perf: Clean up perf_event_context allocation
[linux-flexiantxendom0-natty.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 static atomic_t nr_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47  * perf event paranoia level:
48  *  -1 - not paranoid at all
49  *   0 - disallow raw tracepoint access for unpriv
50  *   1 - disallow cpu events for unpriv
51  *   2 - disallow kernel profiling for unpriv
52  */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58  * max perf event sample rate
59  */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void)        { }
65
66 void perf_pmu_disable(struct pmu *pmu)
67 {
68         int *count = this_cpu_ptr(pmu->pmu_disable_count);
69         if (!(*count)++)
70                 pmu->pmu_disable(pmu);
71 }
72
73 void perf_pmu_enable(struct pmu *pmu)
74 {
75         int *count = this_cpu_ptr(pmu->pmu_disable_count);
76         if (!--(*count))
77                 pmu->pmu_enable(pmu);
78 }
79
80 static void perf_pmu_rotate_start(struct pmu *pmu)
81 {
82         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
83
84         if (hrtimer_active(&cpuctx->timer))
85                 return;
86
87         __hrtimer_start_range_ns(&cpuctx->timer,
88                         ns_to_ktime(cpuctx->timer_interval), 0,
89                         HRTIMER_MODE_REL_PINNED, 0);
90 }
91
92 static void perf_pmu_rotate_stop(struct pmu *pmu)
93 {
94         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95
96         hrtimer_cancel(&cpuctx->timer);
97 }
98
99 static void get_ctx(struct perf_event_context *ctx)
100 {
101         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
102 }
103
104 static void free_ctx(struct rcu_head *head)
105 {
106         struct perf_event_context *ctx;
107
108         ctx = container_of(head, struct perf_event_context, rcu_head);
109         kfree(ctx);
110 }
111
112 static void put_ctx(struct perf_event_context *ctx)
113 {
114         if (atomic_dec_and_test(&ctx->refcount)) {
115                 if (ctx->parent_ctx)
116                         put_ctx(ctx->parent_ctx);
117                 if (ctx->task)
118                         put_task_struct(ctx->task);
119                 call_rcu(&ctx->rcu_head, free_ctx);
120         }
121 }
122
123 static void unclone_ctx(struct perf_event_context *ctx)
124 {
125         if (ctx->parent_ctx) {
126                 put_ctx(ctx->parent_ctx);
127                 ctx->parent_ctx = NULL;
128         }
129 }
130
131 /*
132  * If we inherit events we want to return the parent event id
133  * to userspace.
134  */
135 static u64 primary_event_id(struct perf_event *event)
136 {
137         u64 id = event->id;
138
139         if (event->parent)
140                 id = event->parent->id;
141
142         return id;
143 }
144
145 /*
146  * Get the perf_event_context for a task and lock it.
147  * This has to cope with with the fact that until it is locked,
148  * the context could get moved to another task.
149  */
150 static struct perf_event_context *
151 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
152 {
153         struct perf_event_context *ctx;
154
155         rcu_read_lock();
156 retry:
157         ctx = rcu_dereference(task->perf_event_ctxp);
158         if (ctx) {
159                 /*
160                  * If this context is a clone of another, it might
161                  * get swapped for another underneath us by
162                  * perf_event_task_sched_out, though the
163                  * rcu_read_lock() protects us from any context
164                  * getting freed.  Lock the context and check if it
165                  * got swapped before we could get the lock, and retry
166                  * if so.  If we locked the right context, then it
167                  * can't get swapped on us any more.
168                  */
169                 raw_spin_lock_irqsave(&ctx->lock, *flags);
170                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
171                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
172                         goto retry;
173                 }
174
175                 if (!atomic_inc_not_zero(&ctx->refcount)) {
176                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177                         ctx = NULL;
178                 }
179         }
180         rcu_read_unlock();
181         return ctx;
182 }
183
184 /*
185  * Get the context for a task and increment its pin_count so it
186  * can't get swapped to another task.  This also increments its
187  * reference count so that the context can't get freed.
188  */
189 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
190 {
191         struct perf_event_context *ctx;
192         unsigned long flags;
193
194         ctx = perf_lock_task_context(task, &flags);
195         if (ctx) {
196                 ++ctx->pin_count;
197                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
198         }
199         return ctx;
200 }
201
202 static void perf_unpin_context(struct perf_event_context *ctx)
203 {
204         unsigned long flags;
205
206         raw_spin_lock_irqsave(&ctx->lock, flags);
207         --ctx->pin_count;
208         raw_spin_unlock_irqrestore(&ctx->lock, flags);
209         put_ctx(ctx);
210 }
211
212 static inline u64 perf_clock(void)
213 {
214         return local_clock();
215 }
216
217 /*
218  * Update the record of the current time in a context.
219  */
220 static void update_context_time(struct perf_event_context *ctx)
221 {
222         u64 now = perf_clock();
223
224         ctx->time += now - ctx->timestamp;
225         ctx->timestamp = now;
226 }
227
228 /*
229  * Update the total_time_enabled and total_time_running fields for a event.
230  */
231 static void update_event_times(struct perf_event *event)
232 {
233         struct perf_event_context *ctx = event->ctx;
234         u64 run_end;
235
236         if (event->state < PERF_EVENT_STATE_INACTIVE ||
237             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
238                 return;
239
240         if (ctx->is_active)
241                 run_end = ctx->time;
242         else
243                 run_end = event->tstamp_stopped;
244
245         event->total_time_enabled = run_end - event->tstamp_enabled;
246
247         if (event->state == PERF_EVENT_STATE_INACTIVE)
248                 run_end = event->tstamp_stopped;
249         else
250                 run_end = ctx->time;
251
252         event->total_time_running = run_end - event->tstamp_running;
253 }
254
255 /*
256  * Update total_time_enabled and total_time_running for all events in a group.
257  */
258 static void update_group_times(struct perf_event *leader)
259 {
260         struct perf_event *event;
261
262         update_event_times(leader);
263         list_for_each_entry(event, &leader->sibling_list, group_entry)
264                 update_event_times(event);
265 }
266
267 static struct list_head *
268 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
269 {
270         if (event->attr.pinned)
271                 return &ctx->pinned_groups;
272         else
273                 return &ctx->flexible_groups;
274 }
275
276 /*
277  * Add a event from the lists for its context.
278  * Must be called with ctx->mutex and ctx->lock held.
279  */
280 static void
281 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
282 {
283         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
284         event->attach_state |= PERF_ATTACH_CONTEXT;
285
286         /*
287          * If we're a stand alone event or group leader, we go to the context
288          * list, group events are kept attached to the group so that
289          * perf_group_detach can, at all times, locate all siblings.
290          */
291         if (event->group_leader == event) {
292                 struct list_head *list;
293
294                 if (is_software_event(event))
295                         event->group_flags |= PERF_GROUP_SOFTWARE;
296
297                 list = ctx_group_list(event, ctx);
298                 list_add_tail(&event->group_entry, list);
299         }
300
301         list_add_rcu(&event->event_entry, &ctx->event_list);
302         if (!ctx->nr_events)
303                 perf_pmu_rotate_start(ctx->pmu);
304         ctx->nr_events++;
305         if (event->attr.inherit_stat)
306                 ctx->nr_stat++;
307 }
308
309 static void perf_group_attach(struct perf_event *event)
310 {
311         struct perf_event *group_leader = event->group_leader;
312
313         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
314         event->attach_state |= PERF_ATTACH_GROUP;
315
316         if (group_leader == event)
317                 return;
318
319         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
320                         !is_software_event(event))
321                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
322
323         list_add_tail(&event->group_entry, &group_leader->sibling_list);
324         group_leader->nr_siblings++;
325 }
326
327 /*
328  * Remove a event from the lists for its context.
329  * Must be called with ctx->mutex and ctx->lock held.
330  */
331 static void
332 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
333 {
334         /*
335          * We can have double detach due to exit/hot-unplug + close.
336          */
337         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
338                 return;
339
340         event->attach_state &= ~PERF_ATTACH_CONTEXT;
341
342         ctx->nr_events--;
343         if (event->attr.inherit_stat)
344                 ctx->nr_stat--;
345
346         list_del_rcu(&event->event_entry);
347
348         if (event->group_leader == event)
349                 list_del_init(&event->group_entry);
350
351         update_group_times(event);
352
353         /*
354          * If event was in error state, then keep it
355          * that way, otherwise bogus counts will be
356          * returned on read(). The only way to get out
357          * of error state is by explicit re-enabling
358          * of the event
359          */
360         if (event->state > PERF_EVENT_STATE_OFF)
361                 event->state = PERF_EVENT_STATE_OFF;
362 }
363
364 static void perf_group_detach(struct perf_event *event)
365 {
366         struct perf_event *sibling, *tmp;
367         struct list_head *list = NULL;
368
369         /*
370          * We can have double detach due to exit/hot-unplug + close.
371          */
372         if (!(event->attach_state & PERF_ATTACH_GROUP))
373                 return;
374
375         event->attach_state &= ~PERF_ATTACH_GROUP;
376
377         /*
378          * If this is a sibling, remove it from its group.
379          */
380         if (event->group_leader != event) {
381                 list_del_init(&event->group_entry);
382                 event->group_leader->nr_siblings--;
383                 return;
384         }
385
386         if (!list_empty(&event->group_entry))
387                 list = &event->group_entry;
388
389         /*
390          * If this was a group event with sibling events then
391          * upgrade the siblings to singleton events by adding them
392          * to whatever list we are on.
393          */
394         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
395                 if (list)
396                         list_move_tail(&sibling->group_entry, list);
397                 sibling->group_leader = sibling;
398
399                 /* Inherit group flags from the previous leader */
400                 sibling->group_flags = event->group_flags;
401         }
402 }
403
404 static inline int
405 event_filter_match(struct perf_event *event)
406 {
407         return event->cpu == -1 || event->cpu == smp_processor_id();
408 }
409
410 static void
411 event_sched_out(struct perf_event *event,
412                   struct perf_cpu_context *cpuctx,
413                   struct perf_event_context *ctx)
414 {
415         u64 delta;
416         /*
417          * An event which could not be activated because of
418          * filter mismatch still needs to have its timings
419          * maintained, otherwise bogus information is return
420          * via read() for time_enabled, time_running:
421          */
422         if (event->state == PERF_EVENT_STATE_INACTIVE
423             && !event_filter_match(event)) {
424                 delta = ctx->time - event->tstamp_stopped;
425                 event->tstamp_running += delta;
426                 event->tstamp_stopped = ctx->time;
427         }
428
429         if (event->state != PERF_EVENT_STATE_ACTIVE)
430                 return;
431
432         event->state = PERF_EVENT_STATE_INACTIVE;
433         if (event->pending_disable) {
434                 event->pending_disable = 0;
435                 event->state = PERF_EVENT_STATE_OFF;
436         }
437         event->tstamp_stopped = ctx->time;
438         event->pmu->del(event, 0);
439         event->oncpu = -1;
440
441         if (!is_software_event(event))
442                 cpuctx->active_oncpu--;
443         ctx->nr_active--;
444         if (event->attr.exclusive || !cpuctx->active_oncpu)
445                 cpuctx->exclusive = 0;
446 }
447
448 static void
449 group_sched_out(struct perf_event *group_event,
450                 struct perf_cpu_context *cpuctx,
451                 struct perf_event_context *ctx)
452 {
453         struct perf_event *event;
454         int state = group_event->state;
455
456         event_sched_out(group_event, cpuctx, ctx);
457
458         /*
459          * Schedule out siblings (if any):
460          */
461         list_for_each_entry(event, &group_event->sibling_list, group_entry)
462                 event_sched_out(event, cpuctx, ctx);
463
464         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
465                 cpuctx->exclusive = 0;
466 }
467
468 static inline struct perf_cpu_context *
469 __get_cpu_context(struct perf_event_context *ctx)
470 {
471         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
472 }
473
474 /*
475  * Cross CPU call to remove a performance event
476  *
477  * We disable the event on the hardware level first. After that we
478  * remove it from the context list.
479  */
480 static void __perf_event_remove_from_context(void *info)
481 {
482         struct perf_event *event = info;
483         struct perf_event_context *ctx = event->ctx;
484         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
485
486         /*
487          * If this is a task context, we need to check whether it is
488          * the current task context of this cpu. If not it has been
489          * scheduled out before the smp call arrived.
490          */
491         if (ctx->task && cpuctx->task_ctx != ctx)
492                 return;
493
494         raw_spin_lock(&ctx->lock);
495
496         event_sched_out(event, cpuctx, ctx);
497
498         list_del_event(event, ctx);
499
500         raw_spin_unlock(&ctx->lock);
501 }
502
503
504 /*
505  * Remove the event from a task's (or a CPU's) list of events.
506  *
507  * Must be called with ctx->mutex held.
508  *
509  * CPU events are removed with a smp call. For task events we only
510  * call when the task is on a CPU.
511  *
512  * If event->ctx is a cloned context, callers must make sure that
513  * every task struct that event->ctx->task could possibly point to
514  * remains valid.  This is OK when called from perf_release since
515  * that only calls us on the top-level context, which can't be a clone.
516  * When called from perf_event_exit_task, it's OK because the
517  * context has been detached from its task.
518  */
519 static void perf_event_remove_from_context(struct perf_event *event)
520 {
521         struct perf_event_context *ctx = event->ctx;
522         struct task_struct *task = ctx->task;
523
524         if (!task) {
525                 /*
526                  * Per cpu events are removed via an smp call and
527                  * the removal is always successful.
528                  */
529                 smp_call_function_single(event->cpu,
530                                          __perf_event_remove_from_context,
531                                          event, 1);
532                 return;
533         }
534
535 retry:
536         task_oncpu_function_call(task, __perf_event_remove_from_context,
537                                  event);
538
539         raw_spin_lock_irq(&ctx->lock);
540         /*
541          * If the context is active we need to retry the smp call.
542          */
543         if (ctx->nr_active && !list_empty(&event->group_entry)) {
544                 raw_spin_unlock_irq(&ctx->lock);
545                 goto retry;
546         }
547
548         /*
549          * The lock prevents that this context is scheduled in so we
550          * can remove the event safely, if the call above did not
551          * succeed.
552          */
553         if (!list_empty(&event->group_entry))
554                 list_del_event(event, ctx);
555         raw_spin_unlock_irq(&ctx->lock);
556 }
557
558 /*
559  * Cross CPU call to disable a performance event
560  */
561 static void __perf_event_disable(void *info)
562 {
563         struct perf_event *event = info;
564         struct perf_event_context *ctx = event->ctx;
565         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
566
567         /*
568          * If this is a per-task event, need to check whether this
569          * event's task is the current task on this cpu.
570          */
571         if (ctx->task && cpuctx->task_ctx != ctx)
572                 return;
573
574         raw_spin_lock(&ctx->lock);
575
576         /*
577          * If the event is on, turn it off.
578          * If it is in error state, leave it in error state.
579          */
580         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
581                 update_context_time(ctx);
582                 update_group_times(event);
583                 if (event == event->group_leader)
584                         group_sched_out(event, cpuctx, ctx);
585                 else
586                         event_sched_out(event, cpuctx, ctx);
587                 event->state = PERF_EVENT_STATE_OFF;
588         }
589
590         raw_spin_unlock(&ctx->lock);
591 }
592
593 /*
594  * Disable a event.
595  *
596  * If event->ctx is a cloned context, callers must make sure that
597  * every task struct that event->ctx->task could possibly point to
598  * remains valid.  This condition is satisifed when called through
599  * perf_event_for_each_child or perf_event_for_each because they
600  * hold the top-level event's child_mutex, so any descendant that
601  * goes to exit will block in sync_child_event.
602  * When called from perf_pending_event it's OK because event->ctx
603  * is the current context on this CPU and preemption is disabled,
604  * hence we can't get into perf_event_task_sched_out for this context.
605  */
606 void perf_event_disable(struct perf_event *event)
607 {
608         struct perf_event_context *ctx = event->ctx;
609         struct task_struct *task = ctx->task;
610
611         if (!task) {
612                 /*
613                  * Disable the event on the cpu that it's on
614                  */
615                 smp_call_function_single(event->cpu, __perf_event_disable,
616                                          event, 1);
617                 return;
618         }
619
620 retry:
621         task_oncpu_function_call(task, __perf_event_disable, event);
622
623         raw_spin_lock_irq(&ctx->lock);
624         /*
625          * If the event is still active, we need to retry the cross-call.
626          */
627         if (event->state == PERF_EVENT_STATE_ACTIVE) {
628                 raw_spin_unlock_irq(&ctx->lock);
629                 goto retry;
630         }
631
632         /*
633          * Since we have the lock this context can't be scheduled
634          * in, so we can change the state safely.
635          */
636         if (event->state == PERF_EVENT_STATE_INACTIVE) {
637                 update_group_times(event);
638                 event->state = PERF_EVENT_STATE_OFF;
639         }
640
641         raw_spin_unlock_irq(&ctx->lock);
642 }
643
644 static int
645 event_sched_in(struct perf_event *event,
646                  struct perf_cpu_context *cpuctx,
647                  struct perf_event_context *ctx)
648 {
649         if (event->state <= PERF_EVENT_STATE_OFF)
650                 return 0;
651
652         event->state = PERF_EVENT_STATE_ACTIVE;
653         event->oncpu = smp_processor_id();
654         /*
655          * The new state must be visible before we turn it on in the hardware:
656          */
657         smp_wmb();
658
659         if (event->pmu->add(event, PERF_EF_START)) {
660                 event->state = PERF_EVENT_STATE_INACTIVE;
661                 event->oncpu = -1;
662                 return -EAGAIN;
663         }
664
665         event->tstamp_running += ctx->time - event->tstamp_stopped;
666
667         if (!is_software_event(event))
668                 cpuctx->active_oncpu++;
669         ctx->nr_active++;
670
671         if (event->attr.exclusive)
672                 cpuctx->exclusive = 1;
673
674         return 0;
675 }
676
677 static int
678 group_sched_in(struct perf_event *group_event,
679                struct perf_cpu_context *cpuctx,
680                struct perf_event_context *ctx)
681 {
682         struct perf_event *event, *partial_group = NULL;
683         struct pmu *pmu = group_event->pmu;
684
685         if (group_event->state == PERF_EVENT_STATE_OFF)
686                 return 0;
687
688         pmu->start_txn(pmu);
689
690         if (event_sched_in(group_event, cpuctx, ctx)) {
691                 pmu->cancel_txn(pmu);
692                 return -EAGAIN;
693         }
694
695         /*
696          * Schedule in siblings as one group (if any):
697          */
698         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
699                 if (event_sched_in(event, cpuctx, ctx)) {
700                         partial_group = event;
701                         goto group_error;
702                 }
703         }
704
705         if (!pmu->commit_txn(pmu))
706                 return 0;
707
708 group_error:
709         /*
710          * Groups can be scheduled in as one unit only, so undo any
711          * partial group before returning:
712          */
713         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
714                 if (event == partial_group)
715                         break;
716                 event_sched_out(event, cpuctx, ctx);
717         }
718         event_sched_out(group_event, cpuctx, ctx);
719
720         pmu->cancel_txn(pmu);
721
722         return -EAGAIN;
723 }
724
725 /*
726  * Work out whether we can put this event group on the CPU now.
727  */
728 static int group_can_go_on(struct perf_event *event,
729                            struct perf_cpu_context *cpuctx,
730                            int can_add_hw)
731 {
732         /*
733          * Groups consisting entirely of software events can always go on.
734          */
735         if (event->group_flags & PERF_GROUP_SOFTWARE)
736                 return 1;
737         /*
738          * If an exclusive group is already on, no other hardware
739          * events can go on.
740          */
741         if (cpuctx->exclusive)
742                 return 0;
743         /*
744          * If this group is exclusive and there are already
745          * events on the CPU, it can't go on.
746          */
747         if (event->attr.exclusive && cpuctx->active_oncpu)
748                 return 0;
749         /*
750          * Otherwise, try to add it if all previous groups were able
751          * to go on.
752          */
753         return can_add_hw;
754 }
755
756 static void add_event_to_ctx(struct perf_event *event,
757                                struct perf_event_context *ctx)
758 {
759         list_add_event(event, ctx);
760         perf_group_attach(event);
761         event->tstamp_enabled = ctx->time;
762         event->tstamp_running = ctx->time;
763         event->tstamp_stopped = ctx->time;
764 }
765
766 /*
767  * Cross CPU call to install and enable a performance event
768  *
769  * Must be called with ctx->mutex held
770  */
771 static void __perf_install_in_context(void *info)
772 {
773         struct perf_event *event = info;
774         struct perf_event_context *ctx = event->ctx;
775         struct perf_event *leader = event->group_leader;
776         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
777         int err;
778
779         /*
780          * If this is a task context, we need to check whether it is
781          * the current task context of this cpu. If not it has been
782          * scheduled out before the smp call arrived.
783          * Or possibly this is the right context but it isn't
784          * on this cpu because it had no events.
785          */
786         if (ctx->task && cpuctx->task_ctx != ctx) {
787                 if (cpuctx->task_ctx || ctx->task != current)
788                         return;
789                 cpuctx->task_ctx = ctx;
790         }
791
792         raw_spin_lock(&ctx->lock);
793         ctx->is_active = 1;
794         update_context_time(ctx);
795
796         add_event_to_ctx(event, ctx);
797
798         if (event->cpu != -1 && event->cpu != smp_processor_id())
799                 goto unlock;
800
801         /*
802          * Don't put the event on if it is disabled or if
803          * it is in a group and the group isn't on.
804          */
805         if (event->state != PERF_EVENT_STATE_INACTIVE ||
806             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
807                 goto unlock;
808
809         /*
810          * An exclusive event can't go on if there are already active
811          * hardware events, and no hardware event can go on if there
812          * is already an exclusive event on.
813          */
814         if (!group_can_go_on(event, cpuctx, 1))
815                 err = -EEXIST;
816         else
817                 err = event_sched_in(event, cpuctx, ctx);
818
819         if (err) {
820                 /*
821                  * This event couldn't go on.  If it is in a group
822                  * then we have to pull the whole group off.
823                  * If the event group is pinned then put it in error state.
824                  */
825                 if (leader != event)
826                         group_sched_out(leader, cpuctx, ctx);
827                 if (leader->attr.pinned) {
828                         update_group_times(leader);
829                         leader->state = PERF_EVENT_STATE_ERROR;
830                 }
831         }
832
833 unlock:
834         raw_spin_unlock(&ctx->lock);
835 }
836
837 /*
838  * Attach a performance event to a context
839  *
840  * First we add the event to the list with the hardware enable bit
841  * in event->hw_config cleared.
842  *
843  * If the event is attached to a task which is on a CPU we use a smp
844  * call to enable it in the task context. The task might have been
845  * scheduled away, but we check this in the smp call again.
846  *
847  * Must be called with ctx->mutex held.
848  */
849 static void
850 perf_install_in_context(struct perf_event_context *ctx,
851                         struct perf_event *event,
852                         int cpu)
853 {
854         struct task_struct *task = ctx->task;
855
856         event->ctx = ctx;
857
858         if (!task) {
859                 /*
860                  * Per cpu events are installed via an smp call and
861                  * the install is always successful.
862                  */
863                 smp_call_function_single(cpu, __perf_install_in_context,
864                                          event, 1);
865                 return;
866         }
867
868 retry:
869         task_oncpu_function_call(task, __perf_install_in_context,
870                                  event);
871
872         raw_spin_lock_irq(&ctx->lock);
873         /*
874          * we need to retry the smp call.
875          */
876         if (ctx->is_active && list_empty(&event->group_entry)) {
877                 raw_spin_unlock_irq(&ctx->lock);
878                 goto retry;
879         }
880
881         /*
882          * The lock prevents that this context is scheduled in so we
883          * can add the event safely, if it the call above did not
884          * succeed.
885          */
886         if (list_empty(&event->group_entry))
887                 add_event_to_ctx(event, ctx);
888         raw_spin_unlock_irq(&ctx->lock);
889 }
890
891 /*
892  * Put a event into inactive state and update time fields.
893  * Enabling the leader of a group effectively enables all
894  * the group members that aren't explicitly disabled, so we
895  * have to update their ->tstamp_enabled also.
896  * Note: this works for group members as well as group leaders
897  * since the non-leader members' sibling_lists will be empty.
898  */
899 static void __perf_event_mark_enabled(struct perf_event *event,
900                                         struct perf_event_context *ctx)
901 {
902         struct perf_event *sub;
903
904         event->state = PERF_EVENT_STATE_INACTIVE;
905         event->tstamp_enabled = ctx->time - event->total_time_enabled;
906         list_for_each_entry(sub, &event->sibling_list, group_entry) {
907                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
908                         sub->tstamp_enabled =
909                                 ctx->time - sub->total_time_enabled;
910                 }
911         }
912 }
913
914 /*
915  * Cross CPU call to enable a performance event
916  */
917 static void __perf_event_enable(void *info)
918 {
919         struct perf_event *event = info;
920         struct perf_event_context *ctx = event->ctx;
921         struct perf_event *leader = event->group_leader;
922         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
923         int err;
924
925         /*
926          * If this is a per-task event, need to check whether this
927          * event's task is the current task on this cpu.
928          */
929         if (ctx->task && cpuctx->task_ctx != ctx) {
930                 if (cpuctx->task_ctx || ctx->task != current)
931                         return;
932                 cpuctx->task_ctx = ctx;
933         }
934
935         raw_spin_lock(&ctx->lock);
936         ctx->is_active = 1;
937         update_context_time(ctx);
938
939         if (event->state >= PERF_EVENT_STATE_INACTIVE)
940                 goto unlock;
941         __perf_event_mark_enabled(event, ctx);
942
943         if (event->cpu != -1 && event->cpu != smp_processor_id())
944                 goto unlock;
945
946         /*
947          * If the event is in a group and isn't the group leader,
948          * then don't put it on unless the group is on.
949          */
950         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
951                 goto unlock;
952
953         if (!group_can_go_on(event, cpuctx, 1)) {
954                 err = -EEXIST;
955         } else {
956                 if (event == leader)
957                         err = group_sched_in(event, cpuctx, ctx);
958                 else
959                         err = event_sched_in(event, cpuctx, ctx);
960         }
961
962         if (err) {
963                 /*
964                  * If this event can't go on and it's part of a
965                  * group, then the whole group has to come off.
966                  */
967                 if (leader != event)
968                         group_sched_out(leader, cpuctx, ctx);
969                 if (leader->attr.pinned) {
970                         update_group_times(leader);
971                         leader->state = PERF_EVENT_STATE_ERROR;
972                 }
973         }
974
975 unlock:
976         raw_spin_unlock(&ctx->lock);
977 }
978
979 /*
980  * Enable a event.
981  *
982  * If event->ctx is a cloned context, callers must make sure that
983  * every task struct that event->ctx->task could possibly point to
984  * remains valid.  This condition is satisfied when called through
985  * perf_event_for_each_child or perf_event_for_each as described
986  * for perf_event_disable.
987  */
988 void perf_event_enable(struct perf_event *event)
989 {
990         struct perf_event_context *ctx = event->ctx;
991         struct task_struct *task = ctx->task;
992
993         if (!task) {
994                 /*
995                  * Enable the event on the cpu that it's on
996                  */
997                 smp_call_function_single(event->cpu, __perf_event_enable,
998                                          event, 1);
999                 return;
1000         }
1001
1002         raw_spin_lock_irq(&ctx->lock);
1003         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1004                 goto out;
1005
1006         /*
1007          * If the event is in error state, clear that first.
1008          * That way, if we see the event in error state below, we
1009          * know that it has gone back into error state, as distinct
1010          * from the task having been scheduled away before the
1011          * cross-call arrived.
1012          */
1013         if (event->state == PERF_EVENT_STATE_ERROR)
1014                 event->state = PERF_EVENT_STATE_OFF;
1015
1016 retry:
1017         raw_spin_unlock_irq(&ctx->lock);
1018         task_oncpu_function_call(task, __perf_event_enable, event);
1019
1020         raw_spin_lock_irq(&ctx->lock);
1021
1022         /*
1023          * If the context is active and the event is still off,
1024          * we need to retry the cross-call.
1025          */
1026         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1027                 goto retry;
1028
1029         /*
1030          * Since we have the lock this context can't be scheduled
1031          * in, so we can change the state safely.
1032          */
1033         if (event->state == PERF_EVENT_STATE_OFF)
1034                 __perf_event_mark_enabled(event, ctx);
1035
1036 out:
1037         raw_spin_unlock_irq(&ctx->lock);
1038 }
1039
1040 static int perf_event_refresh(struct perf_event *event, int refresh)
1041 {
1042         /*
1043          * not supported on inherited events
1044          */
1045         if (event->attr.inherit)
1046                 return -EINVAL;
1047
1048         atomic_add(refresh, &event->event_limit);
1049         perf_event_enable(event);
1050
1051         return 0;
1052 }
1053
1054 enum event_type_t {
1055         EVENT_FLEXIBLE = 0x1,
1056         EVENT_PINNED = 0x2,
1057         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1058 };
1059
1060 static void ctx_sched_out(struct perf_event_context *ctx,
1061                           struct perf_cpu_context *cpuctx,
1062                           enum event_type_t event_type)
1063 {
1064         struct perf_event *event;
1065
1066         raw_spin_lock(&ctx->lock);
1067         ctx->is_active = 0;
1068         if (likely(!ctx->nr_events))
1069                 goto out;
1070         update_context_time(ctx);
1071
1072         if (!ctx->nr_active)
1073                 goto out;
1074
1075         if (event_type & EVENT_PINNED) {
1076                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1077                         group_sched_out(event, cpuctx, ctx);
1078         }
1079
1080         if (event_type & EVENT_FLEXIBLE) {
1081                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1082                         group_sched_out(event, cpuctx, ctx);
1083         }
1084 out:
1085         raw_spin_unlock(&ctx->lock);
1086 }
1087
1088 /*
1089  * Test whether two contexts are equivalent, i.e. whether they
1090  * have both been cloned from the same version of the same context
1091  * and they both have the same number of enabled events.
1092  * If the number of enabled events is the same, then the set
1093  * of enabled events should be the same, because these are both
1094  * inherited contexts, therefore we can't access individual events
1095  * in them directly with an fd; we can only enable/disable all
1096  * events via prctl, or enable/disable all events in a family
1097  * via ioctl, which will have the same effect on both contexts.
1098  */
1099 static int context_equiv(struct perf_event_context *ctx1,
1100                          struct perf_event_context *ctx2)
1101 {
1102         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1103                 && ctx1->parent_gen == ctx2->parent_gen
1104                 && !ctx1->pin_count && !ctx2->pin_count;
1105 }
1106
1107 static void __perf_event_sync_stat(struct perf_event *event,
1108                                      struct perf_event *next_event)
1109 {
1110         u64 value;
1111
1112         if (!event->attr.inherit_stat)
1113                 return;
1114
1115         /*
1116          * Update the event value, we cannot use perf_event_read()
1117          * because we're in the middle of a context switch and have IRQs
1118          * disabled, which upsets smp_call_function_single(), however
1119          * we know the event must be on the current CPU, therefore we
1120          * don't need to use it.
1121          */
1122         switch (event->state) {
1123         case PERF_EVENT_STATE_ACTIVE:
1124                 event->pmu->read(event);
1125                 /* fall-through */
1126
1127         case PERF_EVENT_STATE_INACTIVE:
1128                 update_event_times(event);
1129                 break;
1130
1131         default:
1132                 break;
1133         }
1134
1135         /*
1136          * In order to keep per-task stats reliable we need to flip the event
1137          * values when we flip the contexts.
1138          */
1139         value = local64_read(&next_event->count);
1140         value = local64_xchg(&event->count, value);
1141         local64_set(&next_event->count, value);
1142
1143         swap(event->total_time_enabled, next_event->total_time_enabled);
1144         swap(event->total_time_running, next_event->total_time_running);
1145
1146         /*
1147          * Since we swizzled the values, update the user visible data too.
1148          */
1149         perf_event_update_userpage(event);
1150         perf_event_update_userpage(next_event);
1151 }
1152
1153 #define list_next_entry(pos, member) \
1154         list_entry(pos->member.next, typeof(*pos), member)
1155
1156 static void perf_event_sync_stat(struct perf_event_context *ctx,
1157                                    struct perf_event_context *next_ctx)
1158 {
1159         struct perf_event *event, *next_event;
1160
1161         if (!ctx->nr_stat)
1162                 return;
1163
1164         update_context_time(ctx);
1165
1166         event = list_first_entry(&ctx->event_list,
1167                                    struct perf_event, event_entry);
1168
1169         next_event = list_first_entry(&next_ctx->event_list,
1170                                         struct perf_event, event_entry);
1171
1172         while (&event->event_entry != &ctx->event_list &&
1173                &next_event->event_entry != &next_ctx->event_list) {
1174
1175                 __perf_event_sync_stat(event, next_event);
1176
1177                 event = list_next_entry(event, event_entry);
1178                 next_event = list_next_entry(next_event, event_entry);
1179         }
1180 }
1181
1182 /*
1183  * Called from scheduler to remove the events of the current task,
1184  * with interrupts disabled.
1185  *
1186  * We stop each event and update the event value in event->count.
1187  *
1188  * This does not protect us against NMI, but disable()
1189  * sets the disabled bit in the control field of event _before_
1190  * accessing the event control register. If a NMI hits, then it will
1191  * not restart the event.
1192  */
1193 void perf_event_task_sched_out(struct task_struct *task,
1194                                  struct task_struct *next)
1195 {
1196         struct perf_event_context *ctx = task->perf_event_ctxp;
1197         struct perf_event_context *next_ctx;
1198         struct perf_event_context *parent;
1199         struct perf_cpu_context *cpuctx;
1200         int do_switch = 1;
1201
1202         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1203
1204         if (likely(!ctx))
1205                 return;
1206
1207         cpuctx = __get_cpu_context(ctx);
1208         if (!cpuctx->task_ctx)
1209                 return;
1210
1211         rcu_read_lock();
1212         parent = rcu_dereference(ctx->parent_ctx);
1213         next_ctx = next->perf_event_ctxp;
1214         if (parent && next_ctx &&
1215             rcu_dereference(next_ctx->parent_ctx) == parent) {
1216                 /*
1217                  * Looks like the two contexts are clones, so we might be
1218                  * able to optimize the context switch.  We lock both
1219                  * contexts and check that they are clones under the
1220                  * lock (including re-checking that neither has been
1221                  * uncloned in the meantime).  It doesn't matter which
1222                  * order we take the locks because no other cpu could
1223                  * be trying to lock both of these tasks.
1224                  */
1225                 raw_spin_lock(&ctx->lock);
1226                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1227                 if (context_equiv(ctx, next_ctx)) {
1228                         /*
1229                          * XXX do we need a memory barrier of sorts
1230                          * wrt to rcu_dereference() of perf_event_ctxp
1231                          */
1232                         task->perf_event_ctxp = next_ctx;
1233                         next->perf_event_ctxp = ctx;
1234                         ctx->task = next;
1235                         next_ctx->task = task;
1236                         do_switch = 0;
1237
1238                         perf_event_sync_stat(ctx, next_ctx);
1239                 }
1240                 raw_spin_unlock(&next_ctx->lock);
1241                 raw_spin_unlock(&ctx->lock);
1242         }
1243         rcu_read_unlock();
1244
1245         if (do_switch) {
1246                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1247                 cpuctx->task_ctx = NULL;
1248         }
1249 }
1250
1251 static void task_ctx_sched_out(struct perf_event_context *ctx,
1252                                enum event_type_t event_type)
1253 {
1254         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1255
1256         if (!cpuctx->task_ctx)
1257                 return;
1258
1259         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1260                 return;
1261
1262         ctx_sched_out(ctx, cpuctx, event_type);
1263         cpuctx->task_ctx = NULL;
1264 }
1265
1266 /*
1267  * Called with IRQs disabled
1268  */
1269 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1270 {
1271         task_ctx_sched_out(ctx, EVENT_ALL);
1272 }
1273
1274 /*
1275  * Called with IRQs disabled
1276  */
1277 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1278                               enum event_type_t event_type)
1279 {
1280         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1281 }
1282
1283 static void
1284 ctx_pinned_sched_in(struct perf_event_context *ctx,
1285                     struct perf_cpu_context *cpuctx)
1286 {
1287         struct perf_event *event;
1288
1289         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1290                 if (event->state <= PERF_EVENT_STATE_OFF)
1291                         continue;
1292                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1293                         continue;
1294
1295                 if (group_can_go_on(event, cpuctx, 1))
1296                         group_sched_in(event, cpuctx, ctx);
1297
1298                 /*
1299                  * If this pinned group hasn't been scheduled,
1300                  * put it in error state.
1301                  */
1302                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1303                         update_group_times(event);
1304                         event->state = PERF_EVENT_STATE_ERROR;
1305                 }
1306         }
1307 }
1308
1309 static void
1310 ctx_flexible_sched_in(struct perf_event_context *ctx,
1311                       struct perf_cpu_context *cpuctx)
1312 {
1313         struct perf_event *event;
1314         int can_add_hw = 1;
1315
1316         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1317                 /* Ignore events in OFF or ERROR state */
1318                 if (event->state <= PERF_EVENT_STATE_OFF)
1319                         continue;
1320                 /*
1321                  * Listen to the 'cpu' scheduling filter constraint
1322                  * of events:
1323                  */
1324                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1325                         continue;
1326
1327                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1328                         if (group_sched_in(event, cpuctx, ctx))
1329                                 can_add_hw = 0;
1330                 }
1331         }
1332 }
1333
1334 static void
1335 ctx_sched_in(struct perf_event_context *ctx,
1336              struct perf_cpu_context *cpuctx,
1337              enum event_type_t event_type)
1338 {
1339         raw_spin_lock(&ctx->lock);
1340         ctx->is_active = 1;
1341         if (likely(!ctx->nr_events))
1342                 goto out;
1343
1344         ctx->timestamp = perf_clock();
1345
1346         /*
1347          * First go through the list and put on any pinned groups
1348          * in order to give them the best chance of going on.
1349          */
1350         if (event_type & EVENT_PINNED)
1351                 ctx_pinned_sched_in(ctx, cpuctx);
1352
1353         /* Then walk through the lower prio flexible groups */
1354         if (event_type & EVENT_FLEXIBLE)
1355                 ctx_flexible_sched_in(ctx, cpuctx);
1356
1357 out:
1358         raw_spin_unlock(&ctx->lock);
1359 }
1360
1361 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1362                              enum event_type_t event_type)
1363 {
1364         struct perf_event_context *ctx = &cpuctx->ctx;
1365
1366         ctx_sched_in(ctx, cpuctx, event_type);
1367 }
1368
1369 static void task_ctx_sched_in(struct task_struct *task,
1370                               enum event_type_t event_type)
1371 {
1372         struct perf_event_context *ctx = task->perf_event_ctxp;
1373         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1374
1375         if (likely(!ctx))
1376                 return;
1377         if (cpuctx->task_ctx == ctx)
1378                 return;
1379         ctx_sched_in(ctx, cpuctx, event_type);
1380         cpuctx->task_ctx = ctx;
1381 }
1382 /*
1383  * Called from scheduler to add the events of the current task
1384  * with interrupts disabled.
1385  *
1386  * We restore the event value and then enable it.
1387  *
1388  * This does not protect us against NMI, but enable()
1389  * sets the enabled bit in the control field of event _before_
1390  * accessing the event control register. If a NMI hits, then it will
1391  * keep the event running.
1392  */
1393 void perf_event_task_sched_in(struct task_struct *task)
1394 {
1395         struct perf_event_context *ctx = task->perf_event_ctxp;
1396         struct perf_cpu_context *cpuctx;
1397
1398         if (likely(!ctx))
1399                 return;
1400
1401         cpuctx = __get_cpu_context(ctx);
1402         if (cpuctx->task_ctx == ctx)
1403                 return;
1404
1405         /*
1406          * We want to keep the following priority order:
1407          * cpu pinned (that don't need to move), task pinned,
1408          * cpu flexible, task flexible.
1409          */
1410         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1411
1412         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1413         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1414         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1415
1416         cpuctx->task_ctx = ctx;
1417
1418         /*
1419          * Since these rotations are per-cpu, we need to ensure the
1420          * cpu-context we got scheduled on is actually rotating.
1421          */
1422         perf_pmu_rotate_start(ctx->pmu);
1423 }
1424
1425 #define MAX_INTERRUPTS (~0ULL)
1426
1427 static void perf_log_throttle(struct perf_event *event, int enable);
1428
1429 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1430 {
1431         u64 frequency = event->attr.sample_freq;
1432         u64 sec = NSEC_PER_SEC;
1433         u64 divisor, dividend;
1434
1435         int count_fls, nsec_fls, frequency_fls, sec_fls;
1436
1437         count_fls = fls64(count);
1438         nsec_fls = fls64(nsec);
1439         frequency_fls = fls64(frequency);
1440         sec_fls = 30;
1441
1442         /*
1443          * We got @count in @nsec, with a target of sample_freq HZ
1444          * the target period becomes:
1445          *
1446          *             @count * 10^9
1447          * period = -------------------
1448          *          @nsec * sample_freq
1449          *
1450          */
1451
1452         /*
1453          * Reduce accuracy by one bit such that @a and @b converge
1454          * to a similar magnitude.
1455          */
1456 #define REDUCE_FLS(a, b)                \
1457 do {                                    \
1458         if (a##_fls > b##_fls) {        \
1459                 a >>= 1;                \
1460                 a##_fls--;              \
1461         } else {                        \
1462                 b >>= 1;                \
1463                 b##_fls--;              \
1464         }                               \
1465 } while (0)
1466
1467         /*
1468          * Reduce accuracy until either term fits in a u64, then proceed with
1469          * the other, so that finally we can do a u64/u64 division.
1470          */
1471         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1472                 REDUCE_FLS(nsec, frequency);
1473                 REDUCE_FLS(sec, count);
1474         }
1475
1476         if (count_fls + sec_fls > 64) {
1477                 divisor = nsec * frequency;
1478
1479                 while (count_fls + sec_fls > 64) {
1480                         REDUCE_FLS(count, sec);
1481                         divisor >>= 1;
1482                 }
1483
1484                 dividend = count * sec;
1485         } else {
1486                 dividend = count * sec;
1487
1488                 while (nsec_fls + frequency_fls > 64) {
1489                         REDUCE_FLS(nsec, frequency);
1490                         dividend >>= 1;
1491                 }
1492
1493                 divisor = nsec * frequency;
1494         }
1495
1496         if (!divisor)
1497                 return dividend;
1498
1499         return div64_u64(dividend, divisor);
1500 }
1501
1502 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1503 {
1504         struct hw_perf_event *hwc = &event->hw;
1505         s64 period, sample_period;
1506         s64 delta;
1507
1508         period = perf_calculate_period(event, nsec, count);
1509
1510         delta = (s64)(period - hwc->sample_period);
1511         delta = (delta + 7) / 8; /* low pass filter */
1512
1513         sample_period = hwc->sample_period + delta;
1514
1515         if (!sample_period)
1516                 sample_period = 1;
1517
1518         hwc->sample_period = sample_period;
1519
1520         if (local64_read(&hwc->period_left) > 8*sample_period) {
1521                 event->pmu->stop(event, PERF_EF_UPDATE);
1522                 local64_set(&hwc->period_left, 0);
1523                 event->pmu->start(event, PERF_EF_RELOAD);
1524         }
1525 }
1526
1527 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1528 {
1529         struct perf_event *event;
1530         struct hw_perf_event *hwc;
1531         u64 interrupts, now;
1532         s64 delta;
1533
1534         raw_spin_lock(&ctx->lock);
1535         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1536                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1537                         continue;
1538
1539                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1540                         continue;
1541
1542                 hwc = &event->hw;
1543
1544                 interrupts = hwc->interrupts;
1545                 hwc->interrupts = 0;
1546
1547                 /*
1548                  * unthrottle events on the tick
1549                  */
1550                 if (interrupts == MAX_INTERRUPTS) {
1551                         perf_log_throttle(event, 1);
1552                         event->pmu->start(event, 0);
1553                 }
1554
1555                 if (!event->attr.freq || !event->attr.sample_freq)
1556                         continue;
1557
1558                 event->pmu->read(event);
1559                 now = local64_read(&event->count);
1560                 delta = now - hwc->freq_count_stamp;
1561                 hwc->freq_count_stamp = now;
1562
1563                 if (delta > 0)
1564                         perf_adjust_period(event, period, delta);
1565         }
1566         raw_spin_unlock(&ctx->lock);
1567 }
1568
1569 /*
1570  * Round-robin a context's events:
1571  */
1572 static void rotate_ctx(struct perf_event_context *ctx)
1573 {
1574         raw_spin_lock(&ctx->lock);
1575
1576         /* Rotate the first entry last of non-pinned groups */
1577         list_rotate_left(&ctx->flexible_groups);
1578
1579         raw_spin_unlock(&ctx->lock);
1580 }
1581
1582 /*
1583  * Cannot race with ->pmu_rotate_start() because this is ran from hardirq
1584  * context, and ->pmu_rotate_start() is called with irqs disabled (both are
1585  * cpu affine, so there are no SMP races).
1586  */
1587 static enum hrtimer_restart perf_event_context_tick(struct hrtimer *timer)
1588 {
1589         enum hrtimer_restart restart = HRTIMER_NORESTART;
1590         struct perf_cpu_context *cpuctx;
1591         struct perf_event_context *ctx;
1592         int rotate = 0;
1593
1594         cpuctx = container_of(timer, struct perf_cpu_context, timer);
1595
1596         if (cpuctx->ctx.nr_events) {
1597                 restart = HRTIMER_RESTART;
1598                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1599                         rotate = 1;
1600         }
1601
1602         ctx = current->perf_event_ctxp;
1603         if (ctx && ctx->nr_events) {
1604                 restart = HRTIMER_RESTART;
1605                 if (ctx->nr_events != ctx->nr_active)
1606                         rotate = 1;
1607         }
1608
1609         perf_ctx_adjust_freq(&cpuctx->ctx, cpuctx->timer_interval);
1610         if (ctx)
1611                 perf_ctx_adjust_freq(ctx, cpuctx->timer_interval);
1612
1613         if (!rotate)
1614                 goto done;
1615
1616         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1617         if (ctx)
1618                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1619
1620         rotate_ctx(&cpuctx->ctx);
1621         if (ctx)
1622                 rotate_ctx(ctx);
1623
1624         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1625         if (ctx)
1626                 task_ctx_sched_in(current, EVENT_FLEXIBLE);
1627
1628 done:
1629         hrtimer_forward_now(timer, ns_to_ktime(cpuctx->timer_interval));
1630
1631         return restart;
1632 }
1633
1634 static int event_enable_on_exec(struct perf_event *event,
1635                                 struct perf_event_context *ctx)
1636 {
1637         if (!event->attr.enable_on_exec)
1638                 return 0;
1639
1640         event->attr.enable_on_exec = 0;
1641         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1642                 return 0;
1643
1644         __perf_event_mark_enabled(event, ctx);
1645
1646         return 1;
1647 }
1648
1649 /*
1650  * Enable all of a task's events that have been marked enable-on-exec.
1651  * This expects task == current.
1652  */
1653 static void perf_event_enable_on_exec(struct task_struct *task)
1654 {
1655         struct perf_event_context *ctx;
1656         struct perf_event *event;
1657         unsigned long flags;
1658         int enabled = 0;
1659         int ret;
1660
1661         local_irq_save(flags);
1662         ctx = task->perf_event_ctxp;
1663         if (!ctx || !ctx->nr_events)
1664                 goto out;
1665
1666         __perf_event_task_sched_out(ctx);
1667
1668         raw_spin_lock(&ctx->lock);
1669
1670         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1671                 ret = event_enable_on_exec(event, ctx);
1672                 if (ret)
1673                         enabled = 1;
1674         }
1675
1676         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1677                 ret = event_enable_on_exec(event, ctx);
1678                 if (ret)
1679                         enabled = 1;
1680         }
1681
1682         /*
1683          * Unclone this context if we enabled any event.
1684          */
1685         if (enabled)
1686                 unclone_ctx(ctx);
1687
1688         raw_spin_unlock(&ctx->lock);
1689
1690         perf_event_task_sched_in(task);
1691 out:
1692         local_irq_restore(flags);
1693 }
1694
1695 /*
1696  * Cross CPU call to read the hardware event
1697  */
1698 static void __perf_event_read(void *info)
1699 {
1700         struct perf_event *event = info;
1701         struct perf_event_context *ctx = event->ctx;
1702         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1703
1704         /*
1705          * If this is a task context, we need to check whether it is
1706          * the current task context of this cpu.  If not it has been
1707          * scheduled out before the smp call arrived.  In that case
1708          * event->count would have been updated to a recent sample
1709          * when the event was scheduled out.
1710          */
1711         if (ctx->task && cpuctx->task_ctx != ctx)
1712                 return;
1713
1714         raw_spin_lock(&ctx->lock);
1715         update_context_time(ctx);
1716         update_event_times(event);
1717         raw_spin_unlock(&ctx->lock);
1718
1719         event->pmu->read(event);
1720 }
1721
1722 static inline u64 perf_event_count(struct perf_event *event)
1723 {
1724         return local64_read(&event->count) + atomic64_read(&event->child_count);
1725 }
1726
1727 static u64 perf_event_read(struct perf_event *event)
1728 {
1729         /*
1730          * If event is enabled and currently active on a CPU, update the
1731          * value in the event structure:
1732          */
1733         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1734                 smp_call_function_single(event->oncpu,
1735                                          __perf_event_read, event, 1);
1736         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1737                 struct perf_event_context *ctx = event->ctx;
1738                 unsigned long flags;
1739
1740                 raw_spin_lock_irqsave(&ctx->lock, flags);
1741                 update_context_time(ctx);
1742                 update_event_times(event);
1743                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1744         }
1745
1746         return perf_event_count(event);
1747 }
1748
1749 /*
1750  * Callchain support
1751  */
1752
1753 struct callchain_cpus_entries {
1754         struct rcu_head                 rcu_head;
1755         struct perf_callchain_entry     *cpu_entries[0];
1756 };
1757
1758 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1759 static atomic_t nr_callchain_events;
1760 static DEFINE_MUTEX(callchain_mutex);
1761 struct callchain_cpus_entries *callchain_cpus_entries;
1762
1763
1764 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1765                                   struct pt_regs *regs)
1766 {
1767 }
1768
1769 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1770                                 struct pt_regs *regs)
1771 {
1772 }
1773
1774 static void release_callchain_buffers_rcu(struct rcu_head *head)
1775 {
1776         struct callchain_cpus_entries *entries;
1777         int cpu;
1778
1779         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1780
1781         for_each_possible_cpu(cpu)
1782                 kfree(entries->cpu_entries[cpu]);
1783
1784         kfree(entries);
1785 }
1786
1787 static void release_callchain_buffers(void)
1788 {
1789         struct callchain_cpus_entries *entries;
1790
1791         entries = callchain_cpus_entries;
1792         rcu_assign_pointer(callchain_cpus_entries, NULL);
1793         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1794 }
1795
1796 static int alloc_callchain_buffers(void)
1797 {
1798         int cpu;
1799         int size;
1800         struct callchain_cpus_entries *entries;
1801
1802         /*
1803          * We can't use the percpu allocation API for data that can be
1804          * accessed from NMI. Use a temporary manual per cpu allocation
1805          * until that gets sorted out.
1806          */
1807         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1808                 num_possible_cpus();
1809
1810         entries = kzalloc(size, GFP_KERNEL);
1811         if (!entries)
1812                 return -ENOMEM;
1813
1814         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1815
1816         for_each_possible_cpu(cpu) {
1817                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1818                                                          cpu_to_node(cpu));
1819                 if (!entries->cpu_entries[cpu])
1820                         goto fail;
1821         }
1822
1823         rcu_assign_pointer(callchain_cpus_entries, entries);
1824
1825         return 0;
1826
1827 fail:
1828         for_each_possible_cpu(cpu)
1829                 kfree(entries->cpu_entries[cpu]);
1830         kfree(entries);
1831
1832         return -ENOMEM;
1833 }
1834
1835 static int get_callchain_buffers(void)
1836 {
1837         int err = 0;
1838         int count;
1839
1840         mutex_lock(&callchain_mutex);
1841
1842         count = atomic_inc_return(&nr_callchain_events);
1843         if (WARN_ON_ONCE(count < 1)) {
1844                 err = -EINVAL;
1845                 goto exit;
1846         }
1847
1848         if (count > 1) {
1849                 /* If the allocation failed, give up */
1850                 if (!callchain_cpus_entries)
1851                         err = -ENOMEM;
1852                 goto exit;
1853         }
1854
1855         err = alloc_callchain_buffers();
1856         if (err)
1857                 release_callchain_buffers();
1858 exit:
1859         mutex_unlock(&callchain_mutex);
1860
1861         return err;
1862 }
1863
1864 static void put_callchain_buffers(void)
1865 {
1866         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1867                 release_callchain_buffers();
1868                 mutex_unlock(&callchain_mutex);
1869         }
1870 }
1871
1872 static int get_recursion_context(int *recursion)
1873 {
1874         int rctx;
1875
1876         if (in_nmi())
1877                 rctx = 3;
1878         else if (in_irq())
1879                 rctx = 2;
1880         else if (in_softirq())
1881                 rctx = 1;
1882         else
1883                 rctx = 0;
1884
1885         if (recursion[rctx])
1886                 return -1;
1887
1888         recursion[rctx]++;
1889         barrier();
1890
1891         return rctx;
1892 }
1893
1894 static inline void put_recursion_context(int *recursion, int rctx)
1895 {
1896         barrier();
1897         recursion[rctx]--;
1898 }
1899
1900 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1901 {
1902         int cpu;
1903         struct callchain_cpus_entries *entries;
1904
1905         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1906         if (*rctx == -1)
1907                 return NULL;
1908
1909         entries = rcu_dereference(callchain_cpus_entries);
1910         if (!entries)
1911                 return NULL;
1912
1913         cpu = smp_processor_id();
1914
1915         return &entries->cpu_entries[cpu][*rctx];
1916 }
1917
1918 static void
1919 put_callchain_entry(int rctx)
1920 {
1921         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1922 }
1923
1924 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1925 {
1926         int rctx;
1927         struct perf_callchain_entry *entry;
1928
1929
1930         entry = get_callchain_entry(&rctx);
1931         if (rctx == -1)
1932                 return NULL;
1933
1934         if (!entry)
1935                 goto exit_put;
1936
1937         entry->nr = 0;
1938
1939         if (!user_mode(regs)) {
1940                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
1941                 perf_callchain_kernel(entry, regs);
1942                 if (current->mm)
1943                         regs = task_pt_regs(current);
1944                 else
1945                         regs = NULL;
1946         }
1947
1948         if (regs) {
1949                 perf_callchain_store(entry, PERF_CONTEXT_USER);
1950                 perf_callchain_user(entry, regs);
1951         }
1952
1953 exit_put:
1954         put_callchain_entry(rctx);
1955
1956         return entry;
1957 }
1958
1959 /*
1960  * Initialize the perf_event context in a task_struct:
1961  */
1962 static void __perf_event_init_context(struct perf_event_context *ctx)
1963 {
1964         raw_spin_lock_init(&ctx->lock);
1965         mutex_init(&ctx->mutex);
1966         INIT_LIST_HEAD(&ctx->pinned_groups);
1967         INIT_LIST_HEAD(&ctx->flexible_groups);
1968         INIT_LIST_HEAD(&ctx->event_list);
1969         atomic_set(&ctx->refcount, 1);
1970 }
1971
1972 static struct perf_event_context *
1973 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
1974 {
1975         struct perf_event_context *ctx;
1976
1977         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1978         if (!ctx)
1979                 return NULL;
1980
1981         __perf_event_init_context(ctx);
1982         if (task) {
1983                 ctx->task = task;
1984                 get_task_struct(task);
1985         }
1986         ctx->pmu = pmu;
1987
1988         return ctx;
1989 }
1990
1991 static struct perf_event_context *
1992 find_get_context(struct pmu *pmu, pid_t pid, int cpu)
1993 {
1994         struct perf_event_context *ctx;
1995         struct perf_cpu_context *cpuctx;
1996         struct task_struct *task;
1997         unsigned long flags;
1998         int err;
1999
2000         if (pid == -1 && cpu != -1) {
2001                 /* Must be root to operate on a CPU event: */
2002                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2003                         return ERR_PTR(-EACCES);
2004
2005                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2006                         return ERR_PTR(-EINVAL);
2007
2008                 /*
2009                  * We could be clever and allow to attach a event to an
2010                  * offline CPU and activate it when the CPU comes up, but
2011                  * that's for later.
2012                  */
2013                 if (!cpu_online(cpu))
2014                         return ERR_PTR(-ENODEV);
2015
2016                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2017                 ctx = &cpuctx->ctx;
2018                 get_ctx(ctx);
2019
2020                 return ctx;
2021         }
2022
2023         rcu_read_lock();
2024         if (!pid)
2025                 task = current;
2026         else
2027                 task = find_task_by_vpid(pid);
2028         if (task)
2029                 get_task_struct(task);
2030         rcu_read_unlock();
2031
2032         if (!task)
2033                 return ERR_PTR(-ESRCH);
2034
2035         /*
2036          * Can't attach events to a dying task.
2037          */
2038         err = -ESRCH;
2039         if (task->flags & PF_EXITING)
2040                 goto errout;
2041
2042         /* Reuse ptrace permission checks for now. */
2043         err = -EACCES;
2044         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2045                 goto errout;
2046
2047 retry:
2048         ctx = perf_lock_task_context(task, &flags);
2049         if (ctx) {
2050                 unclone_ctx(ctx);
2051                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2052         }
2053
2054         if (!ctx) {
2055                 ctx = alloc_perf_context(pmu, task);
2056                 err = -ENOMEM;
2057                 if (!ctx)
2058                         goto errout;
2059
2060                 get_ctx(ctx);
2061
2062                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
2063                         /*
2064                          * We raced with some other task; use
2065                          * the context they set.
2066                          */
2067                         put_task_struct(task);
2068                         kfree(ctx);
2069                         goto retry;
2070                 }
2071         }
2072
2073         put_task_struct(task);
2074         return ctx;
2075
2076 errout:
2077         put_task_struct(task);
2078         return ERR_PTR(err);
2079 }
2080
2081 static void perf_event_free_filter(struct perf_event *event);
2082
2083 static void free_event_rcu(struct rcu_head *head)
2084 {
2085         struct perf_event *event;
2086
2087         event = container_of(head, struct perf_event, rcu_head);
2088         if (event->ns)
2089                 put_pid_ns(event->ns);
2090         perf_event_free_filter(event);
2091         kfree(event);
2092 }
2093
2094 static void perf_pending_sync(struct perf_event *event);
2095 static void perf_buffer_put(struct perf_buffer *buffer);
2096
2097 static void free_event(struct perf_event *event)
2098 {
2099         perf_pending_sync(event);
2100
2101         if (!event->parent) {
2102                 atomic_dec(&nr_events);
2103                 if (event->attr.mmap || event->attr.mmap_data)
2104                         atomic_dec(&nr_mmap_events);
2105                 if (event->attr.comm)
2106                         atomic_dec(&nr_comm_events);
2107                 if (event->attr.task)
2108                         atomic_dec(&nr_task_events);
2109                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2110                         put_callchain_buffers();
2111         }
2112
2113         if (event->buffer) {
2114                 perf_buffer_put(event->buffer);
2115                 event->buffer = NULL;
2116         }
2117
2118         if (event->destroy)
2119                 event->destroy(event);
2120
2121         put_ctx(event->ctx);
2122         call_rcu(&event->rcu_head, free_event_rcu);
2123 }
2124
2125 int perf_event_release_kernel(struct perf_event *event)
2126 {
2127         struct perf_event_context *ctx = event->ctx;
2128
2129         /*
2130          * Remove from the PMU, can't get re-enabled since we got
2131          * here because the last ref went.
2132          */
2133         perf_event_disable(event);
2134
2135         WARN_ON_ONCE(ctx->parent_ctx);
2136         /*
2137          * There are two ways this annotation is useful:
2138          *
2139          *  1) there is a lock recursion from perf_event_exit_task
2140          *     see the comment there.
2141          *
2142          *  2) there is a lock-inversion with mmap_sem through
2143          *     perf_event_read_group(), which takes faults while
2144          *     holding ctx->mutex, however this is called after
2145          *     the last filedesc died, so there is no possibility
2146          *     to trigger the AB-BA case.
2147          */
2148         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2149         raw_spin_lock_irq(&ctx->lock);
2150         perf_group_detach(event);
2151         list_del_event(event, ctx);
2152         raw_spin_unlock_irq(&ctx->lock);
2153         mutex_unlock(&ctx->mutex);
2154
2155         mutex_lock(&event->owner->perf_event_mutex);
2156         list_del_init(&event->owner_entry);
2157         mutex_unlock(&event->owner->perf_event_mutex);
2158         put_task_struct(event->owner);
2159
2160         free_event(event);
2161
2162         return 0;
2163 }
2164 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2165
2166 /*
2167  * Called when the last reference to the file is gone.
2168  */
2169 static int perf_release(struct inode *inode, struct file *file)
2170 {
2171         struct perf_event *event = file->private_data;
2172
2173         file->private_data = NULL;
2174
2175         return perf_event_release_kernel(event);
2176 }
2177
2178 static int perf_event_read_size(struct perf_event *event)
2179 {
2180         int entry = sizeof(u64); /* value */
2181         int size = 0;
2182         int nr = 1;
2183
2184         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2185                 size += sizeof(u64);
2186
2187         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2188                 size += sizeof(u64);
2189
2190         if (event->attr.read_format & PERF_FORMAT_ID)
2191                 entry += sizeof(u64);
2192
2193         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2194                 nr += event->group_leader->nr_siblings;
2195                 size += sizeof(u64);
2196         }
2197
2198         size += entry * nr;
2199
2200         return size;
2201 }
2202
2203 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2204 {
2205         struct perf_event *child;
2206         u64 total = 0;
2207
2208         *enabled = 0;
2209         *running = 0;
2210
2211         mutex_lock(&event->child_mutex);
2212         total += perf_event_read(event);
2213         *enabled += event->total_time_enabled +
2214                         atomic64_read(&event->child_total_time_enabled);
2215         *running += event->total_time_running +
2216                         atomic64_read(&event->child_total_time_running);
2217
2218         list_for_each_entry(child, &event->child_list, child_list) {
2219                 total += perf_event_read(child);
2220                 *enabled += child->total_time_enabled;
2221                 *running += child->total_time_running;
2222         }
2223         mutex_unlock(&event->child_mutex);
2224
2225         return total;
2226 }
2227 EXPORT_SYMBOL_GPL(perf_event_read_value);
2228
2229 static int perf_event_read_group(struct perf_event *event,
2230                                    u64 read_format, char __user *buf)
2231 {
2232         struct perf_event *leader = event->group_leader, *sub;
2233         int n = 0, size = 0, ret = -EFAULT;
2234         struct perf_event_context *ctx = leader->ctx;
2235         u64 values[5];
2236         u64 count, enabled, running;
2237
2238         mutex_lock(&ctx->mutex);
2239         count = perf_event_read_value(leader, &enabled, &running);
2240
2241         values[n++] = 1 + leader->nr_siblings;
2242         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2243                 values[n++] = enabled;
2244         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2245                 values[n++] = running;
2246         values[n++] = count;
2247         if (read_format & PERF_FORMAT_ID)
2248                 values[n++] = primary_event_id(leader);
2249
2250         size = n * sizeof(u64);
2251
2252         if (copy_to_user(buf, values, size))
2253                 goto unlock;
2254
2255         ret = size;
2256
2257         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2258                 n = 0;
2259
2260                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2261                 if (read_format & PERF_FORMAT_ID)
2262                         values[n++] = primary_event_id(sub);
2263
2264                 size = n * sizeof(u64);
2265
2266                 if (copy_to_user(buf + ret, values, size)) {
2267                         ret = -EFAULT;
2268                         goto unlock;
2269                 }
2270
2271                 ret += size;
2272         }
2273 unlock:
2274         mutex_unlock(&ctx->mutex);
2275
2276         return ret;
2277 }
2278
2279 static int perf_event_read_one(struct perf_event *event,
2280                                  u64 read_format, char __user *buf)
2281 {
2282         u64 enabled, running;
2283         u64 values[4];
2284         int n = 0;
2285
2286         values[n++] = perf_event_read_value(event, &enabled, &running);
2287         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2288                 values[n++] = enabled;
2289         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2290                 values[n++] = running;
2291         if (read_format & PERF_FORMAT_ID)
2292                 values[n++] = primary_event_id(event);
2293
2294         if (copy_to_user(buf, values, n * sizeof(u64)))
2295                 return -EFAULT;
2296
2297         return n * sizeof(u64);
2298 }
2299
2300 /*
2301  * Read the performance event - simple non blocking version for now
2302  */
2303 static ssize_t
2304 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2305 {
2306         u64 read_format = event->attr.read_format;
2307         int ret;
2308
2309         /*
2310          * Return end-of-file for a read on a event that is in
2311          * error state (i.e. because it was pinned but it couldn't be
2312          * scheduled on to the CPU at some point).
2313          */
2314         if (event->state == PERF_EVENT_STATE_ERROR)
2315                 return 0;
2316
2317         if (count < perf_event_read_size(event))
2318                 return -ENOSPC;
2319
2320         WARN_ON_ONCE(event->ctx->parent_ctx);
2321         if (read_format & PERF_FORMAT_GROUP)
2322                 ret = perf_event_read_group(event, read_format, buf);
2323         else
2324                 ret = perf_event_read_one(event, read_format, buf);
2325
2326         return ret;
2327 }
2328
2329 static ssize_t
2330 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2331 {
2332         struct perf_event *event = file->private_data;
2333
2334         return perf_read_hw(event, buf, count);
2335 }
2336
2337 static unsigned int perf_poll(struct file *file, poll_table *wait)
2338 {
2339         struct perf_event *event = file->private_data;
2340         struct perf_buffer *buffer;
2341         unsigned int events = POLL_HUP;
2342
2343         rcu_read_lock();
2344         buffer = rcu_dereference(event->buffer);
2345         if (buffer)
2346                 events = atomic_xchg(&buffer->poll, 0);
2347         rcu_read_unlock();
2348
2349         poll_wait(file, &event->waitq, wait);
2350
2351         return events;
2352 }
2353
2354 static void perf_event_reset(struct perf_event *event)
2355 {
2356         (void)perf_event_read(event);
2357         local64_set(&event->count, 0);
2358         perf_event_update_userpage(event);
2359 }
2360
2361 /*
2362  * Holding the top-level event's child_mutex means that any
2363  * descendant process that has inherited this event will block
2364  * in sync_child_event if it goes to exit, thus satisfying the
2365  * task existence requirements of perf_event_enable/disable.
2366  */
2367 static void perf_event_for_each_child(struct perf_event *event,
2368                                         void (*func)(struct perf_event *))
2369 {
2370         struct perf_event *child;
2371
2372         WARN_ON_ONCE(event->ctx->parent_ctx);
2373         mutex_lock(&event->child_mutex);
2374         func(event);
2375         list_for_each_entry(child, &event->child_list, child_list)
2376                 func(child);
2377         mutex_unlock(&event->child_mutex);
2378 }
2379
2380 static void perf_event_for_each(struct perf_event *event,
2381                                   void (*func)(struct perf_event *))
2382 {
2383         struct perf_event_context *ctx = event->ctx;
2384         struct perf_event *sibling;
2385
2386         WARN_ON_ONCE(ctx->parent_ctx);
2387         mutex_lock(&ctx->mutex);
2388         event = event->group_leader;
2389
2390         perf_event_for_each_child(event, func);
2391         func(event);
2392         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2393                 perf_event_for_each_child(event, func);
2394         mutex_unlock(&ctx->mutex);
2395 }
2396
2397 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2398 {
2399         struct perf_event_context *ctx = event->ctx;
2400         unsigned long size;
2401         int ret = 0;
2402         u64 value;
2403
2404         if (!event->attr.sample_period)
2405                 return -EINVAL;
2406
2407         size = copy_from_user(&value, arg, sizeof(value));
2408         if (size != sizeof(value))
2409                 return -EFAULT;
2410
2411         if (!value)
2412                 return -EINVAL;
2413
2414         raw_spin_lock_irq(&ctx->lock);
2415         if (event->attr.freq) {
2416                 if (value > sysctl_perf_event_sample_rate) {
2417                         ret = -EINVAL;
2418                         goto unlock;
2419                 }
2420
2421                 event->attr.sample_freq = value;
2422         } else {
2423                 event->attr.sample_period = value;
2424                 event->hw.sample_period = value;
2425         }
2426 unlock:
2427         raw_spin_unlock_irq(&ctx->lock);
2428
2429         return ret;
2430 }
2431
2432 static const struct file_operations perf_fops;
2433
2434 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2435 {
2436         struct file *file;
2437
2438         file = fget_light(fd, fput_needed);
2439         if (!file)
2440                 return ERR_PTR(-EBADF);
2441
2442         if (file->f_op != &perf_fops) {
2443                 fput_light(file, *fput_needed);
2444                 *fput_needed = 0;
2445                 return ERR_PTR(-EBADF);
2446         }
2447
2448         return file->private_data;
2449 }
2450
2451 static int perf_event_set_output(struct perf_event *event,
2452                                  struct perf_event *output_event);
2453 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2454
2455 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2456 {
2457         struct perf_event *event = file->private_data;
2458         void (*func)(struct perf_event *);
2459         u32 flags = arg;
2460
2461         switch (cmd) {
2462         case PERF_EVENT_IOC_ENABLE:
2463                 func = perf_event_enable;
2464                 break;
2465         case PERF_EVENT_IOC_DISABLE:
2466                 func = perf_event_disable;
2467                 break;
2468         case PERF_EVENT_IOC_RESET:
2469                 func = perf_event_reset;
2470                 break;
2471
2472         case PERF_EVENT_IOC_REFRESH:
2473                 return perf_event_refresh(event, arg);
2474
2475         case PERF_EVENT_IOC_PERIOD:
2476                 return perf_event_period(event, (u64 __user *)arg);
2477
2478         case PERF_EVENT_IOC_SET_OUTPUT:
2479         {
2480                 struct perf_event *output_event = NULL;
2481                 int fput_needed = 0;
2482                 int ret;
2483
2484                 if (arg != -1) {
2485                         output_event = perf_fget_light(arg, &fput_needed);
2486                         if (IS_ERR(output_event))
2487                                 return PTR_ERR(output_event);
2488                 }
2489
2490                 ret = perf_event_set_output(event, output_event);
2491                 if (output_event)
2492                         fput_light(output_event->filp, fput_needed);
2493
2494                 return ret;
2495         }
2496
2497         case PERF_EVENT_IOC_SET_FILTER:
2498                 return perf_event_set_filter(event, (void __user *)arg);
2499
2500         default:
2501                 return -ENOTTY;
2502         }
2503
2504         if (flags & PERF_IOC_FLAG_GROUP)
2505                 perf_event_for_each(event, func);
2506         else
2507                 perf_event_for_each_child(event, func);
2508
2509         return 0;
2510 }
2511
2512 int perf_event_task_enable(void)
2513 {
2514         struct perf_event *event;
2515
2516         mutex_lock(&current->perf_event_mutex);
2517         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2518                 perf_event_for_each_child(event, perf_event_enable);
2519         mutex_unlock(&current->perf_event_mutex);
2520
2521         return 0;
2522 }
2523
2524 int perf_event_task_disable(void)
2525 {
2526         struct perf_event *event;
2527
2528         mutex_lock(&current->perf_event_mutex);
2529         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2530                 perf_event_for_each_child(event, perf_event_disable);
2531         mutex_unlock(&current->perf_event_mutex);
2532
2533         return 0;
2534 }
2535
2536 #ifndef PERF_EVENT_INDEX_OFFSET
2537 # define PERF_EVENT_INDEX_OFFSET 0
2538 #endif
2539
2540 static int perf_event_index(struct perf_event *event)
2541 {
2542         if (event->hw.state & PERF_HES_STOPPED)
2543                 return 0;
2544
2545         if (event->state != PERF_EVENT_STATE_ACTIVE)
2546                 return 0;
2547
2548         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2549 }
2550
2551 /*
2552  * Callers need to ensure there can be no nesting of this function, otherwise
2553  * the seqlock logic goes bad. We can not serialize this because the arch
2554  * code calls this from NMI context.
2555  */
2556 void perf_event_update_userpage(struct perf_event *event)
2557 {
2558         struct perf_event_mmap_page *userpg;
2559         struct perf_buffer *buffer;
2560
2561         rcu_read_lock();
2562         buffer = rcu_dereference(event->buffer);
2563         if (!buffer)
2564                 goto unlock;
2565
2566         userpg = buffer->user_page;
2567
2568         /*
2569          * Disable preemption so as to not let the corresponding user-space
2570          * spin too long if we get preempted.
2571          */
2572         preempt_disable();
2573         ++userpg->lock;
2574         barrier();
2575         userpg->index = perf_event_index(event);
2576         userpg->offset = perf_event_count(event);
2577         if (event->state == PERF_EVENT_STATE_ACTIVE)
2578                 userpg->offset -= local64_read(&event->hw.prev_count);
2579
2580         userpg->time_enabled = event->total_time_enabled +
2581                         atomic64_read(&event->child_total_time_enabled);
2582
2583         userpg->time_running = event->total_time_running +
2584                         atomic64_read(&event->child_total_time_running);
2585
2586         barrier();
2587         ++userpg->lock;
2588         preempt_enable();
2589 unlock:
2590         rcu_read_unlock();
2591 }
2592
2593 static unsigned long perf_data_size(struct perf_buffer *buffer);
2594
2595 static void
2596 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2597 {
2598         long max_size = perf_data_size(buffer);
2599
2600         if (watermark)
2601                 buffer->watermark = min(max_size, watermark);
2602
2603         if (!buffer->watermark)
2604                 buffer->watermark = max_size / 2;
2605
2606         if (flags & PERF_BUFFER_WRITABLE)
2607                 buffer->writable = 1;
2608
2609         atomic_set(&buffer->refcount, 1);
2610 }
2611
2612 #ifndef CONFIG_PERF_USE_VMALLOC
2613
2614 /*
2615  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2616  */
2617
2618 static struct page *
2619 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2620 {
2621         if (pgoff > buffer->nr_pages)
2622                 return NULL;
2623
2624         if (pgoff == 0)
2625                 return virt_to_page(buffer->user_page);
2626
2627         return virt_to_page(buffer->data_pages[pgoff - 1]);
2628 }
2629
2630 static void *perf_mmap_alloc_page(int cpu)
2631 {
2632         struct page *page;
2633         int node;
2634
2635         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2636         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2637         if (!page)
2638                 return NULL;
2639
2640         return page_address(page);
2641 }
2642
2643 static struct perf_buffer *
2644 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2645 {
2646         struct perf_buffer *buffer;
2647         unsigned long size;
2648         int i;
2649
2650         size = sizeof(struct perf_buffer);
2651         size += nr_pages * sizeof(void *);
2652
2653         buffer = kzalloc(size, GFP_KERNEL);
2654         if (!buffer)
2655                 goto fail;
2656
2657         buffer->user_page = perf_mmap_alloc_page(cpu);
2658         if (!buffer->user_page)
2659                 goto fail_user_page;
2660
2661         for (i = 0; i < nr_pages; i++) {
2662                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2663                 if (!buffer->data_pages[i])
2664                         goto fail_data_pages;
2665         }
2666
2667         buffer->nr_pages = nr_pages;
2668
2669         perf_buffer_init(buffer, watermark, flags);
2670
2671         return buffer;
2672
2673 fail_data_pages:
2674         for (i--; i >= 0; i--)
2675                 free_page((unsigned long)buffer->data_pages[i]);
2676
2677         free_page((unsigned long)buffer->user_page);
2678
2679 fail_user_page:
2680         kfree(buffer);
2681
2682 fail:
2683         return NULL;
2684 }
2685
2686 static void perf_mmap_free_page(unsigned long addr)
2687 {
2688         struct page *page = virt_to_page((void *)addr);
2689
2690         page->mapping = NULL;
2691         __free_page(page);
2692 }
2693
2694 static void perf_buffer_free(struct perf_buffer *buffer)
2695 {
2696         int i;
2697
2698         perf_mmap_free_page((unsigned long)buffer->user_page);
2699         for (i = 0; i < buffer->nr_pages; i++)
2700                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2701         kfree(buffer);
2702 }
2703
2704 static inline int page_order(struct perf_buffer *buffer)
2705 {
2706         return 0;
2707 }
2708
2709 #else
2710
2711 /*
2712  * Back perf_mmap() with vmalloc memory.
2713  *
2714  * Required for architectures that have d-cache aliasing issues.
2715  */
2716
2717 static inline int page_order(struct perf_buffer *buffer)
2718 {
2719         return buffer->page_order;
2720 }
2721
2722 static struct page *
2723 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2724 {
2725         if (pgoff > (1UL << page_order(buffer)))
2726                 return NULL;
2727
2728         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2729 }
2730
2731 static void perf_mmap_unmark_page(void *addr)
2732 {
2733         struct page *page = vmalloc_to_page(addr);
2734
2735         page->mapping = NULL;
2736 }
2737
2738 static void perf_buffer_free_work(struct work_struct *work)
2739 {
2740         struct perf_buffer *buffer;
2741         void *base;
2742         int i, nr;
2743
2744         buffer = container_of(work, struct perf_buffer, work);
2745         nr = 1 << page_order(buffer);
2746
2747         base = buffer->user_page;
2748         for (i = 0; i < nr + 1; i++)
2749                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2750
2751         vfree(base);
2752         kfree(buffer);
2753 }
2754
2755 static void perf_buffer_free(struct perf_buffer *buffer)
2756 {
2757         schedule_work(&buffer->work);
2758 }
2759
2760 static struct perf_buffer *
2761 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2762 {
2763         struct perf_buffer *buffer;
2764         unsigned long size;
2765         void *all_buf;
2766
2767         size = sizeof(struct perf_buffer);
2768         size += sizeof(void *);
2769
2770         buffer = kzalloc(size, GFP_KERNEL);
2771         if (!buffer)
2772                 goto fail;
2773
2774         INIT_WORK(&buffer->work, perf_buffer_free_work);
2775
2776         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2777         if (!all_buf)
2778                 goto fail_all_buf;
2779
2780         buffer->user_page = all_buf;
2781         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2782         buffer->page_order = ilog2(nr_pages);
2783         buffer->nr_pages = 1;
2784
2785         perf_buffer_init(buffer, watermark, flags);
2786
2787         return buffer;
2788
2789 fail_all_buf:
2790         kfree(buffer);
2791
2792 fail:
2793         return NULL;
2794 }
2795
2796 #endif
2797
2798 static unsigned long perf_data_size(struct perf_buffer *buffer)
2799 {
2800         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2801 }
2802
2803 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2804 {
2805         struct perf_event *event = vma->vm_file->private_data;
2806         struct perf_buffer *buffer;
2807         int ret = VM_FAULT_SIGBUS;
2808
2809         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2810                 if (vmf->pgoff == 0)
2811                         ret = 0;
2812                 return ret;
2813         }
2814
2815         rcu_read_lock();
2816         buffer = rcu_dereference(event->buffer);
2817         if (!buffer)
2818                 goto unlock;
2819
2820         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2821                 goto unlock;
2822
2823         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2824         if (!vmf->page)
2825                 goto unlock;
2826
2827         get_page(vmf->page);
2828         vmf->page->mapping = vma->vm_file->f_mapping;
2829         vmf->page->index   = vmf->pgoff;
2830
2831         ret = 0;
2832 unlock:
2833         rcu_read_unlock();
2834
2835         return ret;
2836 }
2837
2838 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2839 {
2840         struct perf_buffer *buffer;
2841
2842         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2843         perf_buffer_free(buffer);
2844 }
2845
2846 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2847 {
2848         struct perf_buffer *buffer;
2849
2850         rcu_read_lock();
2851         buffer = rcu_dereference(event->buffer);
2852         if (buffer) {
2853                 if (!atomic_inc_not_zero(&buffer->refcount))
2854                         buffer = NULL;
2855         }
2856         rcu_read_unlock();
2857
2858         return buffer;
2859 }
2860
2861 static void perf_buffer_put(struct perf_buffer *buffer)
2862 {
2863         if (!atomic_dec_and_test(&buffer->refcount))
2864                 return;
2865
2866         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2867 }
2868
2869 static void perf_mmap_open(struct vm_area_struct *vma)
2870 {
2871         struct perf_event *event = vma->vm_file->private_data;
2872
2873         atomic_inc(&event->mmap_count);
2874 }
2875
2876 static void perf_mmap_close(struct vm_area_struct *vma)
2877 {
2878         struct perf_event *event = vma->vm_file->private_data;
2879
2880         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2881                 unsigned long size = perf_data_size(event->buffer);
2882                 struct user_struct *user = event->mmap_user;
2883                 struct perf_buffer *buffer = event->buffer;
2884
2885                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2886                 vma->vm_mm->locked_vm -= event->mmap_locked;
2887                 rcu_assign_pointer(event->buffer, NULL);
2888                 mutex_unlock(&event->mmap_mutex);
2889
2890                 perf_buffer_put(buffer);
2891                 free_uid(user);
2892         }
2893 }
2894
2895 static const struct vm_operations_struct perf_mmap_vmops = {
2896         .open           = perf_mmap_open,
2897         .close          = perf_mmap_close,
2898         .fault          = perf_mmap_fault,
2899         .page_mkwrite   = perf_mmap_fault,
2900 };
2901
2902 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2903 {
2904         struct perf_event *event = file->private_data;
2905         unsigned long user_locked, user_lock_limit;
2906         struct user_struct *user = current_user();
2907         unsigned long locked, lock_limit;
2908         struct perf_buffer *buffer;
2909         unsigned long vma_size;
2910         unsigned long nr_pages;
2911         long user_extra, extra;
2912         int ret = 0, flags = 0;
2913
2914         /*
2915          * Don't allow mmap() of inherited per-task counters. This would
2916          * create a performance issue due to all children writing to the
2917          * same buffer.
2918          */
2919         if (event->cpu == -1 && event->attr.inherit)
2920                 return -EINVAL;
2921
2922         if (!(vma->vm_flags & VM_SHARED))
2923                 return -EINVAL;
2924
2925         vma_size = vma->vm_end - vma->vm_start;
2926         nr_pages = (vma_size / PAGE_SIZE) - 1;
2927
2928         /*
2929          * If we have buffer pages ensure they're a power-of-two number, so we
2930          * can do bitmasks instead of modulo.
2931          */
2932         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2933                 return -EINVAL;
2934
2935         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2936                 return -EINVAL;
2937
2938         if (vma->vm_pgoff != 0)
2939                 return -EINVAL;
2940
2941         WARN_ON_ONCE(event->ctx->parent_ctx);
2942         mutex_lock(&event->mmap_mutex);
2943         if (event->buffer) {
2944                 if (event->buffer->nr_pages == nr_pages)
2945                         atomic_inc(&event->buffer->refcount);
2946                 else
2947                         ret = -EINVAL;
2948                 goto unlock;
2949         }
2950
2951         user_extra = nr_pages + 1;
2952         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2953
2954         /*
2955          * Increase the limit linearly with more CPUs:
2956          */
2957         user_lock_limit *= num_online_cpus();
2958
2959         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2960
2961         extra = 0;
2962         if (user_locked > user_lock_limit)
2963                 extra = user_locked - user_lock_limit;
2964
2965         lock_limit = rlimit(RLIMIT_MEMLOCK);
2966         lock_limit >>= PAGE_SHIFT;
2967         locked = vma->vm_mm->locked_vm + extra;
2968
2969         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2970                 !capable(CAP_IPC_LOCK)) {
2971                 ret = -EPERM;
2972                 goto unlock;
2973         }
2974
2975         WARN_ON(event->buffer);
2976
2977         if (vma->vm_flags & VM_WRITE)
2978                 flags |= PERF_BUFFER_WRITABLE;
2979
2980         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
2981                                    event->cpu, flags);
2982         if (!buffer) {
2983                 ret = -ENOMEM;
2984                 goto unlock;
2985         }
2986         rcu_assign_pointer(event->buffer, buffer);
2987
2988         atomic_long_add(user_extra, &user->locked_vm);
2989         event->mmap_locked = extra;
2990         event->mmap_user = get_current_user();
2991         vma->vm_mm->locked_vm += event->mmap_locked;
2992
2993 unlock:
2994         if (!ret)
2995                 atomic_inc(&event->mmap_count);
2996         mutex_unlock(&event->mmap_mutex);
2997
2998         vma->vm_flags |= VM_RESERVED;
2999         vma->vm_ops = &perf_mmap_vmops;
3000
3001         return ret;
3002 }
3003
3004 static int perf_fasync(int fd, struct file *filp, int on)
3005 {
3006         struct inode *inode = filp->f_path.dentry->d_inode;
3007         struct perf_event *event = filp->private_data;
3008         int retval;
3009
3010         mutex_lock(&inode->i_mutex);
3011         retval = fasync_helper(fd, filp, on, &event->fasync);
3012         mutex_unlock(&inode->i_mutex);
3013
3014         if (retval < 0)
3015                 return retval;
3016
3017         return 0;
3018 }
3019
3020 static const struct file_operations perf_fops = {
3021         .llseek                 = no_llseek,
3022         .release                = perf_release,
3023         .read                   = perf_read,
3024         .poll                   = perf_poll,
3025         .unlocked_ioctl         = perf_ioctl,
3026         .compat_ioctl           = perf_ioctl,
3027         .mmap                   = perf_mmap,
3028         .fasync                 = perf_fasync,
3029 };
3030
3031 /*
3032  * Perf event wakeup
3033  *
3034  * If there's data, ensure we set the poll() state and publish everything
3035  * to user-space before waking everybody up.
3036  */
3037
3038 void perf_event_wakeup(struct perf_event *event)
3039 {
3040         wake_up_all(&event->waitq);
3041
3042         if (event->pending_kill) {
3043                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3044                 event->pending_kill = 0;
3045         }
3046 }
3047
3048 /*
3049  * Pending wakeups
3050  *
3051  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
3052  *
3053  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
3054  * single linked list and use cmpxchg() to add entries lockless.
3055  */
3056
3057 static void perf_pending_event(struct perf_pending_entry *entry)
3058 {
3059         struct perf_event *event = container_of(entry,
3060                         struct perf_event, pending);
3061
3062         if (event->pending_disable) {
3063                 event->pending_disable = 0;
3064                 __perf_event_disable(event);
3065         }
3066
3067         if (event->pending_wakeup) {
3068                 event->pending_wakeup = 0;
3069                 perf_event_wakeup(event);
3070         }
3071 }
3072
3073 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3074
3075 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3076         PENDING_TAIL,
3077 };
3078
3079 static void perf_pending_queue(struct perf_pending_entry *entry,
3080                                void (*func)(struct perf_pending_entry *))
3081 {
3082         struct perf_pending_entry **head;
3083
3084         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3085                 return;
3086
3087         entry->func = func;
3088
3089         head = &get_cpu_var(perf_pending_head);
3090
3091         do {
3092                 entry->next = *head;
3093         } while (cmpxchg(head, entry->next, entry) != entry->next);
3094
3095         set_perf_event_pending();
3096
3097         put_cpu_var(perf_pending_head);
3098 }
3099
3100 static int __perf_pending_run(void)
3101 {
3102         struct perf_pending_entry *list;
3103         int nr = 0;
3104
3105         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3106         while (list != PENDING_TAIL) {
3107                 void (*func)(struct perf_pending_entry *);
3108                 struct perf_pending_entry *entry = list;
3109
3110                 list = list->next;
3111
3112                 func = entry->func;
3113                 entry->next = NULL;
3114                 /*
3115                  * Ensure we observe the unqueue before we issue the wakeup,
3116                  * so that we won't be waiting forever.
3117                  * -- see perf_not_pending().
3118                  */
3119                 smp_wmb();
3120
3121                 func(entry);
3122                 nr++;
3123         }
3124
3125         return nr;
3126 }
3127
3128 static inline int perf_not_pending(struct perf_event *event)
3129 {
3130         /*
3131          * If we flush on whatever cpu we run, there is a chance we don't
3132          * need to wait.
3133          */
3134         get_cpu();
3135         __perf_pending_run();
3136         put_cpu();
3137
3138         /*
3139          * Ensure we see the proper queue state before going to sleep
3140          * so that we do not miss the wakeup. -- see perf_pending_handle()
3141          */
3142         smp_rmb();
3143         return event->pending.next == NULL;
3144 }
3145
3146 static void perf_pending_sync(struct perf_event *event)
3147 {
3148         wait_event(event->waitq, perf_not_pending(event));
3149 }
3150
3151 void perf_event_do_pending(void)
3152 {
3153         __perf_pending_run();
3154 }
3155
3156 /*
3157  * We assume there is only KVM supporting the callbacks.
3158  * Later on, we might change it to a list if there is
3159  * another virtualization implementation supporting the callbacks.
3160  */
3161 struct perf_guest_info_callbacks *perf_guest_cbs;
3162
3163 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3164 {
3165         perf_guest_cbs = cbs;
3166         return 0;
3167 }
3168 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3169
3170 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3171 {
3172         perf_guest_cbs = NULL;
3173         return 0;
3174 }
3175 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3176
3177 /*
3178  * Output
3179  */
3180 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3181                               unsigned long offset, unsigned long head)
3182 {
3183         unsigned long mask;
3184
3185         if (!buffer->writable)
3186                 return true;
3187
3188         mask = perf_data_size(buffer) - 1;
3189
3190         offset = (offset - tail) & mask;
3191         head   = (head   - tail) & mask;
3192
3193         if ((int)(head - offset) < 0)
3194                 return false;
3195
3196         return true;
3197 }
3198
3199 static void perf_output_wakeup(struct perf_output_handle *handle)
3200 {
3201         atomic_set(&handle->buffer->poll, POLL_IN);
3202
3203         if (handle->nmi) {
3204                 handle->event->pending_wakeup = 1;
3205                 perf_pending_queue(&handle->event->pending,
3206                                    perf_pending_event);
3207         } else
3208                 perf_event_wakeup(handle->event);
3209 }
3210
3211 /*
3212  * We need to ensure a later event_id doesn't publish a head when a former
3213  * event isn't done writing. However since we need to deal with NMIs we
3214  * cannot fully serialize things.
3215  *
3216  * We only publish the head (and generate a wakeup) when the outer-most
3217  * event completes.
3218  */
3219 static void perf_output_get_handle(struct perf_output_handle *handle)
3220 {
3221         struct perf_buffer *buffer = handle->buffer;
3222
3223         preempt_disable();
3224         local_inc(&buffer->nest);
3225         handle->wakeup = local_read(&buffer->wakeup);
3226 }
3227
3228 static void perf_output_put_handle(struct perf_output_handle *handle)
3229 {
3230         struct perf_buffer *buffer = handle->buffer;
3231         unsigned long head;
3232
3233 again:
3234         head = local_read(&buffer->head);
3235
3236         /*
3237          * IRQ/NMI can happen here, which means we can miss a head update.
3238          */
3239
3240         if (!local_dec_and_test(&buffer->nest))
3241                 goto out;
3242
3243         /*
3244          * Publish the known good head. Rely on the full barrier implied
3245          * by atomic_dec_and_test() order the buffer->head read and this
3246          * write.
3247          */
3248         buffer->user_page->data_head = head;
3249
3250         /*
3251          * Now check if we missed an update, rely on the (compiler)
3252          * barrier in atomic_dec_and_test() to re-read buffer->head.
3253          */
3254         if (unlikely(head != local_read(&buffer->head))) {
3255                 local_inc(&buffer->nest);
3256                 goto again;
3257         }
3258
3259         if (handle->wakeup != local_read(&buffer->wakeup))
3260                 perf_output_wakeup(handle);
3261
3262 out:
3263         preempt_enable();
3264 }
3265
3266 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3267                       const void *buf, unsigned int len)
3268 {
3269         do {
3270                 unsigned long size = min_t(unsigned long, handle->size, len);
3271
3272                 memcpy(handle->addr, buf, size);
3273
3274                 len -= size;
3275                 handle->addr += size;
3276                 buf += size;
3277                 handle->size -= size;
3278                 if (!handle->size) {
3279                         struct perf_buffer *buffer = handle->buffer;
3280
3281                         handle->page++;
3282                         handle->page &= buffer->nr_pages - 1;
3283                         handle->addr = buffer->data_pages[handle->page];
3284                         handle->size = PAGE_SIZE << page_order(buffer);
3285                 }
3286         } while (len);
3287 }
3288
3289 int perf_output_begin(struct perf_output_handle *handle,
3290                       struct perf_event *event, unsigned int size,
3291                       int nmi, int sample)
3292 {
3293         struct perf_buffer *buffer;
3294         unsigned long tail, offset, head;
3295         int have_lost;
3296         struct {
3297                 struct perf_event_header header;
3298                 u64                      id;
3299                 u64                      lost;
3300         } lost_event;
3301
3302         rcu_read_lock();
3303         /*
3304          * For inherited events we send all the output towards the parent.
3305          */
3306         if (event->parent)
3307                 event = event->parent;
3308
3309         buffer = rcu_dereference(event->buffer);
3310         if (!buffer)
3311                 goto out;
3312
3313         handle->buffer  = buffer;
3314         handle->event   = event;
3315         handle->nmi     = nmi;
3316         handle->sample  = sample;
3317
3318         if (!buffer->nr_pages)
3319                 goto out;
3320
3321         have_lost = local_read(&buffer->lost);
3322         if (have_lost)
3323                 size += sizeof(lost_event);
3324
3325         perf_output_get_handle(handle);
3326
3327         do {
3328                 /*
3329                  * Userspace could choose to issue a mb() before updating the
3330                  * tail pointer. So that all reads will be completed before the
3331                  * write is issued.
3332                  */
3333                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3334                 smp_rmb();
3335                 offset = head = local_read(&buffer->head);
3336                 head += size;
3337                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3338                         goto fail;
3339         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3340
3341         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3342                 local_add(buffer->watermark, &buffer->wakeup);
3343
3344         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3345         handle->page &= buffer->nr_pages - 1;
3346         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3347         handle->addr = buffer->data_pages[handle->page];
3348         handle->addr += handle->size;
3349         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3350
3351         if (have_lost) {
3352                 lost_event.header.type = PERF_RECORD_LOST;
3353                 lost_event.header.misc = 0;
3354                 lost_event.header.size = sizeof(lost_event);
3355                 lost_event.id          = event->id;
3356                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3357
3358                 perf_output_put(handle, lost_event);
3359         }
3360
3361         return 0;
3362
3363 fail:
3364         local_inc(&buffer->lost);
3365         perf_output_put_handle(handle);
3366 out:
3367         rcu_read_unlock();
3368
3369         return -ENOSPC;
3370 }
3371
3372 void perf_output_end(struct perf_output_handle *handle)
3373 {
3374         struct perf_event *event = handle->event;
3375         struct perf_buffer *buffer = handle->buffer;
3376
3377         int wakeup_events = event->attr.wakeup_events;
3378
3379         if (handle->sample && wakeup_events) {
3380                 int events = local_inc_return(&buffer->events);
3381                 if (events >= wakeup_events) {
3382                         local_sub(wakeup_events, &buffer->events);
3383                         local_inc(&buffer->wakeup);
3384                 }
3385         }
3386
3387         perf_output_put_handle(handle);
3388         rcu_read_unlock();
3389 }
3390
3391 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3392 {
3393         /*
3394          * only top level events have the pid namespace they were created in
3395          */
3396         if (event->parent)
3397                 event = event->parent;
3398
3399         return task_tgid_nr_ns(p, event->ns);
3400 }
3401
3402 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3403 {
3404         /*
3405          * only top level events have the pid namespace they were created in
3406          */
3407         if (event->parent)
3408                 event = event->parent;
3409
3410         return task_pid_nr_ns(p, event->ns);
3411 }
3412
3413 static void perf_output_read_one(struct perf_output_handle *handle,
3414                                  struct perf_event *event)
3415 {
3416         u64 read_format = event->attr.read_format;
3417         u64 values[4];
3418         int n = 0;
3419
3420         values[n++] = perf_event_count(event);
3421         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3422                 values[n++] = event->total_time_enabled +
3423                         atomic64_read(&event->child_total_time_enabled);
3424         }
3425         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3426                 values[n++] = event->total_time_running +
3427                         atomic64_read(&event->child_total_time_running);
3428         }
3429         if (read_format & PERF_FORMAT_ID)
3430                 values[n++] = primary_event_id(event);
3431
3432         perf_output_copy(handle, values, n * sizeof(u64));
3433 }
3434
3435 /*
3436  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3437  */
3438 static void perf_output_read_group(struct perf_output_handle *handle,
3439                             struct perf_event *event)
3440 {
3441         struct perf_event *leader = event->group_leader, *sub;
3442         u64 read_format = event->attr.read_format;
3443         u64 values[5];
3444         int n = 0;
3445
3446         values[n++] = 1 + leader->nr_siblings;
3447
3448         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3449                 values[n++] = leader->total_time_enabled;
3450
3451         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3452                 values[n++] = leader->total_time_running;
3453
3454         if (leader != event)
3455                 leader->pmu->read(leader);
3456
3457         values[n++] = perf_event_count(leader);
3458         if (read_format & PERF_FORMAT_ID)
3459                 values[n++] = primary_event_id(leader);
3460
3461         perf_output_copy(handle, values, n * sizeof(u64));
3462
3463         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3464                 n = 0;
3465
3466                 if (sub != event)
3467                         sub->pmu->read(sub);
3468
3469                 values[n++] = perf_event_count(sub);
3470                 if (read_format & PERF_FORMAT_ID)
3471                         values[n++] = primary_event_id(sub);
3472
3473                 perf_output_copy(handle, values, n * sizeof(u64));
3474         }
3475 }
3476
3477 static void perf_output_read(struct perf_output_handle *handle,
3478                              struct perf_event *event)
3479 {
3480         if (event->attr.read_format & PERF_FORMAT_GROUP)
3481                 perf_output_read_group(handle, event);
3482         else
3483                 perf_output_read_one(handle, event);
3484 }
3485
3486 void perf_output_sample(struct perf_output_handle *handle,
3487                         struct perf_event_header *header,
3488                         struct perf_sample_data *data,
3489                         struct perf_event *event)
3490 {
3491         u64 sample_type = data->type;
3492
3493         perf_output_put(handle, *header);
3494
3495         if (sample_type & PERF_SAMPLE_IP)
3496                 perf_output_put(handle, data->ip);
3497
3498         if (sample_type & PERF_SAMPLE_TID)
3499                 perf_output_put(handle, data->tid_entry);
3500
3501         if (sample_type & PERF_SAMPLE_TIME)
3502                 perf_output_put(handle, data->time);
3503
3504         if (sample_type & PERF_SAMPLE_ADDR)
3505                 perf_output_put(handle, data->addr);
3506
3507         if (sample_type & PERF_SAMPLE_ID)
3508                 perf_output_put(handle, data->id);
3509
3510         if (sample_type & PERF_SAMPLE_STREAM_ID)
3511                 perf_output_put(handle, data->stream_id);
3512
3513         if (sample_type & PERF_SAMPLE_CPU)
3514                 perf_output_put(handle, data->cpu_entry);
3515
3516         if (sample_type & PERF_SAMPLE_PERIOD)
3517                 perf_output_put(handle, data->period);
3518
3519         if (sample_type & PERF_SAMPLE_READ)
3520                 perf_output_read(handle, event);
3521
3522         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3523                 if (data->callchain) {
3524                         int size = 1;
3525
3526                         if (data->callchain)
3527                                 size += data->callchain->nr;
3528
3529                         size *= sizeof(u64);
3530
3531                         perf_output_copy(handle, data->callchain, size);
3532                 } else {
3533                         u64 nr = 0;
3534                         perf_output_put(handle, nr);
3535                 }
3536         }
3537
3538         if (sample_type & PERF_SAMPLE_RAW) {
3539                 if (data->raw) {
3540                         perf_output_put(handle, data->raw->size);
3541                         perf_output_copy(handle, data->raw->data,
3542                                          data->raw->size);
3543                 } else {
3544                         struct {
3545                                 u32     size;
3546                                 u32     data;
3547                         } raw = {
3548                                 .size = sizeof(u32),
3549                                 .data = 0,
3550                         };
3551                         perf_output_put(handle, raw);
3552                 }
3553         }
3554 }
3555
3556 void perf_prepare_sample(struct perf_event_header *header,
3557                          struct perf_sample_data *data,
3558                          struct perf_event *event,
3559                          struct pt_regs *regs)
3560 {
3561         u64 sample_type = event->attr.sample_type;
3562
3563         data->type = sample_type;
3564
3565         header->type = PERF_RECORD_SAMPLE;
3566         header->size = sizeof(*header);
3567
3568         header->misc = 0;
3569         header->misc |= perf_misc_flags(regs);
3570
3571         if (sample_type & PERF_SAMPLE_IP) {
3572                 data->ip = perf_instruction_pointer(regs);
3573
3574                 header->size += sizeof(data->ip);
3575         }
3576
3577         if (sample_type & PERF_SAMPLE_TID) {
3578                 /* namespace issues */
3579                 data->tid_entry.pid = perf_event_pid(event, current);
3580                 data->tid_entry.tid = perf_event_tid(event, current);
3581
3582                 header->size += sizeof(data->tid_entry);
3583         }
3584
3585         if (sample_type & PERF_SAMPLE_TIME) {
3586                 data->time = perf_clock();
3587
3588                 header->size += sizeof(data->time);
3589         }
3590
3591         if (sample_type & PERF_SAMPLE_ADDR)
3592                 header->size += sizeof(data->addr);
3593
3594         if (sample_type & PERF_SAMPLE_ID) {
3595                 data->id = primary_event_id(event);
3596
3597                 header->size += sizeof(data->id);
3598         }
3599
3600         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3601                 data->stream_id = event->id;
3602
3603                 header->size += sizeof(data->stream_id);
3604         }
3605
3606         if (sample_type & PERF_SAMPLE_CPU) {
3607                 data->cpu_entry.cpu             = raw_smp_processor_id();
3608                 data->cpu_entry.reserved        = 0;
3609
3610                 header->size += sizeof(data->cpu_entry);
3611         }
3612
3613         if (sample_type & PERF_SAMPLE_PERIOD)
3614                 header->size += sizeof(data->period);
3615
3616         if (sample_type & PERF_SAMPLE_READ)
3617                 header->size += perf_event_read_size(event);
3618
3619         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3620                 int size = 1;
3621
3622                 data->callchain = perf_callchain(regs);
3623
3624                 if (data->callchain)
3625                         size += data->callchain->nr;
3626
3627                 header->size += size * sizeof(u64);
3628         }
3629
3630         if (sample_type & PERF_SAMPLE_RAW) {
3631                 int size = sizeof(u32);
3632
3633                 if (data->raw)
3634                         size += data->raw->size;
3635                 else
3636                         size += sizeof(u32);
3637
3638                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3639                 header->size += size;
3640         }
3641 }
3642
3643 static void perf_event_output(struct perf_event *event, int nmi,
3644                                 struct perf_sample_data *data,
3645                                 struct pt_regs *regs)
3646 {
3647         struct perf_output_handle handle;
3648         struct perf_event_header header;
3649
3650         /* protect the callchain buffers */
3651         rcu_read_lock();
3652
3653         perf_prepare_sample(&header, data, event, regs);
3654
3655         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3656                 goto exit;
3657
3658         perf_output_sample(&handle, &header, data, event);
3659
3660         perf_output_end(&handle);
3661
3662 exit:
3663         rcu_read_unlock();
3664 }
3665
3666 /*
3667  * read event_id
3668  */
3669
3670 struct perf_read_event {
3671         struct perf_event_header        header;
3672
3673         u32                             pid;
3674         u32                             tid;
3675 };
3676
3677 static void
3678 perf_event_read_event(struct perf_event *event,
3679                         struct task_struct *task)
3680 {
3681         struct perf_output_handle handle;
3682         struct perf_read_event read_event = {
3683                 .header = {
3684                         .type = PERF_RECORD_READ,
3685                         .misc = 0,
3686                         .size = sizeof(read_event) + perf_event_read_size(event),
3687                 },
3688                 .pid = perf_event_pid(event, task),
3689                 .tid = perf_event_tid(event, task),
3690         };
3691         int ret;
3692
3693         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3694         if (ret)
3695                 return;
3696
3697         perf_output_put(&handle, read_event);
3698         perf_output_read(&handle, event);
3699
3700         perf_output_end(&handle);
3701 }
3702
3703 /*
3704  * task tracking -- fork/exit
3705  *
3706  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3707  */
3708
3709 struct perf_task_event {
3710         struct task_struct              *task;
3711         struct perf_event_context       *task_ctx;
3712
3713         struct {
3714                 struct perf_event_header        header;
3715
3716                 u32                             pid;
3717                 u32                             ppid;
3718                 u32                             tid;
3719                 u32                             ptid;
3720                 u64                             time;
3721         } event_id;
3722 };
3723
3724 static void perf_event_task_output(struct perf_event *event,
3725                                      struct perf_task_event *task_event)
3726 {
3727         struct perf_output_handle handle;
3728         struct task_struct *task = task_event->task;
3729         int size, ret;
3730
3731         size  = task_event->event_id.header.size;
3732         ret = perf_output_begin(&handle, event, size, 0, 0);
3733
3734         if (ret)
3735                 return;
3736
3737         task_event->event_id.pid = perf_event_pid(event, task);
3738         task_event->event_id.ppid = perf_event_pid(event, current);
3739
3740         task_event->event_id.tid = perf_event_tid(event, task);
3741         task_event->event_id.ptid = perf_event_tid(event, current);
3742
3743         perf_output_put(&handle, task_event->event_id);
3744
3745         perf_output_end(&handle);
3746 }
3747
3748 static int perf_event_task_match(struct perf_event *event)
3749 {
3750         if (event->state < PERF_EVENT_STATE_INACTIVE)
3751                 return 0;
3752
3753         if (event->cpu != -1 && event->cpu != smp_processor_id())
3754                 return 0;
3755
3756         if (event->attr.comm || event->attr.mmap ||
3757             event->attr.mmap_data || event->attr.task)
3758                 return 1;
3759
3760         return 0;
3761 }
3762
3763 static void perf_event_task_ctx(struct perf_event_context *ctx,
3764                                   struct perf_task_event *task_event)
3765 {
3766         struct perf_event *event;
3767
3768         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3769                 if (perf_event_task_match(event))
3770                         perf_event_task_output(event, task_event);
3771         }
3772 }
3773
3774 static void perf_event_task_event(struct perf_task_event *task_event)
3775 {
3776         struct perf_event_context *ctx = task_event->task_ctx;
3777         struct perf_cpu_context *cpuctx;
3778         struct pmu *pmu;
3779
3780         rcu_read_lock_sched();
3781         list_for_each_entry_rcu(pmu, &pmus, entry) {
3782                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3783                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3784         }
3785         if (!ctx)
3786                 ctx = rcu_dereference(current->perf_event_ctxp);
3787         if (ctx)
3788                 perf_event_task_ctx(ctx, task_event);
3789         rcu_read_unlock_sched();
3790 }
3791
3792 static void perf_event_task(struct task_struct *task,
3793                               struct perf_event_context *task_ctx,
3794                               int new)
3795 {
3796         struct perf_task_event task_event;
3797
3798         if (!atomic_read(&nr_comm_events) &&
3799             !atomic_read(&nr_mmap_events) &&
3800             !atomic_read(&nr_task_events))
3801                 return;
3802
3803         task_event = (struct perf_task_event){
3804                 .task     = task,
3805                 .task_ctx = task_ctx,
3806                 .event_id    = {
3807                         .header = {
3808                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3809                                 .misc = 0,
3810                                 .size = sizeof(task_event.event_id),
3811                         },
3812                         /* .pid  */
3813                         /* .ppid */
3814                         /* .tid  */
3815                         /* .ptid */
3816                         .time = perf_clock(),
3817                 },
3818         };
3819
3820         perf_event_task_event(&task_event);
3821 }
3822
3823 void perf_event_fork(struct task_struct *task)
3824 {
3825         perf_event_task(task, NULL, 1);
3826 }
3827
3828 /*
3829  * comm tracking
3830  */
3831
3832 struct perf_comm_event {
3833         struct task_struct      *task;
3834         char                    *comm;
3835         int                     comm_size;
3836
3837         struct {
3838                 struct perf_event_header        header;
3839
3840                 u32                             pid;
3841                 u32                             tid;
3842         } event_id;
3843 };
3844
3845 static void perf_event_comm_output(struct perf_event *event,
3846                                      struct perf_comm_event *comm_event)
3847 {
3848         struct perf_output_handle handle;
3849         int size = comm_event->event_id.header.size;
3850         int ret = perf_output_begin(&handle, event, size, 0, 0);
3851
3852         if (ret)
3853                 return;
3854
3855         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3856         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3857
3858         perf_output_put(&handle, comm_event->event_id);
3859         perf_output_copy(&handle, comm_event->comm,
3860                                    comm_event->comm_size);
3861         perf_output_end(&handle);
3862 }
3863
3864 static int perf_event_comm_match(struct perf_event *event)
3865 {
3866         if (event->state < PERF_EVENT_STATE_INACTIVE)
3867                 return 0;
3868
3869         if (event->cpu != -1 && event->cpu != smp_processor_id())
3870                 return 0;
3871
3872         if (event->attr.comm)
3873                 return 1;
3874
3875         return 0;
3876 }
3877
3878 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3879                                   struct perf_comm_event *comm_event)
3880 {
3881         struct perf_event *event;
3882
3883         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3884                 if (perf_event_comm_match(event))
3885                         perf_event_comm_output(event, comm_event);
3886         }
3887 }
3888
3889 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3890 {
3891         struct perf_cpu_context *cpuctx;
3892         struct perf_event_context *ctx;
3893         unsigned int size;
3894         struct pmu *pmu;
3895         char comm[TASK_COMM_LEN];
3896
3897         memset(comm, 0, sizeof(comm));
3898         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3899         size = ALIGN(strlen(comm)+1, sizeof(u64));
3900
3901         comm_event->comm = comm;
3902         comm_event->comm_size = size;
3903
3904         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3905
3906         rcu_read_lock_sched();
3907         list_for_each_entry_rcu(pmu, &pmus, entry) {
3908                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3909                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3910         }
3911         ctx = rcu_dereference(current->perf_event_ctxp);
3912         if (ctx)
3913                 perf_event_comm_ctx(ctx, comm_event);
3914         rcu_read_unlock_sched();
3915 }
3916
3917 void perf_event_comm(struct task_struct *task)
3918 {
3919         struct perf_comm_event comm_event;
3920
3921         if (task->perf_event_ctxp)
3922                 perf_event_enable_on_exec(task);
3923
3924         if (!atomic_read(&nr_comm_events))
3925                 return;
3926
3927         comm_event = (struct perf_comm_event){
3928                 .task   = task,
3929                 /* .comm      */
3930                 /* .comm_size */
3931                 .event_id  = {
3932                         .header = {
3933                                 .type = PERF_RECORD_COMM,
3934                                 .misc = 0,
3935                                 /* .size */
3936                         },
3937                         /* .pid */
3938                         /* .tid */
3939                 },
3940         };
3941
3942         perf_event_comm_event(&comm_event);
3943 }
3944
3945 /*
3946  * mmap tracking
3947  */
3948
3949 struct perf_mmap_event {
3950         struct vm_area_struct   *vma;
3951
3952         const char              *file_name;
3953         int                     file_size;
3954
3955         struct {
3956                 struct perf_event_header        header;
3957
3958                 u32                             pid;
3959                 u32                             tid;
3960                 u64                             start;
3961                 u64                             len;
3962                 u64                             pgoff;
3963         } event_id;
3964 };
3965
3966 static void perf_event_mmap_output(struct perf_event *event,
3967                                      struct perf_mmap_event *mmap_event)
3968 {
3969         struct perf_output_handle handle;
3970         int size = mmap_event->event_id.header.size;
3971         int ret = perf_output_begin(&handle, event, size, 0, 0);
3972
3973         if (ret)
3974                 return;
3975
3976         mmap_event->event_id.pid = perf_event_pid(event, current);
3977         mmap_event->event_id.tid = perf_event_tid(event, current);
3978
3979         perf_output_put(&handle, mmap_event->event_id);
3980         perf_output_copy(&handle, mmap_event->file_name,
3981                                    mmap_event->file_size);
3982         perf_output_end(&handle);
3983 }
3984
3985 static int perf_event_mmap_match(struct perf_event *event,
3986                                    struct perf_mmap_event *mmap_event,
3987                                    int executable)
3988 {
3989         if (event->state < PERF_EVENT_STATE_INACTIVE)
3990                 return 0;
3991
3992         if (event->cpu != -1 && event->cpu != smp_processor_id())
3993                 return 0;
3994
3995         if ((!executable && event->attr.mmap_data) ||
3996             (executable && event->attr.mmap))
3997                 return 1;
3998
3999         return 0;
4000 }
4001
4002 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4003                                   struct perf_mmap_event *mmap_event,
4004                                   int executable)
4005 {
4006         struct perf_event *event;
4007
4008         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4009                 if (perf_event_mmap_match(event, mmap_event, executable))
4010                         perf_event_mmap_output(event, mmap_event);
4011         }
4012 }
4013
4014 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4015 {
4016         struct perf_cpu_context *cpuctx;
4017         struct perf_event_context *ctx;
4018         struct vm_area_struct *vma = mmap_event->vma;
4019         struct file *file = vma->vm_file;
4020         unsigned int size;
4021         char tmp[16];
4022         char *buf = NULL;
4023         const char *name;
4024         struct pmu *pmu;
4025
4026         memset(tmp, 0, sizeof(tmp));
4027
4028         if (file) {
4029                 /*
4030                  * d_path works from the end of the buffer backwards, so we
4031                  * need to add enough zero bytes after the string to handle
4032                  * the 64bit alignment we do later.
4033                  */
4034                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4035                 if (!buf) {
4036                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4037                         goto got_name;
4038                 }
4039                 name = d_path(&file->f_path, buf, PATH_MAX);
4040                 if (IS_ERR(name)) {
4041                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4042                         goto got_name;
4043                 }
4044         } else {
4045                 if (arch_vma_name(mmap_event->vma)) {
4046                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4047                                        sizeof(tmp));
4048                         goto got_name;
4049                 }
4050
4051                 if (!vma->vm_mm) {
4052                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4053                         goto got_name;
4054                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4055                                 vma->vm_end >= vma->vm_mm->brk) {
4056                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4057                         goto got_name;
4058                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4059                                 vma->vm_end >= vma->vm_mm->start_stack) {
4060                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4061                         goto got_name;
4062                 }
4063
4064                 name = strncpy(tmp, "//anon", sizeof(tmp));
4065                 goto got_name;
4066         }
4067
4068 got_name:
4069         size = ALIGN(strlen(name)+1, sizeof(u64));
4070
4071         mmap_event->file_name = name;
4072         mmap_event->file_size = size;
4073
4074         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4075
4076         rcu_read_lock_sched();
4077         list_for_each_entry_rcu(pmu, &pmus, entry) {
4078                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
4079                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4080                                         vma->vm_flags & VM_EXEC);
4081         }
4082         ctx = rcu_dereference(current->perf_event_ctxp);
4083         if (ctx)
4084                 perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
4085         rcu_read_unlock_sched();
4086
4087         kfree(buf);
4088 }
4089
4090 void perf_event_mmap(struct vm_area_struct *vma)
4091 {
4092         struct perf_mmap_event mmap_event;
4093
4094         if (!atomic_read(&nr_mmap_events))
4095                 return;
4096
4097         mmap_event = (struct perf_mmap_event){
4098                 .vma    = vma,
4099                 /* .file_name */
4100                 /* .file_size */
4101                 .event_id  = {
4102                         .header = {
4103                                 .type = PERF_RECORD_MMAP,
4104                                 .misc = PERF_RECORD_MISC_USER,
4105                                 /* .size */
4106                         },
4107                         /* .pid */
4108                         /* .tid */
4109                         .start  = vma->vm_start,
4110                         .len    = vma->vm_end - vma->vm_start,
4111                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4112                 },
4113         };
4114
4115         perf_event_mmap_event(&mmap_event);
4116 }
4117
4118 /*
4119  * IRQ throttle logging
4120  */
4121
4122 static void perf_log_throttle(struct perf_event *event, int enable)
4123 {
4124         struct perf_output_handle handle;
4125         int ret;
4126
4127         struct {
4128                 struct perf_event_header        header;
4129                 u64                             time;
4130                 u64                             id;
4131                 u64                             stream_id;
4132         } throttle_event = {
4133                 .header = {
4134                         .type = PERF_RECORD_THROTTLE,
4135                         .misc = 0,
4136                         .size = sizeof(throttle_event),
4137                 },
4138                 .time           = perf_clock(),
4139                 .id             = primary_event_id(event),
4140                 .stream_id      = event->id,
4141         };
4142
4143         if (enable)
4144                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4145
4146         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4147         if (ret)
4148                 return;
4149
4150         perf_output_put(&handle, throttle_event);
4151         perf_output_end(&handle);
4152 }
4153
4154 /*
4155  * Generic event overflow handling, sampling.
4156  */
4157
4158 static int __perf_event_overflow(struct perf_event *event, int nmi,
4159                                    int throttle, struct perf_sample_data *data,
4160                                    struct pt_regs *regs)
4161 {
4162         int events = atomic_read(&event->event_limit);
4163         struct hw_perf_event *hwc = &event->hw;
4164         int ret = 0;
4165
4166         if (!throttle) {
4167                 hwc->interrupts++;
4168         } else {
4169                 if (hwc->interrupts != MAX_INTERRUPTS) {
4170                         hwc->interrupts++;
4171                         if (HZ * hwc->interrupts >
4172                                         (u64)sysctl_perf_event_sample_rate) {
4173                                 hwc->interrupts = MAX_INTERRUPTS;
4174                                 perf_log_throttle(event, 0);
4175                                 ret = 1;
4176                         }
4177                 } else {
4178                         /*
4179                          * Keep re-disabling events even though on the previous
4180                          * pass we disabled it - just in case we raced with a
4181                          * sched-in and the event got enabled again:
4182                          */
4183                         ret = 1;
4184                 }
4185         }
4186
4187         if (event->attr.freq) {
4188                 u64 now = perf_clock();
4189                 s64 delta = now - hwc->freq_time_stamp;
4190
4191                 hwc->freq_time_stamp = now;
4192
4193                 if (delta > 0 && delta < 2*TICK_NSEC)
4194                         perf_adjust_period(event, delta, hwc->last_period);
4195         }
4196
4197         /*
4198          * XXX event_limit might not quite work as expected on inherited
4199          * events
4200          */
4201
4202         event->pending_kill = POLL_IN;
4203         if (events && atomic_dec_and_test(&event->event_limit)) {
4204                 ret = 1;
4205                 event->pending_kill = POLL_HUP;
4206                 if (nmi) {
4207                         event->pending_disable = 1;
4208                         perf_pending_queue(&event->pending,
4209                                            perf_pending_event);
4210                 } else
4211                         perf_event_disable(event);
4212         }
4213
4214         if (event->overflow_handler)
4215                 event->overflow_handler(event, nmi, data, regs);
4216         else
4217                 perf_event_output(event, nmi, data, regs);
4218
4219         return ret;
4220 }
4221
4222 int perf_event_overflow(struct perf_event *event, int nmi,
4223                           struct perf_sample_data *data,
4224                           struct pt_regs *regs)
4225 {
4226         return __perf_event_overflow(event, nmi, 1, data, regs);
4227 }
4228
4229 /*
4230  * Generic software event infrastructure
4231  */
4232
4233 struct swevent_htable {
4234         struct swevent_hlist            *swevent_hlist;
4235         struct mutex                    hlist_mutex;
4236         int                             hlist_refcount;
4237
4238         /* Recursion avoidance in each contexts */
4239         int                             recursion[PERF_NR_CONTEXTS];
4240 };
4241
4242 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4243
4244 /*
4245  * We directly increment event->count and keep a second value in
4246  * event->hw.period_left to count intervals. This period event
4247  * is kept in the range [-sample_period, 0] so that we can use the
4248  * sign as trigger.
4249  */
4250
4251 static u64 perf_swevent_set_period(struct perf_event *event)
4252 {
4253         struct hw_perf_event *hwc = &event->hw;
4254         u64 period = hwc->last_period;
4255         u64 nr, offset;
4256         s64 old, val;
4257
4258         hwc->last_period = hwc->sample_period;
4259
4260 again:
4261         old = val = local64_read(&hwc->period_left);
4262         if (val < 0)
4263                 return 0;
4264
4265         nr = div64_u64(period + val, period);
4266         offset = nr * period;
4267         val -= offset;
4268         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4269                 goto again;
4270
4271         return nr;
4272 }
4273
4274 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4275                                     int nmi, struct perf_sample_data *data,
4276                                     struct pt_regs *regs)
4277 {
4278         struct hw_perf_event *hwc = &event->hw;
4279         int throttle = 0;
4280
4281         data->period = event->hw.last_period;
4282         if (!overflow)
4283                 overflow = perf_swevent_set_period(event);
4284
4285         if (hwc->interrupts == MAX_INTERRUPTS)
4286                 return;
4287
4288         for (; overflow; overflow--) {
4289                 if (__perf_event_overflow(event, nmi, throttle,
4290                                             data, regs)) {
4291                         /*
4292                          * We inhibit the overflow from happening when
4293                          * hwc->interrupts == MAX_INTERRUPTS.
4294                          */
4295                         break;
4296                 }
4297                 throttle = 1;
4298         }
4299 }
4300
4301 static void perf_swevent_event(struct perf_event *event, u64 nr,
4302                                int nmi, struct perf_sample_data *data,
4303                                struct pt_regs *regs)
4304 {
4305         struct hw_perf_event *hwc = &event->hw;
4306
4307         local64_add(nr, &event->count);
4308
4309         if (!regs)
4310                 return;
4311
4312         if (!hwc->sample_period)
4313                 return;
4314
4315         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4316                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4317
4318         if (local64_add_negative(nr, &hwc->period_left))
4319                 return;
4320
4321         perf_swevent_overflow(event, 0, nmi, data, regs);
4322 }
4323
4324 static int perf_exclude_event(struct perf_event *event,
4325                               struct pt_regs *regs)
4326 {
4327         if (event->hw.state & PERF_HES_STOPPED)
4328                 return 0;
4329
4330         if (regs) {
4331                 if (event->attr.exclude_user && user_mode(regs))
4332                         return 1;
4333
4334                 if (event->attr.exclude_kernel && !user_mode(regs))
4335                         return 1;
4336         }
4337
4338         return 0;
4339 }
4340
4341 static int perf_swevent_match(struct perf_event *event,
4342                                 enum perf_type_id type,
4343                                 u32 event_id,
4344                                 struct perf_sample_data *data,
4345                                 struct pt_regs *regs)
4346 {
4347         if (event->attr.type != type)
4348                 return 0;
4349
4350         if (event->attr.config != event_id)
4351                 return 0;
4352
4353         if (perf_exclude_event(event, regs))
4354                 return 0;
4355
4356         return 1;
4357 }
4358
4359 static inline u64 swevent_hash(u64 type, u32 event_id)
4360 {
4361         u64 val = event_id | (type << 32);
4362
4363         return hash_64(val, SWEVENT_HLIST_BITS);
4364 }
4365
4366 static inline struct hlist_head *
4367 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4368 {
4369         u64 hash = swevent_hash(type, event_id);
4370
4371         return &hlist->heads[hash];
4372 }
4373
4374 /* For the read side: events when they trigger */
4375 static inline struct hlist_head *
4376 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4377 {
4378         struct swevent_hlist *hlist;
4379
4380         hlist = rcu_dereference(swhash->swevent_hlist);
4381         if (!hlist)
4382                 return NULL;
4383
4384         return __find_swevent_head(hlist, type, event_id);
4385 }
4386
4387 /* For the event head insertion and removal in the hlist */
4388 static inline struct hlist_head *
4389 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4390 {
4391         struct swevent_hlist *hlist;
4392         u32 event_id = event->attr.config;
4393         u64 type = event->attr.type;
4394
4395         /*
4396          * Event scheduling is always serialized against hlist allocation
4397          * and release. Which makes the protected version suitable here.
4398          * The context lock guarantees that.
4399          */
4400         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4401                                           lockdep_is_held(&event->ctx->lock));
4402         if (!hlist)
4403                 return NULL;
4404
4405         return __find_swevent_head(hlist, type, event_id);
4406 }
4407
4408 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4409                                     u64 nr, int nmi,
4410                                     struct perf_sample_data *data,
4411                                     struct pt_regs *regs)
4412 {
4413         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4414         struct perf_event *event;
4415         struct hlist_node *node;
4416         struct hlist_head *head;
4417
4418         rcu_read_lock();
4419         head = find_swevent_head_rcu(swhash, type, event_id);
4420         if (!head)
4421                 goto end;
4422
4423         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4424                 if (perf_swevent_match(event, type, event_id, data, regs))
4425                         perf_swevent_event(event, nr, nmi, data, regs);
4426         }
4427 end:
4428         rcu_read_unlock();
4429 }
4430
4431 int perf_swevent_get_recursion_context(void)
4432 {
4433         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4434
4435         return get_recursion_context(swhash->recursion);
4436 }
4437 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4438
4439 void inline perf_swevent_put_recursion_context(int rctx)
4440 {
4441         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4442
4443         put_recursion_context(swhash->recursion, rctx);
4444 }
4445
4446 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4447                             struct pt_regs *regs, u64 addr)
4448 {
4449         struct perf_sample_data data;
4450         int rctx;
4451
4452         preempt_disable_notrace();
4453         rctx = perf_swevent_get_recursion_context();
4454         if (rctx < 0)
4455                 return;
4456
4457         perf_sample_data_init(&data, addr);
4458
4459         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4460
4461         perf_swevent_put_recursion_context(rctx);
4462         preempt_enable_notrace();
4463 }
4464
4465 static void perf_swevent_read(struct perf_event *event)
4466 {
4467 }
4468
4469 static int perf_swevent_add(struct perf_event *event, int flags)
4470 {
4471         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4472         struct hw_perf_event *hwc = &event->hw;
4473         struct hlist_head *head;
4474
4475         if (hwc->sample_period) {
4476                 hwc->last_period = hwc->sample_period;
4477                 perf_swevent_set_period(event);
4478         }
4479
4480         hwc->state = !(flags & PERF_EF_START);
4481
4482         head = find_swevent_head(swhash, event);
4483         if (WARN_ON_ONCE(!head))
4484                 return -EINVAL;
4485
4486         hlist_add_head_rcu(&event->hlist_entry, head);
4487
4488         return 0;
4489 }
4490
4491 static void perf_swevent_del(struct perf_event *event, int flags)
4492 {
4493         hlist_del_rcu(&event->hlist_entry);
4494 }
4495
4496 static void perf_swevent_start(struct perf_event *event, int flags)
4497 {
4498         event->hw.state = 0;
4499 }
4500
4501 static void perf_swevent_stop(struct perf_event *event, int flags)
4502 {
4503         event->hw.state = PERF_HES_STOPPED;
4504 }
4505
4506 /* Deref the hlist from the update side */
4507 static inline struct swevent_hlist *
4508 swevent_hlist_deref(struct swevent_htable *swhash)
4509 {
4510         return rcu_dereference_protected(swhash->swevent_hlist,
4511                                          lockdep_is_held(&swhash->hlist_mutex));
4512 }
4513
4514 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4515 {
4516         struct swevent_hlist *hlist;
4517
4518         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4519         kfree(hlist);
4520 }
4521
4522 static void swevent_hlist_release(struct swevent_htable *swhash)
4523 {
4524         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4525
4526         if (!hlist)
4527                 return;
4528
4529         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4530         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4531 }
4532
4533 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4534 {
4535         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4536
4537         mutex_lock(&swhash->hlist_mutex);
4538
4539         if (!--swhash->hlist_refcount)
4540                 swevent_hlist_release(swhash);
4541
4542         mutex_unlock(&swhash->hlist_mutex);
4543 }
4544
4545 static void swevent_hlist_put(struct perf_event *event)
4546 {
4547         int cpu;
4548
4549         if (event->cpu != -1) {
4550                 swevent_hlist_put_cpu(event, event->cpu);
4551                 return;
4552         }
4553
4554         for_each_possible_cpu(cpu)
4555                 swevent_hlist_put_cpu(event, cpu);
4556 }
4557
4558 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4559 {
4560         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4561         int err = 0;
4562
4563         mutex_lock(&swhash->hlist_mutex);
4564
4565         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4566                 struct swevent_hlist *hlist;
4567
4568                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4569                 if (!hlist) {
4570                         err = -ENOMEM;
4571                         goto exit;
4572                 }
4573                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4574         }
4575         swhash->hlist_refcount++;
4576 exit:
4577         mutex_unlock(&swhash->hlist_mutex);
4578
4579         return err;
4580 }
4581
4582 static int swevent_hlist_get(struct perf_event *event)
4583 {
4584         int err;
4585         int cpu, failed_cpu;
4586
4587         if (event->cpu != -1)
4588                 return swevent_hlist_get_cpu(event, event->cpu);
4589
4590         get_online_cpus();
4591         for_each_possible_cpu(cpu) {
4592                 err = swevent_hlist_get_cpu(event, cpu);
4593                 if (err) {
4594                         failed_cpu = cpu;
4595                         goto fail;
4596                 }
4597         }
4598         put_online_cpus();
4599
4600         return 0;
4601 fail:
4602         for_each_possible_cpu(cpu) {
4603                 if (cpu == failed_cpu)
4604                         break;
4605                 swevent_hlist_put_cpu(event, cpu);
4606         }
4607
4608         put_online_cpus();
4609         return err;
4610 }
4611
4612 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4613
4614 static void sw_perf_event_destroy(struct perf_event *event)
4615 {
4616         u64 event_id = event->attr.config;
4617
4618         WARN_ON(event->parent);
4619
4620         atomic_dec(&perf_swevent_enabled[event_id]);
4621         swevent_hlist_put(event);
4622 }
4623
4624 static int perf_swevent_init(struct perf_event *event)
4625 {
4626         int event_id = event->attr.config;
4627
4628         if (event->attr.type != PERF_TYPE_SOFTWARE)
4629                 return -ENOENT;
4630
4631         switch (event_id) {
4632         case PERF_COUNT_SW_CPU_CLOCK:
4633         case PERF_COUNT_SW_TASK_CLOCK:
4634                 return -ENOENT;
4635
4636         default:
4637                 break;
4638         }
4639
4640         if (event_id > PERF_COUNT_SW_MAX)
4641                 return -ENOENT;
4642
4643         if (!event->parent) {
4644                 int err;
4645
4646                 err = swevent_hlist_get(event);
4647                 if (err)
4648                         return err;
4649
4650                 atomic_inc(&perf_swevent_enabled[event_id]);
4651                 event->destroy = sw_perf_event_destroy;
4652         }
4653
4654         return 0;
4655 }
4656
4657 static struct pmu perf_swevent = {
4658         .event_init     = perf_swevent_init,
4659         .add            = perf_swevent_add,
4660         .del            = perf_swevent_del,
4661         .start          = perf_swevent_start,
4662         .stop           = perf_swevent_stop,
4663         .read           = perf_swevent_read,
4664 };
4665
4666 #ifdef CONFIG_EVENT_TRACING
4667
4668 static int perf_tp_filter_match(struct perf_event *event,
4669                                 struct perf_sample_data *data)
4670 {
4671         void *record = data->raw->data;
4672
4673         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4674                 return 1;
4675         return 0;
4676 }
4677
4678 static int perf_tp_event_match(struct perf_event *event,
4679                                 struct perf_sample_data *data,
4680                                 struct pt_regs *regs)
4681 {
4682         /*
4683          * All tracepoints are from kernel-space.
4684          */
4685         if (event->attr.exclude_kernel)
4686                 return 0;
4687
4688         if (!perf_tp_filter_match(event, data))
4689                 return 0;
4690
4691         return 1;
4692 }
4693
4694 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4695                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4696 {
4697         struct perf_sample_data data;
4698         struct perf_event *event;
4699         struct hlist_node *node;
4700
4701         struct perf_raw_record raw = {
4702                 .size = entry_size,
4703                 .data = record,
4704         };
4705
4706         perf_sample_data_init(&data, addr);
4707         data.raw = &raw;
4708
4709         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4710                 if (perf_tp_event_match(event, &data, regs))
4711                         perf_swevent_event(event, count, 1, &data, regs);
4712         }
4713
4714         perf_swevent_put_recursion_context(rctx);
4715 }
4716 EXPORT_SYMBOL_GPL(perf_tp_event);
4717
4718 static void tp_perf_event_destroy(struct perf_event *event)
4719 {
4720         perf_trace_destroy(event);
4721 }
4722
4723 static int perf_tp_event_init(struct perf_event *event)
4724 {
4725         int err;
4726
4727         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4728                 return -ENOENT;
4729
4730         /*
4731          * Raw tracepoint data is a severe data leak, only allow root to
4732          * have these.
4733          */
4734         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4735                         perf_paranoid_tracepoint_raw() &&
4736                         !capable(CAP_SYS_ADMIN))
4737                 return -EPERM;
4738
4739         err = perf_trace_init(event);
4740         if (err)
4741                 return err;
4742
4743         event->destroy = tp_perf_event_destroy;
4744
4745         return 0;
4746 }
4747
4748 static struct pmu perf_tracepoint = {
4749         .event_init     = perf_tp_event_init,
4750         .add            = perf_trace_add,
4751         .del            = perf_trace_del,
4752         .start          = perf_swevent_start,
4753         .stop           = perf_swevent_stop,
4754         .read           = perf_swevent_read,
4755 };
4756
4757 static inline void perf_tp_register(void)
4758 {
4759         perf_pmu_register(&perf_tracepoint);
4760 }
4761
4762 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4763 {
4764         char *filter_str;
4765         int ret;
4766
4767         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4768                 return -EINVAL;
4769
4770         filter_str = strndup_user(arg, PAGE_SIZE);
4771         if (IS_ERR(filter_str))
4772                 return PTR_ERR(filter_str);
4773
4774         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4775
4776         kfree(filter_str);
4777         return ret;
4778 }
4779
4780 static void perf_event_free_filter(struct perf_event *event)
4781 {
4782         ftrace_profile_free_filter(event);
4783 }
4784
4785 #else
4786
4787 static inline void perf_tp_register(void)
4788 {
4789 }
4790
4791 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4792 {
4793         return -ENOENT;
4794 }
4795
4796 static void perf_event_free_filter(struct perf_event *event)
4797 {
4798 }
4799
4800 #endif /* CONFIG_EVENT_TRACING */
4801
4802 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4803 void perf_bp_event(struct perf_event *bp, void *data)
4804 {
4805         struct perf_sample_data sample;
4806         struct pt_regs *regs = data;
4807
4808         perf_sample_data_init(&sample, bp->attr.bp_addr);
4809
4810         if (!bp->hw.state && !perf_exclude_event(bp, regs))
4811                 perf_swevent_event(bp, 1, 1, &sample, regs);
4812 }
4813 #endif
4814
4815 /*
4816  * hrtimer based swevent callback
4817  */
4818
4819 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4820 {
4821         enum hrtimer_restart ret = HRTIMER_RESTART;
4822         struct perf_sample_data data;
4823         struct pt_regs *regs;
4824         struct perf_event *event;
4825         u64 period;
4826
4827         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4828         event->pmu->read(event);
4829
4830         perf_sample_data_init(&data, 0);
4831         data.period = event->hw.last_period;
4832         regs = get_irq_regs();
4833
4834         if (regs && !perf_exclude_event(event, regs)) {
4835                 if (!(event->attr.exclude_idle && current->pid == 0))
4836                         if (perf_event_overflow(event, 0, &data, regs))
4837                                 ret = HRTIMER_NORESTART;
4838         }
4839
4840         period = max_t(u64, 10000, event->hw.sample_period);
4841         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4842
4843         return ret;
4844 }
4845
4846 static void perf_swevent_start_hrtimer(struct perf_event *event)
4847 {
4848         struct hw_perf_event *hwc = &event->hw;
4849
4850         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4851         hwc->hrtimer.function = perf_swevent_hrtimer;
4852         if (hwc->sample_period) {
4853                 s64 period = local64_read(&hwc->period_left);
4854
4855                 if (period) {
4856                         if (period < 0)
4857                                 period = 10000;
4858
4859                         local64_set(&hwc->period_left, 0);
4860                 } else {
4861                         period = max_t(u64, 10000, hwc->sample_period);
4862                 }
4863                 __hrtimer_start_range_ns(&hwc->hrtimer,
4864                                 ns_to_ktime(period), 0,
4865                                 HRTIMER_MODE_REL_PINNED, 0);
4866         }
4867 }
4868
4869 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4870 {
4871         struct hw_perf_event *hwc = &event->hw;
4872
4873         if (hwc->sample_period) {
4874                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4875                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4876
4877                 hrtimer_cancel(&hwc->hrtimer);
4878         }
4879 }
4880
4881 /*
4882  * Software event: cpu wall time clock
4883  */
4884
4885 static void cpu_clock_event_update(struct perf_event *event)
4886 {
4887         s64 prev;
4888         u64 now;
4889
4890         now = local_clock();
4891         prev = local64_xchg(&event->hw.prev_count, now);
4892         local64_add(now - prev, &event->count);
4893 }
4894
4895 static void cpu_clock_event_start(struct perf_event *event, int flags)
4896 {
4897         local64_set(&event->hw.prev_count, local_clock());
4898         perf_swevent_start_hrtimer(event);
4899 }
4900
4901 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4902 {
4903         perf_swevent_cancel_hrtimer(event);
4904         cpu_clock_event_update(event);
4905 }
4906
4907 static int cpu_clock_event_add(struct perf_event *event, int flags)
4908 {
4909         if (flags & PERF_EF_START)
4910                 cpu_clock_event_start(event, flags);
4911
4912         return 0;
4913 }
4914
4915 static void cpu_clock_event_del(struct perf_event *event, int flags)
4916 {
4917         cpu_clock_event_stop(event, flags);
4918 }
4919
4920 static void cpu_clock_event_read(struct perf_event *event)
4921 {
4922         cpu_clock_event_update(event);
4923 }
4924
4925 static int cpu_clock_event_init(struct perf_event *event)
4926 {
4927         if (event->attr.type != PERF_TYPE_SOFTWARE)
4928                 return -ENOENT;
4929
4930         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4931                 return -ENOENT;
4932
4933         return 0;
4934 }
4935
4936 static struct pmu perf_cpu_clock = {
4937         .event_init     = cpu_clock_event_init,
4938         .add            = cpu_clock_event_add,
4939         .del            = cpu_clock_event_del,
4940         .start          = cpu_clock_event_start,
4941         .stop           = cpu_clock_event_stop,
4942         .read           = cpu_clock_event_read,
4943 };
4944
4945 /*
4946  * Software event: task time clock
4947  */
4948
4949 static void task_clock_event_update(struct perf_event *event, u64 now)
4950 {
4951         u64 prev;
4952         s64 delta;
4953
4954         prev = local64_xchg(&event->hw.prev_count, now);
4955         delta = now - prev;
4956         local64_add(delta, &event->count);
4957 }
4958
4959 static void task_clock_event_start(struct perf_event *event, int flags)
4960 {
4961         local64_set(&event->hw.prev_count, event->ctx->time);
4962         perf_swevent_start_hrtimer(event);
4963 }
4964
4965 static void task_clock_event_stop(struct perf_event *event, int flags)
4966 {
4967         perf_swevent_cancel_hrtimer(event);
4968         task_clock_event_update(event, event->ctx->time);
4969 }
4970
4971 static int task_clock_event_add(struct perf_event *event, int flags)
4972 {
4973         if (flags & PERF_EF_START)
4974                 task_clock_event_start(event, flags);
4975
4976         return 0;
4977 }
4978
4979 static void task_clock_event_del(struct perf_event *event, int flags)
4980 {
4981         task_clock_event_stop(event, PERF_EF_UPDATE);
4982 }
4983
4984 static void task_clock_event_read(struct perf_event *event)
4985 {
4986         u64 time;
4987
4988         if (!in_nmi()) {
4989                 update_context_time(event->ctx);
4990                 time = event->ctx->time;
4991         } else {
4992                 u64 now = perf_clock();
4993                 u64 delta = now - event->ctx->timestamp;
4994                 time = event->ctx->time + delta;
4995         }
4996
4997         task_clock_event_update(event, time);
4998 }
4999
5000 static int task_clock_event_init(struct perf_event *event)
5001 {
5002         if (event->attr.type != PERF_TYPE_SOFTWARE)
5003                 return -ENOENT;
5004
5005         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5006                 return -ENOENT;
5007
5008         return 0;
5009 }
5010
5011 static struct pmu perf_task_clock = {
5012         .event_init     = task_clock_event_init,
5013         .add            = task_clock_event_add,
5014         .del            = task_clock_event_del,
5015         .start          = task_clock_event_start,
5016         .stop           = task_clock_event_stop,
5017         .read           = task_clock_event_read,
5018 };
5019
5020 static void perf_pmu_nop_void(struct pmu *pmu)
5021 {
5022 }
5023
5024 static int perf_pmu_nop_int(struct pmu *pmu)
5025 {
5026         return 0;
5027 }
5028
5029 static void perf_pmu_start_txn(struct pmu *pmu)
5030 {
5031         perf_pmu_disable(pmu);
5032 }
5033
5034 static int perf_pmu_commit_txn(struct pmu *pmu)
5035 {
5036         perf_pmu_enable(pmu);
5037         return 0;
5038 }
5039
5040 static void perf_pmu_cancel_txn(struct pmu *pmu)
5041 {
5042         perf_pmu_enable(pmu);
5043 }
5044
5045 int perf_pmu_register(struct pmu *pmu)
5046 {
5047         int cpu, ret;
5048
5049         mutex_lock(&pmus_lock);
5050         ret = -ENOMEM;
5051         pmu->pmu_disable_count = alloc_percpu(int);
5052         if (!pmu->pmu_disable_count)
5053                 goto unlock;
5054
5055         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5056         if (!pmu->pmu_cpu_context)
5057                 goto free_pdc;
5058
5059         for_each_possible_cpu(cpu) {
5060                 struct perf_cpu_context *cpuctx;
5061
5062                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5063                 __perf_event_init_context(&cpuctx->ctx);
5064                 cpuctx->ctx.pmu = pmu;
5065                 cpuctx->timer_interval = TICK_NSEC;
5066                 hrtimer_init(&cpuctx->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5067                 cpuctx->timer.function = perf_event_context_tick;
5068         }
5069
5070         if (!pmu->start_txn) {
5071                 if (pmu->pmu_enable) {
5072                         /*
5073                          * If we have pmu_enable/pmu_disable calls, install
5074                          * transaction stubs that use that to try and batch
5075                          * hardware accesses.
5076                          */
5077                         pmu->start_txn  = perf_pmu_start_txn;
5078                         pmu->commit_txn = perf_pmu_commit_txn;
5079                         pmu->cancel_txn = perf_pmu_cancel_txn;
5080                 } else {
5081                         pmu->start_txn  = perf_pmu_nop_void;
5082                         pmu->commit_txn = perf_pmu_nop_int;
5083                         pmu->cancel_txn = perf_pmu_nop_void;
5084                 }
5085         }
5086
5087         if (!pmu->pmu_enable) {
5088                 pmu->pmu_enable  = perf_pmu_nop_void;
5089                 pmu->pmu_disable = perf_pmu_nop_void;
5090         }
5091
5092         list_add_rcu(&pmu->entry, &pmus);
5093         ret = 0;
5094 unlock:
5095         mutex_unlock(&pmus_lock);
5096
5097         return ret;
5098
5099 free_pdc:
5100         free_percpu(pmu->pmu_disable_count);
5101         goto unlock;
5102 }
5103
5104 void perf_pmu_unregister(struct pmu *pmu)
5105 {
5106         mutex_lock(&pmus_lock);
5107         list_del_rcu(&pmu->entry);
5108         mutex_unlock(&pmus_lock);
5109
5110         /*
5111          * We use the pmu list either under SRCU or preempt_disable,
5112          * synchronize_srcu() implies synchronize_sched() so we're good.
5113          */
5114         synchronize_srcu(&pmus_srcu);
5115
5116         free_percpu(pmu->pmu_disable_count);
5117         free_percpu(pmu->pmu_cpu_context);
5118 }
5119
5120 struct pmu *perf_init_event(struct perf_event *event)
5121 {
5122         struct pmu *pmu = NULL;
5123         int idx;
5124
5125         idx = srcu_read_lock(&pmus_srcu);
5126         list_for_each_entry_rcu(pmu, &pmus, entry) {
5127                 int ret = pmu->event_init(event);
5128                 if (!ret)
5129                         break;
5130                 if (ret != -ENOENT) {
5131                         pmu = ERR_PTR(ret);
5132                         break;
5133                 }
5134         }
5135         srcu_read_unlock(&pmus_srcu, idx);
5136
5137         return pmu;
5138 }
5139
5140 /*
5141  * Allocate and initialize a event structure
5142  */
5143 static struct perf_event *
5144 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5145                    struct perf_event *group_leader,
5146                    struct perf_event *parent_event,
5147                    perf_overflow_handler_t overflow_handler)
5148 {
5149         struct pmu *pmu;
5150         struct perf_event *event;
5151         struct hw_perf_event *hwc;
5152         long err;
5153
5154         event = kzalloc(sizeof(*event), GFP_KERNEL);
5155         if (!event)
5156                 return ERR_PTR(-ENOMEM);
5157
5158         /*
5159          * Single events are their own group leaders, with an
5160          * empty sibling list:
5161          */
5162         if (!group_leader)
5163                 group_leader = event;
5164
5165         mutex_init(&event->child_mutex);
5166         INIT_LIST_HEAD(&event->child_list);
5167
5168         INIT_LIST_HEAD(&event->group_entry);
5169         INIT_LIST_HEAD(&event->event_entry);
5170         INIT_LIST_HEAD(&event->sibling_list);
5171         init_waitqueue_head(&event->waitq);
5172
5173         mutex_init(&event->mmap_mutex);
5174
5175         event->cpu              = cpu;
5176         event->attr             = *attr;
5177         event->group_leader     = group_leader;
5178         event->pmu              = NULL;
5179         event->oncpu            = -1;
5180
5181         event->parent           = parent_event;
5182
5183         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5184         event->id               = atomic64_inc_return(&perf_event_id);
5185
5186         event->state            = PERF_EVENT_STATE_INACTIVE;
5187
5188         if (!overflow_handler && parent_event)
5189                 overflow_handler = parent_event->overflow_handler;
5190         
5191         event->overflow_handler = overflow_handler;
5192
5193         if (attr->disabled)
5194                 event->state = PERF_EVENT_STATE_OFF;
5195
5196         pmu = NULL;
5197
5198         hwc = &event->hw;
5199         hwc->sample_period = attr->sample_period;
5200         if (attr->freq && attr->sample_freq)
5201                 hwc->sample_period = 1;
5202         hwc->last_period = hwc->sample_period;
5203
5204         local64_set(&hwc->period_left, hwc->sample_period);
5205
5206         /*
5207          * we currently do not support PERF_FORMAT_GROUP on inherited events
5208          */
5209         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5210                 goto done;
5211
5212         pmu = perf_init_event(event);
5213
5214 done:
5215         err = 0;
5216         if (!pmu)
5217                 err = -EINVAL;
5218         else if (IS_ERR(pmu))
5219                 err = PTR_ERR(pmu);
5220
5221         if (err) {
5222                 if (event->ns)
5223                         put_pid_ns(event->ns);
5224                 kfree(event);
5225                 return ERR_PTR(err);
5226         }
5227
5228         event->pmu = pmu;
5229
5230         if (!event->parent) {
5231                 atomic_inc(&nr_events);
5232                 if (event->attr.mmap || event->attr.mmap_data)
5233                         atomic_inc(&nr_mmap_events);
5234                 if (event->attr.comm)
5235                         atomic_inc(&nr_comm_events);
5236                 if (event->attr.task)
5237                         atomic_inc(&nr_task_events);
5238                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5239                         err = get_callchain_buffers();
5240                         if (err) {
5241                                 free_event(event);
5242                                 return ERR_PTR(err);
5243                         }
5244                 }
5245         }
5246
5247         return event;
5248 }
5249
5250 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5251                           struct perf_event_attr *attr)
5252 {
5253         u32 size;
5254         int ret;
5255
5256         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5257                 return -EFAULT;
5258
5259         /*
5260          * zero the full structure, so that a short copy will be nice.
5261          */
5262         memset(attr, 0, sizeof(*attr));
5263
5264         ret = get_user(size, &uattr->size);
5265         if (ret)
5266                 return ret;
5267
5268         if (size > PAGE_SIZE)   /* silly large */
5269                 goto err_size;
5270
5271         if (!size)              /* abi compat */
5272                 size = PERF_ATTR_SIZE_VER0;
5273
5274         if (size < PERF_ATTR_SIZE_VER0)
5275                 goto err_size;
5276
5277         /*
5278          * If we're handed a bigger struct than we know of,
5279          * ensure all the unknown bits are 0 - i.e. new
5280          * user-space does not rely on any kernel feature
5281          * extensions we dont know about yet.
5282          */
5283         if (size > sizeof(*attr)) {
5284                 unsigned char __user *addr;
5285                 unsigned char __user *end;
5286                 unsigned char val;
5287
5288                 addr = (void __user *)uattr + sizeof(*attr);
5289                 end  = (void __user *)uattr + size;
5290
5291                 for (; addr < end; addr++) {
5292                         ret = get_user(val, addr);
5293                         if (ret)
5294                                 return ret;
5295                         if (val)
5296                                 goto err_size;
5297                 }
5298                 size = sizeof(*attr);
5299         }
5300
5301         ret = copy_from_user(attr, uattr, size);
5302         if (ret)
5303                 return -EFAULT;
5304
5305         /*
5306          * If the type exists, the corresponding creation will verify
5307          * the attr->config.
5308          */
5309         if (attr->type >= PERF_TYPE_MAX)
5310                 return -EINVAL;
5311
5312         if (attr->__reserved_1)
5313                 return -EINVAL;
5314
5315         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5316                 return -EINVAL;
5317
5318         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5319                 return -EINVAL;
5320
5321 out:
5322         return ret;
5323
5324 err_size:
5325         put_user(sizeof(*attr), &uattr->size);
5326         ret = -E2BIG;
5327         goto out;
5328 }
5329
5330 static int
5331 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5332 {
5333         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5334         int ret = -EINVAL;
5335
5336         if (!output_event)
5337                 goto set;
5338
5339         /* don't allow circular references */
5340         if (event == output_event)
5341                 goto out;
5342
5343         /*
5344          * Don't allow cross-cpu buffers
5345          */
5346         if (output_event->cpu != event->cpu)
5347                 goto out;
5348
5349         /*
5350          * If its not a per-cpu buffer, it must be the same task.
5351          */
5352         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5353                 goto out;
5354
5355 set:
5356         mutex_lock(&event->mmap_mutex);
5357         /* Can't redirect output if we've got an active mmap() */
5358         if (atomic_read(&event->mmap_count))
5359                 goto unlock;
5360
5361         if (output_event) {
5362                 /* get the buffer we want to redirect to */
5363                 buffer = perf_buffer_get(output_event);
5364                 if (!buffer)
5365                         goto unlock;
5366         }
5367
5368         old_buffer = event->buffer;
5369         rcu_assign_pointer(event->buffer, buffer);
5370         ret = 0;
5371 unlock:
5372         mutex_unlock(&event->mmap_mutex);
5373
5374         if (old_buffer)
5375                 perf_buffer_put(old_buffer);
5376 out:
5377         return ret;
5378 }
5379
5380 /**
5381  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5382  *
5383  * @attr_uptr:  event_id type attributes for monitoring/sampling
5384  * @pid:                target pid
5385  * @cpu:                target cpu
5386  * @group_fd:           group leader event fd
5387  */
5388 SYSCALL_DEFINE5(perf_event_open,
5389                 struct perf_event_attr __user *, attr_uptr,
5390                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5391 {
5392         struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5393         struct perf_event_attr attr;
5394         struct perf_event_context *ctx;
5395         struct file *event_file = NULL;
5396         struct file *group_file = NULL;
5397         int event_fd;
5398         int fput_needed = 0;
5399         int err;
5400
5401         /* for future expandability... */
5402         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5403                 return -EINVAL;
5404
5405         err = perf_copy_attr(attr_uptr, &attr);
5406         if (err)
5407                 return err;
5408
5409         if (!attr.exclude_kernel) {
5410                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5411                         return -EACCES;
5412         }
5413
5414         if (attr.freq) {
5415                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5416                         return -EINVAL;
5417         }
5418
5419         event_fd = get_unused_fd_flags(O_RDWR);
5420         if (event_fd < 0)
5421                 return event_fd;
5422
5423         event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
5424         if (IS_ERR(event)) {
5425                 err = PTR_ERR(event);
5426                 goto err_fd;
5427         }
5428
5429         /*
5430          * Get the target context (task or percpu):
5431          */
5432         ctx = find_get_context(event->pmu, pid, cpu);
5433         if (IS_ERR(ctx)) {
5434                 err = PTR_ERR(ctx);
5435                 goto err_alloc;
5436         }
5437
5438         if (group_fd != -1) {
5439                 group_leader = perf_fget_light(group_fd, &fput_needed);
5440                 if (IS_ERR(group_leader)) {
5441                         err = PTR_ERR(group_leader);
5442                         goto err_context;
5443                 }
5444                 group_file = group_leader->filp;
5445                 if (flags & PERF_FLAG_FD_OUTPUT)
5446                         output_event = group_leader;
5447                 if (flags & PERF_FLAG_FD_NO_GROUP)
5448                         group_leader = NULL;
5449         }
5450
5451         /*
5452          * Look up the group leader (we will attach this event to it):
5453          */
5454         if (group_leader) {
5455                 err = -EINVAL;
5456
5457                 /*
5458                  * Do not allow a recursive hierarchy (this new sibling
5459                  * becoming part of another group-sibling):
5460                  */
5461                 if (group_leader->group_leader != group_leader)
5462                         goto err_context;
5463                 /*
5464                  * Do not allow to attach to a group in a different
5465                  * task or CPU context:
5466                  */
5467                 if (group_leader->ctx != ctx)
5468                         goto err_context;
5469                 /*
5470                  * Only a group leader can be exclusive or pinned
5471                  */
5472                 if (attr.exclusive || attr.pinned)
5473                         goto err_context;
5474         }
5475
5476         if (output_event) {
5477                 err = perf_event_set_output(event, output_event);
5478                 if (err)
5479                         goto err_context;
5480         }
5481
5482         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5483         if (IS_ERR(event_file)) {
5484                 err = PTR_ERR(event_file);
5485                 goto err_context;
5486         }
5487
5488         event->filp = event_file;
5489         WARN_ON_ONCE(ctx->parent_ctx);
5490         mutex_lock(&ctx->mutex);
5491         perf_install_in_context(ctx, event, cpu);
5492         ++ctx->generation;
5493         mutex_unlock(&ctx->mutex);
5494
5495         event->owner = current;
5496         get_task_struct(current);
5497         mutex_lock(&current->perf_event_mutex);
5498         list_add_tail(&event->owner_entry, &current->perf_event_list);
5499         mutex_unlock(&current->perf_event_mutex);
5500
5501         /*
5502          * Drop the reference on the group_event after placing the
5503          * new event on the sibling_list. This ensures destruction
5504          * of the group leader will find the pointer to itself in
5505          * perf_group_detach().
5506          */
5507         fput_light(group_file, fput_needed);
5508         fd_install(event_fd, event_file);
5509         return event_fd;
5510
5511 err_context:
5512         fput_light(group_file, fput_needed);
5513         put_ctx(ctx);
5514 err_alloc:
5515         free_event(event);
5516 err_fd:
5517         put_unused_fd(event_fd);
5518         return err;
5519 }
5520
5521 /**
5522  * perf_event_create_kernel_counter
5523  *
5524  * @attr: attributes of the counter to create
5525  * @cpu: cpu in which the counter is bound
5526  * @pid: task to profile
5527  */
5528 struct perf_event *
5529 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5530                                  pid_t pid,
5531                                  perf_overflow_handler_t overflow_handler)
5532 {
5533         struct perf_event_context *ctx;
5534         struct perf_event *event;
5535         int err;
5536
5537         /*
5538          * Get the target context (task or percpu):
5539          */
5540
5541         event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
5542         if (IS_ERR(event)) {
5543                 err = PTR_ERR(event);
5544                 goto err;
5545         }
5546
5547         ctx = find_get_context(event->pmu, pid, cpu);
5548         if (IS_ERR(ctx)) {
5549                 err = PTR_ERR(ctx);
5550                 goto err_free;
5551         }
5552
5553         event->filp = NULL;
5554         WARN_ON_ONCE(ctx->parent_ctx);
5555         mutex_lock(&ctx->mutex);
5556         perf_install_in_context(ctx, event, cpu);
5557         ++ctx->generation;
5558         mutex_unlock(&ctx->mutex);
5559
5560         event->owner = current;
5561         get_task_struct(current);
5562         mutex_lock(&current->perf_event_mutex);
5563         list_add_tail(&event->owner_entry, &current->perf_event_list);
5564         mutex_unlock(&current->perf_event_mutex);
5565
5566         return event;
5567
5568 err_free:
5569         free_event(event);
5570 err:
5571         return ERR_PTR(err);
5572 }
5573 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5574
5575 static void sync_child_event(struct perf_event *child_event,
5576                                struct task_struct *child)
5577 {
5578         struct perf_event *parent_event = child_event->parent;
5579         u64 child_val;
5580
5581         if (child_event->attr.inherit_stat)
5582                 perf_event_read_event(child_event, child);
5583
5584         child_val = perf_event_count(child_event);
5585
5586         /*
5587          * Add back the child's count to the parent's count:
5588          */
5589         atomic64_add(child_val, &parent_event->child_count);
5590         atomic64_add(child_event->total_time_enabled,
5591                      &parent_event->child_total_time_enabled);
5592         atomic64_add(child_event->total_time_running,
5593                      &parent_event->child_total_time_running);
5594
5595         /*
5596          * Remove this event from the parent's list
5597          */
5598         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5599         mutex_lock(&parent_event->child_mutex);
5600         list_del_init(&child_event->child_list);
5601         mutex_unlock(&parent_event->child_mutex);
5602
5603         /*
5604          * Release the parent event, if this was the last
5605          * reference to it.
5606          */
5607         fput(parent_event->filp);
5608 }
5609
5610 static void
5611 __perf_event_exit_task(struct perf_event *child_event,
5612                          struct perf_event_context *child_ctx,
5613                          struct task_struct *child)
5614 {
5615         struct perf_event *parent_event;
5616
5617         perf_event_remove_from_context(child_event);
5618
5619         parent_event = child_event->parent;
5620         /*
5621          * It can happen that parent exits first, and has events
5622          * that are still around due to the child reference. These
5623          * events need to be zapped - but otherwise linger.
5624          */
5625         if (parent_event) {
5626                 sync_child_event(child_event, child);
5627                 free_event(child_event);
5628         }
5629 }
5630
5631 /*
5632  * When a child task exits, feed back event values to parent events.
5633  */
5634 void perf_event_exit_task(struct task_struct *child)
5635 {
5636         struct perf_event *child_event, *tmp;
5637         struct perf_event_context *child_ctx;
5638         unsigned long flags;
5639
5640         if (likely(!child->perf_event_ctxp)) {
5641                 perf_event_task(child, NULL, 0);
5642                 return;
5643         }
5644
5645         local_irq_save(flags);
5646         /*
5647          * We can't reschedule here because interrupts are disabled,
5648          * and either child is current or it is a task that can't be
5649          * scheduled, so we are now safe from rescheduling changing
5650          * our context.
5651          */
5652         child_ctx = child->perf_event_ctxp;
5653         __perf_event_task_sched_out(child_ctx);
5654
5655         /*
5656          * Take the context lock here so that if find_get_context is
5657          * reading child->perf_event_ctxp, we wait until it has
5658          * incremented the context's refcount before we do put_ctx below.
5659          */
5660         raw_spin_lock(&child_ctx->lock);
5661         child->perf_event_ctxp = NULL;
5662         /*
5663          * If this context is a clone; unclone it so it can't get
5664          * swapped to another process while we're removing all
5665          * the events from it.
5666          */
5667         unclone_ctx(child_ctx);
5668         update_context_time(child_ctx);
5669         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5670
5671         /*
5672          * Report the task dead after unscheduling the events so that we
5673          * won't get any samples after PERF_RECORD_EXIT. We can however still
5674          * get a few PERF_RECORD_READ events.
5675          */
5676         perf_event_task(child, child_ctx, 0);
5677
5678         /*
5679          * We can recurse on the same lock type through:
5680          *
5681          *   __perf_event_exit_task()
5682          *     sync_child_event()
5683          *       fput(parent_event->filp)
5684          *         perf_release()
5685          *           mutex_lock(&ctx->mutex)
5686          *
5687          * But since its the parent context it won't be the same instance.
5688          */
5689         mutex_lock(&child_ctx->mutex);
5690
5691 again:
5692         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5693                                  group_entry)
5694                 __perf_event_exit_task(child_event, child_ctx, child);
5695
5696         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5697                                  group_entry)
5698                 __perf_event_exit_task(child_event, child_ctx, child);
5699
5700         /*
5701          * If the last event was a group event, it will have appended all
5702          * its siblings to the list, but we obtained 'tmp' before that which
5703          * will still point to the list head terminating the iteration.
5704          */
5705         if (!list_empty(&child_ctx->pinned_groups) ||
5706             !list_empty(&child_ctx->flexible_groups))
5707                 goto again;
5708
5709         mutex_unlock(&child_ctx->mutex);
5710
5711         put_ctx(child_ctx);
5712 }
5713
5714 static void perf_free_event(struct perf_event *event,
5715                             struct perf_event_context *ctx)
5716 {
5717         struct perf_event *parent = event->parent;
5718
5719         if (WARN_ON_ONCE(!parent))
5720                 return;
5721
5722         mutex_lock(&parent->child_mutex);
5723         list_del_init(&event->child_list);
5724         mutex_unlock(&parent->child_mutex);
5725
5726         fput(parent->filp);
5727
5728         perf_group_detach(event);
5729         list_del_event(event, ctx);
5730         free_event(event);
5731 }
5732
5733 /*
5734  * free an unexposed, unused context as created by inheritance by
5735  * init_task below, used by fork() in case of fail.
5736  */
5737 void perf_event_free_task(struct task_struct *task)
5738 {
5739         struct perf_event_context *ctx = task->perf_event_ctxp;
5740         struct perf_event *event, *tmp;
5741
5742         if (!ctx)
5743                 return;
5744
5745         mutex_lock(&ctx->mutex);
5746 again:
5747         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5748                 perf_free_event(event, ctx);
5749
5750         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5751                                  group_entry)
5752                 perf_free_event(event, ctx);
5753
5754         if (!list_empty(&ctx->pinned_groups) ||
5755             !list_empty(&ctx->flexible_groups))
5756                 goto again;
5757
5758         mutex_unlock(&ctx->mutex);
5759
5760         put_ctx(ctx);
5761 }
5762
5763 /*
5764  * inherit a event from parent task to child task:
5765  */
5766 static struct perf_event *
5767 inherit_event(struct perf_event *parent_event,
5768               struct task_struct *parent,
5769               struct perf_event_context *parent_ctx,
5770               struct task_struct *child,
5771               struct perf_event *group_leader,
5772               struct perf_event_context *child_ctx)
5773 {
5774         struct perf_event *child_event;
5775
5776         /*
5777          * Instead of creating recursive hierarchies of events,
5778          * we link inherited events back to the original parent,
5779          * which has a filp for sure, which we use as the reference
5780          * count:
5781          */
5782         if (parent_event->parent)
5783                 parent_event = parent_event->parent;
5784
5785         child_event = perf_event_alloc(&parent_event->attr,
5786                                            parent_event->cpu,
5787                                            group_leader, parent_event,
5788                                            NULL);
5789         if (IS_ERR(child_event))
5790                 return child_event;
5791         get_ctx(child_ctx);
5792
5793         /*
5794          * Make the child state follow the state of the parent event,
5795          * not its attr.disabled bit.  We hold the parent's mutex,
5796          * so we won't race with perf_event_{en, dis}able_family.
5797          */
5798         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5799                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5800         else
5801                 child_event->state = PERF_EVENT_STATE_OFF;
5802
5803         if (parent_event->attr.freq) {
5804                 u64 sample_period = parent_event->hw.sample_period;
5805                 struct hw_perf_event *hwc = &child_event->hw;
5806
5807                 hwc->sample_period = sample_period;
5808                 hwc->last_period   = sample_period;
5809
5810                 local64_set(&hwc->period_left, sample_period);
5811         }
5812
5813         child_event->ctx = child_ctx;
5814         child_event->overflow_handler = parent_event->overflow_handler;
5815
5816         /*
5817          * Link it up in the child's context:
5818          */
5819         add_event_to_ctx(child_event, child_ctx);
5820
5821         /*
5822          * Get a reference to the parent filp - we will fput it
5823          * when the child event exits. This is safe to do because
5824          * we are in the parent and we know that the filp still
5825          * exists and has a nonzero count:
5826          */
5827         atomic_long_inc(&parent_event->filp->f_count);
5828
5829         /*
5830          * Link this into the parent event's child list
5831          */
5832         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5833         mutex_lock(&parent_event->child_mutex);
5834         list_add_tail(&child_event->child_list, &parent_event->child_list);
5835         mutex_unlock(&parent_event->child_mutex);
5836
5837         return child_event;
5838 }
5839
5840 static int inherit_group(struct perf_event *parent_event,
5841               struct task_struct *parent,
5842               struct perf_event_context *parent_ctx,
5843               struct task_struct *child,
5844               struct perf_event_context *child_ctx)
5845 {
5846         struct perf_event *leader;
5847         struct perf_event *sub;
5848         struct perf_event *child_ctr;
5849
5850         leader = inherit_event(parent_event, parent, parent_ctx,
5851                                  child, NULL, child_ctx);
5852         if (IS_ERR(leader))
5853                 return PTR_ERR(leader);
5854         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5855                 child_ctr = inherit_event(sub, parent, parent_ctx,
5856                                             child, leader, child_ctx);
5857                 if (IS_ERR(child_ctr))
5858                         return PTR_ERR(child_ctr);
5859         }
5860         return 0;
5861 }
5862
5863 static int
5864 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5865                    struct perf_event_context *parent_ctx,
5866                    struct task_struct *child,
5867                    int *inherited_all)
5868 {
5869         int ret;
5870         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5871
5872         if (!event->attr.inherit) {
5873                 *inherited_all = 0;
5874                 return 0;
5875         }
5876
5877         if (!child_ctx) {
5878                 /*
5879                  * This is executed from the parent task context, so
5880                  * inherit events that have been marked for cloning.
5881                  * First allocate and initialize a context for the
5882                  * child.
5883                  */
5884
5885                 child_ctx = alloc_perf_context(event->pmu, child);
5886                 if (!child_ctx)
5887                         return -ENOMEM;
5888
5889                 child->perf_event_ctxp = child_ctx;
5890         }
5891
5892         ret = inherit_group(event, parent, parent_ctx,
5893                             child, child_ctx);
5894
5895         if (ret)
5896                 *inherited_all = 0;
5897
5898         return ret;
5899 }
5900
5901 /*
5902  * Initialize the perf_event context in task_struct
5903  */
5904 int perf_event_init_task(struct task_struct *child)
5905 {
5906         struct perf_event_context *child_ctx, *parent_ctx;
5907         struct perf_event_context *cloned_ctx;
5908         struct perf_event *event;
5909         struct task_struct *parent = current;
5910         int inherited_all = 1;
5911         int ret = 0;
5912
5913         child->perf_event_ctxp = NULL;
5914
5915         mutex_init(&child->perf_event_mutex);
5916         INIT_LIST_HEAD(&child->perf_event_list);
5917
5918         if (likely(!parent->perf_event_ctxp))
5919                 return 0;
5920
5921         /*
5922          * If the parent's context is a clone, pin it so it won't get
5923          * swapped under us.
5924          */
5925         parent_ctx = perf_pin_task_context(parent);
5926
5927         /*
5928          * No need to check if parent_ctx != NULL here; since we saw
5929          * it non-NULL earlier, the only reason for it to become NULL
5930          * is if we exit, and since we're currently in the middle of
5931          * a fork we can't be exiting at the same time.
5932          */
5933
5934         /*
5935          * Lock the parent list. No need to lock the child - not PID
5936          * hashed yet and not running, so nobody can access it.
5937          */
5938         mutex_lock(&parent_ctx->mutex);
5939
5940         /*
5941          * We dont have to disable NMIs - we are only looking at
5942          * the list, not manipulating it:
5943          */
5944         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5945                 ret = inherit_task_group(event, parent, parent_ctx, child,
5946                                          &inherited_all);
5947                 if (ret)
5948                         break;
5949         }
5950
5951         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5952                 ret = inherit_task_group(event, parent, parent_ctx, child,
5953                                          &inherited_all);
5954                 if (ret)
5955                         break;
5956         }
5957
5958         child_ctx = child->perf_event_ctxp;
5959
5960         if (child_ctx && inherited_all) {
5961                 /*
5962                  * Mark the child context as a clone of the parent
5963                  * context, or of whatever the parent is a clone of.
5964                  * Note that if the parent is a clone, it could get
5965                  * uncloned at any point, but that doesn't matter
5966                  * because the list of events and the generation
5967                  * count can't have changed since we took the mutex.
5968                  */
5969                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5970                 if (cloned_ctx) {
5971                         child_ctx->parent_ctx = cloned_ctx;
5972                         child_ctx->parent_gen = parent_ctx->parent_gen;
5973                 } else {
5974                         child_ctx->parent_ctx = parent_ctx;
5975                         child_ctx->parent_gen = parent_ctx->generation;
5976                 }
5977                 get_ctx(child_ctx->parent_ctx);
5978         }
5979
5980         mutex_unlock(&parent_ctx->mutex);
5981
5982         perf_unpin_context(parent_ctx);
5983
5984         return ret;
5985 }
5986
5987 static void __init perf_event_init_all_cpus(void)
5988 {
5989         struct swevent_htable *swhash;
5990         int cpu;
5991
5992         for_each_possible_cpu(cpu) {
5993                 swhash = &per_cpu(swevent_htable, cpu);
5994                 mutex_init(&swhash->hlist_mutex);
5995         }
5996 }
5997
5998 static void __cpuinit perf_event_init_cpu(int cpu)
5999 {
6000         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6001
6002         mutex_lock(&swhash->hlist_mutex);
6003         if (swhash->hlist_refcount > 0) {
6004                 struct swevent_hlist *hlist;
6005
6006                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6007                 WARN_ON(!hlist);
6008                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6009         }
6010         mutex_unlock(&swhash->hlist_mutex);
6011 }
6012
6013 #ifdef CONFIG_HOTPLUG_CPU
6014 static void __perf_event_exit_context(void *__info)
6015 {
6016         struct perf_event_context *ctx = __info;
6017         struct perf_event *event, *tmp;
6018
6019         perf_pmu_rotate_stop(ctx->pmu);
6020
6021         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6022                 __perf_event_remove_from_context(event);
6023         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6024                 __perf_event_remove_from_context(event);
6025 }
6026
6027 static void perf_event_exit_cpu_context(int cpu)
6028 {
6029         struct perf_event_context *ctx;
6030         struct pmu *pmu;
6031         int idx;
6032
6033         idx = srcu_read_lock(&pmus_srcu);
6034         list_for_each_entry_rcu(pmu, &pmus, entry) {
6035                 ctx = &this_cpu_ptr(pmu->pmu_cpu_context)->ctx;
6036
6037                 mutex_lock(&ctx->mutex);
6038                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6039                 mutex_unlock(&ctx->mutex);
6040         }
6041         srcu_read_unlock(&pmus_srcu, idx);
6042
6043 }
6044
6045 static void perf_event_exit_cpu(int cpu)
6046 {
6047         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6048
6049         mutex_lock(&swhash->hlist_mutex);
6050         swevent_hlist_release(swhash);
6051         mutex_unlock(&swhash->hlist_mutex);
6052
6053         perf_event_exit_cpu_context(cpu);
6054 }
6055 #else
6056 static inline void perf_event_exit_cpu(int cpu) { }
6057 #endif
6058
6059 static int __cpuinit
6060 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6061 {
6062         unsigned int cpu = (long)hcpu;
6063
6064         switch (action & ~CPU_TASKS_FROZEN) {
6065
6066         case CPU_UP_PREPARE:
6067         case CPU_DOWN_FAILED:
6068                 perf_event_init_cpu(cpu);
6069                 break;
6070
6071         case CPU_UP_CANCELED:
6072         case CPU_DOWN_PREPARE:
6073                 perf_event_exit_cpu(cpu);
6074                 break;
6075
6076         default:
6077                 break;
6078         }
6079
6080         return NOTIFY_OK;
6081 }
6082
6083 void __init perf_event_init(void)
6084 {
6085         perf_event_init_all_cpus();
6086         init_srcu_struct(&pmus_srcu);
6087         perf_pmu_register(&perf_swevent);
6088         perf_pmu_register(&perf_cpu_clock);
6089         perf_pmu_register(&perf_task_clock);
6090         perf_tp_register();
6091         perf_cpu_notifier(perf_cpu_notify);
6092 }