KVM: x86 emulator: add and use new callbacks set_idt(), set_gdt()
[linux-flexiantxendom0.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61
62 #define MAX_IO_MSRS 256
63 #define KVM_MAX_MCE_BANKS 32
64 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
65
66 #define emul_to_vcpu(ctxt) \
67         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
68
69 /* EFER defaults:
70  * - enable syscall per default because its emulated by KVM
71  * - enable LME and LMA per default on 64 bit KVM
72  */
73 #ifdef CONFIG_X86_64
74 static
75 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
76 #else
77 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
78 #endif
79
80 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
81 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
82
83 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
84 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
85                                     struct kvm_cpuid_entry2 __user *entries);
86
87 struct kvm_x86_ops *kvm_x86_ops;
88 EXPORT_SYMBOL_GPL(kvm_x86_ops);
89
90 int ignore_msrs = 0;
91 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
92
93 bool kvm_has_tsc_control;
94 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
95 u32  kvm_max_guest_tsc_khz;
96 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
97
98 #define KVM_NR_SHARED_MSRS 16
99
100 struct kvm_shared_msrs_global {
101         int nr;
102         u32 msrs[KVM_NR_SHARED_MSRS];
103 };
104
105 struct kvm_shared_msrs {
106         struct user_return_notifier urn;
107         bool registered;
108         struct kvm_shared_msr_values {
109                 u64 host;
110                 u64 curr;
111         } values[KVM_NR_SHARED_MSRS];
112 };
113
114 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
115 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
116
117 struct kvm_stats_debugfs_item debugfs_entries[] = {
118         { "pf_fixed", VCPU_STAT(pf_fixed) },
119         { "pf_guest", VCPU_STAT(pf_guest) },
120         { "tlb_flush", VCPU_STAT(tlb_flush) },
121         { "invlpg", VCPU_STAT(invlpg) },
122         { "exits", VCPU_STAT(exits) },
123         { "io_exits", VCPU_STAT(io_exits) },
124         { "mmio_exits", VCPU_STAT(mmio_exits) },
125         { "signal_exits", VCPU_STAT(signal_exits) },
126         { "irq_window", VCPU_STAT(irq_window_exits) },
127         { "nmi_window", VCPU_STAT(nmi_window_exits) },
128         { "halt_exits", VCPU_STAT(halt_exits) },
129         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
130         { "hypercalls", VCPU_STAT(hypercalls) },
131         { "request_irq", VCPU_STAT(request_irq_exits) },
132         { "irq_exits", VCPU_STAT(irq_exits) },
133         { "host_state_reload", VCPU_STAT(host_state_reload) },
134         { "efer_reload", VCPU_STAT(efer_reload) },
135         { "fpu_reload", VCPU_STAT(fpu_reload) },
136         { "insn_emulation", VCPU_STAT(insn_emulation) },
137         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
138         { "irq_injections", VCPU_STAT(irq_injections) },
139         { "nmi_injections", VCPU_STAT(nmi_injections) },
140         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
141         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
142         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
143         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
144         { "mmu_flooded", VM_STAT(mmu_flooded) },
145         { "mmu_recycled", VM_STAT(mmu_recycled) },
146         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
147         { "mmu_unsync", VM_STAT(mmu_unsync) },
148         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
149         { "largepages", VM_STAT(lpages) },
150         { NULL }
151 };
152
153 u64 __read_mostly host_xcr0;
154
155 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
156 {
157         int i;
158         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
159                 vcpu->arch.apf.gfns[i] = ~0;
160 }
161
162 static void kvm_on_user_return(struct user_return_notifier *urn)
163 {
164         unsigned slot;
165         struct kvm_shared_msrs *locals
166                 = container_of(urn, struct kvm_shared_msrs, urn);
167         struct kvm_shared_msr_values *values;
168
169         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
170                 values = &locals->values[slot];
171                 if (values->host != values->curr) {
172                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
173                         values->curr = values->host;
174                 }
175         }
176         locals->registered = false;
177         user_return_notifier_unregister(urn);
178 }
179
180 static void shared_msr_update(unsigned slot, u32 msr)
181 {
182         struct kvm_shared_msrs *smsr;
183         u64 value;
184
185         smsr = &__get_cpu_var(shared_msrs);
186         /* only read, and nobody should modify it at this time,
187          * so don't need lock */
188         if (slot >= shared_msrs_global.nr) {
189                 printk(KERN_ERR "kvm: invalid MSR slot!");
190                 return;
191         }
192         rdmsrl_safe(msr, &value);
193         smsr->values[slot].host = value;
194         smsr->values[slot].curr = value;
195 }
196
197 void kvm_define_shared_msr(unsigned slot, u32 msr)
198 {
199         if (slot >= shared_msrs_global.nr)
200                 shared_msrs_global.nr = slot + 1;
201         shared_msrs_global.msrs[slot] = msr;
202         /* we need ensured the shared_msr_global have been updated */
203         smp_wmb();
204 }
205 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
206
207 static void kvm_shared_msr_cpu_online(void)
208 {
209         unsigned i;
210
211         for (i = 0; i < shared_msrs_global.nr; ++i)
212                 shared_msr_update(i, shared_msrs_global.msrs[i]);
213 }
214
215 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
216 {
217         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
218
219         if (((value ^ smsr->values[slot].curr) & mask) == 0)
220                 return;
221         smsr->values[slot].curr = value;
222         wrmsrl(shared_msrs_global.msrs[slot], value);
223         if (!smsr->registered) {
224                 smsr->urn.on_user_return = kvm_on_user_return;
225                 user_return_notifier_register(&smsr->urn);
226                 smsr->registered = true;
227         }
228 }
229 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
230
231 static void drop_user_return_notifiers(void *ignore)
232 {
233         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
234
235         if (smsr->registered)
236                 kvm_on_user_return(&smsr->urn);
237 }
238
239 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
240 {
241         if (irqchip_in_kernel(vcpu->kvm))
242                 return vcpu->arch.apic_base;
243         else
244                 return vcpu->arch.apic_base;
245 }
246 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
247
248 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
249 {
250         /* TODO: reserve bits check */
251         if (irqchip_in_kernel(vcpu->kvm))
252                 kvm_lapic_set_base(vcpu, data);
253         else
254                 vcpu->arch.apic_base = data;
255 }
256 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
257
258 #define EXCPT_BENIGN            0
259 #define EXCPT_CONTRIBUTORY      1
260 #define EXCPT_PF                2
261
262 static int exception_class(int vector)
263 {
264         switch (vector) {
265         case PF_VECTOR:
266                 return EXCPT_PF;
267         case DE_VECTOR:
268         case TS_VECTOR:
269         case NP_VECTOR:
270         case SS_VECTOR:
271         case GP_VECTOR:
272                 return EXCPT_CONTRIBUTORY;
273         default:
274                 break;
275         }
276         return EXCPT_BENIGN;
277 }
278
279 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
280                 unsigned nr, bool has_error, u32 error_code,
281                 bool reinject)
282 {
283         u32 prev_nr;
284         int class1, class2;
285
286         kvm_make_request(KVM_REQ_EVENT, vcpu);
287
288         if (!vcpu->arch.exception.pending) {
289         queue:
290                 vcpu->arch.exception.pending = true;
291                 vcpu->arch.exception.has_error_code = has_error;
292                 vcpu->arch.exception.nr = nr;
293                 vcpu->arch.exception.error_code = error_code;
294                 vcpu->arch.exception.reinject = reinject;
295                 return;
296         }
297
298         /* to check exception */
299         prev_nr = vcpu->arch.exception.nr;
300         if (prev_nr == DF_VECTOR) {
301                 /* triple fault -> shutdown */
302                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
303                 return;
304         }
305         class1 = exception_class(prev_nr);
306         class2 = exception_class(nr);
307         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
308                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
309                 /* generate double fault per SDM Table 5-5 */
310                 vcpu->arch.exception.pending = true;
311                 vcpu->arch.exception.has_error_code = true;
312                 vcpu->arch.exception.nr = DF_VECTOR;
313                 vcpu->arch.exception.error_code = 0;
314         } else
315                 /* replace previous exception with a new one in a hope
316                    that instruction re-execution will regenerate lost
317                    exception */
318                 goto queue;
319 }
320
321 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
322 {
323         kvm_multiple_exception(vcpu, nr, false, 0, false);
324 }
325 EXPORT_SYMBOL_GPL(kvm_queue_exception);
326
327 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
328 {
329         kvm_multiple_exception(vcpu, nr, false, 0, true);
330 }
331 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
332
333 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
334 {
335         if (err)
336                 kvm_inject_gp(vcpu, 0);
337         else
338                 kvm_x86_ops->skip_emulated_instruction(vcpu);
339 }
340 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
341
342 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
343 {
344         ++vcpu->stat.pf_guest;
345         vcpu->arch.cr2 = fault->address;
346         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
347 }
348
349 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
350 {
351         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
352                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
353         else
354                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
355 }
356
357 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
358 {
359         kvm_make_request(KVM_REQ_EVENT, vcpu);
360         vcpu->arch.nmi_pending = 1;
361 }
362 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
363
364 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
365 {
366         kvm_multiple_exception(vcpu, nr, true, error_code, false);
367 }
368 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
369
370 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
371 {
372         kvm_multiple_exception(vcpu, nr, true, error_code, true);
373 }
374 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
375
376 /*
377  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
378  * a #GP and return false.
379  */
380 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
381 {
382         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
383                 return true;
384         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
385         return false;
386 }
387 EXPORT_SYMBOL_GPL(kvm_require_cpl);
388
389 /*
390  * This function will be used to read from the physical memory of the currently
391  * running guest. The difference to kvm_read_guest_page is that this function
392  * can read from guest physical or from the guest's guest physical memory.
393  */
394 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
395                             gfn_t ngfn, void *data, int offset, int len,
396                             u32 access)
397 {
398         gfn_t real_gfn;
399         gpa_t ngpa;
400
401         ngpa     = gfn_to_gpa(ngfn);
402         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
403         if (real_gfn == UNMAPPED_GVA)
404                 return -EFAULT;
405
406         real_gfn = gpa_to_gfn(real_gfn);
407
408         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
409 }
410 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
411
412 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
413                                void *data, int offset, int len, u32 access)
414 {
415         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
416                                        data, offset, len, access);
417 }
418
419 /*
420  * Load the pae pdptrs.  Return true is they are all valid.
421  */
422 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
423 {
424         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
425         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
426         int i;
427         int ret;
428         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
429
430         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
431                                       offset * sizeof(u64), sizeof(pdpte),
432                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
433         if (ret < 0) {
434                 ret = 0;
435                 goto out;
436         }
437         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
438                 if (is_present_gpte(pdpte[i]) &&
439                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
440                         ret = 0;
441                         goto out;
442                 }
443         }
444         ret = 1;
445
446         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
447         __set_bit(VCPU_EXREG_PDPTR,
448                   (unsigned long *)&vcpu->arch.regs_avail);
449         __set_bit(VCPU_EXREG_PDPTR,
450                   (unsigned long *)&vcpu->arch.regs_dirty);
451 out:
452
453         return ret;
454 }
455 EXPORT_SYMBOL_GPL(load_pdptrs);
456
457 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
458 {
459         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
460         bool changed = true;
461         int offset;
462         gfn_t gfn;
463         int r;
464
465         if (is_long_mode(vcpu) || !is_pae(vcpu))
466                 return false;
467
468         if (!test_bit(VCPU_EXREG_PDPTR,
469                       (unsigned long *)&vcpu->arch.regs_avail))
470                 return true;
471
472         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
473         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
474         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
475                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
476         if (r < 0)
477                 goto out;
478         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
479 out:
480
481         return changed;
482 }
483
484 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
485 {
486         unsigned long old_cr0 = kvm_read_cr0(vcpu);
487         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
488                                     X86_CR0_CD | X86_CR0_NW;
489
490         cr0 |= X86_CR0_ET;
491
492 #ifdef CONFIG_X86_64
493         if (cr0 & 0xffffffff00000000UL)
494                 return 1;
495 #endif
496
497         cr0 &= ~CR0_RESERVED_BITS;
498
499         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
500                 return 1;
501
502         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
503                 return 1;
504
505         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
506 #ifdef CONFIG_X86_64
507                 if ((vcpu->arch.efer & EFER_LME)) {
508                         int cs_db, cs_l;
509
510                         if (!is_pae(vcpu))
511                                 return 1;
512                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
513                         if (cs_l)
514                                 return 1;
515                 } else
516 #endif
517                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
518                                                  kvm_read_cr3(vcpu)))
519                         return 1;
520         }
521
522         kvm_x86_ops->set_cr0(vcpu, cr0);
523
524         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
525                 kvm_clear_async_pf_completion_queue(vcpu);
526                 kvm_async_pf_hash_reset(vcpu);
527         }
528
529         if ((cr0 ^ old_cr0) & update_bits)
530                 kvm_mmu_reset_context(vcpu);
531         return 0;
532 }
533 EXPORT_SYMBOL_GPL(kvm_set_cr0);
534
535 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
536 {
537         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
538 }
539 EXPORT_SYMBOL_GPL(kvm_lmsw);
540
541 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
542 {
543         u64 xcr0;
544
545         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
546         if (index != XCR_XFEATURE_ENABLED_MASK)
547                 return 1;
548         xcr0 = xcr;
549         if (kvm_x86_ops->get_cpl(vcpu) != 0)
550                 return 1;
551         if (!(xcr0 & XSTATE_FP))
552                 return 1;
553         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
554                 return 1;
555         if (xcr0 & ~host_xcr0)
556                 return 1;
557         vcpu->arch.xcr0 = xcr0;
558         vcpu->guest_xcr0_loaded = 0;
559         return 0;
560 }
561
562 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
563 {
564         if (__kvm_set_xcr(vcpu, index, xcr)) {
565                 kvm_inject_gp(vcpu, 0);
566                 return 1;
567         }
568         return 0;
569 }
570 EXPORT_SYMBOL_GPL(kvm_set_xcr);
571
572 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
573 {
574         struct kvm_cpuid_entry2 *best;
575
576         best = kvm_find_cpuid_entry(vcpu, 1, 0);
577         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
578 }
579
580 static void update_cpuid(struct kvm_vcpu *vcpu)
581 {
582         struct kvm_cpuid_entry2 *best;
583
584         best = kvm_find_cpuid_entry(vcpu, 1, 0);
585         if (!best)
586                 return;
587
588         /* Update OSXSAVE bit */
589         if (cpu_has_xsave && best->function == 0x1) {
590                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
591                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
592                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
593         }
594 }
595
596 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
597 {
598         unsigned long old_cr4 = kvm_read_cr4(vcpu);
599         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
600
601         if (cr4 & CR4_RESERVED_BITS)
602                 return 1;
603
604         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
605                 return 1;
606
607         if (is_long_mode(vcpu)) {
608                 if (!(cr4 & X86_CR4_PAE))
609                         return 1;
610         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
611                    && ((cr4 ^ old_cr4) & pdptr_bits)
612                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
613                                    kvm_read_cr3(vcpu)))
614                 return 1;
615
616         if (cr4 & X86_CR4_VMXE)
617                 return 1;
618
619         kvm_x86_ops->set_cr4(vcpu, cr4);
620
621         if ((cr4 ^ old_cr4) & pdptr_bits)
622                 kvm_mmu_reset_context(vcpu);
623
624         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
625                 update_cpuid(vcpu);
626
627         return 0;
628 }
629 EXPORT_SYMBOL_GPL(kvm_set_cr4);
630
631 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
632 {
633         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
634                 kvm_mmu_sync_roots(vcpu);
635                 kvm_mmu_flush_tlb(vcpu);
636                 return 0;
637         }
638
639         if (is_long_mode(vcpu)) {
640                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
641                         return 1;
642         } else {
643                 if (is_pae(vcpu)) {
644                         if (cr3 & CR3_PAE_RESERVED_BITS)
645                                 return 1;
646                         if (is_paging(vcpu) &&
647                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
648                                 return 1;
649                 }
650                 /*
651                  * We don't check reserved bits in nonpae mode, because
652                  * this isn't enforced, and VMware depends on this.
653                  */
654         }
655
656         /*
657          * Does the new cr3 value map to physical memory? (Note, we
658          * catch an invalid cr3 even in real-mode, because it would
659          * cause trouble later on when we turn on paging anyway.)
660          *
661          * A real CPU would silently accept an invalid cr3 and would
662          * attempt to use it - with largely undefined (and often hard
663          * to debug) behavior on the guest side.
664          */
665         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
666                 return 1;
667         vcpu->arch.cr3 = cr3;
668         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
669         vcpu->arch.mmu.new_cr3(vcpu);
670         return 0;
671 }
672 EXPORT_SYMBOL_GPL(kvm_set_cr3);
673
674 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
675 {
676         if (cr8 & CR8_RESERVED_BITS)
677                 return 1;
678         if (irqchip_in_kernel(vcpu->kvm))
679                 kvm_lapic_set_tpr(vcpu, cr8);
680         else
681                 vcpu->arch.cr8 = cr8;
682         return 0;
683 }
684 EXPORT_SYMBOL_GPL(kvm_set_cr8);
685
686 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
687 {
688         if (irqchip_in_kernel(vcpu->kvm))
689                 return kvm_lapic_get_cr8(vcpu);
690         else
691                 return vcpu->arch.cr8;
692 }
693 EXPORT_SYMBOL_GPL(kvm_get_cr8);
694
695 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
696 {
697         switch (dr) {
698         case 0 ... 3:
699                 vcpu->arch.db[dr] = val;
700                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
701                         vcpu->arch.eff_db[dr] = val;
702                 break;
703         case 4:
704                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
705                         return 1; /* #UD */
706                 /* fall through */
707         case 6:
708                 if (val & 0xffffffff00000000ULL)
709                         return -1; /* #GP */
710                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
711                 break;
712         case 5:
713                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
714                         return 1; /* #UD */
715                 /* fall through */
716         default: /* 7 */
717                 if (val & 0xffffffff00000000ULL)
718                         return -1; /* #GP */
719                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
720                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
721                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
722                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
723                 }
724                 break;
725         }
726
727         return 0;
728 }
729
730 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
731 {
732         int res;
733
734         res = __kvm_set_dr(vcpu, dr, val);
735         if (res > 0)
736                 kvm_queue_exception(vcpu, UD_VECTOR);
737         else if (res < 0)
738                 kvm_inject_gp(vcpu, 0);
739
740         return res;
741 }
742 EXPORT_SYMBOL_GPL(kvm_set_dr);
743
744 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
745 {
746         switch (dr) {
747         case 0 ... 3:
748                 *val = vcpu->arch.db[dr];
749                 break;
750         case 4:
751                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
752                         return 1;
753                 /* fall through */
754         case 6:
755                 *val = vcpu->arch.dr6;
756                 break;
757         case 5:
758                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
759                         return 1;
760                 /* fall through */
761         default: /* 7 */
762                 *val = vcpu->arch.dr7;
763                 break;
764         }
765
766         return 0;
767 }
768
769 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
770 {
771         if (_kvm_get_dr(vcpu, dr, val)) {
772                 kvm_queue_exception(vcpu, UD_VECTOR);
773                 return 1;
774         }
775         return 0;
776 }
777 EXPORT_SYMBOL_GPL(kvm_get_dr);
778
779 /*
780  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
781  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
782  *
783  * This list is modified at module load time to reflect the
784  * capabilities of the host cpu. This capabilities test skips MSRs that are
785  * kvm-specific. Those are put in the beginning of the list.
786  */
787
788 #define KVM_SAVE_MSRS_BEGIN     8
789 static u32 msrs_to_save[] = {
790         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
791         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
792         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
793         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
794         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
795         MSR_STAR,
796 #ifdef CONFIG_X86_64
797         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
798 #endif
799         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
800 };
801
802 static unsigned num_msrs_to_save;
803
804 static u32 emulated_msrs[] = {
805         MSR_IA32_MISC_ENABLE,
806         MSR_IA32_MCG_STATUS,
807         MSR_IA32_MCG_CTL,
808 };
809
810 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
811 {
812         u64 old_efer = vcpu->arch.efer;
813
814         if (efer & efer_reserved_bits)
815                 return 1;
816
817         if (is_paging(vcpu)
818             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
819                 return 1;
820
821         if (efer & EFER_FFXSR) {
822                 struct kvm_cpuid_entry2 *feat;
823
824                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
825                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
826                         return 1;
827         }
828
829         if (efer & EFER_SVME) {
830                 struct kvm_cpuid_entry2 *feat;
831
832                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
833                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
834                         return 1;
835         }
836
837         efer &= ~EFER_LMA;
838         efer |= vcpu->arch.efer & EFER_LMA;
839
840         kvm_x86_ops->set_efer(vcpu, efer);
841
842         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
843
844         /* Update reserved bits */
845         if ((efer ^ old_efer) & EFER_NX)
846                 kvm_mmu_reset_context(vcpu);
847
848         return 0;
849 }
850
851 void kvm_enable_efer_bits(u64 mask)
852 {
853        efer_reserved_bits &= ~mask;
854 }
855 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
856
857
858 /*
859  * Writes msr value into into the appropriate "register".
860  * Returns 0 on success, non-0 otherwise.
861  * Assumes vcpu_load() was already called.
862  */
863 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
864 {
865         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
866 }
867
868 /*
869  * Adapt set_msr() to msr_io()'s calling convention
870  */
871 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
872 {
873         return kvm_set_msr(vcpu, index, *data);
874 }
875
876 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
877 {
878         int version;
879         int r;
880         struct pvclock_wall_clock wc;
881         struct timespec boot;
882
883         if (!wall_clock)
884                 return;
885
886         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
887         if (r)
888                 return;
889
890         if (version & 1)
891                 ++version;  /* first time write, random junk */
892
893         ++version;
894
895         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
896
897         /*
898          * The guest calculates current wall clock time by adding
899          * system time (updated by kvm_guest_time_update below) to the
900          * wall clock specified here.  guest system time equals host
901          * system time for us, thus we must fill in host boot time here.
902          */
903         getboottime(&boot);
904
905         wc.sec = boot.tv_sec;
906         wc.nsec = boot.tv_nsec;
907         wc.version = version;
908
909         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
910
911         version++;
912         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
913 }
914
915 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
916 {
917         uint32_t quotient, remainder;
918
919         /* Don't try to replace with do_div(), this one calculates
920          * "(dividend << 32) / divisor" */
921         __asm__ ( "divl %4"
922                   : "=a" (quotient), "=d" (remainder)
923                   : "0" (0), "1" (dividend), "r" (divisor) );
924         return quotient;
925 }
926
927 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
928                                s8 *pshift, u32 *pmultiplier)
929 {
930         uint64_t scaled64;
931         int32_t  shift = 0;
932         uint64_t tps64;
933         uint32_t tps32;
934
935         tps64 = base_khz * 1000LL;
936         scaled64 = scaled_khz * 1000LL;
937         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
938                 tps64 >>= 1;
939                 shift--;
940         }
941
942         tps32 = (uint32_t)tps64;
943         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
944                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
945                         scaled64 >>= 1;
946                 else
947                         tps32 <<= 1;
948                 shift++;
949         }
950
951         *pshift = shift;
952         *pmultiplier = div_frac(scaled64, tps32);
953
954         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
955                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
956 }
957
958 static inline u64 get_kernel_ns(void)
959 {
960         struct timespec ts;
961
962         WARN_ON(preemptible());
963         ktime_get_ts(&ts);
964         monotonic_to_bootbased(&ts);
965         return timespec_to_ns(&ts);
966 }
967
968 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
969 unsigned long max_tsc_khz;
970
971 static inline int kvm_tsc_changes_freq(void)
972 {
973         int cpu = get_cpu();
974         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
975                   cpufreq_quick_get(cpu) != 0;
976         put_cpu();
977         return ret;
978 }
979
980 static u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
981 {
982         if (vcpu->arch.virtual_tsc_khz)
983                 return vcpu->arch.virtual_tsc_khz;
984         else
985                 return __this_cpu_read(cpu_tsc_khz);
986 }
987
988 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
989 {
990         u64 ret;
991
992         WARN_ON(preemptible());
993         if (kvm_tsc_changes_freq())
994                 printk_once(KERN_WARNING
995                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
996         ret = nsec * vcpu_tsc_khz(vcpu);
997         do_div(ret, USEC_PER_SEC);
998         return ret;
999 }
1000
1001 static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1002 {
1003         /* Compute a scale to convert nanoseconds in TSC cycles */
1004         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1005                            &vcpu->arch.tsc_catchup_shift,
1006                            &vcpu->arch.tsc_catchup_mult);
1007 }
1008
1009 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1010 {
1011         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1012                                       vcpu->arch.tsc_catchup_mult,
1013                                       vcpu->arch.tsc_catchup_shift);
1014         tsc += vcpu->arch.last_tsc_write;
1015         return tsc;
1016 }
1017
1018 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1019 {
1020         struct kvm *kvm = vcpu->kvm;
1021         u64 offset, ns, elapsed;
1022         unsigned long flags;
1023         s64 sdiff;
1024
1025         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1026         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1027         ns = get_kernel_ns();
1028         elapsed = ns - kvm->arch.last_tsc_nsec;
1029         sdiff = data - kvm->arch.last_tsc_write;
1030         if (sdiff < 0)
1031                 sdiff = -sdiff;
1032
1033         /*
1034          * Special case: close write to TSC within 5 seconds of
1035          * another CPU is interpreted as an attempt to synchronize
1036          * The 5 seconds is to accommodate host load / swapping as
1037          * well as any reset of TSC during the boot process.
1038          *
1039          * In that case, for a reliable TSC, we can match TSC offsets,
1040          * or make a best guest using elapsed value.
1041          */
1042         if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1043             elapsed < 5ULL * NSEC_PER_SEC) {
1044                 if (!check_tsc_unstable()) {
1045                         offset = kvm->arch.last_tsc_offset;
1046                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1047                 } else {
1048                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1049                         offset += delta;
1050                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1051                 }
1052                 ns = kvm->arch.last_tsc_nsec;
1053         }
1054         kvm->arch.last_tsc_nsec = ns;
1055         kvm->arch.last_tsc_write = data;
1056         kvm->arch.last_tsc_offset = offset;
1057         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1058         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1059
1060         /* Reset of TSC must disable overshoot protection below */
1061         vcpu->arch.hv_clock.tsc_timestamp = 0;
1062         vcpu->arch.last_tsc_write = data;
1063         vcpu->arch.last_tsc_nsec = ns;
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1066
1067 static int kvm_guest_time_update(struct kvm_vcpu *v)
1068 {
1069         unsigned long flags;
1070         struct kvm_vcpu_arch *vcpu = &v->arch;
1071         void *shared_kaddr;
1072         unsigned long this_tsc_khz;
1073         s64 kernel_ns, max_kernel_ns;
1074         u64 tsc_timestamp;
1075
1076         /* Keep irq disabled to prevent changes to the clock */
1077         local_irq_save(flags);
1078         kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1079         kernel_ns = get_kernel_ns();
1080         this_tsc_khz = vcpu_tsc_khz(v);
1081         if (unlikely(this_tsc_khz == 0)) {
1082                 local_irq_restore(flags);
1083                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1084                 return 1;
1085         }
1086
1087         /*
1088          * We may have to catch up the TSC to match elapsed wall clock
1089          * time for two reasons, even if kvmclock is used.
1090          *   1) CPU could have been running below the maximum TSC rate
1091          *   2) Broken TSC compensation resets the base at each VCPU
1092          *      entry to avoid unknown leaps of TSC even when running
1093          *      again on the same CPU.  This may cause apparent elapsed
1094          *      time to disappear, and the guest to stand still or run
1095          *      very slowly.
1096          */
1097         if (vcpu->tsc_catchup) {
1098                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1099                 if (tsc > tsc_timestamp) {
1100                         kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1101                         tsc_timestamp = tsc;
1102                 }
1103         }
1104
1105         local_irq_restore(flags);
1106
1107         if (!vcpu->time_page)
1108                 return 0;
1109
1110         /*
1111          * Time as measured by the TSC may go backwards when resetting the base
1112          * tsc_timestamp.  The reason for this is that the TSC resolution is
1113          * higher than the resolution of the other clock scales.  Thus, many
1114          * possible measurments of the TSC correspond to one measurement of any
1115          * other clock, and so a spread of values is possible.  This is not a
1116          * problem for the computation of the nanosecond clock; with TSC rates
1117          * around 1GHZ, there can only be a few cycles which correspond to one
1118          * nanosecond value, and any path through this code will inevitably
1119          * take longer than that.  However, with the kernel_ns value itself,
1120          * the precision may be much lower, down to HZ granularity.  If the
1121          * first sampling of TSC against kernel_ns ends in the low part of the
1122          * range, and the second in the high end of the range, we can get:
1123          *
1124          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1125          *
1126          * As the sampling errors potentially range in the thousands of cycles,
1127          * it is possible such a time value has already been observed by the
1128          * guest.  To protect against this, we must compute the system time as
1129          * observed by the guest and ensure the new system time is greater.
1130          */
1131         max_kernel_ns = 0;
1132         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1133                 max_kernel_ns = vcpu->last_guest_tsc -
1134                                 vcpu->hv_clock.tsc_timestamp;
1135                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1136                                     vcpu->hv_clock.tsc_to_system_mul,
1137                                     vcpu->hv_clock.tsc_shift);
1138                 max_kernel_ns += vcpu->last_kernel_ns;
1139         }
1140
1141         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1142                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1143                                    &vcpu->hv_clock.tsc_shift,
1144                                    &vcpu->hv_clock.tsc_to_system_mul);
1145                 vcpu->hw_tsc_khz = this_tsc_khz;
1146         }
1147
1148         if (max_kernel_ns > kernel_ns)
1149                 kernel_ns = max_kernel_ns;
1150
1151         /* With all the info we got, fill in the values */
1152         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1153         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1154         vcpu->last_kernel_ns = kernel_ns;
1155         vcpu->last_guest_tsc = tsc_timestamp;
1156         vcpu->hv_clock.flags = 0;
1157
1158         /*
1159          * The interface expects us to write an even number signaling that the
1160          * update is finished. Since the guest won't see the intermediate
1161          * state, we just increase by 2 at the end.
1162          */
1163         vcpu->hv_clock.version += 2;
1164
1165         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1166
1167         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1168                sizeof(vcpu->hv_clock));
1169
1170         kunmap_atomic(shared_kaddr, KM_USER0);
1171
1172         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1173         return 0;
1174 }
1175
1176 static bool msr_mtrr_valid(unsigned msr)
1177 {
1178         switch (msr) {
1179         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1180         case MSR_MTRRfix64K_00000:
1181         case MSR_MTRRfix16K_80000:
1182         case MSR_MTRRfix16K_A0000:
1183         case MSR_MTRRfix4K_C0000:
1184         case MSR_MTRRfix4K_C8000:
1185         case MSR_MTRRfix4K_D0000:
1186         case MSR_MTRRfix4K_D8000:
1187         case MSR_MTRRfix4K_E0000:
1188         case MSR_MTRRfix4K_E8000:
1189         case MSR_MTRRfix4K_F0000:
1190         case MSR_MTRRfix4K_F8000:
1191         case MSR_MTRRdefType:
1192         case MSR_IA32_CR_PAT:
1193                 return true;
1194         case 0x2f8:
1195                 return true;
1196         }
1197         return false;
1198 }
1199
1200 static bool valid_pat_type(unsigned t)
1201 {
1202         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1203 }
1204
1205 static bool valid_mtrr_type(unsigned t)
1206 {
1207         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1208 }
1209
1210 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1211 {
1212         int i;
1213
1214         if (!msr_mtrr_valid(msr))
1215                 return false;
1216
1217         if (msr == MSR_IA32_CR_PAT) {
1218                 for (i = 0; i < 8; i++)
1219                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1220                                 return false;
1221                 return true;
1222         } else if (msr == MSR_MTRRdefType) {
1223                 if (data & ~0xcff)
1224                         return false;
1225                 return valid_mtrr_type(data & 0xff);
1226         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1227                 for (i = 0; i < 8 ; i++)
1228                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1229                                 return false;
1230                 return true;
1231         }
1232
1233         /* variable MTRRs */
1234         return valid_mtrr_type(data & 0xff);
1235 }
1236
1237 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1238 {
1239         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1240
1241         if (!mtrr_valid(vcpu, msr, data))
1242                 return 1;
1243
1244         if (msr == MSR_MTRRdefType) {
1245                 vcpu->arch.mtrr_state.def_type = data;
1246                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1247         } else if (msr == MSR_MTRRfix64K_00000)
1248                 p[0] = data;
1249         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1250                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1251         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1252                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1253         else if (msr == MSR_IA32_CR_PAT)
1254                 vcpu->arch.pat = data;
1255         else {  /* Variable MTRRs */
1256                 int idx, is_mtrr_mask;
1257                 u64 *pt;
1258
1259                 idx = (msr - 0x200) / 2;
1260                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1261                 if (!is_mtrr_mask)
1262                         pt =
1263                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1264                 else
1265                         pt =
1266                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1267                 *pt = data;
1268         }
1269
1270         kvm_mmu_reset_context(vcpu);
1271         return 0;
1272 }
1273
1274 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1275 {
1276         u64 mcg_cap = vcpu->arch.mcg_cap;
1277         unsigned bank_num = mcg_cap & 0xff;
1278
1279         switch (msr) {
1280         case MSR_IA32_MCG_STATUS:
1281                 vcpu->arch.mcg_status = data;
1282                 break;
1283         case MSR_IA32_MCG_CTL:
1284                 if (!(mcg_cap & MCG_CTL_P))
1285                         return 1;
1286                 if (data != 0 && data != ~(u64)0)
1287                         return -1;
1288                 vcpu->arch.mcg_ctl = data;
1289                 break;
1290         default:
1291                 if (msr >= MSR_IA32_MC0_CTL &&
1292                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1293                         u32 offset = msr - MSR_IA32_MC0_CTL;
1294                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1295                          * some Linux kernels though clear bit 10 in bank 4 to
1296                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1297                          * this to avoid an uncatched #GP in the guest
1298                          */
1299                         if ((offset & 0x3) == 0 &&
1300                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1301                                 return -1;
1302                         vcpu->arch.mce_banks[offset] = data;
1303                         break;
1304                 }
1305                 return 1;
1306         }
1307         return 0;
1308 }
1309
1310 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1311 {
1312         struct kvm *kvm = vcpu->kvm;
1313         int lm = is_long_mode(vcpu);
1314         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1315                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1316         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1317                 : kvm->arch.xen_hvm_config.blob_size_32;
1318         u32 page_num = data & ~PAGE_MASK;
1319         u64 page_addr = data & PAGE_MASK;
1320         u8 *page;
1321         int r;
1322
1323         r = -E2BIG;
1324         if (page_num >= blob_size)
1325                 goto out;
1326         r = -ENOMEM;
1327         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1328         if (!page)
1329                 goto out;
1330         r = -EFAULT;
1331         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1332                 goto out_free;
1333         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1334                 goto out_free;
1335         r = 0;
1336 out_free:
1337         kfree(page);
1338 out:
1339         return r;
1340 }
1341
1342 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1343 {
1344         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1345 }
1346
1347 static bool kvm_hv_msr_partition_wide(u32 msr)
1348 {
1349         bool r = false;
1350         switch (msr) {
1351         case HV_X64_MSR_GUEST_OS_ID:
1352         case HV_X64_MSR_HYPERCALL:
1353                 r = true;
1354                 break;
1355         }
1356
1357         return r;
1358 }
1359
1360 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1361 {
1362         struct kvm *kvm = vcpu->kvm;
1363
1364         switch (msr) {
1365         case HV_X64_MSR_GUEST_OS_ID:
1366                 kvm->arch.hv_guest_os_id = data;
1367                 /* setting guest os id to zero disables hypercall page */
1368                 if (!kvm->arch.hv_guest_os_id)
1369                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1370                 break;
1371         case HV_X64_MSR_HYPERCALL: {
1372                 u64 gfn;
1373                 unsigned long addr;
1374                 u8 instructions[4];
1375
1376                 /* if guest os id is not set hypercall should remain disabled */
1377                 if (!kvm->arch.hv_guest_os_id)
1378                         break;
1379                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1380                         kvm->arch.hv_hypercall = data;
1381                         break;
1382                 }
1383                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1384                 addr = gfn_to_hva(kvm, gfn);
1385                 if (kvm_is_error_hva(addr))
1386                         return 1;
1387                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1388                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1389                 if (copy_to_user((void __user *)addr, instructions, 4))
1390                         return 1;
1391                 kvm->arch.hv_hypercall = data;
1392                 break;
1393         }
1394         default:
1395                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1396                           "data 0x%llx\n", msr, data);
1397                 return 1;
1398         }
1399         return 0;
1400 }
1401
1402 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1403 {
1404         switch (msr) {
1405         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1406                 unsigned long addr;
1407
1408                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1409                         vcpu->arch.hv_vapic = data;
1410                         break;
1411                 }
1412                 addr = gfn_to_hva(vcpu->kvm, data >>
1413                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1414                 if (kvm_is_error_hva(addr))
1415                         return 1;
1416                 if (clear_user((void __user *)addr, PAGE_SIZE))
1417                         return 1;
1418                 vcpu->arch.hv_vapic = data;
1419                 break;
1420         }
1421         case HV_X64_MSR_EOI:
1422                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1423         case HV_X64_MSR_ICR:
1424                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1425         case HV_X64_MSR_TPR:
1426                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1427         default:
1428                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1429                           "data 0x%llx\n", msr, data);
1430                 return 1;
1431         }
1432
1433         return 0;
1434 }
1435
1436 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1437 {
1438         gpa_t gpa = data & ~0x3f;
1439
1440         /* Bits 2:5 are resrved, Should be zero */
1441         if (data & 0x3c)
1442                 return 1;
1443
1444         vcpu->arch.apf.msr_val = data;
1445
1446         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1447                 kvm_clear_async_pf_completion_queue(vcpu);
1448                 kvm_async_pf_hash_reset(vcpu);
1449                 return 0;
1450         }
1451
1452         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1453                 return 1;
1454
1455         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1456         kvm_async_pf_wakeup_all(vcpu);
1457         return 0;
1458 }
1459
1460 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1461 {
1462         if (vcpu->arch.time_page) {
1463                 kvm_release_page_dirty(vcpu->arch.time_page);
1464                 vcpu->arch.time_page = NULL;
1465         }
1466 }
1467
1468 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1469 {
1470         switch (msr) {
1471         case MSR_EFER:
1472                 return set_efer(vcpu, data);
1473         case MSR_K7_HWCR:
1474                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1475                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1476                 if (data != 0) {
1477                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1478                                 data);
1479                         return 1;
1480                 }
1481                 break;
1482         case MSR_FAM10H_MMIO_CONF_BASE:
1483                 if (data != 0) {
1484                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1485                                 "0x%llx\n", data);
1486                         return 1;
1487                 }
1488                 break;
1489         case MSR_AMD64_NB_CFG:
1490                 break;
1491         case MSR_IA32_DEBUGCTLMSR:
1492                 if (!data) {
1493                         /* We support the non-activated case already */
1494                         break;
1495                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1496                         /* Values other than LBR and BTF are vendor-specific,
1497                            thus reserved and should throw a #GP */
1498                         return 1;
1499                 }
1500                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1501                         __func__, data);
1502                 break;
1503         case MSR_IA32_UCODE_REV:
1504         case MSR_IA32_UCODE_WRITE:
1505         case MSR_VM_HSAVE_PA:
1506         case MSR_AMD64_PATCH_LOADER:
1507                 break;
1508         case 0x200 ... 0x2ff:
1509                 return set_msr_mtrr(vcpu, msr, data);
1510         case MSR_IA32_APICBASE:
1511                 kvm_set_apic_base(vcpu, data);
1512                 break;
1513         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1514                 return kvm_x2apic_msr_write(vcpu, msr, data);
1515         case MSR_IA32_MISC_ENABLE:
1516                 vcpu->arch.ia32_misc_enable_msr = data;
1517                 break;
1518         case MSR_KVM_WALL_CLOCK_NEW:
1519         case MSR_KVM_WALL_CLOCK:
1520                 vcpu->kvm->arch.wall_clock = data;
1521                 kvm_write_wall_clock(vcpu->kvm, data);
1522                 break;
1523         case MSR_KVM_SYSTEM_TIME_NEW:
1524         case MSR_KVM_SYSTEM_TIME: {
1525                 kvmclock_reset(vcpu);
1526
1527                 vcpu->arch.time = data;
1528                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1529
1530                 /* we verify if the enable bit is set... */
1531                 if (!(data & 1))
1532                         break;
1533
1534                 /* ...but clean it before doing the actual write */
1535                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1536
1537                 vcpu->arch.time_page =
1538                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1539
1540                 if (is_error_page(vcpu->arch.time_page)) {
1541                         kvm_release_page_clean(vcpu->arch.time_page);
1542                         vcpu->arch.time_page = NULL;
1543                 }
1544                 break;
1545         }
1546         case MSR_KVM_ASYNC_PF_EN:
1547                 if (kvm_pv_enable_async_pf(vcpu, data))
1548                         return 1;
1549                 break;
1550         case MSR_IA32_MCG_CTL:
1551         case MSR_IA32_MCG_STATUS:
1552         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1553                 return set_msr_mce(vcpu, msr, data);
1554
1555         /* Performance counters are not protected by a CPUID bit,
1556          * so we should check all of them in the generic path for the sake of
1557          * cross vendor migration.
1558          * Writing a zero into the event select MSRs disables them,
1559          * which we perfectly emulate ;-). Any other value should be at least
1560          * reported, some guests depend on them.
1561          */
1562         case MSR_P6_EVNTSEL0:
1563         case MSR_P6_EVNTSEL1:
1564         case MSR_K7_EVNTSEL0:
1565         case MSR_K7_EVNTSEL1:
1566         case MSR_K7_EVNTSEL2:
1567         case MSR_K7_EVNTSEL3:
1568                 if (data != 0)
1569                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1570                                 "0x%x data 0x%llx\n", msr, data);
1571                 break;
1572         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1573          * so we ignore writes to make it happy.
1574          */
1575         case MSR_P6_PERFCTR0:
1576         case MSR_P6_PERFCTR1:
1577         case MSR_K7_PERFCTR0:
1578         case MSR_K7_PERFCTR1:
1579         case MSR_K7_PERFCTR2:
1580         case MSR_K7_PERFCTR3:
1581                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1582                         "0x%x data 0x%llx\n", msr, data);
1583                 break;
1584         case MSR_K7_CLK_CTL:
1585                 /*
1586                  * Ignore all writes to this no longer documented MSR.
1587                  * Writes are only relevant for old K7 processors,
1588                  * all pre-dating SVM, but a recommended workaround from
1589                  * AMD for these chips. It is possible to speicify the
1590                  * affected processor models on the command line, hence
1591                  * the need to ignore the workaround.
1592                  */
1593                 break;
1594         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1595                 if (kvm_hv_msr_partition_wide(msr)) {
1596                         int r;
1597                         mutex_lock(&vcpu->kvm->lock);
1598                         r = set_msr_hyperv_pw(vcpu, msr, data);
1599                         mutex_unlock(&vcpu->kvm->lock);
1600                         return r;
1601                 } else
1602                         return set_msr_hyperv(vcpu, msr, data);
1603                 break;
1604         case MSR_IA32_BBL_CR_CTL3:
1605                 /* Drop writes to this legacy MSR -- see rdmsr
1606                  * counterpart for further detail.
1607                  */
1608                 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1609                 break;
1610         default:
1611                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1612                         return xen_hvm_config(vcpu, data);
1613                 if (!ignore_msrs) {
1614                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1615                                 msr, data);
1616                         return 1;
1617                 } else {
1618                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1619                                 msr, data);
1620                         break;
1621                 }
1622         }
1623         return 0;
1624 }
1625 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1626
1627
1628 /*
1629  * Reads an msr value (of 'msr_index') into 'pdata'.
1630  * Returns 0 on success, non-0 otherwise.
1631  * Assumes vcpu_load() was already called.
1632  */
1633 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1634 {
1635         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1636 }
1637
1638 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1639 {
1640         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1641
1642         if (!msr_mtrr_valid(msr))
1643                 return 1;
1644
1645         if (msr == MSR_MTRRdefType)
1646                 *pdata = vcpu->arch.mtrr_state.def_type +
1647                          (vcpu->arch.mtrr_state.enabled << 10);
1648         else if (msr == MSR_MTRRfix64K_00000)
1649                 *pdata = p[0];
1650         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1651                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1652         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1653                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1654         else if (msr == MSR_IA32_CR_PAT)
1655                 *pdata = vcpu->arch.pat;
1656         else {  /* Variable MTRRs */
1657                 int idx, is_mtrr_mask;
1658                 u64 *pt;
1659
1660                 idx = (msr - 0x200) / 2;
1661                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1662                 if (!is_mtrr_mask)
1663                         pt =
1664                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1665                 else
1666                         pt =
1667                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1668                 *pdata = *pt;
1669         }
1670
1671         return 0;
1672 }
1673
1674 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1675 {
1676         u64 data;
1677         u64 mcg_cap = vcpu->arch.mcg_cap;
1678         unsigned bank_num = mcg_cap & 0xff;
1679
1680         switch (msr) {
1681         case MSR_IA32_P5_MC_ADDR:
1682         case MSR_IA32_P5_MC_TYPE:
1683                 data = 0;
1684                 break;
1685         case MSR_IA32_MCG_CAP:
1686                 data = vcpu->arch.mcg_cap;
1687                 break;
1688         case MSR_IA32_MCG_CTL:
1689                 if (!(mcg_cap & MCG_CTL_P))
1690                         return 1;
1691                 data = vcpu->arch.mcg_ctl;
1692                 break;
1693         case MSR_IA32_MCG_STATUS:
1694                 data = vcpu->arch.mcg_status;
1695                 break;
1696         default:
1697                 if (msr >= MSR_IA32_MC0_CTL &&
1698                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1699                         u32 offset = msr - MSR_IA32_MC0_CTL;
1700                         data = vcpu->arch.mce_banks[offset];
1701                         break;
1702                 }
1703                 return 1;
1704         }
1705         *pdata = data;
1706         return 0;
1707 }
1708
1709 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1710 {
1711         u64 data = 0;
1712         struct kvm *kvm = vcpu->kvm;
1713
1714         switch (msr) {
1715         case HV_X64_MSR_GUEST_OS_ID:
1716                 data = kvm->arch.hv_guest_os_id;
1717                 break;
1718         case HV_X64_MSR_HYPERCALL:
1719                 data = kvm->arch.hv_hypercall;
1720                 break;
1721         default:
1722                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1723                 return 1;
1724         }
1725
1726         *pdata = data;
1727         return 0;
1728 }
1729
1730 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1731 {
1732         u64 data = 0;
1733
1734         switch (msr) {
1735         case HV_X64_MSR_VP_INDEX: {
1736                 int r;
1737                 struct kvm_vcpu *v;
1738                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1739                         if (v == vcpu)
1740                                 data = r;
1741                 break;
1742         }
1743         case HV_X64_MSR_EOI:
1744                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1745         case HV_X64_MSR_ICR:
1746                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1747         case HV_X64_MSR_TPR:
1748                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1749         default:
1750                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1751                 return 1;
1752         }
1753         *pdata = data;
1754         return 0;
1755 }
1756
1757 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1758 {
1759         u64 data;
1760
1761         switch (msr) {
1762         case MSR_IA32_PLATFORM_ID:
1763         case MSR_IA32_UCODE_REV:
1764         case MSR_IA32_EBL_CR_POWERON:
1765         case MSR_IA32_DEBUGCTLMSR:
1766         case MSR_IA32_LASTBRANCHFROMIP:
1767         case MSR_IA32_LASTBRANCHTOIP:
1768         case MSR_IA32_LASTINTFROMIP:
1769         case MSR_IA32_LASTINTTOIP:
1770         case MSR_K8_SYSCFG:
1771         case MSR_K7_HWCR:
1772         case MSR_VM_HSAVE_PA:
1773         case MSR_P6_PERFCTR0:
1774         case MSR_P6_PERFCTR1:
1775         case MSR_P6_EVNTSEL0:
1776         case MSR_P6_EVNTSEL1:
1777         case MSR_K7_EVNTSEL0:
1778         case MSR_K7_PERFCTR0:
1779         case MSR_K8_INT_PENDING_MSG:
1780         case MSR_AMD64_NB_CFG:
1781         case MSR_FAM10H_MMIO_CONF_BASE:
1782                 data = 0;
1783                 break;
1784         case MSR_MTRRcap:
1785                 data = 0x500 | KVM_NR_VAR_MTRR;
1786                 break;
1787         case 0x200 ... 0x2ff:
1788                 return get_msr_mtrr(vcpu, msr, pdata);
1789         case 0xcd: /* fsb frequency */
1790                 data = 3;
1791                 break;
1792                 /*
1793                  * MSR_EBC_FREQUENCY_ID
1794                  * Conservative value valid for even the basic CPU models.
1795                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1796                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1797                  * and 266MHz for model 3, or 4. Set Core Clock
1798                  * Frequency to System Bus Frequency Ratio to 1 (bits
1799                  * 31:24) even though these are only valid for CPU
1800                  * models > 2, however guests may end up dividing or
1801                  * multiplying by zero otherwise.
1802                  */
1803         case MSR_EBC_FREQUENCY_ID:
1804                 data = 1 << 24;
1805                 break;
1806         case MSR_IA32_APICBASE:
1807                 data = kvm_get_apic_base(vcpu);
1808                 break;
1809         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1810                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1811                 break;
1812         case MSR_IA32_MISC_ENABLE:
1813                 data = vcpu->arch.ia32_misc_enable_msr;
1814                 break;
1815         case MSR_IA32_PERF_STATUS:
1816                 /* TSC increment by tick */
1817                 data = 1000ULL;
1818                 /* CPU multiplier */
1819                 data |= (((uint64_t)4ULL) << 40);
1820                 break;
1821         case MSR_EFER:
1822                 data = vcpu->arch.efer;
1823                 break;
1824         case MSR_KVM_WALL_CLOCK:
1825         case MSR_KVM_WALL_CLOCK_NEW:
1826                 data = vcpu->kvm->arch.wall_clock;
1827                 break;
1828         case MSR_KVM_SYSTEM_TIME:
1829         case MSR_KVM_SYSTEM_TIME_NEW:
1830                 data = vcpu->arch.time;
1831                 break;
1832         case MSR_KVM_ASYNC_PF_EN:
1833                 data = vcpu->arch.apf.msr_val;
1834                 break;
1835         case MSR_IA32_P5_MC_ADDR:
1836         case MSR_IA32_P5_MC_TYPE:
1837         case MSR_IA32_MCG_CAP:
1838         case MSR_IA32_MCG_CTL:
1839         case MSR_IA32_MCG_STATUS:
1840         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1841                 return get_msr_mce(vcpu, msr, pdata);
1842         case MSR_K7_CLK_CTL:
1843                 /*
1844                  * Provide expected ramp-up count for K7. All other
1845                  * are set to zero, indicating minimum divisors for
1846                  * every field.
1847                  *
1848                  * This prevents guest kernels on AMD host with CPU
1849                  * type 6, model 8 and higher from exploding due to
1850                  * the rdmsr failing.
1851                  */
1852                 data = 0x20000000;
1853                 break;
1854         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1855                 if (kvm_hv_msr_partition_wide(msr)) {
1856                         int r;
1857                         mutex_lock(&vcpu->kvm->lock);
1858                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1859                         mutex_unlock(&vcpu->kvm->lock);
1860                         return r;
1861                 } else
1862                         return get_msr_hyperv(vcpu, msr, pdata);
1863                 break;
1864         case MSR_IA32_BBL_CR_CTL3:
1865                 /* This legacy MSR exists but isn't fully documented in current
1866                  * silicon.  It is however accessed by winxp in very narrow
1867                  * scenarios where it sets bit #19, itself documented as
1868                  * a "reserved" bit.  Best effort attempt to source coherent
1869                  * read data here should the balance of the register be
1870                  * interpreted by the guest:
1871                  *
1872                  * L2 cache control register 3: 64GB range, 256KB size,
1873                  * enabled, latency 0x1, configured
1874                  */
1875                 data = 0xbe702111;
1876                 break;
1877         default:
1878                 if (!ignore_msrs) {
1879                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1880                         return 1;
1881                 } else {
1882                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1883                         data = 0;
1884                 }
1885                 break;
1886         }
1887         *pdata = data;
1888         return 0;
1889 }
1890 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1891
1892 /*
1893  * Read or write a bunch of msrs. All parameters are kernel addresses.
1894  *
1895  * @return number of msrs set successfully.
1896  */
1897 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1898                     struct kvm_msr_entry *entries,
1899                     int (*do_msr)(struct kvm_vcpu *vcpu,
1900                                   unsigned index, u64 *data))
1901 {
1902         int i, idx;
1903
1904         idx = srcu_read_lock(&vcpu->kvm->srcu);
1905         for (i = 0; i < msrs->nmsrs; ++i)
1906                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1907                         break;
1908         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1909
1910         return i;
1911 }
1912
1913 /*
1914  * Read or write a bunch of msrs. Parameters are user addresses.
1915  *
1916  * @return number of msrs set successfully.
1917  */
1918 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1919                   int (*do_msr)(struct kvm_vcpu *vcpu,
1920                                 unsigned index, u64 *data),
1921                   int writeback)
1922 {
1923         struct kvm_msrs msrs;
1924         struct kvm_msr_entry *entries;
1925         int r, n;
1926         unsigned size;
1927
1928         r = -EFAULT;
1929         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1930                 goto out;
1931
1932         r = -E2BIG;
1933         if (msrs.nmsrs >= MAX_IO_MSRS)
1934                 goto out;
1935
1936         r = -ENOMEM;
1937         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1938         entries = kmalloc(size, GFP_KERNEL);
1939         if (!entries)
1940                 goto out;
1941
1942         r = -EFAULT;
1943         if (copy_from_user(entries, user_msrs->entries, size))
1944                 goto out_free;
1945
1946         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1947         if (r < 0)
1948                 goto out_free;
1949
1950         r = -EFAULT;
1951         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1952                 goto out_free;
1953
1954         r = n;
1955
1956 out_free:
1957         kfree(entries);
1958 out:
1959         return r;
1960 }
1961
1962 int kvm_dev_ioctl_check_extension(long ext)
1963 {
1964         int r;
1965
1966         switch (ext) {
1967         case KVM_CAP_IRQCHIP:
1968         case KVM_CAP_HLT:
1969         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1970         case KVM_CAP_SET_TSS_ADDR:
1971         case KVM_CAP_EXT_CPUID:
1972         case KVM_CAP_CLOCKSOURCE:
1973         case KVM_CAP_PIT:
1974         case KVM_CAP_NOP_IO_DELAY:
1975         case KVM_CAP_MP_STATE:
1976         case KVM_CAP_SYNC_MMU:
1977         case KVM_CAP_USER_NMI:
1978         case KVM_CAP_REINJECT_CONTROL:
1979         case KVM_CAP_IRQ_INJECT_STATUS:
1980         case KVM_CAP_ASSIGN_DEV_IRQ:
1981         case KVM_CAP_IRQFD:
1982         case KVM_CAP_IOEVENTFD:
1983         case KVM_CAP_PIT2:
1984         case KVM_CAP_PIT_STATE2:
1985         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1986         case KVM_CAP_XEN_HVM:
1987         case KVM_CAP_ADJUST_CLOCK:
1988         case KVM_CAP_VCPU_EVENTS:
1989         case KVM_CAP_HYPERV:
1990         case KVM_CAP_HYPERV_VAPIC:
1991         case KVM_CAP_HYPERV_SPIN:
1992         case KVM_CAP_PCI_SEGMENT:
1993         case KVM_CAP_DEBUGREGS:
1994         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1995         case KVM_CAP_XSAVE:
1996         case KVM_CAP_ASYNC_PF:
1997         case KVM_CAP_GET_TSC_KHZ:
1998                 r = 1;
1999                 break;
2000         case KVM_CAP_COALESCED_MMIO:
2001                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2002                 break;
2003         case KVM_CAP_VAPIC:
2004                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2005                 break;
2006         case KVM_CAP_NR_VCPUS:
2007                 r = KVM_MAX_VCPUS;
2008                 break;
2009         case KVM_CAP_NR_MEMSLOTS:
2010                 r = KVM_MEMORY_SLOTS;
2011                 break;
2012         case KVM_CAP_PV_MMU:    /* obsolete */
2013                 r = 0;
2014                 break;
2015         case KVM_CAP_IOMMU:
2016                 r = iommu_found();
2017                 break;
2018         case KVM_CAP_MCE:
2019                 r = KVM_MAX_MCE_BANKS;
2020                 break;
2021         case KVM_CAP_XCRS:
2022                 r = cpu_has_xsave;
2023                 break;
2024         case KVM_CAP_TSC_CONTROL:
2025                 r = kvm_has_tsc_control;
2026                 break;
2027         default:
2028                 r = 0;
2029                 break;
2030         }
2031         return r;
2032
2033 }
2034
2035 long kvm_arch_dev_ioctl(struct file *filp,
2036                         unsigned int ioctl, unsigned long arg)
2037 {
2038         void __user *argp = (void __user *)arg;
2039         long r;
2040
2041         switch (ioctl) {
2042         case KVM_GET_MSR_INDEX_LIST: {
2043                 struct kvm_msr_list __user *user_msr_list = argp;
2044                 struct kvm_msr_list msr_list;
2045                 unsigned n;
2046
2047                 r = -EFAULT;
2048                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2049                         goto out;
2050                 n = msr_list.nmsrs;
2051                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2052                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2053                         goto out;
2054                 r = -E2BIG;
2055                 if (n < msr_list.nmsrs)
2056                         goto out;
2057                 r = -EFAULT;
2058                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2059                                  num_msrs_to_save * sizeof(u32)))
2060                         goto out;
2061                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2062                                  &emulated_msrs,
2063                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2064                         goto out;
2065                 r = 0;
2066                 break;
2067         }
2068         case KVM_GET_SUPPORTED_CPUID: {
2069                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2070                 struct kvm_cpuid2 cpuid;
2071
2072                 r = -EFAULT;
2073                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2074                         goto out;
2075                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2076                                                       cpuid_arg->entries);
2077                 if (r)
2078                         goto out;
2079
2080                 r = -EFAULT;
2081                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2082                         goto out;
2083                 r = 0;
2084                 break;
2085         }
2086         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2087                 u64 mce_cap;
2088
2089                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2090                 r = -EFAULT;
2091                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2092                         goto out;
2093                 r = 0;
2094                 break;
2095         }
2096         default:
2097                 r = -EINVAL;
2098         }
2099 out:
2100         return r;
2101 }
2102
2103 static void wbinvd_ipi(void *garbage)
2104 {
2105         wbinvd();
2106 }
2107
2108 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2109 {
2110         return vcpu->kvm->arch.iommu_domain &&
2111                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2112 }
2113
2114 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2115 {
2116         /* Address WBINVD may be executed by guest */
2117         if (need_emulate_wbinvd(vcpu)) {
2118                 if (kvm_x86_ops->has_wbinvd_exit())
2119                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2120                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2121                         smp_call_function_single(vcpu->cpu,
2122                                         wbinvd_ipi, NULL, 1);
2123         }
2124
2125         kvm_x86_ops->vcpu_load(vcpu, cpu);
2126         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2127                 /* Make sure TSC doesn't go backwards */
2128                 s64 tsc_delta;
2129                 u64 tsc;
2130
2131                 kvm_get_msr(vcpu, MSR_IA32_TSC, &tsc);
2132                 tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2133                              tsc - vcpu->arch.last_guest_tsc;
2134
2135                 if (tsc_delta < 0)
2136                         mark_tsc_unstable("KVM discovered backwards TSC");
2137                 if (check_tsc_unstable()) {
2138                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2139                         vcpu->arch.tsc_catchup = 1;
2140                 }
2141                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2142                 if (vcpu->cpu != cpu)
2143                         kvm_migrate_timers(vcpu);
2144                 vcpu->cpu = cpu;
2145         }
2146 }
2147
2148 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2149 {
2150         kvm_x86_ops->vcpu_put(vcpu);
2151         kvm_put_guest_fpu(vcpu);
2152         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
2153 }
2154
2155 static int is_efer_nx(void)
2156 {
2157         unsigned long long efer = 0;
2158
2159         rdmsrl_safe(MSR_EFER, &efer);
2160         return efer & EFER_NX;
2161 }
2162
2163 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2164 {
2165         int i;
2166         struct kvm_cpuid_entry2 *e, *entry;
2167
2168         entry = NULL;
2169         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2170                 e = &vcpu->arch.cpuid_entries[i];
2171                 if (e->function == 0x80000001) {
2172                         entry = e;
2173                         break;
2174                 }
2175         }
2176         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2177                 entry->edx &= ~(1 << 20);
2178                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2179         }
2180 }
2181
2182 /* when an old userspace process fills a new kernel module */
2183 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2184                                     struct kvm_cpuid *cpuid,
2185                                     struct kvm_cpuid_entry __user *entries)
2186 {
2187         int r, i;
2188         struct kvm_cpuid_entry *cpuid_entries;
2189
2190         r = -E2BIG;
2191         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2192                 goto out;
2193         r = -ENOMEM;
2194         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2195         if (!cpuid_entries)
2196                 goto out;
2197         r = -EFAULT;
2198         if (copy_from_user(cpuid_entries, entries,
2199                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2200                 goto out_free;
2201         for (i = 0; i < cpuid->nent; i++) {
2202                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2203                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2204                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2205                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2206                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2207                 vcpu->arch.cpuid_entries[i].index = 0;
2208                 vcpu->arch.cpuid_entries[i].flags = 0;
2209                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2210                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2211                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2212         }
2213         vcpu->arch.cpuid_nent = cpuid->nent;
2214         cpuid_fix_nx_cap(vcpu);
2215         r = 0;
2216         kvm_apic_set_version(vcpu);
2217         kvm_x86_ops->cpuid_update(vcpu);
2218         update_cpuid(vcpu);
2219
2220 out_free:
2221         vfree(cpuid_entries);
2222 out:
2223         return r;
2224 }
2225
2226 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2227                                      struct kvm_cpuid2 *cpuid,
2228                                      struct kvm_cpuid_entry2 __user *entries)
2229 {
2230         int r;
2231
2232         r = -E2BIG;
2233         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2234                 goto out;
2235         r = -EFAULT;
2236         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2237                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2238                 goto out;
2239         vcpu->arch.cpuid_nent = cpuid->nent;
2240         kvm_apic_set_version(vcpu);
2241         kvm_x86_ops->cpuid_update(vcpu);
2242         update_cpuid(vcpu);
2243         return 0;
2244
2245 out:
2246         return r;
2247 }
2248
2249 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2250                                      struct kvm_cpuid2 *cpuid,
2251                                      struct kvm_cpuid_entry2 __user *entries)
2252 {
2253         int r;
2254
2255         r = -E2BIG;
2256         if (cpuid->nent < vcpu->arch.cpuid_nent)
2257                 goto out;
2258         r = -EFAULT;
2259         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2260                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2261                 goto out;
2262         return 0;
2263
2264 out:
2265         cpuid->nent = vcpu->arch.cpuid_nent;
2266         return r;
2267 }
2268
2269 static void cpuid_mask(u32 *word, int wordnum)
2270 {
2271         *word &= boot_cpu_data.x86_capability[wordnum];
2272 }
2273
2274 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2275                            u32 index)
2276 {
2277         entry->function = function;
2278         entry->index = index;
2279         cpuid_count(entry->function, entry->index,
2280                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2281         entry->flags = 0;
2282 }
2283
2284 #define F(x) bit(X86_FEATURE_##x)
2285
2286 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2287                          u32 index, int *nent, int maxnent)
2288 {
2289         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2290 #ifdef CONFIG_X86_64
2291         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2292                                 ? F(GBPAGES) : 0;
2293         unsigned f_lm = F(LM);
2294 #else
2295         unsigned f_gbpages = 0;
2296         unsigned f_lm = 0;
2297 #endif
2298         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2299
2300         /* cpuid 1.edx */
2301         const u32 kvm_supported_word0_x86_features =
2302                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2303                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2304                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2305                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2306                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2307                 0 /* Reserved, DS, ACPI */ | F(MMX) |
2308                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2309                 0 /* HTT, TM, Reserved, PBE */;
2310         /* cpuid 0x80000001.edx */
2311         const u32 kvm_supported_word1_x86_features =
2312                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2313                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2314                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2315                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2316                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2317                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2318                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2319                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2320         /* cpuid 1.ecx */
2321         const u32 kvm_supported_word4_x86_features =
2322                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2323                 0 /* DS-CPL, VMX, SMX, EST */ |
2324                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2325                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2326                 0 /* Reserved, DCA */ | F(XMM4_1) |
2327                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2328                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2329                 F(F16C);
2330         /* cpuid 0x80000001.ecx */
2331         const u32 kvm_supported_word6_x86_features =
2332                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2333                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2334                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2335                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2336
2337         /* all calls to cpuid_count() should be made on the same cpu */
2338         get_cpu();
2339         do_cpuid_1_ent(entry, function, index);
2340         ++*nent;
2341
2342         switch (function) {
2343         case 0:
2344                 entry->eax = min(entry->eax, (u32)0xd);
2345                 break;
2346         case 1:
2347                 entry->edx &= kvm_supported_word0_x86_features;
2348                 cpuid_mask(&entry->edx, 0);
2349                 entry->ecx &= kvm_supported_word4_x86_features;
2350                 cpuid_mask(&entry->ecx, 4);
2351                 /* we support x2apic emulation even if host does not support
2352                  * it since we emulate x2apic in software */
2353                 entry->ecx |= F(X2APIC);
2354                 break;
2355         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2356          * may return different values. This forces us to get_cpu() before
2357          * issuing the first command, and also to emulate this annoying behavior
2358          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2359         case 2: {
2360                 int t, times = entry->eax & 0xff;
2361
2362                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2363                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2364                 for (t = 1; t < times && *nent < maxnent; ++t) {
2365                         do_cpuid_1_ent(&entry[t], function, 0);
2366                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2367                         ++*nent;
2368                 }
2369                 break;
2370         }
2371         /* function 4 and 0xb have additional index. */
2372         case 4: {
2373                 int i, cache_type;
2374
2375                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2376                 /* read more entries until cache_type is zero */
2377                 for (i = 1; *nent < maxnent; ++i) {
2378                         cache_type = entry[i - 1].eax & 0x1f;
2379                         if (!cache_type)
2380                                 break;
2381                         do_cpuid_1_ent(&entry[i], function, i);
2382                         entry[i].flags |=
2383                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2384                         ++*nent;
2385                 }
2386                 break;
2387         }
2388         case 0xb: {
2389                 int i, level_type;
2390
2391                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2392                 /* read more entries until level_type is zero */
2393                 for (i = 1; *nent < maxnent; ++i) {
2394                         level_type = entry[i - 1].ecx & 0xff00;
2395                         if (!level_type)
2396                                 break;
2397                         do_cpuid_1_ent(&entry[i], function, i);
2398                         entry[i].flags |=
2399                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2400                         ++*nent;
2401                 }
2402                 break;
2403         }
2404         case 0xd: {
2405                 int i;
2406
2407                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2408                 for (i = 1; *nent < maxnent && i < 64; ++i) {
2409                         if (entry[i].eax == 0)
2410                                 continue;
2411                         do_cpuid_1_ent(&entry[i], function, i);
2412                         entry[i].flags |=
2413                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2414                         ++*nent;
2415                 }
2416                 break;
2417         }
2418         case KVM_CPUID_SIGNATURE: {
2419                 char signature[12] = "KVMKVMKVM\0\0";
2420                 u32 *sigptr = (u32 *)signature;
2421                 entry->eax = 0;
2422                 entry->ebx = sigptr[0];
2423                 entry->ecx = sigptr[1];
2424                 entry->edx = sigptr[2];
2425                 break;
2426         }
2427         case KVM_CPUID_FEATURES:
2428                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2429                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2430                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2431                              (1 << KVM_FEATURE_ASYNC_PF) |
2432                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2433                 entry->ebx = 0;
2434                 entry->ecx = 0;
2435                 entry->edx = 0;
2436                 break;
2437         case 0x80000000:
2438                 entry->eax = min(entry->eax, 0x8000001a);
2439                 break;
2440         case 0x80000001:
2441                 entry->edx &= kvm_supported_word1_x86_features;
2442                 cpuid_mask(&entry->edx, 1);
2443                 entry->ecx &= kvm_supported_word6_x86_features;
2444                 cpuid_mask(&entry->ecx, 6);
2445                 break;
2446         }
2447
2448         kvm_x86_ops->set_supported_cpuid(function, entry);
2449
2450         put_cpu();
2451 }
2452
2453 #undef F
2454
2455 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2456                                      struct kvm_cpuid_entry2 __user *entries)
2457 {
2458         struct kvm_cpuid_entry2 *cpuid_entries;
2459         int limit, nent = 0, r = -E2BIG;
2460         u32 func;
2461
2462         if (cpuid->nent < 1)
2463                 goto out;
2464         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2465                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2466         r = -ENOMEM;
2467         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2468         if (!cpuid_entries)
2469                 goto out;
2470
2471         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2472         limit = cpuid_entries[0].eax;
2473         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2474                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2475                              &nent, cpuid->nent);
2476         r = -E2BIG;
2477         if (nent >= cpuid->nent)
2478                 goto out_free;
2479
2480         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2481         limit = cpuid_entries[nent - 1].eax;
2482         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2483                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2484                              &nent, cpuid->nent);
2485
2486
2487
2488         r = -E2BIG;
2489         if (nent >= cpuid->nent)
2490                 goto out_free;
2491
2492         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2493                      cpuid->nent);
2494
2495         r = -E2BIG;
2496         if (nent >= cpuid->nent)
2497                 goto out_free;
2498
2499         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2500                      cpuid->nent);
2501
2502         r = -E2BIG;
2503         if (nent >= cpuid->nent)
2504                 goto out_free;
2505
2506         r = -EFAULT;
2507         if (copy_to_user(entries, cpuid_entries,
2508                          nent * sizeof(struct kvm_cpuid_entry2)))
2509                 goto out_free;
2510         cpuid->nent = nent;
2511         r = 0;
2512
2513 out_free:
2514         vfree(cpuid_entries);
2515 out:
2516         return r;
2517 }
2518
2519 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2520                                     struct kvm_lapic_state *s)
2521 {
2522         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2523
2524         return 0;
2525 }
2526
2527 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2528                                     struct kvm_lapic_state *s)
2529 {
2530         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2531         kvm_apic_post_state_restore(vcpu);
2532         update_cr8_intercept(vcpu);
2533
2534         return 0;
2535 }
2536
2537 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2538                                     struct kvm_interrupt *irq)
2539 {
2540         if (irq->irq < 0 || irq->irq >= 256)
2541                 return -EINVAL;
2542         if (irqchip_in_kernel(vcpu->kvm))
2543                 return -ENXIO;
2544
2545         kvm_queue_interrupt(vcpu, irq->irq, false);
2546         kvm_make_request(KVM_REQ_EVENT, vcpu);
2547
2548         return 0;
2549 }
2550
2551 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2552 {
2553         kvm_inject_nmi(vcpu);
2554
2555         return 0;
2556 }
2557
2558 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2559                                            struct kvm_tpr_access_ctl *tac)
2560 {
2561         if (tac->flags)
2562                 return -EINVAL;
2563         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2564         return 0;
2565 }
2566
2567 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2568                                         u64 mcg_cap)
2569 {
2570         int r;
2571         unsigned bank_num = mcg_cap & 0xff, bank;
2572
2573         r = -EINVAL;
2574         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2575                 goto out;
2576         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2577                 goto out;
2578         r = 0;
2579         vcpu->arch.mcg_cap = mcg_cap;
2580         /* Init IA32_MCG_CTL to all 1s */
2581         if (mcg_cap & MCG_CTL_P)
2582                 vcpu->arch.mcg_ctl = ~(u64)0;
2583         /* Init IA32_MCi_CTL to all 1s */
2584         for (bank = 0; bank < bank_num; bank++)
2585                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2586 out:
2587         return r;
2588 }
2589
2590 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2591                                       struct kvm_x86_mce *mce)
2592 {
2593         u64 mcg_cap = vcpu->arch.mcg_cap;
2594         unsigned bank_num = mcg_cap & 0xff;
2595         u64 *banks = vcpu->arch.mce_banks;
2596
2597         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2598                 return -EINVAL;
2599         /*
2600          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2601          * reporting is disabled
2602          */
2603         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2604             vcpu->arch.mcg_ctl != ~(u64)0)
2605                 return 0;
2606         banks += 4 * mce->bank;
2607         /*
2608          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2609          * reporting is disabled for the bank
2610          */
2611         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2612                 return 0;
2613         if (mce->status & MCI_STATUS_UC) {
2614                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2615                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2616                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2617                         return 0;
2618                 }
2619                 if (banks[1] & MCI_STATUS_VAL)
2620                         mce->status |= MCI_STATUS_OVER;
2621                 banks[2] = mce->addr;
2622                 banks[3] = mce->misc;
2623                 vcpu->arch.mcg_status = mce->mcg_status;
2624                 banks[1] = mce->status;
2625                 kvm_queue_exception(vcpu, MC_VECTOR);
2626         } else if (!(banks[1] & MCI_STATUS_VAL)
2627                    || !(banks[1] & MCI_STATUS_UC)) {
2628                 if (banks[1] & MCI_STATUS_VAL)
2629                         mce->status |= MCI_STATUS_OVER;
2630                 banks[2] = mce->addr;
2631                 banks[3] = mce->misc;
2632                 banks[1] = mce->status;
2633         } else
2634                 banks[1] |= MCI_STATUS_OVER;
2635         return 0;
2636 }
2637
2638 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2639                                                struct kvm_vcpu_events *events)
2640 {
2641         events->exception.injected =
2642                 vcpu->arch.exception.pending &&
2643                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2644         events->exception.nr = vcpu->arch.exception.nr;
2645         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2646         events->exception.pad = 0;
2647         events->exception.error_code = vcpu->arch.exception.error_code;
2648
2649         events->interrupt.injected =
2650                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2651         events->interrupt.nr = vcpu->arch.interrupt.nr;
2652         events->interrupt.soft = 0;
2653         events->interrupt.shadow =
2654                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2655                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2656
2657         events->nmi.injected = vcpu->arch.nmi_injected;
2658         events->nmi.pending = vcpu->arch.nmi_pending;
2659         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2660         events->nmi.pad = 0;
2661
2662         events->sipi_vector = vcpu->arch.sipi_vector;
2663
2664         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2665                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2666                          | KVM_VCPUEVENT_VALID_SHADOW);
2667         memset(&events->reserved, 0, sizeof(events->reserved));
2668 }
2669
2670 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2671                                               struct kvm_vcpu_events *events)
2672 {
2673         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2674                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2675                               | KVM_VCPUEVENT_VALID_SHADOW))
2676                 return -EINVAL;
2677
2678         vcpu->arch.exception.pending = events->exception.injected;
2679         vcpu->arch.exception.nr = events->exception.nr;
2680         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2681         vcpu->arch.exception.error_code = events->exception.error_code;
2682
2683         vcpu->arch.interrupt.pending = events->interrupt.injected;
2684         vcpu->arch.interrupt.nr = events->interrupt.nr;
2685         vcpu->arch.interrupt.soft = events->interrupt.soft;
2686         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2687                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2688                                                   events->interrupt.shadow);
2689
2690         vcpu->arch.nmi_injected = events->nmi.injected;
2691         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2692                 vcpu->arch.nmi_pending = events->nmi.pending;
2693         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2694
2695         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2696                 vcpu->arch.sipi_vector = events->sipi_vector;
2697
2698         kvm_make_request(KVM_REQ_EVENT, vcpu);
2699
2700         return 0;
2701 }
2702
2703 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2704                                              struct kvm_debugregs *dbgregs)
2705 {
2706         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2707         dbgregs->dr6 = vcpu->arch.dr6;
2708         dbgregs->dr7 = vcpu->arch.dr7;
2709         dbgregs->flags = 0;
2710         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2711 }
2712
2713 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2714                                             struct kvm_debugregs *dbgregs)
2715 {
2716         if (dbgregs->flags)
2717                 return -EINVAL;
2718
2719         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2720         vcpu->arch.dr6 = dbgregs->dr6;
2721         vcpu->arch.dr7 = dbgregs->dr7;
2722
2723         return 0;
2724 }
2725
2726 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2727                                          struct kvm_xsave *guest_xsave)
2728 {
2729         if (cpu_has_xsave)
2730                 memcpy(guest_xsave->region,
2731                         &vcpu->arch.guest_fpu.state->xsave,
2732                         xstate_size);
2733         else {
2734                 memcpy(guest_xsave->region,
2735                         &vcpu->arch.guest_fpu.state->fxsave,
2736                         sizeof(struct i387_fxsave_struct));
2737                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2738                         XSTATE_FPSSE;
2739         }
2740 }
2741
2742 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2743                                         struct kvm_xsave *guest_xsave)
2744 {
2745         u64 xstate_bv =
2746                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2747
2748         if (cpu_has_xsave)
2749                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2750                         guest_xsave->region, xstate_size);
2751         else {
2752                 if (xstate_bv & ~XSTATE_FPSSE)
2753                         return -EINVAL;
2754                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2755                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2756         }
2757         return 0;
2758 }
2759
2760 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2761                                         struct kvm_xcrs *guest_xcrs)
2762 {
2763         if (!cpu_has_xsave) {
2764                 guest_xcrs->nr_xcrs = 0;
2765                 return;
2766         }
2767
2768         guest_xcrs->nr_xcrs = 1;
2769         guest_xcrs->flags = 0;
2770         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2771         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2772 }
2773
2774 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2775                                        struct kvm_xcrs *guest_xcrs)
2776 {
2777         int i, r = 0;
2778
2779         if (!cpu_has_xsave)
2780                 return -EINVAL;
2781
2782         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2783                 return -EINVAL;
2784
2785         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2786                 /* Only support XCR0 currently */
2787                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2788                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2789                                 guest_xcrs->xcrs[0].value);
2790                         break;
2791                 }
2792         if (r)
2793                 r = -EINVAL;
2794         return r;
2795 }
2796
2797 long kvm_arch_vcpu_ioctl(struct file *filp,
2798                          unsigned int ioctl, unsigned long arg)
2799 {
2800         struct kvm_vcpu *vcpu = filp->private_data;
2801         void __user *argp = (void __user *)arg;
2802         int r;
2803         union {
2804                 struct kvm_lapic_state *lapic;
2805                 struct kvm_xsave *xsave;
2806                 struct kvm_xcrs *xcrs;
2807                 void *buffer;
2808         } u;
2809
2810         u.buffer = NULL;
2811         switch (ioctl) {
2812         case KVM_GET_LAPIC: {
2813                 r = -EINVAL;
2814                 if (!vcpu->arch.apic)
2815                         goto out;
2816                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2817
2818                 r = -ENOMEM;
2819                 if (!u.lapic)
2820                         goto out;
2821                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2822                 if (r)
2823                         goto out;
2824                 r = -EFAULT;
2825                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2826                         goto out;
2827                 r = 0;
2828                 break;
2829         }
2830         case KVM_SET_LAPIC: {
2831                 r = -EINVAL;
2832                 if (!vcpu->arch.apic)
2833                         goto out;
2834                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2835                 r = -ENOMEM;
2836                 if (!u.lapic)
2837                         goto out;
2838                 r = -EFAULT;
2839                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2840                         goto out;
2841                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2842                 if (r)
2843                         goto out;
2844                 r = 0;
2845                 break;
2846         }
2847         case KVM_INTERRUPT: {
2848                 struct kvm_interrupt irq;
2849
2850                 r = -EFAULT;
2851                 if (copy_from_user(&irq, argp, sizeof irq))
2852                         goto out;
2853                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2854                 if (r)
2855                         goto out;
2856                 r = 0;
2857                 break;
2858         }
2859         case KVM_NMI: {
2860                 r = kvm_vcpu_ioctl_nmi(vcpu);
2861                 if (r)
2862                         goto out;
2863                 r = 0;
2864                 break;
2865         }
2866         case KVM_SET_CPUID: {
2867                 struct kvm_cpuid __user *cpuid_arg = argp;
2868                 struct kvm_cpuid cpuid;
2869
2870                 r = -EFAULT;
2871                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2872                         goto out;
2873                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2874                 if (r)
2875                         goto out;
2876                 break;
2877         }
2878         case KVM_SET_CPUID2: {
2879                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2880                 struct kvm_cpuid2 cpuid;
2881
2882                 r = -EFAULT;
2883                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2884                         goto out;
2885                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2886                                               cpuid_arg->entries);
2887                 if (r)
2888                         goto out;
2889                 break;
2890         }
2891         case KVM_GET_CPUID2: {
2892                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2893                 struct kvm_cpuid2 cpuid;
2894
2895                 r = -EFAULT;
2896                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2897                         goto out;
2898                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2899                                               cpuid_arg->entries);
2900                 if (r)
2901                         goto out;
2902                 r = -EFAULT;
2903                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2904                         goto out;
2905                 r = 0;
2906                 break;
2907         }
2908         case KVM_GET_MSRS:
2909                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2910                 break;
2911         case KVM_SET_MSRS:
2912                 r = msr_io(vcpu, argp, do_set_msr, 0);
2913                 break;
2914         case KVM_TPR_ACCESS_REPORTING: {
2915                 struct kvm_tpr_access_ctl tac;
2916
2917                 r = -EFAULT;
2918                 if (copy_from_user(&tac, argp, sizeof tac))
2919                         goto out;
2920                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2921                 if (r)
2922                         goto out;
2923                 r = -EFAULT;
2924                 if (copy_to_user(argp, &tac, sizeof tac))
2925                         goto out;
2926                 r = 0;
2927                 break;
2928         };
2929         case KVM_SET_VAPIC_ADDR: {
2930                 struct kvm_vapic_addr va;
2931
2932                 r = -EINVAL;
2933                 if (!irqchip_in_kernel(vcpu->kvm))
2934                         goto out;
2935                 r = -EFAULT;
2936                 if (copy_from_user(&va, argp, sizeof va))
2937                         goto out;
2938                 r = 0;
2939                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2940                 break;
2941         }
2942         case KVM_X86_SETUP_MCE: {
2943                 u64 mcg_cap;
2944
2945                 r = -EFAULT;
2946                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2947                         goto out;
2948                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2949                 break;
2950         }
2951         case KVM_X86_SET_MCE: {
2952                 struct kvm_x86_mce mce;
2953
2954                 r = -EFAULT;
2955                 if (copy_from_user(&mce, argp, sizeof mce))
2956                         goto out;
2957                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2958                 break;
2959         }
2960         case KVM_GET_VCPU_EVENTS: {
2961                 struct kvm_vcpu_events events;
2962
2963                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2964
2965                 r = -EFAULT;
2966                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2967                         break;
2968                 r = 0;
2969                 break;
2970         }
2971         case KVM_SET_VCPU_EVENTS: {
2972                 struct kvm_vcpu_events events;
2973
2974                 r = -EFAULT;
2975                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2976                         break;
2977
2978                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2979                 break;
2980         }
2981         case KVM_GET_DEBUGREGS: {
2982                 struct kvm_debugregs dbgregs;
2983
2984                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2985
2986                 r = -EFAULT;
2987                 if (copy_to_user(argp, &dbgregs,
2988                                  sizeof(struct kvm_debugregs)))
2989                         break;
2990                 r = 0;
2991                 break;
2992         }
2993         case KVM_SET_DEBUGREGS: {
2994                 struct kvm_debugregs dbgregs;
2995
2996                 r = -EFAULT;
2997                 if (copy_from_user(&dbgregs, argp,
2998                                    sizeof(struct kvm_debugregs)))
2999                         break;
3000
3001                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3002                 break;
3003         }
3004         case KVM_GET_XSAVE: {
3005                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3006                 r = -ENOMEM;
3007                 if (!u.xsave)
3008                         break;
3009
3010                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3011
3012                 r = -EFAULT;
3013                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3014                         break;
3015                 r = 0;
3016                 break;
3017         }
3018         case KVM_SET_XSAVE: {
3019                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3020                 r = -ENOMEM;
3021                 if (!u.xsave)
3022                         break;
3023
3024                 r = -EFAULT;
3025                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3026                         break;
3027
3028                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3029                 break;
3030         }
3031         case KVM_GET_XCRS: {
3032                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3033                 r = -ENOMEM;
3034                 if (!u.xcrs)
3035                         break;
3036
3037                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3038
3039                 r = -EFAULT;
3040                 if (copy_to_user(argp, u.xcrs,
3041                                  sizeof(struct kvm_xcrs)))
3042                         break;
3043                 r = 0;
3044                 break;
3045         }
3046         case KVM_SET_XCRS: {
3047                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3048                 r = -ENOMEM;
3049                 if (!u.xcrs)
3050                         break;
3051
3052                 r = -EFAULT;
3053                 if (copy_from_user(u.xcrs, argp,
3054                                    sizeof(struct kvm_xcrs)))
3055                         break;
3056
3057                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3058                 break;
3059         }
3060         case KVM_SET_TSC_KHZ: {
3061                 u32 user_tsc_khz;
3062
3063                 r = -EINVAL;
3064                 if (!kvm_has_tsc_control)
3065                         break;
3066
3067                 user_tsc_khz = (u32)arg;
3068
3069                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3070                         goto out;
3071
3072                 kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
3073
3074                 r = 0;
3075                 goto out;
3076         }
3077         case KVM_GET_TSC_KHZ: {
3078                 r = -EIO;
3079                 if (check_tsc_unstable())
3080                         goto out;
3081
3082                 r = vcpu_tsc_khz(vcpu);
3083
3084                 goto out;
3085         }
3086         default:
3087                 r = -EINVAL;
3088         }
3089 out:
3090         kfree(u.buffer);
3091         return r;
3092 }
3093
3094 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3095 {
3096         int ret;
3097
3098         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3099                 return -1;
3100         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3101         return ret;
3102 }
3103
3104 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3105                                               u64 ident_addr)
3106 {
3107         kvm->arch.ept_identity_map_addr = ident_addr;
3108         return 0;
3109 }
3110
3111 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3112                                           u32 kvm_nr_mmu_pages)
3113 {
3114         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3115                 return -EINVAL;
3116
3117         mutex_lock(&kvm->slots_lock);
3118         spin_lock(&kvm->mmu_lock);
3119
3120         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3121         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3122
3123         spin_unlock(&kvm->mmu_lock);
3124         mutex_unlock(&kvm->slots_lock);
3125         return 0;
3126 }
3127
3128 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3129 {
3130         return kvm->arch.n_max_mmu_pages;
3131 }
3132
3133 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3134 {
3135         int r;
3136
3137         r = 0;
3138         switch (chip->chip_id) {
3139         case KVM_IRQCHIP_PIC_MASTER:
3140                 memcpy(&chip->chip.pic,
3141                         &pic_irqchip(kvm)->pics[0],
3142                         sizeof(struct kvm_pic_state));
3143                 break;
3144         case KVM_IRQCHIP_PIC_SLAVE:
3145                 memcpy(&chip->chip.pic,
3146                         &pic_irqchip(kvm)->pics[1],
3147                         sizeof(struct kvm_pic_state));
3148                 break;
3149         case KVM_IRQCHIP_IOAPIC:
3150                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3151                 break;
3152         default:
3153                 r = -EINVAL;
3154                 break;
3155         }
3156         return r;
3157 }
3158
3159 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3160 {
3161         int r;
3162
3163         r = 0;
3164         switch (chip->chip_id) {
3165         case KVM_IRQCHIP_PIC_MASTER:
3166                 spin_lock(&pic_irqchip(kvm)->lock);
3167                 memcpy(&pic_irqchip(kvm)->pics[0],
3168                         &chip->chip.pic,
3169                         sizeof(struct kvm_pic_state));
3170                 spin_unlock(&pic_irqchip(kvm)->lock);
3171                 break;
3172         case KVM_IRQCHIP_PIC_SLAVE:
3173                 spin_lock(&pic_irqchip(kvm)->lock);
3174                 memcpy(&pic_irqchip(kvm)->pics[1],
3175                         &chip->chip.pic,
3176                         sizeof(struct kvm_pic_state));
3177                 spin_unlock(&pic_irqchip(kvm)->lock);
3178                 break;
3179         case KVM_IRQCHIP_IOAPIC:
3180                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3181                 break;
3182         default:
3183                 r = -EINVAL;
3184                 break;
3185         }
3186         kvm_pic_update_irq(pic_irqchip(kvm));
3187         return r;
3188 }
3189
3190 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3191 {
3192         int r = 0;
3193
3194         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3195         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3196         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3197         return r;
3198 }
3199
3200 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3201 {
3202         int r = 0;
3203
3204         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3205         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3206         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3207         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3208         return r;
3209 }
3210
3211 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3212 {
3213         int r = 0;
3214
3215         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3216         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3217                 sizeof(ps->channels));
3218         ps->flags = kvm->arch.vpit->pit_state.flags;
3219         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3220         memset(&ps->reserved, 0, sizeof(ps->reserved));
3221         return r;
3222 }
3223
3224 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3225 {
3226         int r = 0, start = 0;
3227         u32 prev_legacy, cur_legacy;
3228         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3229         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3230         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3231         if (!prev_legacy && cur_legacy)
3232                 start = 1;
3233         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3234                sizeof(kvm->arch.vpit->pit_state.channels));
3235         kvm->arch.vpit->pit_state.flags = ps->flags;
3236         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3237         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3238         return r;
3239 }
3240
3241 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3242                                  struct kvm_reinject_control *control)
3243 {
3244         if (!kvm->arch.vpit)
3245                 return -ENXIO;
3246         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3247         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3248         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3249         return 0;
3250 }
3251
3252 /*
3253  * Get (and clear) the dirty memory log for a memory slot.
3254  */
3255 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3256                                       struct kvm_dirty_log *log)
3257 {
3258         int r, i;
3259         struct kvm_memory_slot *memslot;
3260         unsigned long n;
3261         unsigned long is_dirty = 0;
3262
3263         mutex_lock(&kvm->slots_lock);
3264
3265         r = -EINVAL;
3266         if (log->slot >= KVM_MEMORY_SLOTS)
3267                 goto out;
3268
3269         memslot = &kvm->memslots->memslots[log->slot];
3270         r = -ENOENT;
3271         if (!memslot->dirty_bitmap)
3272                 goto out;
3273
3274         n = kvm_dirty_bitmap_bytes(memslot);
3275
3276         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3277                 is_dirty = memslot->dirty_bitmap[i];
3278
3279         /* If nothing is dirty, don't bother messing with page tables. */
3280         if (is_dirty) {
3281                 struct kvm_memslots *slots, *old_slots;
3282                 unsigned long *dirty_bitmap;
3283
3284                 dirty_bitmap = memslot->dirty_bitmap_head;
3285                 if (memslot->dirty_bitmap == dirty_bitmap)
3286                         dirty_bitmap += n / sizeof(long);
3287                 memset(dirty_bitmap, 0, n);
3288
3289                 r = -ENOMEM;
3290                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3291                 if (!slots)
3292                         goto out;
3293                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3294                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3295                 slots->generation++;
3296
3297                 old_slots = kvm->memslots;
3298                 rcu_assign_pointer(kvm->memslots, slots);
3299                 synchronize_srcu_expedited(&kvm->srcu);
3300                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3301                 kfree(old_slots);
3302
3303                 spin_lock(&kvm->mmu_lock);
3304                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3305                 spin_unlock(&kvm->mmu_lock);
3306
3307                 r = -EFAULT;
3308                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3309                         goto out;
3310         } else {
3311                 r = -EFAULT;
3312                 if (clear_user(log->dirty_bitmap, n))
3313                         goto out;
3314         }
3315
3316         r = 0;
3317 out:
3318         mutex_unlock(&kvm->slots_lock);
3319         return r;
3320 }
3321
3322 long kvm_arch_vm_ioctl(struct file *filp,
3323                        unsigned int ioctl, unsigned long arg)
3324 {
3325         struct kvm *kvm = filp->private_data;
3326         void __user *argp = (void __user *)arg;
3327         int r = -ENOTTY;
3328         /*
3329          * This union makes it completely explicit to gcc-3.x
3330          * that these two variables' stack usage should be
3331          * combined, not added together.
3332          */
3333         union {
3334                 struct kvm_pit_state ps;
3335                 struct kvm_pit_state2 ps2;
3336                 struct kvm_pit_config pit_config;
3337         } u;
3338
3339         switch (ioctl) {
3340         case KVM_SET_TSS_ADDR:
3341                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3342                 if (r < 0)
3343                         goto out;
3344                 break;
3345         case KVM_SET_IDENTITY_MAP_ADDR: {
3346                 u64 ident_addr;
3347
3348                 r = -EFAULT;
3349                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3350                         goto out;
3351                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3352                 if (r < 0)
3353                         goto out;
3354                 break;
3355         }
3356         case KVM_SET_NR_MMU_PAGES:
3357                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3358                 if (r)
3359                         goto out;
3360                 break;
3361         case KVM_GET_NR_MMU_PAGES:
3362                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3363                 break;
3364         case KVM_CREATE_IRQCHIP: {
3365                 struct kvm_pic *vpic;
3366
3367                 mutex_lock(&kvm->lock);
3368                 r = -EEXIST;
3369                 if (kvm->arch.vpic)
3370                         goto create_irqchip_unlock;
3371                 r = -ENOMEM;
3372                 vpic = kvm_create_pic(kvm);
3373                 if (vpic) {
3374                         r = kvm_ioapic_init(kvm);
3375                         if (r) {
3376                                 mutex_lock(&kvm->slots_lock);
3377                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3378                                                           &vpic->dev);
3379                                 mutex_unlock(&kvm->slots_lock);
3380                                 kfree(vpic);
3381                                 goto create_irqchip_unlock;
3382                         }
3383                 } else
3384                         goto create_irqchip_unlock;
3385                 smp_wmb();
3386                 kvm->arch.vpic = vpic;
3387                 smp_wmb();
3388                 r = kvm_setup_default_irq_routing(kvm);
3389                 if (r) {
3390                         mutex_lock(&kvm->slots_lock);
3391                         mutex_lock(&kvm->irq_lock);
3392                         kvm_ioapic_destroy(kvm);
3393                         kvm_destroy_pic(kvm);
3394                         mutex_unlock(&kvm->irq_lock);
3395                         mutex_unlock(&kvm->slots_lock);
3396                 }
3397         create_irqchip_unlock:
3398                 mutex_unlock(&kvm->lock);
3399                 break;
3400         }
3401         case KVM_CREATE_PIT:
3402                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3403                 goto create_pit;
3404         case KVM_CREATE_PIT2:
3405                 r = -EFAULT;
3406                 if (copy_from_user(&u.pit_config, argp,
3407                                    sizeof(struct kvm_pit_config)))
3408                         goto out;
3409         create_pit:
3410                 mutex_lock(&kvm->slots_lock);
3411                 r = -EEXIST;
3412                 if (kvm->arch.vpit)
3413                         goto create_pit_unlock;
3414                 r = -ENOMEM;
3415                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3416                 if (kvm->arch.vpit)
3417                         r = 0;
3418         create_pit_unlock:
3419                 mutex_unlock(&kvm->slots_lock);
3420                 break;
3421         case KVM_IRQ_LINE_STATUS:
3422         case KVM_IRQ_LINE: {
3423                 struct kvm_irq_level irq_event;
3424
3425                 r = -EFAULT;
3426                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3427                         goto out;
3428                 r = -ENXIO;
3429                 if (irqchip_in_kernel(kvm)) {
3430                         __s32 status;
3431                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3432                                         irq_event.irq, irq_event.level);
3433                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3434                                 r = -EFAULT;
3435                                 irq_event.status = status;
3436                                 if (copy_to_user(argp, &irq_event,
3437                                                         sizeof irq_event))
3438                                         goto out;
3439                         }
3440                         r = 0;
3441                 }
3442                 break;
3443         }
3444         case KVM_GET_IRQCHIP: {
3445                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3446                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3447
3448                 r = -ENOMEM;
3449                 if (!chip)
3450                         goto out;
3451                 r = -EFAULT;
3452                 if (copy_from_user(chip, argp, sizeof *chip))
3453                         goto get_irqchip_out;
3454                 r = -ENXIO;
3455                 if (!irqchip_in_kernel(kvm))
3456                         goto get_irqchip_out;
3457                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3458                 if (r)
3459                         goto get_irqchip_out;
3460                 r = -EFAULT;
3461                 if (copy_to_user(argp, chip, sizeof *chip))
3462                         goto get_irqchip_out;
3463                 r = 0;
3464         get_irqchip_out:
3465                 kfree(chip);
3466                 if (r)
3467                         goto out;
3468                 break;
3469         }
3470         case KVM_SET_IRQCHIP: {
3471                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3472                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3473
3474                 r = -ENOMEM;
3475                 if (!chip)
3476                         goto out;
3477                 r = -EFAULT;
3478                 if (copy_from_user(chip, argp, sizeof *chip))
3479                         goto set_irqchip_out;
3480                 r = -ENXIO;
3481                 if (!irqchip_in_kernel(kvm))
3482                         goto set_irqchip_out;
3483                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3484                 if (r)
3485                         goto set_irqchip_out;
3486                 r = 0;
3487         set_irqchip_out:
3488                 kfree(chip);
3489                 if (r)
3490                         goto out;
3491                 break;
3492         }
3493         case KVM_GET_PIT: {
3494                 r = -EFAULT;
3495                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3496                         goto out;
3497                 r = -ENXIO;
3498                 if (!kvm->arch.vpit)
3499                         goto out;
3500                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3501                 if (r)
3502                         goto out;
3503                 r = -EFAULT;
3504                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3505                         goto out;
3506                 r = 0;
3507                 break;
3508         }
3509         case KVM_SET_PIT: {
3510                 r = -EFAULT;
3511                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3512                         goto out;
3513                 r = -ENXIO;
3514                 if (!kvm->arch.vpit)
3515                         goto out;
3516                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3517                 if (r)
3518                         goto out;
3519                 r = 0;
3520                 break;
3521         }
3522         case KVM_GET_PIT2: {
3523                 r = -ENXIO;
3524                 if (!kvm->arch.vpit)
3525                         goto out;
3526                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3527                 if (r)
3528                         goto out;
3529                 r = -EFAULT;
3530                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3531                         goto out;
3532                 r = 0;
3533                 break;
3534         }
3535         case KVM_SET_PIT2: {
3536                 r = -EFAULT;
3537                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3538                         goto out;
3539                 r = -ENXIO;
3540                 if (!kvm->arch.vpit)
3541                         goto out;
3542                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3543                 if (r)
3544                         goto out;
3545                 r = 0;
3546                 break;
3547         }
3548         case KVM_REINJECT_CONTROL: {
3549                 struct kvm_reinject_control control;
3550                 r =  -EFAULT;
3551                 if (copy_from_user(&control, argp, sizeof(control)))
3552                         goto out;
3553                 r = kvm_vm_ioctl_reinject(kvm, &control);
3554                 if (r)
3555                         goto out;
3556                 r = 0;
3557                 break;
3558         }
3559         case KVM_XEN_HVM_CONFIG: {
3560                 r = -EFAULT;
3561                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3562                                    sizeof(struct kvm_xen_hvm_config)))
3563                         goto out;
3564                 r = -EINVAL;
3565                 if (kvm->arch.xen_hvm_config.flags)
3566                         goto out;
3567                 r = 0;
3568                 break;
3569         }
3570         case KVM_SET_CLOCK: {
3571                 struct kvm_clock_data user_ns;
3572                 u64 now_ns;
3573                 s64 delta;
3574
3575                 r = -EFAULT;
3576                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3577                         goto out;
3578
3579                 r = -EINVAL;
3580                 if (user_ns.flags)
3581                         goto out;
3582
3583                 r = 0;
3584                 local_irq_disable();
3585                 now_ns = get_kernel_ns();
3586                 delta = user_ns.clock - now_ns;
3587                 local_irq_enable();
3588                 kvm->arch.kvmclock_offset = delta;
3589                 break;
3590         }
3591         case KVM_GET_CLOCK: {
3592                 struct kvm_clock_data user_ns;
3593                 u64 now_ns;
3594
3595                 local_irq_disable();
3596                 now_ns = get_kernel_ns();
3597                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3598                 local_irq_enable();
3599                 user_ns.flags = 0;
3600                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3601
3602                 r = -EFAULT;
3603                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3604                         goto out;
3605                 r = 0;
3606                 break;
3607         }
3608
3609         default:
3610                 ;
3611         }
3612 out:
3613         return r;
3614 }
3615
3616 static void kvm_init_msr_list(void)
3617 {
3618         u32 dummy[2];
3619         unsigned i, j;
3620
3621         /* skip the first msrs in the list. KVM-specific */
3622         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3623                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3624                         continue;
3625                 if (j < i)
3626                         msrs_to_save[j] = msrs_to_save[i];
3627                 j++;
3628         }
3629         num_msrs_to_save = j;
3630 }
3631
3632 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3633                            const void *v)
3634 {
3635         int handled = 0;
3636         int n;
3637
3638         do {
3639                 n = min(len, 8);
3640                 if (!(vcpu->arch.apic &&
3641                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3642                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3643                         break;
3644                 handled += n;
3645                 addr += n;
3646                 len -= n;
3647                 v += n;
3648         } while (len);
3649
3650         return handled;
3651 }
3652
3653 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3654 {
3655         int handled = 0;
3656         int n;
3657
3658         do {
3659                 n = min(len, 8);
3660                 if (!(vcpu->arch.apic &&
3661                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3662                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3663                         break;
3664                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3665                 handled += n;
3666                 addr += n;
3667                 len -= n;
3668                 v += n;
3669         } while (len);
3670
3671         return handled;
3672 }
3673
3674 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3675                         struct kvm_segment *var, int seg)
3676 {
3677         kvm_x86_ops->set_segment(vcpu, var, seg);
3678 }
3679
3680 void kvm_get_segment(struct kvm_vcpu *vcpu,
3681                      struct kvm_segment *var, int seg)
3682 {
3683         kvm_x86_ops->get_segment(vcpu, var, seg);
3684 }
3685
3686 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3687 {
3688         return gpa;
3689 }
3690
3691 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3692 {
3693         gpa_t t_gpa;
3694         struct x86_exception exception;
3695
3696         BUG_ON(!mmu_is_nested(vcpu));
3697
3698         /* NPT walks are always user-walks */
3699         access |= PFERR_USER_MASK;
3700         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3701
3702         return t_gpa;
3703 }
3704
3705 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3706                               struct x86_exception *exception)
3707 {
3708         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3709         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3710 }
3711
3712  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3713                                 struct x86_exception *exception)
3714 {
3715         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3716         access |= PFERR_FETCH_MASK;
3717         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3718 }
3719
3720 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3721                                struct x86_exception *exception)
3722 {
3723         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3724         access |= PFERR_WRITE_MASK;
3725         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3726 }
3727
3728 /* uses this to access any guest's mapped memory without checking CPL */
3729 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3730                                 struct x86_exception *exception)
3731 {
3732         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3733 }
3734
3735 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3736                                       struct kvm_vcpu *vcpu, u32 access,
3737                                       struct x86_exception *exception)
3738 {
3739         void *data = val;
3740         int r = X86EMUL_CONTINUE;
3741
3742         while (bytes) {
3743                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3744                                                             exception);
3745                 unsigned offset = addr & (PAGE_SIZE-1);
3746                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3747                 int ret;
3748
3749                 if (gpa == UNMAPPED_GVA)
3750                         return X86EMUL_PROPAGATE_FAULT;
3751                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3752                 if (ret < 0) {
3753                         r = X86EMUL_IO_NEEDED;
3754                         goto out;
3755                 }
3756
3757                 bytes -= toread;
3758                 data += toread;
3759                 addr += toread;
3760         }
3761 out:
3762         return r;
3763 }
3764
3765 /* used for instruction fetching */
3766 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3767                                 gva_t addr, void *val, unsigned int bytes,
3768                                 struct x86_exception *exception)
3769 {
3770         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3771         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3772
3773         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3774                                           access | PFERR_FETCH_MASK,
3775                                           exception);
3776 }
3777
3778 static int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3779                                gva_t addr, void *val, unsigned int bytes,
3780                                struct x86_exception *exception)
3781 {
3782         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3783         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3784
3785         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3786                                           exception);
3787 }
3788
3789 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3790                                       gva_t addr, void *val, unsigned int bytes,
3791                                       struct x86_exception *exception)
3792 {
3793         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3794         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3795 }
3796
3797 static int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3798                                        gva_t addr, void *val,
3799                                        unsigned int bytes,
3800                                        struct x86_exception *exception)
3801 {
3802         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3803         void *data = val;
3804         int r = X86EMUL_CONTINUE;
3805
3806         while (bytes) {
3807                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3808                                                              PFERR_WRITE_MASK,
3809                                                              exception);
3810                 unsigned offset = addr & (PAGE_SIZE-1);
3811                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3812                 int ret;
3813
3814                 if (gpa == UNMAPPED_GVA)
3815                         return X86EMUL_PROPAGATE_FAULT;
3816                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3817                 if (ret < 0) {
3818                         r = X86EMUL_IO_NEEDED;
3819                         goto out;
3820                 }
3821
3822                 bytes -= towrite;
3823                 data += towrite;
3824                 addr += towrite;
3825         }
3826 out:
3827         return r;
3828 }
3829
3830 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3831                                   unsigned long addr,
3832                                   void *val,
3833                                   unsigned int bytes,
3834                                   struct x86_exception *exception)
3835 {
3836         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3837         gpa_t                 gpa;
3838         int handled;
3839
3840         if (vcpu->mmio_read_completed) {
3841                 memcpy(val, vcpu->mmio_data, bytes);
3842                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3843                                vcpu->mmio_phys_addr, *(u64 *)val);
3844                 vcpu->mmio_read_completed = 0;
3845                 return X86EMUL_CONTINUE;
3846         }
3847
3848         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
3849
3850         if (gpa == UNMAPPED_GVA)
3851                 return X86EMUL_PROPAGATE_FAULT;
3852
3853         /* For APIC access vmexit */
3854         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3855                 goto mmio;
3856
3857         if (kvm_read_guest_virt(ctxt, addr, val, bytes, exception)
3858             == X86EMUL_CONTINUE)
3859                 return X86EMUL_CONTINUE;
3860
3861 mmio:
3862         /*
3863          * Is this MMIO handled locally?
3864          */
3865         handled = vcpu_mmio_read(vcpu, gpa, bytes, val);
3866
3867         if (handled == bytes)
3868                 return X86EMUL_CONTINUE;
3869
3870         gpa += handled;
3871         bytes -= handled;
3872         val += handled;
3873
3874         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3875
3876         vcpu->mmio_needed = 1;
3877         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3878         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3879         vcpu->mmio_size = bytes;
3880         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3881         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3882         vcpu->mmio_index = 0;
3883
3884         return X86EMUL_IO_NEEDED;
3885 }
3886
3887 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3888                         const void *val, int bytes)
3889 {
3890         int ret;
3891
3892         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3893         if (ret < 0)
3894                 return 0;
3895         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3896         return 1;
3897 }
3898
3899 static int emulator_write_emulated_onepage(unsigned long addr,
3900                                            const void *val,
3901                                            unsigned int bytes,
3902                                            struct x86_exception *exception,
3903                                            struct kvm_vcpu *vcpu)
3904 {
3905         gpa_t                 gpa;
3906         int handled;
3907
3908         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
3909
3910         if (gpa == UNMAPPED_GVA)
3911                 return X86EMUL_PROPAGATE_FAULT;
3912
3913         /* For APIC access vmexit */
3914         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3915                 goto mmio;
3916
3917         if (emulator_write_phys(vcpu, gpa, val, bytes))
3918                 return X86EMUL_CONTINUE;
3919
3920 mmio:
3921         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3922         /*
3923          * Is this MMIO handled locally?
3924          */
3925         handled = vcpu_mmio_write(vcpu, gpa, bytes, val);
3926         if (handled == bytes)
3927                 return X86EMUL_CONTINUE;
3928
3929         gpa += handled;
3930         bytes -= handled;
3931         val += handled;
3932
3933         vcpu->mmio_needed = 1;
3934         memcpy(vcpu->mmio_data, val, bytes);
3935         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3936         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3937         vcpu->mmio_size = bytes;
3938         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3939         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3940         memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3941         vcpu->mmio_index = 0;
3942
3943         return X86EMUL_CONTINUE;
3944 }
3945
3946 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3947                             unsigned long addr,
3948                             const void *val,
3949                             unsigned int bytes,
3950                             struct x86_exception *exception)
3951 {
3952         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3953
3954         /* Crossing a page boundary? */
3955         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3956                 int rc, now;
3957
3958                 now = -addr & ~PAGE_MASK;
3959                 rc = emulator_write_emulated_onepage(addr, val, now, exception,
3960                                                      vcpu);
3961                 if (rc != X86EMUL_CONTINUE)
3962                         return rc;
3963                 addr += now;
3964                 val += now;
3965                 bytes -= now;
3966         }
3967         return emulator_write_emulated_onepage(addr, val, bytes, exception,
3968                                                vcpu);
3969 }
3970
3971 #define CMPXCHG_TYPE(t, ptr, old, new) \
3972         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3973
3974 #ifdef CONFIG_X86_64
3975 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3976 #else
3977 #  define CMPXCHG64(ptr, old, new) \
3978         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3979 #endif
3980
3981 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3982                                      unsigned long addr,
3983                                      const void *old,
3984                                      const void *new,
3985                                      unsigned int bytes,
3986                                      struct x86_exception *exception)
3987 {
3988         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3989         gpa_t gpa;
3990         struct page *page;
3991         char *kaddr;
3992         bool exchanged;
3993
3994         /* guests cmpxchg8b have to be emulated atomically */
3995         if (bytes > 8 || (bytes & (bytes - 1)))
3996                 goto emul_write;
3997
3998         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3999
4000         if (gpa == UNMAPPED_GVA ||
4001             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4002                 goto emul_write;
4003
4004         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4005                 goto emul_write;
4006
4007         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4008         if (is_error_page(page)) {
4009                 kvm_release_page_clean(page);
4010                 goto emul_write;
4011         }
4012
4013         kaddr = kmap_atomic(page, KM_USER0);
4014         kaddr += offset_in_page(gpa);
4015         switch (bytes) {
4016         case 1:
4017                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4018                 break;
4019         case 2:
4020                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4021                 break;
4022         case 4:
4023                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4024                 break;
4025         case 8:
4026                 exchanged = CMPXCHG64(kaddr, old, new);
4027                 break;
4028         default:
4029                 BUG();
4030         }
4031         kunmap_atomic(kaddr, KM_USER0);
4032         kvm_release_page_dirty(page);
4033
4034         if (!exchanged)
4035                 return X86EMUL_CMPXCHG_FAILED;
4036
4037         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
4038
4039         return X86EMUL_CONTINUE;
4040
4041 emul_write:
4042         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4043
4044         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4045 }
4046
4047 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4048 {
4049         /* TODO: String I/O for in kernel device */
4050         int r;
4051
4052         if (vcpu->arch.pio.in)
4053                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4054                                     vcpu->arch.pio.size, pd);
4055         else
4056                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4057                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4058                                      pd);
4059         return r;
4060 }
4061
4062
4063 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4064                                     int size, unsigned short port, void *val,
4065                                     unsigned int count)
4066 {
4067         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4068
4069         if (vcpu->arch.pio.count)
4070                 goto data_avail;
4071
4072         trace_kvm_pio(0, port, size, count);
4073
4074         vcpu->arch.pio.port = port;
4075         vcpu->arch.pio.in = 1;
4076         vcpu->arch.pio.count  = count;
4077         vcpu->arch.pio.size = size;
4078
4079         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4080         data_avail:
4081                 memcpy(val, vcpu->arch.pio_data, size * count);
4082                 vcpu->arch.pio.count = 0;
4083                 return 1;
4084         }
4085
4086         vcpu->run->exit_reason = KVM_EXIT_IO;
4087         vcpu->run->io.direction = KVM_EXIT_IO_IN;
4088         vcpu->run->io.size = size;
4089         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4090         vcpu->run->io.count = count;
4091         vcpu->run->io.port = port;
4092
4093         return 0;
4094 }
4095
4096 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4097                                      int size, unsigned short port,
4098                                      const void *val, unsigned int count)
4099 {
4100         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4101
4102         trace_kvm_pio(1, port, size, count);
4103
4104         vcpu->arch.pio.port = port;
4105         vcpu->arch.pio.in = 0;
4106         vcpu->arch.pio.count = count;
4107         vcpu->arch.pio.size = size;
4108
4109         memcpy(vcpu->arch.pio_data, val, size * count);
4110
4111         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4112                 vcpu->arch.pio.count = 0;
4113                 return 1;
4114         }
4115
4116         vcpu->run->exit_reason = KVM_EXIT_IO;
4117         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4118         vcpu->run->io.size = size;
4119         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4120         vcpu->run->io.count = count;
4121         vcpu->run->io.port = port;
4122
4123         return 0;
4124 }
4125
4126 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4127 {
4128         return kvm_x86_ops->get_segment_base(vcpu, seg);
4129 }
4130
4131 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
4132 {
4133         kvm_mmu_invlpg(vcpu, address);
4134         return X86EMUL_CONTINUE;
4135 }
4136
4137 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4138 {
4139         if (!need_emulate_wbinvd(vcpu))
4140                 return X86EMUL_CONTINUE;
4141
4142         if (kvm_x86_ops->has_wbinvd_exit()) {
4143                 int cpu = get_cpu();
4144
4145                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4146                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4147                                 wbinvd_ipi, NULL, 1);
4148                 put_cpu();
4149                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4150         } else
4151                 wbinvd();
4152         return X86EMUL_CONTINUE;
4153 }
4154 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4155
4156 int emulate_clts(struct kvm_vcpu *vcpu)
4157 {
4158         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4159         kvm_x86_ops->fpu_activate(vcpu);
4160         return X86EMUL_CONTINUE;
4161 }
4162
4163 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4164 {
4165         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4166 }
4167
4168 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4169 {
4170
4171         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4172 }
4173
4174 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4175 {
4176         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4177 }
4178
4179 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4180 {
4181         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4182         unsigned long value;
4183
4184         switch (cr) {
4185         case 0:
4186                 value = kvm_read_cr0(vcpu);
4187                 break;
4188         case 2:
4189                 value = vcpu->arch.cr2;
4190                 break;
4191         case 3:
4192                 value = kvm_read_cr3(vcpu);
4193                 break;
4194         case 4:
4195                 value = kvm_read_cr4(vcpu);
4196                 break;
4197         case 8:
4198                 value = kvm_get_cr8(vcpu);
4199                 break;
4200         default:
4201                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4202                 return 0;
4203         }
4204
4205         return value;
4206 }
4207
4208 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4209 {
4210         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4211         int res = 0;
4212
4213         switch (cr) {
4214         case 0:
4215                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4216                 break;
4217         case 2:
4218                 vcpu->arch.cr2 = val;
4219                 break;
4220         case 3:
4221                 res = kvm_set_cr3(vcpu, val);
4222                 break;
4223         case 4:
4224                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4225                 break;
4226         case 8:
4227                 res = kvm_set_cr8(vcpu, val);
4228                 break;
4229         default:
4230                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4231                 res = -1;
4232         }
4233
4234         return res;
4235 }
4236
4237 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4238 {
4239         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4240 }
4241
4242 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4243 {
4244         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4245 }
4246
4247 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4248 {
4249         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4250 }
4251
4252 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4253 {
4254         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4255 }
4256
4257 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4258 {
4259         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4260 }
4261
4262 static unsigned long emulator_get_cached_segment_base(
4263         struct x86_emulate_ctxt *ctxt, int seg)
4264 {
4265         return get_segment_base(emul_to_vcpu(ctxt), seg);
4266 }
4267
4268 static bool emulator_get_cached_descriptor(struct x86_emulate_ctxt *ctxt,
4269                                            struct desc_struct *desc, u32 *base3,
4270                                            int seg)
4271 {
4272         struct kvm_segment var;
4273
4274         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4275
4276         if (var.unusable)
4277                 return false;
4278
4279         if (var.g)
4280                 var.limit >>= 12;
4281         set_desc_limit(desc, var.limit);
4282         set_desc_base(desc, (unsigned long)var.base);
4283 #ifdef CONFIG_X86_64
4284         if (base3)
4285                 *base3 = var.base >> 32;
4286 #endif
4287         desc->type = var.type;
4288         desc->s = var.s;
4289         desc->dpl = var.dpl;
4290         desc->p = var.present;
4291         desc->avl = var.avl;
4292         desc->l = var.l;
4293         desc->d = var.db;
4294         desc->g = var.g;
4295
4296         return true;
4297 }
4298
4299 static void emulator_set_cached_descriptor(struct x86_emulate_ctxt *ctxt,
4300                                            struct desc_struct *desc, u32 base3,
4301                                            int seg)
4302 {
4303         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4304         struct kvm_segment var;
4305
4306         /* needed to preserve selector */
4307         kvm_get_segment(vcpu, &var, seg);
4308
4309         var.base = get_desc_base(desc);
4310 #ifdef CONFIG_X86_64
4311         var.base |= ((u64)base3) << 32;
4312 #endif
4313         var.limit = get_desc_limit(desc);
4314         if (desc->g)
4315                 var.limit = (var.limit << 12) | 0xfff;
4316         var.type = desc->type;
4317         var.present = desc->p;
4318         var.dpl = desc->dpl;
4319         var.db = desc->d;
4320         var.s = desc->s;
4321         var.l = desc->l;
4322         var.g = desc->g;
4323         var.avl = desc->avl;
4324         var.present = desc->p;
4325         var.unusable = !var.present;
4326         var.padding = 0;
4327
4328         kvm_set_segment(vcpu, &var, seg);
4329         return;
4330 }
4331
4332 static u16 emulator_get_segment_selector(struct x86_emulate_ctxt *ctxt, int seg)
4333 {
4334         struct kvm_segment kvm_seg;
4335
4336         kvm_get_segment(emul_to_vcpu(ctxt), &kvm_seg, seg);
4337         return kvm_seg.selector;
4338 }
4339
4340 static void emulator_set_segment_selector(struct x86_emulate_ctxt *ctxt,
4341                                           u16 sel, int seg)
4342 {
4343         struct kvm_segment kvm_seg;
4344
4345         kvm_get_segment(emul_to_vcpu(ctxt), &kvm_seg, seg);
4346         kvm_seg.selector = sel;
4347         kvm_set_segment(emul_to_vcpu(ctxt), &kvm_seg, seg);
4348 }
4349
4350 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4351                             u32 msr_index, u64 *pdata)
4352 {
4353         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4354 }
4355
4356 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4357                             u32 msr_index, u64 data)
4358 {
4359         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4360 }
4361
4362 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4363 {
4364         preempt_disable();
4365         kvm_load_guest_fpu(ctxt->vcpu);
4366         /*
4367          * CR0.TS may reference the host fpu state, not the guest fpu state,
4368          * so it may be clear at this point.
4369          */
4370         clts();
4371 }
4372
4373 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4374 {
4375         preempt_enable();
4376 }
4377
4378 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4379                               struct x86_instruction_info *info,
4380                               enum x86_intercept_stage stage)
4381 {
4382         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4383 }
4384
4385 static struct x86_emulate_ops emulate_ops = {
4386         .read_std            = kvm_read_guest_virt_system,
4387         .write_std           = kvm_write_guest_virt_system,
4388         .fetch               = kvm_fetch_guest_virt,
4389         .read_emulated       = emulator_read_emulated,
4390         .write_emulated      = emulator_write_emulated,
4391         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4392         .pio_in_emulated     = emulator_pio_in_emulated,
4393         .pio_out_emulated    = emulator_pio_out_emulated,
4394         .get_cached_descriptor = emulator_get_cached_descriptor,
4395         .set_cached_descriptor = emulator_set_cached_descriptor,
4396         .get_segment_selector = emulator_get_segment_selector,
4397         .set_segment_selector = emulator_set_segment_selector,
4398         .get_cached_segment_base = emulator_get_cached_segment_base,
4399         .get_gdt             = emulator_get_gdt,
4400         .get_idt             = emulator_get_idt,
4401         .set_gdt             = emulator_set_gdt,
4402         .set_idt             = emulator_set_idt,
4403         .get_cr              = emulator_get_cr,
4404         .set_cr              = emulator_set_cr,
4405         .cpl                 = emulator_get_cpl,
4406         .get_dr              = emulator_get_dr,
4407         .set_dr              = emulator_set_dr,
4408         .set_msr             = emulator_set_msr,
4409         .get_msr             = emulator_get_msr,
4410         .get_fpu             = emulator_get_fpu,
4411         .put_fpu             = emulator_put_fpu,
4412         .intercept           = emulator_intercept,
4413 };
4414
4415 static void cache_all_regs(struct kvm_vcpu *vcpu)
4416 {
4417         kvm_register_read(vcpu, VCPU_REGS_RAX);
4418         kvm_register_read(vcpu, VCPU_REGS_RSP);
4419         kvm_register_read(vcpu, VCPU_REGS_RIP);
4420         vcpu->arch.regs_dirty = ~0;
4421 }
4422
4423 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4424 {
4425         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4426         /*
4427          * an sti; sti; sequence only disable interrupts for the first
4428          * instruction. So, if the last instruction, be it emulated or
4429          * not, left the system with the INT_STI flag enabled, it
4430          * means that the last instruction is an sti. We should not
4431          * leave the flag on in this case. The same goes for mov ss
4432          */
4433         if (!(int_shadow & mask))
4434                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4435 }
4436
4437 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4438 {
4439         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4440         if (ctxt->exception.vector == PF_VECTOR)
4441                 kvm_propagate_fault(vcpu, &ctxt->exception);
4442         else if (ctxt->exception.error_code_valid)
4443                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4444                                       ctxt->exception.error_code);
4445         else
4446                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4447 }
4448
4449 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4450 {
4451         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4452         int cs_db, cs_l;
4453
4454         cache_all_regs(vcpu);
4455
4456         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4457
4458         vcpu->arch.emulate_ctxt.vcpu = vcpu;
4459         vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
4460         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4461         vcpu->arch.emulate_ctxt.mode =
4462                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4463                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4464                 ? X86EMUL_MODE_VM86 : cs_l
4465                 ? X86EMUL_MODE_PROT64 : cs_db
4466                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4467         vcpu->arch.emulate_ctxt.guest_mode = is_guest_mode(vcpu);
4468         memset(c, 0, sizeof(struct decode_cache));
4469         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4470         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4471 }
4472
4473 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4474 {
4475         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4476         int ret;
4477
4478         init_emulate_ctxt(vcpu);
4479
4480         vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4481         vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4482         vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip +
4483                                                                  inc_eip;
4484         ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4485
4486         if (ret != X86EMUL_CONTINUE)
4487                 return EMULATE_FAIL;
4488
4489         vcpu->arch.emulate_ctxt.eip = c->eip;
4490         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4491         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4492         kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4493
4494         if (irq == NMI_VECTOR)
4495                 vcpu->arch.nmi_pending = false;
4496         else
4497                 vcpu->arch.interrupt.pending = false;
4498
4499         return EMULATE_DONE;
4500 }
4501 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4502
4503 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4504 {
4505         int r = EMULATE_DONE;
4506
4507         ++vcpu->stat.insn_emulation_fail;
4508         trace_kvm_emulate_insn_failed(vcpu);
4509         if (!is_guest_mode(vcpu)) {
4510                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4511                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4512                 vcpu->run->internal.ndata = 0;
4513                 r = EMULATE_FAIL;
4514         }
4515         kvm_queue_exception(vcpu, UD_VECTOR);
4516
4517         return r;
4518 }
4519
4520 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4521 {
4522         gpa_t gpa;
4523
4524         if (tdp_enabled)
4525                 return false;
4526
4527         /*
4528          * if emulation was due to access to shadowed page table
4529          * and it failed try to unshadow page and re-entetr the
4530          * guest to let CPU execute the instruction.
4531          */
4532         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4533                 return true;
4534
4535         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4536
4537         if (gpa == UNMAPPED_GVA)
4538                 return true; /* let cpu generate fault */
4539
4540         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4541                 return true;
4542
4543         return false;
4544 }
4545
4546 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4547                             unsigned long cr2,
4548                             int emulation_type,
4549                             void *insn,
4550                             int insn_len)
4551 {
4552         int r;
4553         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4554         bool writeback = true;
4555
4556         kvm_clear_exception_queue(vcpu);
4557         vcpu->arch.mmio_fault_cr2 = cr2;
4558         /*
4559          * TODO: fix emulate.c to use guest_read/write_register
4560          * instead of direct ->regs accesses, can save hundred cycles
4561          * on Intel for instructions that don't read/change RSP, for
4562          * for example.
4563          */
4564         cache_all_regs(vcpu);
4565
4566         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4567                 init_emulate_ctxt(vcpu);
4568                 vcpu->arch.emulate_ctxt.interruptibility = 0;
4569                 vcpu->arch.emulate_ctxt.have_exception = false;
4570                 vcpu->arch.emulate_ctxt.perm_ok = false;
4571
4572                 vcpu->arch.emulate_ctxt.only_vendor_specific_insn
4573                         = emulation_type & EMULTYPE_TRAP_UD;
4574
4575                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
4576
4577                 trace_kvm_emulate_insn_start(vcpu);
4578                 ++vcpu->stat.insn_emulation;
4579                 if (r)  {
4580                         if (emulation_type & EMULTYPE_TRAP_UD)
4581                                 return EMULATE_FAIL;
4582                         if (reexecute_instruction(vcpu, cr2))
4583                                 return EMULATE_DONE;
4584                         if (emulation_type & EMULTYPE_SKIP)
4585                                 return EMULATE_FAIL;
4586                         return handle_emulation_failure(vcpu);
4587                 }
4588         }
4589
4590         if (emulation_type & EMULTYPE_SKIP) {
4591                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4592                 return EMULATE_DONE;
4593         }
4594
4595         /* this is needed for vmware backdoor interface to work since it
4596            changes registers values  during IO operation */
4597         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4598                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4599                 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4600         }
4601
4602 restart:
4603         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4604
4605         if (r == EMULATION_INTERCEPTED)
4606                 return EMULATE_DONE;
4607
4608         if (r == EMULATION_FAILED) {
4609                 if (reexecute_instruction(vcpu, cr2))
4610                         return EMULATE_DONE;
4611
4612                 return handle_emulation_failure(vcpu);
4613         }
4614
4615         if (vcpu->arch.emulate_ctxt.have_exception) {
4616                 inject_emulated_exception(vcpu);
4617                 r = EMULATE_DONE;
4618         } else if (vcpu->arch.pio.count) {
4619                 if (!vcpu->arch.pio.in)
4620                         vcpu->arch.pio.count = 0;
4621                 else
4622                         writeback = false;
4623                 r = EMULATE_DO_MMIO;
4624         } else if (vcpu->mmio_needed) {
4625                 if (!vcpu->mmio_is_write)
4626                         writeback = false;
4627                 r = EMULATE_DO_MMIO;
4628         } else if (r == EMULATION_RESTART)
4629                 goto restart;
4630         else
4631                 r = EMULATE_DONE;
4632
4633         if (writeback) {
4634                 toggle_interruptibility(vcpu,
4635                                 vcpu->arch.emulate_ctxt.interruptibility);
4636                 kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4637                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4638                 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4639                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4640                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4641         } else
4642                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4643
4644         return r;
4645 }
4646 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4647
4648 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4649 {
4650         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4651         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4652                                             size, port, &val, 1);
4653         /* do not return to emulator after return from userspace */
4654         vcpu->arch.pio.count = 0;
4655         return ret;
4656 }
4657 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4658
4659 static void tsc_bad(void *info)
4660 {
4661         __this_cpu_write(cpu_tsc_khz, 0);
4662 }
4663
4664 static void tsc_khz_changed(void *data)
4665 {
4666         struct cpufreq_freqs *freq = data;
4667         unsigned long khz = 0;
4668
4669         if (data)
4670                 khz = freq->new;
4671         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4672                 khz = cpufreq_quick_get(raw_smp_processor_id());
4673         if (!khz)
4674                 khz = tsc_khz;
4675         __this_cpu_write(cpu_tsc_khz, khz);
4676 }
4677
4678 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4679                                      void *data)
4680 {
4681         struct cpufreq_freqs *freq = data;
4682         struct kvm *kvm;
4683         struct kvm_vcpu *vcpu;
4684         int i, send_ipi = 0;
4685
4686         /*
4687          * We allow guests to temporarily run on slowing clocks,
4688          * provided we notify them after, or to run on accelerating
4689          * clocks, provided we notify them before.  Thus time never
4690          * goes backwards.
4691          *
4692          * However, we have a problem.  We can't atomically update
4693          * the frequency of a given CPU from this function; it is
4694          * merely a notifier, which can be called from any CPU.
4695          * Changing the TSC frequency at arbitrary points in time
4696          * requires a recomputation of local variables related to
4697          * the TSC for each VCPU.  We must flag these local variables
4698          * to be updated and be sure the update takes place with the
4699          * new frequency before any guests proceed.
4700          *
4701          * Unfortunately, the combination of hotplug CPU and frequency
4702          * change creates an intractable locking scenario; the order
4703          * of when these callouts happen is undefined with respect to
4704          * CPU hotplug, and they can race with each other.  As such,
4705          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4706          * undefined; you can actually have a CPU frequency change take
4707          * place in between the computation of X and the setting of the
4708          * variable.  To protect against this problem, all updates of
4709          * the per_cpu tsc_khz variable are done in an interrupt
4710          * protected IPI, and all callers wishing to update the value
4711          * must wait for a synchronous IPI to complete (which is trivial
4712          * if the caller is on the CPU already).  This establishes the
4713          * necessary total order on variable updates.
4714          *
4715          * Note that because a guest time update may take place
4716          * anytime after the setting of the VCPU's request bit, the
4717          * correct TSC value must be set before the request.  However,
4718          * to ensure the update actually makes it to any guest which
4719          * starts running in hardware virtualization between the set
4720          * and the acquisition of the spinlock, we must also ping the
4721          * CPU after setting the request bit.
4722          *
4723          */
4724
4725         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4726                 return 0;
4727         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4728                 return 0;
4729
4730         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4731
4732         raw_spin_lock(&kvm_lock);
4733         list_for_each_entry(kvm, &vm_list, vm_list) {
4734                 kvm_for_each_vcpu(i, vcpu, kvm) {
4735                         if (vcpu->cpu != freq->cpu)
4736                                 continue;
4737                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4738                         if (vcpu->cpu != smp_processor_id())
4739                                 send_ipi = 1;
4740                 }
4741         }
4742         raw_spin_unlock(&kvm_lock);
4743
4744         if (freq->old < freq->new && send_ipi) {
4745                 /*
4746                  * We upscale the frequency.  Must make the guest
4747                  * doesn't see old kvmclock values while running with
4748                  * the new frequency, otherwise we risk the guest sees
4749                  * time go backwards.
4750                  *
4751                  * In case we update the frequency for another cpu
4752                  * (which might be in guest context) send an interrupt
4753                  * to kick the cpu out of guest context.  Next time
4754                  * guest context is entered kvmclock will be updated,
4755                  * so the guest will not see stale values.
4756                  */
4757                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4758         }
4759         return 0;
4760 }
4761
4762 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4763         .notifier_call  = kvmclock_cpufreq_notifier
4764 };
4765
4766 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4767                                         unsigned long action, void *hcpu)
4768 {
4769         unsigned int cpu = (unsigned long)hcpu;
4770
4771         switch (action) {
4772                 case CPU_ONLINE:
4773                 case CPU_DOWN_FAILED:
4774                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4775                         break;
4776                 case CPU_DOWN_PREPARE:
4777                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4778                         break;
4779         }
4780         return NOTIFY_OK;
4781 }
4782
4783 static struct notifier_block kvmclock_cpu_notifier_block = {
4784         .notifier_call  = kvmclock_cpu_notifier,
4785         .priority = -INT_MAX
4786 };
4787
4788 static void kvm_timer_init(void)
4789 {
4790         int cpu;
4791
4792         max_tsc_khz = tsc_khz;
4793         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4794         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4795 #ifdef CONFIG_CPU_FREQ
4796                 struct cpufreq_policy policy;
4797                 memset(&policy, 0, sizeof(policy));
4798                 cpu = get_cpu();
4799                 cpufreq_get_policy(&policy, cpu);
4800                 if (policy.cpuinfo.max_freq)
4801                         max_tsc_khz = policy.cpuinfo.max_freq;
4802                 put_cpu();
4803 #endif
4804                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4805                                           CPUFREQ_TRANSITION_NOTIFIER);
4806         }
4807         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4808         for_each_online_cpu(cpu)
4809                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4810 }
4811
4812 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4813
4814 static int kvm_is_in_guest(void)
4815 {
4816         return percpu_read(current_vcpu) != NULL;
4817 }
4818
4819 static int kvm_is_user_mode(void)
4820 {
4821         int user_mode = 3;
4822
4823         if (percpu_read(current_vcpu))
4824                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4825
4826         return user_mode != 0;
4827 }
4828
4829 static unsigned long kvm_get_guest_ip(void)
4830 {
4831         unsigned long ip = 0;
4832
4833         if (percpu_read(current_vcpu))
4834                 ip = kvm_rip_read(percpu_read(current_vcpu));
4835
4836         return ip;
4837 }
4838
4839 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4840         .is_in_guest            = kvm_is_in_guest,
4841         .is_user_mode           = kvm_is_user_mode,
4842         .get_guest_ip           = kvm_get_guest_ip,
4843 };
4844
4845 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4846 {
4847         percpu_write(current_vcpu, vcpu);
4848 }
4849 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4850
4851 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4852 {
4853         percpu_write(current_vcpu, NULL);
4854 }
4855 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4856
4857 int kvm_arch_init(void *opaque)
4858 {
4859         int r;
4860         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4861
4862         if (kvm_x86_ops) {
4863                 printk(KERN_ERR "kvm: already loaded the other module\n");
4864                 r = -EEXIST;
4865                 goto out;
4866         }
4867
4868         if (!ops->cpu_has_kvm_support()) {
4869                 printk(KERN_ERR "kvm: no hardware support\n");
4870                 r = -EOPNOTSUPP;
4871                 goto out;
4872         }
4873         if (ops->disabled_by_bios()) {
4874                 printk(KERN_ERR "kvm: disabled by bios\n");
4875                 r = -EOPNOTSUPP;
4876                 goto out;
4877         }
4878
4879         r = kvm_mmu_module_init();
4880         if (r)
4881                 goto out;
4882
4883         kvm_init_msr_list();
4884
4885         kvm_x86_ops = ops;
4886         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4887         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4888                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4889
4890         kvm_timer_init();
4891
4892         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4893
4894         if (cpu_has_xsave)
4895                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4896
4897         return 0;
4898
4899 out:
4900         return r;
4901 }
4902
4903 void kvm_arch_exit(void)
4904 {
4905         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4906
4907         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4908                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4909                                             CPUFREQ_TRANSITION_NOTIFIER);
4910         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4911         kvm_x86_ops = NULL;
4912         kvm_mmu_module_exit();
4913 }
4914
4915 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4916 {
4917         ++vcpu->stat.halt_exits;
4918         if (irqchip_in_kernel(vcpu->kvm)) {
4919                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4920                 return 1;
4921         } else {
4922                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4923                 return 0;
4924         }
4925 }
4926 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4927
4928 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4929                            unsigned long a1)
4930 {
4931         if (is_long_mode(vcpu))
4932                 return a0;
4933         else
4934                 return a0 | ((gpa_t)a1 << 32);
4935 }
4936
4937 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4938 {
4939         u64 param, ingpa, outgpa, ret;
4940         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4941         bool fast, longmode;
4942         int cs_db, cs_l;
4943
4944         /*
4945          * hypercall generates UD from non zero cpl and real mode
4946          * per HYPER-V spec
4947          */
4948         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4949                 kvm_queue_exception(vcpu, UD_VECTOR);
4950                 return 0;
4951         }
4952
4953         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4954         longmode = is_long_mode(vcpu) && cs_l == 1;
4955
4956         if (!longmode) {
4957                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4958                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4959                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4960                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4961                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4962                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4963         }
4964 #ifdef CONFIG_X86_64
4965         else {
4966                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4967                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4968                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4969         }
4970 #endif
4971
4972         code = param & 0xffff;
4973         fast = (param >> 16) & 0x1;
4974         rep_cnt = (param >> 32) & 0xfff;
4975         rep_idx = (param >> 48) & 0xfff;
4976
4977         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4978
4979         switch (code) {
4980         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4981                 kvm_vcpu_on_spin(vcpu);
4982                 break;
4983         default:
4984                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4985                 break;
4986         }
4987
4988         ret = res | (((u64)rep_done & 0xfff) << 32);
4989         if (longmode) {
4990                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4991         } else {
4992                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4993                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4994         }
4995
4996         return 1;
4997 }
4998
4999 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5000 {
5001         unsigned long nr, a0, a1, a2, a3, ret;
5002         int r = 1;
5003
5004         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5005                 return kvm_hv_hypercall(vcpu);
5006
5007         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5008         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5009         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5010         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5011         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5012
5013         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5014
5015         if (!is_long_mode(vcpu)) {
5016                 nr &= 0xFFFFFFFF;
5017                 a0 &= 0xFFFFFFFF;
5018                 a1 &= 0xFFFFFFFF;
5019                 a2 &= 0xFFFFFFFF;
5020                 a3 &= 0xFFFFFFFF;
5021         }
5022
5023         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5024                 ret = -KVM_EPERM;
5025                 goto out;
5026         }
5027
5028         switch (nr) {
5029         case KVM_HC_VAPIC_POLL_IRQ:
5030                 ret = 0;
5031                 break;
5032         case KVM_HC_MMU_OP:
5033                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
5034                 break;
5035         default:
5036                 ret = -KVM_ENOSYS;
5037                 break;
5038         }
5039 out:
5040         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5041         ++vcpu->stat.hypercalls;
5042         return r;
5043 }
5044 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5045
5046 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
5047 {
5048         char instruction[3];
5049         unsigned long rip = kvm_rip_read(vcpu);
5050
5051         /*
5052          * Blow out the MMU to ensure that no other VCPU has an active mapping
5053          * to ensure that the updated hypercall appears atomically across all
5054          * VCPUs.
5055          */
5056         kvm_mmu_zap_all(vcpu->kvm);
5057
5058         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5059
5060         return emulator_write_emulated(&vcpu->arch.emulate_ctxt,
5061                                        rip, instruction, 3, NULL);
5062 }
5063
5064 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
5065 {
5066         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
5067         int j, nent = vcpu->arch.cpuid_nent;
5068
5069         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
5070         /* when no next entry is found, the current entry[i] is reselected */
5071         for (j = i + 1; ; j = (j + 1) % nent) {
5072                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
5073                 if (ej->function == e->function) {
5074                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
5075                         return j;
5076                 }
5077         }
5078         return 0; /* silence gcc, even though control never reaches here */
5079 }
5080
5081 /* find an entry with matching function, matching index (if needed), and that
5082  * should be read next (if it's stateful) */
5083 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
5084         u32 function, u32 index)
5085 {
5086         if (e->function != function)
5087                 return 0;
5088         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
5089                 return 0;
5090         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
5091             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
5092                 return 0;
5093         return 1;
5094 }
5095
5096 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
5097                                               u32 function, u32 index)
5098 {
5099         int i;
5100         struct kvm_cpuid_entry2 *best = NULL;
5101
5102         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
5103                 struct kvm_cpuid_entry2 *e;
5104
5105                 e = &vcpu->arch.cpuid_entries[i];
5106                 if (is_matching_cpuid_entry(e, function, index)) {
5107                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
5108                                 move_to_next_stateful_cpuid_entry(vcpu, i);
5109                         best = e;
5110                         break;
5111                 }
5112         }
5113         return best;
5114 }
5115 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
5116
5117 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
5118 {
5119         struct kvm_cpuid_entry2 *best;
5120
5121         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
5122         if (!best || best->eax < 0x80000008)
5123                 goto not_found;
5124         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
5125         if (best)
5126                 return best->eax & 0xff;
5127 not_found:
5128         return 36;
5129 }
5130
5131 /*
5132  * If no match is found, check whether we exceed the vCPU's limit
5133  * and return the content of the highest valid _standard_ leaf instead.
5134  * This is to satisfy the CPUID specification.
5135  */
5136 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
5137                                                   u32 function, u32 index)
5138 {
5139         struct kvm_cpuid_entry2 *maxlevel;
5140
5141         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
5142         if (!maxlevel || maxlevel->eax >= function)
5143                 return NULL;
5144         if (function & 0x80000000) {
5145                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
5146                 if (!maxlevel)
5147                         return NULL;
5148         }
5149         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
5150 }
5151
5152 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
5153 {
5154         u32 function, index;
5155         struct kvm_cpuid_entry2 *best;
5156
5157         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
5158         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5159         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
5160         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
5161         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
5162         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
5163         best = kvm_find_cpuid_entry(vcpu, function, index);
5164
5165         if (!best)
5166                 best = check_cpuid_limit(vcpu, function, index);
5167
5168         if (best) {
5169                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5170                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5171                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5172                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5173         }
5174         kvm_x86_ops->skip_emulated_instruction(vcpu);
5175         trace_kvm_cpuid(function,
5176                         kvm_register_read(vcpu, VCPU_REGS_RAX),
5177                         kvm_register_read(vcpu, VCPU_REGS_RBX),
5178                         kvm_register_read(vcpu, VCPU_REGS_RCX),
5179                         kvm_register_read(vcpu, VCPU_REGS_RDX));
5180 }
5181 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5182
5183 /*
5184  * Check if userspace requested an interrupt window, and that the
5185  * interrupt window is open.
5186  *
5187  * No need to exit to userspace if we already have an interrupt queued.
5188  */
5189 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5190 {
5191         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5192                 vcpu->run->request_interrupt_window &&
5193                 kvm_arch_interrupt_allowed(vcpu));
5194 }
5195
5196 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5197 {
5198         struct kvm_run *kvm_run = vcpu->run;
5199
5200         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5201         kvm_run->cr8 = kvm_get_cr8(vcpu);
5202         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5203         if (irqchip_in_kernel(vcpu->kvm))
5204                 kvm_run->ready_for_interrupt_injection = 1;
5205         else
5206                 kvm_run->ready_for_interrupt_injection =
5207                         kvm_arch_interrupt_allowed(vcpu) &&
5208                         !kvm_cpu_has_interrupt(vcpu) &&
5209                         !kvm_event_needs_reinjection(vcpu);
5210 }
5211
5212 static void vapic_enter(struct kvm_vcpu *vcpu)
5213 {
5214         struct kvm_lapic *apic = vcpu->arch.apic;
5215         struct page *page;
5216
5217         if (!apic || !apic->vapic_addr)
5218                 return;
5219
5220         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5221
5222         vcpu->arch.apic->vapic_page = page;
5223 }
5224
5225 static void vapic_exit(struct kvm_vcpu *vcpu)
5226 {
5227         struct kvm_lapic *apic = vcpu->arch.apic;
5228         int idx;
5229
5230         if (!apic || !apic->vapic_addr)
5231                 return;
5232
5233         idx = srcu_read_lock(&vcpu->kvm->srcu);
5234         kvm_release_page_dirty(apic->vapic_page);
5235         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5236         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5237 }
5238
5239 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5240 {
5241         int max_irr, tpr;
5242
5243         if (!kvm_x86_ops->update_cr8_intercept)
5244                 return;
5245
5246         if (!vcpu->arch.apic)
5247                 return;
5248
5249         if (!vcpu->arch.apic->vapic_addr)
5250                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5251         else
5252                 max_irr = -1;
5253
5254         if (max_irr != -1)
5255                 max_irr >>= 4;
5256
5257         tpr = kvm_lapic_get_cr8(vcpu);
5258
5259         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5260 }
5261
5262 static void inject_pending_event(struct kvm_vcpu *vcpu)
5263 {
5264         /* try to reinject previous events if any */
5265         if (vcpu->arch.exception.pending) {
5266                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5267                                         vcpu->arch.exception.has_error_code,
5268                                         vcpu->arch.exception.error_code);
5269                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5270                                           vcpu->arch.exception.has_error_code,
5271                                           vcpu->arch.exception.error_code,
5272                                           vcpu->arch.exception.reinject);
5273                 return;
5274         }
5275
5276         if (vcpu->arch.nmi_injected) {
5277                 kvm_x86_ops->set_nmi(vcpu);
5278                 return;
5279         }
5280
5281         if (vcpu->arch.interrupt.pending) {
5282                 kvm_x86_ops->set_irq(vcpu);
5283                 return;
5284         }
5285
5286         /* try to inject new event if pending */
5287         if (vcpu->arch.nmi_pending) {
5288                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5289                         vcpu->arch.nmi_pending = false;
5290                         vcpu->arch.nmi_injected = true;
5291                         kvm_x86_ops->set_nmi(vcpu);
5292                 }
5293         } else if (kvm_cpu_has_interrupt(vcpu)) {
5294                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5295                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5296                                             false);
5297                         kvm_x86_ops->set_irq(vcpu);
5298                 }
5299         }
5300 }
5301
5302 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5303 {
5304         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5305                         !vcpu->guest_xcr0_loaded) {
5306                 /* kvm_set_xcr() also depends on this */
5307                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5308                 vcpu->guest_xcr0_loaded = 1;
5309         }
5310 }
5311
5312 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5313 {
5314         if (vcpu->guest_xcr0_loaded) {
5315                 if (vcpu->arch.xcr0 != host_xcr0)
5316                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5317                 vcpu->guest_xcr0_loaded = 0;
5318         }
5319 }
5320
5321 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5322 {
5323         int r;
5324         bool nmi_pending;
5325         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5326                 vcpu->run->request_interrupt_window;
5327
5328         if (vcpu->requests) {
5329                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5330                         kvm_mmu_unload(vcpu);
5331                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5332                         __kvm_migrate_timers(vcpu);
5333                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5334                         r = kvm_guest_time_update(vcpu);
5335                         if (unlikely(r))
5336                                 goto out;
5337                 }
5338                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5339                         kvm_mmu_sync_roots(vcpu);
5340                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5341                         kvm_x86_ops->tlb_flush(vcpu);
5342                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5343                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5344                         r = 0;
5345                         goto out;
5346                 }
5347                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5348                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5349                         r = 0;
5350                         goto out;
5351                 }
5352                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5353                         vcpu->fpu_active = 0;
5354                         kvm_x86_ops->fpu_deactivate(vcpu);
5355                 }
5356                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5357                         /* Page is swapped out. Do synthetic halt */
5358                         vcpu->arch.apf.halted = true;
5359                         r = 1;
5360                         goto out;
5361                 }
5362         }
5363
5364         r = kvm_mmu_reload(vcpu);
5365         if (unlikely(r))
5366                 goto out;
5367
5368         /*
5369          * An NMI can be injected between local nmi_pending read and
5370          * vcpu->arch.nmi_pending read inside inject_pending_event().
5371          * But in that case, KVM_REQ_EVENT will be set, which makes
5372          * the race described above benign.
5373          */
5374         nmi_pending = ACCESS_ONCE(vcpu->arch.nmi_pending);
5375
5376         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5377                 inject_pending_event(vcpu);
5378
5379                 /* enable NMI/IRQ window open exits if needed */
5380                 if (nmi_pending)
5381                         kvm_x86_ops->enable_nmi_window(vcpu);
5382                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5383                         kvm_x86_ops->enable_irq_window(vcpu);
5384
5385                 if (kvm_lapic_enabled(vcpu)) {
5386                         update_cr8_intercept(vcpu);
5387                         kvm_lapic_sync_to_vapic(vcpu);
5388                 }
5389         }
5390
5391         preempt_disable();
5392
5393         kvm_x86_ops->prepare_guest_switch(vcpu);
5394         if (vcpu->fpu_active)
5395                 kvm_load_guest_fpu(vcpu);
5396         kvm_load_guest_xcr0(vcpu);
5397
5398         vcpu->mode = IN_GUEST_MODE;
5399
5400         /* We should set ->mode before check ->requests,
5401          * see the comment in make_all_cpus_request.
5402          */
5403         smp_mb();
5404
5405         local_irq_disable();
5406
5407         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5408             || need_resched() || signal_pending(current)) {
5409                 vcpu->mode = OUTSIDE_GUEST_MODE;
5410                 smp_wmb();
5411                 local_irq_enable();
5412                 preempt_enable();
5413                 kvm_x86_ops->cancel_injection(vcpu);
5414                 r = 1;
5415                 goto out;
5416         }
5417
5418         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5419
5420         kvm_guest_enter();
5421
5422         if (unlikely(vcpu->arch.switch_db_regs)) {
5423                 set_debugreg(0, 7);
5424                 set_debugreg(vcpu->arch.eff_db[0], 0);
5425                 set_debugreg(vcpu->arch.eff_db[1], 1);
5426                 set_debugreg(vcpu->arch.eff_db[2], 2);
5427                 set_debugreg(vcpu->arch.eff_db[3], 3);
5428         }
5429
5430         trace_kvm_entry(vcpu->vcpu_id);
5431         kvm_x86_ops->run(vcpu);
5432
5433         /*
5434          * If the guest has used debug registers, at least dr7
5435          * will be disabled while returning to the host.
5436          * If we don't have active breakpoints in the host, we don't
5437          * care about the messed up debug address registers. But if
5438          * we have some of them active, restore the old state.
5439          */
5440         if (hw_breakpoint_active())
5441                 hw_breakpoint_restore();
5442
5443         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5444
5445         vcpu->mode = OUTSIDE_GUEST_MODE;
5446         smp_wmb();
5447         local_irq_enable();
5448
5449         ++vcpu->stat.exits;
5450
5451         /*
5452          * We must have an instruction between local_irq_enable() and
5453          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5454          * the interrupt shadow.  The stat.exits increment will do nicely.
5455          * But we need to prevent reordering, hence this barrier():
5456          */
5457         barrier();
5458
5459         kvm_guest_exit();
5460
5461         preempt_enable();
5462
5463         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5464
5465         /*
5466          * Profile KVM exit RIPs:
5467          */
5468         if (unlikely(prof_on == KVM_PROFILING)) {
5469                 unsigned long rip = kvm_rip_read(vcpu);
5470                 profile_hit(KVM_PROFILING, (void *)rip);
5471         }
5472
5473
5474         kvm_lapic_sync_from_vapic(vcpu);
5475
5476         r = kvm_x86_ops->handle_exit(vcpu);
5477 out:
5478         return r;
5479 }
5480
5481
5482 static int __vcpu_run(struct kvm_vcpu *vcpu)
5483 {
5484         int r;
5485         struct kvm *kvm = vcpu->kvm;
5486
5487         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5488                 pr_debug("vcpu %d received sipi with vector # %x\n",
5489                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5490                 kvm_lapic_reset(vcpu);
5491                 r = kvm_arch_vcpu_reset(vcpu);
5492                 if (r)
5493                         return r;
5494                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5495         }
5496
5497         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5498         vapic_enter(vcpu);
5499
5500         r = 1;
5501         while (r > 0) {
5502                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5503                     !vcpu->arch.apf.halted)
5504                         r = vcpu_enter_guest(vcpu);
5505                 else {
5506                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5507                         kvm_vcpu_block(vcpu);
5508                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5509                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5510                         {
5511                                 switch(vcpu->arch.mp_state) {
5512                                 case KVM_MP_STATE_HALTED:
5513                                         vcpu->arch.mp_state =
5514                                                 KVM_MP_STATE_RUNNABLE;
5515                                 case KVM_MP_STATE_RUNNABLE:
5516                                         vcpu->arch.apf.halted = false;
5517                                         break;
5518                                 case KVM_MP_STATE_SIPI_RECEIVED:
5519                                 default:
5520                                         r = -EINTR;
5521                                         break;
5522                                 }
5523                         }
5524                 }
5525
5526                 if (r <= 0)
5527                         break;
5528
5529                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5530                 if (kvm_cpu_has_pending_timer(vcpu))
5531                         kvm_inject_pending_timer_irqs(vcpu);
5532
5533                 if (dm_request_for_irq_injection(vcpu)) {
5534                         r = -EINTR;
5535                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5536                         ++vcpu->stat.request_irq_exits;
5537                 }
5538
5539                 kvm_check_async_pf_completion(vcpu);
5540
5541                 if (signal_pending(current)) {
5542                         r = -EINTR;
5543                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5544                         ++vcpu->stat.signal_exits;
5545                 }
5546                 if (need_resched()) {
5547                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5548                         kvm_resched(vcpu);
5549                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5550                 }
5551         }
5552
5553         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5554
5555         vapic_exit(vcpu);
5556
5557         return r;
5558 }
5559
5560 static int complete_mmio(struct kvm_vcpu *vcpu)
5561 {
5562         struct kvm_run *run = vcpu->run;
5563         int r;
5564
5565         if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5566                 return 1;
5567
5568         if (vcpu->mmio_needed) {
5569                 vcpu->mmio_needed = 0;
5570                 if (!vcpu->mmio_is_write)
5571                         memcpy(vcpu->mmio_data, run->mmio.data, 8);
5572                 vcpu->mmio_index += 8;
5573                 if (vcpu->mmio_index < vcpu->mmio_size) {
5574                         run->exit_reason = KVM_EXIT_MMIO;
5575                         run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5576                         memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5577                         run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5578                         run->mmio.is_write = vcpu->mmio_is_write;
5579                         vcpu->mmio_needed = 1;
5580                         return 0;
5581                 }
5582                 if (vcpu->mmio_is_write)
5583                         return 1;
5584                 vcpu->mmio_read_completed = 1;
5585         }
5586         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5587         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5588         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5589         if (r != EMULATE_DONE)
5590                 return 0;
5591         return 1;
5592 }
5593
5594 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5595 {
5596         int r;
5597         sigset_t sigsaved;
5598
5599         if (!tsk_used_math(current) && init_fpu(current))
5600                 return -ENOMEM;
5601
5602         if (vcpu->sigset_active)
5603                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5604
5605         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5606                 kvm_vcpu_block(vcpu);
5607                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5608                 r = -EAGAIN;
5609                 goto out;
5610         }
5611
5612         /* re-sync apic's tpr */
5613         if (!irqchip_in_kernel(vcpu->kvm)) {
5614                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5615                         r = -EINVAL;
5616                         goto out;
5617                 }
5618         }
5619
5620         r = complete_mmio(vcpu);
5621         if (r <= 0)
5622                 goto out;
5623
5624         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5625                 kvm_register_write(vcpu, VCPU_REGS_RAX,
5626                                      kvm_run->hypercall.ret);
5627
5628         r = __vcpu_run(vcpu);
5629
5630 out:
5631         post_kvm_run_save(vcpu);
5632         if (vcpu->sigset_active)
5633                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5634
5635         return r;
5636 }
5637
5638 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5639 {
5640         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5641                 /*
5642                  * We are here if userspace calls get_regs() in the middle of
5643                  * instruction emulation. Registers state needs to be copied
5644                  * back from emulation context to vcpu. Usrapace shouldn't do
5645                  * that usually, but some bad designed PV devices (vmware
5646                  * backdoor interface) need this to work
5647                  */
5648                 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5649                 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5650                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5651         }
5652         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5653         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5654         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5655         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5656         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5657         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5658         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5659         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5660 #ifdef CONFIG_X86_64
5661         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5662         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5663         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5664         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5665         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5666         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5667         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5668         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5669 #endif
5670
5671         regs->rip = kvm_rip_read(vcpu);
5672         regs->rflags = kvm_get_rflags(vcpu);
5673
5674         return 0;
5675 }
5676
5677 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5678 {
5679         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5680         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5681
5682         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5683         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5684         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5685         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5686         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5687         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5688         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5689         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5690 #ifdef CONFIG_X86_64
5691         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5692         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5693         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5694         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5695         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5696         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5697         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5698         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5699 #endif
5700
5701         kvm_rip_write(vcpu, regs->rip);
5702         kvm_set_rflags(vcpu, regs->rflags);
5703
5704         vcpu->arch.exception.pending = false;
5705
5706         kvm_make_request(KVM_REQ_EVENT, vcpu);
5707
5708         return 0;
5709 }
5710
5711 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5712 {
5713         struct kvm_segment cs;
5714
5715         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5716         *db = cs.db;
5717         *l = cs.l;
5718 }
5719 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5720
5721 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5722                                   struct kvm_sregs *sregs)
5723 {
5724         struct desc_ptr dt;
5725
5726         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5727         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5728         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5729         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5730         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5731         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5732
5733         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5734         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5735
5736         kvm_x86_ops->get_idt(vcpu, &dt);
5737         sregs->idt.limit = dt.size;
5738         sregs->idt.base = dt.address;
5739         kvm_x86_ops->get_gdt(vcpu, &dt);
5740         sregs->gdt.limit = dt.size;
5741         sregs->gdt.base = dt.address;
5742
5743         sregs->cr0 = kvm_read_cr0(vcpu);
5744         sregs->cr2 = vcpu->arch.cr2;
5745         sregs->cr3 = kvm_read_cr3(vcpu);
5746         sregs->cr4 = kvm_read_cr4(vcpu);
5747         sregs->cr8 = kvm_get_cr8(vcpu);
5748         sregs->efer = vcpu->arch.efer;
5749         sregs->apic_base = kvm_get_apic_base(vcpu);
5750
5751         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5752
5753         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5754                 set_bit(vcpu->arch.interrupt.nr,
5755                         (unsigned long *)sregs->interrupt_bitmap);
5756
5757         return 0;
5758 }
5759
5760 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5761                                     struct kvm_mp_state *mp_state)
5762 {
5763         mp_state->mp_state = vcpu->arch.mp_state;
5764         return 0;
5765 }
5766
5767 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5768                                     struct kvm_mp_state *mp_state)
5769 {
5770         vcpu->arch.mp_state = mp_state->mp_state;
5771         kvm_make_request(KVM_REQ_EVENT, vcpu);
5772         return 0;
5773 }
5774
5775 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5776                     bool has_error_code, u32 error_code)
5777 {
5778         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5779         int ret;
5780
5781         init_emulate_ctxt(vcpu);
5782
5783         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5784                                    tss_selector, reason, has_error_code,
5785                                    error_code);
5786
5787         if (ret)
5788                 return EMULATE_FAIL;
5789
5790         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5791         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5792         kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5793         kvm_make_request(KVM_REQ_EVENT, vcpu);
5794         return EMULATE_DONE;
5795 }
5796 EXPORT_SYMBOL_GPL(kvm_task_switch);
5797
5798 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5799                                   struct kvm_sregs *sregs)
5800 {
5801         int mmu_reset_needed = 0;
5802         int pending_vec, max_bits, idx;
5803         struct desc_ptr dt;
5804
5805         dt.size = sregs->idt.limit;
5806         dt.address = sregs->idt.base;
5807         kvm_x86_ops->set_idt(vcpu, &dt);
5808         dt.size = sregs->gdt.limit;
5809         dt.address = sregs->gdt.base;
5810         kvm_x86_ops->set_gdt(vcpu, &dt);
5811
5812         vcpu->arch.cr2 = sregs->cr2;
5813         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5814         vcpu->arch.cr3 = sregs->cr3;
5815         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5816
5817         kvm_set_cr8(vcpu, sregs->cr8);
5818
5819         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5820         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5821         kvm_set_apic_base(vcpu, sregs->apic_base);
5822
5823         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5824         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5825         vcpu->arch.cr0 = sregs->cr0;
5826
5827         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5828         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5829         if (sregs->cr4 & X86_CR4_OSXSAVE)
5830                 update_cpuid(vcpu);
5831
5832         idx = srcu_read_lock(&vcpu->kvm->srcu);
5833         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5834                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5835                 mmu_reset_needed = 1;
5836         }
5837         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5838
5839         if (mmu_reset_needed)
5840                 kvm_mmu_reset_context(vcpu);
5841
5842         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5843         pending_vec = find_first_bit(
5844                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5845         if (pending_vec < max_bits) {
5846                 kvm_queue_interrupt(vcpu, pending_vec, false);
5847                 pr_debug("Set back pending irq %d\n", pending_vec);
5848         }
5849
5850         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5851         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5852         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5853         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5854         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5855         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5856
5857         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5858         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5859
5860         update_cr8_intercept(vcpu);
5861
5862         /* Older userspace won't unhalt the vcpu on reset. */
5863         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5864             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5865             !is_protmode(vcpu))
5866                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5867
5868         kvm_make_request(KVM_REQ_EVENT, vcpu);
5869
5870         return 0;
5871 }
5872
5873 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5874                                         struct kvm_guest_debug *dbg)
5875 {
5876         unsigned long rflags;
5877         int i, r;
5878
5879         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5880                 r = -EBUSY;
5881                 if (vcpu->arch.exception.pending)
5882                         goto out;
5883                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5884                         kvm_queue_exception(vcpu, DB_VECTOR);
5885                 else
5886                         kvm_queue_exception(vcpu, BP_VECTOR);
5887         }
5888
5889         /*
5890          * Read rflags as long as potentially injected trace flags are still
5891          * filtered out.
5892          */
5893         rflags = kvm_get_rflags(vcpu);
5894
5895         vcpu->guest_debug = dbg->control;
5896         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5897                 vcpu->guest_debug = 0;
5898
5899         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5900                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5901                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5902                 vcpu->arch.switch_db_regs =
5903                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5904         } else {
5905                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5906                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5907                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5908         }
5909
5910         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5911                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5912                         get_segment_base(vcpu, VCPU_SREG_CS);
5913
5914         /*
5915          * Trigger an rflags update that will inject or remove the trace
5916          * flags.
5917          */
5918         kvm_set_rflags(vcpu, rflags);
5919
5920         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5921
5922         r = 0;
5923
5924 out:
5925
5926         return r;
5927 }
5928
5929 /*
5930  * Translate a guest virtual address to a guest physical address.
5931  */
5932 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5933                                     struct kvm_translation *tr)
5934 {
5935         unsigned long vaddr = tr->linear_address;
5936         gpa_t gpa;
5937         int idx;
5938
5939         idx = srcu_read_lock(&vcpu->kvm->srcu);
5940         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5941         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5942         tr->physical_address = gpa;
5943         tr->valid = gpa != UNMAPPED_GVA;
5944         tr->writeable = 1;
5945         tr->usermode = 0;
5946
5947         return 0;
5948 }
5949
5950 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5951 {
5952         struct i387_fxsave_struct *fxsave =
5953                         &vcpu->arch.guest_fpu.state->fxsave;
5954
5955         memcpy(fpu->fpr, fxsave->st_space, 128);
5956         fpu->fcw = fxsave->cwd;
5957         fpu->fsw = fxsave->swd;
5958         fpu->ftwx = fxsave->twd;
5959         fpu->last_opcode = fxsave->fop;
5960         fpu->last_ip = fxsave->rip;
5961         fpu->last_dp = fxsave->rdp;
5962         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5963
5964         return 0;
5965 }
5966
5967 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5968 {
5969         struct i387_fxsave_struct *fxsave =
5970                         &vcpu->arch.guest_fpu.state->fxsave;
5971
5972         memcpy(fxsave->st_space, fpu->fpr, 128);
5973         fxsave->cwd = fpu->fcw;
5974         fxsave->swd = fpu->fsw;
5975         fxsave->twd = fpu->ftwx;
5976         fxsave->fop = fpu->last_opcode;
5977         fxsave->rip = fpu->last_ip;
5978         fxsave->rdp = fpu->last_dp;
5979         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5980
5981         return 0;
5982 }
5983
5984 int fx_init(struct kvm_vcpu *vcpu)
5985 {
5986         int err;
5987
5988         err = fpu_alloc(&vcpu->arch.guest_fpu);
5989         if (err)
5990                 return err;
5991
5992         fpu_finit(&vcpu->arch.guest_fpu);
5993
5994         /*
5995          * Ensure guest xcr0 is valid for loading
5996          */
5997         vcpu->arch.xcr0 = XSTATE_FP;
5998
5999         vcpu->arch.cr0 |= X86_CR0_ET;
6000
6001         return 0;
6002 }
6003 EXPORT_SYMBOL_GPL(fx_init);
6004
6005 static void fx_free(struct kvm_vcpu *vcpu)
6006 {
6007         fpu_free(&vcpu->arch.guest_fpu);
6008 }
6009
6010 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6011 {
6012         if (vcpu->guest_fpu_loaded)
6013                 return;
6014
6015         /*
6016          * Restore all possible states in the guest,
6017          * and assume host would use all available bits.
6018          * Guest xcr0 would be loaded later.
6019          */
6020         kvm_put_guest_xcr0(vcpu);
6021         vcpu->guest_fpu_loaded = 1;
6022         unlazy_fpu(current);
6023         fpu_restore_checking(&vcpu->arch.guest_fpu);
6024         trace_kvm_fpu(1);
6025 }
6026
6027 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6028 {
6029         kvm_put_guest_xcr0(vcpu);
6030
6031         if (!vcpu->guest_fpu_loaded)
6032                 return;
6033
6034         vcpu->guest_fpu_loaded = 0;
6035         fpu_save_init(&vcpu->arch.guest_fpu);
6036         ++vcpu->stat.fpu_reload;
6037         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6038         trace_kvm_fpu(0);
6039 }
6040
6041 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6042 {
6043         kvmclock_reset(vcpu);
6044
6045         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6046         fx_free(vcpu);
6047         kvm_x86_ops->vcpu_free(vcpu);
6048 }
6049
6050 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6051                                                 unsigned int id)
6052 {
6053         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6054                 printk_once(KERN_WARNING
6055                 "kvm: SMP vm created on host with unstable TSC; "
6056                 "guest TSC will not be reliable\n");
6057         return kvm_x86_ops->vcpu_create(kvm, id);
6058 }
6059
6060 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6061 {
6062         int r;
6063
6064         vcpu->arch.mtrr_state.have_fixed = 1;
6065         vcpu_load(vcpu);
6066         r = kvm_arch_vcpu_reset(vcpu);
6067         if (r == 0)
6068                 r = kvm_mmu_setup(vcpu);
6069         vcpu_put(vcpu);
6070         if (r < 0)
6071                 goto free_vcpu;
6072
6073         return 0;
6074 free_vcpu:
6075         kvm_x86_ops->vcpu_free(vcpu);
6076         return r;
6077 }
6078
6079 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6080 {
6081         vcpu->arch.apf.msr_val = 0;
6082
6083         vcpu_load(vcpu);
6084         kvm_mmu_unload(vcpu);
6085         vcpu_put(vcpu);
6086
6087         fx_free(vcpu);
6088         kvm_x86_ops->vcpu_free(vcpu);
6089 }
6090
6091 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6092 {
6093         vcpu->arch.nmi_pending = false;
6094         vcpu->arch.nmi_injected = false;
6095
6096         vcpu->arch.switch_db_regs = 0;
6097         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6098         vcpu->arch.dr6 = DR6_FIXED_1;
6099         vcpu->arch.dr7 = DR7_FIXED_1;
6100
6101         kvm_make_request(KVM_REQ_EVENT, vcpu);
6102         vcpu->arch.apf.msr_val = 0;
6103
6104         kvmclock_reset(vcpu);
6105
6106         kvm_clear_async_pf_completion_queue(vcpu);
6107         kvm_async_pf_hash_reset(vcpu);
6108         vcpu->arch.apf.halted = false;
6109
6110         return kvm_x86_ops->vcpu_reset(vcpu);
6111 }
6112
6113 int kvm_arch_hardware_enable(void *garbage)
6114 {
6115         struct kvm *kvm;
6116         struct kvm_vcpu *vcpu;
6117         int i;
6118
6119         kvm_shared_msr_cpu_online();
6120         list_for_each_entry(kvm, &vm_list, vm_list)
6121                 kvm_for_each_vcpu(i, vcpu, kvm)
6122                         if (vcpu->cpu == smp_processor_id())
6123                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6124         return kvm_x86_ops->hardware_enable(garbage);
6125 }
6126
6127 void kvm_arch_hardware_disable(void *garbage)
6128 {
6129         kvm_x86_ops->hardware_disable(garbage);
6130         drop_user_return_notifiers(garbage);
6131 }
6132
6133 int kvm_arch_hardware_setup(void)
6134 {
6135         return kvm_x86_ops->hardware_setup();
6136 }
6137
6138 void kvm_arch_hardware_unsetup(void)
6139 {
6140         kvm_x86_ops->hardware_unsetup();
6141 }
6142
6143 void kvm_arch_check_processor_compat(void *rtn)
6144 {
6145         kvm_x86_ops->check_processor_compatibility(rtn);
6146 }
6147
6148 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6149 {
6150         struct page *page;
6151         struct kvm *kvm;
6152         int r;
6153
6154         BUG_ON(vcpu->kvm == NULL);
6155         kvm = vcpu->kvm;
6156
6157         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6158         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
6159         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
6160         vcpu->arch.mmu.translate_gpa = translate_gpa;
6161         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6162         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6163                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6164         else
6165                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6166
6167         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6168         if (!page) {
6169                 r = -ENOMEM;
6170                 goto fail;
6171         }
6172         vcpu->arch.pio_data = page_address(page);
6173
6174         kvm_init_tsc_catchup(vcpu, max_tsc_khz);
6175
6176         r = kvm_mmu_create(vcpu);
6177         if (r < 0)
6178                 goto fail_free_pio_data;
6179
6180         if (irqchip_in_kernel(kvm)) {
6181                 r = kvm_create_lapic(vcpu);
6182                 if (r < 0)
6183                         goto fail_mmu_destroy;
6184         }
6185
6186         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6187                                        GFP_KERNEL);
6188         if (!vcpu->arch.mce_banks) {
6189                 r = -ENOMEM;
6190                 goto fail_free_lapic;
6191         }
6192         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6193
6194         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6195                 goto fail_free_mce_banks;
6196
6197         kvm_async_pf_hash_reset(vcpu);
6198
6199         return 0;
6200 fail_free_mce_banks:
6201         kfree(vcpu->arch.mce_banks);
6202 fail_free_lapic:
6203         kvm_free_lapic(vcpu);
6204 fail_mmu_destroy:
6205         kvm_mmu_destroy(vcpu);
6206 fail_free_pio_data:
6207         free_page((unsigned long)vcpu->arch.pio_data);
6208 fail:
6209         return r;
6210 }
6211
6212 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6213 {
6214         int idx;
6215
6216         kfree(vcpu->arch.mce_banks);
6217         kvm_free_lapic(vcpu);
6218         idx = srcu_read_lock(&vcpu->kvm->srcu);
6219         kvm_mmu_destroy(vcpu);
6220         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6221         free_page((unsigned long)vcpu->arch.pio_data);
6222 }
6223
6224 int kvm_arch_init_vm(struct kvm *kvm)
6225 {
6226         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6227         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6228
6229         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6230         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6231
6232         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6233
6234         return 0;
6235 }
6236
6237 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6238 {
6239         vcpu_load(vcpu);
6240         kvm_mmu_unload(vcpu);
6241         vcpu_put(vcpu);
6242 }
6243
6244 static void kvm_free_vcpus(struct kvm *kvm)
6245 {
6246         unsigned int i;
6247         struct kvm_vcpu *vcpu;
6248
6249         /*
6250          * Unpin any mmu pages first.
6251          */
6252         kvm_for_each_vcpu(i, vcpu, kvm) {
6253                 kvm_clear_async_pf_completion_queue(vcpu);
6254                 kvm_unload_vcpu_mmu(vcpu);
6255         }
6256         kvm_for_each_vcpu(i, vcpu, kvm)
6257                 kvm_arch_vcpu_free(vcpu);
6258
6259         mutex_lock(&kvm->lock);
6260         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6261                 kvm->vcpus[i] = NULL;
6262
6263         atomic_set(&kvm->online_vcpus, 0);
6264         mutex_unlock(&kvm->lock);
6265 }
6266
6267 void kvm_arch_sync_events(struct kvm *kvm)
6268 {
6269         kvm_free_all_assigned_devices(kvm);
6270         kvm_free_pit(kvm);
6271 }
6272
6273 void kvm_arch_destroy_vm(struct kvm *kvm)
6274 {
6275         kvm_iommu_unmap_guest(kvm);
6276         kfree(kvm->arch.vpic);
6277         kfree(kvm->arch.vioapic);
6278         kvm_free_vcpus(kvm);
6279         if (kvm->arch.apic_access_page)
6280                 put_page(kvm->arch.apic_access_page);
6281         if (kvm->arch.ept_identity_pagetable)
6282                 put_page(kvm->arch.ept_identity_pagetable);
6283 }
6284
6285 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6286                                 struct kvm_memory_slot *memslot,
6287                                 struct kvm_memory_slot old,
6288                                 struct kvm_userspace_memory_region *mem,
6289                                 int user_alloc)
6290 {
6291         int npages = memslot->npages;
6292         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6293
6294         /* Prevent internal slot pages from being moved by fork()/COW. */
6295         if (memslot->id >= KVM_MEMORY_SLOTS)
6296                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6297
6298         /*To keep backward compatibility with older userspace,
6299          *x86 needs to hanlde !user_alloc case.
6300          */
6301         if (!user_alloc) {
6302                 if (npages && !old.rmap) {
6303                         unsigned long userspace_addr;
6304
6305                         down_write(&current->mm->mmap_sem);
6306                         userspace_addr = do_mmap(NULL, 0,
6307                                                  npages * PAGE_SIZE,
6308                                                  PROT_READ | PROT_WRITE,
6309                                                  map_flags,
6310                                                  0);
6311                         up_write(&current->mm->mmap_sem);
6312
6313                         if (IS_ERR((void *)userspace_addr))
6314                                 return PTR_ERR((void *)userspace_addr);
6315
6316                         memslot->userspace_addr = userspace_addr;
6317                 }
6318         }
6319
6320
6321         return 0;
6322 }
6323
6324 void kvm_arch_commit_memory_region(struct kvm *kvm,
6325                                 struct kvm_userspace_memory_region *mem,
6326                                 struct kvm_memory_slot old,
6327                                 int user_alloc)
6328 {
6329
6330         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6331
6332         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6333                 int ret;
6334
6335                 down_write(&current->mm->mmap_sem);
6336                 ret = do_munmap(current->mm, old.userspace_addr,
6337                                 old.npages * PAGE_SIZE);
6338                 up_write(&current->mm->mmap_sem);
6339                 if (ret < 0)
6340                         printk(KERN_WARNING
6341                                "kvm_vm_ioctl_set_memory_region: "
6342                                "failed to munmap memory\n");
6343         }
6344
6345         if (!kvm->arch.n_requested_mmu_pages)
6346                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6347
6348         spin_lock(&kvm->mmu_lock);
6349         if (nr_mmu_pages)
6350                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6351         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6352         spin_unlock(&kvm->mmu_lock);
6353 }
6354
6355 void kvm_arch_flush_shadow(struct kvm *kvm)
6356 {
6357         kvm_mmu_zap_all(kvm);
6358         kvm_reload_remote_mmus(kvm);
6359 }
6360
6361 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6362 {
6363         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6364                 !vcpu->arch.apf.halted)
6365                 || !list_empty_careful(&vcpu->async_pf.done)
6366                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6367                 || vcpu->arch.nmi_pending ||
6368                 (kvm_arch_interrupt_allowed(vcpu) &&
6369                  kvm_cpu_has_interrupt(vcpu));
6370 }
6371
6372 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6373 {
6374         int me;
6375         int cpu = vcpu->cpu;
6376
6377         if (waitqueue_active(&vcpu->wq)) {
6378                 wake_up_interruptible(&vcpu->wq);
6379                 ++vcpu->stat.halt_wakeup;
6380         }
6381
6382         me = get_cpu();
6383         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6384                 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6385                         smp_send_reschedule(cpu);
6386         put_cpu();
6387 }
6388
6389 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6390 {
6391         return kvm_x86_ops->interrupt_allowed(vcpu);
6392 }
6393
6394 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6395 {
6396         unsigned long current_rip = kvm_rip_read(vcpu) +
6397                 get_segment_base(vcpu, VCPU_SREG_CS);
6398
6399         return current_rip == linear_rip;
6400 }
6401 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6402
6403 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6404 {
6405         unsigned long rflags;
6406
6407         rflags = kvm_x86_ops->get_rflags(vcpu);
6408         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6409                 rflags &= ~X86_EFLAGS_TF;
6410         return rflags;
6411 }
6412 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6413
6414 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6415 {
6416         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6417             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6418                 rflags |= X86_EFLAGS_TF;
6419         kvm_x86_ops->set_rflags(vcpu, rflags);
6420         kvm_make_request(KVM_REQ_EVENT, vcpu);
6421 }
6422 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6423
6424 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6425 {
6426         int r;
6427
6428         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6429               is_error_page(work->page))
6430                 return;
6431
6432         r = kvm_mmu_reload(vcpu);
6433         if (unlikely(r))
6434                 return;
6435
6436         if (!vcpu->arch.mmu.direct_map &&
6437               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6438                 return;
6439
6440         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6441 }
6442
6443 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6444 {
6445         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6446 }
6447
6448 static inline u32 kvm_async_pf_next_probe(u32 key)
6449 {
6450         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6451 }
6452
6453 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6454 {
6455         u32 key = kvm_async_pf_hash_fn(gfn);
6456
6457         while (vcpu->arch.apf.gfns[key] != ~0)
6458                 key = kvm_async_pf_next_probe(key);
6459
6460         vcpu->arch.apf.gfns[key] = gfn;
6461 }
6462
6463 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6464 {
6465         int i;
6466         u32 key = kvm_async_pf_hash_fn(gfn);
6467
6468         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6469                      (vcpu->arch.apf.gfns[key] != gfn &&
6470                       vcpu->arch.apf.gfns[key] != ~0); i++)
6471                 key = kvm_async_pf_next_probe(key);
6472
6473         return key;
6474 }
6475
6476 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6477 {
6478         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6479 }
6480
6481 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6482 {
6483         u32 i, j, k;
6484
6485         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6486         while (true) {
6487                 vcpu->arch.apf.gfns[i] = ~0;
6488                 do {
6489                         j = kvm_async_pf_next_probe(j);
6490                         if (vcpu->arch.apf.gfns[j] == ~0)
6491                                 return;
6492                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6493                         /*
6494                          * k lies cyclically in ]i,j]
6495                          * |    i.k.j |
6496                          * |....j i.k.| or  |.k..j i...|
6497                          */
6498                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6499                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6500                 i = j;
6501         }
6502 }
6503
6504 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6505 {
6506
6507         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6508                                       sizeof(val));
6509 }
6510
6511 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6512                                      struct kvm_async_pf *work)
6513 {
6514         struct x86_exception fault;
6515
6516         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6517         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6518
6519         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6520             (vcpu->arch.apf.send_user_only &&
6521              kvm_x86_ops->get_cpl(vcpu) == 0))
6522                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6523         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6524                 fault.vector = PF_VECTOR;
6525                 fault.error_code_valid = true;
6526                 fault.error_code = 0;
6527                 fault.nested_page_fault = false;
6528                 fault.address = work->arch.token;
6529                 kvm_inject_page_fault(vcpu, &fault);
6530         }
6531 }
6532
6533 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6534                                  struct kvm_async_pf *work)
6535 {
6536         struct x86_exception fault;
6537
6538         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6539         if (is_error_page(work->page))
6540                 work->arch.token = ~0; /* broadcast wakeup */
6541         else
6542                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6543
6544         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6545             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6546                 fault.vector = PF_VECTOR;
6547                 fault.error_code_valid = true;
6548                 fault.error_code = 0;
6549                 fault.nested_page_fault = false;
6550                 fault.address = work->arch.token;
6551                 kvm_inject_page_fault(vcpu, &fault);
6552         }
6553         vcpu->arch.apf.halted = false;
6554 }
6555
6556 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6557 {
6558         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6559                 return true;
6560         else
6561                 return !kvm_event_needs_reinjection(vcpu) &&
6562                         kvm_x86_ops->interrupt_allowed(vcpu);
6563 }
6564
6565 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6566 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6567 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6568 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6569 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6570 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6571 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);