firewire: ohci: do not clear PHY interrupt status inadvertently
[linux-flexiantxendom0-natty.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
44
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
48
49 #include "core.h"
50 #include "ohci.h"
51
52 #define DESCRIPTOR_OUTPUT_MORE          0
53 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
56 #define DESCRIPTOR_STATUS               (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
58 #define DESCRIPTOR_PING                 (1 << 7)
59 #define DESCRIPTOR_YY                   (1 << 6)
60 #define DESCRIPTOR_NO_IRQ               (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
64 #define DESCRIPTOR_WAIT                 (3 << 0)
65
66 struct descriptor {
67         __le16 req_count;
68         __le16 control;
69         __le32 data_address;
70         __le32 branch_address;
71         __le16 res_count;
72         __le16 transfer_status;
73 } __attribute__((aligned(16)));
74
75 #define CONTROL_SET(regs)       (regs)
76 #define CONTROL_CLEAR(regs)     ((regs) + 4)
77 #define COMMAND_PTR(regs)       ((regs) + 12)
78 #define CONTEXT_MATCH(regs)     ((regs) + 16)
79
80 struct ar_buffer {
81         struct descriptor descriptor;
82         struct ar_buffer *next;
83         __le32 data[0];
84 };
85
86 struct ar_context {
87         struct fw_ohci *ohci;
88         struct ar_buffer *current_buffer;
89         struct ar_buffer *last_buffer;
90         void *pointer;
91         u32 regs;
92         struct tasklet_struct tasklet;
93 };
94
95 struct context;
96
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98                                      struct descriptor *d,
99                                      struct descriptor *last);
100
101 /*
102  * A buffer that contains a block of DMA-able coherent memory used for
103  * storing a portion of a DMA descriptor program.
104  */
105 struct descriptor_buffer {
106         struct list_head list;
107         dma_addr_t buffer_bus;
108         size_t buffer_size;
109         size_t used;
110         struct descriptor buffer[0];
111 };
112
113 struct context {
114         struct fw_ohci *ohci;
115         u32 regs;
116         int total_allocation;
117
118         /*
119          * List of page-sized buffers for storing DMA descriptors.
120          * Head of list contains buffers in use and tail of list contains
121          * free buffers.
122          */
123         struct list_head buffer_list;
124
125         /*
126          * Pointer to a buffer inside buffer_list that contains the tail
127          * end of the current DMA program.
128          */
129         struct descriptor_buffer *buffer_tail;
130
131         /*
132          * The descriptor containing the branch address of the first
133          * descriptor that has not yet been filled by the device.
134          */
135         struct descriptor *last;
136
137         /*
138          * The last descriptor in the DMA program.  It contains the branch
139          * address that must be updated upon appending a new descriptor.
140          */
141         struct descriptor *prev;
142
143         descriptor_callback_t callback;
144
145         struct tasklet_struct tasklet;
146 };
147
148 #define IT_HEADER_SY(v)          ((v) <<  0)
149 #define IT_HEADER_TCODE(v)       ((v) <<  4)
150 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
151 #define IT_HEADER_TAG(v)         ((v) << 14)
152 #define IT_HEADER_SPEED(v)       ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154
155 struct iso_context {
156         struct fw_iso_context base;
157         struct context context;
158         int excess_bytes;
159         void *header;
160         size_t header_length;
161 };
162
163 #define CONFIG_ROM_SIZE 1024
164
165 struct fw_ohci {
166         struct fw_card card;
167
168         __iomem char *registers;
169         int node_id;
170         int generation;
171         int request_generation; /* for timestamping incoming requests */
172         unsigned quirks;
173
174         /*
175          * Spinlock for accessing fw_ohci data.  Never call out of
176          * this driver with this lock held.
177          */
178         spinlock_t lock;
179
180         struct ar_context ar_request_ctx;
181         struct ar_context ar_response_ctx;
182         struct context at_request_ctx;
183         struct context at_response_ctx;
184
185         u32 it_context_mask;
186         struct iso_context *it_context_list;
187         u64 ir_context_channels;
188         u32 ir_context_mask;
189         struct iso_context *ir_context_list;
190
191         __be32    *config_rom;
192         dma_addr_t config_rom_bus;
193         __be32    *next_config_rom;
194         dma_addr_t next_config_rom_bus;
195         __be32     next_header;
196
197         __le32    *self_id_cpu;
198         dma_addr_t self_id_bus;
199         struct tasklet_struct bus_reset_tasklet;
200
201         u32 self_id_buffer[512];
202 };
203
204 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 {
206         return container_of(card, struct fw_ohci, card);
207 }
208
209 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
210 #define IR_CONTEXT_BUFFER_FILL          0x80000000
211 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
212 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
213 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
214 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
215
216 #define CONTEXT_RUN     0x8000
217 #define CONTEXT_WAKE    0x1000
218 #define CONTEXT_DEAD    0x0800
219 #define CONTEXT_ACTIVE  0x0400
220
221 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
222 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
223 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
224
225 #define OHCI1394_REGISTER_SIZE          0x800
226 #define OHCI_LOOP_COUNT                 500
227 #define OHCI1394_PCI_HCI_Control        0x40
228 #define SELF_ID_BUF_SIZE                0x800
229 #define OHCI_TCODE_PHY_PACKET           0x0e
230 #define OHCI_VERSION_1_1                0x010010
231
232 static char ohci_driver_name[] = KBUILD_MODNAME;
233
234 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
235
236 #define QUIRK_CYCLE_TIMER               1
237 #define QUIRK_RESET_PACKET              2
238 #define QUIRK_BE_HEADERS                4
239
240 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
241 static const struct {
242         unsigned short vendor, device, flags;
243 } ohci_quirks[] = {
244         {PCI_VENDOR_ID_TI,      PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
245                                                             QUIRK_RESET_PACKET},
246         {PCI_VENDOR_ID_TI,      PCI_ANY_ID,     QUIRK_RESET_PACKET},
247         {PCI_VENDOR_ID_AL,      PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
248         {PCI_VENDOR_ID_NEC,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
249         {PCI_VENDOR_ID_VIA,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
250         {PCI_VENDOR_ID_APPLE,   PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
251 };
252
253 /* This overrides anything that was found in ohci_quirks[]. */
254 static int param_quirks;
255 module_param_named(quirks, param_quirks, int, 0644);
256 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
257         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
258         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
259         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
260         ")");
261
262 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
263
264 #define OHCI_PARAM_DEBUG_AT_AR          1
265 #define OHCI_PARAM_DEBUG_SELFIDS        2
266 #define OHCI_PARAM_DEBUG_IRQS           4
267 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
268
269 static int param_debug;
270 module_param_named(debug, param_debug, int, 0644);
271 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
272         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
273         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
274         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
275         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
276         ", or a combination, or all = -1)");
277
278 static void log_irqs(u32 evt)
279 {
280         if (likely(!(param_debug &
281                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
282                 return;
283
284         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
285             !(evt & OHCI1394_busReset))
286                 return;
287
288         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
289             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
290             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
291             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
292             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
293             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
294             evt & OHCI1394_isochRx              ? " IR"                 : "",
295             evt & OHCI1394_isochTx              ? " IT"                 : "",
296             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
297             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
298             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
299             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
300             evt & OHCI1394_busReset             ? " busReset"           : "",
301             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
302                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
303                     OHCI1394_respTxComplete | OHCI1394_isochRx |
304                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
305                     OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
306                     OHCI1394_regAccessFail | OHCI1394_busReset)
307                                                 ? " ?"                  : "");
308 }
309
310 static const char *speed[] = {
311         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
312 };
313 static const char *power[] = {
314         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
315         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
316 };
317 static const char port[] = { '.', '-', 'p', 'c', };
318
319 static char _p(u32 *s, int shift)
320 {
321         return port[*s >> shift & 3];
322 }
323
324 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
325 {
326         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
327                 return;
328
329         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
330                   self_id_count, generation, node_id);
331
332         for (; self_id_count--; ++s)
333                 if ((*s & 1 << 23) == 0)
334                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
335                             "%s gc=%d %s %s%s%s\n",
336                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
337                             speed[*s >> 14 & 3], *s >> 16 & 63,
338                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
339                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
340                 else
341                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
342                             *s, *s >> 24 & 63,
343                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
344                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
345 }
346
347 static const char *evts[] = {
348         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
349         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
350         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
351         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
352         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
353         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
354         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
355         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
356         [0x10] = "-reserved-",          [0x11] = "ack_complete",
357         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
358         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
359         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
360         [0x18] = "-reserved-",          [0x19] = "-reserved-",
361         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
362         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
363         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
364         [0x20] = "pending/cancelled",
365 };
366 static const char *tcodes[] = {
367         [0x0] = "QW req",               [0x1] = "BW req",
368         [0x2] = "W resp",               [0x3] = "-reserved-",
369         [0x4] = "QR req",               [0x5] = "BR req",
370         [0x6] = "QR resp",              [0x7] = "BR resp",
371         [0x8] = "cycle start",          [0x9] = "Lk req",
372         [0xa] = "async stream packet",  [0xb] = "Lk resp",
373         [0xc] = "-reserved-",           [0xd] = "-reserved-",
374         [0xe] = "link internal",        [0xf] = "-reserved-",
375 };
376 static const char *phys[] = {
377         [0x0] = "phy config packet",    [0x1] = "link-on packet",
378         [0x2] = "self-id packet",       [0x3] = "-reserved-",
379 };
380
381 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
382 {
383         int tcode = header[0] >> 4 & 0xf;
384         char specific[12];
385
386         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
387                 return;
388
389         if (unlikely(evt >= ARRAY_SIZE(evts)))
390                         evt = 0x1f;
391
392         if (evt == OHCI1394_evt_bus_reset) {
393                 fw_notify("A%c evt_bus_reset, generation %d\n",
394                     dir, (header[2] >> 16) & 0xff);
395                 return;
396         }
397
398         if (header[0] == ~header[1]) {
399                 fw_notify("A%c %s, %s, %08x\n",
400                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
401                 return;
402         }
403
404         switch (tcode) {
405         case 0x0: case 0x6: case 0x8:
406                 snprintf(specific, sizeof(specific), " = %08x",
407                          be32_to_cpu((__force __be32)header[3]));
408                 break;
409         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
410                 snprintf(specific, sizeof(specific), " %x,%x",
411                          header[3] >> 16, header[3] & 0xffff);
412                 break;
413         default:
414                 specific[0] = '\0';
415         }
416
417         switch (tcode) {
418         case 0xe: case 0xa:
419                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
420                 break;
421         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
422                 fw_notify("A%c spd %x tl %02x, "
423                     "%04x -> %04x, %s, "
424                     "%s, %04x%08x%s\n",
425                     dir, speed, header[0] >> 10 & 0x3f,
426                     header[1] >> 16, header[0] >> 16, evts[evt],
427                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
428                 break;
429         default:
430                 fw_notify("A%c spd %x tl %02x, "
431                     "%04x -> %04x, %s, "
432                     "%s%s\n",
433                     dir, speed, header[0] >> 10 & 0x3f,
434                     header[1] >> 16, header[0] >> 16, evts[evt],
435                     tcodes[tcode], specific);
436         }
437 }
438
439 #else
440
441 #define log_irqs(evt)
442 #define log_selfids(node_id, generation, self_id_count, sid)
443 #define log_ar_at_event(dir, speed, header, evt)
444
445 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
446
447 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
448 {
449         writel(data, ohci->registers + offset);
450 }
451
452 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
453 {
454         return readl(ohci->registers + offset);
455 }
456
457 static inline void flush_writes(const struct fw_ohci *ohci)
458 {
459         /* Do a dummy read to flush writes. */
460         reg_read(ohci, OHCI1394_Version);
461 }
462
463 static int read_phy_reg(struct fw_card *card, int addr, u32 *value)
464 {
465         struct fw_ohci *ohci = fw_ohci(card);
466         u32 val;
467
468         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
469         flush_writes(ohci);
470         msleep(2);
471         val = reg_read(ohci, OHCI1394_PhyControl);
472         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
473                 fw_error("failed to read phy reg bits\n");
474                 return -EBUSY;
475         }
476
477         *value = OHCI1394_PhyControl_ReadData(val);
478
479         return 0;
480 }
481
482 static int ohci_update_phy_reg(struct fw_card *card, int addr,
483                                int clear_bits, int set_bits)
484 {
485         struct fw_ohci *ohci = fw_ohci(card);
486         u32 old;
487         int err;
488
489         err = read_phy_reg(card, addr, &old);
490         if (err < 0)
491                 return err;
492
493         /*
494          * The interrupt status bits are cleared by writing a one bit.
495          * Avoid clearing them unless explicitly requested in set_bits.
496          */
497         if (addr == 5)
498                 clear_bits |= PHY_INT_STATUS_BITS;
499
500         old = (old & ~clear_bits) | set_bits;
501         reg_write(ohci, OHCI1394_PhyControl,
502                   OHCI1394_PhyControl_Write(addr, old));
503
504         return 0;
505 }
506
507 static int ar_context_add_page(struct ar_context *ctx)
508 {
509         struct device *dev = ctx->ohci->card.device;
510         struct ar_buffer *ab;
511         dma_addr_t uninitialized_var(ab_bus);
512         size_t offset;
513
514         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
515         if (ab == NULL)
516                 return -ENOMEM;
517
518         ab->next = NULL;
519         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
520         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
521                                                     DESCRIPTOR_STATUS |
522                                                     DESCRIPTOR_BRANCH_ALWAYS);
523         offset = offsetof(struct ar_buffer, data);
524         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
525         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
526         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
527         ab->descriptor.branch_address = 0;
528
529         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
530         ctx->last_buffer->next = ab;
531         ctx->last_buffer = ab;
532
533         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
534         flush_writes(ctx->ohci);
535
536         return 0;
537 }
538
539 static void ar_context_release(struct ar_context *ctx)
540 {
541         struct ar_buffer *ab, *ab_next;
542         size_t offset;
543         dma_addr_t ab_bus;
544
545         for (ab = ctx->current_buffer; ab; ab = ab_next) {
546                 ab_next = ab->next;
547                 offset = offsetof(struct ar_buffer, data);
548                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
549                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
550                                   ab, ab_bus);
551         }
552 }
553
554 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
555 #define cond_le32_to_cpu(v) \
556         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
557 #else
558 #define cond_le32_to_cpu(v) le32_to_cpu(v)
559 #endif
560
561 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
562 {
563         struct fw_ohci *ohci = ctx->ohci;
564         struct fw_packet p;
565         u32 status, length, tcode;
566         int evt;
567
568         p.header[0] = cond_le32_to_cpu(buffer[0]);
569         p.header[1] = cond_le32_to_cpu(buffer[1]);
570         p.header[2] = cond_le32_to_cpu(buffer[2]);
571
572         tcode = (p.header[0] >> 4) & 0x0f;
573         switch (tcode) {
574         case TCODE_WRITE_QUADLET_REQUEST:
575         case TCODE_READ_QUADLET_RESPONSE:
576                 p.header[3] = (__force __u32) buffer[3];
577                 p.header_length = 16;
578                 p.payload_length = 0;
579                 break;
580
581         case TCODE_READ_BLOCK_REQUEST :
582                 p.header[3] = cond_le32_to_cpu(buffer[3]);
583                 p.header_length = 16;
584                 p.payload_length = 0;
585                 break;
586
587         case TCODE_WRITE_BLOCK_REQUEST:
588         case TCODE_READ_BLOCK_RESPONSE:
589         case TCODE_LOCK_REQUEST:
590         case TCODE_LOCK_RESPONSE:
591                 p.header[3] = cond_le32_to_cpu(buffer[3]);
592                 p.header_length = 16;
593                 p.payload_length = p.header[3] >> 16;
594                 break;
595
596         case TCODE_WRITE_RESPONSE:
597         case TCODE_READ_QUADLET_REQUEST:
598         case OHCI_TCODE_PHY_PACKET:
599                 p.header_length = 12;
600                 p.payload_length = 0;
601                 break;
602
603         default:
604                 /* FIXME: Stop context, discard everything, and restart? */
605                 p.header_length = 0;
606                 p.payload_length = 0;
607         }
608
609         p.payload = (void *) buffer + p.header_length;
610
611         /* FIXME: What to do about evt_* errors? */
612         length = (p.header_length + p.payload_length + 3) / 4;
613         status = cond_le32_to_cpu(buffer[length]);
614         evt    = (status >> 16) & 0x1f;
615
616         p.ack        = evt - 16;
617         p.speed      = (status >> 21) & 0x7;
618         p.timestamp  = status & 0xffff;
619         p.generation = ohci->request_generation;
620
621         log_ar_at_event('R', p.speed, p.header, evt);
622
623         /*
624          * The OHCI bus reset handler synthesizes a phy packet with
625          * the new generation number when a bus reset happens (see
626          * section 8.4.2.3).  This helps us determine when a request
627          * was received and make sure we send the response in the same
628          * generation.  We only need this for requests; for responses
629          * we use the unique tlabel for finding the matching
630          * request.
631          *
632          * Alas some chips sometimes emit bus reset packets with a
633          * wrong generation.  We set the correct generation for these
634          * at a slightly incorrect time (in bus_reset_tasklet).
635          */
636         if (evt == OHCI1394_evt_bus_reset) {
637                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
638                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
639         } else if (ctx == &ohci->ar_request_ctx) {
640                 fw_core_handle_request(&ohci->card, &p);
641         } else {
642                 fw_core_handle_response(&ohci->card, &p);
643         }
644
645         return buffer + length + 1;
646 }
647
648 static void ar_context_tasklet(unsigned long data)
649 {
650         struct ar_context *ctx = (struct ar_context *)data;
651         struct fw_ohci *ohci = ctx->ohci;
652         struct ar_buffer *ab;
653         struct descriptor *d;
654         void *buffer, *end;
655
656         ab = ctx->current_buffer;
657         d = &ab->descriptor;
658
659         if (d->res_count == 0) {
660                 size_t size, rest, offset;
661                 dma_addr_t start_bus;
662                 void *start;
663
664                 /*
665                  * This descriptor is finished and we may have a
666                  * packet split across this and the next buffer. We
667                  * reuse the page for reassembling the split packet.
668                  */
669
670                 offset = offsetof(struct ar_buffer, data);
671                 start = buffer = ab;
672                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
673
674                 ab = ab->next;
675                 d = &ab->descriptor;
676                 size = buffer + PAGE_SIZE - ctx->pointer;
677                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
678                 memmove(buffer, ctx->pointer, size);
679                 memcpy(buffer + size, ab->data, rest);
680                 ctx->current_buffer = ab;
681                 ctx->pointer = (void *) ab->data + rest;
682                 end = buffer + size + rest;
683
684                 while (buffer < end)
685                         buffer = handle_ar_packet(ctx, buffer);
686
687                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
688                                   start, start_bus);
689                 ar_context_add_page(ctx);
690         } else {
691                 buffer = ctx->pointer;
692                 ctx->pointer = end =
693                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
694
695                 while (buffer < end)
696                         buffer = handle_ar_packet(ctx, buffer);
697         }
698 }
699
700 static int ar_context_init(struct ar_context *ctx,
701                            struct fw_ohci *ohci, u32 regs)
702 {
703         struct ar_buffer ab;
704
705         ctx->regs        = regs;
706         ctx->ohci        = ohci;
707         ctx->last_buffer = &ab;
708         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
709
710         ar_context_add_page(ctx);
711         ar_context_add_page(ctx);
712         ctx->current_buffer = ab.next;
713         ctx->pointer = ctx->current_buffer->data;
714
715         return 0;
716 }
717
718 static void ar_context_run(struct ar_context *ctx)
719 {
720         struct ar_buffer *ab = ctx->current_buffer;
721         dma_addr_t ab_bus;
722         size_t offset;
723
724         offset = offsetof(struct ar_buffer, data);
725         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
726
727         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
728         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
729         flush_writes(ctx->ohci);
730 }
731
732 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
733 {
734         int b, key;
735
736         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
737         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
738
739         /* figure out which descriptor the branch address goes in */
740         if (z == 2 && (b == 3 || key == 2))
741                 return d;
742         else
743                 return d + z - 1;
744 }
745
746 static void context_tasklet(unsigned long data)
747 {
748         struct context *ctx = (struct context *) data;
749         struct descriptor *d, *last;
750         u32 address;
751         int z;
752         struct descriptor_buffer *desc;
753
754         desc = list_entry(ctx->buffer_list.next,
755                         struct descriptor_buffer, list);
756         last = ctx->last;
757         while (last->branch_address != 0) {
758                 struct descriptor_buffer *old_desc = desc;
759                 address = le32_to_cpu(last->branch_address);
760                 z = address & 0xf;
761                 address &= ~0xf;
762
763                 /* If the branch address points to a buffer outside of the
764                  * current buffer, advance to the next buffer. */
765                 if (address < desc->buffer_bus ||
766                                 address >= desc->buffer_bus + desc->used)
767                         desc = list_entry(desc->list.next,
768                                         struct descriptor_buffer, list);
769                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
770                 last = find_branch_descriptor(d, z);
771
772                 if (!ctx->callback(ctx, d, last))
773                         break;
774
775                 if (old_desc != desc) {
776                         /* If we've advanced to the next buffer, move the
777                          * previous buffer to the free list. */
778                         unsigned long flags;
779                         old_desc->used = 0;
780                         spin_lock_irqsave(&ctx->ohci->lock, flags);
781                         list_move_tail(&old_desc->list, &ctx->buffer_list);
782                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
783                 }
784                 ctx->last = last;
785         }
786 }
787
788 /*
789  * Allocate a new buffer and add it to the list of free buffers for this
790  * context.  Must be called with ohci->lock held.
791  */
792 static int context_add_buffer(struct context *ctx)
793 {
794         struct descriptor_buffer *desc;
795         dma_addr_t uninitialized_var(bus_addr);
796         int offset;
797
798         /*
799          * 16MB of descriptors should be far more than enough for any DMA
800          * program.  This will catch run-away userspace or DoS attacks.
801          */
802         if (ctx->total_allocation >= 16*1024*1024)
803                 return -ENOMEM;
804
805         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
806                         &bus_addr, GFP_ATOMIC);
807         if (!desc)
808                 return -ENOMEM;
809
810         offset = (void *)&desc->buffer - (void *)desc;
811         desc->buffer_size = PAGE_SIZE - offset;
812         desc->buffer_bus = bus_addr + offset;
813         desc->used = 0;
814
815         list_add_tail(&desc->list, &ctx->buffer_list);
816         ctx->total_allocation += PAGE_SIZE;
817
818         return 0;
819 }
820
821 static int context_init(struct context *ctx, struct fw_ohci *ohci,
822                         u32 regs, descriptor_callback_t callback)
823 {
824         ctx->ohci = ohci;
825         ctx->regs = regs;
826         ctx->total_allocation = 0;
827
828         INIT_LIST_HEAD(&ctx->buffer_list);
829         if (context_add_buffer(ctx) < 0)
830                 return -ENOMEM;
831
832         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
833                         struct descriptor_buffer, list);
834
835         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
836         ctx->callback = callback;
837
838         /*
839          * We put a dummy descriptor in the buffer that has a NULL
840          * branch address and looks like it's been sent.  That way we
841          * have a descriptor to append DMA programs to.
842          */
843         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
844         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
845         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
846         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
847         ctx->last = ctx->buffer_tail->buffer;
848         ctx->prev = ctx->buffer_tail->buffer;
849
850         return 0;
851 }
852
853 static void context_release(struct context *ctx)
854 {
855         struct fw_card *card = &ctx->ohci->card;
856         struct descriptor_buffer *desc, *tmp;
857
858         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
859                 dma_free_coherent(card->device, PAGE_SIZE, desc,
860                         desc->buffer_bus -
861                         ((void *)&desc->buffer - (void *)desc));
862 }
863
864 /* Must be called with ohci->lock held */
865 static struct descriptor *context_get_descriptors(struct context *ctx,
866                                                   int z, dma_addr_t *d_bus)
867 {
868         struct descriptor *d = NULL;
869         struct descriptor_buffer *desc = ctx->buffer_tail;
870
871         if (z * sizeof(*d) > desc->buffer_size)
872                 return NULL;
873
874         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
875                 /* No room for the descriptor in this buffer, so advance to the
876                  * next one. */
877
878                 if (desc->list.next == &ctx->buffer_list) {
879                         /* If there is no free buffer next in the list,
880                          * allocate one. */
881                         if (context_add_buffer(ctx) < 0)
882                                 return NULL;
883                 }
884                 desc = list_entry(desc->list.next,
885                                 struct descriptor_buffer, list);
886                 ctx->buffer_tail = desc;
887         }
888
889         d = desc->buffer + desc->used / sizeof(*d);
890         memset(d, 0, z * sizeof(*d));
891         *d_bus = desc->buffer_bus + desc->used;
892
893         return d;
894 }
895
896 static void context_run(struct context *ctx, u32 extra)
897 {
898         struct fw_ohci *ohci = ctx->ohci;
899
900         reg_write(ohci, COMMAND_PTR(ctx->regs),
901                   le32_to_cpu(ctx->last->branch_address));
902         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
903         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
904         flush_writes(ohci);
905 }
906
907 static void context_append(struct context *ctx,
908                            struct descriptor *d, int z, int extra)
909 {
910         dma_addr_t d_bus;
911         struct descriptor_buffer *desc = ctx->buffer_tail;
912
913         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
914
915         desc->used += (z + extra) * sizeof(*d);
916         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
917         ctx->prev = find_branch_descriptor(d, z);
918
919         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
920         flush_writes(ctx->ohci);
921 }
922
923 static void context_stop(struct context *ctx)
924 {
925         u32 reg;
926         int i;
927
928         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
929         flush_writes(ctx->ohci);
930
931         for (i = 0; i < 10; i++) {
932                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
933                 if ((reg & CONTEXT_ACTIVE) == 0)
934                         return;
935
936                 mdelay(1);
937         }
938         fw_error("Error: DMA context still active (0x%08x)\n", reg);
939 }
940
941 struct driver_data {
942         struct fw_packet *packet;
943 };
944
945 /*
946  * This function apppends a packet to the DMA queue for transmission.
947  * Must always be called with the ochi->lock held to ensure proper
948  * generation handling and locking around packet queue manipulation.
949  */
950 static int at_context_queue_packet(struct context *ctx,
951                                    struct fw_packet *packet)
952 {
953         struct fw_ohci *ohci = ctx->ohci;
954         dma_addr_t d_bus, uninitialized_var(payload_bus);
955         struct driver_data *driver_data;
956         struct descriptor *d, *last;
957         __le32 *header;
958         int z, tcode;
959         u32 reg;
960
961         d = context_get_descriptors(ctx, 4, &d_bus);
962         if (d == NULL) {
963                 packet->ack = RCODE_SEND_ERROR;
964                 return -1;
965         }
966
967         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
968         d[0].res_count = cpu_to_le16(packet->timestamp);
969
970         /*
971          * The DMA format for asyncronous link packets is different
972          * from the IEEE1394 layout, so shift the fields around
973          * accordingly.  If header_length is 8, it's a PHY packet, to
974          * which we need to prepend an extra quadlet.
975          */
976
977         header = (__le32 *) &d[1];
978         switch (packet->header_length) {
979         case 16:
980         case 12:
981                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
982                                         (packet->speed << 16));
983                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
984                                         (packet->header[0] & 0xffff0000));
985                 header[2] = cpu_to_le32(packet->header[2]);
986
987                 tcode = (packet->header[0] >> 4) & 0x0f;
988                 if (TCODE_IS_BLOCK_PACKET(tcode))
989                         header[3] = cpu_to_le32(packet->header[3]);
990                 else
991                         header[3] = (__force __le32) packet->header[3];
992
993                 d[0].req_count = cpu_to_le16(packet->header_length);
994                 break;
995
996         case 8:
997                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
998                                         (packet->speed << 16));
999                 header[1] = cpu_to_le32(packet->header[0]);
1000                 header[2] = cpu_to_le32(packet->header[1]);
1001                 d[0].req_count = cpu_to_le16(12);
1002                 break;
1003
1004         case 4:
1005                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1006                                         (packet->speed << 16));
1007                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1008                 d[0].req_count = cpu_to_le16(8);
1009                 break;
1010
1011         default:
1012                 /* BUG(); */
1013                 packet->ack = RCODE_SEND_ERROR;
1014                 return -1;
1015         }
1016
1017         driver_data = (struct driver_data *) &d[3];
1018         driver_data->packet = packet;
1019         packet->driver_data = driver_data;
1020
1021         if (packet->payload_length > 0) {
1022                 payload_bus =
1023                         dma_map_single(ohci->card.device, packet->payload,
1024                                        packet->payload_length, DMA_TO_DEVICE);
1025                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1026                         packet->ack = RCODE_SEND_ERROR;
1027                         return -1;
1028                 }
1029                 packet->payload_bus     = payload_bus;
1030                 packet->payload_mapped  = true;
1031
1032                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1033                 d[2].data_address = cpu_to_le32(payload_bus);
1034                 last = &d[2];
1035                 z = 3;
1036         } else {
1037                 last = &d[0];
1038                 z = 2;
1039         }
1040
1041         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1042                                      DESCRIPTOR_IRQ_ALWAYS |
1043                                      DESCRIPTOR_BRANCH_ALWAYS);
1044
1045         /*
1046          * If the controller and packet generations don't match, we need to
1047          * bail out and try again.  If IntEvent.busReset is set, the AT context
1048          * is halted, so appending to the context and trying to run it is
1049          * futile.  Most controllers do the right thing and just flush the AT
1050          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1051          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1052          * up stalling out.  So we just bail out in software and try again
1053          * later, and everyone is happy.
1054          * FIXME: Document how the locking works.
1055          */
1056         if (ohci->generation != packet->generation ||
1057             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1058                 if (packet->payload_mapped)
1059                         dma_unmap_single(ohci->card.device, payload_bus,
1060                                          packet->payload_length, DMA_TO_DEVICE);
1061                 packet->ack = RCODE_GENERATION;
1062                 return -1;
1063         }
1064
1065         context_append(ctx, d, z, 4 - z);
1066
1067         /* If the context isn't already running, start it up. */
1068         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1069         if ((reg & CONTEXT_RUN) == 0)
1070                 context_run(ctx, 0);
1071
1072         return 0;
1073 }
1074
1075 static int handle_at_packet(struct context *context,
1076                             struct descriptor *d,
1077                             struct descriptor *last)
1078 {
1079         struct driver_data *driver_data;
1080         struct fw_packet *packet;
1081         struct fw_ohci *ohci = context->ohci;
1082         int evt;
1083
1084         if (last->transfer_status == 0)
1085                 /* This descriptor isn't done yet, stop iteration. */
1086                 return 0;
1087
1088         driver_data = (struct driver_data *) &d[3];
1089         packet = driver_data->packet;
1090         if (packet == NULL)
1091                 /* This packet was cancelled, just continue. */
1092                 return 1;
1093
1094         if (packet->payload_mapped)
1095                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1096                                  packet->payload_length, DMA_TO_DEVICE);
1097
1098         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1099         packet->timestamp = le16_to_cpu(last->res_count);
1100
1101         log_ar_at_event('T', packet->speed, packet->header, evt);
1102
1103         switch (evt) {
1104         case OHCI1394_evt_timeout:
1105                 /* Async response transmit timed out. */
1106                 packet->ack = RCODE_CANCELLED;
1107                 break;
1108
1109         case OHCI1394_evt_flushed:
1110                 /*
1111                  * The packet was flushed should give same error as
1112                  * when we try to use a stale generation count.
1113                  */
1114                 packet->ack = RCODE_GENERATION;
1115                 break;
1116
1117         case OHCI1394_evt_missing_ack:
1118                 /*
1119                  * Using a valid (current) generation count, but the
1120                  * node is not on the bus or not sending acks.
1121                  */
1122                 packet->ack = RCODE_NO_ACK;
1123                 break;
1124
1125         case ACK_COMPLETE + 0x10:
1126         case ACK_PENDING + 0x10:
1127         case ACK_BUSY_X + 0x10:
1128         case ACK_BUSY_A + 0x10:
1129         case ACK_BUSY_B + 0x10:
1130         case ACK_DATA_ERROR + 0x10:
1131         case ACK_TYPE_ERROR + 0x10:
1132                 packet->ack = evt - 0x10;
1133                 break;
1134
1135         default:
1136                 packet->ack = RCODE_SEND_ERROR;
1137                 break;
1138         }
1139
1140         packet->callback(packet, &ohci->card, packet->ack);
1141
1142         return 1;
1143 }
1144
1145 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1146 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1147 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1148 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1149 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1150
1151 static void handle_local_rom(struct fw_ohci *ohci,
1152                              struct fw_packet *packet, u32 csr)
1153 {
1154         struct fw_packet response;
1155         int tcode, length, i;
1156
1157         tcode = HEADER_GET_TCODE(packet->header[0]);
1158         if (TCODE_IS_BLOCK_PACKET(tcode))
1159                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1160         else
1161                 length = 4;
1162
1163         i = csr - CSR_CONFIG_ROM;
1164         if (i + length > CONFIG_ROM_SIZE) {
1165                 fw_fill_response(&response, packet->header,
1166                                  RCODE_ADDRESS_ERROR, NULL, 0);
1167         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1168                 fw_fill_response(&response, packet->header,
1169                                  RCODE_TYPE_ERROR, NULL, 0);
1170         } else {
1171                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1172                                  (void *) ohci->config_rom + i, length);
1173         }
1174
1175         fw_core_handle_response(&ohci->card, &response);
1176 }
1177
1178 static void handle_local_lock(struct fw_ohci *ohci,
1179                               struct fw_packet *packet, u32 csr)
1180 {
1181         struct fw_packet response;
1182         int tcode, length, ext_tcode, sel;
1183         __be32 *payload, lock_old;
1184         u32 lock_arg, lock_data;
1185
1186         tcode = HEADER_GET_TCODE(packet->header[0]);
1187         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1188         payload = packet->payload;
1189         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1190
1191         if (tcode == TCODE_LOCK_REQUEST &&
1192             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1193                 lock_arg = be32_to_cpu(payload[0]);
1194                 lock_data = be32_to_cpu(payload[1]);
1195         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1196                 lock_arg = 0;
1197                 lock_data = 0;
1198         } else {
1199                 fw_fill_response(&response, packet->header,
1200                                  RCODE_TYPE_ERROR, NULL, 0);
1201                 goto out;
1202         }
1203
1204         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1205         reg_write(ohci, OHCI1394_CSRData, lock_data);
1206         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1207         reg_write(ohci, OHCI1394_CSRControl, sel);
1208
1209         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1210                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1211         else
1212                 fw_notify("swap not done yet\n");
1213
1214         fw_fill_response(&response, packet->header,
1215                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1216  out:
1217         fw_core_handle_response(&ohci->card, &response);
1218 }
1219
1220 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1221 {
1222         u64 offset;
1223         u32 csr;
1224
1225         if (ctx == &ctx->ohci->at_request_ctx) {
1226                 packet->ack = ACK_PENDING;
1227                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1228         }
1229
1230         offset =
1231                 ((unsigned long long)
1232                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1233                 packet->header[2];
1234         csr = offset - CSR_REGISTER_BASE;
1235
1236         /* Handle config rom reads. */
1237         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1238                 handle_local_rom(ctx->ohci, packet, csr);
1239         else switch (csr) {
1240         case CSR_BUS_MANAGER_ID:
1241         case CSR_BANDWIDTH_AVAILABLE:
1242         case CSR_CHANNELS_AVAILABLE_HI:
1243         case CSR_CHANNELS_AVAILABLE_LO:
1244                 handle_local_lock(ctx->ohci, packet, csr);
1245                 break;
1246         default:
1247                 if (ctx == &ctx->ohci->at_request_ctx)
1248                         fw_core_handle_request(&ctx->ohci->card, packet);
1249                 else
1250                         fw_core_handle_response(&ctx->ohci->card, packet);
1251                 break;
1252         }
1253
1254         if (ctx == &ctx->ohci->at_response_ctx) {
1255                 packet->ack = ACK_COMPLETE;
1256                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1257         }
1258 }
1259
1260 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1261 {
1262         unsigned long flags;
1263         int ret;
1264
1265         spin_lock_irqsave(&ctx->ohci->lock, flags);
1266
1267         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1268             ctx->ohci->generation == packet->generation) {
1269                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1270                 handle_local_request(ctx, packet);
1271                 return;
1272         }
1273
1274         ret = at_context_queue_packet(ctx, packet);
1275         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1276
1277         if (ret < 0)
1278                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1279
1280 }
1281
1282 static void bus_reset_tasklet(unsigned long data)
1283 {
1284         struct fw_ohci *ohci = (struct fw_ohci *)data;
1285         int self_id_count, i, j, reg;
1286         int generation, new_generation;
1287         unsigned long flags;
1288         void *free_rom = NULL;
1289         dma_addr_t free_rom_bus = 0;
1290
1291         reg = reg_read(ohci, OHCI1394_NodeID);
1292         if (!(reg & OHCI1394_NodeID_idValid)) {
1293                 fw_notify("node ID not valid, new bus reset in progress\n");
1294                 return;
1295         }
1296         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1297                 fw_notify("malconfigured bus\n");
1298                 return;
1299         }
1300         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1301                                OHCI1394_NodeID_nodeNumber);
1302
1303         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1304         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1305                 fw_notify("inconsistent self IDs\n");
1306                 return;
1307         }
1308         /*
1309          * The count in the SelfIDCount register is the number of
1310          * bytes in the self ID receive buffer.  Since we also receive
1311          * the inverted quadlets and a header quadlet, we shift one
1312          * bit extra to get the actual number of self IDs.
1313          */
1314         self_id_count = (reg >> 3) & 0xff;
1315         if (self_id_count == 0 || self_id_count > 252) {
1316                 fw_notify("inconsistent self IDs\n");
1317                 return;
1318         }
1319         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1320         rmb();
1321
1322         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1323                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1324                         fw_notify("inconsistent self IDs\n");
1325                         return;
1326                 }
1327                 ohci->self_id_buffer[j] =
1328                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1329         }
1330         rmb();
1331
1332         /*
1333          * Check the consistency of the self IDs we just read.  The
1334          * problem we face is that a new bus reset can start while we
1335          * read out the self IDs from the DMA buffer. If this happens,
1336          * the DMA buffer will be overwritten with new self IDs and we
1337          * will read out inconsistent data.  The OHCI specification
1338          * (section 11.2) recommends a technique similar to
1339          * linux/seqlock.h, where we remember the generation of the
1340          * self IDs in the buffer before reading them out and compare
1341          * it to the current generation after reading them out.  If
1342          * the two generations match we know we have a consistent set
1343          * of self IDs.
1344          */
1345
1346         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1347         if (new_generation != generation) {
1348                 fw_notify("recursive bus reset detected, "
1349                           "discarding self ids\n");
1350                 return;
1351         }
1352
1353         /* FIXME: Document how the locking works. */
1354         spin_lock_irqsave(&ohci->lock, flags);
1355
1356         ohci->generation = generation;
1357         context_stop(&ohci->at_request_ctx);
1358         context_stop(&ohci->at_response_ctx);
1359         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1360
1361         if (ohci->quirks & QUIRK_RESET_PACKET)
1362                 ohci->request_generation = generation;
1363
1364         /*
1365          * This next bit is unrelated to the AT context stuff but we
1366          * have to do it under the spinlock also.  If a new config rom
1367          * was set up before this reset, the old one is now no longer
1368          * in use and we can free it. Update the config rom pointers
1369          * to point to the current config rom and clear the
1370          * next_config_rom pointer so a new udpate can take place.
1371          */
1372
1373         if (ohci->next_config_rom != NULL) {
1374                 if (ohci->next_config_rom != ohci->config_rom) {
1375                         free_rom      = ohci->config_rom;
1376                         free_rom_bus  = ohci->config_rom_bus;
1377                 }
1378                 ohci->config_rom      = ohci->next_config_rom;
1379                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1380                 ohci->next_config_rom = NULL;
1381
1382                 /*
1383                  * Restore config_rom image and manually update
1384                  * config_rom registers.  Writing the header quadlet
1385                  * will indicate that the config rom is ready, so we
1386                  * do that last.
1387                  */
1388                 reg_write(ohci, OHCI1394_BusOptions,
1389                           be32_to_cpu(ohci->config_rom[2]));
1390                 ohci->config_rom[0] = ohci->next_header;
1391                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1392                           be32_to_cpu(ohci->next_header));
1393         }
1394
1395 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1396         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1397         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1398 #endif
1399
1400         spin_unlock_irqrestore(&ohci->lock, flags);
1401
1402         if (free_rom)
1403                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1404                                   free_rom, free_rom_bus);
1405
1406         log_selfids(ohci->node_id, generation,
1407                     self_id_count, ohci->self_id_buffer);
1408
1409         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1410                                  self_id_count, ohci->self_id_buffer);
1411 }
1412
1413 static irqreturn_t irq_handler(int irq, void *data)
1414 {
1415         struct fw_ohci *ohci = data;
1416         u32 event, iso_event;
1417         int i;
1418
1419         event = reg_read(ohci, OHCI1394_IntEventClear);
1420
1421         if (!event || !~event)
1422                 return IRQ_NONE;
1423
1424         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1425         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1426         log_irqs(event);
1427
1428         if (event & OHCI1394_selfIDComplete)
1429                 tasklet_schedule(&ohci->bus_reset_tasklet);
1430
1431         if (event & OHCI1394_RQPkt)
1432                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1433
1434         if (event & OHCI1394_RSPkt)
1435                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1436
1437         if (event & OHCI1394_reqTxComplete)
1438                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1439
1440         if (event & OHCI1394_respTxComplete)
1441                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1442
1443         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1444         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1445
1446         while (iso_event) {
1447                 i = ffs(iso_event) - 1;
1448                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1449                 iso_event &= ~(1 << i);
1450         }
1451
1452         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1453         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1454
1455         while (iso_event) {
1456                 i = ffs(iso_event) - 1;
1457                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1458                 iso_event &= ~(1 << i);
1459         }
1460
1461         if (unlikely(event & OHCI1394_regAccessFail))
1462                 fw_error("Register access failure - "
1463                          "please notify linux1394-devel@lists.sf.net\n");
1464
1465         if (unlikely(event & OHCI1394_postedWriteErr))
1466                 fw_error("PCI posted write error\n");
1467
1468         if (unlikely(event & OHCI1394_cycleTooLong)) {
1469                 if (printk_ratelimit())
1470                         fw_notify("isochronous cycle too long\n");
1471                 reg_write(ohci, OHCI1394_LinkControlSet,
1472                           OHCI1394_LinkControl_cycleMaster);
1473         }
1474
1475         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1476                 /*
1477                  * We need to clear this event bit in order to make
1478                  * cycleMatch isochronous I/O work.  In theory we should
1479                  * stop active cycleMatch iso contexts now and restart
1480                  * them at least two cycles later.  (FIXME?)
1481                  */
1482                 if (printk_ratelimit())
1483                         fw_notify("isochronous cycle inconsistent\n");
1484         }
1485
1486         return IRQ_HANDLED;
1487 }
1488
1489 static int software_reset(struct fw_ohci *ohci)
1490 {
1491         int i;
1492
1493         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1494
1495         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1496                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1497                      OHCI1394_HCControl_softReset) == 0)
1498                         return 0;
1499                 msleep(1);
1500         }
1501
1502         return -EBUSY;
1503 }
1504
1505 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1506 {
1507         size_t size = length * 4;
1508
1509         memcpy(dest, src, size);
1510         if (size < CONFIG_ROM_SIZE)
1511                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1512 }
1513
1514 static int ohci_enable(struct fw_card *card,
1515                        const __be32 *config_rom, size_t length)
1516 {
1517         struct fw_ohci *ohci = fw_ohci(card);
1518         struct pci_dev *dev = to_pci_dev(card->device);
1519         u32 lps;
1520         int i;
1521
1522         if (software_reset(ohci)) {
1523                 fw_error("Failed to reset ohci card.\n");
1524                 return -EBUSY;
1525         }
1526
1527         /*
1528          * Now enable LPS, which we need in order to start accessing
1529          * most of the registers.  In fact, on some cards (ALI M5251),
1530          * accessing registers in the SClk domain without LPS enabled
1531          * will lock up the machine.  Wait 50msec to make sure we have
1532          * full link enabled.  However, with some cards (well, at least
1533          * a JMicron PCIe card), we have to try again sometimes.
1534          */
1535         reg_write(ohci, OHCI1394_HCControlSet,
1536                   OHCI1394_HCControl_LPS |
1537                   OHCI1394_HCControl_postedWriteEnable);
1538         flush_writes(ohci);
1539
1540         for (lps = 0, i = 0; !lps && i < 3; i++) {
1541                 msleep(50);
1542                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1543                       OHCI1394_HCControl_LPS;
1544         }
1545
1546         if (!lps) {
1547                 fw_error("Failed to set Link Power Status\n");
1548                 return -EIO;
1549         }
1550
1551         reg_write(ohci, OHCI1394_HCControlClear,
1552                   OHCI1394_HCControl_noByteSwapData);
1553
1554         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1555         reg_write(ohci, OHCI1394_LinkControlClear,
1556                   OHCI1394_LinkControl_rcvPhyPkt);
1557         reg_write(ohci, OHCI1394_LinkControlSet,
1558                   OHCI1394_LinkControl_rcvSelfID |
1559                   OHCI1394_LinkControl_cycleTimerEnable |
1560                   OHCI1394_LinkControl_cycleMaster);
1561
1562         reg_write(ohci, OHCI1394_ATRetries,
1563                   OHCI1394_MAX_AT_REQ_RETRIES |
1564                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1565                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1566
1567         ar_context_run(&ohci->ar_request_ctx);
1568         ar_context_run(&ohci->ar_response_ctx);
1569
1570         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1571         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1572         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1573         reg_write(ohci, OHCI1394_IntMaskSet,
1574                   OHCI1394_selfIDComplete |
1575                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1576                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1577                   OHCI1394_isochRx | OHCI1394_isochTx |
1578                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1579                   OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1580                   OHCI1394_masterIntEnable);
1581         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1582                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1583
1584         /* Activate link_on bit and contender bit in our self ID packets.*/
1585         if (ohci_update_phy_reg(card, 4, 0,
1586                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1587                 return -EIO;
1588
1589         /*
1590          * When the link is not yet enabled, the atomic config rom
1591          * update mechanism described below in ohci_set_config_rom()
1592          * is not active.  We have to update ConfigRomHeader and
1593          * BusOptions manually, and the write to ConfigROMmap takes
1594          * effect immediately.  We tie this to the enabling of the
1595          * link, so we have a valid config rom before enabling - the
1596          * OHCI requires that ConfigROMhdr and BusOptions have valid
1597          * values before enabling.
1598          *
1599          * However, when the ConfigROMmap is written, some controllers
1600          * always read back quadlets 0 and 2 from the config rom to
1601          * the ConfigRomHeader and BusOptions registers on bus reset.
1602          * They shouldn't do that in this initial case where the link
1603          * isn't enabled.  This means we have to use the same
1604          * workaround here, setting the bus header to 0 and then write
1605          * the right values in the bus reset tasklet.
1606          */
1607
1608         if (config_rom) {
1609                 ohci->next_config_rom =
1610                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1611                                            &ohci->next_config_rom_bus,
1612                                            GFP_KERNEL);
1613                 if (ohci->next_config_rom == NULL)
1614                         return -ENOMEM;
1615
1616                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1617         } else {
1618                 /*
1619                  * In the suspend case, config_rom is NULL, which
1620                  * means that we just reuse the old config rom.
1621                  */
1622                 ohci->next_config_rom = ohci->config_rom;
1623                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1624         }
1625
1626         ohci->next_header = ohci->next_config_rom[0];
1627         ohci->next_config_rom[0] = 0;
1628         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1629         reg_write(ohci, OHCI1394_BusOptions,
1630                   be32_to_cpu(ohci->next_config_rom[2]));
1631         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1632
1633         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1634
1635         if (request_irq(dev->irq, irq_handler,
1636                         IRQF_SHARED, ohci_driver_name, ohci)) {
1637                 fw_error("Failed to allocate shared interrupt %d.\n",
1638                          dev->irq);
1639                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1640                                   ohci->config_rom, ohci->config_rom_bus);
1641                 return -EIO;
1642         }
1643
1644         reg_write(ohci, OHCI1394_HCControlSet,
1645                   OHCI1394_HCControl_linkEnable |
1646                   OHCI1394_HCControl_BIBimageValid);
1647         flush_writes(ohci);
1648
1649         /*
1650          * We are ready to go, initiate bus reset to finish the
1651          * initialization.
1652          */
1653
1654         fw_core_initiate_bus_reset(&ohci->card, 1);
1655
1656         return 0;
1657 }
1658
1659 static int ohci_set_config_rom(struct fw_card *card,
1660                                const __be32 *config_rom, size_t length)
1661 {
1662         struct fw_ohci *ohci;
1663         unsigned long flags;
1664         int ret = -EBUSY;
1665         __be32 *next_config_rom;
1666         dma_addr_t uninitialized_var(next_config_rom_bus);
1667
1668         ohci = fw_ohci(card);
1669
1670         /*
1671          * When the OHCI controller is enabled, the config rom update
1672          * mechanism is a bit tricky, but easy enough to use.  See
1673          * section 5.5.6 in the OHCI specification.
1674          *
1675          * The OHCI controller caches the new config rom address in a
1676          * shadow register (ConfigROMmapNext) and needs a bus reset
1677          * for the changes to take place.  When the bus reset is
1678          * detected, the controller loads the new values for the
1679          * ConfigRomHeader and BusOptions registers from the specified
1680          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1681          * shadow register. All automatically and atomically.
1682          *
1683          * Now, there's a twist to this story.  The automatic load of
1684          * ConfigRomHeader and BusOptions doesn't honor the
1685          * noByteSwapData bit, so with a be32 config rom, the
1686          * controller will load be32 values in to these registers
1687          * during the atomic update, even on litte endian
1688          * architectures.  The workaround we use is to put a 0 in the
1689          * header quadlet; 0 is endian agnostic and means that the
1690          * config rom isn't ready yet.  In the bus reset tasklet we
1691          * then set up the real values for the two registers.
1692          *
1693          * We use ohci->lock to avoid racing with the code that sets
1694          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1695          */
1696
1697         next_config_rom =
1698                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1699                                    &next_config_rom_bus, GFP_KERNEL);
1700         if (next_config_rom == NULL)
1701                 return -ENOMEM;
1702
1703         spin_lock_irqsave(&ohci->lock, flags);
1704
1705         if (ohci->next_config_rom == NULL) {
1706                 ohci->next_config_rom = next_config_rom;
1707                 ohci->next_config_rom_bus = next_config_rom_bus;
1708
1709                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1710
1711                 ohci->next_header = config_rom[0];
1712                 ohci->next_config_rom[0] = 0;
1713
1714                 reg_write(ohci, OHCI1394_ConfigROMmap,
1715                           ohci->next_config_rom_bus);
1716                 ret = 0;
1717         }
1718
1719         spin_unlock_irqrestore(&ohci->lock, flags);
1720
1721         /*
1722          * Now initiate a bus reset to have the changes take
1723          * effect. We clean up the old config rom memory and DMA
1724          * mappings in the bus reset tasklet, since the OHCI
1725          * controller could need to access it before the bus reset
1726          * takes effect.
1727          */
1728         if (ret == 0)
1729                 fw_core_initiate_bus_reset(&ohci->card, 1);
1730         else
1731                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1732                                   next_config_rom, next_config_rom_bus);
1733
1734         return ret;
1735 }
1736
1737 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1738 {
1739         struct fw_ohci *ohci = fw_ohci(card);
1740
1741         at_context_transmit(&ohci->at_request_ctx, packet);
1742 }
1743
1744 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1745 {
1746         struct fw_ohci *ohci = fw_ohci(card);
1747
1748         at_context_transmit(&ohci->at_response_ctx, packet);
1749 }
1750
1751 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1752 {
1753         struct fw_ohci *ohci = fw_ohci(card);
1754         struct context *ctx = &ohci->at_request_ctx;
1755         struct driver_data *driver_data = packet->driver_data;
1756         int ret = -ENOENT;
1757
1758         tasklet_disable(&ctx->tasklet);
1759
1760         if (packet->ack != 0)
1761                 goto out;
1762
1763         if (packet->payload_mapped)
1764                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1765                                  packet->payload_length, DMA_TO_DEVICE);
1766
1767         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1768         driver_data->packet = NULL;
1769         packet->ack = RCODE_CANCELLED;
1770         packet->callback(packet, &ohci->card, packet->ack);
1771         ret = 0;
1772  out:
1773         tasklet_enable(&ctx->tasklet);
1774
1775         return ret;
1776 }
1777
1778 static int ohci_enable_phys_dma(struct fw_card *card,
1779                                 int node_id, int generation)
1780 {
1781 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1782         return 0;
1783 #else
1784         struct fw_ohci *ohci = fw_ohci(card);
1785         unsigned long flags;
1786         int n, ret = 0;
1787
1788         /*
1789          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1790          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1791          */
1792
1793         spin_lock_irqsave(&ohci->lock, flags);
1794
1795         if (ohci->generation != generation) {
1796                 ret = -ESTALE;
1797                 goto out;
1798         }
1799
1800         /*
1801          * Note, if the node ID contains a non-local bus ID, physical DMA is
1802          * enabled for _all_ nodes on remote buses.
1803          */
1804
1805         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1806         if (n < 32)
1807                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1808         else
1809                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1810
1811         flush_writes(ohci);
1812  out:
1813         spin_unlock_irqrestore(&ohci->lock, flags);
1814
1815         return ret;
1816 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1817 }
1818
1819 static u32 cycle_timer_ticks(u32 cycle_timer)
1820 {
1821         u32 ticks;
1822
1823         ticks = cycle_timer & 0xfff;
1824         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1825         ticks += (3072 * 8000) * (cycle_timer >> 25);
1826
1827         return ticks;
1828 }
1829
1830 /*
1831  * Some controllers exhibit one or more of the following bugs when updating the
1832  * iso cycle timer register:
1833  *  - When the lowest six bits are wrapping around to zero, a read that happens
1834  *    at the same time will return garbage in the lowest ten bits.
1835  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1836  *    not incremented for about 60 ns.
1837  *  - Occasionally, the entire register reads zero.
1838  *
1839  * To catch these, we read the register three times and ensure that the
1840  * difference between each two consecutive reads is approximately the same, i.e.
1841  * less than twice the other.  Furthermore, any negative difference indicates an
1842  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1843  * execute, so we have enough precision to compute the ratio of the differences.)
1844  */
1845 static u32 ohci_get_cycle_time(struct fw_card *card)
1846 {
1847         struct fw_ohci *ohci = fw_ohci(card);
1848         u32 c0, c1, c2;
1849         u32 t0, t1, t2;
1850         s32 diff01, diff12;
1851         int i;
1852
1853         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1854
1855         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1856                 i = 0;
1857                 c1 = c2;
1858                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1859                 do {
1860                         c0 = c1;
1861                         c1 = c2;
1862                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1863                         t0 = cycle_timer_ticks(c0);
1864                         t1 = cycle_timer_ticks(c1);
1865                         t2 = cycle_timer_ticks(c2);
1866                         diff01 = t1 - t0;
1867                         diff12 = t2 - t1;
1868                 } while ((diff01 <= 0 || diff12 <= 0 ||
1869                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1870                          && i++ < 20);
1871         }
1872
1873         return c2;
1874 }
1875
1876 static void copy_iso_headers(struct iso_context *ctx, void *p)
1877 {
1878         int i = ctx->header_length;
1879
1880         if (i + ctx->base.header_size > PAGE_SIZE)
1881                 return;
1882
1883         /*
1884          * The iso header is byteswapped to little endian by
1885          * the controller, but the remaining header quadlets
1886          * are big endian.  We want to present all the headers
1887          * as big endian, so we have to swap the first quadlet.
1888          */
1889         if (ctx->base.header_size > 0)
1890                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1891         if (ctx->base.header_size > 4)
1892                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1893         if (ctx->base.header_size > 8)
1894                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1895         ctx->header_length += ctx->base.header_size;
1896 }
1897
1898 static int handle_ir_packet_per_buffer(struct context *context,
1899                                        struct descriptor *d,
1900                                        struct descriptor *last)
1901 {
1902         struct iso_context *ctx =
1903                 container_of(context, struct iso_context, context);
1904         struct descriptor *pd;
1905         __le32 *ir_header;
1906         void *p;
1907
1908         for (pd = d; pd <= last; pd++) {
1909                 if (pd->transfer_status)
1910                         break;
1911         }
1912         if (pd > last)
1913                 /* Descriptor(s) not done yet, stop iteration */
1914                 return 0;
1915
1916         p = last + 1;
1917         copy_iso_headers(ctx, p);
1918
1919         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1920                 ir_header = (__le32 *) p;
1921                 ctx->base.callback(&ctx->base,
1922                                    le32_to_cpu(ir_header[0]) & 0xffff,
1923                                    ctx->header_length, ctx->header,
1924                                    ctx->base.callback_data);
1925                 ctx->header_length = 0;
1926         }
1927
1928         return 1;
1929 }
1930
1931 static int handle_it_packet(struct context *context,
1932                             struct descriptor *d,
1933                             struct descriptor *last)
1934 {
1935         struct iso_context *ctx =
1936                 container_of(context, struct iso_context, context);
1937         int i;
1938         struct descriptor *pd;
1939
1940         for (pd = d; pd <= last; pd++)
1941                 if (pd->transfer_status)
1942                         break;
1943         if (pd > last)
1944                 /* Descriptor(s) not done yet, stop iteration */
1945                 return 0;
1946
1947         i = ctx->header_length;
1948         if (i + 4 < PAGE_SIZE) {
1949                 /* Present this value as big-endian to match the receive code */
1950                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
1951                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
1952                                 le16_to_cpu(pd->res_count));
1953                 ctx->header_length += 4;
1954         }
1955         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1956                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1957                                    ctx->header_length, ctx->header,
1958                                    ctx->base.callback_data);
1959                 ctx->header_length = 0;
1960         }
1961         return 1;
1962 }
1963
1964 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1965                                 int type, int channel, size_t header_size)
1966 {
1967         struct fw_ohci *ohci = fw_ohci(card);
1968         struct iso_context *ctx, *list;
1969         descriptor_callback_t callback;
1970         u64 *channels, dont_care = ~0ULL;
1971         u32 *mask, regs;
1972         unsigned long flags;
1973         int index, ret = -ENOMEM;
1974
1975         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1976                 channels = &dont_care;
1977                 mask = &ohci->it_context_mask;
1978                 list = ohci->it_context_list;
1979                 callback = handle_it_packet;
1980         } else {
1981                 channels = &ohci->ir_context_channels;
1982                 mask = &ohci->ir_context_mask;
1983                 list = ohci->ir_context_list;
1984                 callback = handle_ir_packet_per_buffer;
1985         }
1986
1987         spin_lock_irqsave(&ohci->lock, flags);
1988         index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1989         if (index >= 0) {
1990                 *channels &= ~(1ULL << channel);
1991                 *mask &= ~(1 << index);
1992         }
1993         spin_unlock_irqrestore(&ohci->lock, flags);
1994
1995         if (index < 0)
1996                 return ERR_PTR(-EBUSY);
1997
1998         if (type == FW_ISO_CONTEXT_TRANSMIT)
1999                 regs = OHCI1394_IsoXmitContextBase(index);
2000         else
2001                 regs = OHCI1394_IsoRcvContextBase(index);
2002
2003         ctx = &list[index];
2004         memset(ctx, 0, sizeof(*ctx));
2005         ctx->header_length = 0;
2006         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2007         if (ctx->header == NULL)
2008                 goto out;
2009
2010         ret = context_init(&ctx->context, ohci, regs, callback);
2011         if (ret < 0)
2012                 goto out_with_header;
2013
2014         return &ctx->base;
2015
2016  out_with_header:
2017         free_page((unsigned long)ctx->header);
2018  out:
2019         spin_lock_irqsave(&ohci->lock, flags);
2020         *mask |= 1 << index;
2021         spin_unlock_irqrestore(&ohci->lock, flags);
2022
2023         return ERR_PTR(ret);
2024 }
2025
2026 static int ohci_start_iso(struct fw_iso_context *base,
2027                           s32 cycle, u32 sync, u32 tags)
2028 {
2029         struct iso_context *ctx = container_of(base, struct iso_context, base);
2030         struct fw_ohci *ohci = ctx->context.ohci;
2031         u32 control, match;
2032         int index;
2033
2034         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2035                 index = ctx - ohci->it_context_list;
2036                 match = 0;
2037                 if (cycle >= 0)
2038                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2039                                 (cycle & 0x7fff) << 16;
2040
2041                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2042                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2043                 context_run(&ctx->context, match);
2044         } else {
2045                 index = ctx - ohci->ir_context_list;
2046                 control = IR_CONTEXT_ISOCH_HEADER;
2047                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2048                 if (cycle >= 0) {
2049                         match |= (cycle & 0x07fff) << 12;
2050                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2051                 }
2052
2053                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2054                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2055                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2056                 context_run(&ctx->context, control);
2057         }
2058
2059         return 0;
2060 }
2061
2062 static int ohci_stop_iso(struct fw_iso_context *base)
2063 {
2064         struct fw_ohci *ohci = fw_ohci(base->card);
2065         struct iso_context *ctx = container_of(base, struct iso_context, base);
2066         int index;
2067
2068         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2069                 index = ctx - ohci->it_context_list;
2070                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2071         } else {
2072                 index = ctx - ohci->ir_context_list;
2073                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2074         }
2075         flush_writes(ohci);
2076         context_stop(&ctx->context);
2077
2078         return 0;
2079 }
2080
2081 static void ohci_free_iso_context(struct fw_iso_context *base)
2082 {
2083         struct fw_ohci *ohci = fw_ohci(base->card);
2084         struct iso_context *ctx = container_of(base, struct iso_context, base);
2085         unsigned long flags;
2086         int index;
2087
2088         ohci_stop_iso(base);
2089         context_release(&ctx->context);
2090         free_page((unsigned long)ctx->header);
2091
2092         spin_lock_irqsave(&ohci->lock, flags);
2093
2094         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2095                 index = ctx - ohci->it_context_list;
2096                 ohci->it_context_mask |= 1 << index;
2097         } else {
2098                 index = ctx - ohci->ir_context_list;
2099                 ohci->ir_context_mask |= 1 << index;
2100                 ohci->ir_context_channels |= 1ULL << base->channel;
2101         }
2102
2103         spin_unlock_irqrestore(&ohci->lock, flags);
2104 }
2105
2106 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2107                                    struct fw_iso_packet *packet,
2108                                    struct fw_iso_buffer *buffer,
2109                                    unsigned long payload)
2110 {
2111         struct iso_context *ctx = container_of(base, struct iso_context, base);
2112         struct descriptor *d, *last, *pd;
2113         struct fw_iso_packet *p;
2114         __le32 *header;
2115         dma_addr_t d_bus, page_bus;
2116         u32 z, header_z, payload_z, irq;
2117         u32 payload_index, payload_end_index, next_page_index;
2118         int page, end_page, i, length, offset;
2119
2120         p = packet;
2121         payload_index = payload;
2122
2123         if (p->skip)
2124                 z = 1;
2125         else
2126                 z = 2;
2127         if (p->header_length > 0)
2128                 z++;
2129
2130         /* Determine the first page the payload isn't contained in. */
2131         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2132         if (p->payload_length > 0)
2133                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2134         else
2135                 payload_z = 0;
2136
2137         z += payload_z;
2138
2139         /* Get header size in number of descriptors. */
2140         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2141
2142         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2143         if (d == NULL)
2144                 return -ENOMEM;
2145
2146         if (!p->skip) {
2147                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2148                 d[0].req_count = cpu_to_le16(8);
2149                 /*
2150                  * Link the skip address to this descriptor itself.  This causes
2151                  * a context to skip a cycle whenever lost cycles or FIFO
2152                  * overruns occur, without dropping the data.  The application
2153                  * should then decide whether this is an error condition or not.
2154                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2155                  */
2156                 d[0].branch_address = cpu_to_le32(d_bus | z);
2157
2158                 header = (__le32 *) &d[1];
2159                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2160                                         IT_HEADER_TAG(p->tag) |
2161                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2162                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2163                                         IT_HEADER_SPEED(ctx->base.speed));
2164                 header[1] =
2165                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2166                                                           p->payload_length));
2167         }
2168
2169         if (p->header_length > 0) {
2170                 d[2].req_count    = cpu_to_le16(p->header_length);
2171                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2172                 memcpy(&d[z], p->header, p->header_length);
2173         }
2174
2175         pd = d + z - payload_z;
2176         payload_end_index = payload_index + p->payload_length;
2177         for (i = 0; i < payload_z; i++) {
2178                 page               = payload_index >> PAGE_SHIFT;
2179                 offset             = payload_index & ~PAGE_MASK;
2180                 next_page_index    = (page + 1) << PAGE_SHIFT;
2181                 length             =
2182                         min(next_page_index, payload_end_index) - payload_index;
2183                 pd[i].req_count    = cpu_to_le16(length);
2184
2185                 page_bus = page_private(buffer->pages[page]);
2186                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2187
2188                 payload_index += length;
2189         }
2190
2191         if (p->interrupt)
2192                 irq = DESCRIPTOR_IRQ_ALWAYS;
2193         else
2194                 irq = DESCRIPTOR_NO_IRQ;
2195
2196         last = z == 2 ? d : d + z - 1;
2197         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2198                                      DESCRIPTOR_STATUS |
2199                                      DESCRIPTOR_BRANCH_ALWAYS |
2200                                      irq);
2201
2202         context_append(&ctx->context, d, z, header_z);
2203
2204         return 0;
2205 }
2206
2207 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2208                                         struct fw_iso_packet *packet,
2209                                         struct fw_iso_buffer *buffer,
2210                                         unsigned long payload)
2211 {
2212         struct iso_context *ctx = container_of(base, struct iso_context, base);
2213         struct descriptor *d, *pd;
2214         struct fw_iso_packet *p = packet;
2215         dma_addr_t d_bus, page_bus;
2216         u32 z, header_z, rest;
2217         int i, j, length;
2218         int page, offset, packet_count, header_size, payload_per_buffer;
2219
2220         /*
2221          * The OHCI controller puts the isochronous header and trailer in the
2222          * buffer, so we need at least 8 bytes.
2223          */
2224         packet_count = p->header_length / ctx->base.header_size;
2225         header_size  = max(ctx->base.header_size, (size_t)8);
2226
2227         /* Get header size in number of descriptors. */
2228         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2229         page     = payload >> PAGE_SHIFT;
2230         offset   = payload & ~PAGE_MASK;
2231         payload_per_buffer = p->payload_length / packet_count;
2232
2233         for (i = 0; i < packet_count; i++) {
2234                 /* d points to the header descriptor */
2235                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2236                 d = context_get_descriptors(&ctx->context,
2237                                 z + header_z, &d_bus);
2238                 if (d == NULL)
2239                         return -ENOMEM;
2240
2241                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2242                                               DESCRIPTOR_INPUT_MORE);
2243                 if (p->skip && i == 0)
2244                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2245                 d->req_count    = cpu_to_le16(header_size);
2246                 d->res_count    = d->req_count;
2247                 d->transfer_status = 0;
2248                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2249
2250                 rest = payload_per_buffer;
2251                 pd = d;
2252                 for (j = 1; j < z; j++) {
2253                         pd++;
2254                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2255                                                   DESCRIPTOR_INPUT_MORE);
2256
2257                         if (offset + rest < PAGE_SIZE)
2258                                 length = rest;
2259                         else
2260                                 length = PAGE_SIZE - offset;
2261                         pd->req_count = cpu_to_le16(length);
2262                         pd->res_count = pd->req_count;
2263                         pd->transfer_status = 0;
2264
2265                         page_bus = page_private(buffer->pages[page]);
2266                         pd->data_address = cpu_to_le32(page_bus + offset);
2267
2268                         offset = (offset + length) & ~PAGE_MASK;
2269                         rest -= length;
2270                         if (offset == 0)
2271                                 page++;
2272                 }
2273                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2274                                           DESCRIPTOR_INPUT_LAST |
2275                                           DESCRIPTOR_BRANCH_ALWAYS);
2276                 if (p->interrupt && i == packet_count - 1)
2277                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2278
2279                 context_append(&ctx->context, d, z, header_z);
2280         }
2281
2282         return 0;
2283 }
2284
2285 static int ohci_queue_iso(struct fw_iso_context *base,
2286                           struct fw_iso_packet *packet,
2287                           struct fw_iso_buffer *buffer,
2288                           unsigned long payload)
2289 {
2290         struct iso_context *ctx = container_of(base, struct iso_context, base);
2291         unsigned long flags;
2292         int ret;
2293
2294         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2295         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2296                 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2297         else
2298                 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2299                                                         buffer, payload);
2300         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2301
2302         return ret;
2303 }
2304
2305 static const struct fw_card_driver ohci_driver = {
2306         .enable                 = ohci_enable,
2307         .update_phy_reg         = ohci_update_phy_reg,
2308         .set_config_rom         = ohci_set_config_rom,
2309         .send_request           = ohci_send_request,
2310         .send_response          = ohci_send_response,
2311         .cancel_packet          = ohci_cancel_packet,
2312         .enable_phys_dma        = ohci_enable_phys_dma,
2313         .get_cycle_time         = ohci_get_cycle_time,
2314
2315         .allocate_iso_context   = ohci_allocate_iso_context,
2316         .free_iso_context       = ohci_free_iso_context,
2317         .queue_iso              = ohci_queue_iso,
2318         .start_iso              = ohci_start_iso,
2319         .stop_iso               = ohci_stop_iso,
2320 };
2321
2322 #ifdef CONFIG_PPC_PMAC
2323 static void ohci_pmac_on(struct pci_dev *dev)
2324 {
2325         if (machine_is(powermac)) {
2326                 struct device_node *ofn = pci_device_to_OF_node(dev);
2327
2328                 if (ofn) {
2329                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2330                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2331                 }
2332         }
2333 }
2334
2335 static void ohci_pmac_off(struct pci_dev *dev)
2336 {
2337         if (machine_is(powermac)) {
2338                 struct device_node *ofn = pci_device_to_OF_node(dev);
2339
2340                 if (ofn) {
2341                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2342                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2343                 }
2344         }
2345 }
2346 #else
2347 #define ohci_pmac_on(dev)
2348 #define ohci_pmac_off(dev)
2349 #endif /* CONFIG_PPC_PMAC */
2350
2351 static int __devinit pci_probe(struct pci_dev *dev,
2352                                const struct pci_device_id *ent)
2353 {
2354         struct fw_ohci *ohci;
2355         u32 bus_options, max_receive, link_speed, version;
2356         u64 guid;
2357         int i, err, n_ir, n_it;
2358         size_t size;
2359
2360         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2361         if (ohci == NULL) {
2362                 err = -ENOMEM;
2363                 goto fail;
2364         }
2365
2366         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2367
2368         ohci_pmac_on(dev);
2369
2370         err = pci_enable_device(dev);
2371         if (err) {
2372                 fw_error("Failed to enable OHCI hardware\n");
2373                 goto fail_free;
2374         }
2375
2376         pci_set_master(dev);
2377         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2378         pci_set_drvdata(dev, ohci);
2379
2380         spin_lock_init(&ohci->lock);
2381
2382         tasklet_init(&ohci->bus_reset_tasklet,
2383                      bus_reset_tasklet, (unsigned long)ohci);
2384
2385         err = pci_request_region(dev, 0, ohci_driver_name);
2386         if (err) {
2387                 fw_error("MMIO resource unavailable\n");
2388                 goto fail_disable;
2389         }
2390
2391         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2392         if (ohci->registers == NULL) {
2393                 fw_error("Failed to remap registers\n");
2394                 err = -ENXIO;
2395                 goto fail_iomem;
2396         }
2397
2398         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2399                 if (ohci_quirks[i].vendor == dev->vendor &&
2400                     (ohci_quirks[i].device == dev->device ||
2401                      ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2402                         ohci->quirks = ohci_quirks[i].flags;
2403                         break;
2404                 }
2405         if (param_quirks)
2406                 ohci->quirks = param_quirks;
2407
2408         ar_context_init(&ohci->ar_request_ctx, ohci,
2409                         OHCI1394_AsReqRcvContextControlSet);
2410
2411         ar_context_init(&ohci->ar_response_ctx, ohci,
2412                         OHCI1394_AsRspRcvContextControlSet);
2413
2414         context_init(&ohci->at_request_ctx, ohci,
2415                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2416
2417         context_init(&ohci->at_response_ctx, ohci,
2418                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2419
2420         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2421         ohci->ir_context_channels = ~0ULL;
2422         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2423         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2424         n_ir = hweight32(ohci->ir_context_mask);
2425         size = sizeof(struct iso_context) * n_ir;
2426         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2427
2428         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2429         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2430         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2431         n_it = hweight32(ohci->it_context_mask);
2432         size = sizeof(struct iso_context) * n_it;
2433         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2434
2435         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2436                 err = -ENOMEM;
2437                 goto fail_contexts;
2438         }
2439
2440         /* self-id dma buffer allocation */
2441         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2442                                                SELF_ID_BUF_SIZE,
2443                                                &ohci->self_id_bus,
2444                                                GFP_KERNEL);
2445         if (ohci->self_id_cpu == NULL) {
2446                 err = -ENOMEM;
2447                 goto fail_contexts;
2448         }
2449
2450         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2451         max_receive = (bus_options >> 12) & 0xf;
2452         link_speed = bus_options & 0x7;
2453         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2454                 reg_read(ohci, OHCI1394_GUIDLo);
2455
2456         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2457         if (err)
2458                 goto fail_self_id;
2459
2460         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2461         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2462                   "%d IR + %d IT contexts, quirks 0x%x\n",
2463                   dev_name(&dev->dev), version >> 16, version & 0xff,
2464                   n_ir, n_it, ohci->quirks);
2465
2466         return 0;
2467
2468  fail_self_id:
2469         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2470                           ohci->self_id_cpu, ohci->self_id_bus);
2471  fail_contexts:
2472         kfree(ohci->ir_context_list);
2473         kfree(ohci->it_context_list);
2474         context_release(&ohci->at_response_ctx);
2475         context_release(&ohci->at_request_ctx);
2476         ar_context_release(&ohci->ar_response_ctx);
2477         ar_context_release(&ohci->ar_request_ctx);
2478         pci_iounmap(dev, ohci->registers);
2479  fail_iomem:
2480         pci_release_region(dev, 0);
2481  fail_disable:
2482         pci_disable_device(dev);
2483  fail_free:
2484         kfree(&ohci->card);
2485         ohci_pmac_off(dev);
2486  fail:
2487         if (err == -ENOMEM)
2488                 fw_error("Out of memory\n");
2489
2490         return err;
2491 }
2492
2493 static void pci_remove(struct pci_dev *dev)
2494 {
2495         struct fw_ohci *ohci;
2496
2497         ohci = pci_get_drvdata(dev);
2498         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2499         flush_writes(ohci);
2500         fw_core_remove_card(&ohci->card);
2501
2502         /*
2503          * FIXME: Fail all pending packets here, now that the upper
2504          * layers can't queue any more.
2505          */
2506
2507         software_reset(ohci);
2508         free_irq(dev->irq, ohci);
2509
2510         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2511                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2512                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2513         if (ohci->config_rom)
2514                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2515                                   ohci->config_rom, ohci->config_rom_bus);
2516         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2517                           ohci->self_id_cpu, ohci->self_id_bus);
2518         ar_context_release(&ohci->ar_request_ctx);
2519         ar_context_release(&ohci->ar_response_ctx);
2520         context_release(&ohci->at_request_ctx);
2521         context_release(&ohci->at_response_ctx);
2522         kfree(ohci->it_context_list);
2523         kfree(ohci->ir_context_list);
2524         pci_iounmap(dev, ohci->registers);
2525         pci_release_region(dev, 0);
2526         pci_disable_device(dev);
2527         kfree(&ohci->card);
2528         ohci_pmac_off(dev);
2529
2530         fw_notify("Removed fw-ohci device.\n");
2531 }
2532
2533 #ifdef CONFIG_PM
2534 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2535 {
2536         struct fw_ohci *ohci = pci_get_drvdata(dev);
2537         int err;
2538
2539         software_reset(ohci);
2540         free_irq(dev->irq, ohci);
2541         err = pci_save_state(dev);
2542         if (err) {
2543                 fw_error("pci_save_state failed\n");
2544                 return err;
2545         }
2546         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2547         if (err)
2548                 fw_error("pci_set_power_state failed with %d\n", err);
2549         ohci_pmac_off(dev);
2550
2551         return 0;
2552 }
2553
2554 static int pci_resume(struct pci_dev *dev)
2555 {
2556         struct fw_ohci *ohci = pci_get_drvdata(dev);
2557         int err;
2558
2559         ohci_pmac_on(dev);
2560         pci_set_power_state(dev, PCI_D0);
2561         pci_restore_state(dev);
2562         err = pci_enable_device(dev);
2563         if (err) {
2564                 fw_error("pci_enable_device failed\n");
2565                 return err;
2566         }
2567
2568         return ohci_enable(&ohci->card, NULL, 0);
2569 }
2570 #endif
2571
2572 static const struct pci_device_id pci_table[] = {
2573         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2574         { }
2575 };
2576
2577 MODULE_DEVICE_TABLE(pci, pci_table);
2578
2579 static struct pci_driver fw_ohci_pci_driver = {
2580         .name           = ohci_driver_name,
2581         .id_table       = pci_table,
2582         .probe          = pci_probe,
2583         .remove         = pci_remove,
2584 #ifdef CONFIG_PM
2585         .resume         = pci_resume,
2586         .suspend        = pci_suspend,
2587 #endif
2588 };
2589
2590 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2591 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2592 MODULE_LICENSE("GPL");
2593
2594 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2595 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2596 MODULE_ALIAS("ohci1394");
2597 #endif
2598
2599 static int __init fw_ohci_init(void)
2600 {
2601         return pci_register_driver(&fw_ohci_pci_driver);
2602 }
2603
2604 static void __exit fw_ohci_cleanup(void)
2605 {
2606         pci_unregister_driver(&fw_ohci_pci_driver);
2607 }
2608
2609 module_init(fw_ohci_init);
2610 module_exit(fw_ohci_cleanup);