md: Add module.h to all files using it implicitly
[linux-flexiantxendom0.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 static void md_print_devices(void);
71
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 static struct workqueue_struct *md_wq;
74 static struct workqueue_struct *md_misc_wq;
75
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77
78 /*
79  * Default number of read corrections we'll attempt on an rdev
80  * before ejecting it from the array. We divide the read error
81  * count by 2 for every hour elapsed between read errors.
82  */
83 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 /*
85  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
86  * is 1000 KB/sec, so the extra system load does not show up that much.
87  * Increase it if you want to have more _guaranteed_ speed. Note that
88  * the RAID driver will use the maximum available bandwidth if the IO
89  * subsystem is idle. There is also an 'absolute maximum' reconstruction
90  * speed limit - in case reconstruction slows down your system despite
91  * idle IO detection.
92  *
93  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
94  * or /sys/block/mdX/md/sync_speed_{min,max}
95  */
96
97 static int sysctl_speed_limit_min = 1000;
98 static int sysctl_speed_limit_max = 200000;
99 static inline int speed_min(struct mddev *mddev)
100 {
101         return mddev->sync_speed_min ?
102                 mddev->sync_speed_min : sysctl_speed_limit_min;
103 }
104
105 static inline int speed_max(struct mddev *mddev)
106 {
107         return mddev->sync_speed_max ?
108                 mddev->sync_speed_max : sysctl_speed_limit_max;
109 }
110
111 static struct ctl_table_header *raid_table_header;
112
113 static ctl_table raid_table[] = {
114         {
115                 .procname       = "speed_limit_min",
116                 .data           = &sysctl_speed_limit_min,
117                 .maxlen         = sizeof(int),
118                 .mode           = S_IRUGO|S_IWUSR,
119                 .proc_handler   = proc_dointvec,
120         },
121         {
122                 .procname       = "speed_limit_max",
123                 .data           = &sysctl_speed_limit_max,
124                 .maxlen         = sizeof(int),
125                 .mode           = S_IRUGO|S_IWUSR,
126                 .proc_handler   = proc_dointvec,
127         },
128         { }
129 };
130
131 static ctl_table raid_dir_table[] = {
132         {
133                 .procname       = "raid",
134                 .maxlen         = 0,
135                 .mode           = S_IRUGO|S_IXUGO,
136                 .child          = raid_table,
137         },
138         { }
139 };
140
141 static ctl_table raid_root_table[] = {
142         {
143                 .procname       = "dev",
144                 .maxlen         = 0,
145                 .mode           = 0555,
146                 .child          = raid_dir_table,
147         },
148         {  }
149 };
150
151 static const struct block_device_operations md_fops;
152
153 static int start_readonly;
154
155 /* bio_clone_mddev
156  * like bio_clone, but with a local bio set
157  */
158
159 static void mddev_bio_destructor(struct bio *bio)
160 {
161         struct mddev *mddev, **mddevp;
162
163         mddevp = (void*)bio;
164         mddev = mddevp[-1];
165
166         bio_free(bio, mddev->bio_set);
167 }
168
169 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
170                             struct mddev *mddev)
171 {
172         struct bio *b;
173         struct mddev **mddevp;
174
175         if (!mddev || !mddev->bio_set)
176                 return bio_alloc(gfp_mask, nr_iovecs);
177
178         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
179                              mddev->bio_set);
180         if (!b)
181                 return NULL;
182         mddevp = (void*)b;
183         mddevp[-1] = mddev;
184         b->bi_destructor = mddev_bio_destructor;
185         return b;
186 }
187 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188
189 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
190                             struct mddev *mddev)
191 {
192         struct bio *b;
193         struct mddev **mddevp;
194
195         if (!mddev || !mddev->bio_set)
196                 return bio_clone(bio, gfp_mask);
197
198         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
199                              mddev->bio_set);
200         if (!b)
201                 return NULL;
202         mddevp = (void*)b;
203         mddevp[-1] = mddev;
204         b->bi_destructor = mddev_bio_destructor;
205         __bio_clone(b, bio);
206         if (bio_integrity(bio)) {
207                 int ret;
208
209                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
210
211                 if (ret < 0) {
212                         bio_put(b);
213                         return NULL;
214                 }
215         }
216
217         return b;
218 }
219 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220
221 void md_trim_bio(struct bio *bio, int offset, int size)
222 {
223         /* 'bio' is a cloned bio which we need to trim to match
224          * the given offset and size.
225          * This requires adjusting bi_sector, bi_size, and bi_io_vec
226          */
227         int i;
228         struct bio_vec *bvec;
229         int sofar = 0;
230
231         size <<= 9;
232         if (offset == 0 && size == bio->bi_size)
233                 return;
234
235         bio->bi_sector += offset;
236         bio->bi_size = size;
237         offset <<= 9;
238         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239
240         while (bio->bi_idx < bio->bi_vcnt &&
241                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
242                 /* remove this whole bio_vec */
243                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
244                 bio->bi_idx++;
245         }
246         if (bio->bi_idx < bio->bi_vcnt) {
247                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
248                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249         }
250         /* avoid any complications with bi_idx being non-zero*/
251         if (bio->bi_idx) {
252                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
253                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
254                 bio->bi_vcnt -= bio->bi_idx;
255                 bio->bi_idx = 0;
256         }
257         /* Make sure vcnt and last bv are not too big */
258         bio_for_each_segment(bvec, bio, i) {
259                 if (sofar + bvec->bv_len > size)
260                         bvec->bv_len = size - sofar;
261                 if (bvec->bv_len == 0) {
262                         bio->bi_vcnt = i;
263                         break;
264                 }
265                 sofar += bvec->bv_len;
266         }
267 }
268 EXPORT_SYMBOL_GPL(md_trim_bio);
269
270 /*
271  * We have a system wide 'event count' that is incremented
272  * on any 'interesting' event, and readers of /proc/mdstat
273  * can use 'poll' or 'select' to find out when the event
274  * count increases.
275  *
276  * Events are:
277  *  start array, stop array, error, add device, remove device,
278  *  start build, activate spare
279  */
280 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
281 static atomic_t md_event_count;
282 void md_new_event(struct mddev *mddev)
283 {
284         atomic_inc(&md_event_count);
285         wake_up(&md_event_waiters);
286 }
287 EXPORT_SYMBOL_GPL(md_new_event);
288
289 /* Alternate version that can be called from interrupts
290  * when calling sysfs_notify isn't needed.
291  */
292 static void md_new_event_inintr(struct mddev *mddev)
293 {
294         atomic_inc(&md_event_count);
295         wake_up(&md_event_waiters);
296 }
297
298 /*
299  * Enables to iterate over all existing md arrays
300  * all_mddevs_lock protects this list.
301  */
302 static LIST_HEAD(all_mddevs);
303 static DEFINE_SPINLOCK(all_mddevs_lock);
304
305
306 /*
307  * iterates through all used mddevs in the system.
308  * We take care to grab the all_mddevs_lock whenever navigating
309  * the list, and to always hold a refcount when unlocked.
310  * Any code which breaks out of this loop while own
311  * a reference to the current mddev and must mddev_put it.
312  */
313 #define for_each_mddev(_mddev,_tmp)                                     \
314                                                                         \
315         for (({ spin_lock(&all_mddevs_lock);                            \
316                 _tmp = all_mddevs.next;                                 \
317                 _mddev = NULL;});                                       \
318              ({ if (_tmp != &all_mddevs)                                \
319                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
320                 spin_unlock(&all_mddevs_lock);                          \
321                 if (_mddev) mddev_put(_mddev);                          \
322                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
323                 _tmp != &all_mddevs;});                                 \
324              ({ spin_lock(&all_mddevs_lock);                            \
325                 _tmp = _tmp->next;})                                    \
326                 )
327
328
329 /* Rather than calling directly into the personality make_request function,
330  * IO requests come here first so that we can check if the device is
331  * being suspended pending a reconfiguration.
332  * We hold a refcount over the call to ->make_request.  By the time that
333  * call has finished, the bio has been linked into some internal structure
334  * and so is visible to ->quiesce(), so we don't need the refcount any more.
335  */
336 static int md_make_request(struct request_queue *q, struct bio *bio)
337 {
338         const int rw = bio_data_dir(bio);
339         struct mddev *mddev = q->queuedata;
340         int rv;
341         int cpu;
342         unsigned int sectors;
343
344         if (mddev == NULL || mddev->pers == NULL
345             || !mddev->ready) {
346                 bio_io_error(bio);
347                 return 0;
348         }
349         smp_rmb(); /* Ensure implications of  'active' are visible */
350         rcu_read_lock();
351         if (mddev->suspended) {
352                 DEFINE_WAIT(__wait);
353                 for (;;) {
354                         prepare_to_wait(&mddev->sb_wait, &__wait,
355                                         TASK_UNINTERRUPTIBLE);
356                         if (!mddev->suspended)
357                                 break;
358                         rcu_read_unlock();
359                         schedule();
360                         rcu_read_lock();
361                 }
362                 finish_wait(&mddev->sb_wait, &__wait);
363         }
364         atomic_inc(&mddev->active_io);
365         rcu_read_unlock();
366
367         /*
368          * save the sectors now since our bio can
369          * go away inside make_request
370          */
371         sectors = bio_sectors(bio);
372         rv = mddev->pers->make_request(mddev, bio);
373
374         cpu = part_stat_lock();
375         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
376         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
377         part_stat_unlock();
378
379         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
380                 wake_up(&mddev->sb_wait);
381
382         return rv;
383 }
384
385 /* mddev_suspend makes sure no new requests are submitted
386  * to the device, and that any requests that have been submitted
387  * are completely handled.
388  * Once ->stop is called and completes, the module will be completely
389  * unused.
390  */
391 void mddev_suspend(struct mddev *mddev)
392 {
393         BUG_ON(mddev->suspended);
394         mddev->suspended = 1;
395         synchronize_rcu();
396         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
397         mddev->pers->quiesce(mddev, 1);
398 }
399 EXPORT_SYMBOL_GPL(mddev_suspend);
400
401 void mddev_resume(struct mddev *mddev)
402 {
403         mddev->suspended = 0;
404         wake_up(&mddev->sb_wait);
405         mddev->pers->quiesce(mddev, 0);
406
407         md_wakeup_thread(mddev->thread);
408         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
409 }
410 EXPORT_SYMBOL_GPL(mddev_resume);
411
412 int mddev_congested(struct mddev *mddev, int bits)
413 {
414         return mddev->suspended;
415 }
416 EXPORT_SYMBOL(mddev_congested);
417
418 /*
419  * Generic flush handling for md
420  */
421
422 static void md_end_flush(struct bio *bio, int err)
423 {
424         struct md_rdev *rdev = bio->bi_private;
425         struct mddev *mddev = rdev->mddev;
426
427         rdev_dec_pending(rdev, mddev);
428
429         if (atomic_dec_and_test(&mddev->flush_pending)) {
430                 /* The pre-request flush has finished */
431                 queue_work(md_wq, &mddev->flush_work);
432         }
433         bio_put(bio);
434 }
435
436 static void md_submit_flush_data(struct work_struct *ws);
437
438 static void submit_flushes(struct work_struct *ws)
439 {
440         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
441         struct md_rdev *rdev;
442
443         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
444         atomic_set(&mddev->flush_pending, 1);
445         rcu_read_lock();
446         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
447                 if (rdev->raid_disk >= 0 &&
448                     !test_bit(Faulty, &rdev->flags)) {
449                         /* Take two references, one is dropped
450                          * when request finishes, one after
451                          * we reclaim rcu_read_lock
452                          */
453                         struct bio *bi;
454                         atomic_inc(&rdev->nr_pending);
455                         atomic_inc(&rdev->nr_pending);
456                         rcu_read_unlock();
457                         bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
458                         bi->bi_end_io = md_end_flush;
459                         bi->bi_private = rdev;
460                         bi->bi_bdev = rdev->bdev;
461                         atomic_inc(&mddev->flush_pending);
462                         submit_bio(WRITE_FLUSH, bi);
463                         rcu_read_lock();
464                         rdev_dec_pending(rdev, mddev);
465                 }
466         rcu_read_unlock();
467         if (atomic_dec_and_test(&mddev->flush_pending))
468                 queue_work(md_wq, &mddev->flush_work);
469 }
470
471 static void md_submit_flush_data(struct work_struct *ws)
472 {
473         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
474         struct bio *bio = mddev->flush_bio;
475
476         if (bio->bi_size == 0)
477                 /* an empty barrier - all done */
478                 bio_endio(bio, 0);
479         else {
480                 bio->bi_rw &= ~REQ_FLUSH;
481                 if (mddev->pers->make_request(mddev, bio))
482                         generic_make_request(bio);
483         }
484
485         mddev->flush_bio = NULL;
486         wake_up(&mddev->sb_wait);
487 }
488
489 void md_flush_request(struct mddev *mddev, struct bio *bio)
490 {
491         spin_lock_irq(&mddev->write_lock);
492         wait_event_lock_irq(mddev->sb_wait,
493                             !mddev->flush_bio,
494                             mddev->write_lock, /*nothing*/);
495         mddev->flush_bio = bio;
496         spin_unlock_irq(&mddev->write_lock);
497
498         INIT_WORK(&mddev->flush_work, submit_flushes);
499         queue_work(md_wq, &mddev->flush_work);
500 }
501 EXPORT_SYMBOL(md_flush_request);
502
503 /* Support for plugging.
504  * This mirrors the plugging support in request_queue, but does not
505  * require having a whole queue or request structures.
506  * We allocate an md_plug_cb for each md device and each thread it gets
507  * plugged on.  This links tot the private plug_handle structure in the
508  * personality data where we keep a count of the number of outstanding
509  * plugs so other code can see if a plug is active.
510  */
511 struct md_plug_cb {
512         struct blk_plug_cb cb;
513         struct mddev *mddev;
514 };
515
516 static void plugger_unplug(struct blk_plug_cb *cb)
517 {
518         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
519         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
520                 md_wakeup_thread(mdcb->mddev->thread);
521         kfree(mdcb);
522 }
523
524 /* Check that an unplug wakeup will come shortly.
525  * If not, wakeup the md thread immediately
526  */
527 int mddev_check_plugged(struct mddev *mddev)
528 {
529         struct blk_plug *plug = current->plug;
530         struct md_plug_cb *mdcb;
531
532         if (!plug)
533                 return 0;
534
535         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
536                 if (mdcb->cb.callback == plugger_unplug &&
537                     mdcb->mddev == mddev) {
538                         /* Already on the list, move to top */
539                         if (mdcb != list_first_entry(&plug->cb_list,
540                                                     struct md_plug_cb,
541                                                     cb.list))
542                                 list_move(&mdcb->cb.list, &plug->cb_list);
543                         return 1;
544                 }
545         }
546         /* Not currently on the callback list */
547         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
548         if (!mdcb)
549                 return 0;
550
551         mdcb->mddev = mddev;
552         mdcb->cb.callback = plugger_unplug;
553         atomic_inc(&mddev->plug_cnt);
554         list_add(&mdcb->cb.list, &plug->cb_list);
555         return 1;
556 }
557 EXPORT_SYMBOL_GPL(mddev_check_plugged);
558
559 static inline struct mddev *mddev_get(struct mddev *mddev)
560 {
561         atomic_inc(&mddev->active);
562         return mddev;
563 }
564
565 static void mddev_delayed_delete(struct work_struct *ws);
566
567 static void mddev_put(struct mddev *mddev)
568 {
569         struct bio_set *bs = NULL;
570
571         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
572                 return;
573         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
574             mddev->ctime == 0 && !mddev->hold_active) {
575                 /* Array is not configured at all, and not held active,
576                  * so destroy it */
577                 list_del(&mddev->all_mddevs);
578                 bs = mddev->bio_set;
579                 mddev->bio_set = NULL;
580                 if (mddev->gendisk) {
581                         /* We did a probe so need to clean up.  Call
582                          * queue_work inside the spinlock so that
583                          * flush_workqueue() after mddev_find will
584                          * succeed in waiting for the work to be done.
585                          */
586                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
587                         queue_work(md_misc_wq, &mddev->del_work);
588                 } else
589                         kfree(mddev);
590         }
591         spin_unlock(&all_mddevs_lock);
592         if (bs)
593                 bioset_free(bs);
594 }
595
596 void mddev_init(struct mddev *mddev)
597 {
598         mutex_init(&mddev->open_mutex);
599         mutex_init(&mddev->reconfig_mutex);
600         mutex_init(&mddev->bitmap_info.mutex);
601         INIT_LIST_HEAD(&mddev->disks);
602         INIT_LIST_HEAD(&mddev->all_mddevs);
603         init_timer(&mddev->safemode_timer);
604         atomic_set(&mddev->active, 1);
605         atomic_set(&mddev->openers, 0);
606         atomic_set(&mddev->active_io, 0);
607         atomic_set(&mddev->plug_cnt, 0);
608         spin_lock_init(&mddev->write_lock);
609         atomic_set(&mddev->flush_pending, 0);
610         init_waitqueue_head(&mddev->sb_wait);
611         init_waitqueue_head(&mddev->recovery_wait);
612         mddev->reshape_position = MaxSector;
613         mddev->resync_min = 0;
614         mddev->resync_max = MaxSector;
615         mddev->level = LEVEL_NONE;
616 }
617 EXPORT_SYMBOL_GPL(mddev_init);
618
619 static struct mddev * mddev_find(dev_t unit)
620 {
621         struct mddev *mddev, *new = NULL;
622
623         if (unit && MAJOR(unit) != MD_MAJOR)
624                 unit &= ~((1<<MdpMinorShift)-1);
625
626  retry:
627         spin_lock(&all_mddevs_lock);
628
629         if (unit) {
630                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
631                         if (mddev->unit == unit) {
632                                 mddev_get(mddev);
633                                 spin_unlock(&all_mddevs_lock);
634                                 kfree(new);
635                                 return mddev;
636                         }
637
638                 if (new) {
639                         list_add(&new->all_mddevs, &all_mddevs);
640                         spin_unlock(&all_mddevs_lock);
641                         new->hold_active = UNTIL_IOCTL;
642                         return new;
643                 }
644         } else if (new) {
645                 /* find an unused unit number */
646                 static int next_minor = 512;
647                 int start = next_minor;
648                 int is_free = 0;
649                 int dev = 0;
650                 while (!is_free) {
651                         dev = MKDEV(MD_MAJOR, next_minor);
652                         next_minor++;
653                         if (next_minor > MINORMASK)
654                                 next_minor = 0;
655                         if (next_minor == start) {
656                                 /* Oh dear, all in use. */
657                                 spin_unlock(&all_mddevs_lock);
658                                 kfree(new);
659                                 return NULL;
660                         }
661                                 
662                         is_free = 1;
663                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
664                                 if (mddev->unit == dev) {
665                                         is_free = 0;
666                                         break;
667                                 }
668                 }
669                 new->unit = dev;
670                 new->md_minor = MINOR(dev);
671                 new->hold_active = UNTIL_STOP;
672                 list_add(&new->all_mddevs, &all_mddevs);
673                 spin_unlock(&all_mddevs_lock);
674                 return new;
675         }
676         spin_unlock(&all_mddevs_lock);
677
678         new = kzalloc(sizeof(*new), GFP_KERNEL);
679         if (!new)
680                 return NULL;
681
682         new->unit = unit;
683         if (MAJOR(unit) == MD_MAJOR)
684                 new->md_minor = MINOR(unit);
685         else
686                 new->md_minor = MINOR(unit) >> MdpMinorShift;
687
688         mddev_init(new);
689
690         goto retry;
691 }
692
693 static inline int mddev_lock(struct mddev * mddev)
694 {
695         return mutex_lock_interruptible(&mddev->reconfig_mutex);
696 }
697
698 static inline int mddev_is_locked(struct mddev *mddev)
699 {
700         return mutex_is_locked(&mddev->reconfig_mutex);
701 }
702
703 static inline int mddev_trylock(struct mddev * mddev)
704 {
705         return mutex_trylock(&mddev->reconfig_mutex);
706 }
707
708 static struct attribute_group md_redundancy_group;
709
710 static void mddev_unlock(struct mddev * mddev)
711 {
712         if (mddev->to_remove) {
713                 /* These cannot be removed under reconfig_mutex as
714                  * an access to the files will try to take reconfig_mutex
715                  * while holding the file unremovable, which leads to
716                  * a deadlock.
717                  * So hold set sysfs_active while the remove in happeing,
718                  * and anything else which might set ->to_remove or my
719                  * otherwise change the sysfs namespace will fail with
720                  * -EBUSY if sysfs_active is still set.
721                  * We set sysfs_active under reconfig_mutex and elsewhere
722                  * test it under the same mutex to ensure its correct value
723                  * is seen.
724                  */
725                 struct attribute_group *to_remove = mddev->to_remove;
726                 mddev->to_remove = NULL;
727                 mddev->sysfs_active = 1;
728                 mutex_unlock(&mddev->reconfig_mutex);
729
730                 if (mddev->kobj.sd) {
731                         if (to_remove != &md_redundancy_group)
732                                 sysfs_remove_group(&mddev->kobj, to_remove);
733                         if (mddev->pers == NULL ||
734                             mddev->pers->sync_request == NULL) {
735                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
736                                 if (mddev->sysfs_action)
737                                         sysfs_put(mddev->sysfs_action);
738                                 mddev->sysfs_action = NULL;
739                         }
740                 }
741                 mddev->sysfs_active = 0;
742         } else
743                 mutex_unlock(&mddev->reconfig_mutex);
744
745         /* As we've dropped the mutex we need a spinlock to
746          * make sure the thread doesn't disappear
747          */
748         spin_lock(&pers_lock);
749         md_wakeup_thread(mddev->thread);
750         spin_unlock(&pers_lock);
751 }
752
753 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
754 {
755         struct md_rdev *rdev;
756
757         list_for_each_entry(rdev, &mddev->disks, same_set)
758                 if (rdev->desc_nr == nr)
759                         return rdev;
760
761         return NULL;
762 }
763
764 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
765 {
766         struct md_rdev *rdev;
767
768         list_for_each_entry(rdev, &mddev->disks, same_set)
769                 if (rdev->bdev->bd_dev == dev)
770                         return rdev;
771
772         return NULL;
773 }
774
775 static struct md_personality *find_pers(int level, char *clevel)
776 {
777         struct md_personality *pers;
778         list_for_each_entry(pers, &pers_list, list) {
779                 if (level != LEVEL_NONE && pers->level == level)
780                         return pers;
781                 if (strcmp(pers->name, clevel)==0)
782                         return pers;
783         }
784         return NULL;
785 }
786
787 /* return the offset of the super block in 512byte sectors */
788 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
789 {
790         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
791         return MD_NEW_SIZE_SECTORS(num_sectors);
792 }
793
794 static int alloc_disk_sb(struct md_rdev * rdev)
795 {
796         if (rdev->sb_page)
797                 MD_BUG();
798
799         rdev->sb_page = alloc_page(GFP_KERNEL);
800         if (!rdev->sb_page) {
801                 printk(KERN_ALERT "md: out of memory.\n");
802                 return -ENOMEM;
803         }
804
805         return 0;
806 }
807
808 static void free_disk_sb(struct md_rdev * rdev)
809 {
810         if (rdev->sb_page) {
811                 put_page(rdev->sb_page);
812                 rdev->sb_loaded = 0;
813                 rdev->sb_page = NULL;
814                 rdev->sb_start = 0;
815                 rdev->sectors = 0;
816         }
817         if (rdev->bb_page) {
818                 put_page(rdev->bb_page);
819                 rdev->bb_page = NULL;
820         }
821 }
822
823
824 static void super_written(struct bio *bio, int error)
825 {
826         struct md_rdev *rdev = bio->bi_private;
827         struct mddev *mddev = rdev->mddev;
828
829         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
830                 printk("md: super_written gets error=%d, uptodate=%d\n",
831                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
832                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
833                 md_error(mddev, rdev);
834         }
835
836         if (atomic_dec_and_test(&mddev->pending_writes))
837                 wake_up(&mddev->sb_wait);
838         bio_put(bio);
839 }
840
841 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
842                    sector_t sector, int size, struct page *page)
843 {
844         /* write first size bytes of page to sector of rdev
845          * Increment mddev->pending_writes before returning
846          * and decrement it on completion, waking up sb_wait
847          * if zero is reached.
848          * If an error occurred, call md_error
849          */
850         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
851
852         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
853         bio->bi_sector = sector;
854         bio_add_page(bio, page, size, 0);
855         bio->bi_private = rdev;
856         bio->bi_end_io = super_written;
857
858         atomic_inc(&mddev->pending_writes);
859         submit_bio(WRITE_FLUSH_FUA, bio);
860 }
861
862 void md_super_wait(struct mddev *mddev)
863 {
864         /* wait for all superblock writes that were scheduled to complete */
865         DEFINE_WAIT(wq);
866         for(;;) {
867                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
868                 if (atomic_read(&mddev->pending_writes)==0)
869                         break;
870                 schedule();
871         }
872         finish_wait(&mddev->sb_wait, &wq);
873 }
874
875 static void bi_complete(struct bio *bio, int error)
876 {
877         complete((struct completion*)bio->bi_private);
878 }
879
880 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
881                  struct page *page, int rw, bool metadata_op)
882 {
883         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
884         struct completion event;
885         int ret;
886
887         rw |= REQ_SYNC;
888
889         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
890                 rdev->meta_bdev : rdev->bdev;
891         if (metadata_op)
892                 bio->bi_sector = sector + rdev->sb_start;
893         else
894                 bio->bi_sector = sector + rdev->data_offset;
895         bio_add_page(bio, page, size, 0);
896         init_completion(&event);
897         bio->bi_private = &event;
898         bio->bi_end_io = bi_complete;
899         submit_bio(rw, bio);
900         wait_for_completion(&event);
901
902         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
903         bio_put(bio);
904         return ret;
905 }
906 EXPORT_SYMBOL_GPL(sync_page_io);
907
908 static int read_disk_sb(struct md_rdev * rdev, int size)
909 {
910         char b[BDEVNAME_SIZE];
911         if (!rdev->sb_page) {
912                 MD_BUG();
913                 return -EINVAL;
914         }
915         if (rdev->sb_loaded)
916                 return 0;
917
918
919         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
920                 goto fail;
921         rdev->sb_loaded = 1;
922         return 0;
923
924 fail:
925         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
926                 bdevname(rdev->bdev,b));
927         return -EINVAL;
928 }
929
930 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
931 {
932         return  sb1->set_uuid0 == sb2->set_uuid0 &&
933                 sb1->set_uuid1 == sb2->set_uuid1 &&
934                 sb1->set_uuid2 == sb2->set_uuid2 &&
935                 sb1->set_uuid3 == sb2->set_uuid3;
936 }
937
938 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
939 {
940         int ret;
941         mdp_super_t *tmp1, *tmp2;
942
943         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
944         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
945
946         if (!tmp1 || !tmp2) {
947                 ret = 0;
948                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
949                 goto abort;
950         }
951
952         *tmp1 = *sb1;
953         *tmp2 = *sb2;
954
955         /*
956          * nr_disks is not constant
957          */
958         tmp1->nr_disks = 0;
959         tmp2->nr_disks = 0;
960
961         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
962 abort:
963         kfree(tmp1);
964         kfree(tmp2);
965         return ret;
966 }
967
968
969 static u32 md_csum_fold(u32 csum)
970 {
971         csum = (csum & 0xffff) + (csum >> 16);
972         return (csum & 0xffff) + (csum >> 16);
973 }
974
975 static unsigned int calc_sb_csum(mdp_super_t * sb)
976 {
977         u64 newcsum = 0;
978         u32 *sb32 = (u32*)sb;
979         int i;
980         unsigned int disk_csum, csum;
981
982         disk_csum = sb->sb_csum;
983         sb->sb_csum = 0;
984
985         for (i = 0; i < MD_SB_BYTES/4 ; i++)
986                 newcsum += sb32[i];
987         csum = (newcsum & 0xffffffff) + (newcsum>>32);
988
989
990 #ifdef CONFIG_ALPHA
991         /* This used to use csum_partial, which was wrong for several
992          * reasons including that different results are returned on
993          * different architectures.  It isn't critical that we get exactly
994          * the same return value as before (we always csum_fold before
995          * testing, and that removes any differences).  However as we
996          * know that csum_partial always returned a 16bit value on
997          * alphas, do a fold to maximise conformity to previous behaviour.
998          */
999         sb->sb_csum = md_csum_fold(disk_csum);
1000 #else
1001         sb->sb_csum = disk_csum;
1002 #endif
1003         return csum;
1004 }
1005
1006
1007 /*
1008  * Handle superblock details.
1009  * We want to be able to handle multiple superblock formats
1010  * so we have a common interface to them all, and an array of
1011  * different handlers.
1012  * We rely on user-space to write the initial superblock, and support
1013  * reading and updating of superblocks.
1014  * Interface methods are:
1015  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1016  *      loads and validates a superblock on dev.
1017  *      if refdev != NULL, compare superblocks on both devices
1018  *    Return:
1019  *      0 - dev has a superblock that is compatible with refdev
1020  *      1 - dev has a superblock that is compatible and newer than refdev
1021  *          so dev should be used as the refdev in future
1022  *     -EINVAL superblock incompatible or invalid
1023  *     -othererror e.g. -EIO
1024  *
1025  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1026  *      Verify that dev is acceptable into mddev.
1027  *       The first time, mddev->raid_disks will be 0, and data from
1028  *       dev should be merged in.  Subsequent calls check that dev
1029  *       is new enough.  Return 0 or -EINVAL
1030  *
1031  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1032  *     Update the superblock for rdev with data in mddev
1033  *     This does not write to disc.
1034  *
1035  */
1036
1037 struct super_type  {
1038         char                *name;
1039         struct module       *owner;
1040         int                 (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1041                                           int minor_version);
1042         int                 (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1043         void                (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1044         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1045                                                 sector_t num_sectors);
1046 };
1047
1048 /*
1049  * Check that the given mddev has no bitmap.
1050  *
1051  * This function is called from the run method of all personalities that do not
1052  * support bitmaps. It prints an error message and returns non-zero if mddev
1053  * has a bitmap. Otherwise, it returns 0.
1054  *
1055  */
1056 int md_check_no_bitmap(struct mddev *mddev)
1057 {
1058         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1059                 return 0;
1060         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1061                 mdname(mddev), mddev->pers->name);
1062         return 1;
1063 }
1064 EXPORT_SYMBOL(md_check_no_bitmap);
1065
1066 /*
1067  * load_super for 0.90.0 
1068  */
1069 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1070 {
1071         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1072         mdp_super_t *sb;
1073         int ret;
1074
1075         /*
1076          * Calculate the position of the superblock (512byte sectors),
1077          * it's at the end of the disk.
1078          *
1079          * It also happens to be a multiple of 4Kb.
1080          */
1081         rdev->sb_start = calc_dev_sboffset(rdev);
1082
1083         ret = read_disk_sb(rdev, MD_SB_BYTES);
1084         if (ret) return ret;
1085
1086         ret = -EINVAL;
1087
1088         bdevname(rdev->bdev, b);
1089         sb = page_address(rdev->sb_page);
1090
1091         if (sb->md_magic != MD_SB_MAGIC) {
1092                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1093                        b);
1094                 goto abort;
1095         }
1096
1097         if (sb->major_version != 0 ||
1098             sb->minor_version < 90 ||
1099             sb->minor_version > 91) {
1100                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1101                         sb->major_version, sb->minor_version,
1102                         b);
1103                 goto abort;
1104         }
1105
1106         if (sb->raid_disks <= 0)
1107                 goto abort;
1108
1109         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1110                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1111                         b);
1112                 goto abort;
1113         }
1114
1115         rdev->preferred_minor = sb->md_minor;
1116         rdev->data_offset = 0;
1117         rdev->sb_size = MD_SB_BYTES;
1118         rdev->badblocks.shift = -1;
1119
1120         if (sb->level == LEVEL_MULTIPATH)
1121                 rdev->desc_nr = -1;
1122         else
1123                 rdev->desc_nr = sb->this_disk.number;
1124
1125         if (!refdev) {
1126                 ret = 1;
1127         } else {
1128                 __u64 ev1, ev2;
1129                 mdp_super_t *refsb = page_address(refdev->sb_page);
1130                 if (!uuid_equal(refsb, sb)) {
1131                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1132                                 b, bdevname(refdev->bdev,b2));
1133                         goto abort;
1134                 }
1135                 if (!sb_equal(refsb, sb)) {
1136                         printk(KERN_WARNING "md: %s has same UUID"
1137                                " but different superblock to %s\n",
1138                                b, bdevname(refdev->bdev, b2));
1139                         goto abort;
1140                 }
1141                 ev1 = md_event(sb);
1142                 ev2 = md_event(refsb);
1143                 if (ev1 > ev2)
1144                         ret = 1;
1145                 else 
1146                         ret = 0;
1147         }
1148         rdev->sectors = rdev->sb_start;
1149         /* Limit to 4TB as metadata cannot record more than that */
1150         if (rdev->sectors >= (2ULL << 32))
1151                 rdev->sectors = (2ULL << 32) - 2;
1152
1153         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1154                 /* "this cannot possibly happen" ... */
1155                 ret = -EINVAL;
1156
1157  abort:
1158         return ret;
1159 }
1160
1161 /*
1162  * validate_super for 0.90.0
1163  */
1164 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1165 {
1166         mdp_disk_t *desc;
1167         mdp_super_t *sb = page_address(rdev->sb_page);
1168         __u64 ev1 = md_event(sb);
1169
1170         rdev->raid_disk = -1;
1171         clear_bit(Faulty, &rdev->flags);
1172         clear_bit(In_sync, &rdev->flags);
1173         clear_bit(WriteMostly, &rdev->flags);
1174
1175         if (mddev->raid_disks == 0) {
1176                 mddev->major_version = 0;
1177                 mddev->minor_version = sb->minor_version;
1178                 mddev->patch_version = sb->patch_version;
1179                 mddev->external = 0;
1180                 mddev->chunk_sectors = sb->chunk_size >> 9;
1181                 mddev->ctime = sb->ctime;
1182                 mddev->utime = sb->utime;
1183                 mddev->level = sb->level;
1184                 mddev->clevel[0] = 0;
1185                 mddev->layout = sb->layout;
1186                 mddev->raid_disks = sb->raid_disks;
1187                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1188                 mddev->events = ev1;
1189                 mddev->bitmap_info.offset = 0;
1190                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1191
1192                 if (mddev->minor_version >= 91) {
1193                         mddev->reshape_position = sb->reshape_position;
1194                         mddev->delta_disks = sb->delta_disks;
1195                         mddev->new_level = sb->new_level;
1196                         mddev->new_layout = sb->new_layout;
1197                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1198                 } else {
1199                         mddev->reshape_position = MaxSector;
1200                         mddev->delta_disks = 0;
1201                         mddev->new_level = mddev->level;
1202                         mddev->new_layout = mddev->layout;
1203                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1204                 }
1205
1206                 if (sb->state & (1<<MD_SB_CLEAN))
1207                         mddev->recovery_cp = MaxSector;
1208                 else {
1209                         if (sb->events_hi == sb->cp_events_hi && 
1210                                 sb->events_lo == sb->cp_events_lo) {
1211                                 mddev->recovery_cp = sb->recovery_cp;
1212                         } else
1213                                 mddev->recovery_cp = 0;
1214                 }
1215
1216                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1217                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1218                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1219                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1220
1221                 mddev->max_disks = MD_SB_DISKS;
1222
1223                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1224                     mddev->bitmap_info.file == NULL)
1225                         mddev->bitmap_info.offset =
1226                                 mddev->bitmap_info.default_offset;
1227
1228         } else if (mddev->pers == NULL) {
1229                 /* Insist on good event counter while assembling, except
1230                  * for spares (which don't need an event count) */
1231                 ++ev1;
1232                 if (sb->disks[rdev->desc_nr].state & (
1233                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1234                         if (ev1 < mddev->events) 
1235                                 return -EINVAL;
1236         } else if (mddev->bitmap) {
1237                 /* if adding to array with a bitmap, then we can accept an
1238                  * older device ... but not too old.
1239                  */
1240                 if (ev1 < mddev->bitmap->events_cleared)
1241                         return 0;
1242         } else {
1243                 if (ev1 < mddev->events)
1244                         /* just a hot-add of a new device, leave raid_disk at -1 */
1245                         return 0;
1246         }
1247
1248         if (mddev->level != LEVEL_MULTIPATH) {
1249                 desc = sb->disks + rdev->desc_nr;
1250
1251                 if (desc->state & (1<<MD_DISK_FAULTY))
1252                         set_bit(Faulty, &rdev->flags);
1253                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1254                             desc->raid_disk < mddev->raid_disks */) {
1255                         set_bit(In_sync, &rdev->flags);
1256                         rdev->raid_disk = desc->raid_disk;
1257                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1258                         /* active but not in sync implies recovery up to
1259                          * reshape position.  We don't know exactly where
1260                          * that is, so set to zero for now */
1261                         if (mddev->minor_version >= 91) {
1262                                 rdev->recovery_offset = 0;
1263                                 rdev->raid_disk = desc->raid_disk;
1264                         }
1265                 }
1266                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1267                         set_bit(WriteMostly, &rdev->flags);
1268         } else /* MULTIPATH are always insync */
1269                 set_bit(In_sync, &rdev->flags);
1270         return 0;
1271 }
1272
1273 /*
1274  * sync_super for 0.90.0
1275  */
1276 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1277 {
1278         mdp_super_t *sb;
1279         struct md_rdev *rdev2;
1280         int next_spare = mddev->raid_disks;
1281
1282
1283         /* make rdev->sb match mddev data..
1284          *
1285          * 1/ zero out disks
1286          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1287          * 3/ any empty disks < next_spare become removed
1288          *
1289          * disks[0] gets initialised to REMOVED because
1290          * we cannot be sure from other fields if it has
1291          * been initialised or not.
1292          */
1293         int i;
1294         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1295
1296         rdev->sb_size = MD_SB_BYTES;
1297
1298         sb = page_address(rdev->sb_page);
1299
1300         memset(sb, 0, sizeof(*sb));
1301
1302         sb->md_magic = MD_SB_MAGIC;
1303         sb->major_version = mddev->major_version;
1304         sb->patch_version = mddev->patch_version;
1305         sb->gvalid_words  = 0; /* ignored */
1306         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1307         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1308         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1309         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1310
1311         sb->ctime = mddev->ctime;
1312         sb->level = mddev->level;
1313         sb->size = mddev->dev_sectors / 2;
1314         sb->raid_disks = mddev->raid_disks;
1315         sb->md_minor = mddev->md_minor;
1316         sb->not_persistent = 0;
1317         sb->utime = mddev->utime;
1318         sb->state = 0;
1319         sb->events_hi = (mddev->events>>32);
1320         sb->events_lo = (u32)mddev->events;
1321
1322         if (mddev->reshape_position == MaxSector)
1323                 sb->minor_version = 90;
1324         else {
1325                 sb->minor_version = 91;
1326                 sb->reshape_position = mddev->reshape_position;
1327                 sb->new_level = mddev->new_level;
1328                 sb->delta_disks = mddev->delta_disks;
1329                 sb->new_layout = mddev->new_layout;
1330                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1331         }
1332         mddev->minor_version = sb->minor_version;
1333         if (mddev->in_sync)
1334         {
1335                 sb->recovery_cp = mddev->recovery_cp;
1336                 sb->cp_events_hi = (mddev->events>>32);
1337                 sb->cp_events_lo = (u32)mddev->events;
1338                 if (mddev->recovery_cp == MaxSector)
1339                         sb->state = (1<< MD_SB_CLEAN);
1340         } else
1341                 sb->recovery_cp = 0;
1342
1343         sb->layout = mddev->layout;
1344         sb->chunk_size = mddev->chunk_sectors << 9;
1345
1346         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1347                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1348
1349         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1350         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1351                 mdp_disk_t *d;
1352                 int desc_nr;
1353                 int is_active = test_bit(In_sync, &rdev2->flags);
1354
1355                 if (rdev2->raid_disk >= 0 &&
1356                     sb->minor_version >= 91)
1357                         /* we have nowhere to store the recovery_offset,
1358                          * but if it is not below the reshape_position,
1359                          * we can piggy-back on that.
1360                          */
1361                         is_active = 1;
1362                 if (rdev2->raid_disk < 0 ||
1363                     test_bit(Faulty, &rdev2->flags))
1364                         is_active = 0;
1365                 if (is_active)
1366                         desc_nr = rdev2->raid_disk;
1367                 else
1368                         desc_nr = next_spare++;
1369                 rdev2->desc_nr = desc_nr;
1370                 d = &sb->disks[rdev2->desc_nr];
1371                 nr_disks++;
1372                 d->number = rdev2->desc_nr;
1373                 d->major = MAJOR(rdev2->bdev->bd_dev);
1374                 d->minor = MINOR(rdev2->bdev->bd_dev);
1375                 if (is_active)
1376                         d->raid_disk = rdev2->raid_disk;
1377                 else
1378                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1379                 if (test_bit(Faulty, &rdev2->flags))
1380                         d->state = (1<<MD_DISK_FAULTY);
1381                 else if (is_active) {
1382                         d->state = (1<<MD_DISK_ACTIVE);
1383                         if (test_bit(In_sync, &rdev2->flags))
1384                                 d->state |= (1<<MD_DISK_SYNC);
1385                         active++;
1386                         working++;
1387                 } else {
1388                         d->state = 0;
1389                         spare++;
1390                         working++;
1391                 }
1392                 if (test_bit(WriteMostly, &rdev2->flags))
1393                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1394         }
1395         /* now set the "removed" and "faulty" bits on any missing devices */
1396         for (i=0 ; i < mddev->raid_disks ; i++) {
1397                 mdp_disk_t *d = &sb->disks[i];
1398                 if (d->state == 0 && d->number == 0) {
1399                         d->number = i;
1400                         d->raid_disk = i;
1401                         d->state = (1<<MD_DISK_REMOVED);
1402                         d->state |= (1<<MD_DISK_FAULTY);
1403                         failed++;
1404                 }
1405         }
1406         sb->nr_disks = nr_disks;
1407         sb->active_disks = active;
1408         sb->working_disks = working;
1409         sb->failed_disks = failed;
1410         sb->spare_disks = spare;
1411
1412         sb->this_disk = sb->disks[rdev->desc_nr];
1413         sb->sb_csum = calc_sb_csum(sb);
1414 }
1415
1416 /*
1417  * rdev_size_change for 0.90.0
1418  */
1419 static unsigned long long
1420 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1421 {
1422         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1423                 return 0; /* component must fit device */
1424         if (rdev->mddev->bitmap_info.offset)
1425                 return 0; /* can't move bitmap */
1426         rdev->sb_start = calc_dev_sboffset(rdev);
1427         if (!num_sectors || num_sectors > rdev->sb_start)
1428                 num_sectors = rdev->sb_start;
1429         /* Limit to 4TB as metadata cannot record more than that.
1430          * 4TB == 2^32 KB, or 2*2^32 sectors.
1431          */
1432         if (num_sectors >= (2ULL << 32))
1433                 num_sectors = (2ULL << 32) - 2;
1434         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1435                        rdev->sb_page);
1436         md_super_wait(rdev->mddev);
1437         return num_sectors;
1438 }
1439
1440
1441 /*
1442  * version 1 superblock
1443  */
1444
1445 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1446 {
1447         __le32 disk_csum;
1448         u32 csum;
1449         unsigned long long newcsum;
1450         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1451         __le32 *isuper = (__le32*)sb;
1452         int i;
1453
1454         disk_csum = sb->sb_csum;
1455         sb->sb_csum = 0;
1456         newcsum = 0;
1457         for (i=0; size>=4; size -= 4 )
1458                 newcsum += le32_to_cpu(*isuper++);
1459
1460         if (size == 2)
1461                 newcsum += le16_to_cpu(*(__le16*) isuper);
1462
1463         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1464         sb->sb_csum = disk_csum;
1465         return cpu_to_le32(csum);
1466 }
1467
1468 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1469                             int acknowledged);
1470 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1471 {
1472         struct mdp_superblock_1 *sb;
1473         int ret;
1474         sector_t sb_start;
1475         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1476         int bmask;
1477
1478         /*
1479          * Calculate the position of the superblock in 512byte sectors.
1480          * It is always aligned to a 4K boundary and
1481          * depeding on minor_version, it can be:
1482          * 0: At least 8K, but less than 12K, from end of device
1483          * 1: At start of device
1484          * 2: 4K from start of device.
1485          */
1486         switch(minor_version) {
1487         case 0:
1488                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1489                 sb_start -= 8*2;
1490                 sb_start &= ~(sector_t)(4*2-1);
1491                 break;
1492         case 1:
1493                 sb_start = 0;
1494                 break;
1495         case 2:
1496                 sb_start = 8;
1497                 break;
1498         default:
1499                 return -EINVAL;
1500         }
1501         rdev->sb_start = sb_start;
1502
1503         /* superblock is rarely larger than 1K, but it can be larger,
1504          * and it is safe to read 4k, so we do that
1505          */
1506         ret = read_disk_sb(rdev, 4096);
1507         if (ret) return ret;
1508
1509
1510         sb = page_address(rdev->sb_page);
1511
1512         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1513             sb->major_version != cpu_to_le32(1) ||
1514             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1515             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1516             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1517                 return -EINVAL;
1518
1519         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1520                 printk("md: invalid superblock checksum on %s\n",
1521                         bdevname(rdev->bdev,b));
1522                 return -EINVAL;
1523         }
1524         if (le64_to_cpu(sb->data_size) < 10) {
1525                 printk("md: data_size too small on %s\n",
1526                        bdevname(rdev->bdev,b));
1527                 return -EINVAL;
1528         }
1529
1530         rdev->preferred_minor = 0xffff;
1531         rdev->data_offset = le64_to_cpu(sb->data_offset);
1532         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1533
1534         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1535         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1536         if (rdev->sb_size & bmask)
1537                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1538
1539         if (minor_version
1540             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1541                 return -EINVAL;
1542
1543         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1544                 rdev->desc_nr = -1;
1545         else
1546                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1547
1548         if (!rdev->bb_page) {
1549                 rdev->bb_page = alloc_page(GFP_KERNEL);
1550                 if (!rdev->bb_page)
1551                         return -ENOMEM;
1552         }
1553         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1554             rdev->badblocks.count == 0) {
1555                 /* need to load the bad block list.
1556                  * Currently we limit it to one page.
1557                  */
1558                 s32 offset;
1559                 sector_t bb_sector;
1560                 u64 *bbp;
1561                 int i;
1562                 int sectors = le16_to_cpu(sb->bblog_size);
1563                 if (sectors > (PAGE_SIZE / 512))
1564                         return -EINVAL;
1565                 offset = le32_to_cpu(sb->bblog_offset);
1566                 if (offset == 0)
1567                         return -EINVAL;
1568                 bb_sector = (long long)offset;
1569                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1570                                   rdev->bb_page, READ, true))
1571                         return -EIO;
1572                 bbp = (u64 *)page_address(rdev->bb_page);
1573                 rdev->badblocks.shift = sb->bblog_shift;
1574                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1575                         u64 bb = le64_to_cpu(*bbp);
1576                         int count = bb & (0x3ff);
1577                         u64 sector = bb >> 10;
1578                         sector <<= sb->bblog_shift;
1579                         count <<= sb->bblog_shift;
1580                         if (bb + 1 == 0)
1581                                 break;
1582                         if (md_set_badblocks(&rdev->badblocks,
1583                                              sector, count, 1) == 0)
1584                                 return -EINVAL;
1585                 }
1586         } else if (sb->bblog_offset == 0)
1587                 rdev->badblocks.shift = -1;
1588
1589         if (!refdev) {
1590                 ret = 1;
1591         } else {
1592                 __u64 ev1, ev2;
1593                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1594
1595                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1596                     sb->level != refsb->level ||
1597                     sb->layout != refsb->layout ||
1598                     sb->chunksize != refsb->chunksize) {
1599                         printk(KERN_WARNING "md: %s has strangely different"
1600                                 " superblock to %s\n",
1601                                 bdevname(rdev->bdev,b),
1602                                 bdevname(refdev->bdev,b2));
1603                         return -EINVAL;
1604                 }
1605                 ev1 = le64_to_cpu(sb->events);
1606                 ev2 = le64_to_cpu(refsb->events);
1607
1608                 if (ev1 > ev2)
1609                         ret = 1;
1610                 else
1611                         ret = 0;
1612         }
1613         if (minor_version)
1614                 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1615                         le64_to_cpu(sb->data_offset);
1616         else
1617                 rdev->sectors = rdev->sb_start;
1618         if (rdev->sectors < le64_to_cpu(sb->data_size))
1619                 return -EINVAL;
1620         rdev->sectors = le64_to_cpu(sb->data_size);
1621         if (le64_to_cpu(sb->size) > rdev->sectors)
1622                 return -EINVAL;
1623         return ret;
1624 }
1625
1626 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1627 {
1628         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1629         __u64 ev1 = le64_to_cpu(sb->events);
1630
1631         rdev->raid_disk = -1;
1632         clear_bit(Faulty, &rdev->flags);
1633         clear_bit(In_sync, &rdev->flags);
1634         clear_bit(WriteMostly, &rdev->flags);
1635
1636         if (mddev->raid_disks == 0) {
1637                 mddev->major_version = 1;
1638                 mddev->patch_version = 0;
1639                 mddev->external = 0;
1640                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1641                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1642                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1643                 mddev->level = le32_to_cpu(sb->level);
1644                 mddev->clevel[0] = 0;
1645                 mddev->layout = le32_to_cpu(sb->layout);
1646                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1647                 mddev->dev_sectors = le64_to_cpu(sb->size);
1648                 mddev->events = ev1;
1649                 mddev->bitmap_info.offset = 0;
1650                 mddev->bitmap_info.default_offset = 1024 >> 9;
1651                 
1652                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1653                 memcpy(mddev->uuid, sb->set_uuid, 16);
1654
1655                 mddev->max_disks =  (4096-256)/2;
1656
1657                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1658                     mddev->bitmap_info.file == NULL )
1659                         mddev->bitmap_info.offset =
1660                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1661
1662                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1663                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1664                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1665                         mddev->new_level = le32_to_cpu(sb->new_level);
1666                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1667                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1668                 } else {
1669                         mddev->reshape_position = MaxSector;
1670                         mddev->delta_disks = 0;
1671                         mddev->new_level = mddev->level;
1672                         mddev->new_layout = mddev->layout;
1673                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1674                 }
1675
1676         } else if (mddev->pers == NULL) {
1677                 /* Insist of good event counter while assembling, except for
1678                  * spares (which don't need an event count) */
1679                 ++ev1;
1680                 if (rdev->desc_nr >= 0 &&
1681                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1682                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1683                         if (ev1 < mddev->events)
1684                                 return -EINVAL;
1685         } else if (mddev->bitmap) {
1686                 /* If adding to array with a bitmap, then we can accept an
1687                  * older device, but not too old.
1688                  */
1689                 if (ev1 < mddev->bitmap->events_cleared)
1690                         return 0;
1691         } else {
1692                 if (ev1 < mddev->events)
1693                         /* just a hot-add of a new device, leave raid_disk at -1 */
1694                         return 0;
1695         }
1696         if (mddev->level != LEVEL_MULTIPATH) {
1697                 int role;
1698                 if (rdev->desc_nr < 0 ||
1699                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1700                         role = 0xffff;
1701                         rdev->desc_nr = -1;
1702                 } else
1703                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1704                 switch(role) {
1705                 case 0xffff: /* spare */
1706                         break;
1707                 case 0xfffe: /* faulty */
1708                         set_bit(Faulty, &rdev->flags);
1709                         break;
1710                 default:
1711                         if ((le32_to_cpu(sb->feature_map) &
1712                              MD_FEATURE_RECOVERY_OFFSET))
1713                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1714                         else
1715                                 set_bit(In_sync, &rdev->flags);
1716                         rdev->raid_disk = role;
1717                         break;
1718                 }
1719                 if (sb->devflags & WriteMostly1)
1720                         set_bit(WriteMostly, &rdev->flags);
1721         } else /* MULTIPATH are always insync */
1722                 set_bit(In_sync, &rdev->flags);
1723
1724         return 0;
1725 }
1726
1727 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1728 {
1729         struct mdp_superblock_1 *sb;
1730         struct md_rdev *rdev2;
1731         int max_dev, i;
1732         /* make rdev->sb match mddev and rdev data. */
1733
1734         sb = page_address(rdev->sb_page);
1735
1736         sb->feature_map = 0;
1737         sb->pad0 = 0;
1738         sb->recovery_offset = cpu_to_le64(0);
1739         memset(sb->pad1, 0, sizeof(sb->pad1));
1740         memset(sb->pad3, 0, sizeof(sb->pad3));
1741
1742         sb->utime = cpu_to_le64((__u64)mddev->utime);
1743         sb->events = cpu_to_le64(mddev->events);
1744         if (mddev->in_sync)
1745                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1746         else
1747                 sb->resync_offset = cpu_to_le64(0);
1748
1749         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1750
1751         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1752         sb->size = cpu_to_le64(mddev->dev_sectors);
1753         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1754         sb->level = cpu_to_le32(mddev->level);
1755         sb->layout = cpu_to_le32(mddev->layout);
1756
1757         if (test_bit(WriteMostly, &rdev->flags))
1758                 sb->devflags |= WriteMostly1;
1759         else
1760                 sb->devflags &= ~WriteMostly1;
1761
1762         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1763                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1764                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1765         }
1766
1767         if (rdev->raid_disk >= 0 &&
1768             !test_bit(In_sync, &rdev->flags)) {
1769                 sb->feature_map |=
1770                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1771                 sb->recovery_offset =
1772                         cpu_to_le64(rdev->recovery_offset);
1773         }
1774
1775         if (mddev->reshape_position != MaxSector) {
1776                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1777                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1778                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1779                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1780                 sb->new_level = cpu_to_le32(mddev->new_level);
1781                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1782         }
1783
1784         if (rdev->badblocks.count == 0)
1785                 /* Nothing to do for bad blocks*/ ;
1786         else if (sb->bblog_offset == 0)
1787                 /* Cannot record bad blocks on this device */
1788                 md_error(mddev, rdev);
1789         else {
1790                 struct badblocks *bb = &rdev->badblocks;
1791                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1792                 u64 *p = bb->page;
1793                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1794                 if (bb->changed) {
1795                         unsigned seq;
1796
1797 retry:
1798                         seq = read_seqbegin(&bb->lock);
1799
1800                         memset(bbp, 0xff, PAGE_SIZE);
1801
1802                         for (i = 0 ; i < bb->count ; i++) {
1803                                 u64 internal_bb = *p++;
1804                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1805                                                 | BB_LEN(internal_bb));
1806                                 *bbp++ = cpu_to_le64(store_bb);
1807                         }
1808                         if (read_seqretry(&bb->lock, seq))
1809                                 goto retry;
1810
1811                         bb->sector = (rdev->sb_start +
1812                                       (int)le32_to_cpu(sb->bblog_offset));
1813                         bb->size = le16_to_cpu(sb->bblog_size);
1814                         bb->changed = 0;
1815                 }
1816         }
1817
1818         max_dev = 0;
1819         list_for_each_entry(rdev2, &mddev->disks, same_set)
1820                 if (rdev2->desc_nr+1 > max_dev)
1821                         max_dev = rdev2->desc_nr+1;
1822
1823         if (max_dev > le32_to_cpu(sb->max_dev)) {
1824                 int bmask;
1825                 sb->max_dev = cpu_to_le32(max_dev);
1826                 rdev->sb_size = max_dev * 2 + 256;
1827                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1828                 if (rdev->sb_size & bmask)
1829                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1830         } else
1831                 max_dev = le32_to_cpu(sb->max_dev);
1832
1833         for (i=0; i<max_dev;i++)
1834                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1835         
1836         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1837                 i = rdev2->desc_nr;
1838                 if (test_bit(Faulty, &rdev2->flags))
1839                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1840                 else if (test_bit(In_sync, &rdev2->flags))
1841                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1842                 else if (rdev2->raid_disk >= 0)
1843                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1844                 else
1845                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1846         }
1847
1848         sb->sb_csum = calc_sb_1_csum(sb);
1849 }
1850
1851 static unsigned long long
1852 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1853 {
1854         struct mdp_superblock_1 *sb;
1855         sector_t max_sectors;
1856         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1857                 return 0; /* component must fit device */
1858         if (rdev->sb_start < rdev->data_offset) {
1859                 /* minor versions 1 and 2; superblock before data */
1860                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1861                 max_sectors -= rdev->data_offset;
1862                 if (!num_sectors || num_sectors > max_sectors)
1863                         num_sectors = max_sectors;
1864         } else if (rdev->mddev->bitmap_info.offset) {
1865                 /* minor version 0 with bitmap we can't move */
1866                 return 0;
1867         } else {
1868                 /* minor version 0; superblock after data */
1869                 sector_t sb_start;
1870                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1871                 sb_start &= ~(sector_t)(4*2 - 1);
1872                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1873                 if (!num_sectors || num_sectors > max_sectors)
1874                         num_sectors = max_sectors;
1875                 rdev->sb_start = sb_start;
1876         }
1877         sb = page_address(rdev->sb_page);
1878         sb->data_size = cpu_to_le64(num_sectors);
1879         sb->super_offset = rdev->sb_start;
1880         sb->sb_csum = calc_sb_1_csum(sb);
1881         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1882                        rdev->sb_page);
1883         md_super_wait(rdev->mddev);
1884         return num_sectors;
1885 }
1886
1887 static struct super_type super_types[] = {
1888         [0] = {
1889                 .name   = "0.90.0",
1890                 .owner  = THIS_MODULE,
1891                 .load_super         = super_90_load,
1892                 .validate_super     = super_90_validate,
1893                 .sync_super         = super_90_sync,
1894                 .rdev_size_change   = super_90_rdev_size_change,
1895         },
1896         [1] = {
1897                 .name   = "md-1",
1898                 .owner  = THIS_MODULE,
1899                 .load_super         = super_1_load,
1900                 .validate_super     = super_1_validate,
1901                 .sync_super         = super_1_sync,
1902                 .rdev_size_change   = super_1_rdev_size_change,
1903         },
1904 };
1905
1906 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1907 {
1908         if (mddev->sync_super) {
1909                 mddev->sync_super(mddev, rdev);
1910                 return;
1911         }
1912
1913         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1914
1915         super_types[mddev->major_version].sync_super(mddev, rdev);
1916 }
1917
1918 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1919 {
1920         struct md_rdev *rdev, *rdev2;
1921
1922         rcu_read_lock();
1923         rdev_for_each_rcu(rdev, mddev1)
1924                 rdev_for_each_rcu(rdev2, mddev2)
1925                         if (rdev->bdev->bd_contains ==
1926                             rdev2->bdev->bd_contains) {
1927                                 rcu_read_unlock();
1928                                 return 1;
1929                         }
1930         rcu_read_unlock();
1931         return 0;
1932 }
1933
1934 static LIST_HEAD(pending_raid_disks);
1935
1936 /*
1937  * Try to register data integrity profile for an mddev
1938  *
1939  * This is called when an array is started and after a disk has been kicked
1940  * from the array. It only succeeds if all working and active component devices
1941  * are integrity capable with matching profiles.
1942  */
1943 int md_integrity_register(struct mddev *mddev)
1944 {
1945         struct md_rdev *rdev, *reference = NULL;
1946
1947         if (list_empty(&mddev->disks))
1948                 return 0; /* nothing to do */
1949         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1950                 return 0; /* shouldn't register, or already is */
1951         list_for_each_entry(rdev, &mddev->disks, same_set) {
1952                 /* skip spares and non-functional disks */
1953                 if (test_bit(Faulty, &rdev->flags))
1954                         continue;
1955                 if (rdev->raid_disk < 0)
1956                         continue;
1957                 if (!reference) {
1958                         /* Use the first rdev as the reference */
1959                         reference = rdev;
1960                         continue;
1961                 }
1962                 /* does this rdev's profile match the reference profile? */
1963                 if (blk_integrity_compare(reference->bdev->bd_disk,
1964                                 rdev->bdev->bd_disk) < 0)
1965                         return -EINVAL;
1966         }
1967         if (!reference || !bdev_get_integrity(reference->bdev))
1968                 return 0;
1969         /*
1970          * All component devices are integrity capable and have matching
1971          * profiles, register the common profile for the md device.
1972          */
1973         if (blk_integrity_register(mddev->gendisk,
1974                         bdev_get_integrity(reference->bdev)) != 0) {
1975                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1976                         mdname(mddev));
1977                 return -EINVAL;
1978         }
1979         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1980         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1981                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1982                        mdname(mddev));
1983                 return -EINVAL;
1984         }
1985         return 0;
1986 }
1987 EXPORT_SYMBOL(md_integrity_register);
1988
1989 /* Disable data integrity if non-capable/non-matching disk is being added */
1990 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1991 {
1992         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1993         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1994
1995         if (!bi_mddev) /* nothing to do */
1996                 return;
1997         if (rdev->raid_disk < 0) /* skip spares */
1998                 return;
1999         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2000                                              rdev->bdev->bd_disk) >= 0)
2001                 return;
2002         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2003         blk_integrity_unregister(mddev->gendisk);
2004 }
2005 EXPORT_SYMBOL(md_integrity_add_rdev);
2006
2007 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2008 {
2009         char b[BDEVNAME_SIZE];
2010         struct kobject *ko;
2011         char *s;
2012         int err;
2013
2014         if (rdev->mddev) {
2015                 MD_BUG();
2016                 return -EINVAL;
2017         }
2018
2019         /* prevent duplicates */
2020         if (find_rdev(mddev, rdev->bdev->bd_dev))
2021                 return -EEXIST;
2022
2023         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2024         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2025                         rdev->sectors < mddev->dev_sectors)) {
2026                 if (mddev->pers) {
2027                         /* Cannot change size, so fail
2028                          * If mddev->level <= 0, then we don't care
2029                          * about aligning sizes (e.g. linear)
2030                          */
2031                         if (mddev->level > 0)
2032                                 return -ENOSPC;
2033                 } else
2034                         mddev->dev_sectors = rdev->sectors;
2035         }
2036
2037         /* Verify rdev->desc_nr is unique.
2038          * If it is -1, assign a free number, else
2039          * check number is not in use
2040          */
2041         if (rdev->desc_nr < 0) {
2042                 int choice = 0;
2043                 if (mddev->pers) choice = mddev->raid_disks;
2044                 while (find_rdev_nr(mddev, choice))
2045                         choice++;
2046                 rdev->desc_nr = choice;
2047         } else {
2048                 if (find_rdev_nr(mddev, rdev->desc_nr))
2049                         return -EBUSY;
2050         }
2051         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2052                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2053                        mdname(mddev), mddev->max_disks);
2054                 return -EBUSY;
2055         }
2056         bdevname(rdev->bdev,b);
2057         while ( (s=strchr(b, '/')) != NULL)
2058                 *s = '!';
2059
2060         rdev->mddev = mddev;
2061         printk(KERN_INFO "md: bind<%s>\n", b);
2062
2063         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2064                 goto fail;
2065
2066         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2067         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2068                 /* failure here is OK */;
2069         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2070
2071         list_add_rcu(&rdev->same_set, &mddev->disks);
2072         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2073
2074         /* May as well allow recovery to be retried once */
2075         mddev->recovery_disabled++;
2076
2077         return 0;
2078
2079  fail:
2080         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2081                b, mdname(mddev));
2082         return err;
2083 }
2084
2085 static void md_delayed_delete(struct work_struct *ws)
2086 {
2087         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2088         kobject_del(&rdev->kobj);
2089         kobject_put(&rdev->kobj);
2090 }
2091
2092 static void unbind_rdev_from_array(struct md_rdev * rdev)
2093 {
2094         char b[BDEVNAME_SIZE];
2095         if (!rdev->mddev) {
2096                 MD_BUG();
2097                 return;
2098         }
2099         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2100         list_del_rcu(&rdev->same_set);
2101         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2102         rdev->mddev = NULL;
2103         sysfs_remove_link(&rdev->kobj, "block");
2104         sysfs_put(rdev->sysfs_state);
2105         rdev->sysfs_state = NULL;
2106         kfree(rdev->badblocks.page);
2107         rdev->badblocks.count = 0;
2108         rdev->badblocks.page = NULL;
2109         /* We need to delay this, otherwise we can deadlock when
2110          * writing to 'remove' to "dev/state".  We also need
2111          * to delay it due to rcu usage.
2112          */
2113         synchronize_rcu();
2114         INIT_WORK(&rdev->del_work, md_delayed_delete);
2115         kobject_get(&rdev->kobj);
2116         queue_work(md_misc_wq, &rdev->del_work);
2117 }
2118
2119 /*
2120  * prevent the device from being mounted, repartitioned or
2121  * otherwise reused by a RAID array (or any other kernel
2122  * subsystem), by bd_claiming the device.
2123  */
2124 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2125 {
2126         int err = 0;
2127         struct block_device *bdev;
2128         char b[BDEVNAME_SIZE];
2129
2130         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2131                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2132         if (IS_ERR(bdev)) {
2133                 printk(KERN_ERR "md: could not open %s.\n",
2134                         __bdevname(dev, b));
2135                 return PTR_ERR(bdev);
2136         }
2137         rdev->bdev = bdev;
2138         return err;
2139 }
2140
2141 static void unlock_rdev(struct md_rdev *rdev)
2142 {
2143         struct block_device *bdev = rdev->bdev;
2144         rdev->bdev = NULL;
2145         if (!bdev)
2146                 MD_BUG();
2147         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2148 }
2149
2150 void md_autodetect_dev(dev_t dev);
2151
2152 static void export_rdev(struct md_rdev * rdev)
2153 {
2154         char b[BDEVNAME_SIZE];
2155         printk(KERN_INFO "md: export_rdev(%s)\n",
2156                 bdevname(rdev->bdev,b));
2157         if (rdev->mddev)
2158                 MD_BUG();
2159         free_disk_sb(rdev);
2160 #ifndef MODULE
2161         if (test_bit(AutoDetected, &rdev->flags))
2162                 md_autodetect_dev(rdev->bdev->bd_dev);
2163 #endif
2164         unlock_rdev(rdev);
2165         kobject_put(&rdev->kobj);
2166 }
2167
2168 static void kick_rdev_from_array(struct md_rdev * rdev)
2169 {
2170         unbind_rdev_from_array(rdev);
2171         export_rdev(rdev);
2172 }
2173
2174 static void export_array(struct mddev *mddev)
2175 {
2176         struct md_rdev *rdev, *tmp;
2177
2178         rdev_for_each(rdev, tmp, mddev) {
2179                 if (!rdev->mddev) {
2180                         MD_BUG();
2181                         continue;
2182                 }
2183                 kick_rdev_from_array(rdev);
2184         }
2185         if (!list_empty(&mddev->disks))
2186                 MD_BUG();
2187         mddev->raid_disks = 0;
2188         mddev->major_version = 0;
2189 }
2190
2191 static void print_desc(mdp_disk_t *desc)
2192 {
2193         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2194                 desc->major,desc->minor,desc->raid_disk,desc->state);
2195 }
2196
2197 static void print_sb_90(mdp_super_t *sb)
2198 {
2199         int i;
2200
2201         printk(KERN_INFO 
2202                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2203                 sb->major_version, sb->minor_version, sb->patch_version,
2204                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2205                 sb->ctime);
2206         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2207                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2208                 sb->md_minor, sb->layout, sb->chunk_size);
2209         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2210                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2211                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2212                 sb->failed_disks, sb->spare_disks,
2213                 sb->sb_csum, (unsigned long)sb->events_lo);
2214
2215         printk(KERN_INFO);
2216         for (i = 0; i < MD_SB_DISKS; i++) {
2217                 mdp_disk_t *desc;
2218
2219                 desc = sb->disks + i;
2220                 if (desc->number || desc->major || desc->minor ||
2221                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2222                         printk("     D %2d: ", i);
2223                         print_desc(desc);
2224                 }
2225         }
2226         printk(KERN_INFO "md:     THIS: ");
2227         print_desc(&sb->this_disk);
2228 }
2229
2230 static void print_sb_1(struct mdp_superblock_1 *sb)
2231 {
2232         __u8 *uuid;
2233
2234         uuid = sb->set_uuid;
2235         printk(KERN_INFO
2236                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2237                "md:    Name: \"%s\" CT:%llu\n",
2238                 le32_to_cpu(sb->major_version),
2239                 le32_to_cpu(sb->feature_map),
2240                 uuid,
2241                 sb->set_name,
2242                 (unsigned long long)le64_to_cpu(sb->ctime)
2243                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2244
2245         uuid = sb->device_uuid;
2246         printk(KERN_INFO
2247                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2248                         " RO:%llu\n"
2249                "md:     Dev:%08x UUID: %pU\n"
2250                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2251                "md:         (MaxDev:%u) \n",
2252                 le32_to_cpu(sb->level),
2253                 (unsigned long long)le64_to_cpu(sb->size),
2254                 le32_to_cpu(sb->raid_disks),
2255                 le32_to_cpu(sb->layout),
2256                 le32_to_cpu(sb->chunksize),
2257                 (unsigned long long)le64_to_cpu(sb->data_offset),
2258                 (unsigned long long)le64_to_cpu(sb->data_size),
2259                 (unsigned long long)le64_to_cpu(sb->super_offset),
2260                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2261                 le32_to_cpu(sb->dev_number),
2262                 uuid,
2263                 sb->devflags,
2264                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2265                 (unsigned long long)le64_to_cpu(sb->events),
2266                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2267                 le32_to_cpu(sb->sb_csum),
2268                 le32_to_cpu(sb->max_dev)
2269                 );
2270 }
2271
2272 static void print_rdev(struct md_rdev *rdev, int major_version)
2273 {
2274         char b[BDEVNAME_SIZE];
2275         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2276                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2277                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2278                 rdev->desc_nr);
2279         if (rdev->sb_loaded) {
2280                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2281                 switch (major_version) {
2282                 case 0:
2283                         print_sb_90(page_address(rdev->sb_page));
2284                         break;
2285                 case 1:
2286                         print_sb_1(page_address(rdev->sb_page));
2287                         break;
2288                 }
2289         } else
2290                 printk(KERN_INFO "md: no rdev superblock!\n");
2291 }
2292
2293 static void md_print_devices(void)
2294 {
2295         struct list_head *tmp;
2296         struct md_rdev *rdev;
2297         struct mddev *mddev;
2298         char b[BDEVNAME_SIZE];
2299
2300         printk("\n");
2301         printk("md:     **********************************\n");
2302         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2303         printk("md:     **********************************\n");
2304         for_each_mddev(mddev, tmp) {
2305
2306                 if (mddev->bitmap)
2307                         bitmap_print_sb(mddev->bitmap);
2308                 else
2309                         printk("%s: ", mdname(mddev));
2310                 list_for_each_entry(rdev, &mddev->disks, same_set)
2311                         printk("<%s>", bdevname(rdev->bdev,b));
2312                 printk("\n");
2313
2314                 list_for_each_entry(rdev, &mddev->disks, same_set)
2315                         print_rdev(rdev, mddev->major_version);
2316         }
2317         printk("md:     **********************************\n");
2318         printk("\n");
2319 }
2320
2321
2322 static void sync_sbs(struct mddev * mddev, int nospares)
2323 {
2324         /* Update each superblock (in-memory image), but
2325          * if we are allowed to, skip spares which already
2326          * have the right event counter, or have one earlier
2327          * (which would mean they aren't being marked as dirty
2328          * with the rest of the array)
2329          */
2330         struct md_rdev *rdev;
2331         list_for_each_entry(rdev, &mddev->disks, same_set) {
2332                 if (rdev->sb_events == mddev->events ||
2333                     (nospares &&
2334                      rdev->raid_disk < 0 &&
2335                      rdev->sb_events+1 == mddev->events)) {
2336                         /* Don't update this superblock */
2337                         rdev->sb_loaded = 2;
2338                 } else {
2339                         sync_super(mddev, rdev);
2340                         rdev->sb_loaded = 1;
2341                 }
2342         }
2343 }
2344
2345 static void md_update_sb(struct mddev * mddev, int force_change)
2346 {
2347         struct md_rdev *rdev;
2348         int sync_req;
2349         int nospares = 0;
2350         int any_badblocks_changed = 0;
2351
2352 repeat:
2353         /* First make sure individual recovery_offsets are correct */
2354         list_for_each_entry(rdev, &mddev->disks, same_set) {
2355                 if (rdev->raid_disk >= 0 &&
2356                     mddev->delta_disks >= 0 &&
2357                     !test_bit(In_sync, &rdev->flags) &&
2358                     mddev->curr_resync_completed > rdev->recovery_offset)
2359                                 rdev->recovery_offset = mddev->curr_resync_completed;
2360
2361         }       
2362         if (!mddev->persistent) {
2363                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2364                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2365                 if (!mddev->external) {
2366                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2367                         list_for_each_entry(rdev, &mddev->disks, same_set) {
2368                                 if (rdev->badblocks.changed) {
2369                                         md_ack_all_badblocks(&rdev->badblocks);
2370                                         md_error(mddev, rdev);
2371                                 }
2372                                 clear_bit(Blocked, &rdev->flags);
2373                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2374                                 wake_up(&rdev->blocked_wait);
2375                         }
2376                 }
2377                 wake_up(&mddev->sb_wait);
2378                 return;
2379         }
2380
2381         spin_lock_irq(&mddev->write_lock);
2382
2383         mddev->utime = get_seconds();
2384
2385         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2386                 force_change = 1;
2387         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2388                 /* just a clean<-> dirty transition, possibly leave spares alone,
2389                  * though if events isn't the right even/odd, we will have to do
2390                  * spares after all
2391                  */
2392                 nospares = 1;
2393         if (force_change)
2394                 nospares = 0;
2395         if (mddev->degraded)
2396                 /* If the array is degraded, then skipping spares is both
2397                  * dangerous and fairly pointless.
2398                  * Dangerous because a device that was removed from the array
2399                  * might have a event_count that still looks up-to-date,
2400                  * so it can be re-added without a resync.
2401                  * Pointless because if there are any spares to skip,
2402                  * then a recovery will happen and soon that array won't
2403                  * be degraded any more and the spare can go back to sleep then.
2404                  */
2405                 nospares = 0;
2406
2407         sync_req = mddev->in_sync;
2408
2409         /* If this is just a dirty<->clean transition, and the array is clean
2410          * and 'events' is odd, we can roll back to the previous clean state */
2411         if (nospares
2412             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2413             && mddev->can_decrease_events
2414             && mddev->events != 1) {
2415                 mddev->events--;
2416                 mddev->can_decrease_events = 0;
2417         } else {
2418                 /* otherwise we have to go forward and ... */
2419                 mddev->events ++;
2420                 mddev->can_decrease_events = nospares;
2421         }
2422
2423         if (!mddev->events) {
2424                 /*
2425                  * oops, this 64-bit counter should never wrap.
2426                  * Either we are in around ~1 trillion A.C., assuming
2427                  * 1 reboot per second, or we have a bug:
2428                  */
2429                 MD_BUG();
2430                 mddev->events --;
2431         }
2432
2433         list_for_each_entry(rdev, &mddev->disks, same_set) {
2434                 if (rdev->badblocks.changed)
2435                         any_badblocks_changed++;
2436                 if (test_bit(Faulty, &rdev->flags))
2437                         set_bit(FaultRecorded, &rdev->flags);
2438         }
2439
2440         sync_sbs(mddev, nospares);
2441         spin_unlock_irq(&mddev->write_lock);
2442
2443         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2444                  mdname(mddev), mddev->in_sync);
2445
2446         bitmap_update_sb(mddev->bitmap);
2447         list_for_each_entry(rdev, &mddev->disks, same_set) {
2448                 char b[BDEVNAME_SIZE];
2449
2450                 if (rdev->sb_loaded != 1)
2451                         continue; /* no noise on spare devices */
2452
2453                 if (!test_bit(Faulty, &rdev->flags) &&
2454                     rdev->saved_raid_disk == -1) {
2455                         md_super_write(mddev,rdev,
2456                                        rdev->sb_start, rdev->sb_size,
2457                                        rdev->sb_page);
2458                         pr_debug("md: (write) %s's sb offset: %llu\n",
2459                                  bdevname(rdev->bdev, b),
2460                                  (unsigned long long)rdev->sb_start);
2461                         rdev->sb_events = mddev->events;
2462                         if (rdev->badblocks.size) {
2463                                 md_super_write(mddev, rdev,
2464                                                rdev->badblocks.sector,
2465                                                rdev->badblocks.size << 9,
2466                                                rdev->bb_page);
2467                                 rdev->badblocks.size = 0;
2468                         }
2469
2470                 } else if (test_bit(Faulty, &rdev->flags))
2471                         pr_debug("md: %s (skipping faulty)\n",
2472                                  bdevname(rdev->bdev, b));
2473                 else
2474                         pr_debug("(skipping incremental s/r ");
2475
2476                 if (mddev->level == LEVEL_MULTIPATH)
2477                         /* only need to write one superblock... */
2478                         break;
2479         }
2480         md_super_wait(mddev);
2481         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2482
2483         spin_lock_irq(&mddev->write_lock);
2484         if (mddev->in_sync != sync_req ||
2485             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2486                 /* have to write it out again */
2487                 spin_unlock_irq(&mddev->write_lock);
2488                 goto repeat;
2489         }
2490         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2491         spin_unlock_irq(&mddev->write_lock);
2492         wake_up(&mddev->sb_wait);
2493         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2494                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2495
2496         list_for_each_entry(rdev, &mddev->disks, same_set) {
2497                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2498                         clear_bit(Blocked, &rdev->flags);
2499
2500                 if (any_badblocks_changed)
2501                         md_ack_all_badblocks(&rdev->badblocks);
2502                 clear_bit(BlockedBadBlocks, &rdev->flags);
2503                 wake_up(&rdev->blocked_wait);
2504         }
2505 }
2506
2507 /* words written to sysfs files may, or may not, be \n terminated.
2508  * We want to accept with case. For this we use cmd_match.
2509  */
2510 static int cmd_match(const char *cmd, const char *str)
2511 {
2512         /* See if cmd, written into a sysfs file, matches
2513          * str.  They must either be the same, or cmd can
2514          * have a trailing newline
2515          */
2516         while (*cmd && *str && *cmd == *str) {
2517                 cmd++;
2518                 str++;
2519         }
2520         if (*cmd == '\n')
2521                 cmd++;
2522         if (*str || *cmd)
2523                 return 0;
2524         return 1;
2525 }
2526
2527 struct rdev_sysfs_entry {
2528         struct attribute attr;
2529         ssize_t (*show)(struct md_rdev *, char *);
2530         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2531 };
2532
2533 static ssize_t
2534 state_show(struct md_rdev *rdev, char *page)
2535 {
2536         char *sep = "";
2537         size_t len = 0;
2538
2539         if (test_bit(Faulty, &rdev->flags) ||
2540             rdev->badblocks.unacked_exist) {
2541                 len+= sprintf(page+len, "%sfaulty",sep);
2542                 sep = ",";
2543         }
2544         if (test_bit(In_sync, &rdev->flags)) {
2545                 len += sprintf(page+len, "%sin_sync",sep);
2546                 sep = ",";
2547         }
2548         if (test_bit(WriteMostly, &rdev->flags)) {
2549                 len += sprintf(page+len, "%swrite_mostly",sep);
2550                 sep = ",";
2551         }
2552         if (test_bit(Blocked, &rdev->flags) ||
2553             rdev->badblocks.unacked_exist) {
2554                 len += sprintf(page+len, "%sblocked", sep);
2555                 sep = ",";
2556         }
2557         if (!test_bit(Faulty, &rdev->flags) &&
2558             !test_bit(In_sync, &rdev->flags)) {
2559                 len += sprintf(page+len, "%sspare", sep);
2560                 sep = ",";
2561         }
2562         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2563                 len += sprintf(page+len, "%swrite_error", sep);
2564                 sep = ",";
2565         }
2566         return len+sprintf(page+len, "\n");
2567 }
2568
2569 static ssize_t
2570 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2571 {
2572         /* can write
2573          *  faulty  - simulates an error
2574          *  remove  - disconnects the device
2575          *  writemostly - sets write_mostly
2576          *  -writemostly - clears write_mostly
2577          *  blocked - sets the Blocked flags
2578          *  -blocked - clears the Blocked and possibly simulates an error
2579          *  insync - sets Insync providing device isn't active
2580          *  write_error - sets WriteErrorSeen
2581          *  -write_error - clears WriteErrorSeen
2582          */
2583         int err = -EINVAL;
2584         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2585                 md_error(rdev->mddev, rdev);
2586                 if (test_bit(Faulty, &rdev->flags))
2587                         err = 0;
2588                 else
2589                         err = -EBUSY;
2590         } else if (cmd_match(buf, "remove")) {
2591                 if (rdev->raid_disk >= 0)
2592                         err = -EBUSY;
2593                 else {
2594                         struct mddev *mddev = rdev->mddev;
2595                         kick_rdev_from_array(rdev);
2596                         if (mddev->pers)
2597                                 md_update_sb(mddev, 1);
2598                         md_new_event(mddev);
2599                         err = 0;
2600                 }
2601         } else if (cmd_match(buf, "writemostly")) {
2602                 set_bit(WriteMostly, &rdev->flags);
2603                 err = 0;
2604         } else if (cmd_match(buf, "-writemostly")) {
2605                 clear_bit(WriteMostly, &rdev->flags);
2606                 err = 0;
2607         } else if (cmd_match(buf, "blocked")) {
2608                 set_bit(Blocked, &rdev->flags);
2609                 err = 0;
2610         } else if (cmd_match(buf, "-blocked")) {
2611                 if (!test_bit(Faulty, &rdev->flags) &&
2612                     rdev->badblocks.unacked_exist) {
2613                         /* metadata handler doesn't understand badblocks,
2614                          * so we need to fail the device
2615                          */
2616                         md_error(rdev->mddev, rdev);
2617                 }
2618                 clear_bit(Blocked, &rdev->flags);
2619                 clear_bit(BlockedBadBlocks, &rdev->flags);
2620                 wake_up(&rdev->blocked_wait);
2621                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2622                 md_wakeup_thread(rdev->mddev->thread);
2623
2624                 err = 0;
2625         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2626                 set_bit(In_sync, &rdev->flags);
2627                 err = 0;
2628         } else if (cmd_match(buf, "write_error")) {
2629                 set_bit(WriteErrorSeen, &rdev->flags);
2630                 err = 0;
2631         } else if (cmd_match(buf, "-write_error")) {
2632                 clear_bit(WriteErrorSeen, &rdev->flags);
2633                 err = 0;
2634         }
2635         if (!err)
2636                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2637         return err ? err : len;
2638 }
2639 static struct rdev_sysfs_entry rdev_state =
2640 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2641
2642 static ssize_t
2643 errors_show(struct md_rdev *rdev, char *page)
2644 {
2645         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2646 }
2647
2648 static ssize_t
2649 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2650 {
2651         char *e;
2652         unsigned long n = simple_strtoul(buf, &e, 10);
2653         if (*buf && (*e == 0 || *e == '\n')) {
2654                 atomic_set(&rdev->corrected_errors, n);
2655                 return len;
2656         }
2657         return -EINVAL;
2658 }
2659 static struct rdev_sysfs_entry rdev_errors =
2660 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2661
2662 static ssize_t
2663 slot_show(struct md_rdev *rdev, char *page)
2664 {
2665         if (rdev->raid_disk < 0)
2666                 return sprintf(page, "none\n");
2667         else
2668                 return sprintf(page, "%d\n", rdev->raid_disk);
2669 }
2670
2671 static ssize_t
2672 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2673 {
2674         char *e;
2675         int err;
2676         int slot = simple_strtoul(buf, &e, 10);
2677         if (strncmp(buf, "none", 4)==0)
2678                 slot = -1;
2679         else if (e==buf || (*e && *e!= '\n'))
2680                 return -EINVAL;
2681         if (rdev->mddev->pers && slot == -1) {
2682                 /* Setting 'slot' on an active array requires also
2683                  * updating the 'rd%d' link, and communicating
2684                  * with the personality with ->hot_*_disk.
2685                  * For now we only support removing
2686                  * failed/spare devices.  This normally happens automatically,
2687                  * but not when the metadata is externally managed.
2688                  */
2689                 if (rdev->raid_disk == -1)
2690                         return -EEXIST;
2691                 /* personality does all needed checks */
2692                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2693                         return -EINVAL;
2694                 err = rdev->mddev->pers->
2695                         hot_remove_disk(rdev->mddev, rdev->raid_disk);
2696                 if (err)
2697                         return err;
2698                 sysfs_unlink_rdev(rdev->mddev, rdev);
2699                 rdev->raid_disk = -1;
2700                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2701                 md_wakeup_thread(rdev->mddev->thread);
2702         } else if (rdev->mddev->pers) {
2703                 struct md_rdev *rdev2;
2704                 /* Activating a spare .. or possibly reactivating
2705                  * if we ever get bitmaps working here.
2706                  */
2707
2708                 if (rdev->raid_disk != -1)
2709                         return -EBUSY;
2710
2711                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2712                         return -EBUSY;
2713
2714                 if (rdev->mddev->pers->hot_add_disk == NULL)
2715                         return -EINVAL;
2716
2717                 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2718                         if (rdev2->raid_disk == slot)
2719                                 return -EEXIST;
2720
2721                 if (slot >= rdev->mddev->raid_disks &&
2722                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2723                         return -ENOSPC;
2724
2725                 rdev->raid_disk = slot;
2726                 if (test_bit(In_sync, &rdev->flags))
2727                         rdev->saved_raid_disk = slot;
2728                 else
2729                         rdev->saved_raid_disk = -1;
2730                 clear_bit(In_sync, &rdev->flags);
2731                 err = rdev->mddev->pers->
2732                         hot_add_disk(rdev->mddev, rdev);
2733                 if (err) {
2734                         rdev->raid_disk = -1;
2735                         return err;
2736                 } else
2737                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2738                 if (sysfs_link_rdev(rdev->mddev, rdev))
2739                         /* failure here is OK */;
2740                 /* don't wakeup anyone, leave that to userspace. */
2741         } else {
2742                 if (slot >= rdev->mddev->raid_disks &&
2743                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2744                         return -ENOSPC;
2745                 rdev->raid_disk = slot;
2746                 /* assume it is working */
2747                 clear_bit(Faulty, &rdev->flags);
2748                 clear_bit(WriteMostly, &rdev->flags);
2749                 set_bit(In_sync, &rdev->flags);
2750                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2751         }
2752         return len;
2753 }
2754
2755
2756 static struct rdev_sysfs_entry rdev_slot =
2757 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2758
2759 static ssize_t
2760 offset_show(struct md_rdev *rdev, char *page)
2761 {
2762         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2763 }
2764
2765 static ssize_t
2766 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2767 {
2768         char *e;
2769         unsigned long long offset = simple_strtoull(buf, &e, 10);
2770         if (e==buf || (*e && *e != '\n'))
2771                 return -EINVAL;
2772         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2773                 return -EBUSY;
2774         if (rdev->sectors && rdev->mddev->external)
2775                 /* Must set offset before size, so overlap checks
2776                  * can be sane */
2777                 return -EBUSY;
2778         rdev->data_offset = offset;
2779         return len;
2780 }
2781
2782 static struct rdev_sysfs_entry rdev_offset =
2783 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2784
2785 static ssize_t
2786 rdev_size_show(struct md_rdev *rdev, char *page)
2787 {
2788         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2789 }
2790
2791 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2792 {
2793         /* check if two start/length pairs overlap */
2794         if (s1+l1 <= s2)
2795                 return 0;
2796         if (s2+l2 <= s1)
2797                 return 0;
2798         return 1;
2799 }
2800
2801 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2802 {
2803         unsigned long long blocks;
2804         sector_t new;
2805
2806         if (strict_strtoull(buf, 10, &blocks) < 0)
2807                 return -EINVAL;
2808
2809         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2810                 return -EINVAL; /* sector conversion overflow */
2811
2812         new = blocks * 2;
2813         if (new != blocks * 2)
2814                 return -EINVAL; /* unsigned long long to sector_t overflow */
2815
2816         *sectors = new;
2817         return 0;
2818 }
2819
2820 static ssize_t
2821 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2822 {
2823         struct mddev *my_mddev = rdev->mddev;
2824         sector_t oldsectors = rdev->sectors;
2825         sector_t sectors;
2826
2827         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2828                 return -EINVAL;
2829         if (my_mddev->pers && rdev->raid_disk >= 0) {
2830                 if (my_mddev->persistent) {
2831                         sectors = super_types[my_mddev->major_version].
2832                                 rdev_size_change(rdev, sectors);
2833                         if (!sectors)
2834                                 return -EBUSY;
2835                 } else if (!sectors)
2836                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2837                                 rdev->data_offset;
2838         }
2839         if (sectors < my_mddev->dev_sectors)
2840                 return -EINVAL; /* component must fit device */
2841
2842         rdev->sectors = sectors;
2843         if (sectors > oldsectors && my_mddev->external) {
2844                 /* need to check that all other rdevs with the same ->bdev
2845                  * do not overlap.  We need to unlock the mddev to avoid
2846                  * a deadlock.  We have already changed rdev->sectors, and if
2847                  * we have to change it back, we will have the lock again.
2848                  */
2849                 struct mddev *mddev;
2850                 int overlap = 0;
2851                 struct list_head *tmp;
2852
2853                 mddev_unlock(my_mddev);
2854                 for_each_mddev(mddev, tmp) {
2855                         struct md_rdev *rdev2;
2856
2857                         mddev_lock(mddev);
2858                         list_for_each_entry(rdev2, &mddev->disks, same_set)
2859                                 if (rdev->bdev == rdev2->bdev &&
2860                                     rdev != rdev2 &&
2861                                     overlaps(rdev->data_offset, rdev->sectors,
2862                                              rdev2->data_offset,
2863                                              rdev2->sectors)) {
2864                                         overlap = 1;
2865                                         break;
2866                                 }
2867                         mddev_unlock(mddev);
2868                         if (overlap) {
2869                                 mddev_put(mddev);
2870                                 break;
2871                         }
2872                 }
2873                 mddev_lock(my_mddev);
2874                 if (overlap) {
2875                         /* Someone else could have slipped in a size
2876                          * change here, but doing so is just silly.
2877                          * We put oldsectors back because we *know* it is
2878                          * safe, and trust userspace not to race with
2879                          * itself
2880                          */
2881                         rdev->sectors = oldsectors;
2882                         return -EBUSY;
2883                 }
2884         }
2885         return len;
2886 }
2887
2888 static struct rdev_sysfs_entry rdev_size =
2889 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2890
2891
2892 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2893 {
2894         unsigned long long recovery_start = rdev->recovery_offset;
2895
2896         if (test_bit(In_sync, &rdev->flags) ||
2897             recovery_start == MaxSector)
2898                 return sprintf(page, "none\n");
2899
2900         return sprintf(page, "%llu\n", recovery_start);
2901 }
2902
2903 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2904 {
2905         unsigned long long recovery_start;
2906
2907         if (cmd_match(buf, "none"))
2908                 recovery_start = MaxSector;
2909         else if (strict_strtoull(buf, 10, &recovery_start))
2910                 return -EINVAL;
2911
2912         if (rdev->mddev->pers &&
2913             rdev->raid_disk >= 0)
2914                 return -EBUSY;
2915
2916         rdev->recovery_offset = recovery_start;
2917         if (recovery_start == MaxSector)
2918                 set_bit(In_sync, &rdev->flags);
2919         else
2920                 clear_bit(In_sync, &rdev->flags);
2921         return len;
2922 }
2923
2924 static struct rdev_sysfs_entry rdev_recovery_start =
2925 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2926
2927
2928 static ssize_t
2929 badblocks_show(struct badblocks *bb, char *page, int unack);
2930 static ssize_t
2931 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2932
2933 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2934 {
2935         return badblocks_show(&rdev->badblocks, page, 0);
2936 }
2937 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2938 {
2939         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2940         /* Maybe that ack was all we needed */
2941         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2942                 wake_up(&rdev->blocked_wait);
2943         return rv;
2944 }
2945 static struct rdev_sysfs_entry rdev_bad_blocks =
2946 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2947
2948
2949 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2950 {
2951         return badblocks_show(&rdev->badblocks, page, 1);
2952 }
2953 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2954 {
2955         return badblocks_store(&rdev->badblocks, page, len, 1);
2956 }
2957 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2958 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2959
2960 static struct attribute *rdev_default_attrs[] = {
2961         &rdev_state.attr,
2962         &rdev_errors.attr,
2963         &rdev_slot.attr,
2964         &rdev_offset.attr,
2965         &rdev_size.attr,
2966         &rdev_recovery_start.attr,
2967         &rdev_bad_blocks.attr,
2968         &rdev_unack_bad_blocks.attr,
2969         NULL,
2970 };
2971 static ssize_t
2972 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2973 {
2974         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2975         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2976         struct mddev *mddev = rdev->mddev;
2977         ssize_t rv;
2978
2979         if (!entry->show)
2980                 return -EIO;
2981
2982         rv = mddev ? mddev_lock(mddev) : -EBUSY;
2983         if (!rv) {
2984                 if (rdev->mddev == NULL)
2985                         rv = -EBUSY;
2986                 else
2987                         rv = entry->show(rdev, page);
2988                 mddev_unlock(mddev);
2989         }
2990         return rv;
2991 }
2992
2993 static ssize_t
2994 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2995               const char *page, size_t length)
2996 {
2997         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2998         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2999         ssize_t rv;
3000         struct mddev *mddev = rdev->mddev;
3001
3002         if (!entry->store)
3003                 return -EIO;
3004         if (!capable(CAP_SYS_ADMIN))
3005                 return -EACCES;
3006         rv = mddev ? mddev_lock(mddev): -EBUSY;
3007         if (!rv) {
3008                 if (rdev->mddev == NULL)
3009                         rv = -EBUSY;
3010                 else
3011                         rv = entry->store(rdev, page, length);
3012                 mddev_unlock(mddev);
3013         }
3014         return rv;
3015 }
3016
3017 static void rdev_free(struct kobject *ko)
3018 {
3019         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3020         kfree(rdev);
3021 }
3022 static const struct sysfs_ops rdev_sysfs_ops = {
3023         .show           = rdev_attr_show,
3024         .store          = rdev_attr_store,
3025 };
3026 static struct kobj_type rdev_ktype = {
3027         .release        = rdev_free,
3028         .sysfs_ops      = &rdev_sysfs_ops,
3029         .default_attrs  = rdev_default_attrs,
3030 };
3031
3032 int md_rdev_init(struct md_rdev *rdev)
3033 {
3034         rdev->desc_nr = -1;
3035         rdev->saved_raid_disk = -1;
3036         rdev->raid_disk = -1;
3037         rdev->flags = 0;
3038         rdev->data_offset = 0;
3039         rdev->sb_events = 0;
3040         rdev->last_read_error.tv_sec  = 0;
3041         rdev->last_read_error.tv_nsec = 0;
3042         rdev->sb_loaded = 0;
3043         rdev->bb_page = NULL;
3044         atomic_set(&rdev->nr_pending, 0);
3045         atomic_set(&rdev->read_errors, 0);
3046         atomic_set(&rdev->corrected_errors, 0);
3047
3048         INIT_LIST_HEAD(&rdev->same_set);
3049         init_waitqueue_head(&rdev->blocked_wait);
3050
3051         /* Add space to store bad block list.
3052          * This reserves the space even on arrays where it cannot
3053          * be used - I wonder if that matters
3054          */
3055         rdev->badblocks.count = 0;
3056         rdev->badblocks.shift = 0;
3057         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3058         seqlock_init(&rdev->badblocks.lock);
3059         if (rdev->badblocks.page == NULL)
3060                 return -ENOMEM;
3061
3062         return 0;
3063 }
3064 EXPORT_SYMBOL_GPL(md_rdev_init);
3065 /*
3066  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3067  *
3068  * mark the device faulty if:
3069  *
3070  *   - the device is nonexistent (zero size)
3071  *   - the device has no valid superblock
3072  *
3073  * a faulty rdev _never_ has rdev->sb set.
3074  */
3075 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3076 {
3077         char b[BDEVNAME_SIZE];
3078         int err;
3079         struct md_rdev *rdev;
3080         sector_t size;
3081
3082         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3083         if (!rdev) {
3084                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3085                 return ERR_PTR(-ENOMEM);
3086         }
3087
3088         err = md_rdev_init(rdev);
3089         if (err)
3090                 goto abort_free;
3091         err = alloc_disk_sb(rdev);
3092         if (err)
3093                 goto abort_free;
3094
3095         err = lock_rdev(rdev, newdev, super_format == -2);
3096         if (err)
3097                 goto abort_free;
3098
3099         kobject_init(&rdev->kobj, &rdev_ktype);
3100
3101         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3102         if (!size) {
3103                 printk(KERN_WARNING 
3104                         "md: %s has zero or unknown size, marking faulty!\n",
3105                         bdevname(rdev->bdev,b));
3106                 err = -EINVAL;
3107                 goto abort_free;
3108         }
3109
3110         if (super_format >= 0) {
3111                 err = super_types[super_format].
3112                         load_super(rdev, NULL, super_minor);
3113                 if (err == -EINVAL) {
3114                         printk(KERN_WARNING
3115                                 "md: %s does not have a valid v%d.%d "
3116                                "superblock, not importing!\n",
3117                                 bdevname(rdev->bdev,b),
3118                                super_format, super_minor);
3119                         goto abort_free;
3120                 }
3121                 if (err < 0) {
3122                         printk(KERN_WARNING 
3123                                 "md: could not read %s's sb, not importing!\n",
3124                                 bdevname(rdev->bdev,b));
3125                         goto abort_free;
3126                 }
3127         }
3128         if (super_format == -1)
3129                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3130                 rdev->badblocks.shift = -1;
3131
3132         return rdev;
3133
3134 abort_free:
3135         if (rdev->bdev)
3136                 unlock_rdev(rdev);
3137         free_disk_sb(rdev);
3138         kfree(rdev->badblocks.page);
3139         kfree(rdev);
3140         return ERR_PTR(err);
3141 }
3142
3143 /*
3144  * Check a full RAID array for plausibility
3145  */
3146
3147
3148 static void analyze_sbs(struct mddev * mddev)
3149 {
3150         int i;
3151         struct md_rdev *rdev, *freshest, *tmp;
3152         char b[BDEVNAME_SIZE];
3153
3154         freshest = NULL;
3155         rdev_for_each(rdev, tmp, mddev)
3156                 switch (super_types[mddev->major_version].
3157                         load_super(rdev, freshest, mddev->minor_version)) {
3158                 case 1:
3159                         freshest = rdev;
3160                         break;
3161                 case 0:
3162                         break;
3163                 default:
3164                         printk( KERN_ERR \
3165                                 "md: fatal superblock inconsistency in %s"
3166                                 " -- removing from array\n", 
3167                                 bdevname(rdev->bdev,b));
3168                         kick_rdev_from_array(rdev);
3169                 }
3170
3171
3172         super_types[mddev->major_version].
3173                 validate_super(mddev, freshest);
3174
3175         i = 0;
3176         rdev_for_each(rdev, tmp, mddev) {
3177                 if (mddev->max_disks &&
3178                     (rdev->desc_nr >= mddev->max_disks ||
3179                      i > mddev->max_disks)) {
3180                         printk(KERN_WARNING
3181                                "md: %s: %s: only %d devices permitted\n",
3182                                mdname(mddev), bdevname(rdev->bdev, b),
3183                                mddev->max_disks);
3184                         kick_rdev_from_array(rdev);
3185                         continue;
3186                 }
3187                 if (rdev != freshest)
3188                         if (super_types[mddev->major_version].
3189                             validate_super(mddev, rdev)) {
3190                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3191                                         " from array!\n",
3192                                         bdevname(rdev->bdev,b));
3193                                 kick_rdev_from_array(rdev);
3194                                 continue;
3195                         }
3196                 if (mddev->level == LEVEL_MULTIPATH) {
3197                         rdev->desc_nr = i++;
3198                         rdev->raid_disk = rdev->desc_nr;
3199                         set_bit(In_sync, &rdev->flags);
3200                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3201                         rdev->raid_disk = -1;
3202                         clear_bit(In_sync, &rdev->flags);
3203                 }
3204         }
3205 }
3206
3207 /* Read a fixed-point number.
3208  * Numbers in sysfs attributes should be in "standard" units where
3209  * possible, so time should be in seconds.
3210  * However we internally use a a much smaller unit such as 
3211  * milliseconds or jiffies.
3212  * This function takes a decimal number with a possible fractional
3213  * component, and produces an integer which is the result of
3214  * multiplying that number by 10^'scale'.
3215  * all without any floating-point arithmetic.
3216  */
3217 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3218 {
3219         unsigned long result = 0;
3220         long decimals = -1;
3221         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3222                 if (*cp == '.')
3223                         decimals = 0;
3224                 else if (decimals < scale) {
3225                         unsigned int value;
3226                         value = *cp - '0';
3227                         result = result * 10 + value;
3228                         if (decimals >= 0)
3229                                 decimals++;
3230                 }
3231                 cp++;
3232         }
3233         if (*cp == '\n')
3234                 cp++;
3235         if (*cp)
3236                 return -EINVAL;
3237         if (decimals < 0)
3238                 decimals = 0;
3239         while (decimals < scale) {
3240                 result *= 10;
3241                 decimals ++;
3242         }
3243         *res = result;
3244         return 0;
3245 }
3246
3247
3248 static void md_safemode_timeout(unsigned long data);
3249
3250 static ssize_t
3251 safe_delay_show(struct mddev *mddev, char *page)
3252 {
3253         int msec = (mddev->safemode_delay*1000)/HZ;
3254         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3255 }
3256 static ssize_t
3257 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3258 {
3259         unsigned long msec;
3260
3261         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3262                 return -EINVAL;
3263         if (msec == 0)
3264                 mddev->safemode_delay = 0;
3265         else {
3266                 unsigned long old_delay = mddev->safemode_delay;
3267                 mddev->safemode_delay = (msec*HZ)/1000;
3268                 if (mddev->safemode_delay == 0)
3269                         mddev->safemode_delay = 1;
3270                 if (mddev->safemode_delay < old_delay)
3271                         md_safemode_timeout((unsigned long)mddev);
3272         }
3273         return len;
3274 }
3275 static struct md_sysfs_entry md_safe_delay =
3276 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3277
3278 static ssize_t
3279 level_show(struct mddev *mddev, char *page)
3280 {
3281         struct md_personality *p = mddev->pers;
3282         if (p)
3283                 return sprintf(page, "%s\n", p->name);
3284         else if (mddev->clevel[0])
3285                 return sprintf(page, "%s\n", mddev->clevel);
3286         else if (mddev->level != LEVEL_NONE)
3287                 return sprintf(page, "%d\n", mddev->level);
3288         else
3289                 return 0;
3290 }
3291
3292 static ssize_t
3293 level_store(struct mddev *mddev, const char *buf, size_t len)
3294 {
3295         char clevel[16];
3296         ssize_t rv = len;
3297         struct md_personality *pers;
3298         long level;
3299         void *priv;
3300         struct md_rdev *rdev;
3301
3302         if (mddev->pers == NULL) {
3303                 if (len == 0)
3304                         return 0;
3305                 if (len >= sizeof(mddev->clevel))
3306                         return -ENOSPC;
3307                 strncpy(mddev->clevel, buf, len);
3308                 if (mddev->clevel[len-1] == '\n')
3309                         len--;
3310                 mddev->clevel[len] = 0;
3311                 mddev->level = LEVEL_NONE;
3312                 return rv;
3313         }
3314
3315         /* request to change the personality.  Need to ensure:
3316          *  - array is not engaged in resync/recovery/reshape
3317          *  - old personality can be suspended
3318          *  - new personality will access other array.
3319          */
3320
3321         if (mddev->sync_thread ||
3322             mddev->reshape_position != MaxSector ||
3323             mddev->sysfs_active)
3324                 return -EBUSY;
3325
3326         if (!mddev->pers->quiesce) {
3327                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3328                        mdname(mddev), mddev->pers->name);
3329                 return -EINVAL;
3330         }
3331
3332         /* Now find the new personality */
3333         if (len == 0 || len >= sizeof(clevel))
3334                 return -EINVAL;
3335         strncpy(clevel, buf, len);
3336         if (clevel[len-1] == '\n')
3337                 len--;
3338         clevel[len] = 0;
3339         if (strict_strtol(clevel, 10, &level))
3340                 level = LEVEL_NONE;
3341
3342         if (request_module("md-%s", clevel) != 0)
3343                 request_module("md-level-%s", clevel);
3344         spin_lock(&pers_lock);
3345         pers = find_pers(level, clevel);
3346         if (!pers || !try_module_get(pers->owner)) {
3347                 spin_unlock(&pers_lock);
3348                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3349                 return -EINVAL;
3350         }
3351         spin_unlock(&pers_lock);
3352
3353         if (pers == mddev->pers) {
3354                 /* Nothing to do! */
3355                 module_put(pers->owner);
3356                 return rv;
3357         }
3358         if (!pers->takeover) {
3359                 module_put(pers->owner);
3360                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3361                        mdname(mddev), clevel);
3362                 return -EINVAL;
3363         }
3364
3365         list_for_each_entry(rdev, &mddev->disks, same_set)
3366                 rdev->new_raid_disk = rdev->raid_disk;
3367
3368         /* ->takeover must set new_* and/or delta_disks
3369          * if it succeeds, and may set them when it fails.
3370          */
3371         priv = pers->takeover(mddev);
3372         if (IS_ERR(priv)) {
3373                 mddev->new_level = mddev->level;
3374                 mddev->new_layout = mddev->layout;
3375                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3376                 mddev->raid_disks -= mddev->delta_disks;
3377                 mddev->delta_disks = 0;
3378                 module_put(pers->owner);
3379                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3380                        mdname(mddev), clevel);
3381                 return PTR_ERR(priv);
3382         }
3383
3384         /* Looks like we have a winner */
3385         mddev_suspend(mddev);
3386         mddev->pers->stop(mddev);
3387         
3388         if (mddev->pers->sync_request == NULL &&
3389             pers->sync_request != NULL) {
3390                 /* need to add the md_redundancy_group */
3391                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3392                         printk(KERN_WARNING
3393                                "md: cannot register extra attributes for %s\n",
3394                                mdname(mddev));
3395                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3396         }               
3397         if (mddev->pers->sync_request != NULL &&
3398             pers->sync_request == NULL) {
3399                 /* need to remove the md_redundancy_group */
3400                 if (mddev->to_remove == NULL)
3401                         mddev->to_remove = &md_redundancy_group;
3402         }
3403
3404         if (mddev->pers->sync_request == NULL &&
3405             mddev->external) {
3406                 /* We are converting from a no-redundancy array
3407                  * to a redundancy array and metadata is managed
3408                  * externally so we need to be sure that writes
3409                  * won't block due to a need to transition
3410                  *      clean->dirty
3411                  * until external management is started.
3412                  */
3413                 mddev->in_sync = 0;
3414                 mddev->safemode_delay = 0;
3415                 mddev->safemode = 0;
3416         }
3417
3418         list_for_each_entry(rdev, &mddev->disks, same_set) {
3419                 if (rdev->raid_disk < 0)
3420                         continue;
3421                 if (rdev->new_raid_disk >= mddev->raid_disks)
3422                         rdev->new_raid_disk = -1;
3423                 if (rdev->new_raid_disk == rdev->raid_disk)
3424                         continue;
3425                 sysfs_unlink_rdev(mddev, rdev);
3426         }
3427         list_for_each_entry(rdev, &mddev->disks, same_set) {
3428                 if (rdev->raid_disk < 0)
3429                         continue;
3430                 if (rdev->new_raid_disk == rdev->raid_disk)
3431                         continue;
3432                 rdev->raid_disk = rdev->new_raid_disk;
3433                 if (rdev->raid_disk < 0)
3434                         clear_bit(In_sync, &rdev->flags);
3435                 else {
3436                         if (sysfs_link_rdev(mddev, rdev))
3437                                 printk(KERN_WARNING "md: cannot register rd%d"
3438                                        " for %s after level change\n",
3439                                        rdev->raid_disk, mdname(mddev));
3440                 }
3441         }
3442
3443         module_put(mddev->pers->owner);
3444         mddev->pers = pers;
3445         mddev->private = priv;
3446         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3447         mddev->level = mddev->new_level;
3448         mddev->layout = mddev->new_layout;
3449         mddev->chunk_sectors = mddev->new_chunk_sectors;
3450         mddev->delta_disks = 0;
3451         mddev->degraded = 0;
3452         if (mddev->pers->sync_request == NULL) {
3453                 /* this is now an array without redundancy, so
3454                  * it must always be in_sync
3455                  */
3456                 mddev->in_sync = 1;
3457                 del_timer_sync(&mddev->safemode_timer);
3458         }
3459         pers->run(mddev);
3460         mddev_resume(mddev);
3461         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3462         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3463         md_wakeup_thread(mddev->thread);
3464         sysfs_notify(&mddev->kobj, NULL, "level");
3465         md_new_event(mddev);
3466         return rv;
3467 }
3468
3469 static struct md_sysfs_entry md_level =
3470 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3471
3472
3473 static ssize_t
3474 layout_show(struct mddev *mddev, char *page)
3475 {
3476         /* just a number, not meaningful for all levels */
3477         if (mddev->reshape_position != MaxSector &&
3478             mddev->layout != mddev->new_layout)
3479                 return sprintf(page, "%d (%d)\n",
3480                                mddev->new_layout, mddev->layout);
3481         return sprintf(page, "%d\n", mddev->layout);
3482 }
3483
3484 static ssize_t
3485 layout_store(struct mddev *mddev, const char *buf, size_t len)
3486 {
3487         char *e;
3488         unsigned long n = simple_strtoul(buf, &e, 10);
3489
3490         if (!*buf || (*e && *e != '\n'))
3491                 return -EINVAL;
3492
3493         if (mddev->pers) {
3494                 int err;
3495                 if (mddev->pers->check_reshape == NULL)
3496                         return -EBUSY;
3497                 mddev->new_layout = n;
3498                 err = mddev->pers->check_reshape(mddev);
3499                 if (err) {
3500                         mddev->new_layout = mddev->layout;
3501                         return err;
3502                 }
3503         } else {
3504                 mddev->new_layout = n;
3505                 if (mddev->reshape_position == MaxSector)
3506                         mddev->layout = n;
3507         }
3508         return len;
3509 }
3510 static struct md_sysfs_entry md_layout =
3511 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3512
3513
3514 static ssize_t
3515 raid_disks_show(struct mddev *mddev, char *page)
3516 {
3517         if (mddev->raid_disks == 0)
3518                 return 0;
3519         if (mddev->reshape_position != MaxSector &&
3520             mddev->delta_disks != 0)
3521                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3522                                mddev->raid_disks - mddev->delta_disks);
3523         return sprintf(page, "%d\n", mddev->raid_disks);
3524 }
3525
3526 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3527
3528 static ssize_t
3529 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3530 {
3531         char *e;
3532         int rv = 0;
3533         unsigned long n = simple_strtoul(buf, &e, 10);
3534
3535         if (!*buf || (*e && *e != '\n'))
3536                 return -EINVAL;
3537
3538         if (mddev->pers)
3539                 rv = update_raid_disks(mddev, n);
3540         else if (mddev->reshape_position != MaxSector) {
3541                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3542                 mddev->delta_disks = n - olddisks;
3543                 mddev->raid_disks = n;
3544         } else
3545                 mddev->raid_disks = n;
3546         return rv ? rv : len;
3547 }
3548 static struct md_sysfs_entry md_raid_disks =
3549 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3550
3551 static ssize_t
3552 chunk_size_show(struct mddev *mddev, char *page)
3553 {
3554         if (mddev->reshape_position != MaxSector &&
3555             mddev->chunk_sectors != mddev->new_chunk_sectors)
3556                 return sprintf(page, "%d (%d)\n",
3557                                mddev->new_chunk_sectors << 9,
3558                                mddev->chunk_sectors << 9);
3559         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3560 }
3561
3562 static ssize_t
3563 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3564 {
3565         char *e;
3566         unsigned long n = simple_strtoul(buf, &e, 10);
3567
3568         if (!*buf || (*e && *e != '\n'))
3569                 return -EINVAL;
3570
3571         if (mddev->pers) {
3572                 int err;
3573                 if (mddev->pers->check_reshape == NULL)
3574                         return -EBUSY;
3575                 mddev->new_chunk_sectors = n >> 9;
3576                 err = mddev->pers->check_reshape(mddev);
3577                 if (err) {
3578                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3579                         return err;
3580                 }
3581         } else {
3582                 mddev->new_chunk_sectors = n >> 9;
3583                 if (mddev->reshape_position == MaxSector)
3584                         mddev->chunk_sectors = n >> 9;
3585         }
3586         return len;
3587 }
3588 static struct md_sysfs_entry md_chunk_size =
3589 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3590
3591 static ssize_t
3592 resync_start_show(struct mddev *mddev, char *page)
3593 {
3594         if (mddev->recovery_cp == MaxSector)
3595                 return sprintf(page, "none\n");
3596         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3597 }
3598
3599 static ssize_t
3600 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3601 {
3602         char *e;
3603         unsigned long long n = simple_strtoull(buf, &e, 10);
3604
3605         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3606                 return -EBUSY;
3607         if (cmd_match(buf, "none"))
3608                 n = MaxSector;
3609         else if (!*buf || (*e && *e != '\n'))
3610                 return -EINVAL;
3611
3612         mddev->recovery_cp = n;
3613         return len;
3614 }
3615 static struct md_sysfs_entry md_resync_start =
3616 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3617
3618 /*
3619  * The array state can be:
3620  *
3621  * clear
3622  *     No devices, no size, no level
3623  *     Equivalent to STOP_ARRAY ioctl
3624  * inactive
3625  *     May have some settings, but array is not active
3626  *        all IO results in error
3627  *     When written, doesn't tear down array, but just stops it
3628  * suspended (not supported yet)
3629  *     All IO requests will block. The array can be reconfigured.
3630  *     Writing this, if accepted, will block until array is quiescent
3631  * readonly
3632  *     no resync can happen.  no superblocks get written.
3633  *     write requests fail
3634  * read-auto
3635  *     like readonly, but behaves like 'clean' on a write request.
3636  *
3637  * clean - no pending writes, but otherwise active.
3638  *     When written to inactive array, starts without resync
3639  *     If a write request arrives then
3640  *       if metadata is known, mark 'dirty' and switch to 'active'.
3641  *       if not known, block and switch to write-pending
3642  *     If written to an active array that has pending writes, then fails.
3643  * active
3644  *     fully active: IO and resync can be happening.
3645  *     When written to inactive array, starts with resync
3646  *
3647  * write-pending
3648  *     clean, but writes are blocked waiting for 'active' to be written.
3649  *
3650  * active-idle
3651  *     like active, but no writes have been seen for a while (100msec).
3652  *
3653  */
3654 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3655                    write_pending, active_idle, bad_word};
3656 static char *array_states[] = {
3657         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3658         "write-pending", "active-idle", NULL };
3659
3660 static int match_word(const char *word, char **list)
3661 {
3662         int n;
3663         for (n=0; list[n]; n++)
3664                 if (cmd_match(word, list[n]))
3665                         break;
3666         return n;
3667 }
3668
3669 static ssize_t
3670 array_state_show(struct mddev *mddev, char *page)
3671 {
3672         enum array_state st = inactive;
3673
3674         if (mddev->pers)
3675                 switch(mddev->ro) {
3676                 case 1:
3677                         st = readonly;
3678                         break;
3679                 case 2:
3680                         st = read_auto;
3681                         break;
3682                 case 0:
3683                         if (mddev->in_sync)
3684                                 st = clean;
3685                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3686                                 st = write_pending;
3687                         else if (mddev->safemode)
3688                                 st = active_idle;
3689                         else
3690                                 st = active;
3691                 }
3692         else {
3693                 if (list_empty(&mddev->disks) &&
3694                     mddev->raid_disks == 0 &&
3695                     mddev->dev_sectors == 0)
3696                         st = clear;
3697                 else
3698                         st = inactive;
3699         }
3700         return sprintf(page, "%s\n", array_states[st]);
3701 }
3702
3703 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3704 static int md_set_readonly(struct mddev * mddev, int is_open);
3705 static int do_md_run(struct mddev * mddev);
3706 static int restart_array(struct mddev *mddev);
3707
3708 static ssize_t
3709 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3710 {
3711         int err = -EINVAL;
3712         enum array_state st = match_word(buf, array_states);
3713         switch(st) {
3714         case bad_word:
3715                 break;
3716         case clear:
3717                 /* stopping an active array */
3718                 if (atomic_read(&mddev->openers) > 0)
3719                         return -EBUSY;
3720                 err = do_md_stop(mddev, 0, 0);
3721                 break;
3722         case inactive:
3723                 /* stopping an active array */
3724                 if (mddev->pers) {
3725                         if (atomic_read(&mddev->openers) > 0)
3726                                 return -EBUSY;
3727                         err = do_md_stop(mddev, 2, 0);
3728                 } else
3729                         err = 0; /* already inactive */
3730                 break;
3731         case suspended:
3732                 break; /* not supported yet */
3733         case readonly:
3734                 if (mddev->pers)
3735                         err = md_set_readonly(mddev, 0);
3736                 else {
3737                         mddev->ro = 1;
3738                         set_disk_ro(mddev->gendisk, 1);
3739                         err = do_md_run(mddev);
3740                 }
3741                 break;
3742         case read_auto:
3743                 if (mddev->pers) {
3744                         if (mddev->ro == 0)
3745                                 err = md_set_readonly(mddev, 0);
3746                         else if (mddev->ro == 1)
3747                                 err = restart_array(mddev);
3748                         if (err == 0) {
3749                                 mddev->ro = 2;
3750                                 set_disk_ro(mddev->gendisk, 0);
3751                         }
3752                 } else {
3753                         mddev->ro = 2;
3754                         err = do_md_run(mddev);
3755                 }
3756                 break;
3757         case clean:
3758                 if (mddev->pers) {
3759                         restart_array(mddev);
3760                         spin_lock_irq(&mddev->write_lock);
3761                         if (atomic_read(&mddev->writes_pending) == 0) {
3762                                 if (mddev->in_sync == 0) {
3763                                         mddev->in_sync = 1;
3764                                         if (mddev->safemode == 1)
3765                                                 mddev->safemode = 0;
3766                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3767                                 }
3768                                 err = 0;
3769                         } else
3770                                 err = -EBUSY;
3771                         spin_unlock_irq(&mddev->write_lock);
3772                 } else
3773                         err = -EINVAL;
3774                 break;
3775         case active:
3776                 if (mddev->pers) {
3777                         restart_array(mddev);
3778                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3779                         wake_up(&mddev->sb_wait);
3780                         err = 0;
3781                 } else {
3782                         mddev->ro = 0;
3783                         set_disk_ro(mddev->gendisk, 0);
3784                         err = do_md_run(mddev);
3785                 }
3786                 break;
3787         case write_pending:
3788         case active_idle:
3789                 /* these cannot be set */
3790                 break;
3791         }
3792         if (err)
3793                 return err;
3794         else {
3795                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3796                 return len;
3797         }
3798 }
3799 static struct md_sysfs_entry md_array_state =
3800 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3801
3802 static ssize_t
3803 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3804         return sprintf(page, "%d\n",
3805                        atomic_read(&mddev->max_corr_read_errors));
3806 }
3807
3808 static ssize_t
3809 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3810 {
3811         char *e;
3812         unsigned long n = simple_strtoul(buf, &e, 10);
3813
3814         if (*buf && (*e == 0 || *e == '\n')) {
3815                 atomic_set(&mddev->max_corr_read_errors, n);
3816                 return len;
3817         }
3818         return -EINVAL;
3819 }
3820
3821 static struct md_sysfs_entry max_corr_read_errors =
3822 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3823         max_corrected_read_errors_store);
3824
3825 static ssize_t
3826 null_show(struct mddev *mddev, char *page)
3827 {
3828         return -EINVAL;
3829 }
3830
3831 static ssize_t
3832 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3833 {
3834         /* buf must be %d:%d\n? giving major and minor numbers */
3835         /* The new device is added to the array.
3836          * If the array has a persistent superblock, we read the
3837          * superblock to initialise info and check validity.
3838          * Otherwise, only checking done is that in bind_rdev_to_array,
3839          * which mainly checks size.
3840          */
3841         char *e;
3842         int major = simple_strtoul(buf, &e, 10);
3843         int minor;
3844         dev_t dev;
3845         struct md_rdev *rdev;
3846         int err;
3847
3848         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3849                 return -EINVAL;
3850         minor = simple_strtoul(e+1, &e, 10);
3851         if (*e && *e != '\n')
3852                 return -EINVAL;
3853         dev = MKDEV(major, minor);
3854         if (major != MAJOR(dev) ||
3855             minor != MINOR(dev))
3856                 return -EOVERFLOW;
3857
3858
3859         if (mddev->persistent) {
3860                 rdev = md_import_device(dev, mddev->major_version,
3861                                         mddev->minor_version);
3862                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3863                         struct md_rdev *rdev0
3864                                 = list_entry(mddev->disks.next,
3865                                              struct md_rdev, same_set);
3866                         err = super_types[mddev->major_version]
3867                                 .load_super(rdev, rdev0, mddev->minor_version);
3868                         if (err < 0)
3869                                 goto out;
3870                 }
3871         } else if (mddev->external)
3872                 rdev = md_import_device(dev, -2, -1);
3873         else
3874                 rdev = md_import_device(dev, -1, -1);
3875
3876         if (IS_ERR(rdev))
3877                 return PTR_ERR(rdev);
3878         err = bind_rdev_to_array(rdev, mddev);
3879  out:
3880         if (err)
3881                 export_rdev(rdev);
3882         return err ? err : len;
3883 }
3884
3885 static struct md_sysfs_entry md_new_device =
3886 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3887
3888 static ssize_t
3889 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3890 {
3891         char *end;
3892         unsigned long chunk, end_chunk;
3893
3894         if (!mddev->bitmap)
3895                 goto out;
3896         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3897         while (*buf) {
3898                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3899                 if (buf == end) break;
3900                 if (*end == '-') { /* range */
3901                         buf = end + 1;
3902                         end_chunk = simple_strtoul(buf, &end, 0);
3903                         if (buf == end) break;
3904                 }
3905                 if (*end && !isspace(*end)) break;
3906                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3907                 buf = skip_spaces(end);
3908         }
3909         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3910 out:
3911         return len;
3912 }
3913
3914 static struct md_sysfs_entry md_bitmap =
3915 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3916
3917 static ssize_t
3918 size_show(struct mddev *mddev, char *page)
3919 {
3920         return sprintf(page, "%llu\n",
3921                 (unsigned long long)mddev->dev_sectors / 2);
3922 }
3923
3924 static int update_size(struct mddev *mddev, sector_t num_sectors);
3925
3926 static ssize_t
3927 size_store(struct mddev *mddev, const char *buf, size_t len)
3928 {
3929         /* If array is inactive, we can reduce the component size, but
3930          * not increase it (except from 0).
3931          * If array is active, we can try an on-line resize
3932          */
3933         sector_t sectors;
3934         int err = strict_blocks_to_sectors(buf, &sectors);
3935
3936         if (err < 0)
3937                 return err;
3938         if (mddev->pers) {
3939                 err = update_size(mddev, sectors);
3940                 md_update_sb(mddev, 1);
3941         } else {
3942                 if (mddev->dev_sectors == 0 ||
3943                     mddev->dev_sectors > sectors)
3944                         mddev->dev_sectors = sectors;
3945                 else
3946                         err = -ENOSPC;
3947         }
3948         return err ? err : len;
3949 }
3950
3951 static struct md_sysfs_entry md_size =
3952 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3953
3954
3955 /* Metdata version.
3956  * This is one of
3957  *   'none' for arrays with no metadata (good luck...)
3958  *   'external' for arrays with externally managed metadata,
3959  * or N.M for internally known formats
3960  */
3961 static ssize_t
3962 metadata_show(struct mddev *mddev, char *page)
3963 {
3964         if (mddev->persistent)
3965                 return sprintf(page, "%d.%d\n",
3966                                mddev->major_version, mddev->minor_version);
3967         else if (mddev->external)
3968                 return sprintf(page, "external:%s\n", mddev->metadata_type);
3969         else
3970                 return sprintf(page, "none\n");
3971 }
3972
3973 static ssize_t
3974 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3975 {
3976         int major, minor;
3977         char *e;
3978         /* Changing the details of 'external' metadata is
3979          * always permitted.  Otherwise there must be
3980          * no devices attached to the array.
3981          */
3982         if (mddev->external && strncmp(buf, "external:", 9) == 0)
3983                 ;
3984         else if (!list_empty(&mddev->disks))
3985                 return -EBUSY;
3986
3987         if (cmd_match(buf, "none")) {
3988                 mddev->persistent = 0;
3989                 mddev->external = 0;
3990                 mddev->major_version = 0;
3991                 mddev->minor_version = 90;
3992                 return len;
3993         }
3994         if (strncmp(buf, "external:", 9) == 0) {
3995                 size_t namelen = len-9;
3996                 if (namelen >= sizeof(mddev->metadata_type))
3997                         namelen = sizeof(mddev->metadata_type)-1;
3998                 strncpy(mddev->metadata_type, buf+9, namelen);
3999                 mddev->metadata_type[namelen] = 0;
4000                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4001                         mddev->metadata_type[--namelen] = 0;
4002                 mddev->persistent = 0;
4003                 mddev->external = 1;
4004                 mddev->major_version = 0;
4005                 mddev->minor_version = 90;
4006                 return len;
4007         }
4008         major = simple_strtoul(buf, &e, 10);
4009         if (e==buf || *e != '.')
4010                 return -EINVAL;
4011         buf = e+1;
4012         minor = simple_strtoul(buf, &e, 10);
4013         if (e==buf || (*e && *e != '\n') )
4014                 return -EINVAL;
4015         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4016                 return -ENOENT;
4017         mddev->major_version = major;
4018         mddev->minor_version = minor;
4019         mddev->persistent = 1;
4020         mddev->external = 0;
4021         return len;
4022 }
4023
4024 static struct md_sysfs_entry md_metadata =
4025 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4026
4027 static ssize_t
4028 action_show(struct mddev *mddev, char *page)
4029 {
4030         char *type = "idle";
4031         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4032                 type = "frozen";
4033         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4034             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4035                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4036                         type = "reshape";
4037                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4038                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4039                                 type = "resync";
4040                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4041                                 type = "check";
4042                         else
4043                                 type = "repair";
4044                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4045                         type = "recover";
4046         }
4047         return sprintf(page, "%s\n", type);
4048 }
4049
4050 static void reap_sync_thread(struct mddev *mddev);
4051
4052 static ssize_t
4053 action_store(struct mddev *mddev, const char *page, size_t len)
4054 {
4055         if (!mddev->pers || !mddev->pers->sync_request)
4056                 return -EINVAL;
4057
4058         if (cmd_match(page, "frozen"))
4059                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4060         else
4061                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4062
4063         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4064                 if (mddev->sync_thread) {
4065                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4066                         reap_sync_thread(mddev);
4067                 }
4068         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4069                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4070                 return -EBUSY;
4071         else if (cmd_match(page, "resync"))
4072                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4073         else if (cmd_match(page, "recover")) {
4074                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4075                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4076         } else if (cmd_match(page, "reshape")) {
4077                 int err;
4078                 if (mddev->pers->start_reshape == NULL)
4079                         return -EINVAL;
4080                 err = mddev->pers->start_reshape(mddev);
4081                 if (err)
4082                         return err;
4083                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4084         } else {
4085                 if (cmd_match(page, "check"))
4086                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4087                 else if (!cmd_match(page, "repair"))
4088                         return -EINVAL;
4089                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4090                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4091         }
4092         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4093         md_wakeup_thread(mddev->thread);
4094         sysfs_notify_dirent_safe(mddev->sysfs_action);
4095         return len;
4096 }
4097
4098 static ssize_t
4099 mismatch_cnt_show(struct mddev *mddev, char *page)
4100 {
4101         return sprintf(page, "%llu\n",
4102                        (unsigned long long) mddev->resync_mismatches);
4103 }
4104
4105 static struct md_sysfs_entry md_scan_mode =
4106 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4107
4108
4109 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4110
4111 static ssize_t
4112 sync_min_show(struct mddev *mddev, char *page)
4113 {
4114         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4115                        mddev->sync_speed_min ? "local": "system");
4116 }
4117
4118 static ssize_t
4119 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4120 {
4121         int min;
4122         char *e;
4123         if (strncmp(buf, "system", 6)==0) {
4124                 mddev->sync_speed_min = 0;
4125                 return len;
4126         }
4127         min = simple_strtoul(buf, &e, 10);
4128         if (buf == e || (*e && *e != '\n') || min <= 0)
4129                 return -EINVAL;
4130         mddev->sync_speed_min = min;
4131         return len;
4132 }
4133
4134 static struct md_sysfs_entry md_sync_min =
4135 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4136
4137 static ssize_t
4138 sync_max_show(struct mddev *mddev, char *page)
4139 {
4140         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4141                        mddev->sync_speed_max ? "local": "system");
4142 }
4143
4144 static ssize_t
4145 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4146 {
4147         int max;
4148         char *e;
4149         if (strncmp(buf, "system", 6)==0) {
4150                 mddev->sync_speed_max = 0;
4151                 return len;
4152         }
4153         max = simple_strtoul(buf, &e, 10);
4154         if (buf == e || (*e && *e != '\n') || max <= 0)
4155                 return -EINVAL;
4156         mddev->sync_speed_max = max;
4157         return len;
4158 }
4159
4160 static struct md_sysfs_entry md_sync_max =
4161 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4162
4163 static ssize_t
4164 degraded_show(struct mddev *mddev, char *page)
4165 {
4166         return sprintf(page, "%d\n", mddev->degraded);
4167 }
4168 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4169
4170 static ssize_t
4171 sync_force_parallel_show(struct mddev *mddev, char *page)
4172 {
4173         return sprintf(page, "%d\n", mddev->parallel_resync);
4174 }
4175
4176 static ssize_t
4177 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4178 {
4179         long n;
4180
4181         if (strict_strtol(buf, 10, &n))
4182                 return -EINVAL;
4183
4184         if (n != 0 && n != 1)
4185                 return -EINVAL;
4186
4187         mddev->parallel_resync = n;
4188
4189         if (mddev->sync_thread)
4190                 wake_up(&resync_wait);
4191
4192         return len;
4193 }
4194
4195 /* force parallel resync, even with shared block devices */
4196 static struct md_sysfs_entry md_sync_force_parallel =
4197 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4198        sync_force_parallel_show, sync_force_parallel_store);
4199
4200 static ssize_t
4201 sync_speed_show(struct mddev *mddev, char *page)
4202 {
4203         unsigned long resync, dt, db;
4204         if (mddev->curr_resync == 0)
4205                 return sprintf(page, "none\n");
4206         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4207         dt = (jiffies - mddev->resync_mark) / HZ;
4208         if (!dt) dt++;
4209         db = resync - mddev->resync_mark_cnt;
4210         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4211 }
4212
4213 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4214
4215 static ssize_t
4216 sync_completed_show(struct mddev *mddev, char *page)
4217 {
4218         unsigned long long max_sectors, resync;
4219
4220         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4221                 return sprintf(page, "none\n");
4222
4223         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4224                 max_sectors = mddev->resync_max_sectors;
4225         else
4226                 max_sectors = mddev->dev_sectors;
4227
4228         resync = mddev->curr_resync_completed;
4229         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4230 }
4231
4232 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4233
4234 static ssize_t
4235 min_sync_show(struct mddev *mddev, char *page)
4236 {
4237         return sprintf(page, "%llu\n",
4238                        (unsigned long long)mddev->resync_min);
4239 }
4240 static ssize_t
4241 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4242 {
4243         unsigned long long min;
4244         if (strict_strtoull(buf, 10, &min))
4245                 return -EINVAL;
4246         if (min > mddev->resync_max)
4247                 return -EINVAL;
4248         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4249                 return -EBUSY;
4250
4251         /* Must be a multiple of chunk_size */
4252         if (mddev->chunk_sectors) {
4253                 sector_t temp = min;
4254                 if (sector_div(temp, mddev->chunk_sectors))
4255                         return -EINVAL;
4256         }
4257         mddev->resync_min = min;
4258
4259         return len;
4260 }
4261
4262 static struct md_sysfs_entry md_min_sync =
4263 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4264
4265 static ssize_t
4266 max_sync_show(struct mddev *mddev, char *page)
4267 {
4268         if (mddev->resync_max == MaxSector)
4269                 return sprintf(page, "max\n");
4270         else
4271                 return sprintf(page, "%llu\n",
4272                                (unsigned long long)mddev->resync_max);
4273 }
4274 static ssize_t
4275 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4276 {
4277         if (strncmp(buf, "max", 3) == 0)
4278                 mddev->resync_max = MaxSector;
4279         else {
4280                 unsigned long long max;
4281                 if (strict_strtoull(buf, 10, &max))
4282                         return -EINVAL;
4283                 if (max < mddev->resync_min)
4284                         return -EINVAL;
4285                 if (max < mddev->resync_max &&
4286                     mddev->ro == 0 &&
4287                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4288                         return -EBUSY;
4289
4290                 /* Must be a multiple of chunk_size */
4291                 if (mddev->chunk_sectors) {
4292                         sector_t temp = max;
4293                         if (sector_div(temp, mddev->chunk_sectors))
4294                                 return -EINVAL;
4295                 }
4296                 mddev->resync_max = max;
4297         }
4298         wake_up(&mddev->recovery_wait);
4299         return len;
4300 }
4301
4302 static struct md_sysfs_entry md_max_sync =
4303 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4304
4305 static ssize_t
4306 suspend_lo_show(struct mddev *mddev, char *page)
4307 {
4308         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4309 }
4310
4311 static ssize_t
4312 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4313 {
4314         char *e;
4315         unsigned long long new = simple_strtoull(buf, &e, 10);
4316         unsigned long long old = mddev->suspend_lo;
4317
4318         if (mddev->pers == NULL || 
4319             mddev->pers->quiesce == NULL)
4320                 return -EINVAL;
4321         if (buf == e || (*e && *e != '\n'))
4322                 return -EINVAL;
4323
4324         mddev->suspend_lo = new;
4325         if (new >= old)
4326                 /* Shrinking suspended region */
4327                 mddev->pers->quiesce(mddev, 2);
4328         else {
4329                 /* Expanding suspended region - need to wait */
4330                 mddev->pers->quiesce(mddev, 1);
4331                 mddev->pers->quiesce(mddev, 0);
4332         }
4333         return len;
4334 }
4335 static struct md_sysfs_entry md_suspend_lo =
4336 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4337
4338
4339 static ssize_t
4340 suspend_hi_show(struct mddev *mddev, char *page)
4341 {
4342         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4343 }
4344
4345 static ssize_t
4346 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4347 {
4348         char *e;
4349         unsigned long long new = simple_strtoull(buf, &e, 10);
4350         unsigned long long old = mddev->suspend_hi;
4351
4352         if (mddev->pers == NULL ||
4353             mddev->pers->quiesce == NULL)
4354                 return -EINVAL;
4355         if (buf == e || (*e && *e != '\n'))
4356                 return -EINVAL;
4357
4358         mddev->suspend_hi = new;
4359         if (new <= old)
4360                 /* Shrinking suspended region */
4361                 mddev->pers->quiesce(mddev, 2);
4362         else {
4363                 /* Expanding suspended region - need to wait */
4364                 mddev->pers->quiesce(mddev, 1);
4365                 mddev->pers->quiesce(mddev, 0);
4366         }
4367         return len;
4368 }
4369 static struct md_sysfs_entry md_suspend_hi =
4370 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4371
4372 static ssize_t
4373 reshape_position_show(struct mddev *mddev, char *page)
4374 {
4375         if (mddev->reshape_position != MaxSector)
4376                 return sprintf(page, "%llu\n",
4377                                (unsigned long long)mddev->reshape_position);
4378         strcpy(page, "none\n");
4379         return 5;
4380 }
4381
4382 static ssize_t
4383 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4384 {
4385         char *e;
4386         unsigned long long new = simple_strtoull(buf, &e, 10);
4387         if (mddev->pers)
4388                 return -EBUSY;
4389         if (buf == e || (*e && *e != '\n'))
4390                 return -EINVAL;
4391         mddev->reshape_position = new;
4392         mddev->delta_disks = 0;
4393         mddev->new_level = mddev->level;
4394         mddev->new_layout = mddev->layout;
4395         mddev->new_chunk_sectors = mddev->chunk_sectors;
4396         return len;
4397 }
4398
4399 static struct md_sysfs_entry md_reshape_position =
4400 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4401        reshape_position_store);
4402
4403 static ssize_t
4404 array_size_show(struct mddev *mddev, char *page)
4405 {
4406         if (mddev->external_size)
4407                 return sprintf(page, "%llu\n",
4408                                (unsigned long long)mddev->array_sectors/2);
4409         else
4410                 return sprintf(page, "default\n");
4411 }
4412
4413 static ssize_t
4414 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4415 {
4416         sector_t sectors;
4417
4418         if (strncmp(buf, "default", 7) == 0) {
4419                 if (mddev->pers)
4420                         sectors = mddev->pers->size(mddev, 0, 0);
4421                 else
4422                         sectors = mddev->array_sectors;
4423
4424                 mddev->external_size = 0;
4425         } else {
4426                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4427                         return -EINVAL;
4428                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4429                         return -E2BIG;
4430
4431                 mddev->external_size = 1;
4432         }
4433
4434         mddev->array_sectors = sectors;
4435         if (mddev->pers) {
4436                 set_capacity(mddev->gendisk, mddev->array_sectors);
4437                 revalidate_disk(mddev->gendisk);
4438         }
4439         return len;
4440 }
4441
4442 static struct md_sysfs_entry md_array_size =
4443 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4444        array_size_store);
4445
4446 static struct attribute *md_default_attrs[] = {
4447         &md_level.attr,
4448         &md_layout.attr,
4449         &md_raid_disks.attr,
4450         &md_chunk_size.attr,
4451         &md_size.attr,
4452         &md_resync_start.attr,
4453         &md_metadata.attr,
4454         &md_new_device.attr,
4455         &md_safe_delay.attr,
4456         &md_array_state.attr,
4457         &md_reshape_position.attr,
4458         &md_array_size.attr,
4459         &max_corr_read_errors.attr,
4460         NULL,
4461 };
4462
4463 static struct attribute *md_redundancy_attrs[] = {
4464         &md_scan_mode.attr,
4465         &md_mismatches.attr,
4466         &md_sync_min.attr,
4467         &md_sync_max.attr,
4468         &md_sync_speed.attr,
4469         &md_sync_force_parallel.attr,
4470         &md_sync_completed.attr,
4471         &md_min_sync.attr,
4472         &md_max_sync.attr,
4473         &md_suspend_lo.attr,
4474         &md_suspend_hi.attr,
4475         &md_bitmap.attr,
4476         &md_degraded.attr,
4477         NULL,
4478 };
4479 static struct attribute_group md_redundancy_group = {
4480         .name = NULL,
4481         .attrs = md_redundancy_attrs,
4482 };
4483
4484
4485 static ssize_t
4486 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4487 {
4488         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4489         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4490         ssize_t rv;
4491
4492         if (!entry->show)
4493                 return -EIO;
4494         rv = mddev_lock(mddev);
4495         if (!rv) {
4496                 rv = entry->show(mddev, page);
4497                 mddev_unlock(mddev);
4498         }
4499         return rv;
4500 }
4501
4502 static ssize_t
4503 md_attr_store(struct kobject *kobj, struct attribute *attr,
4504               const char *page, size_t length)
4505 {
4506         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4507         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4508         ssize_t rv;
4509
4510         if (!entry->store)
4511                 return -EIO;
4512         if (!capable(CAP_SYS_ADMIN))
4513                 return -EACCES;
4514         rv = mddev_lock(mddev);
4515         if (mddev->hold_active == UNTIL_IOCTL)
4516                 mddev->hold_active = 0;
4517         if (!rv) {
4518                 rv = entry->store(mddev, page, length);
4519                 mddev_unlock(mddev);
4520         }
4521         return rv;
4522 }
4523
4524 static void md_free(struct kobject *ko)
4525 {
4526         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4527
4528         if (mddev->sysfs_state)
4529                 sysfs_put(mddev->sysfs_state);
4530
4531         if (mddev->gendisk) {
4532                 del_gendisk(mddev->gendisk);
4533                 put_disk(mddev->gendisk);
4534         }
4535         if (mddev->queue)
4536                 blk_cleanup_queue(mddev->queue);
4537
4538         kfree(mddev);
4539 }
4540
4541 static const struct sysfs_ops md_sysfs_ops = {
4542         .show   = md_attr_show,
4543         .store  = md_attr_store,
4544 };
4545 static struct kobj_type md_ktype = {
4546         .release        = md_free,
4547         .sysfs_ops      = &md_sysfs_ops,
4548         .default_attrs  = md_default_attrs,
4549 };
4550
4551 int mdp_major = 0;
4552
4553 static void mddev_delayed_delete(struct work_struct *ws)
4554 {
4555         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4556
4557         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4558         kobject_del(&mddev->kobj);
4559         kobject_put(&mddev->kobj);
4560 }
4561
4562 static int md_alloc(dev_t dev, char *name)
4563 {
4564         static DEFINE_MUTEX(disks_mutex);
4565         struct mddev *mddev = mddev_find(dev);
4566         struct gendisk *disk;
4567         int partitioned;
4568         int shift;
4569         int unit;
4570         int error;
4571
4572         if (!mddev)
4573                 return -ENODEV;
4574
4575         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4576         shift = partitioned ? MdpMinorShift : 0;
4577         unit = MINOR(mddev->unit) >> shift;
4578
4579         /* wait for any previous instance of this device to be
4580          * completely removed (mddev_delayed_delete).
4581          */
4582         flush_workqueue(md_misc_wq);
4583
4584         mutex_lock(&disks_mutex);
4585         error = -EEXIST;
4586         if (mddev->gendisk)
4587                 goto abort;
4588
4589         if (name) {
4590                 /* Need to ensure that 'name' is not a duplicate.
4591                  */
4592                 struct mddev *mddev2;
4593                 spin_lock(&all_mddevs_lock);
4594
4595                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4596                         if (mddev2->gendisk &&
4597                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4598                                 spin_unlock(&all_mddevs_lock);
4599                                 goto abort;
4600                         }
4601                 spin_unlock(&all_mddevs_lock);
4602         }
4603
4604         error = -ENOMEM;
4605         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4606         if (!mddev->queue)
4607                 goto abort;
4608         mddev->queue->queuedata = mddev;
4609
4610         blk_queue_make_request(mddev->queue, md_make_request);
4611
4612         disk = alloc_disk(1 << shift);
4613         if (!disk) {
4614                 blk_cleanup_queue(mddev->queue);
4615                 mddev->queue = NULL;
4616                 goto abort;
4617         }
4618         disk->major = MAJOR(mddev->unit);
4619         disk->first_minor = unit << shift;
4620         if (name)
4621                 strcpy(disk->disk_name, name);
4622         else if (partitioned)
4623                 sprintf(disk->disk_name, "md_d%d", unit);
4624         else
4625                 sprintf(disk->disk_name, "md%d", unit);
4626         disk->fops = &md_fops;
4627         disk->private_data = mddev;
4628         disk->queue = mddev->queue;
4629         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4630         /* Allow extended partitions.  This makes the
4631          * 'mdp' device redundant, but we can't really
4632          * remove it now.
4633          */
4634         disk->flags |= GENHD_FL_EXT_DEVT;
4635         mddev->gendisk = disk;
4636         /* As soon as we call add_disk(), another thread could get
4637          * through to md_open, so make sure it doesn't get too far
4638          */
4639         mutex_lock(&mddev->open_mutex);
4640         add_disk(disk);
4641
4642         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4643                                      &disk_to_dev(disk)->kobj, "%s", "md");
4644         if (error) {
4645                 /* This isn't possible, but as kobject_init_and_add is marked
4646                  * __must_check, we must do something with the result
4647                  */
4648                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4649                        disk->disk_name);
4650                 error = 0;
4651         }
4652         if (mddev->kobj.sd &&
4653             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4654                 printk(KERN_DEBUG "pointless warning\n");
4655         mutex_unlock(&mddev->open_mutex);
4656  abort:
4657         mutex_unlock(&disks_mutex);
4658         if (!error && mddev->kobj.sd) {
4659                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4660                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4661         }
4662         mddev_put(mddev);
4663         return error;
4664 }
4665
4666 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4667 {
4668         md_alloc(dev, NULL);
4669         return NULL;
4670 }
4671
4672 static int add_named_array(const char *val, struct kernel_param *kp)
4673 {
4674         /* val must be "md_*" where * is not all digits.
4675          * We allocate an array with a large free minor number, and
4676          * set the name to val.  val must not already be an active name.
4677          */
4678         int len = strlen(val);
4679         char buf[DISK_NAME_LEN];
4680
4681         while (len && val[len-1] == '\n')
4682                 len--;
4683         if (len >= DISK_NAME_LEN)
4684                 return -E2BIG;
4685         strlcpy(buf, val, len+1);
4686         if (strncmp(buf, "md_", 3) != 0)
4687                 return -EINVAL;
4688         return md_alloc(0, buf);
4689 }
4690
4691 static void md_safemode_timeout(unsigned long data)
4692 {
4693         struct mddev *mddev = (struct mddev *) data;
4694
4695         if (!atomic_read(&mddev->writes_pending)) {
4696                 mddev->safemode = 1;
4697                 if (mddev->external)
4698                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4699         }
4700         md_wakeup_thread(mddev->thread);
4701 }
4702
4703 static int start_dirty_degraded;
4704
4705 int md_run(struct mddev *mddev)
4706 {
4707         int err;
4708         struct md_rdev *rdev;
4709         struct md_personality *pers;
4710
4711         if (list_empty(&mddev->disks))
4712                 /* cannot run an array with no devices.. */
4713                 return -EINVAL;
4714
4715         if (mddev->pers)
4716                 return -EBUSY;
4717         /* Cannot run until previous stop completes properly */
4718         if (mddev->sysfs_active)
4719                 return -EBUSY;
4720
4721         /*
4722          * Analyze all RAID superblock(s)
4723          */
4724         if (!mddev->raid_disks) {
4725                 if (!mddev->persistent)
4726                         return -EINVAL;
4727                 analyze_sbs(mddev);
4728         }
4729
4730         if (mddev->level != LEVEL_NONE)
4731                 request_module("md-level-%d", mddev->level);
4732         else if (mddev->clevel[0])
4733                 request_module("md-%s", mddev->clevel);
4734
4735         /*
4736          * Drop all container device buffers, from now on
4737          * the only valid external interface is through the md
4738          * device.
4739          */
4740         list_for_each_entry(rdev, &mddev->disks, same_set) {
4741                 if (test_bit(Faulty, &rdev->flags))
4742                         continue;
4743                 sync_blockdev(rdev->bdev);
4744                 invalidate_bdev(rdev->bdev);
4745
4746                 /* perform some consistency tests on the device.
4747                  * We don't want the data to overlap the metadata,
4748                  * Internal Bitmap issues have been handled elsewhere.
4749                  */
4750                 if (rdev->meta_bdev) {
4751                         /* Nothing to check */;
4752                 } else if (rdev->data_offset < rdev->sb_start) {
4753                         if (mddev->dev_sectors &&
4754                             rdev->data_offset + mddev->dev_sectors
4755                             > rdev->sb_start) {
4756                                 printk("md: %s: data overlaps metadata\n",
4757                                        mdname(mddev));
4758                                 return -EINVAL;
4759                         }
4760                 } else {
4761                         if (rdev->sb_start + rdev->sb_size/512
4762                             > rdev->data_offset) {
4763                                 printk("md: %s: metadata overlaps data\n",
4764                                        mdname(mddev));
4765                                 return -EINVAL;
4766                         }
4767                 }
4768                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4769         }
4770
4771         if (mddev->bio_set == NULL)
4772                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4773                                                sizeof(struct mddev *));
4774
4775         spin_lock(&pers_lock);
4776         pers = find_pers(mddev->level, mddev->clevel);
4777         if (!pers || !try_module_get(pers->owner)) {
4778                 spin_unlock(&pers_lock);
4779                 if (mddev->level != LEVEL_NONE)
4780                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4781                                mddev->level);
4782                 else
4783                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4784                                mddev->clevel);
4785                 return -EINVAL;
4786         }
4787         mddev->pers = pers;
4788         spin_unlock(&pers_lock);
4789         if (mddev->level != pers->level) {
4790                 mddev->level = pers->level;
4791                 mddev->new_level = pers->level;
4792         }
4793         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4794
4795         if (mddev->reshape_position != MaxSector &&
4796             pers->start_reshape == NULL) {
4797                 /* This personality cannot handle reshaping... */
4798                 mddev->pers = NULL;
4799                 module_put(pers->owner);
4800                 return -EINVAL;
4801         }
4802
4803         if (pers->sync_request) {
4804                 /* Warn if this is a potentially silly
4805                  * configuration.
4806                  */
4807                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4808                 struct md_rdev *rdev2;
4809                 int warned = 0;
4810
4811                 list_for_each_entry(rdev, &mddev->disks, same_set)
4812                         list_for_each_entry(rdev2, &mddev->disks, same_set) {
4813                                 if (rdev < rdev2 &&
4814                                     rdev->bdev->bd_contains ==
4815                                     rdev2->bdev->bd_contains) {
4816                                         printk(KERN_WARNING
4817                                                "%s: WARNING: %s appears to be"
4818                                                " on the same physical disk as"
4819                                                " %s.\n",
4820                                                mdname(mddev),
4821                                                bdevname(rdev->bdev,b),
4822                                                bdevname(rdev2->bdev,b2));
4823                                         warned = 1;
4824                                 }
4825                         }
4826
4827                 if (warned)
4828                         printk(KERN_WARNING
4829                                "True protection against single-disk"
4830                                " failure might be compromised.\n");
4831         }
4832
4833         mddev->recovery = 0;
4834         /* may be over-ridden by personality */
4835         mddev->resync_max_sectors = mddev->dev_sectors;
4836
4837         mddev->ok_start_degraded = start_dirty_degraded;
4838
4839         if (start_readonly && mddev->ro == 0)
4840                 mddev->ro = 2; /* read-only, but switch on first write */
4841
4842         err = mddev->pers->run(mddev);
4843         if (err)
4844                 printk(KERN_ERR "md: pers->run() failed ...\n");
4845         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4846                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4847                           " but 'external_size' not in effect?\n", __func__);
4848                 printk(KERN_ERR
4849                        "md: invalid array_size %llu > default size %llu\n",
4850                        (unsigned long long)mddev->array_sectors / 2,
4851                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4852                 err = -EINVAL;
4853                 mddev->pers->stop(mddev);
4854         }
4855         if (err == 0 && mddev->pers->sync_request) {
4856                 err = bitmap_create(mddev);
4857                 if (err) {
4858                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4859                                mdname(mddev), err);
4860                         mddev->pers->stop(mddev);
4861                 }
4862         }
4863         if (err) {
4864                 module_put(mddev->pers->owner);
4865                 mddev->pers = NULL;
4866                 bitmap_destroy(mddev);
4867                 return err;
4868         }
4869         if (mddev->pers->sync_request) {
4870                 if (mddev->kobj.sd &&
4871                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4872                         printk(KERN_WARNING
4873                                "md: cannot register extra attributes for %s\n",
4874                                mdname(mddev));
4875                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4876         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4877                 mddev->ro = 0;
4878
4879         atomic_set(&mddev->writes_pending,0);
4880         atomic_set(&mddev->max_corr_read_errors,
4881                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4882         mddev->safemode = 0;
4883         mddev->safemode_timer.function = md_safemode_timeout;
4884         mddev->safemode_timer.data = (unsigned long) mddev;
4885         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4886         mddev->in_sync = 1;
4887         smp_wmb();
4888         mddev->ready = 1;
4889         list_for_each_entry(rdev, &mddev->disks, same_set)
4890                 if (rdev->raid_disk >= 0)
4891                         if (sysfs_link_rdev(mddev, rdev))
4892                                 /* failure here is OK */;
4893         
4894         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4895         
4896         if (mddev->flags)
4897                 md_update_sb(mddev, 0);
4898
4899         md_new_event(mddev);
4900         sysfs_notify_dirent_safe(mddev->sysfs_state);
4901         sysfs_notify_dirent_safe(mddev->sysfs_action);
4902         sysfs_notify(&mddev->kobj, NULL, "degraded");
4903         return 0;
4904 }
4905 EXPORT_SYMBOL_GPL(md_run);
4906
4907 static int do_md_run(struct mddev *mddev)
4908 {
4909         int err;
4910
4911         err = md_run(mddev);
4912         if (err)
4913                 goto out;
4914         err = bitmap_load(mddev);
4915         if (err) {
4916                 bitmap_destroy(mddev);
4917                 goto out;
4918         }
4919
4920         md_wakeup_thread(mddev->thread);
4921         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4922
4923         set_capacity(mddev->gendisk, mddev->array_sectors);
4924         revalidate_disk(mddev->gendisk);
4925         mddev->changed = 1;
4926         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4927 out:
4928         return err;
4929 }
4930
4931 static int restart_array(struct mddev *mddev)
4932 {
4933         struct gendisk *disk = mddev->gendisk;
4934
4935         /* Complain if it has no devices */
4936         if (list_empty(&mddev->disks))
4937                 return -ENXIO;
4938         if (!mddev->pers)
4939                 return -EINVAL;
4940         if (!mddev->ro)
4941                 return -EBUSY;
4942         mddev->safemode = 0;
4943         mddev->ro = 0;
4944         set_disk_ro(disk, 0);
4945         printk(KERN_INFO "md: %s switched to read-write mode.\n",
4946                 mdname(mddev));
4947         /* Kick recovery or resync if necessary */
4948         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4949         md_wakeup_thread(mddev->thread);
4950         md_wakeup_thread(mddev->sync_thread);
4951         sysfs_notify_dirent_safe(mddev->sysfs_state);
4952         return 0;
4953 }
4954
4955 /* similar to deny_write_access, but accounts for our holding a reference
4956  * to the file ourselves */
4957 static int deny_bitmap_write_access(struct file * file)
4958 {
4959         struct inode *inode = file->f_mapping->host;
4960
4961         spin_lock(&inode->i_lock);
4962         if (atomic_read(&inode->i_writecount) > 1) {
4963                 spin_unlock(&inode->i_lock);
4964                 return -ETXTBSY;
4965         }
4966         atomic_set(&inode->i_writecount, -1);
4967         spin_unlock(&inode->i_lock);
4968
4969         return 0;
4970 }
4971
4972 void restore_bitmap_write_access(struct file *file)
4973 {
4974         struct inode *inode = file->f_mapping->host;
4975
4976         spin_lock(&inode->i_lock);
4977         atomic_set(&inode->i_writecount, 1);
4978         spin_unlock(&inode->i_lock);
4979 }
4980
4981 static void md_clean(struct mddev *mddev)
4982 {
4983         mddev->array_sectors = 0;
4984         mddev->external_size = 0;
4985         mddev->dev_sectors = 0;
4986         mddev->raid_disks = 0;
4987         mddev->recovery_cp = 0;
4988         mddev->resync_min = 0;
4989         mddev->resync_max = MaxSector;
4990         mddev->reshape_position = MaxSector;
4991         mddev->external = 0;
4992         mddev->persistent = 0;
4993         mddev->level = LEVEL_NONE;
4994         mddev->clevel[0] = 0;
4995         mddev->flags = 0;
4996         mddev->ro = 0;
4997         mddev->metadata_type[0] = 0;
4998         mddev->chunk_sectors = 0;
4999         mddev->ctime = mddev->utime = 0;
5000         mddev->layout = 0;
5001         mddev->max_disks = 0;
5002         mddev->events = 0;
5003         mddev->can_decrease_events = 0;
5004         mddev->delta_disks = 0;
5005         mddev->new_level = LEVEL_NONE;
5006         mddev->new_layout = 0;
5007         mddev->new_chunk_sectors = 0;
5008         mddev->curr_resync = 0;
5009         mddev->resync_mismatches = 0;
5010         mddev->suspend_lo = mddev->suspend_hi = 0;
5011         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5012         mddev->recovery = 0;
5013         mddev->in_sync = 0;
5014         mddev->changed = 0;
5015         mddev->degraded = 0;
5016         mddev->safemode = 0;
5017         mddev->bitmap_info.offset = 0;
5018         mddev->bitmap_info.default_offset = 0;
5019         mddev->bitmap_info.chunksize = 0;
5020         mddev->bitmap_info.daemon_sleep = 0;
5021         mddev->bitmap_info.max_write_behind = 0;
5022 }
5023
5024 static void __md_stop_writes(struct mddev *mddev)
5025 {
5026         if (mddev->sync_thread) {
5027                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5028                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5029                 reap_sync_thread(mddev);
5030         }
5031
5032         del_timer_sync(&mddev->safemode_timer);
5033
5034         bitmap_flush(mddev);
5035         md_super_wait(mddev);
5036
5037         if (!mddev->in_sync || mddev->flags) {
5038                 /* mark array as shutdown cleanly */
5039                 mddev->in_sync = 1;
5040                 md_update_sb(mddev, 1);
5041         }
5042 }
5043
5044 void md_stop_writes(struct mddev *mddev)
5045 {
5046         mddev_lock(mddev);
5047         __md_stop_writes(mddev);
5048         mddev_unlock(mddev);
5049 }
5050 EXPORT_SYMBOL_GPL(md_stop_writes);
5051
5052 void md_stop(struct mddev *mddev)
5053 {
5054         mddev->ready = 0;
5055         mddev->pers->stop(mddev);
5056         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5057                 mddev->to_remove = &md_redundancy_group;
5058         module_put(mddev->pers->owner);
5059         mddev->pers = NULL;
5060         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5061 }
5062 EXPORT_SYMBOL_GPL(md_stop);
5063
5064 static int md_set_readonly(struct mddev *mddev, int is_open)
5065 {
5066         int err = 0;
5067         mutex_lock(&mddev->open_mutex);
5068         if (atomic_read(&mddev->openers) > is_open) {
5069                 printk("md: %s still in use.\n",mdname(mddev));
5070                 err = -EBUSY;
5071                 goto out;
5072         }
5073         if (mddev->pers) {
5074                 __md_stop_writes(mddev);
5075
5076                 err  = -ENXIO;
5077                 if (mddev->ro==1)
5078                         goto out;
5079                 mddev->ro = 1;
5080                 set_disk_ro(mddev->gendisk, 1);
5081                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5082                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5083                 err = 0;        
5084         }
5085 out:
5086         mutex_unlock(&mddev->open_mutex);
5087         return err;
5088 }
5089
5090 /* mode:
5091  *   0 - completely stop and dis-assemble array
5092  *   2 - stop but do not disassemble array
5093  */
5094 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5095 {
5096         struct gendisk *disk = mddev->gendisk;
5097         struct md_rdev *rdev;
5098
5099         mutex_lock(&mddev->open_mutex);
5100         if (atomic_read(&mddev->openers) > is_open ||
5101             mddev->sysfs_active) {
5102                 printk("md: %s still in use.\n",mdname(mddev));
5103                 mutex_unlock(&mddev->open_mutex);
5104                 return -EBUSY;
5105         }
5106
5107         if (mddev->pers) {
5108                 if (mddev->ro)
5109                         set_disk_ro(disk, 0);
5110
5111                 __md_stop_writes(mddev);
5112                 md_stop(mddev);
5113                 mddev->queue->merge_bvec_fn = NULL;
5114                 mddev->queue->backing_dev_info.congested_fn = NULL;
5115
5116                 /* tell userspace to handle 'inactive' */
5117                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5118
5119                 list_for_each_entry(rdev, &mddev->disks, same_set)
5120                         if (rdev->raid_disk >= 0)
5121                                 sysfs_unlink_rdev(mddev, rdev);
5122
5123                 set_capacity(disk, 0);
5124                 mutex_unlock(&mddev->open_mutex);
5125                 mddev->changed = 1;
5126                 revalidate_disk(disk);
5127
5128                 if (mddev->ro)
5129                         mddev->ro = 0;
5130         } else
5131                 mutex_unlock(&mddev->open_mutex);
5132         /*
5133          * Free resources if final stop
5134          */
5135         if (mode == 0) {
5136                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5137
5138                 bitmap_destroy(mddev);
5139                 if (mddev->bitmap_info.file) {
5140                         restore_bitmap_write_access(mddev->bitmap_info.file);
5141                         fput(mddev->bitmap_info.file);
5142                         mddev->bitmap_info.file = NULL;
5143                 }
5144                 mddev->bitmap_info.offset = 0;
5145
5146                 export_array(mddev);
5147
5148                 md_clean(mddev);
5149                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5150                 if (mddev->hold_active == UNTIL_STOP)
5151                         mddev->hold_active = 0;
5152         }
5153         blk_integrity_unregister(disk);
5154         md_new_event(mddev);
5155         sysfs_notify_dirent_safe(mddev->sysfs_state);
5156         return 0;
5157 }
5158
5159 #ifndef MODULE
5160 static void autorun_array(struct mddev *mddev)
5161 {
5162         struct md_rdev *rdev;
5163         int err;
5164
5165         if (list_empty(&mddev->disks))
5166                 return;
5167
5168         printk(KERN_INFO "md: running: ");
5169
5170         list_for_each_entry(rdev, &mddev->disks, same_set) {
5171                 char b[BDEVNAME_SIZE];
5172                 printk("<%s>", bdevname(rdev->bdev,b));
5173         }
5174         printk("\n");
5175
5176         err = do_md_run(mddev);
5177         if (err) {
5178                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5179                 do_md_stop(mddev, 0, 0);
5180         }
5181 }
5182
5183 /*
5184  * lets try to run arrays based on all disks that have arrived
5185  * until now. (those are in pending_raid_disks)
5186  *
5187  * the method: pick the first pending disk, collect all disks with
5188  * the same UUID, remove all from the pending list and put them into
5189  * the 'same_array' list. Then order this list based on superblock
5190  * update time (freshest comes first), kick out 'old' disks and
5191  * compare superblocks. If everything's fine then run it.
5192  *
5193  * If "unit" is allocated, then bump its reference count
5194  */
5195 static void autorun_devices(int part)
5196 {
5197         struct md_rdev *rdev0, *rdev, *tmp;
5198         struct mddev *mddev;
5199         char b[BDEVNAME_SIZE];
5200
5201         printk(KERN_INFO "md: autorun ...\n");
5202         while (!list_empty(&pending_raid_disks)) {
5203                 int unit;
5204                 dev_t dev;
5205                 LIST_HEAD(candidates);
5206                 rdev0 = list_entry(pending_raid_disks.next,
5207                                          struct md_rdev, same_set);
5208
5209                 printk(KERN_INFO "md: considering %s ...\n",
5210                         bdevname(rdev0->bdev,b));
5211                 INIT_LIST_HEAD(&candidates);
5212                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5213                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5214                                 printk(KERN_INFO "md:  adding %s ...\n",
5215                                         bdevname(rdev->bdev,b));
5216                                 list_move(&rdev->same_set, &candidates);
5217                         }
5218                 /*
5219                  * now we have a set of devices, with all of them having
5220                  * mostly sane superblocks. It's time to allocate the
5221                  * mddev.
5222                  */
5223                 if (part) {
5224                         dev = MKDEV(mdp_major,
5225                                     rdev0->preferred_minor << MdpMinorShift);
5226                         unit = MINOR(dev) >> MdpMinorShift;
5227                 } else {
5228                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5229                         unit = MINOR(dev);
5230                 }
5231                 if (rdev0->preferred_minor != unit) {
5232                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5233                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5234                         break;
5235                 }
5236
5237                 md_probe(dev, NULL, NULL);
5238                 mddev = mddev_find(dev);
5239                 if (!mddev || !mddev->gendisk) {
5240                         if (mddev)
5241                                 mddev_put(mddev);
5242                         printk(KERN_ERR
5243                                 "md: cannot allocate memory for md drive.\n");
5244                         break;
5245                 }
5246                 if (mddev_lock(mddev)) 
5247                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5248                                mdname(mddev));
5249                 else if (mddev->raid_disks || mddev->major_version
5250                          || !list_empty(&mddev->disks)) {
5251                         printk(KERN_WARNING 
5252                                 "md: %s already running, cannot run %s\n",
5253                                 mdname(mddev), bdevname(rdev0->bdev,b));
5254                         mddev_unlock(mddev);
5255                 } else {
5256                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5257                         mddev->persistent = 1;
5258                         rdev_for_each_list(rdev, tmp, &candidates) {
5259                                 list_del_init(&rdev->same_set);
5260                                 if (bind_rdev_to_array(rdev, mddev))
5261                                         export_rdev(rdev);
5262                         }
5263                         autorun_array(mddev);
5264                         mddev_unlock(mddev);
5265                 }
5266                 /* on success, candidates will be empty, on error
5267                  * it won't...
5268                  */
5269                 rdev_for_each_list(rdev, tmp, &candidates) {
5270                         list_del_init(&rdev->same_set);
5271                         export_rdev(rdev);
5272                 }
5273                 mddev_put(mddev);
5274         }
5275         printk(KERN_INFO "md: ... autorun DONE.\n");
5276 }
5277 #endif /* !MODULE */
5278
5279 static int get_version(void __user * arg)
5280 {
5281         mdu_version_t ver;
5282
5283         ver.major = MD_MAJOR_VERSION;
5284         ver.minor = MD_MINOR_VERSION;
5285         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5286
5287         if (copy_to_user(arg, &ver, sizeof(ver)))
5288                 return -EFAULT;
5289
5290         return 0;
5291 }
5292
5293 static int get_array_info(struct mddev * mddev, void __user * arg)
5294 {
5295         mdu_array_info_t info;
5296         int nr,working,insync,failed,spare;
5297         struct md_rdev *rdev;
5298
5299         nr=working=insync=failed=spare=0;
5300         list_for_each_entry(rdev, &mddev->disks, same_set) {
5301                 nr++;
5302                 if (test_bit(Faulty, &rdev->flags))
5303                         failed++;
5304                 else {
5305                         working++;
5306                         if (test_bit(In_sync, &rdev->flags))
5307                                 insync++;       
5308                         else
5309                                 spare++;
5310                 }
5311         }
5312
5313         info.major_version = mddev->major_version;
5314         info.minor_version = mddev->minor_version;
5315         info.patch_version = MD_PATCHLEVEL_VERSION;
5316         info.ctime         = mddev->ctime;
5317         info.level         = mddev->level;
5318         info.size          = mddev->dev_sectors / 2;
5319         if (info.size != mddev->dev_sectors / 2) /* overflow */
5320                 info.size = -1;
5321         info.nr_disks      = nr;
5322         info.raid_disks    = mddev->raid_disks;
5323         info.md_minor      = mddev->md_minor;
5324         info.not_persistent= !mddev->persistent;
5325
5326         info.utime         = mddev->utime;
5327         info.state         = 0;
5328         if (mddev->in_sync)
5329                 info.state = (1<<MD_SB_CLEAN);
5330         if (mddev->bitmap && mddev->bitmap_info.offset)
5331                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5332         info.active_disks  = insync;
5333         info.working_disks = working;
5334         info.failed_disks  = failed;
5335         info.spare_disks   = spare;
5336
5337         info.layout        = mddev->layout;
5338         info.chunk_size    = mddev->chunk_sectors << 9;
5339
5340         if (copy_to_user(arg, &info, sizeof(info)))
5341                 return -EFAULT;
5342
5343         return 0;
5344 }
5345
5346 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5347 {
5348         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5349         char *ptr, *buf = NULL;
5350         int err = -ENOMEM;
5351
5352         if (md_allow_write(mddev))
5353                 file = kmalloc(sizeof(*file), GFP_NOIO);
5354         else
5355                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5356
5357         if (!file)
5358                 goto out;
5359
5360         /* bitmap disabled, zero the first byte and copy out */
5361         if (!mddev->bitmap || !mddev->bitmap->file) {
5362                 file->pathname[0] = '\0';
5363                 goto copy_out;
5364         }
5365
5366         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5367         if (!buf)
5368                 goto out;
5369
5370         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5371         if (IS_ERR(ptr))
5372                 goto out;
5373
5374         strcpy(file->pathname, ptr);
5375
5376 copy_out:
5377         err = 0;
5378         if (copy_to_user(arg, file, sizeof(*file)))
5379                 err = -EFAULT;
5380 out:
5381         kfree(buf);
5382         kfree(file);
5383         return err;
5384 }
5385
5386 static int get_disk_info(struct mddev * mddev, void __user * arg)
5387 {
5388         mdu_disk_info_t info;
5389         struct md_rdev *rdev;
5390
5391         if (copy_from_user(&info, arg, sizeof(info)))
5392                 return -EFAULT;
5393
5394         rdev = find_rdev_nr(mddev, info.number);
5395         if (rdev) {
5396                 info.major = MAJOR(rdev->bdev->bd_dev);
5397                 info.minor = MINOR(rdev->bdev->bd_dev);
5398                 info.raid_disk = rdev->raid_disk;
5399                 info.state = 0;
5400                 if (test_bit(Faulty, &rdev->flags))
5401                         info.state |= (1<<MD_DISK_FAULTY);
5402                 else if (test_bit(In_sync, &rdev->flags)) {
5403                         info.state |= (1<<MD_DISK_ACTIVE);
5404                         info.state |= (1<<MD_DISK_SYNC);
5405                 }
5406                 if (test_bit(WriteMostly, &rdev->flags))
5407                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5408         } else {
5409                 info.major = info.minor = 0;
5410                 info.raid_disk = -1;
5411                 info.state = (1<<MD_DISK_REMOVED);
5412         }
5413
5414         if (copy_to_user(arg, &info, sizeof(info)))
5415                 return -EFAULT;
5416
5417         return 0;
5418 }
5419
5420 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5421 {
5422         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5423         struct md_rdev *rdev;
5424         dev_t dev = MKDEV(info->major,info->minor);
5425
5426         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5427                 return -EOVERFLOW;
5428
5429         if (!mddev->raid_disks) {
5430                 int err;
5431                 /* expecting a device which has a superblock */
5432                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5433                 if (IS_ERR(rdev)) {
5434                         printk(KERN_WARNING 
5435                                 "md: md_import_device returned %ld\n",
5436                                 PTR_ERR(rdev));
5437                         return PTR_ERR(rdev);
5438                 }
5439                 if (!list_empty(&mddev->disks)) {
5440                         struct md_rdev *rdev0
5441                                 = list_entry(mddev->disks.next,
5442                                              struct md_rdev, same_set);
5443                         err = super_types[mddev->major_version]
5444                                 .load_super(rdev, rdev0, mddev->minor_version);
5445                         if (err < 0) {
5446                                 printk(KERN_WARNING 
5447                                         "md: %s has different UUID to %s\n",
5448                                         bdevname(rdev->bdev,b), 
5449                                         bdevname(rdev0->bdev,b2));
5450                                 export_rdev(rdev);
5451                                 return -EINVAL;
5452                         }
5453                 }
5454                 err = bind_rdev_to_array(rdev, mddev);
5455                 if (err)
5456                         export_rdev(rdev);
5457                 return err;
5458         }
5459
5460         /*
5461          * add_new_disk can be used once the array is assembled
5462          * to add "hot spares".  They must already have a superblock
5463          * written
5464          */
5465         if (mddev->pers) {
5466                 int err;
5467                 if (!mddev->pers->hot_add_disk) {
5468                         printk(KERN_WARNING 
5469                                 "%s: personality does not support diskops!\n",
5470                                mdname(mddev));
5471                         return -EINVAL;
5472                 }
5473                 if (mddev->persistent)
5474                         rdev = md_import_device(dev, mddev->major_version,
5475                                                 mddev->minor_version);
5476                 else
5477                         rdev = md_import_device(dev, -1, -1);
5478                 if (IS_ERR(rdev)) {
5479                         printk(KERN_WARNING 
5480                                 "md: md_import_device returned %ld\n",
5481                                 PTR_ERR(rdev));
5482                         return PTR_ERR(rdev);
5483                 }
5484                 /* set saved_raid_disk if appropriate */
5485                 if (!mddev->persistent) {
5486                         if (info->state & (1<<MD_DISK_SYNC)  &&
5487                             info->raid_disk < mddev->raid_disks) {
5488                                 rdev->raid_disk = info->raid_disk;
5489                                 set_bit(In_sync, &rdev->flags);
5490                         } else
5491                                 rdev->raid_disk = -1;
5492                 } else
5493                         super_types[mddev->major_version].
5494                                 validate_super(mddev, rdev);
5495                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5496                     (!test_bit(In_sync, &rdev->flags) ||
5497                      rdev->raid_disk != info->raid_disk)) {
5498                         /* This was a hot-add request, but events doesn't
5499                          * match, so reject it.
5500                          */
5501                         export_rdev(rdev);
5502                         return -EINVAL;
5503                 }
5504
5505                 if (test_bit(In_sync, &rdev->flags))
5506                         rdev->saved_raid_disk = rdev->raid_disk;
5507                 else
5508                         rdev->saved_raid_disk = -1;
5509
5510                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5511                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5512                         set_bit(WriteMostly, &rdev->flags);
5513                 else
5514                         clear_bit(WriteMostly, &rdev->flags);
5515
5516                 rdev->raid_disk = -1;
5517                 err = bind_rdev_to_array(rdev, mddev);
5518                 if (!err && !mddev->pers->hot_remove_disk) {
5519                         /* If there is hot_add_disk but no hot_remove_disk
5520                          * then added disks for geometry changes,
5521                          * and should be added immediately.
5522                          */
5523                         super_types[mddev->major_version].
5524                                 validate_super(mddev, rdev);
5525                         err = mddev->pers->hot_add_disk(mddev, rdev);
5526                         if (err)
5527                                 unbind_rdev_from_array(rdev);
5528                 }
5529                 if (err)
5530                         export_rdev(rdev);
5531                 else
5532                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5533
5534                 md_update_sb(mddev, 1);
5535                 if (mddev->degraded)
5536                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5537                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5538                 if (!err)
5539                         md_new_event(mddev);
5540                 md_wakeup_thread(mddev->thread);
5541                 return err;
5542         }
5543
5544         /* otherwise, add_new_disk is only allowed
5545          * for major_version==0 superblocks
5546          */
5547         if (mddev->major_version != 0) {
5548                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5549                        mdname(mddev));
5550                 return -EINVAL;
5551         }
5552
5553         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5554                 int err;
5555                 rdev = md_import_device(dev, -1, 0);
5556                 if (IS_ERR(rdev)) {
5557                         printk(KERN_WARNING 
5558                                 "md: error, md_import_device() returned %ld\n",
5559                                 PTR_ERR(rdev));
5560                         return PTR_ERR(rdev);
5561                 }
5562                 rdev->desc_nr = info->number;
5563                 if (info->raid_disk < mddev->raid_disks)
5564                         rdev->raid_disk = info->raid_disk;
5565                 else
5566                         rdev->raid_disk = -1;
5567
5568                 if (rdev->raid_disk < mddev->raid_disks)
5569                         if (info->state & (1<<MD_DISK_SYNC))
5570                                 set_bit(In_sync, &rdev->flags);
5571
5572                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5573                         set_bit(WriteMostly, &rdev->flags);
5574
5575                 if (!mddev->persistent) {
5576                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5577                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5578                 } else
5579                         rdev->sb_start = calc_dev_sboffset(rdev);
5580                 rdev->sectors = rdev->sb_start;
5581
5582                 err = bind_rdev_to_array(rdev, mddev);
5583                 if (err) {
5584                         export_rdev(rdev);
5585                         return err;
5586                 }
5587         }
5588
5589         return 0;
5590 }
5591
5592 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5593 {
5594         char b[BDEVNAME_SIZE];
5595         struct md_rdev *rdev;
5596
5597         rdev = find_rdev(mddev, dev);
5598         if (!rdev)
5599                 return -ENXIO;
5600
5601         if (rdev->raid_disk >= 0)
5602                 goto busy;
5603
5604         kick_rdev_from_array(rdev);
5605         md_update_sb(mddev, 1);
5606         md_new_event(mddev);
5607
5608         return 0;
5609 busy:
5610         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5611                 bdevname(rdev->bdev,b), mdname(mddev));
5612         return -EBUSY;
5613 }
5614
5615 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5616 {
5617         char b[BDEVNAME_SIZE];
5618         int err;
5619         struct md_rdev *rdev;
5620
5621         if (!mddev->pers)
5622                 return -ENODEV;
5623
5624         if (mddev->major_version != 0) {
5625                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5626                         " version-0 superblocks.\n",
5627                         mdname(mddev));
5628                 return -EINVAL;
5629         }
5630         if (!mddev->pers->hot_add_disk) {
5631                 printk(KERN_WARNING 
5632                         "%s: personality does not support diskops!\n",
5633                         mdname(mddev));
5634                 return -EINVAL;
5635         }
5636
5637         rdev = md_import_device(dev, -1, 0);
5638         if (IS_ERR(rdev)) {
5639                 printk(KERN_WARNING 
5640                         "md: error, md_import_device() returned %ld\n",
5641                         PTR_ERR(rdev));
5642                 return -EINVAL;
5643         }
5644
5645         if (mddev->persistent)
5646                 rdev->sb_start = calc_dev_sboffset(rdev);
5647         else
5648                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5649
5650         rdev->sectors = rdev->sb_start;
5651
5652         if (test_bit(Faulty, &rdev->flags)) {
5653                 printk(KERN_WARNING 
5654                         "md: can not hot-add faulty %s disk to %s!\n",
5655                         bdevname(rdev->bdev,b), mdname(mddev));
5656                 err = -EINVAL;
5657                 goto abort_export;
5658         }
5659         clear_bit(In_sync, &rdev->flags);
5660         rdev->desc_nr = -1;
5661         rdev->saved_raid_disk = -1;
5662         err = bind_rdev_to_array(rdev, mddev);
5663         if (err)
5664                 goto abort_export;
5665
5666         /*
5667          * The rest should better be atomic, we can have disk failures
5668          * noticed in interrupt contexts ...
5669          */
5670
5671         rdev->raid_disk = -1;
5672
5673         md_update_sb(mddev, 1);
5674
5675         /*
5676          * Kick recovery, maybe this spare has to be added to the
5677          * array immediately.
5678          */
5679         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5680         md_wakeup_thread(mddev->thread);
5681         md_new_event(mddev);
5682         return 0;
5683
5684 abort_export:
5685         export_rdev(rdev);
5686         return err;
5687 }
5688
5689 static int set_bitmap_file(struct mddev *mddev, int fd)
5690 {
5691         int err;
5692
5693         if (mddev->pers) {
5694                 if (!mddev->pers->quiesce)
5695                         return -EBUSY;
5696                 if (mddev->recovery || mddev->sync_thread)
5697                         return -EBUSY;
5698                 /* we should be able to change the bitmap.. */
5699         }
5700
5701
5702         if (fd >= 0) {
5703                 if (mddev->bitmap)
5704                         return -EEXIST; /* cannot add when bitmap is present */
5705                 mddev->bitmap_info.file = fget(fd);
5706
5707                 if (mddev->bitmap_info.file == NULL) {
5708                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5709                                mdname(mddev));
5710                         return -EBADF;
5711                 }
5712
5713                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5714                 if (err) {
5715                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5716                                mdname(mddev));
5717                         fput(mddev->bitmap_info.file);
5718                         mddev->bitmap_info.file = NULL;
5719                         return err;
5720                 }
5721                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5722         } else if (mddev->bitmap == NULL)
5723                 return -ENOENT; /* cannot remove what isn't there */
5724         err = 0;
5725         if (mddev->pers) {
5726                 mddev->pers->quiesce(mddev, 1);
5727                 if (fd >= 0) {
5728                         err = bitmap_create(mddev);
5729                         if (!err)
5730                                 err = bitmap_load(mddev);
5731                 }
5732                 if (fd < 0 || err) {
5733                         bitmap_destroy(mddev);
5734                         fd = -1; /* make sure to put the file */
5735                 }
5736                 mddev->pers->quiesce(mddev, 0);
5737         }
5738         if (fd < 0) {
5739                 if (mddev->bitmap_info.file) {
5740                         restore_bitmap_write_access(mddev->bitmap_info.file);
5741                         fput(mddev->bitmap_info.file);
5742                 }
5743                 mddev->bitmap_info.file = NULL;
5744         }
5745
5746         return err;
5747 }
5748
5749 /*
5750  * set_array_info is used two different ways
5751  * The original usage is when creating a new array.
5752  * In this usage, raid_disks is > 0 and it together with
5753  *  level, size, not_persistent,layout,chunksize determine the
5754  *  shape of the array.
5755  *  This will always create an array with a type-0.90.0 superblock.
5756  * The newer usage is when assembling an array.
5757  *  In this case raid_disks will be 0, and the major_version field is
5758  *  use to determine which style super-blocks are to be found on the devices.
5759  *  The minor and patch _version numbers are also kept incase the
5760  *  super_block handler wishes to interpret them.
5761  */
5762 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5763 {
5764
5765         if (info->raid_disks == 0) {
5766                 /* just setting version number for superblock loading */
5767                 if (info->major_version < 0 ||
5768                     info->major_version >= ARRAY_SIZE(super_types) ||
5769                     super_types[info->major_version].name == NULL) {
5770                         /* maybe try to auto-load a module? */
5771                         printk(KERN_INFO 
5772                                 "md: superblock version %d not known\n",
5773                                 info->major_version);
5774                         return -EINVAL;
5775                 }
5776                 mddev->major_version = info->major_version;
5777                 mddev->minor_version = info->minor_version;
5778                 mddev->patch_version = info->patch_version;
5779                 mddev->persistent = !info->not_persistent;
5780                 /* ensure mddev_put doesn't delete this now that there
5781                  * is some minimal configuration.
5782                  */
5783                 mddev->ctime         = get_seconds();
5784                 return 0;
5785         }
5786         mddev->major_version = MD_MAJOR_VERSION;
5787         mddev->minor_version = MD_MINOR_VERSION;
5788         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5789         mddev->ctime         = get_seconds();
5790
5791         mddev->level         = info->level;
5792         mddev->clevel[0]     = 0;
5793         mddev->dev_sectors   = 2 * (sector_t)info->size;
5794         mddev->raid_disks    = info->raid_disks;
5795         /* don't set md_minor, it is determined by which /dev/md* was
5796          * openned
5797          */
5798         if (info->state & (1<<MD_SB_CLEAN))
5799                 mddev->recovery_cp = MaxSector;
5800         else
5801                 mddev->recovery_cp = 0;
5802         mddev->persistent    = ! info->not_persistent;
5803         mddev->external      = 0;
5804
5805         mddev->layout        = info->layout;
5806         mddev->chunk_sectors = info->chunk_size >> 9;
5807
5808         mddev->max_disks     = MD_SB_DISKS;
5809
5810         if (mddev->persistent)
5811                 mddev->flags         = 0;
5812         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5813
5814         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5815         mddev->bitmap_info.offset = 0;
5816
5817         mddev->reshape_position = MaxSector;
5818
5819         /*
5820          * Generate a 128 bit UUID
5821          */
5822         get_random_bytes(mddev->uuid, 16);
5823
5824         mddev->new_level = mddev->level;
5825         mddev->new_chunk_sectors = mddev->chunk_sectors;
5826         mddev->new_layout = mddev->layout;
5827         mddev->delta_disks = 0;
5828
5829         return 0;
5830 }
5831
5832 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5833 {
5834         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5835
5836         if (mddev->external_size)
5837                 return;
5838
5839         mddev->array_sectors = array_sectors;
5840 }
5841 EXPORT_SYMBOL(md_set_array_sectors);
5842
5843 static int update_size(struct mddev *mddev, sector_t num_sectors)
5844 {
5845         struct md_rdev *rdev;
5846         int rv;
5847         int fit = (num_sectors == 0);
5848
5849         if (mddev->pers->resize == NULL)
5850                 return -EINVAL;
5851         /* The "num_sectors" is the number of sectors of each device that
5852          * is used.  This can only make sense for arrays with redundancy.
5853          * linear and raid0 always use whatever space is available. We can only
5854          * consider changing this number if no resync or reconstruction is
5855          * happening, and if the new size is acceptable. It must fit before the
5856          * sb_start or, if that is <data_offset, it must fit before the size
5857          * of each device.  If num_sectors is zero, we find the largest size
5858          * that fits.
5859          */
5860         if (mddev->sync_thread)
5861                 return -EBUSY;
5862         if (mddev->bitmap)
5863                 /* Sorry, cannot grow a bitmap yet, just remove it,
5864                  * grow, and re-add.
5865                  */
5866                 return -EBUSY;
5867         list_for_each_entry(rdev, &mddev->disks, same_set) {
5868                 sector_t avail = rdev->sectors;
5869
5870                 if (fit && (num_sectors == 0 || num_sectors > avail))
5871                         num_sectors = avail;
5872                 if (avail < num_sectors)
5873                         return -ENOSPC;
5874         }
5875         rv = mddev->pers->resize(mddev, num_sectors);
5876         if (!rv)
5877                 revalidate_disk(mddev->gendisk);
5878         return rv;
5879 }
5880
5881 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5882 {
5883         int rv;
5884         /* change the number of raid disks */
5885         if (mddev->pers->check_reshape == NULL)
5886                 return -EINVAL;
5887         if (raid_disks <= 0 ||
5888             (mddev->max_disks && raid_disks >= mddev->max_disks))
5889                 return -EINVAL;
5890         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5891                 return -EBUSY;
5892         mddev->delta_disks = raid_disks - mddev->raid_disks;
5893
5894         rv = mddev->pers->check_reshape(mddev);
5895         if (rv < 0)
5896                 mddev->delta_disks = 0;
5897         return rv;
5898 }
5899
5900
5901 /*
5902  * update_array_info is used to change the configuration of an
5903  * on-line array.
5904  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5905  * fields in the info are checked against the array.
5906  * Any differences that cannot be handled will cause an error.
5907  * Normally, only one change can be managed at a time.
5908  */
5909 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5910 {
5911         int rv = 0;
5912         int cnt = 0;
5913         int state = 0;
5914
5915         /* calculate expected state,ignoring low bits */
5916         if (mddev->bitmap && mddev->bitmap_info.offset)
5917                 state |= (1 << MD_SB_BITMAP_PRESENT);
5918
5919         if (mddev->major_version != info->major_version ||
5920             mddev->minor_version != info->minor_version ||
5921 /*          mddev->patch_version != info->patch_version || */
5922             mddev->ctime         != info->ctime         ||
5923             mddev->level         != info->level         ||
5924 /*          mddev->layout        != info->layout        || */
5925             !mddev->persistent   != info->not_persistent||
5926             mddev->chunk_sectors != info->chunk_size >> 9 ||
5927             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5928             ((state^info->state) & 0xfffffe00)
5929                 )
5930                 return -EINVAL;
5931         /* Check there is only one change */
5932         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5933                 cnt++;
5934         if (mddev->raid_disks != info->raid_disks)
5935                 cnt++;
5936         if (mddev->layout != info->layout)
5937                 cnt++;
5938         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5939                 cnt++;
5940         if (cnt == 0)
5941                 return 0;
5942         if (cnt > 1)
5943                 return -EINVAL;
5944
5945         if (mddev->layout != info->layout) {
5946                 /* Change layout
5947                  * we don't need to do anything at the md level, the
5948                  * personality will take care of it all.
5949                  */
5950                 if (mddev->pers->check_reshape == NULL)
5951                         return -EINVAL;
5952                 else {
5953                         mddev->new_layout = info->layout;
5954                         rv = mddev->pers->check_reshape(mddev);
5955                         if (rv)
5956                                 mddev->new_layout = mddev->layout;
5957                         return rv;
5958                 }
5959         }
5960         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5961                 rv = update_size(mddev, (sector_t)info->size * 2);
5962
5963         if (mddev->raid_disks    != info->raid_disks)
5964                 rv = update_raid_disks(mddev, info->raid_disks);
5965
5966         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5967                 if (mddev->pers->quiesce == NULL)
5968                         return -EINVAL;
5969                 if (mddev->recovery || mddev->sync_thread)
5970                         return -EBUSY;
5971                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5972                         /* add the bitmap */
5973                         if (mddev->bitmap)
5974                                 return -EEXIST;
5975                         if (mddev->bitmap_info.default_offset == 0)
5976                                 return -EINVAL;
5977                         mddev->bitmap_info.offset =
5978                                 mddev->bitmap_info.default_offset;
5979                         mddev->pers->quiesce(mddev, 1);
5980                         rv = bitmap_create(mddev);
5981                         if (!rv)
5982                                 rv = bitmap_load(mddev);
5983                         if (rv)
5984                                 bitmap_destroy(mddev);
5985                         mddev->pers->quiesce(mddev, 0);
5986                 } else {
5987                         /* remove the bitmap */
5988                         if (!mddev->bitmap)
5989                                 return -ENOENT;
5990                         if (mddev->bitmap->file)
5991                                 return -EINVAL;
5992                         mddev->pers->quiesce(mddev, 1);
5993                         bitmap_destroy(mddev);
5994                         mddev->pers->quiesce(mddev, 0);
5995                         mddev->bitmap_info.offset = 0;
5996                 }
5997         }
5998         md_update_sb(mddev, 1);
5999         return rv;
6000 }
6001
6002 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6003 {
6004         struct md_rdev *rdev;
6005
6006         if (mddev->pers == NULL)
6007                 return -ENODEV;
6008
6009         rdev = find_rdev(mddev, dev);
6010         if (!rdev)
6011                 return -ENODEV;
6012
6013         md_error(mddev, rdev);
6014         if (!test_bit(Faulty, &rdev->flags))
6015                 return -EBUSY;
6016         return 0;
6017 }
6018
6019 /*
6020  * We have a problem here : there is no easy way to give a CHS
6021  * virtual geometry. We currently pretend that we have a 2 heads
6022  * 4 sectors (with a BIG number of cylinders...). This drives
6023  * dosfs just mad... ;-)
6024  */
6025 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6026 {
6027         struct mddev *mddev = bdev->bd_disk->private_data;
6028
6029         geo->heads = 2;
6030         geo->sectors = 4;
6031         geo->cylinders = mddev->array_sectors / 8;
6032         return 0;
6033 }
6034
6035 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6036                         unsigned int cmd, unsigned long arg)
6037 {
6038         int err = 0;
6039         void __user *argp = (void __user *)arg;
6040         struct mddev *mddev = NULL;
6041         int ro;
6042
6043         if (!capable(CAP_SYS_ADMIN))
6044                 return -EACCES;
6045
6046         /*
6047          * Commands dealing with the RAID driver but not any
6048          * particular array:
6049          */
6050         switch (cmd)
6051         {
6052                 case RAID_VERSION:
6053                         err = get_version(argp);
6054                         goto done;
6055
6056                 case PRINT_RAID_DEBUG:
6057                         err = 0;
6058                         md_print_devices();
6059                         goto done;
6060
6061 #ifndef MODULE
6062                 case RAID_AUTORUN:
6063                         err = 0;
6064                         autostart_arrays(arg);
6065                         goto done;
6066 #endif
6067                 default:;
6068         }
6069
6070         /*
6071          * Commands creating/starting a new array:
6072          */
6073
6074         mddev = bdev->bd_disk->private_data;
6075
6076         if (!mddev) {
6077                 BUG();
6078                 goto abort;
6079         }
6080
6081         err = mddev_lock(mddev);
6082         if (err) {
6083                 printk(KERN_INFO 
6084                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6085                         err, cmd);
6086                 goto abort;
6087         }
6088
6089         switch (cmd)
6090         {
6091                 case SET_ARRAY_INFO:
6092                         {
6093                                 mdu_array_info_t info;
6094                                 if (!arg)
6095                                         memset(&info, 0, sizeof(info));
6096                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6097                                         err = -EFAULT;
6098                                         goto abort_unlock;
6099                                 }
6100                                 if (mddev->pers) {
6101                                         err = update_array_info(mddev, &info);
6102                                         if (err) {
6103                                                 printk(KERN_WARNING "md: couldn't update"
6104                                                        " array info. %d\n", err);
6105                                                 goto abort_unlock;
6106                                         }
6107                                         goto done_unlock;
6108                                 }
6109                                 if (!list_empty(&mddev->disks)) {
6110                                         printk(KERN_WARNING
6111                                                "md: array %s already has disks!\n",
6112                                                mdname(mddev));
6113                                         err = -EBUSY;
6114                                         goto abort_unlock;
6115                                 }
6116                                 if (mddev->raid_disks) {
6117                                         printk(KERN_WARNING
6118                                                "md: array %s already initialised!\n",
6119                                                mdname(mddev));
6120                                         err = -EBUSY;
6121                                         goto abort_unlock;
6122                                 }
6123                                 err = set_array_info(mddev, &info);
6124                                 if (err) {
6125                                         printk(KERN_WARNING "md: couldn't set"
6126                                                " array info. %d\n", err);
6127                                         goto abort_unlock;
6128                                 }
6129                         }
6130                         goto done_unlock;
6131
6132                 default:;
6133         }
6134
6135         /*
6136          * Commands querying/configuring an existing array:
6137          */
6138         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6139          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6140         if ((!mddev->raid_disks && !mddev->external)
6141             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6142             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6143             && cmd != GET_BITMAP_FILE) {
6144                 err = -ENODEV;
6145                 goto abort_unlock;
6146         }
6147
6148         /*
6149          * Commands even a read-only array can execute:
6150          */
6151         switch (cmd)
6152         {
6153                 case GET_ARRAY_INFO:
6154                         err = get_array_info(mddev, argp);
6155                         goto done_unlock;
6156
6157                 case GET_BITMAP_FILE:
6158                         err = get_bitmap_file(mddev, argp);
6159                         goto done_unlock;
6160
6161                 case GET_DISK_INFO:
6162                         err = get_disk_info(mddev, argp);
6163                         goto done_unlock;
6164
6165                 case RESTART_ARRAY_RW:
6166                         err = restart_array(mddev);
6167                         goto done_unlock;
6168
6169                 case STOP_ARRAY:
6170                         err = do_md_stop(mddev, 0, 1);
6171                         goto done_unlock;
6172
6173                 case STOP_ARRAY_RO:
6174                         err = md_set_readonly(mddev, 1);
6175                         goto done_unlock;
6176
6177                 case BLKROSET:
6178                         if (get_user(ro, (int __user *)(arg))) {
6179                                 err = -EFAULT;
6180                                 goto done_unlock;
6181                         }
6182                         err = -EINVAL;
6183
6184                         /* if the bdev is going readonly the value of mddev->ro
6185                          * does not matter, no writes are coming
6186                          */
6187                         if (ro)
6188                                 goto done_unlock;
6189
6190                         /* are we are already prepared for writes? */
6191                         if (mddev->ro != 1)
6192                                 goto done_unlock;
6193
6194                         /* transitioning to readauto need only happen for
6195                          * arrays that call md_write_start
6196                          */
6197                         if (mddev->pers) {
6198                                 err = restart_array(mddev);
6199                                 if (err == 0) {
6200                                         mddev->ro = 2;
6201                                         set_disk_ro(mddev->gendisk, 0);
6202                                 }
6203                         }
6204                         goto done_unlock;
6205         }
6206
6207         /*
6208          * The remaining ioctls are changing the state of the
6209          * superblock, so we do not allow them on read-only arrays.
6210          * However non-MD ioctls (e.g. get-size) will still come through
6211          * here and hit the 'default' below, so only disallow
6212          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6213          */
6214         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6215                 if (mddev->ro == 2) {
6216                         mddev->ro = 0;
6217                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6218                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6219                         md_wakeup_thread(mddev->thread);
6220                 } else {
6221                         err = -EROFS;
6222                         goto abort_unlock;
6223                 }
6224         }
6225
6226         switch (cmd)
6227         {
6228                 case ADD_NEW_DISK:
6229                 {
6230                         mdu_disk_info_t info;
6231                         if (copy_from_user(&info, argp, sizeof(info)))
6232                                 err = -EFAULT;
6233                         else
6234                                 err = add_new_disk(mddev, &info);
6235                         goto done_unlock;
6236                 }
6237
6238                 case HOT_REMOVE_DISK:
6239                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6240                         goto done_unlock;
6241
6242                 case HOT_ADD_DISK:
6243                         err = hot_add_disk(mddev, new_decode_dev(arg));
6244                         goto done_unlock;
6245
6246                 case SET_DISK_FAULTY:
6247                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6248                         goto done_unlock;
6249
6250                 case RUN_ARRAY:
6251                         err = do_md_run(mddev);
6252                         goto done_unlock;
6253
6254                 case SET_BITMAP_FILE:
6255                         err = set_bitmap_file(mddev, (int)arg);
6256                         goto done_unlock;
6257
6258                 default:
6259                         err = -EINVAL;
6260                         goto abort_unlock;
6261         }
6262
6263 done_unlock:
6264 abort_unlock:
6265         if (mddev->hold_active == UNTIL_IOCTL &&
6266             err != -EINVAL)
6267                 mddev->hold_active = 0;
6268         mddev_unlock(mddev);
6269
6270         return err;
6271 done:
6272         if (err)
6273                 MD_BUG();
6274 abort:
6275         return err;
6276 }
6277 #ifdef CONFIG_COMPAT
6278 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6279                     unsigned int cmd, unsigned long arg)
6280 {
6281         switch (cmd) {
6282         case HOT_REMOVE_DISK:
6283         case HOT_ADD_DISK:
6284         case SET_DISK_FAULTY:
6285         case SET_BITMAP_FILE:
6286                 /* These take in integer arg, do not convert */
6287                 break;
6288         default:
6289                 arg = (unsigned long)compat_ptr(arg);
6290                 break;
6291         }
6292
6293         return md_ioctl(bdev, mode, cmd, arg);
6294 }
6295 #endif /* CONFIG_COMPAT */
6296
6297 static int md_open(struct block_device *bdev, fmode_t mode)
6298 {
6299         /*
6300          * Succeed if we can lock the mddev, which confirms that
6301          * it isn't being stopped right now.
6302          */
6303         struct mddev *mddev = mddev_find(bdev->bd_dev);
6304         int err;
6305
6306         if (mddev->gendisk != bdev->bd_disk) {
6307                 /* we are racing with mddev_put which is discarding this
6308                  * bd_disk.
6309                  */
6310                 mddev_put(mddev);
6311                 /* Wait until bdev->bd_disk is definitely gone */
6312                 flush_workqueue(md_misc_wq);
6313                 /* Then retry the open from the top */
6314                 return -ERESTARTSYS;
6315         }
6316         BUG_ON(mddev != bdev->bd_disk->private_data);
6317
6318         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6319                 goto out;
6320
6321         err = 0;
6322         atomic_inc(&mddev->openers);
6323         mutex_unlock(&mddev->open_mutex);
6324
6325         check_disk_change(bdev);
6326  out:
6327         return err;
6328 }
6329
6330 static int md_release(struct gendisk *disk, fmode_t mode)
6331 {
6332         struct mddev *mddev = disk->private_data;
6333
6334         BUG_ON(!mddev);
6335         atomic_dec(&mddev->openers);
6336         mddev_put(mddev);
6337
6338         return 0;
6339 }
6340
6341 static int md_media_changed(struct gendisk *disk)
6342 {
6343         struct mddev *mddev = disk->private_data;
6344
6345         return mddev->changed;
6346 }
6347
6348 static int md_revalidate(struct gendisk *disk)
6349 {
6350         struct mddev *mddev = disk->private_data;
6351
6352         mddev->changed = 0;
6353         return 0;
6354 }
6355 static const struct block_device_operations md_fops =
6356 {
6357         .owner          = THIS_MODULE,
6358         .open           = md_open,
6359         .release        = md_release,
6360         .ioctl          = md_ioctl,
6361 #ifdef CONFIG_COMPAT
6362         .compat_ioctl   = md_compat_ioctl,
6363 #endif
6364         .getgeo         = md_getgeo,
6365         .media_changed  = md_media_changed,
6366         .revalidate_disk= md_revalidate,
6367 };
6368
6369 static int md_thread(void * arg)
6370 {
6371         struct md_thread *thread = arg;
6372
6373         /*
6374          * md_thread is a 'system-thread', it's priority should be very
6375          * high. We avoid resource deadlocks individually in each
6376          * raid personality. (RAID5 does preallocation) We also use RR and
6377          * the very same RT priority as kswapd, thus we will never get
6378          * into a priority inversion deadlock.
6379          *
6380          * we definitely have to have equal or higher priority than
6381          * bdflush, otherwise bdflush will deadlock if there are too
6382          * many dirty RAID5 blocks.
6383          */
6384
6385         allow_signal(SIGKILL);
6386         while (!kthread_should_stop()) {
6387
6388                 /* We need to wait INTERRUPTIBLE so that
6389                  * we don't add to the load-average.
6390                  * That means we need to be sure no signals are
6391                  * pending
6392                  */
6393                 if (signal_pending(current))
6394                         flush_signals(current);
6395
6396                 wait_event_interruptible_timeout
6397                         (thread->wqueue,
6398                          test_bit(THREAD_WAKEUP, &thread->flags)
6399                          || kthread_should_stop(),
6400                          thread->timeout);
6401
6402                 clear_bit(THREAD_WAKEUP, &thread->flags);
6403                 if (!kthread_should_stop())
6404                         thread->run(thread->mddev);
6405         }
6406
6407         return 0;
6408 }
6409
6410 void md_wakeup_thread(struct md_thread *thread)
6411 {
6412         if (thread) {
6413                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6414                 set_bit(THREAD_WAKEUP, &thread->flags);
6415                 wake_up(&thread->wqueue);
6416         }
6417 }
6418
6419 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6420                                  const char *name)
6421 {
6422         struct md_thread *thread;
6423
6424         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6425         if (!thread)
6426                 return NULL;
6427
6428         init_waitqueue_head(&thread->wqueue);
6429
6430         thread->run = run;
6431         thread->mddev = mddev;
6432         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6433         thread->tsk = kthread_run(md_thread, thread,
6434                                   "%s_%s",
6435                                   mdname(thread->mddev),
6436                                   name ?: mddev->pers->name);
6437         if (IS_ERR(thread->tsk)) {
6438                 kfree(thread);
6439                 return NULL;
6440         }
6441         return thread;
6442 }
6443
6444 void md_unregister_thread(struct md_thread **threadp)
6445 {
6446         struct md_thread *thread = *threadp;
6447         if (!thread)
6448                 return;
6449         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6450         /* Locking ensures that mddev_unlock does not wake_up a
6451          * non-existent thread
6452          */
6453         spin_lock(&pers_lock);
6454         *threadp = NULL;
6455         spin_unlock(&pers_lock);
6456
6457         kthread_stop(thread->tsk);
6458         kfree(thread);
6459 }
6460
6461 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6462 {
6463         if (!mddev) {
6464                 MD_BUG();
6465                 return;
6466         }
6467
6468         if (!rdev || test_bit(Faulty, &rdev->flags))
6469                 return;
6470
6471         if (!mddev->pers || !mddev->pers->error_handler)
6472                 return;
6473         mddev->pers->error_handler(mddev,rdev);
6474         if (mddev->degraded)
6475                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6476         sysfs_notify_dirent_safe(rdev->sysfs_state);
6477         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6478         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6479         md_wakeup_thread(mddev->thread);
6480         if (mddev->event_work.func)
6481                 queue_work(md_misc_wq, &mddev->event_work);
6482         md_new_event_inintr(mddev);
6483 }
6484
6485 /* seq_file implementation /proc/mdstat */
6486
6487 static void status_unused(struct seq_file *seq)
6488 {
6489         int i = 0;
6490         struct md_rdev *rdev;
6491
6492         seq_printf(seq, "unused devices: ");
6493
6494         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6495                 char b[BDEVNAME_SIZE];
6496                 i++;
6497                 seq_printf(seq, "%s ",
6498                               bdevname(rdev->bdev,b));
6499         }
6500         if (!i)
6501                 seq_printf(seq, "<none>");
6502
6503         seq_printf(seq, "\n");
6504 }
6505
6506
6507 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6508 {
6509         sector_t max_sectors, resync, res;
6510         unsigned long dt, db;
6511         sector_t rt;
6512         int scale;
6513         unsigned int per_milli;
6514
6515         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6516
6517         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6518                 max_sectors = mddev->resync_max_sectors;
6519         else
6520                 max_sectors = mddev->dev_sectors;
6521
6522         /*
6523          * Should not happen.
6524          */
6525         if (!max_sectors) {
6526                 MD_BUG();
6527                 return;
6528         }
6529         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6530          * in a sector_t, and (max_sectors>>scale) will fit in a
6531          * u32, as those are the requirements for sector_div.
6532          * Thus 'scale' must be at least 10
6533          */
6534         scale = 10;
6535         if (sizeof(sector_t) > sizeof(unsigned long)) {
6536                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6537                         scale++;
6538         }
6539         res = (resync>>scale)*1000;
6540         sector_div(res, (u32)((max_sectors>>scale)+1));
6541
6542         per_milli = res;
6543         {
6544                 int i, x = per_milli/50, y = 20-x;
6545                 seq_printf(seq, "[");
6546                 for (i = 0; i < x; i++)
6547                         seq_printf(seq, "=");
6548                 seq_printf(seq, ">");
6549                 for (i = 0; i < y; i++)
6550                         seq_printf(seq, ".");
6551                 seq_printf(seq, "] ");
6552         }
6553         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6554                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6555                     "reshape" :
6556                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6557                      "check" :
6558                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6559                       "resync" : "recovery"))),
6560                    per_milli/10, per_milli % 10,
6561                    (unsigned long long) resync/2,
6562                    (unsigned long long) max_sectors/2);
6563
6564         /*
6565          * dt: time from mark until now
6566          * db: blocks written from mark until now
6567          * rt: remaining time
6568          *
6569          * rt is a sector_t, so could be 32bit or 64bit.
6570          * So we divide before multiply in case it is 32bit and close
6571          * to the limit.
6572          * We scale the divisor (db) by 32 to avoid losing precision
6573          * near the end of resync when the number of remaining sectors
6574          * is close to 'db'.
6575          * We then divide rt by 32 after multiplying by db to compensate.
6576          * The '+1' avoids division by zero if db is very small.
6577          */
6578         dt = ((jiffies - mddev->resync_mark) / HZ);
6579         if (!dt) dt++;
6580         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6581                 - mddev->resync_mark_cnt;
6582
6583         rt = max_sectors - resync;    /* number of remaining sectors */
6584         sector_div(rt, db/32+1);
6585         rt *= dt;
6586         rt >>= 5;
6587
6588         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6589                    ((unsigned long)rt % 60)/6);
6590
6591         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6592 }
6593
6594 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6595 {
6596         struct list_head *tmp;
6597         loff_t l = *pos;
6598         struct mddev *mddev;
6599
6600         if (l >= 0x10000)
6601                 return NULL;
6602         if (!l--)
6603                 /* header */
6604                 return (void*)1;
6605
6606         spin_lock(&all_mddevs_lock);
6607         list_for_each(tmp,&all_mddevs)
6608                 if (!l--) {
6609                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6610                         mddev_get(mddev);
6611                         spin_unlock(&all_mddevs_lock);
6612                         return mddev;
6613                 }
6614         spin_unlock(&all_mddevs_lock);
6615         if (!l--)
6616                 return (void*)2;/* tail */
6617         return NULL;
6618 }
6619
6620 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6621 {
6622         struct list_head *tmp;
6623         struct mddev *next_mddev, *mddev = v;
6624         
6625         ++*pos;
6626         if (v == (void*)2)
6627                 return NULL;
6628
6629         spin_lock(&all_mddevs_lock);
6630         if (v == (void*)1)
6631                 tmp = all_mddevs.next;
6632         else
6633                 tmp = mddev->all_mddevs.next;
6634         if (tmp != &all_mddevs)
6635                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6636         else {
6637                 next_mddev = (void*)2;
6638                 *pos = 0x10000;
6639         }               
6640         spin_unlock(&all_mddevs_lock);
6641
6642         if (v != (void*)1)
6643                 mddev_put(mddev);
6644         return next_mddev;
6645
6646 }
6647
6648 static void md_seq_stop(struct seq_file *seq, void *v)
6649 {
6650         struct mddev *mddev = v;
6651
6652         if (mddev && v != (void*)1 && v != (void*)2)
6653                 mddev_put(mddev);
6654 }
6655
6656 static int md_seq_show(struct seq_file *seq, void *v)
6657 {
6658         struct mddev *mddev = v;
6659         sector_t sectors;
6660         struct md_rdev *rdev;
6661         struct bitmap *bitmap;
6662
6663         if (v == (void*)1) {
6664                 struct md_personality *pers;
6665                 seq_printf(seq, "Personalities : ");
6666                 spin_lock(&pers_lock);
6667                 list_for_each_entry(pers, &pers_list, list)
6668                         seq_printf(seq, "[%s] ", pers->name);
6669
6670                 spin_unlock(&pers_lock);
6671                 seq_printf(seq, "\n");
6672                 seq->poll_event = atomic_read(&md_event_count);
6673                 return 0;
6674         }
6675         if (v == (void*)2) {
6676                 status_unused(seq);
6677                 return 0;
6678         }
6679
6680         if (mddev_lock(mddev) < 0)
6681                 return -EINTR;
6682
6683         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6684                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6685                                                 mddev->pers ? "" : "in");
6686                 if (mddev->pers) {
6687                         if (mddev->ro==1)
6688                                 seq_printf(seq, " (read-only)");
6689                         if (mddev->ro==2)
6690                                 seq_printf(seq, " (auto-read-only)");
6691                         seq_printf(seq, " %s", mddev->pers->name);
6692                 }
6693
6694                 sectors = 0;
6695                 list_for_each_entry(rdev, &mddev->disks, same_set) {
6696                         char b[BDEVNAME_SIZE];
6697                         seq_printf(seq, " %s[%d]",
6698                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6699                         if (test_bit(WriteMostly, &rdev->flags))
6700                                 seq_printf(seq, "(W)");
6701                         if (test_bit(Faulty, &rdev->flags)) {
6702                                 seq_printf(seq, "(F)");
6703                                 continue;
6704                         } else if (rdev->raid_disk < 0)
6705                                 seq_printf(seq, "(S)"); /* spare */
6706                         sectors += rdev->sectors;
6707                 }
6708
6709                 if (!list_empty(&mddev->disks)) {
6710                         if (mddev->pers)
6711                                 seq_printf(seq, "\n      %llu blocks",
6712                                            (unsigned long long)
6713                                            mddev->array_sectors / 2);
6714                         else
6715                                 seq_printf(seq, "\n      %llu blocks",
6716                                            (unsigned long long)sectors / 2);
6717                 }
6718                 if (mddev->persistent) {
6719                         if (mddev->major_version != 0 ||
6720                             mddev->minor_version != 90) {
6721                                 seq_printf(seq," super %d.%d",
6722                                            mddev->major_version,
6723                                            mddev->minor_version);
6724                         }
6725                 } else if (mddev->external)
6726                         seq_printf(seq, " super external:%s",
6727                                    mddev->metadata_type);
6728                 else
6729                         seq_printf(seq, " super non-persistent");
6730
6731                 if (mddev->pers) {
6732                         mddev->pers->status(seq, mddev);
6733                         seq_printf(seq, "\n      ");
6734                         if (mddev->pers->sync_request) {
6735                                 if (mddev->curr_resync > 2) {
6736                                         status_resync(seq, mddev);
6737                                         seq_printf(seq, "\n      ");
6738                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6739                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6740                                 else if (mddev->recovery_cp < MaxSector)
6741                                         seq_printf(seq, "\tresync=PENDING\n      ");
6742                         }
6743                 } else
6744                         seq_printf(seq, "\n       ");
6745
6746                 if ((bitmap = mddev->bitmap)) {
6747                         unsigned long chunk_kb;
6748                         unsigned long flags;
6749                         spin_lock_irqsave(&bitmap->lock, flags);
6750                         chunk_kb = mddev->bitmap_info.chunksize >> 10;
6751                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6752                                 "%lu%s chunk",
6753                                 bitmap->pages - bitmap->missing_pages,
6754                                 bitmap->pages,
6755                                 (bitmap->pages - bitmap->missing_pages)
6756                                         << (PAGE_SHIFT - 10),
6757                                 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6758                                 chunk_kb ? "KB" : "B");
6759                         if (bitmap->file) {
6760                                 seq_printf(seq, ", file: ");
6761                                 seq_path(seq, &bitmap->file->f_path, " \t\n");
6762                         }
6763
6764                         seq_printf(seq, "\n");
6765                         spin_unlock_irqrestore(&bitmap->lock, flags);
6766                 }
6767
6768                 seq_printf(seq, "\n");
6769         }
6770         mddev_unlock(mddev);
6771         
6772         return 0;
6773 }
6774
6775 static const struct seq_operations md_seq_ops = {
6776         .start  = md_seq_start,
6777         .next   = md_seq_next,
6778         .stop   = md_seq_stop,
6779         .show   = md_seq_show,
6780 };
6781
6782 static int md_seq_open(struct inode *inode, struct file *file)
6783 {
6784         struct seq_file *seq;
6785         int error;
6786
6787         error = seq_open(file, &md_seq_ops);
6788         if (error)
6789                 return error;
6790
6791         seq = file->private_data;
6792         seq->poll_event = atomic_read(&md_event_count);
6793         return error;
6794 }
6795
6796 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6797 {
6798         struct seq_file *seq = filp->private_data;
6799         int mask;
6800
6801         poll_wait(filp, &md_event_waiters, wait);
6802
6803         /* always allow read */
6804         mask = POLLIN | POLLRDNORM;
6805
6806         if (seq->poll_event != atomic_read(&md_event_count))
6807                 mask |= POLLERR | POLLPRI;
6808         return mask;
6809 }
6810
6811 static const struct file_operations md_seq_fops = {
6812         .owner          = THIS_MODULE,
6813         .open           = md_seq_open,
6814         .read           = seq_read,
6815         .llseek         = seq_lseek,
6816         .release        = seq_release_private,
6817         .poll           = mdstat_poll,
6818 };
6819
6820 int register_md_personality(struct md_personality *p)
6821 {
6822         spin_lock(&pers_lock);
6823         list_add_tail(&p->list, &pers_list);
6824         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6825         spin_unlock(&pers_lock);
6826         return 0;
6827 }
6828
6829 int unregister_md_personality(struct md_personality *p)
6830 {
6831         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6832         spin_lock(&pers_lock);
6833         list_del_init(&p->list);
6834         spin_unlock(&pers_lock);
6835         return 0;
6836 }
6837
6838 static int is_mddev_idle(struct mddev *mddev, int init)
6839 {
6840         struct md_rdev * rdev;
6841         int idle;
6842         int curr_events;
6843
6844         idle = 1;
6845         rcu_read_lock();
6846         rdev_for_each_rcu(rdev, mddev) {
6847                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6848                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6849                               (int)part_stat_read(&disk->part0, sectors[1]) -
6850                               atomic_read(&disk->sync_io);
6851                 /* sync IO will cause sync_io to increase before the disk_stats
6852                  * as sync_io is counted when a request starts, and
6853                  * disk_stats is counted when it completes.
6854                  * So resync activity will cause curr_events to be smaller than
6855                  * when there was no such activity.
6856                  * non-sync IO will cause disk_stat to increase without
6857                  * increasing sync_io so curr_events will (eventually)
6858                  * be larger than it was before.  Once it becomes
6859                  * substantially larger, the test below will cause
6860                  * the array to appear non-idle, and resync will slow
6861                  * down.
6862                  * If there is a lot of outstanding resync activity when
6863                  * we set last_event to curr_events, then all that activity
6864                  * completing might cause the array to appear non-idle
6865                  * and resync will be slowed down even though there might
6866                  * not have been non-resync activity.  This will only
6867                  * happen once though.  'last_events' will soon reflect
6868                  * the state where there is little or no outstanding
6869                  * resync requests, and further resync activity will
6870                  * always make curr_events less than last_events.
6871                  *
6872                  */
6873                 if (init || curr_events - rdev->last_events > 64) {
6874                         rdev->last_events = curr_events;
6875                         idle = 0;
6876                 }
6877         }
6878         rcu_read_unlock();
6879         return idle;
6880 }
6881
6882 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6883 {
6884         /* another "blocks" (512byte) blocks have been synced */
6885         atomic_sub(blocks, &mddev->recovery_active);
6886         wake_up(&mddev->recovery_wait);
6887         if (!ok) {
6888                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6889                 md_wakeup_thread(mddev->thread);
6890                 // stop recovery, signal do_sync ....
6891         }
6892 }
6893
6894
6895 /* md_write_start(mddev, bi)
6896  * If we need to update some array metadata (e.g. 'active' flag
6897  * in superblock) before writing, schedule a superblock update
6898  * and wait for it to complete.
6899  */
6900 void md_write_start(struct mddev *mddev, struct bio *bi)
6901 {
6902         int did_change = 0;
6903         if (bio_data_dir(bi) != WRITE)
6904                 return;
6905
6906         BUG_ON(mddev->ro == 1);
6907         if (mddev->ro == 2) {
6908                 /* need to switch to read/write */
6909                 mddev->ro = 0;
6910                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6911                 md_wakeup_thread(mddev->thread);
6912                 md_wakeup_thread(mddev->sync_thread);
6913                 did_change = 1;
6914         }
6915         atomic_inc(&mddev->writes_pending);
6916         if (mddev->safemode == 1)
6917                 mddev->safemode = 0;
6918         if (mddev->in_sync) {
6919                 spin_lock_irq(&mddev->write_lock);
6920                 if (mddev->in_sync) {
6921                         mddev->in_sync = 0;
6922                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6923                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
6924                         md_wakeup_thread(mddev->thread);
6925                         did_change = 1;
6926                 }
6927                 spin_unlock_irq(&mddev->write_lock);
6928         }
6929         if (did_change)
6930                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6931         wait_event(mddev->sb_wait,
6932                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6933 }
6934
6935 void md_write_end(struct mddev *mddev)
6936 {
6937         if (atomic_dec_and_test(&mddev->writes_pending)) {
6938                 if (mddev->safemode == 2)
6939                         md_wakeup_thread(mddev->thread);
6940                 else if (mddev->safemode_delay)
6941                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6942         }
6943 }
6944
6945 /* md_allow_write(mddev)
6946  * Calling this ensures that the array is marked 'active' so that writes
6947  * may proceed without blocking.  It is important to call this before
6948  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6949  * Must be called with mddev_lock held.
6950  *
6951  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6952  * is dropped, so return -EAGAIN after notifying userspace.
6953  */
6954 int md_allow_write(struct mddev *mddev)
6955 {
6956         if (!mddev->pers)
6957                 return 0;
6958         if (mddev->ro)
6959                 return 0;
6960         if (!mddev->pers->sync_request)
6961                 return 0;
6962
6963         spin_lock_irq(&mddev->write_lock);
6964         if (mddev->in_sync) {
6965                 mddev->in_sync = 0;
6966                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6967                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6968                 if (mddev->safemode_delay &&
6969                     mddev->safemode == 0)
6970                         mddev->safemode = 1;
6971                 spin_unlock_irq(&mddev->write_lock);
6972                 md_update_sb(mddev, 0);
6973                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6974         } else
6975                 spin_unlock_irq(&mddev->write_lock);
6976
6977         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6978                 return -EAGAIN;
6979         else
6980                 return 0;
6981 }
6982 EXPORT_SYMBOL_GPL(md_allow_write);
6983
6984 #define SYNC_MARKS      10
6985 #define SYNC_MARK_STEP  (3*HZ)
6986 void md_do_sync(struct mddev *mddev)
6987 {
6988         struct mddev *mddev2;
6989         unsigned int currspeed = 0,
6990                  window;
6991         sector_t max_sectors,j, io_sectors;
6992         unsigned long mark[SYNC_MARKS];
6993         sector_t mark_cnt[SYNC_MARKS];
6994         int last_mark,m;
6995         struct list_head *tmp;
6996         sector_t last_check;
6997         int skipped = 0;
6998         struct md_rdev *rdev;
6999         char *desc;
7000
7001         /* just incase thread restarts... */
7002         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7003                 return;
7004         if (mddev->ro) /* never try to sync a read-only array */
7005                 return;
7006
7007         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7008                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7009                         desc = "data-check";
7010                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7011                         desc = "requested-resync";
7012                 else
7013                         desc = "resync";
7014         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7015                 desc = "reshape";
7016         else
7017                 desc = "recovery";
7018
7019         /* we overload curr_resync somewhat here.
7020          * 0 == not engaged in resync at all
7021          * 2 == checking that there is no conflict with another sync
7022          * 1 == like 2, but have yielded to allow conflicting resync to
7023          *              commense
7024          * other == active in resync - this many blocks
7025          *
7026          * Before starting a resync we must have set curr_resync to
7027          * 2, and then checked that every "conflicting" array has curr_resync
7028          * less than ours.  When we find one that is the same or higher
7029          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7030          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7031          * This will mean we have to start checking from the beginning again.
7032          *
7033          */
7034
7035         do {
7036                 mddev->curr_resync = 2;
7037
7038         try_again:
7039                 if (kthread_should_stop())
7040                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7041
7042                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7043                         goto skip;
7044                 for_each_mddev(mddev2, tmp) {
7045                         if (mddev2 == mddev)
7046                                 continue;
7047                         if (!mddev->parallel_resync
7048                         &&  mddev2->curr_resync
7049                         &&  match_mddev_units(mddev, mddev2)) {
7050                                 DEFINE_WAIT(wq);
7051                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7052                                         /* arbitrarily yield */
7053                                         mddev->curr_resync = 1;
7054                                         wake_up(&resync_wait);
7055                                 }
7056                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7057                                         /* no need to wait here, we can wait the next
7058                                          * time 'round when curr_resync == 2
7059                                          */
7060                                         continue;
7061                                 /* We need to wait 'interruptible' so as not to
7062                                  * contribute to the load average, and not to
7063                                  * be caught by 'softlockup'
7064                                  */
7065                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7066                                 if (!kthread_should_stop() &&
7067                                     mddev2->curr_resync >= mddev->curr_resync) {
7068                                         printk(KERN_INFO "md: delaying %s of %s"
7069                                                " until %s has finished (they"
7070                                                " share one or more physical units)\n",
7071                                                desc, mdname(mddev), mdname(mddev2));
7072                                         mddev_put(mddev2);
7073                                         if (signal_pending(current))
7074                                                 flush_signals(current);
7075                                         schedule();
7076                                         finish_wait(&resync_wait, &wq);
7077                                         goto try_again;
7078                                 }
7079                                 finish_wait(&resync_wait, &wq);
7080                         }
7081                 }
7082         } while (mddev->curr_resync < 2);
7083
7084         j = 0;
7085         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7086                 /* resync follows the size requested by the personality,
7087                  * which defaults to physical size, but can be virtual size
7088                  */
7089                 max_sectors = mddev->resync_max_sectors;
7090                 mddev->resync_mismatches = 0;
7091                 /* we don't use the checkpoint if there's a bitmap */
7092                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7093                         j = mddev->resync_min;
7094                 else if (!mddev->bitmap)
7095                         j = mddev->recovery_cp;
7096
7097         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7098                 max_sectors = mddev->dev_sectors;
7099         else {
7100                 /* recovery follows the physical size of devices */
7101                 max_sectors = mddev->dev_sectors;
7102                 j = MaxSector;
7103                 rcu_read_lock();
7104                 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7105                         if (rdev->raid_disk >= 0 &&
7106                             !test_bit(Faulty, &rdev->flags) &&
7107                             !test_bit(In_sync, &rdev->flags) &&
7108                             rdev->recovery_offset < j)
7109                                 j = rdev->recovery_offset;
7110                 rcu_read_unlock();
7111         }
7112
7113         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7114         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7115                 " %d KB/sec/disk.\n", speed_min(mddev));
7116         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7117                "(but not more than %d KB/sec) for %s.\n",
7118                speed_max(mddev), desc);
7119
7120         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7121
7122         io_sectors = 0;
7123         for (m = 0; m < SYNC_MARKS; m++) {
7124                 mark[m] = jiffies;
7125                 mark_cnt[m] = io_sectors;
7126         }
7127         last_mark = 0;
7128         mddev->resync_mark = mark[last_mark];
7129         mddev->resync_mark_cnt = mark_cnt[last_mark];
7130
7131         /*
7132          * Tune reconstruction:
7133          */
7134         window = 32*(PAGE_SIZE/512);
7135         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7136                 window/2, (unsigned long long)max_sectors/2);
7137
7138         atomic_set(&mddev->recovery_active, 0);
7139         last_check = 0;
7140
7141         if (j>2) {
7142                 printk(KERN_INFO 
7143                        "md: resuming %s of %s from checkpoint.\n",
7144                        desc, mdname(mddev));
7145                 mddev->curr_resync = j;
7146         }
7147         mddev->curr_resync_completed = j;
7148
7149         while (j < max_sectors) {
7150                 sector_t sectors;
7151
7152                 skipped = 0;
7153
7154                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7155                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7156                       (mddev->curr_resync - mddev->curr_resync_completed)
7157                       > (max_sectors >> 4)) ||
7158                      (j - mddev->curr_resync_completed)*2
7159                      >= mddev->resync_max - mddev->curr_resync_completed
7160                             )) {
7161                         /* time to update curr_resync_completed */
7162                         wait_event(mddev->recovery_wait,
7163                                    atomic_read(&mddev->recovery_active) == 0);
7164                         mddev->curr_resync_completed = j;
7165                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7166                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7167                 }
7168
7169                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7170                         /* As this condition is controlled by user-space,
7171                          * we can block indefinitely, so use '_interruptible'
7172                          * to avoid triggering warnings.
7173                          */
7174                         flush_signals(current); /* just in case */
7175                         wait_event_interruptible(mddev->recovery_wait,
7176                                                  mddev->resync_max > j
7177                                                  || kthread_should_stop());
7178                 }
7179
7180                 if (kthread_should_stop())
7181                         goto interrupted;
7182
7183                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7184                                                   currspeed < speed_min(mddev));
7185                 if (sectors == 0) {
7186                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7187                         goto out;
7188                 }
7189
7190                 if (!skipped) { /* actual IO requested */
7191                         io_sectors += sectors;
7192                         atomic_add(sectors, &mddev->recovery_active);
7193                 }
7194
7195                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7196                         break;
7197
7198                 j += sectors;
7199                 if (j>1) mddev->curr_resync = j;
7200                 mddev->curr_mark_cnt = io_sectors;
7201                 if (last_check == 0)
7202                         /* this is the earliest that rebuild will be
7203                          * visible in /proc/mdstat
7204                          */
7205                         md_new_event(mddev);
7206
7207                 if (last_check + window > io_sectors || j == max_sectors)
7208                         continue;
7209
7210                 last_check = io_sectors;
7211         repeat:
7212                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7213                         /* step marks */
7214                         int next = (last_mark+1) % SYNC_MARKS;
7215
7216                         mddev->resync_mark = mark[next];
7217                         mddev->resync_mark_cnt = mark_cnt[next];
7218                         mark[next] = jiffies;
7219                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7220                         last_mark = next;
7221                 }
7222
7223
7224                 if (kthread_should_stop())
7225                         goto interrupted;
7226
7227
7228                 /*
7229                  * this loop exits only if either when we are slower than
7230                  * the 'hard' speed limit, or the system was IO-idle for
7231                  * a jiffy.
7232                  * the system might be non-idle CPU-wise, but we only care
7233                  * about not overloading the IO subsystem. (things like an
7234                  * e2fsck being done on the RAID array should execute fast)
7235                  */
7236                 cond_resched();
7237
7238                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7239                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7240
7241                 if (currspeed > speed_min(mddev)) {
7242                         if ((currspeed > speed_max(mddev)) ||
7243                                         !is_mddev_idle(mddev, 0)) {
7244                                 msleep(500);
7245                                 goto repeat;
7246                         }
7247                 }
7248         }
7249         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7250         /*
7251          * this also signals 'finished resyncing' to md_stop
7252          */
7253  out:
7254         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7255
7256         /* tell personality that we are finished */
7257         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7258
7259         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7260             mddev->curr_resync > 2) {
7261                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7262                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7263                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7264                                         printk(KERN_INFO
7265                                                "md: checkpointing %s of %s.\n",
7266                                                desc, mdname(mddev));
7267                                         mddev->recovery_cp = mddev->curr_resync;
7268                                 }
7269                         } else
7270                                 mddev->recovery_cp = MaxSector;
7271                 } else {
7272                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7273                                 mddev->curr_resync = MaxSector;
7274                         rcu_read_lock();
7275                         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7276                                 if (rdev->raid_disk >= 0 &&
7277                                     mddev->delta_disks >= 0 &&
7278                                     !test_bit(Faulty, &rdev->flags) &&
7279                                     !test_bit(In_sync, &rdev->flags) &&
7280                                     rdev->recovery_offset < mddev->curr_resync)
7281                                         rdev->recovery_offset = mddev->curr_resync;
7282                         rcu_read_unlock();
7283                 }
7284         }
7285         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7286
7287  skip:
7288         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7289                 /* We completed so min/max setting can be forgotten if used. */
7290                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7291                         mddev->resync_min = 0;
7292                 mddev->resync_max = MaxSector;
7293         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7294                 mddev->resync_min = mddev->curr_resync_completed;
7295         mddev->curr_resync = 0;
7296         wake_up(&resync_wait);
7297         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7298         md_wakeup_thread(mddev->thread);
7299         return;
7300
7301  interrupted:
7302         /*
7303          * got a signal, exit.
7304          */
7305         printk(KERN_INFO
7306                "md: md_do_sync() got signal ... exiting\n");
7307         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7308         goto out;
7309
7310 }
7311 EXPORT_SYMBOL_GPL(md_do_sync);
7312
7313 static int remove_and_add_spares(struct mddev *mddev)
7314 {
7315         struct md_rdev *rdev;
7316         int spares = 0;
7317
7318         mddev->curr_resync_completed = 0;
7319
7320         list_for_each_entry(rdev, &mddev->disks, same_set)
7321                 if (rdev->raid_disk >= 0 &&
7322                     !test_bit(Blocked, &rdev->flags) &&
7323                     (test_bit(Faulty, &rdev->flags) ||
7324                      ! test_bit(In_sync, &rdev->flags)) &&
7325                     atomic_read(&rdev->nr_pending)==0) {
7326                         if (mddev->pers->hot_remove_disk(
7327                                     mddev, rdev->raid_disk)==0) {
7328                                 sysfs_unlink_rdev(mddev, rdev);
7329                                 rdev->raid_disk = -1;
7330                         }
7331                 }
7332
7333         if (mddev->degraded) {
7334                 list_for_each_entry(rdev, &mddev->disks, same_set) {
7335                         if (rdev->raid_disk >= 0 &&
7336                             !test_bit(In_sync, &rdev->flags) &&
7337                             !test_bit(Faulty, &rdev->flags))
7338                                 spares++;
7339                         if (rdev->raid_disk < 0
7340                             && !test_bit(Faulty, &rdev->flags)) {
7341                                 rdev->recovery_offset = 0;
7342                                 if (mddev->pers->
7343                                     hot_add_disk(mddev, rdev) == 0) {
7344                                         if (sysfs_link_rdev(mddev, rdev))
7345                                                 /* failure here is OK */;
7346                                         spares++;
7347                                         md_new_event(mddev);
7348                                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7349                                 } else
7350                                         break;
7351                         }
7352                 }
7353         }
7354         return spares;
7355 }
7356
7357 static void reap_sync_thread(struct mddev *mddev)
7358 {
7359         struct md_rdev *rdev;
7360
7361         /* resync has finished, collect result */
7362         md_unregister_thread(&mddev->sync_thread);
7363         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7364             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7365                 /* success...*/
7366                 /* activate any spares */
7367                 if (mddev->pers->spare_active(mddev))
7368                         sysfs_notify(&mddev->kobj, NULL,
7369                                      "degraded");
7370         }
7371         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7372             mddev->pers->finish_reshape)
7373                 mddev->pers->finish_reshape(mddev);
7374
7375         /* If array is no-longer degraded, then any saved_raid_disk
7376          * information must be scrapped.  Also if any device is now
7377          * In_sync we must scrape the saved_raid_disk for that device
7378          * do the superblock for an incrementally recovered device
7379          * written out.
7380          */
7381         list_for_each_entry(rdev, &mddev->disks, same_set)
7382                 if (!mddev->degraded ||
7383                     test_bit(In_sync, &rdev->flags))
7384                         rdev->saved_raid_disk = -1;
7385
7386         md_update_sb(mddev, 1);
7387         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7388         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7389         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7390         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7391         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7392         /* flag recovery needed just to double check */
7393         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7394         sysfs_notify_dirent_safe(mddev->sysfs_action);
7395         md_new_event(mddev);
7396         if (mddev->event_work.func)
7397                 queue_work(md_misc_wq, &mddev->event_work);
7398 }
7399
7400 /*
7401  * This routine is regularly called by all per-raid-array threads to
7402  * deal with generic issues like resync and super-block update.
7403  * Raid personalities that don't have a thread (linear/raid0) do not
7404  * need this as they never do any recovery or update the superblock.
7405  *
7406  * It does not do any resync itself, but rather "forks" off other threads
7407  * to do that as needed.
7408  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7409  * "->recovery" and create a thread at ->sync_thread.
7410  * When the thread finishes it sets MD_RECOVERY_DONE
7411  * and wakeups up this thread which will reap the thread and finish up.
7412  * This thread also removes any faulty devices (with nr_pending == 0).
7413  *
7414  * The overall approach is:
7415  *  1/ if the superblock needs updating, update it.
7416  *  2/ If a recovery thread is running, don't do anything else.
7417  *  3/ If recovery has finished, clean up, possibly marking spares active.
7418  *  4/ If there are any faulty devices, remove them.
7419  *  5/ If array is degraded, try to add spares devices
7420  *  6/ If array has spares or is not in-sync, start a resync thread.
7421  */
7422 void md_check_recovery(struct mddev *mddev)
7423 {
7424         if (mddev->suspended)
7425                 return;
7426
7427         if (mddev->bitmap)
7428                 bitmap_daemon_work(mddev);
7429
7430         if (signal_pending(current)) {
7431                 if (mddev->pers->sync_request && !mddev->external) {
7432                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7433                                mdname(mddev));
7434                         mddev->safemode = 2;
7435                 }
7436                 flush_signals(current);
7437         }
7438
7439         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7440                 return;
7441         if ( ! (
7442                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7443                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7444                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7445                 (mddev->external == 0 && mddev->safemode == 1) ||
7446                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7447                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7448                 ))
7449                 return;
7450
7451         if (mddev_trylock(mddev)) {
7452                 int spares = 0;
7453
7454                 if (mddev->ro) {
7455                         /* Only thing we do on a ro array is remove
7456                          * failed devices.
7457                          */
7458                         struct md_rdev *rdev;
7459                         list_for_each_entry(rdev, &mddev->disks, same_set)
7460                                 if (rdev->raid_disk >= 0 &&
7461                                     !test_bit(Blocked, &rdev->flags) &&
7462                                     test_bit(Faulty, &rdev->flags) &&
7463                                     atomic_read(&rdev->nr_pending)==0) {
7464                                         if (mddev->pers->hot_remove_disk(
7465                                                     mddev, rdev->raid_disk)==0) {
7466                                                 sysfs_unlink_rdev(mddev, rdev);
7467                                                 rdev->raid_disk = -1;
7468                                         }
7469                                 }
7470                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7471                         goto unlock;
7472                 }
7473
7474                 if (!mddev->external) {
7475                         int did_change = 0;
7476                         spin_lock_irq(&mddev->write_lock);
7477                         if (mddev->safemode &&
7478                             !atomic_read(&mddev->writes_pending) &&
7479                             !mddev->in_sync &&
7480                             mddev->recovery_cp == MaxSector) {
7481                                 mddev->in_sync = 1;
7482                                 did_change = 1;
7483                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7484                         }
7485                         if (mddev->safemode == 1)
7486                                 mddev->safemode = 0;
7487                         spin_unlock_irq(&mddev->write_lock);
7488                         if (did_change)
7489                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7490                 }
7491
7492                 if (mddev->flags)
7493                         md_update_sb(mddev, 0);
7494
7495                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7496                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7497                         /* resync/recovery still happening */
7498                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7499                         goto unlock;
7500                 }
7501                 if (mddev->sync_thread) {
7502                         reap_sync_thread(mddev);
7503                         goto unlock;
7504                 }
7505                 /* Set RUNNING before clearing NEEDED to avoid
7506                  * any transients in the value of "sync_action".
7507                  */
7508                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7509                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7510                 /* Clear some bits that don't mean anything, but
7511                  * might be left set
7512                  */
7513                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7514                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7515
7516                 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7517                         goto unlock;
7518                 /* no recovery is running.
7519                  * remove any failed drives, then
7520                  * add spares if possible.
7521                  * Spare are also removed and re-added, to allow
7522                  * the personality to fail the re-add.
7523                  */
7524
7525                 if (mddev->reshape_position != MaxSector) {
7526                         if (mddev->pers->check_reshape == NULL ||
7527                             mddev->pers->check_reshape(mddev) != 0)
7528                                 /* Cannot proceed */
7529                                 goto unlock;
7530                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7531                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7532                 } else if ((spares = remove_and_add_spares(mddev))) {
7533                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7534                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7535                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7536                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7537                 } else if (mddev->recovery_cp < MaxSector) {
7538                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7539                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7540                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7541                         /* nothing to be done ... */
7542                         goto unlock;
7543
7544                 if (mddev->pers->sync_request) {
7545                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7546                                 /* We are adding a device or devices to an array
7547                                  * which has the bitmap stored on all devices.
7548                                  * So make sure all bitmap pages get written
7549                                  */
7550                                 bitmap_write_all(mddev->bitmap);
7551                         }
7552                         mddev->sync_thread = md_register_thread(md_do_sync,
7553                                                                 mddev,
7554                                                                 "resync");
7555                         if (!mddev->sync_thread) {
7556                                 printk(KERN_ERR "%s: could not start resync"
7557                                         " thread...\n", 
7558                                         mdname(mddev));
7559                                 /* leave the spares where they are, it shouldn't hurt */
7560                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7561                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7562                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7563                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7564                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7565                         } else
7566                                 md_wakeup_thread(mddev->sync_thread);
7567                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7568                         md_new_event(mddev);
7569                 }
7570         unlock:
7571                 if (!mddev->sync_thread) {
7572                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7573                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7574                                                &mddev->recovery))
7575                                 if (mddev->sysfs_action)
7576                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7577                 }
7578                 mddev_unlock(mddev);
7579         }
7580 }
7581
7582 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7583 {
7584         sysfs_notify_dirent_safe(rdev->sysfs_state);
7585         wait_event_timeout(rdev->blocked_wait,
7586                            !test_bit(Blocked, &rdev->flags) &&
7587                            !test_bit(BlockedBadBlocks, &rdev->flags),
7588                            msecs_to_jiffies(5000));
7589         rdev_dec_pending(rdev, mddev);
7590 }
7591 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7592
7593
7594 /* Bad block management.
7595  * We can record which blocks on each device are 'bad' and so just
7596  * fail those blocks, or that stripe, rather than the whole device.
7597  * Entries in the bad-block table are 64bits wide.  This comprises:
7598  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7599  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7600  *  A 'shift' can be set so that larger blocks are tracked and
7601  *  consequently larger devices can be covered.
7602  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7603  *
7604  * Locking of the bad-block table uses a seqlock so md_is_badblock
7605  * might need to retry if it is very unlucky.
7606  * We will sometimes want to check for bad blocks in a bi_end_io function,
7607  * so we use the write_seqlock_irq variant.
7608  *
7609  * When looking for a bad block we specify a range and want to
7610  * know if any block in the range is bad.  So we binary-search
7611  * to the last range that starts at-or-before the given endpoint,
7612  * (or "before the sector after the target range")
7613  * then see if it ends after the given start.
7614  * We return
7615  *  0 if there are no known bad blocks in the range
7616  *  1 if there are known bad block which are all acknowledged
7617  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7618  * plus the start/length of the first bad section we overlap.
7619  */
7620 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7621                    sector_t *first_bad, int *bad_sectors)
7622 {
7623         int hi;
7624         int lo = 0;
7625         u64 *p = bb->page;
7626         int rv = 0;
7627         sector_t target = s + sectors;
7628         unsigned seq;
7629
7630         if (bb->shift > 0) {
7631                 /* round the start down, and the end up */
7632                 s >>= bb->shift;
7633                 target += (1<<bb->shift) - 1;
7634                 target >>= bb->shift;
7635                 sectors = target - s;
7636         }
7637         /* 'target' is now the first block after the bad range */
7638
7639 retry:
7640         seq = read_seqbegin(&bb->lock);
7641
7642         hi = bb->count;
7643
7644         /* Binary search between lo and hi for 'target'
7645          * i.e. for the last range that starts before 'target'
7646          */
7647         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7648          * are known not to be the last range before target.
7649          * VARIANT: hi-lo is the number of possible
7650          * ranges, and decreases until it reaches 1
7651          */
7652         while (hi - lo > 1) {
7653                 int mid = (lo + hi) / 2;
7654                 sector_t a = BB_OFFSET(p[mid]);
7655                 if (a < target)
7656                         /* This could still be the one, earlier ranges
7657                          * could not. */
7658                         lo = mid;
7659                 else
7660                         /* This and later ranges are definitely out. */
7661                         hi = mid;
7662         }
7663         /* 'lo' might be the last that started before target, but 'hi' isn't */
7664         if (hi > lo) {
7665                 /* need to check all range that end after 's' to see if
7666                  * any are unacknowledged.
7667                  */
7668                 while (lo >= 0 &&
7669                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7670                         if (BB_OFFSET(p[lo]) < target) {
7671                                 /* starts before the end, and finishes after
7672                                  * the start, so they must overlap
7673                                  */
7674                                 if (rv != -1 && BB_ACK(p[lo]))
7675                                         rv = 1;
7676                                 else
7677                                         rv = -1;
7678                                 *first_bad = BB_OFFSET(p[lo]);
7679                                 *bad_sectors = BB_LEN(p[lo]);
7680                         }
7681                         lo--;
7682                 }
7683         }
7684
7685         if (read_seqretry(&bb->lock, seq))
7686                 goto retry;
7687
7688         return rv;
7689 }
7690 EXPORT_SYMBOL_GPL(md_is_badblock);
7691
7692 /*
7693  * Add a range of bad blocks to the table.
7694  * This might extend the table, or might contract it
7695  * if two adjacent ranges can be merged.
7696  * We binary-search to find the 'insertion' point, then
7697  * decide how best to handle it.
7698  */
7699 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7700                             int acknowledged)
7701 {
7702         u64 *p;
7703         int lo, hi;
7704         int rv = 1;
7705
7706         if (bb->shift < 0)
7707                 /* badblocks are disabled */
7708                 return 0;
7709
7710         if (bb->shift) {
7711                 /* round the start down, and the end up */
7712                 sector_t next = s + sectors;
7713                 s >>= bb->shift;
7714                 next += (1<<bb->shift) - 1;
7715                 next >>= bb->shift;
7716                 sectors = next - s;
7717         }
7718
7719         write_seqlock_irq(&bb->lock);
7720
7721         p = bb->page;
7722         lo = 0;
7723         hi = bb->count;
7724         /* Find the last range that starts at-or-before 's' */
7725         while (hi - lo > 1) {
7726                 int mid = (lo + hi) / 2;
7727                 sector_t a = BB_OFFSET(p[mid]);
7728                 if (a <= s)
7729                         lo = mid;
7730                 else
7731                         hi = mid;
7732         }
7733         if (hi > lo && BB_OFFSET(p[lo]) > s)
7734                 hi = lo;
7735
7736         if (hi > lo) {
7737                 /* we found a range that might merge with the start
7738                  * of our new range
7739                  */
7740                 sector_t a = BB_OFFSET(p[lo]);
7741                 sector_t e = a + BB_LEN(p[lo]);
7742                 int ack = BB_ACK(p[lo]);
7743                 if (e >= s) {
7744                         /* Yes, we can merge with a previous range */
7745                         if (s == a && s + sectors >= e)
7746                                 /* new range covers old */
7747                                 ack = acknowledged;
7748                         else
7749                                 ack = ack && acknowledged;
7750
7751                         if (e < s + sectors)
7752                                 e = s + sectors;
7753                         if (e - a <= BB_MAX_LEN) {
7754                                 p[lo] = BB_MAKE(a, e-a, ack);
7755                                 s = e;
7756                         } else {
7757                                 /* does not all fit in one range,
7758                                  * make p[lo] maximal
7759                                  */
7760                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7761                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7762                                 s = a + BB_MAX_LEN;
7763                         }
7764                         sectors = e - s;
7765                 }
7766         }
7767         if (sectors && hi < bb->count) {
7768                 /* 'hi' points to the first range that starts after 's'.
7769                  * Maybe we can merge with the start of that range */
7770                 sector_t a = BB_OFFSET(p[hi]);
7771                 sector_t e = a + BB_LEN(p[hi]);
7772                 int ack = BB_ACK(p[hi]);
7773                 if (a <= s + sectors) {
7774                         /* merging is possible */
7775                         if (e <= s + sectors) {
7776                                 /* full overlap */
7777                                 e = s + sectors;
7778                                 ack = acknowledged;
7779                         } else
7780                                 ack = ack && acknowledged;
7781
7782                         a = s;
7783                         if (e - a <= BB_MAX_LEN) {
7784                                 p[hi] = BB_MAKE(a, e-a, ack);
7785                                 s = e;
7786                         } else {
7787                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7788                                 s = a + BB_MAX_LEN;
7789                         }
7790                         sectors = e - s;
7791                         lo = hi;
7792                         hi++;
7793                 }
7794         }
7795         if (sectors == 0 && hi < bb->count) {
7796                 /* we might be able to combine lo and hi */
7797                 /* Note: 's' is at the end of 'lo' */
7798                 sector_t a = BB_OFFSET(p[hi]);
7799                 int lolen = BB_LEN(p[lo]);
7800                 int hilen = BB_LEN(p[hi]);
7801                 int newlen = lolen + hilen - (s - a);
7802                 if (s >= a && newlen < BB_MAX_LEN) {
7803                         /* yes, we can combine them */
7804                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7805                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7806                         memmove(p + hi, p + hi + 1,
7807                                 (bb->count - hi - 1) * 8);
7808                         bb->count--;
7809                 }
7810         }
7811         while (sectors) {
7812                 /* didn't merge (it all).
7813                  * Need to add a range just before 'hi' */
7814                 if (bb->count >= MD_MAX_BADBLOCKS) {
7815                         /* No room for more */
7816                         rv = 0;
7817                         break;
7818                 } else {
7819                         int this_sectors = sectors;
7820                         memmove(p + hi + 1, p + hi,
7821                                 (bb->count - hi) * 8);
7822                         bb->count++;
7823
7824                         if (this_sectors > BB_MAX_LEN)
7825                                 this_sectors = BB_MAX_LEN;
7826                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7827                         sectors -= this_sectors;
7828                         s += this_sectors;
7829                 }
7830         }
7831
7832         bb->changed = 1;
7833         if (!acknowledged)
7834                 bb->unacked_exist = 1;
7835         write_sequnlock_irq(&bb->lock);
7836
7837         return rv;
7838 }
7839
7840 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7841                        int acknowledged)
7842 {
7843         int rv = md_set_badblocks(&rdev->badblocks,
7844                                   s + rdev->data_offset, sectors, acknowledged);
7845         if (rv) {
7846                 /* Make sure they get written out promptly */
7847                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7848                 md_wakeup_thread(rdev->mddev->thread);
7849         }
7850         return rv;
7851 }
7852 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7853
7854 /*
7855  * Remove a range of bad blocks from the table.
7856  * This may involve extending the table if we spilt a region,
7857  * but it must not fail.  So if the table becomes full, we just
7858  * drop the remove request.
7859  */
7860 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7861 {
7862         u64 *p;
7863         int lo, hi;
7864         sector_t target = s + sectors;
7865         int rv = 0;
7866
7867         if (bb->shift > 0) {
7868                 /* When clearing we round the start up and the end down.
7869                  * This should not matter as the shift should align with
7870                  * the block size and no rounding should ever be needed.
7871                  * However it is better the think a block is bad when it
7872                  * isn't than to think a block is not bad when it is.
7873                  */
7874                 s += (1<<bb->shift) - 1;
7875                 s >>= bb->shift;
7876                 target >>= bb->shift;
7877                 sectors = target - s;
7878         }
7879
7880         write_seqlock_irq(&bb->lock);
7881
7882         p = bb->page;
7883         lo = 0;
7884         hi = bb->count;
7885         /* Find the last range that starts before 'target' */
7886         while (hi - lo > 1) {
7887                 int mid = (lo + hi) / 2;
7888                 sector_t a = BB_OFFSET(p[mid]);
7889                 if (a < target)
7890                         lo = mid;
7891                 else
7892                         hi = mid;
7893         }
7894         if (hi > lo) {
7895                 /* p[lo] is the last range that could overlap the
7896                  * current range.  Earlier ranges could also overlap,
7897                  * but only this one can overlap the end of the range.
7898                  */
7899                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7900                         /* Partial overlap, leave the tail of this range */
7901                         int ack = BB_ACK(p[lo]);
7902                         sector_t a = BB_OFFSET(p[lo]);
7903                         sector_t end = a + BB_LEN(p[lo]);
7904
7905                         if (a < s) {
7906                                 /* we need to split this range */
7907                                 if (bb->count >= MD_MAX_BADBLOCKS) {
7908                                         rv = 0;
7909                                         goto out;
7910                                 }
7911                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7912                                 bb->count++;
7913                                 p[lo] = BB_MAKE(a, s-a, ack);
7914                                 lo++;
7915                         }
7916                         p[lo] = BB_MAKE(target, end - target, ack);
7917                         /* there is no longer an overlap */
7918                         hi = lo;
7919                         lo--;
7920                 }
7921                 while (lo >= 0 &&
7922                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7923                         /* This range does overlap */
7924                         if (BB_OFFSET(p[lo]) < s) {
7925                                 /* Keep the early parts of this range. */
7926                                 int ack = BB_ACK(p[lo]);
7927                                 sector_t start = BB_OFFSET(p[lo]);
7928                                 p[lo] = BB_MAKE(start, s - start, ack);
7929                                 /* now low doesn't overlap, so.. */
7930                                 break;
7931                         }
7932                         lo--;
7933                 }
7934                 /* 'lo' is strictly before, 'hi' is strictly after,
7935                  * anything between needs to be discarded
7936                  */
7937                 if (hi - lo > 1) {
7938                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7939                         bb->count -= (hi - lo - 1);
7940                 }
7941         }
7942
7943         bb->changed = 1;
7944 out:
7945         write_sequnlock_irq(&bb->lock);
7946         return rv;
7947 }
7948
7949 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
7950 {
7951         return md_clear_badblocks(&rdev->badblocks,
7952                                   s + rdev->data_offset,
7953                                   sectors);
7954 }
7955 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7956
7957 /*
7958  * Acknowledge all bad blocks in a list.
7959  * This only succeeds if ->changed is clear.  It is used by
7960  * in-kernel metadata updates
7961  */
7962 void md_ack_all_badblocks(struct badblocks *bb)
7963 {
7964         if (bb->page == NULL || bb->changed)
7965                 /* no point even trying */
7966                 return;
7967         write_seqlock_irq(&bb->lock);
7968
7969         if (bb->changed == 0) {
7970                 u64 *p = bb->page;
7971                 int i;
7972                 for (i = 0; i < bb->count ; i++) {
7973                         if (!BB_ACK(p[i])) {
7974                                 sector_t start = BB_OFFSET(p[i]);
7975                                 int len = BB_LEN(p[i]);
7976                                 p[i] = BB_MAKE(start, len, 1);
7977                         }
7978                 }
7979                 bb->unacked_exist = 0;
7980         }
7981         write_sequnlock_irq(&bb->lock);
7982 }
7983 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7984
7985 /* sysfs access to bad-blocks list.
7986  * We present two files.
7987  * 'bad-blocks' lists sector numbers and lengths of ranges that
7988  *    are recorded as bad.  The list is truncated to fit within
7989  *    the one-page limit of sysfs.
7990  *    Writing "sector length" to this file adds an acknowledged
7991  *    bad block list.
7992  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7993  *    been acknowledged.  Writing to this file adds bad blocks
7994  *    without acknowledging them.  This is largely for testing.
7995  */
7996
7997 static ssize_t
7998 badblocks_show(struct badblocks *bb, char *page, int unack)
7999 {
8000         size_t len;
8001         int i;
8002         u64 *p = bb->page;
8003         unsigned seq;
8004
8005         if (bb->shift < 0)
8006                 return 0;
8007
8008 retry:
8009         seq = read_seqbegin(&bb->lock);
8010
8011         len = 0;
8012         i = 0;
8013
8014         while (len < PAGE_SIZE && i < bb->count) {
8015                 sector_t s = BB_OFFSET(p[i]);
8016                 unsigned int length = BB_LEN(p[i]);
8017                 int ack = BB_ACK(p[i]);
8018                 i++;
8019
8020                 if (unack && ack)
8021                         continue;
8022
8023                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8024                                 (unsigned long long)s << bb->shift,
8025                                 length << bb->shift);
8026         }
8027         if (unack && len == 0)
8028                 bb->unacked_exist = 0;
8029
8030         if (read_seqretry(&bb->lock, seq))
8031                 goto retry;
8032
8033         return len;
8034 }
8035
8036 #define DO_DEBUG 1
8037
8038 static ssize_t
8039 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8040 {
8041         unsigned long long sector;
8042         int length;
8043         char newline;
8044 #ifdef DO_DEBUG
8045         /* Allow clearing via sysfs *only* for testing/debugging.
8046          * Normally only a successful write may clear a badblock
8047          */
8048         int clear = 0;
8049         if (page[0] == '-') {
8050                 clear = 1;
8051                 page++;
8052         }
8053 #endif /* DO_DEBUG */
8054
8055         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8056         case 3:
8057                 if (newline != '\n')
8058                         return -EINVAL;
8059         case 2:
8060                 if (length <= 0)
8061                         return -EINVAL;
8062                 break;
8063         default:
8064                 return -EINVAL;
8065         }
8066
8067 #ifdef DO_DEBUG
8068         if (clear) {
8069                 md_clear_badblocks(bb, sector, length);
8070                 return len;
8071         }
8072 #endif /* DO_DEBUG */
8073         if (md_set_badblocks(bb, sector, length, !unack))
8074                 return len;
8075         else
8076                 return -ENOSPC;
8077 }
8078
8079 static int md_notify_reboot(struct notifier_block *this,
8080                             unsigned long code, void *x)
8081 {
8082         struct list_head *tmp;
8083         struct mddev *mddev;
8084         int need_delay = 0;
8085
8086         if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8087
8088                 printk(KERN_INFO "md: stopping all md devices.\n");
8089
8090                 for_each_mddev(mddev, tmp) {
8091                         if (mddev_trylock(mddev)) {
8092                                 /* Force a switch to readonly even array
8093                                  * appears to still be in use.  Hence
8094                                  * the '100'.
8095                                  */
8096                                 md_set_readonly(mddev, 100);
8097                                 mddev_unlock(mddev);
8098                         }
8099                         need_delay = 1;
8100                 }
8101                 /*
8102                  * certain more exotic SCSI devices are known to be
8103                  * volatile wrt too early system reboots. While the
8104                  * right place to handle this issue is the given
8105                  * driver, we do want to have a safe RAID driver ...
8106                  */
8107                 if (need_delay)
8108                         mdelay(1000*1);
8109         }
8110         return NOTIFY_DONE;
8111 }
8112
8113 static struct notifier_block md_notifier = {
8114         .notifier_call  = md_notify_reboot,
8115         .next           = NULL,
8116         .priority       = INT_MAX, /* before any real devices */
8117 };
8118
8119 static void md_geninit(void)
8120 {
8121         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8122
8123         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8124 }
8125
8126 static int __init md_init(void)
8127 {
8128         int ret = -ENOMEM;
8129
8130         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8131         if (!md_wq)
8132                 goto err_wq;
8133
8134         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8135         if (!md_misc_wq)
8136                 goto err_misc_wq;
8137
8138         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8139                 goto err_md;
8140
8141         if ((ret = register_blkdev(0, "mdp")) < 0)
8142                 goto err_mdp;
8143         mdp_major = ret;
8144
8145         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8146                             md_probe, NULL, NULL);
8147         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8148                             md_probe, NULL, NULL);
8149
8150         register_reboot_notifier(&md_notifier);
8151         raid_table_header = register_sysctl_table(raid_root_table);
8152
8153         md_geninit();
8154         return 0;
8155
8156 err_mdp:
8157         unregister_blkdev(MD_MAJOR, "md");
8158 err_md:
8159         destroy_workqueue(md_misc_wq);
8160 err_misc_wq:
8161         destroy_workqueue(md_wq);
8162 err_wq:
8163         return ret;
8164 }
8165
8166 #ifndef MODULE
8167
8168 /*
8169  * Searches all registered partitions for autorun RAID arrays
8170  * at boot time.
8171  */
8172
8173 static LIST_HEAD(all_detected_devices);
8174 struct detected_devices_node {
8175         struct list_head list;
8176         dev_t dev;
8177 };
8178
8179 void md_autodetect_dev(dev_t dev)
8180 {
8181         struct detected_devices_node *node_detected_dev;
8182
8183         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8184         if (node_detected_dev) {
8185                 node_detected_dev->dev = dev;
8186                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8187         } else {
8188                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8189                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8190         }
8191 }
8192
8193
8194 static void autostart_arrays(int part)
8195 {
8196         struct md_rdev *rdev;
8197         struct detected_devices_node *node_detected_dev;
8198         dev_t dev;
8199         int i_scanned, i_passed;
8200
8201         i_scanned = 0;
8202         i_passed = 0;
8203
8204         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8205
8206         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8207                 i_scanned++;
8208                 node_detected_dev = list_entry(all_detected_devices.next,
8209                                         struct detected_devices_node, list);
8210                 list_del(&node_detected_dev->list);
8211                 dev = node_detected_dev->dev;
8212                 kfree(node_detected_dev);
8213                 rdev = md_import_device(dev,0, 90);
8214                 if (IS_ERR(rdev))
8215                         continue;
8216
8217                 if (test_bit(Faulty, &rdev->flags)) {
8218                         MD_BUG();
8219                         continue;
8220                 }
8221                 set_bit(AutoDetected, &rdev->flags);
8222                 list_add(&rdev->same_set, &pending_raid_disks);
8223                 i_passed++;
8224         }
8225
8226         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8227                                                 i_scanned, i_passed);
8228
8229         autorun_devices(part);
8230 }
8231
8232 #endif /* !MODULE */
8233
8234 static __exit void md_exit(void)
8235 {
8236         struct mddev *mddev;
8237         struct list_head *tmp;
8238
8239         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8240         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8241
8242         unregister_blkdev(MD_MAJOR,"md");
8243         unregister_blkdev(mdp_major, "mdp");
8244         unregister_reboot_notifier(&md_notifier);
8245         unregister_sysctl_table(raid_table_header);
8246         remove_proc_entry("mdstat", NULL);
8247         for_each_mddev(mddev, tmp) {
8248                 export_array(mddev);
8249                 mddev->hold_active = 0;
8250         }
8251         destroy_workqueue(md_misc_wq);
8252         destroy_workqueue(md_wq);
8253 }
8254
8255 subsys_initcall(md_init);
8256 module_exit(md_exit)
8257
8258 static int get_ro(char *buffer, struct kernel_param *kp)
8259 {
8260         return sprintf(buffer, "%d", start_readonly);
8261 }
8262 static int set_ro(const char *val, struct kernel_param *kp)
8263 {
8264         char *e;
8265         int num = simple_strtoul(val, &e, 10);
8266         if (*val && (*e == '\0' || *e == '\n')) {
8267                 start_readonly = num;
8268                 return 0;
8269         }
8270         return -EINVAL;
8271 }
8272
8273 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8274 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8275
8276 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8277
8278 EXPORT_SYMBOL(register_md_personality);
8279 EXPORT_SYMBOL(unregister_md_personality);
8280 EXPORT_SYMBOL(md_error);
8281 EXPORT_SYMBOL(md_done_sync);
8282 EXPORT_SYMBOL(md_write_start);
8283 EXPORT_SYMBOL(md_write_end);
8284 EXPORT_SYMBOL(md_register_thread);
8285 EXPORT_SYMBOL(md_unregister_thread);
8286 EXPORT_SYMBOL(md_wakeup_thread);
8287 EXPORT_SYMBOL(md_check_recovery);
8288 MODULE_LICENSE("GPL");
8289 MODULE_DESCRIPTION("MD RAID framework");
8290 MODULE_ALIAS("md");
8291 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);