 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6466 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6467 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6468 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6469 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6470 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6471 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);