KVM: ia64: Make pmt table be able to hold physical mmio entries.
[linux-flexiantxendom0.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/fs.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34
35 #include <asm/pgtable.h>
36 #include <asm/gcc_intrin.h>
37 #include <asm/pal.h>
38 #include <asm/cacheflush.h>
39 #include <asm/div64.h>
40 #include <asm/tlb.h>
41 #include <asm/elf.h>
42
43 #include "misc.h"
44 #include "vti.h"
45 #include "iodev.h"
46 #include "ioapic.h"
47 #include "lapic.h"
48 #include "irq.h"
49
50 static unsigned long kvm_vmm_base;
51 static unsigned long kvm_vsa_base;
52 static unsigned long kvm_vm_buffer;
53 static unsigned long kvm_vm_buffer_size;
54 unsigned long kvm_vmm_gp;
55
56 static long vp_env_info;
57
58 static struct kvm_vmm_info *kvm_vmm_info;
59
60 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
61
62 struct kvm_stats_debugfs_item debugfs_entries[] = {
63         { NULL }
64 };
65
66 static void kvm_flush_icache(unsigned long start, unsigned long len)
67 {
68         int l;
69
70         for (l = 0; l < (len + 32); l += 32)
71                 ia64_fc(start + l);
72
73         ia64_sync_i();
74         ia64_srlz_i();
75 }
76
77 static void kvm_flush_tlb_all(void)
78 {
79         unsigned long i, j, count0, count1, stride0, stride1, addr;
80         long flags;
81
82         addr    = local_cpu_data->ptce_base;
83         count0  = local_cpu_data->ptce_count[0];
84         count1  = local_cpu_data->ptce_count[1];
85         stride0 = local_cpu_data->ptce_stride[0];
86         stride1 = local_cpu_data->ptce_stride[1];
87
88         local_irq_save(flags);
89         for (i = 0; i < count0; ++i) {
90                 for (j = 0; j < count1; ++j) {
91                         ia64_ptce(addr);
92                         addr += stride1;
93                 }
94                 addr += stride0;
95         }
96         local_irq_restore(flags);
97         ia64_srlz_i();                  /* srlz.i implies srlz.d */
98 }
99
100 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
101 {
102         struct ia64_pal_retval iprv;
103
104         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
105                         (u64)opt_handler);
106
107         return iprv.status;
108 }
109
110 static  DEFINE_SPINLOCK(vp_lock);
111
112 void kvm_arch_hardware_enable(void *garbage)
113 {
114         long  status;
115         long  tmp_base;
116         unsigned long pte;
117         unsigned long saved_psr;
118         int slot;
119
120         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
121                                 PAGE_KERNEL));
122         local_irq_save(saved_psr);
123         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
124         local_irq_restore(saved_psr);
125         if (slot < 0)
126                 return;
127
128         spin_lock(&vp_lock);
129         status = ia64_pal_vp_init_env(kvm_vsa_base ?
130                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
131                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
132         if (status != 0) {
133                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
134                 return ;
135         }
136
137         if (!kvm_vsa_base) {
138                 kvm_vsa_base = tmp_base;
139                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
140         }
141         spin_unlock(&vp_lock);
142         ia64_ptr_entry(0x3, slot);
143 }
144
145 void kvm_arch_hardware_disable(void *garbage)
146 {
147
148         long status;
149         int slot;
150         unsigned long pte;
151         unsigned long saved_psr;
152         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
153
154         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
155                                 PAGE_KERNEL));
156
157         local_irq_save(saved_psr);
158         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
159         local_irq_restore(saved_psr);
160         if (slot < 0)
161                 return;
162
163         status = ia64_pal_vp_exit_env(host_iva);
164         if (status)
165                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
166                                 status);
167         ia64_ptr_entry(0x3, slot);
168 }
169
170 void kvm_arch_check_processor_compat(void *rtn)
171 {
172         *(int *)rtn = 0;
173 }
174
175 int kvm_dev_ioctl_check_extension(long ext)
176 {
177
178         int r;
179
180         switch (ext) {
181         case KVM_CAP_IRQCHIP:
182         case KVM_CAP_USER_MEMORY:
183         case KVM_CAP_MP_STATE:
184
185                 r = 1;
186                 break;
187         case KVM_CAP_COALESCED_MMIO:
188                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
189                 break;
190         default:
191                 r = 0;
192         }
193         return r;
194
195 }
196
197 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
198                                         gpa_t addr, int len, int is_write)
199 {
200         struct kvm_io_device *dev;
201
202         dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
203
204         return dev;
205 }
206
207 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
208 {
209         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
210         kvm_run->hw.hardware_exit_reason = 1;
211         return 0;
212 }
213
214 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
215 {
216         struct kvm_mmio_req *p;
217         struct kvm_io_device *mmio_dev;
218
219         p = kvm_get_vcpu_ioreq(vcpu);
220
221         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
222                 goto mmio;
223         vcpu->mmio_needed = 1;
224         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
225         vcpu->mmio_size = kvm_run->mmio.len = p->size;
226         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
227
228         if (vcpu->mmio_is_write)
229                 memcpy(vcpu->mmio_data, &p->data, p->size);
230         memcpy(kvm_run->mmio.data, &p->data, p->size);
231         kvm_run->exit_reason = KVM_EXIT_MMIO;
232         return 0;
233 mmio:
234         mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
235         if (mmio_dev) {
236                 if (!p->dir)
237                         kvm_iodevice_write(mmio_dev, p->addr, p->size,
238                                                 &p->data);
239                 else
240                         kvm_iodevice_read(mmio_dev, p->addr, p->size,
241                                                 &p->data);
242
243         } else
244                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
245         p->state = STATE_IORESP_READY;
246
247         return 1;
248 }
249
250 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
251 {
252         struct exit_ctl_data *p;
253
254         p = kvm_get_exit_data(vcpu);
255
256         if (p->exit_reason == EXIT_REASON_PAL_CALL)
257                 return kvm_pal_emul(vcpu, kvm_run);
258         else {
259                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
260                 kvm_run->hw.hardware_exit_reason = 2;
261                 return 0;
262         }
263 }
264
265 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
266 {
267         struct exit_ctl_data *p;
268
269         p = kvm_get_exit_data(vcpu);
270
271         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
272                 kvm_sal_emul(vcpu);
273                 return 1;
274         } else {
275                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
276                 kvm_run->hw.hardware_exit_reason = 3;
277                 return 0;
278         }
279
280 }
281
282 /*
283  *  offset: address offset to IPI space.
284  *  value:  deliver value.
285  */
286 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
287                                 uint64_t vector)
288 {
289         switch (dm) {
290         case SAPIC_FIXED:
291                 kvm_apic_set_irq(vcpu, vector, 0);
292                 break;
293         case SAPIC_NMI:
294                 kvm_apic_set_irq(vcpu, 2, 0);
295                 break;
296         case SAPIC_EXTINT:
297                 kvm_apic_set_irq(vcpu, 0, 0);
298                 break;
299         case SAPIC_INIT:
300         case SAPIC_PMI:
301         default:
302                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
303                 break;
304         }
305 }
306
307 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
308                         unsigned long eid)
309 {
310         union ia64_lid lid;
311         int i;
312
313         for (i = 0; i < KVM_MAX_VCPUS; i++) {
314                 if (kvm->vcpus[i]) {
315                         lid.val = VCPU_LID(kvm->vcpus[i]);
316                         if (lid.id == id && lid.eid == eid)
317                                 return kvm->vcpus[i];
318                 }
319         }
320
321         return NULL;
322 }
323
324 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
325 {
326         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
327         struct kvm_vcpu *target_vcpu;
328         struct kvm_pt_regs *regs;
329         union ia64_ipi_a addr = p->u.ipi_data.addr;
330         union ia64_ipi_d data = p->u.ipi_data.data;
331
332         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
333         if (!target_vcpu)
334                 return handle_vm_error(vcpu, kvm_run);
335
336         if (!target_vcpu->arch.launched) {
337                 regs = vcpu_regs(target_vcpu);
338
339                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
340                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
341
342                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
343                 if (waitqueue_active(&target_vcpu->wq))
344                         wake_up_interruptible(&target_vcpu->wq);
345         } else {
346                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
347                 if (target_vcpu != vcpu)
348                         kvm_vcpu_kick(target_vcpu);
349         }
350
351         return 1;
352 }
353
354 struct call_data {
355         struct kvm_ptc_g ptc_g_data;
356         struct kvm_vcpu *vcpu;
357 };
358
359 static void vcpu_global_purge(void *info)
360 {
361         struct call_data *p = (struct call_data *)info;
362         struct kvm_vcpu *vcpu = p->vcpu;
363
364         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
365                 return;
366
367         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
368         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
369                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
370                                                         p->ptc_g_data;
371         } else {
372                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
373                 vcpu->arch.ptc_g_count = 0;
374                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
375         }
376 }
377
378 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
379 {
380         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
381         struct kvm *kvm = vcpu->kvm;
382         struct call_data call_data;
383         int i;
384         call_data.ptc_g_data = p->u.ptc_g_data;
385
386         for (i = 0; i < KVM_MAX_VCPUS; i++) {
387                 if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
388                                                 KVM_MP_STATE_UNINITIALIZED ||
389                                         vcpu == kvm->vcpus[i])
390                         continue;
391
392                 if (waitqueue_active(&kvm->vcpus[i]->wq))
393                         wake_up_interruptible(&kvm->vcpus[i]->wq);
394
395                 if (kvm->vcpus[i]->cpu != -1) {
396                         call_data.vcpu = kvm->vcpus[i];
397                         smp_call_function_single(kvm->vcpus[i]->cpu,
398                                         vcpu_global_purge, &call_data, 1);
399                 } else
400                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
401
402         }
403         return 1;
404 }
405
406 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
407 {
408         return 1;
409 }
410
411 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
412 {
413
414         ktime_t kt;
415         long itc_diff;
416         unsigned long vcpu_now_itc;
417
418         unsigned long expires;
419         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
420         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
421         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
422
423         vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
424
425         if (time_after(vcpu_now_itc, vpd->itm)) {
426                 vcpu->arch.timer_check = 1;
427                 return 1;
428         }
429         itc_diff = vpd->itm - vcpu_now_itc;
430         if (itc_diff < 0)
431                 itc_diff = -itc_diff;
432
433         expires = div64_u64(itc_diff, cyc_per_usec);
434         kt = ktime_set(0, 1000 * expires);
435         vcpu->arch.ht_active = 1;
436         hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
437
438         if (irqchip_in_kernel(vcpu->kvm)) {
439                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
440                 kvm_vcpu_block(vcpu);
441                 hrtimer_cancel(p_ht);
442                 vcpu->arch.ht_active = 0;
443
444                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
445                         return -EINTR;
446                 return 1;
447         } else {
448                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
449                 return 0;
450         }
451 }
452
453 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
454                 struct kvm_run *kvm_run)
455 {
456         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
457         return 0;
458 }
459
460 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
461                 struct kvm_run *kvm_run)
462 {
463         return 1;
464 }
465
466 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
467                 struct kvm_run *kvm_run) = {
468         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
469         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
470         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
471         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
472         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
473         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
474         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
475         [EXIT_REASON_IPI]                   = handle_ipi,
476         [EXIT_REASON_PTC_G]                 = handle_global_purge,
477
478 };
479
480 static const int kvm_vti_max_exit_handlers =
481                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
482
483 static void kvm_prepare_guest_switch(struct kvm_vcpu *vcpu)
484 {
485 }
486
487 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
488 {
489         struct exit_ctl_data *p_exit_data;
490
491         p_exit_data = kvm_get_exit_data(vcpu);
492         return p_exit_data->exit_reason;
493 }
494
495 /*
496  * The guest has exited.  See if we can fix it or if we need userspace
497  * assistance.
498  */
499 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
500 {
501         u32 exit_reason = kvm_get_exit_reason(vcpu);
502         vcpu->arch.last_exit = exit_reason;
503
504         if (exit_reason < kvm_vti_max_exit_handlers
505                         && kvm_vti_exit_handlers[exit_reason])
506                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
507         else {
508                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
509                 kvm_run->hw.hardware_exit_reason = exit_reason;
510         }
511         return 0;
512 }
513
514 static inline void vti_set_rr6(unsigned long rr6)
515 {
516         ia64_set_rr(RR6, rr6);
517         ia64_srlz_i();
518 }
519
520 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
521 {
522         unsigned long pte;
523         struct kvm *kvm = vcpu->kvm;
524         int r;
525
526         /*Insert a pair of tr to map vmm*/
527         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
528         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
529         if (r < 0)
530                 goto out;
531         vcpu->arch.vmm_tr_slot = r;
532         /*Insert a pairt of tr to map data of vm*/
533         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
534         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
535                                         pte, KVM_VM_DATA_SHIFT);
536         if (r < 0)
537                 goto out;
538         vcpu->arch.vm_tr_slot = r;
539         r = 0;
540 out:
541         return r;
542
543 }
544
545 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
546 {
547
548         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
549         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
550
551 }
552
553 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
554 {
555         int cpu = smp_processor_id();
556
557         if (vcpu->arch.last_run_cpu != cpu ||
558                         per_cpu(last_vcpu, cpu) != vcpu) {
559                 per_cpu(last_vcpu, cpu) = vcpu;
560                 vcpu->arch.last_run_cpu = cpu;
561                 kvm_flush_tlb_all();
562         }
563
564         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
565         vti_set_rr6(vcpu->arch.vmm_rr);
566         return kvm_insert_vmm_mapping(vcpu);
567 }
568 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
569 {
570         kvm_purge_vmm_mapping(vcpu);
571         vti_set_rr6(vcpu->arch.host_rr6);
572 }
573
574 static int  vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
575 {
576         union context *host_ctx, *guest_ctx;
577         int r;
578
579         /*Get host and guest context with guest address space.*/
580         host_ctx = kvm_get_host_context(vcpu);
581         guest_ctx = kvm_get_guest_context(vcpu);
582
583         r = kvm_vcpu_pre_transition(vcpu);
584         if (r < 0)
585                 goto out;
586         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
587         kvm_vcpu_post_transition(vcpu);
588         r = 0;
589 out:
590         return r;
591 }
592
593 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
594 {
595         int r;
596
597 again:
598         preempt_disable();
599
600         kvm_prepare_guest_switch(vcpu);
601         local_irq_disable();
602
603         if (signal_pending(current)) {
604                 local_irq_enable();
605                 preempt_enable();
606                 r = -EINTR;
607                 kvm_run->exit_reason = KVM_EXIT_INTR;
608                 goto out;
609         }
610
611         vcpu->guest_mode = 1;
612         kvm_guest_enter();
613
614         r = vti_vcpu_run(vcpu, kvm_run);
615         if (r < 0) {
616                 local_irq_enable();
617                 preempt_enable();
618                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
619                 goto out;
620         }
621
622         vcpu->arch.launched = 1;
623         vcpu->guest_mode = 0;
624         local_irq_enable();
625
626         /*
627          * We must have an instruction between local_irq_enable() and
628          * kvm_guest_exit(), so the timer interrupt isn't delayed by
629          * the interrupt shadow.  The stat.exits increment will do nicely.
630          * But we need to prevent reordering, hence this barrier():
631          */
632         barrier();
633
634         kvm_guest_exit();
635
636         preempt_enable();
637
638         r = kvm_handle_exit(kvm_run, vcpu);
639
640         if (r > 0) {
641                 if (!need_resched())
642                         goto again;
643         }
644
645 out:
646         if (r > 0) {
647                 kvm_resched(vcpu);
648                 goto again;
649         }
650
651         return r;
652 }
653
654 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
655 {
656         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
657
658         if (!vcpu->mmio_is_write)
659                 memcpy(&p->data, vcpu->mmio_data, 8);
660         p->state = STATE_IORESP_READY;
661 }
662
663 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
664 {
665         int r;
666         sigset_t sigsaved;
667
668         vcpu_load(vcpu);
669
670         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
671                 kvm_vcpu_block(vcpu);
672                 vcpu_put(vcpu);
673                 return -EAGAIN;
674         }
675
676         if (vcpu->sigset_active)
677                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
678
679         if (vcpu->mmio_needed) {
680                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
681                 kvm_set_mmio_data(vcpu);
682                 vcpu->mmio_read_completed = 1;
683                 vcpu->mmio_needed = 0;
684         }
685         r = __vcpu_run(vcpu, kvm_run);
686
687         if (vcpu->sigset_active)
688                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
689
690         vcpu_put(vcpu);
691         return r;
692 }
693
694 /*
695  * Allocate 16M memory for every vm to hold its specific data.
696  * Its memory map is defined in kvm_host.h.
697  */
698 static struct kvm *kvm_alloc_kvm(void)
699 {
700
701         struct kvm *kvm;
702         uint64_t  vm_base;
703
704         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
705
706         if (!vm_base)
707                 return ERR_PTR(-ENOMEM);
708         printk(KERN_DEBUG"kvm: VM data's base Address:0x%lx\n", vm_base);
709
710         /* Zero all pages before use! */
711         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
712
713         kvm = (struct kvm *)(vm_base + KVM_VM_OFS);
714         kvm->arch.vm_base = vm_base;
715
716         return kvm;
717 }
718
719 struct kvm_io_range {
720         unsigned long start;
721         unsigned long size;
722         unsigned long type;
723 };
724
725 static const struct kvm_io_range io_ranges[] = {
726         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
727         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
728         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
729         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
730         {PIB_START, PIB_SIZE, GPFN_PIB},
731 };
732
733 static void kvm_build_io_pmt(struct kvm *kvm)
734 {
735         unsigned long i, j;
736
737         /* Mark I/O ranges */
738         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
739                                                         i++) {
740                 for (j = io_ranges[i].start;
741                                 j < io_ranges[i].start + io_ranges[i].size;
742                                 j += PAGE_SIZE)
743                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
744                                         io_ranges[i].type, 0);
745         }
746
747 }
748
749 /*Use unused rids to virtualize guest rid.*/
750 #define GUEST_PHYSICAL_RR0      0x1739
751 #define GUEST_PHYSICAL_RR4      0x2739
752 #define VMM_INIT_RR             0x1660
753
754 static void kvm_init_vm(struct kvm *kvm)
755 {
756         long vm_base;
757
758         BUG_ON(!kvm);
759
760         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
761         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
762         kvm->arch.vmm_init_rr = VMM_INIT_RR;
763
764         vm_base = kvm->arch.vm_base;
765         if (vm_base) {
766                 kvm->arch.vhpt_base = vm_base + KVM_VHPT_OFS;
767                 kvm->arch.vtlb_base = vm_base + KVM_VTLB_OFS;
768                 kvm->arch.vpd_base  = vm_base + KVM_VPD_OFS;
769         }
770
771         /*
772          *Fill P2M entries for MMIO/IO ranges
773          */
774         kvm_build_io_pmt(kvm);
775
776 }
777
778 struct  kvm *kvm_arch_create_vm(void)
779 {
780         struct kvm *kvm = kvm_alloc_kvm();
781
782         if (IS_ERR(kvm))
783                 return ERR_PTR(-ENOMEM);
784         kvm_init_vm(kvm);
785
786         return kvm;
787
788 }
789
790 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
791                                         struct kvm_irqchip *chip)
792 {
793         int r;
794
795         r = 0;
796         switch (chip->chip_id) {
797         case KVM_IRQCHIP_IOAPIC:
798                 memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
799                                 sizeof(struct kvm_ioapic_state));
800                 break;
801         default:
802                 r = -EINVAL;
803                 break;
804         }
805         return r;
806 }
807
808 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
809 {
810         int r;
811
812         r = 0;
813         switch (chip->chip_id) {
814         case KVM_IRQCHIP_IOAPIC:
815                 memcpy(ioapic_irqchip(kvm),
816                                 &chip->chip.ioapic,
817                                 sizeof(struct kvm_ioapic_state));
818                 break;
819         default:
820                 r = -EINVAL;
821                 break;
822         }
823         return r;
824 }
825
826 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
827
828 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
829 {
830         int i;
831         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
832         int r;
833
834         vcpu_load(vcpu);
835
836         for (i = 0; i < 16; i++) {
837                 vpd->vgr[i] = regs->vpd.vgr[i];
838                 vpd->vbgr[i] = regs->vpd.vbgr[i];
839         }
840         for (i = 0; i < 128; i++)
841                 vpd->vcr[i] = regs->vpd.vcr[i];
842         vpd->vhpi = regs->vpd.vhpi;
843         vpd->vnat = regs->vpd.vnat;
844         vpd->vbnat = regs->vpd.vbnat;
845         vpd->vpsr = regs->vpd.vpsr;
846
847         vpd->vpr = regs->vpd.vpr;
848
849         r = -EFAULT;
850         r = copy_from_user(&vcpu->arch.guest, regs->saved_guest,
851                                                 sizeof(union context));
852         if (r)
853                 goto out;
854         r = copy_from_user(vcpu + 1, regs->saved_stack +
855                         sizeof(struct kvm_vcpu),
856                         IA64_STK_OFFSET - sizeof(struct kvm_vcpu));
857         if (r)
858                 goto out;
859         vcpu->arch.exit_data =
860                 ((struct kvm_vcpu *)(regs->saved_stack))->arch.exit_data;
861
862         RESTORE_REGS(mp_state);
863         RESTORE_REGS(vmm_rr);
864         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
865         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
866         RESTORE_REGS(itr_regions);
867         RESTORE_REGS(dtr_regions);
868         RESTORE_REGS(tc_regions);
869         RESTORE_REGS(irq_check);
870         RESTORE_REGS(itc_check);
871         RESTORE_REGS(timer_check);
872         RESTORE_REGS(timer_pending);
873         RESTORE_REGS(last_itc);
874         for (i = 0; i < 8; i++) {
875                 vcpu->arch.vrr[i] = regs->vrr[i];
876                 vcpu->arch.ibr[i] = regs->ibr[i];
877                 vcpu->arch.dbr[i] = regs->dbr[i];
878         }
879         for (i = 0; i < 4; i++)
880                 vcpu->arch.insvc[i] = regs->insvc[i];
881         RESTORE_REGS(xtp);
882         RESTORE_REGS(metaphysical_rr0);
883         RESTORE_REGS(metaphysical_rr4);
884         RESTORE_REGS(metaphysical_saved_rr0);
885         RESTORE_REGS(metaphysical_saved_rr4);
886         RESTORE_REGS(fp_psr);
887         RESTORE_REGS(saved_gp);
888
889         vcpu->arch.irq_new_pending = 1;
890         vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
891         set_bit(KVM_REQ_RESUME, &vcpu->requests);
892
893         vcpu_put(vcpu);
894         r = 0;
895 out:
896         return r;
897 }
898
899 long kvm_arch_vm_ioctl(struct file *filp,
900                 unsigned int ioctl, unsigned long arg)
901 {
902         struct kvm *kvm = filp->private_data;
903         void __user *argp = (void __user *)arg;
904         int r = -EINVAL;
905
906         switch (ioctl) {
907         case KVM_SET_MEMORY_REGION: {
908                 struct kvm_memory_region kvm_mem;
909                 struct kvm_userspace_memory_region kvm_userspace_mem;
910
911                 r = -EFAULT;
912                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
913                         goto out;
914                 kvm_userspace_mem.slot = kvm_mem.slot;
915                 kvm_userspace_mem.flags = kvm_mem.flags;
916                 kvm_userspace_mem.guest_phys_addr =
917                                         kvm_mem.guest_phys_addr;
918                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
919                 r = kvm_vm_ioctl_set_memory_region(kvm,
920                                         &kvm_userspace_mem, 0);
921                 if (r)
922                         goto out;
923                 break;
924                 }
925         case KVM_CREATE_IRQCHIP:
926                 r = -EFAULT;
927                 r = kvm_ioapic_init(kvm);
928                 if (r)
929                         goto out;
930                 break;
931         case KVM_IRQ_LINE: {
932                 struct kvm_irq_level irq_event;
933
934                 r = -EFAULT;
935                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
936                         goto out;
937                 if (irqchip_in_kernel(kvm)) {
938                         mutex_lock(&kvm->lock);
939                         kvm_ioapic_set_irq(kvm->arch.vioapic,
940                                                 irq_event.irq,
941                                                 irq_event.level);
942                         mutex_unlock(&kvm->lock);
943                         r = 0;
944                 }
945                 break;
946                 }
947         case KVM_GET_IRQCHIP: {
948                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
949                 struct kvm_irqchip chip;
950
951                 r = -EFAULT;
952                 if (copy_from_user(&chip, argp, sizeof chip))
953                                 goto out;
954                 r = -ENXIO;
955                 if (!irqchip_in_kernel(kvm))
956                         goto out;
957                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
958                 if (r)
959                         goto out;
960                 r = -EFAULT;
961                 if (copy_to_user(argp, &chip, sizeof chip))
962                                 goto out;
963                 r = 0;
964                 break;
965                 }
966         case KVM_SET_IRQCHIP: {
967                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
968                 struct kvm_irqchip chip;
969
970                 r = -EFAULT;
971                 if (copy_from_user(&chip, argp, sizeof chip))
972                                 goto out;
973                 r = -ENXIO;
974                 if (!irqchip_in_kernel(kvm))
975                         goto out;
976                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
977                 if (r)
978                         goto out;
979                 r = 0;
980                 break;
981                 }
982         default:
983                 ;
984         }
985 out:
986         return r;
987 }
988
989 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
990                 struct kvm_sregs *sregs)
991 {
992         return -EINVAL;
993 }
994
995 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
996                 struct kvm_sregs *sregs)
997 {
998         return -EINVAL;
999
1000 }
1001 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1002                 struct kvm_translation *tr)
1003 {
1004
1005         return -EINVAL;
1006 }
1007
1008 static int kvm_alloc_vmm_area(void)
1009 {
1010         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1011                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1012                                 get_order(KVM_VMM_SIZE));
1013                 if (!kvm_vmm_base)
1014                         return -ENOMEM;
1015
1016                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1017                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1018
1019                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1020                                 kvm_vmm_base, kvm_vm_buffer);
1021         }
1022
1023         return 0;
1024 }
1025
1026 static void kvm_free_vmm_area(void)
1027 {
1028         if (kvm_vmm_base) {
1029                 /*Zero this area before free to avoid bits leak!!*/
1030                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1031                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1032                 kvm_vmm_base  = 0;
1033                 kvm_vm_buffer = 0;
1034                 kvm_vsa_base = 0;
1035         }
1036 }
1037
1038 static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1039 {
1040 }
1041
1042 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1043 {
1044         int i;
1045         union cpuid3_t cpuid3;
1046         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1047
1048         if (IS_ERR(vpd))
1049                 return PTR_ERR(vpd);
1050
1051         /* CPUID init */
1052         for (i = 0; i < 5; i++)
1053                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1054
1055         /* Limit the CPUID number to 5 */
1056         cpuid3.value = vpd->vcpuid[3];
1057         cpuid3.number = 4;      /* 5 - 1 */
1058         vpd->vcpuid[3] = cpuid3.value;
1059
1060         /*Set vac and vdc fields*/
1061         vpd->vac.a_from_int_cr = 1;
1062         vpd->vac.a_to_int_cr = 1;
1063         vpd->vac.a_from_psr = 1;
1064         vpd->vac.a_from_cpuid = 1;
1065         vpd->vac.a_cover = 1;
1066         vpd->vac.a_bsw = 1;
1067         vpd->vac.a_int = 1;
1068         vpd->vdc.d_vmsw = 1;
1069
1070         /*Set virtual buffer*/
1071         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1072
1073         return 0;
1074 }
1075
1076 static int vti_create_vp(struct kvm_vcpu *vcpu)
1077 {
1078         long ret;
1079         struct vpd *vpd = vcpu->arch.vpd;
1080         unsigned long  vmm_ivt;
1081
1082         vmm_ivt = kvm_vmm_info->vmm_ivt;
1083
1084         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1085
1086         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1087
1088         if (ret) {
1089                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1090                 return -EINVAL;
1091         }
1092         return 0;
1093 }
1094
1095 static void init_ptce_info(struct kvm_vcpu *vcpu)
1096 {
1097         ia64_ptce_info_t ptce = {0};
1098
1099         ia64_get_ptce(&ptce);
1100         vcpu->arch.ptce_base = ptce.base;
1101         vcpu->arch.ptce_count[0] = ptce.count[0];
1102         vcpu->arch.ptce_count[1] = ptce.count[1];
1103         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1104         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1105 }
1106
1107 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1108 {
1109         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1110
1111         if (hrtimer_cancel(p_ht))
1112                 hrtimer_start(p_ht, p_ht->expires, HRTIMER_MODE_ABS);
1113 }
1114
1115 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1116 {
1117         struct kvm_vcpu *vcpu;
1118         wait_queue_head_t *q;
1119
1120         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1121         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1122                 goto out;
1123
1124         q = &vcpu->wq;
1125         if (waitqueue_active(q)) {
1126                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1127                 wake_up_interruptible(q);
1128         }
1129 out:
1130         vcpu->arch.timer_check = 1;
1131         return HRTIMER_NORESTART;
1132 }
1133
1134 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1135
1136 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1137 {
1138         struct kvm_vcpu *v;
1139         int r;
1140         int i;
1141         long itc_offset;
1142         struct kvm *kvm = vcpu->kvm;
1143         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1144
1145         union context *p_ctx = &vcpu->arch.guest;
1146         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1147
1148         /*Init vcpu context for first run.*/
1149         if (IS_ERR(vmm_vcpu))
1150                 return PTR_ERR(vmm_vcpu);
1151
1152         if (vcpu->vcpu_id == 0) {
1153                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1154
1155                 /*Set entry address for first run.*/
1156                 regs->cr_iip = PALE_RESET_ENTRY;
1157
1158                 /*Initilize itc offset for vcpus*/
1159                 itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
1160                 for (i = 0; i < MAX_VCPU_NUM; i++) {
1161                         v = (struct kvm_vcpu *)((char *)vcpu + VCPU_SIZE * i);
1162                         v->arch.itc_offset = itc_offset;
1163                         v->arch.last_itc = 0;
1164                 }
1165         } else
1166                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1167
1168         r = -ENOMEM;
1169         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1170         if (!vcpu->arch.apic)
1171                 goto out;
1172         vcpu->arch.apic->vcpu = vcpu;
1173
1174         p_ctx->gr[1] = 0;
1175         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + IA64_STK_OFFSET);
1176         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1177         p_ctx->psr = 0x1008522000UL;
1178         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1179         p_ctx->caller_unat = 0;
1180         p_ctx->pr = 0x0;
1181         p_ctx->ar[36] = 0x0; /*unat*/
1182         p_ctx->ar[19] = 0x0; /*rnat*/
1183         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1184                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1185         p_ctx->ar[64] = 0x0; /*pfs*/
1186         p_ctx->cr[0] = 0x7e04UL;
1187         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1188         p_ctx->cr[8] = 0x3c;
1189
1190         /*Initilize region register*/
1191         p_ctx->rr[0] = 0x30;
1192         p_ctx->rr[1] = 0x30;
1193         p_ctx->rr[2] = 0x30;
1194         p_ctx->rr[3] = 0x30;
1195         p_ctx->rr[4] = 0x30;
1196         p_ctx->rr[5] = 0x30;
1197         p_ctx->rr[7] = 0x30;
1198
1199         /*Initilize branch register 0*/
1200         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1201
1202         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1203         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1204         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1205
1206         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1207         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1208
1209         vcpu->arch.last_run_cpu = -1;
1210         vcpu->arch.vpd = (struct vpd *)VPD_ADDR(vcpu->vcpu_id);
1211         vcpu->arch.vsa_base = kvm_vsa_base;
1212         vcpu->arch.__gp = kvm_vmm_gp;
1213         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1214         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_ADDR(vcpu->vcpu_id);
1215         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_ADDR(vcpu->vcpu_id);
1216         init_ptce_info(vcpu);
1217
1218         r = 0;
1219 out:
1220         return r;
1221 }
1222
1223 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1224 {
1225         unsigned long psr;
1226         int r;
1227
1228         local_irq_save(psr);
1229         r = kvm_insert_vmm_mapping(vcpu);
1230         if (r)
1231                 goto fail;
1232         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1233         if (r)
1234                 goto fail;
1235
1236         r = vti_init_vpd(vcpu);
1237         if (r) {
1238                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1239                 goto uninit;
1240         }
1241
1242         r = vti_create_vp(vcpu);
1243         if (r)
1244                 goto uninit;
1245
1246         kvm_purge_vmm_mapping(vcpu);
1247         local_irq_restore(psr);
1248
1249         return 0;
1250 uninit:
1251         kvm_vcpu_uninit(vcpu);
1252 fail:
1253         local_irq_restore(psr);
1254         return r;
1255 }
1256
1257 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1258                 unsigned int id)
1259 {
1260         struct kvm_vcpu *vcpu;
1261         unsigned long vm_base = kvm->arch.vm_base;
1262         int r;
1263         int cpu;
1264
1265         r = -ENOMEM;
1266         if (!vm_base) {
1267                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1268                 goto fail;
1269         }
1270         vcpu = (struct kvm_vcpu *)(vm_base + KVM_VCPU_OFS + VCPU_SIZE * id);
1271         vcpu->kvm = kvm;
1272
1273         cpu = get_cpu();
1274         vti_vcpu_load(vcpu, cpu);
1275         r = vti_vcpu_setup(vcpu, id);
1276         put_cpu();
1277
1278         if (r) {
1279                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1280                 goto fail;
1281         }
1282
1283         return vcpu;
1284 fail:
1285         return ERR_PTR(r);
1286 }
1287
1288 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1289 {
1290         return 0;
1291 }
1292
1293 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1294 {
1295         return -EINVAL;
1296 }
1297
1298 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1299 {
1300         return -EINVAL;
1301 }
1302
1303 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
1304                 struct kvm_debug_guest *dbg)
1305 {
1306         return -EINVAL;
1307 }
1308
1309 static void free_kvm(struct kvm *kvm)
1310 {
1311         unsigned long vm_base = kvm->arch.vm_base;
1312
1313         if (vm_base) {
1314                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1315                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1316         }
1317
1318 }
1319
1320 static void kvm_release_vm_pages(struct kvm *kvm)
1321 {
1322         struct kvm_memory_slot *memslot;
1323         int i, j;
1324         unsigned long base_gfn;
1325
1326         for (i = 0; i < kvm->nmemslots; i++) {
1327                 memslot = &kvm->memslots[i];
1328                 base_gfn = memslot->base_gfn;
1329
1330                 for (j = 0; j < memslot->npages; j++) {
1331                         if (memslot->rmap[j])
1332                                 put_page((struct page *)memslot->rmap[j]);
1333                 }
1334         }
1335 }
1336
1337 void kvm_arch_destroy_vm(struct kvm *kvm)
1338 {
1339         kfree(kvm->arch.vioapic);
1340         kvm_release_vm_pages(kvm);
1341         kvm_free_physmem(kvm);
1342         free_kvm(kvm);
1343 }
1344
1345 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1346 {
1347 }
1348
1349 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1350 {
1351         if (cpu != vcpu->cpu) {
1352                 vcpu->cpu = cpu;
1353                 if (vcpu->arch.ht_active)
1354                         kvm_migrate_hlt_timer(vcpu);
1355         }
1356 }
1357
1358 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1359
1360 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1361 {
1362         int i;
1363         int r;
1364         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1365         vcpu_load(vcpu);
1366
1367         for (i = 0; i < 16; i++) {
1368                 regs->vpd.vgr[i] = vpd->vgr[i];
1369                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1370         }
1371         for (i = 0; i < 128; i++)
1372                 regs->vpd.vcr[i] = vpd->vcr[i];
1373         regs->vpd.vhpi = vpd->vhpi;
1374         regs->vpd.vnat = vpd->vnat;
1375         regs->vpd.vbnat = vpd->vbnat;
1376         regs->vpd.vpsr = vpd->vpsr;
1377         regs->vpd.vpr = vpd->vpr;
1378
1379         r = -EFAULT;
1380         r = copy_to_user(regs->saved_guest, &vcpu->arch.guest,
1381                                         sizeof(union context));
1382         if (r)
1383                 goto out;
1384         r = copy_to_user(regs->saved_stack, (void *)vcpu, IA64_STK_OFFSET);
1385         if (r)
1386                 goto out;
1387         SAVE_REGS(mp_state);
1388         SAVE_REGS(vmm_rr);
1389         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1390         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1391         SAVE_REGS(itr_regions);
1392         SAVE_REGS(dtr_regions);
1393         SAVE_REGS(tc_regions);
1394         SAVE_REGS(irq_check);
1395         SAVE_REGS(itc_check);
1396         SAVE_REGS(timer_check);
1397         SAVE_REGS(timer_pending);
1398         SAVE_REGS(last_itc);
1399         for (i = 0; i < 8; i++) {
1400                 regs->vrr[i] = vcpu->arch.vrr[i];
1401                 regs->ibr[i] = vcpu->arch.ibr[i];
1402                 regs->dbr[i] = vcpu->arch.dbr[i];
1403         }
1404         for (i = 0; i < 4; i++)
1405                 regs->insvc[i] = vcpu->arch.insvc[i];
1406         regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
1407         SAVE_REGS(xtp);
1408         SAVE_REGS(metaphysical_rr0);
1409         SAVE_REGS(metaphysical_rr4);
1410         SAVE_REGS(metaphysical_saved_rr0);
1411         SAVE_REGS(metaphysical_saved_rr4);
1412         SAVE_REGS(fp_psr);
1413         SAVE_REGS(saved_gp);
1414         vcpu_put(vcpu);
1415         r = 0;
1416 out:
1417         return r;
1418 }
1419
1420 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1421 {
1422
1423         hrtimer_cancel(&vcpu->arch.hlt_timer);
1424         kfree(vcpu->arch.apic);
1425 }
1426
1427
1428 long kvm_arch_vcpu_ioctl(struct file *filp,
1429                 unsigned int ioctl, unsigned long arg)
1430 {
1431         return -EINVAL;
1432 }
1433
1434 int kvm_arch_set_memory_region(struct kvm *kvm,
1435                 struct kvm_userspace_memory_region *mem,
1436                 struct kvm_memory_slot old,
1437                 int user_alloc)
1438 {
1439         unsigned long i;
1440         unsigned long pfn;
1441         int npages = mem->memory_size >> PAGE_SHIFT;
1442         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
1443         unsigned long base_gfn = memslot->base_gfn;
1444
1445         for (i = 0; i < npages; i++) {
1446                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1447                 if (!kvm_is_mmio_pfn(pfn)) {
1448                         kvm_set_pmt_entry(kvm, base_gfn + i,
1449                                         pfn << PAGE_SHIFT,
1450                                         _PAGE_MA_WB);
1451                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1452                 } else {
1453                         kvm_set_pmt_entry(kvm, base_gfn + i,
1454                                         GPFN_LOW_MMIO | (pfn << PAGE_SHIFT),
1455                                         _PAGE_MA_UC);
1456                         memslot->rmap[i] = 0;
1457                         }
1458         }
1459
1460         return 0;
1461 }
1462
1463 void kvm_arch_flush_shadow(struct kvm *kvm)
1464 {
1465 }
1466
1467 long kvm_arch_dev_ioctl(struct file *filp,
1468                 unsigned int ioctl, unsigned long arg)
1469 {
1470         return -EINVAL;
1471 }
1472
1473 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1474 {
1475         kvm_vcpu_uninit(vcpu);
1476 }
1477
1478 static int vti_cpu_has_kvm_support(void)
1479 {
1480         long  avail = 1, status = 1, control = 1;
1481         long ret;
1482
1483         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1484         if (ret)
1485                 goto out;
1486
1487         if (!(avail & PAL_PROC_VM_BIT))
1488                 goto out;
1489
1490         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1491
1492         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1493         if (ret)
1494                 goto out;
1495         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1496
1497         if (!(vp_env_info & VP_OPCODE)) {
1498                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1499                                 "vm_env_info:0x%lx\n", vp_env_info);
1500         }
1501
1502         return 1;
1503 out:
1504         return 0;
1505 }
1506
1507 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1508                                                 struct module *module)
1509 {
1510         unsigned long module_base;
1511         unsigned long vmm_size;
1512
1513         unsigned long vmm_offset, func_offset, fdesc_offset;
1514         struct fdesc *p_fdesc;
1515
1516         BUG_ON(!module);
1517
1518         if (!kvm_vmm_base) {
1519                 printk("kvm: kvm area hasn't been initilized yet!!\n");
1520                 return -EFAULT;
1521         }
1522
1523         /*Calculate new position of relocated vmm module.*/
1524         module_base = (unsigned long)module->module_core;
1525         vmm_size = module->core_size;
1526         if (unlikely(vmm_size > KVM_VMM_SIZE))
1527                 return -EFAULT;
1528
1529         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1530         kvm_flush_icache(kvm_vmm_base, vmm_size);
1531
1532         /*Recalculate kvm_vmm_info based on new VMM*/
1533         vmm_offset = vmm_info->vmm_ivt - module_base;
1534         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1535         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1536                         kvm_vmm_info->vmm_ivt);
1537
1538         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1539         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1540                                                         fdesc_offset);
1541         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1542         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1543         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1544         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1545
1546         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1547                         KVM_VMM_BASE+func_offset);
1548
1549         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1550         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1551                         fdesc_offset);
1552         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1553         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1554         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1555         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1556
1557         kvm_vmm_gp = p_fdesc->gp;
1558
1559         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1560                                                 kvm_vmm_info->vmm_entry);
1561         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1562                                                 KVM_VMM_BASE + func_offset);
1563
1564         return 0;
1565 }
1566
1567 int kvm_arch_init(void *opaque)
1568 {
1569         int r;
1570         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1571
1572         if (!vti_cpu_has_kvm_support()) {
1573                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1574                 r = -EOPNOTSUPP;
1575                 goto out;
1576         }
1577
1578         if (kvm_vmm_info) {
1579                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1580                 r = -EEXIST;
1581                 goto out;
1582         }
1583
1584         r = -ENOMEM;
1585         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1586         if (!kvm_vmm_info)
1587                 goto out;
1588
1589         if (kvm_alloc_vmm_area())
1590                 goto out_free0;
1591
1592         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1593         if (r)
1594                 goto out_free1;
1595
1596         return 0;
1597
1598 out_free1:
1599         kvm_free_vmm_area();
1600 out_free0:
1601         kfree(kvm_vmm_info);
1602 out:
1603         return r;
1604 }
1605
1606 void kvm_arch_exit(void)
1607 {
1608         kvm_free_vmm_area();
1609         kfree(kvm_vmm_info);
1610         kvm_vmm_info = NULL;
1611 }
1612
1613 static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
1614                 struct kvm_dirty_log *log)
1615 {
1616         struct kvm_memory_slot *memslot;
1617         int r, i;
1618         long n, base;
1619         unsigned long *dirty_bitmap = (unsigned long *)((void *)kvm - KVM_VM_OFS
1620                                         + KVM_MEM_DIRTY_LOG_OFS);
1621
1622         r = -EINVAL;
1623         if (log->slot >= KVM_MEMORY_SLOTS)
1624                 goto out;
1625
1626         memslot = &kvm->memslots[log->slot];
1627         r = -ENOENT;
1628         if (!memslot->dirty_bitmap)
1629                 goto out;
1630
1631         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1632         base = memslot->base_gfn / BITS_PER_LONG;
1633
1634         for (i = 0; i < n/sizeof(long); ++i) {
1635                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1636                 dirty_bitmap[base + i] = 0;
1637         }
1638         r = 0;
1639 out:
1640         return r;
1641 }
1642
1643 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1644                 struct kvm_dirty_log *log)
1645 {
1646         int r;
1647         int n;
1648         struct kvm_memory_slot *memslot;
1649         int is_dirty = 0;
1650
1651         spin_lock(&kvm->arch.dirty_log_lock);
1652
1653         r = kvm_ia64_sync_dirty_log(kvm, log);
1654         if (r)
1655                 goto out;
1656
1657         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1658         if (r)
1659                 goto out;
1660
1661         /* If nothing is dirty, don't bother messing with page tables. */
1662         if (is_dirty) {
1663                 kvm_flush_remote_tlbs(kvm);
1664                 memslot = &kvm->memslots[log->slot];
1665                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1666                 memset(memslot->dirty_bitmap, 0, n);
1667         }
1668         r = 0;
1669 out:
1670         spin_unlock(&kvm->arch.dirty_log_lock);
1671         return r;
1672 }
1673
1674 int kvm_arch_hardware_setup(void)
1675 {
1676         return 0;
1677 }
1678
1679 void kvm_arch_hardware_unsetup(void)
1680 {
1681 }
1682
1683 static void vcpu_kick_intr(void *info)
1684 {
1685 #ifdef DEBUG
1686         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
1687         printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
1688 #endif
1689 }
1690
1691 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1692 {
1693         int ipi_pcpu = vcpu->cpu;
1694
1695         if (waitqueue_active(&vcpu->wq))
1696                 wake_up_interruptible(&vcpu->wq);
1697
1698         if (vcpu->guest_mode)
1699                 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
1700 }
1701
1702 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
1703 {
1704
1705         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1706
1707         if (!test_and_set_bit(vec, &vpd->irr[0])) {
1708                 vcpu->arch.irq_new_pending = 1;
1709                  if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
1710                         kvm_vcpu_kick(vcpu);
1711                 else if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) {
1712                         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1713                         if (waitqueue_active(&vcpu->wq))
1714                                 wake_up_interruptible(&vcpu->wq);
1715                 }
1716                 return 1;
1717         }
1718         return 0;
1719 }
1720
1721 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1722 {
1723         return apic->vcpu->vcpu_id == dest;
1724 }
1725
1726 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1727 {
1728         return 0;
1729 }
1730
1731 struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
1732                                        unsigned long bitmap)
1733 {
1734         struct kvm_vcpu *lvcpu = kvm->vcpus[0];
1735         int i;
1736
1737         for (i = 1; i < KVM_MAX_VCPUS; i++) {
1738                 if (!kvm->vcpus[i])
1739                         continue;
1740                 if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
1741                         lvcpu = kvm->vcpus[i];
1742         }
1743
1744         return lvcpu;
1745 }
1746
1747 static int find_highest_bits(int *dat)
1748 {
1749         u32  bits, bitnum;
1750         int i;
1751
1752         /* loop for all 256 bits */
1753         for (i = 7; i >= 0 ; i--) {
1754                 bits = dat[i];
1755                 if (bits) {
1756                         bitnum = fls(bits);
1757                         return i * 32 + bitnum - 1;
1758                 }
1759         }
1760
1761         return -1;
1762 }
1763
1764 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1765 {
1766     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1767
1768     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1769                 return NMI_VECTOR;
1770     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1771                 return ExtINT_VECTOR;
1772
1773     return find_highest_bits((int *)&vpd->irr[0]);
1774 }
1775
1776 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
1777 {
1778         if (kvm_highest_pending_irq(vcpu) != -1)
1779                 return 1;
1780         return 0;
1781 }
1782
1783 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1784 {
1785         return 0;
1786 }
1787
1788 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1789 {
1790         return gfn;
1791 }
1792
1793 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1794 {
1795         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
1796 }
1797
1798 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1799                                     struct kvm_mp_state *mp_state)
1800 {
1801         vcpu_load(vcpu);
1802         mp_state->mp_state = vcpu->arch.mp_state;
1803         vcpu_put(vcpu);
1804         return 0;
1805 }
1806
1807 static int vcpu_reset(struct kvm_vcpu *vcpu)
1808 {
1809         int r;
1810         long psr;
1811         local_irq_save(psr);
1812         r = kvm_insert_vmm_mapping(vcpu);
1813         if (r)
1814                 goto fail;
1815
1816         vcpu->arch.launched = 0;
1817         kvm_arch_vcpu_uninit(vcpu);
1818         r = kvm_arch_vcpu_init(vcpu);
1819         if (r)
1820                 goto fail;
1821
1822         kvm_purge_vmm_mapping(vcpu);
1823         r = 0;
1824 fail:
1825         local_irq_restore(psr);
1826         return r;
1827 }
1828
1829 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1830                                     struct kvm_mp_state *mp_state)
1831 {
1832         int r = 0;
1833
1834         vcpu_load(vcpu);
1835         vcpu->arch.mp_state = mp_state->mp_state;
1836         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1837                 r = vcpu_reset(vcpu);
1838         vcpu_put(vcpu);
1839         return r;
1840 }