KVM: avoid unnecessary wait for a async pf
[linux-flexiantxendom0-natty.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS                                               \
64         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS                                               \
68         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
70                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
71                           | X86_CR4_OSXSAVE \
72                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
73
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
75
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
78
79 /* EFER defaults:
80  * - enable syscall per default because its emulated by KVM
81  * - enable LME and LMA per default on 64 bit KVM
82  */
83 #ifdef CONFIG_X86_64
84 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
85 #else
86 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
94                                     struct kvm_cpuid_entry2 __user *entries);
95
96 struct kvm_x86_ops *kvm_x86_ops;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 int ignore_msrs = 0;
100 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 #define KVM_NR_SHARED_MSRS 16
103
104 struct kvm_shared_msrs_global {
105         int nr;
106         u32 msrs[KVM_NR_SHARED_MSRS];
107 };
108
109 struct kvm_shared_msrs {
110         struct user_return_notifier urn;
111         bool registered;
112         struct kvm_shared_msr_values {
113                 u64 host;
114                 u64 curr;
115         } values[KVM_NR_SHARED_MSRS];
116 };
117
118 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
119 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
120
121 struct kvm_stats_debugfs_item debugfs_entries[] = {
122         { "pf_fixed", VCPU_STAT(pf_fixed) },
123         { "pf_guest", VCPU_STAT(pf_guest) },
124         { "tlb_flush", VCPU_STAT(tlb_flush) },
125         { "invlpg", VCPU_STAT(invlpg) },
126         { "exits", VCPU_STAT(exits) },
127         { "io_exits", VCPU_STAT(io_exits) },
128         { "mmio_exits", VCPU_STAT(mmio_exits) },
129         { "signal_exits", VCPU_STAT(signal_exits) },
130         { "irq_window", VCPU_STAT(irq_window_exits) },
131         { "nmi_window", VCPU_STAT(nmi_window_exits) },
132         { "halt_exits", VCPU_STAT(halt_exits) },
133         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
134         { "hypercalls", VCPU_STAT(hypercalls) },
135         { "request_irq", VCPU_STAT(request_irq_exits) },
136         { "irq_exits", VCPU_STAT(irq_exits) },
137         { "host_state_reload", VCPU_STAT(host_state_reload) },
138         { "efer_reload", VCPU_STAT(efer_reload) },
139         { "fpu_reload", VCPU_STAT(fpu_reload) },
140         { "insn_emulation", VCPU_STAT(insn_emulation) },
141         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
142         { "irq_injections", VCPU_STAT(irq_injections) },
143         { "nmi_injections", VCPU_STAT(nmi_injections) },
144         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
145         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
146         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
147         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
148         { "mmu_flooded", VM_STAT(mmu_flooded) },
149         { "mmu_recycled", VM_STAT(mmu_recycled) },
150         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
151         { "mmu_unsync", VM_STAT(mmu_unsync) },
152         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
153         { "largepages", VM_STAT(lpages) },
154         { NULL }
155 };
156
157 u64 __read_mostly host_xcr0;
158
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
160 {
161         int i;
162         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
163                 vcpu->arch.apf.gfns[i] = ~0;
164 }
165
166 static void kvm_on_user_return(struct user_return_notifier *urn)
167 {
168         unsigned slot;
169         struct kvm_shared_msrs *locals
170                 = container_of(urn, struct kvm_shared_msrs, urn);
171         struct kvm_shared_msr_values *values;
172
173         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
174                 values = &locals->values[slot];
175                 if (values->host != values->curr) {
176                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
177                         values->curr = values->host;
178                 }
179         }
180         locals->registered = false;
181         user_return_notifier_unregister(urn);
182 }
183
184 static void shared_msr_update(unsigned slot, u32 msr)
185 {
186         struct kvm_shared_msrs *smsr;
187         u64 value;
188
189         smsr = &__get_cpu_var(shared_msrs);
190         /* only read, and nobody should modify it at this time,
191          * so don't need lock */
192         if (slot >= shared_msrs_global.nr) {
193                 printk(KERN_ERR "kvm: invalid MSR slot!");
194                 return;
195         }
196         rdmsrl_safe(msr, &value);
197         smsr->values[slot].host = value;
198         smsr->values[slot].curr = value;
199 }
200
201 void kvm_define_shared_msr(unsigned slot, u32 msr)
202 {
203         if (slot >= shared_msrs_global.nr)
204                 shared_msrs_global.nr = slot + 1;
205         shared_msrs_global.msrs[slot] = msr;
206         /* we need ensured the shared_msr_global have been updated */
207         smp_wmb();
208 }
209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
210
211 static void kvm_shared_msr_cpu_online(void)
212 {
213         unsigned i;
214
215         for (i = 0; i < shared_msrs_global.nr; ++i)
216                 shared_msr_update(i, shared_msrs_global.msrs[i]);
217 }
218
219 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
220 {
221         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
222
223         if (((value ^ smsr->values[slot].curr) & mask) == 0)
224                 return;
225         smsr->values[slot].curr = value;
226         wrmsrl(shared_msrs_global.msrs[slot], value);
227         if (!smsr->registered) {
228                 smsr->urn.on_user_return = kvm_on_user_return;
229                 user_return_notifier_register(&smsr->urn);
230                 smsr->registered = true;
231         }
232 }
233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
234
235 static void drop_user_return_notifiers(void *ignore)
236 {
237         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
238
239         if (smsr->registered)
240                 kvm_on_user_return(&smsr->urn);
241 }
242
243 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
244 {
245         if (irqchip_in_kernel(vcpu->kvm))
246                 return vcpu->arch.apic_base;
247         else
248                 return vcpu->arch.apic_base;
249 }
250 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
251
252 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
253 {
254         /* TODO: reserve bits check */
255         if (irqchip_in_kernel(vcpu->kvm))
256                 kvm_lapic_set_base(vcpu, data);
257         else
258                 vcpu->arch.apic_base = data;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
261
262 #define EXCPT_BENIGN            0
263 #define EXCPT_CONTRIBUTORY      1
264 #define EXCPT_PF                2
265
266 static int exception_class(int vector)
267 {
268         switch (vector) {
269         case PF_VECTOR:
270                 return EXCPT_PF;
271         case DE_VECTOR:
272         case TS_VECTOR:
273         case NP_VECTOR:
274         case SS_VECTOR:
275         case GP_VECTOR:
276                 return EXCPT_CONTRIBUTORY;
277         default:
278                 break;
279         }
280         return EXCPT_BENIGN;
281 }
282
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284                 unsigned nr, bool has_error, u32 error_code,
285                 bool reinject)
286 {
287         u32 prev_nr;
288         int class1, class2;
289
290         kvm_make_request(KVM_REQ_EVENT, vcpu);
291
292         if (!vcpu->arch.exception.pending) {
293         queue:
294                 vcpu->arch.exception.pending = true;
295                 vcpu->arch.exception.has_error_code = has_error;
296                 vcpu->arch.exception.nr = nr;
297                 vcpu->arch.exception.error_code = error_code;
298                 vcpu->arch.exception.reinject = reinject;
299                 return;
300         }
301
302         /* to check exception */
303         prev_nr = vcpu->arch.exception.nr;
304         if (prev_nr == DF_VECTOR) {
305                 /* triple fault -> shutdown */
306                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307                 return;
308         }
309         class1 = exception_class(prev_nr);
310         class2 = exception_class(nr);
311         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313                 /* generate double fault per SDM Table 5-5 */
314                 vcpu->arch.exception.pending = true;
315                 vcpu->arch.exception.has_error_code = true;
316                 vcpu->arch.exception.nr = DF_VECTOR;
317                 vcpu->arch.exception.error_code = 0;
318         } else
319                 /* replace previous exception with a new one in a hope
320                    that instruction re-execution will regenerate lost
321                    exception */
322                 goto queue;
323 }
324
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
326 {
327         kvm_multiple_exception(vcpu, nr, false, 0, false);
328 }
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
330
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
332 {
333         kvm_multiple_exception(vcpu, nr, false, 0, true);
334 }
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
336
337 void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
338 {
339         unsigned error_code = vcpu->arch.fault.error_code;
340
341         ++vcpu->stat.pf_guest;
342         vcpu->arch.cr2 = vcpu->arch.fault.address;
343         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
344 }
345
346 void kvm_propagate_fault(struct kvm_vcpu *vcpu)
347 {
348         if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested)
349                 vcpu->arch.nested_mmu.inject_page_fault(vcpu);
350         else
351                 vcpu->arch.mmu.inject_page_fault(vcpu);
352
353         vcpu->arch.fault.nested = false;
354 }
355
356 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
357 {
358         kvm_make_request(KVM_REQ_EVENT, vcpu);
359         vcpu->arch.nmi_pending = 1;
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
362
363 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
364 {
365         kvm_multiple_exception(vcpu, nr, true, error_code, false);
366 }
367 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
368
369 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370 {
371         kvm_multiple_exception(vcpu, nr, true, error_code, true);
372 }
373 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
374
375 /*
376  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
377  * a #GP and return false.
378  */
379 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
380 {
381         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
382                 return true;
383         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
384         return false;
385 }
386 EXPORT_SYMBOL_GPL(kvm_require_cpl);
387
388 /*
389  * This function will be used to read from the physical memory of the currently
390  * running guest. The difference to kvm_read_guest_page is that this function
391  * can read from guest physical or from the guest's guest physical memory.
392  */
393 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
394                             gfn_t ngfn, void *data, int offset, int len,
395                             u32 access)
396 {
397         gfn_t real_gfn;
398         gpa_t ngpa;
399
400         ngpa     = gfn_to_gpa(ngfn);
401         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
402         if (real_gfn == UNMAPPED_GVA)
403                 return -EFAULT;
404
405         real_gfn = gpa_to_gfn(real_gfn);
406
407         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
408 }
409 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
410
411 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
412                                void *data, int offset, int len, u32 access)
413 {
414         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
415                                        data, offset, len, access);
416 }
417
418 /*
419  * Load the pae pdptrs.  Return true is they are all valid.
420  */
421 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
422 {
423         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
424         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
425         int i;
426         int ret;
427         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
428
429         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
430                                       offset * sizeof(u64), sizeof(pdpte),
431                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
432         if (ret < 0) {
433                 ret = 0;
434                 goto out;
435         }
436         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
437                 if (is_present_gpte(pdpte[i]) &&
438                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
439                         ret = 0;
440                         goto out;
441                 }
442         }
443         ret = 1;
444
445         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
446         __set_bit(VCPU_EXREG_PDPTR,
447                   (unsigned long *)&vcpu->arch.regs_avail);
448         __set_bit(VCPU_EXREG_PDPTR,
449                   (unsigned long *)&vcpu->arch.regs_dirty);
450 out:
451
452         return ret;
453 }
454 EXPORT_SYMBOL_GPL(load_pdptrs);
455
456 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
457 {
458         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
459         bool changed = true;
460         int offset;
461         gfn_t gfn;
462         int r;
463
464         if (is_long_mode(vcpu) || !is_pae(vcpu))
465                 return false;
466
467         if (!test_bit(VCPU_EXREG_PDPTR,
468                       (unsigned long *)&vcpu->arch.regs_avail))
469                 return true;
470
471         gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
472         offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
473         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
474                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
475         if (r < 0)
476                 goto out;
477         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
478 out:
479
480         return changed;
481 }
482
483 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
484 {
485         unsigned long old_cr0 = kvm_read_cr0(vcpu);
486         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
487                                     X86_CR0_CD | X86_CR0_NW;
488
489         cr0 |= X86_CR0_ET;
490
491 #ifdef CONFIG_X86_64
492         if (cr0 & 0xffffffff00000000UL)
493                 return 1;
494 #endif
495
496         cr0 &= ~CR0_RESERVED_BITS;
497
498         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
499                 return 1;
500
501         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
502                 return 1;
503
504         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
505 #ifdef CONFIG_X86_64
506                 if ((vcpu->arch.efer & EFER_LME)) {
507                         int cs_db, cs_l;
508
509                         if (!is_pae(vcpu))
510                                 return 1;
511                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
512                         if (cs_l)
513                                 return 1;
514                 } else
515 #endif
516                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
517                                                  vcpu->arch.cr3))
518                         return 1;
519         }
520
521         kvm_x86_ops->set_cr0(vcpu, cr0);
522
523         if ((cr0 ^ old_cr0) & update_bits)
524                 kvm_mmu_reset_context(vcpu);
525         return 0;
526 }
527 EXPORT_SYMBOL_GPL(kvm_set_cr0);
528
529 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
530 {
531         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
532 }
533 EXPORT_SYMBOL_GPL(kvm_lmsw);
534
535 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
536 {
537         u64 xcr0;
538
539         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
540         if (index != XCR_XFEATURE_ENABLED_MASK)
541                 return 1;
542         xcr0 = xcr;
543         if (kvm_x86_ops->get_cpl(vcpu) != 0)
544                 return 1;
545         if (!(xcr0 & XSTATE_FP))
546                 return 1;
547         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
548                 return 1;
549         if (xcr0 & ~host_xcr0)
550                 return 1;
551         vcpu->arch.xcr0 = xcr0;
552         vcpu->guest_xcr0_loaded = 0;
553         return 0;
554 }
555
556 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
557 {
558         if (__kvm_set_xcr(vcpu, index, xcr)) {
559                 kvm_inject_gp(vcpu, 0);
560                 return 1;
561         }
562         return 0;
563 }
564 EXPORT_SYMBOL_GPL(kvm_set_xcr);
565
566 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
567 {
568         struct kvm_cpuid_entry2 *best;
569
570         best = kvm_find_cpuid_entry(vcpu, 1, 0);
571         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
572 }
573
574 static void update_cpuid(struct kvm_vcpu *vcpu)
575 {
576         struct kvm_cpuid_entry2 *best;
577
578         best = kvm_find_cpuid_entry(vcpu, 1, 0);
579         if (!best)
580                 return;
581
582         /* Update OSXSAVE bit */
583         if (cpu_has_xsave && best->function == 0x1) {
584                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
585                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
586                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
587         }
588 }
589
590 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
591 {
592         unsigned long old_cr4 = kvm_read_cr4(vcpu);
593         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
594
595         if (cr4 & CR4_RESERVED_BITS)
596                 return 1;
597
598         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
599                 return 1;
600
601         if (is_long_mode(vcpu)) {
602                 if (!(cr4 & X86_CR4_PAE))
603                         return 1;
604         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605                    && ((cr4 ^ old_cr4) & pdptr_bits)
606                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
607                 return 1;
608
609         if (cr4 & X86_CR4_VMXE)
610                 return 1;
611
612         kvm_x86_ops->set_cr4(vcpu, cr4);
613
614         if ((cr4 ^ old_cr4) & pdptr_bits)
615                 kvm_mmu_reset_context(vcpu);
616
617         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
618                 update_cpuid(vcpu);
619
620         return 0;
621 }
622 EXPORT_SYMBOL_GPL(kvm_set_cr4);
623
624 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
625 {
626         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
627                 kvm_mmu_sync_roots(vcpu);
628                 kvm_mmu_flush_tlb(vcpu);
629                 return 0;
630         }
631
632         if (is_long_mode(vcpu)) {
633                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
634                         return 1;
635         } else {
636                 if (is_pae(vcpu)) {
637                         if (cr3 & CR3_PAE_RESERVED_BITS)
638                                 return 1;
639                         if (is_paging(vcpu) &&
640                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
641                                 return 1;
642                 }
643                 /*
644                  * We don't check reserved bits in nonpae mode, because
645                  * this isn't enforced, and VMware depends on this.
646                  */
647         }
648
649         /*
650          * Does the new cr3 value map to physical memory? (Note, we
651          * catch an invalid cr3 even in real-mode, because it would
652          * cause trouble later on when we turn on paging anyway.)
653          *
654          * A real CPU would silently accept an invalid cr3 and would
655          * attempt to use it - with largely undefined (and often hard
656          * to debug) behavior on the guest side.
657          */
658         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
659                 return 1;
660         vcpu->arch.cr3 = cr3;
661         vcpu->arch.mmu.new_cr3(vcpu);
662         return 0;
663 }
664 EXPORT_SYMBOL_GPL(kvm_set_cr3);
665
666 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
667 {
668         if (cr8 & CR8_RESERVED_BITS)
669                 return 1;
670         if (irqchip_in_kernel(vcpu->kvm))
671                 kvm_lapic_set_tpr(vcpu, cr8);
672         else
673                 vcpu->arch.cr8 = cr8;
674         return 0;
675 }
676
677 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
678 {
679         if (__kvm_set_cr8(vcpu, cr8))
680                 kvm_inject_gp(vcpu, 0);
681 }
682 EXPORT_SYMBOL_GPL(kvm_set_cr8);
683
684 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
685 {
686         if (irqchip_in_kernel(vcpu->kvm))
687                 return kvm_lapic_get_cr8(vcpu);
688         else
689                 return vcpu->arch.cr8;
690 }
691 EXPORT_SYMBOL_GPL(kvm_get_cr8);
692
693 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
694 {
695         switch (dr) {
696         case 0 ... 3:
697                 vcpu->arch.db[dr] = val;
698                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
699                         vcpu->arch.eff_db[dr] = val;
700                 break;
701         case 4:
702                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
703                         return 1; /* #UD */
704                 /* fall through */
705         case 6:
706                 if (val & 0xffffffff00000000ULL)
707                         return -1; /* #GP */
708                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
709                 break;
710         case 5:
711                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
712                         return 1; /* #UD */
713                 /* fall through */
714         default: /* 7 */
715                 if (val & 0xffffffff00000000ULL)
716                         return -1; /* #GP */
717                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
718                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
719                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
720                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
721                 }
722                 break;
723         }
724
725         return 0;
726 }
727
728 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
729 {
730         int res;
731
732         res = __kvm_set_dr(vcpu, dr, val);
733         if (res > 0)
734                 kvm_queue_exception(vcpu, UD_VECTOR);
735         else if (res < 0)
736                 kvm_inject_gp(vcpu, 0);
737
738         return res;
739 }
740 EXPORT_SYMBOL_GPL(kvm_set_dr);
741
742 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
743 {
744         switch (dr) {
745         case 0 ... 3:
746                 *val = vcpu->arch.db[dr];
747                 break;
748         case 4:
749                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
750                         return 1;
751                 /* fall through */
752         case 6:
753                 *val = vcpu->arch.dr6;
754                 break;
755         case 5:
756                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
757                         return 1;
758                 /* fall through */
759         default: /* 7 */
760                 *val = vcpu->arch.dr7;
761                 break;
762         }
763
764         return 0;
765 }
766
767 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
768 {
769         if (_kvm_get_dr(vcpu, dr, val)) {
770                 kvm_queue_exception(vcpu, UD_VECTOR);
771                 return 1;
772         }
773         return 0;
774 }
775 EXPORT_SYMBOL_GPL(kvm_get_dr);
776
777 /*
778  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
779  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
780  *
781  * This list is modified at module load time to reflect the
782  * capabilities of the host cpu. This capabilities test skips MSRs that are
783  * kvm-specific. Those are put in the beginning of the list.
784  */
785
786 #define KVM_SAVE_MSRS_BEGIN     8
787 static u32 msrs_to_save[] = {
788         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
789         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
790         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
791         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
792         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
793         MSR_STAR,
794 #ifdef CONFIG_X86_64
795         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
796 #endif
797         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
798 };
799
800 static unsigned num_msrs_to_save;
801
802 static u32 emulated_msrs[] = {
803         MSR_IA32_MISC_ENABLE,
804         MSR_IA32_MCG_STATUS,
805         MSR_IA32_MCG_CTL,
806 };
807
808 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
809 {
810         u64 old_efer = vcpu->arch.efer;
811
812         if (efer & efer_reserved_bits)
813                 return 1;
814
815         if (is_paging(vcpu)
816             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
817                 return 1;
818
819         if (efer & EFER_FFXSR) {
820                 struct kvm_cpuid_entry2 *feat;
821
822                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
823                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
824                         return 1;
825         }
826
827         if (efer & EFER_SVME) {
828                 struct kvm_cpuid_entry2 *feat;
829
830                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
831                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
832                         return 1;
833         }
834
835         efer &= ~EFER_LMA;
836         efer |= vcpu->arch.efer & EFER_LMA;
837
838         kvm_x86_ops->set_efer(vcpu, efer);
839
840         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
841
842         /* Update reserved bits */
843         if ((efer ^ old_efer) & EFER_NX)
844                 kvm_mmu_reset_context(vcpu);
845
846         return 0;
847 }
848
849 void kvm_enable_efer_bits(u64 mask)
850 {
851        efer_reserved_bits &= ~mask;
852 }
853 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
854
855
856 /*
857  * Writes msr value into into the appropriate "register".
858  * Returns 0 on success, non-0 otherwise.
859  * Assumes vcpu_load() was already called.
860  */
861 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
862 {
863         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
864 }
865
866 /*
867  * Adapt set_msr() to msr_io()'s calling convention
868  */
869 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
870 {
871         return kvm_set_msr(vcpu, index, *data);
872 }
873
874 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
875 {
876         int version;
877         int r;
878         struct pvclock_wall_clock wc;
879         struct timespec boot;
880
881         if (!wall_clock)
882                 return;
883
884         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
885         if (r)
886                 return;
887
888         if (version & 1)
889                 ++version;  /* first time write, random junk */
890
891         ++version;
892
893         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
894
895         /*
896          * The guest calculates current wall clock time by adding
897          * system time (updated by kvm_guest_time_update below) to the
898          * wall clock specified here.  guest system time equals host
899          * system time for us, thus we must fill in host boot time here.
900          */
901         getboottime(&boot);
902
903         wc.sec = boot.tv_sec;
904         wc.nsec = boot.tv_nsec;
905         wc.version = version;
906
907         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
908
909         version++;
910         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
911 }
912
913 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
914 {
915         uint32_t quotient, remainder;
916
917         /* Don't try to replace with do_div(), this one calculates
918          * "(dividend << 32) / divisor" */
919         __asm__ ( "divl %4"
920                   : "=a" (quotient), "=d" (remainder)
921                   : "0" (0), "1" (dividend), "r" (divisor) );
922         return quotient;
923 }
924
925 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
926                                s8 *pshift, u32 *pmultiplier)
927 {
928         uint64_t scaled64;
929         int32_t  shift = 0;
930         uint64_t tps64;
931         uint32_t tps32;
932
933         tps64 = base_khz * 1000LL;
934         scaled64 = scaled_khz * 1000LL;
935         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
936                 tps64 >>= 1;
937                 shift--;
938         }
939
940         tps32 = (uint32_t)tps64;
941         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
942                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
943                         scaled64 >>= 1;
944                 else
945                         tps32 <<= 1;
946                 shift++;
947         }
948
949         *pshift = shift;
950         *pmultiplier = div_frac(scaled64, tps32);
951
952         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
953                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
954 }
955
956 static inline u64 get_kernel_ns(void)
957 {
958         struct timespec ts;
959
960         WARN_ON(preemptible());
961         ktime_get_ts(&ts);
962         monotonic_to_bootbased(&ts);
963         return timespec_to_ns(&ts);
964 }
965
966 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
967 unsigned long max_tsc_khz;
968
969 static inline int kvm_tsc_changes_freq(void)
970 {
971         int cpu = get_cpu();
972         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
973                   cpufreq_quick_get(cpu) != 0;
974         put_cpu();
975         return ret;
976 }
977
978 static inline u64 nsec_to_cycles(u64 nsec)
979 {
980         u64 ret;
981
982         WARN_ON(preemptible());
983         if (kvm_tsc_changes_freq())
984                 printk_once(KERN_WARNING
985                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
986         ret = nsec * __get_cpu_var(cpu_tsc_khz);
987         do_div(ret, USEC_PER_SEC);
988         return ret;
989 }
990
991 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
992 {
993         /* Compute a scale to convert nanoseconds in TSC cycles */
994         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
995                            &kvm->arch.virtual_tsc_shift,
996                            &kvm->arch.virtual_tsc_mult);
997         kvm->arch.virtual_tsc_khz = this_tsc_khz;
998 }
999
1000 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1001 {
1002         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1003                                       vcpu->kvm->arch.virtual_tsc_mult,
1004                                       vcpu->kvm->arch.virtual_tsc_shift);
1005         tsc += vcpu->arch.last_tsc_write;
1006         return tsc;
1007 }
1008
1009 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1010 {
1011         struct kvm *kvm = vcpu->kvm;
1012         u64 offset, ns, elapsed;
1013         unsigned long flags;
1014         s64 sdiff;
1015
1016         spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1017         offset = data - native_read_tsc();
1018         ns = get_kernel_ns();
1019         elapsed = ns - kvm->arch.last_tsc_nsec;
1020         sdiff = data - kvm->arch.last_tsc_write;
1021         if (sdiff < 0)
1022                 sdiff = -sdiff;
1023
1024         /*
1025          * Special case: close write to TSC within 5 seconds of
1026          * another CPU is interpreted as an attempt to synchronize
1027          * The 5 seconds is to accomodate host load / swapping as
1028          * well as any reset of TSC during the boot process.
1029          *
1030          * In that case, for a reliable TSC, we can match TSC offsets,
1031          * or make a best guest using elapsed value.
1032          */
1033         if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1034             elapsed < 5ULL * NSEC_PER_SEC) {
1035                 if (!check_tsc_unstable()) {
1036                         offset = kvm->arch.last_tsc_offset;
1037                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1038                 } else {
1039                         u64 delta = nsec_to_cycles(elapsed);
1040                         offset += delta;
1041                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1042                 }
1043                 ns = kvm->arch.last_tsc_nsec;
1044         }
1045         kvm->arch.last_tsc_nsec = ns;
1046         kvm->arch.last_tsc_write = data;
1047         kvm->arch.last_tsc_offset = offset;
1048         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1049         spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1050
1051         /* Reset of TSC must disable overshoot protection below */
1052         vcpu->arch.hv_clock.tsc_timestamp = 0;
1053         vcpu->arch.last_tsc_write = data;
1054         vcpu->arch.last_tsc_nsec = ns;
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1057
1058 static int kvm_guest_time_update(struct kvm_vcpu *v)
1059 {
1060         unsigned long flags;
1061         struct kvm_vcpu_arch *vcpu = &v->arch;
1062         void *shared_kaddr;
1063         unsigned long this_tsc_khz;
1064         s64 kernel_ns, max_kernel_ns;
1065         u64 tsc_timestamp;
1066
1067         /* Keep irq disabled to prevent changes to the clock */
1068         local_irq_save(flags);
1069         kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1070         kernel_ns = get_kernel_ns();
1071         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1072
1073         if (unlikely(this_tsc_khz == 0)) {
1074                 local_irq_restore(flags);
1075                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1076                 return 1;
1077         }
1078
1079         /*
1080          * We may have to catch up the TSC to match elapsed wall clock
1081          * time for two reasons, even if kvmclock is used.
1082          *   1) CPU could have been running below the maximum TSC rate
1083          *   2) Broken TSC compensation resets the base at each VCPU
1084          *      entry to avoid unknown leaps of TSC even when running
1085          *      again on the same CPU.  This may cause apparent elapsed
1086          *      time to disappear, and the guest to stand still or run
1087          *      very slowly.
1088          */
1089         if (vcpu->tsc_catchup) {
1090                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1091                 if (tsc > tsc_timestamp) {
1092                         kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1093                         tsc_timestamp = tsc;
1094                 }
1095         }
1096
1097         local_irq_restore(flags);
1098
1099         if (!vcpu->time_page)
1100                 return 0;
1101
1102         /*
1103          * Time as measured by the TSC may go backwards when resetting the base
1104          * tsc_timestamp.  The reason for this is that the TSC resolution is
1105          * higher than the resolution of the other clock scales.  Thus, many
1106          * possible measurments of the TSC correspond to one measurement of any
1107          * other clock, and so a spread of values is possible.  This is not a
1108          * problem for the computation of the nanosecond clock; with TSC rates
1109          * around 1GHZ, there can only be a few cycles which correspond to one
1110          * nanosecond value, and any path through this code will inevitably
1111          * take longer than that.  However, with the kernel_ns value itself,
1112          * the precision may be much lower, down to HZ granularity.  If the
1113          * first sampling of TSC against kernel_ns ends in the low part of the
1114          * range, and the second in the high end of the range, we can get:
1115          *
1116          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1117          *
1118          * As the sampling errors potentially range in the thousands of cycles,
1119          * it is possible such a time value has already been observed by the
1120          * guest.  To protect against this, we must compute the system time as
1121          * observed by the guest and ensure the new system time is greater.
1122          */
1123         max_kernel_ns = 0;
1124         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1125                 max_kernel_ns = vcpu->last_guest_tsc -
1126                                 vcpu->hv_clock.tsc_timestamp;
1127                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1128                                     vcpu->hv_clock.tsc_to_system_mul,
1129                                     vcpu->hv_clock.tsc_shift);
1130                 max_kernel_ns += vcpu->last_kernel_ns;
1131         }
1132
1133         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1134                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1135                                    &vcpu->hv_clock.tsc_shift,
1136                                    &vcpu->hv_clock.tsc_to_system_mul);
1137                 vcpu->hw_tsc_khz = this_tsc_khz;
1138         }
1139
1140         if (max_kernel_ns > kernel_ns)
1141                 kernel_ns = max_kernel_ns;
1142
1143         /* With all the info we got, fill in the values */
1144         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1145         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1146         vcpu->last_kernel_ns = kernel_ns;
1147         vcpu->last_guest_tsc = tsc_timestamp;
1148         vcpu->hv_clock.flags = 0;
1149
1150         /*
1151          * The interface expects us to write an even number signaling that the
1152          * update is finished. Since the guest won't see the intermediate
1153          * state, we just increase by 2 at the end.
1154          */
1155         vcpu->hv_clock.version += 2;
1156
1157         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1158
1159         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1160                sizeof(vcpu->hv_clock));
1161
1162         kunmap_atomic(shared_kaddr, KM_USER0);
1163
1164         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1165         return 0;
1166 }
1167
1168 static bool msr_mtrr_valid(unsigned msr)
1169 {
1170         switch (msr) {
1171         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1172         case MSR_MTRRfix64K_00000:
1173         case MSR_MTRRfix16K_80000:
1174         case MSR_MTRRfix16K_A0000:
1175         case MSR_MTRRfix4K_C0000:
1176         case MSR_MTRRfix4K_C8000:
1177         case MSR_MTRRfix4K_D0000:
1178         case MSR_MTRRfix4K_D8000:
1179         case MSR_MTRRfix4K_E0000:
1180         case MSR_MTRRfix4K_E8000:
1181         case MSR_MTRRfix4K_F0000:
1182         case MSR_MTRRfix4K_F8000:
1183         case MSR_MTRRdefType:
1184         case MSR_IA32_CR_PAT:
1185                 return true;
1186         case 0x2f8:
1187                 return true;
1188         }
1189         return false;
1190 }
1191
1192 static bool valid_pat_type(unsigned t)
1193 {
1194         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1195 }
1196
1197 static bool valid_mtrr_type(unsigned t)
1198 {
1199         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1200 }
1201
1202 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1203 {
1204         int i;
1205
1206         if (!msr_mtrr_valid(msr))
1207                 return false;
1208
1209         if (msr == MSR_IA32_CR_PAT) {
1210                 for (i = 0; i < 8; i++)
1211                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1212                                 return false;
1213                 return true;
1214         } else if (msr == MSR_MTRRdefType) {
1215                 if (data & ~0xcff)
1216                         return false;
1217                 return valid_mtrr_type(data & 0xff);
1218         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1219                 for (i = 0; i < 8 ; i++)
1220                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1221                                 return false;
1222                 return true;
1223         }
1224
1225         /* variable MTRRs */
1226         return valid_mtrr_type(data & 0xff);
1227 }
1228
1229 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1230 {
1231         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1232
1233         if (!mtrr_valid(vcpu, msr, data))
1234                 return 1;
1235
1236         if (msr == MSR_MTRRdefType) {
1237                 vcpu->arch.mtrr_state.def_type = data;
1238                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1239         } else if (msr == MSR_MTRRfix64K_00000)
1240                 p[0] = data;
1241         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1242                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1243         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1244                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1245         else if (msr == MSR_IA32_CR_PAT)
1246                 vcpu->arch.pat = data;
1247         else {  /* Variable MTRRs */
1248                 int idx, is_mtrr_mask;
1249                 u64 *pt;
1250
1251                 idx = (msr - 0x200) / 2;
1252                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1253                 if (!is_mtrr_mask)
1254                         pt =
1255                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1256                 else
1257                         pt =
1258                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1259                 *pt = data;
1260         }
1261
1262         kvm_mmu_reset_context(vcpu);
1263         return 0;
1264 }
1265
1266 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1267 {
1268         u64 mcg_cap = vcpu->arch.mcg_cap;
1269         unsigned bank_num = mcg_cap & 0xff;
1270
1271         switch (msr) {
1272         case MSR_IA32_MCG_STATUS:
1273                 vcpu->arch.mcg_status = data;
1274                 break;
1275         case MSR_IA32_MCG_CTL:
1276                 if (!(mcg_cap & MCG_CTL_P))
1277                         return 1;
1278                 if (data != 0 && data != ~(u64)0)
1279                         return -1;
1280                 vcpu->arch.mcg_ctl = data;
1281                 break;
1282         default:
1283                 if (msr >= MSR_IA32_MC0_CTL &&
1284                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1285                         u32 offset = msr - MSR_IA32_MC0_CTL;
1286                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1287                          * some Linux kernels though clear bit 10 in bank 4 to
1288                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1289                          * this to avoid an uncatched #GP in the guest
1290                          */
1291                         if ((offset & 0x3) == 0 &&
1292                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1293                                 return -1;
1294                         vcpu->arch.mce_banks[offset] = data;
1295                         break;
1296                 }
1297                 return 1;
1298         }
1299         return 0;
1300 }
1301
1302 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1303 {
1304         struct kvm *kvm = vcpu->kvm;
1305         int lm = is_long_mode(vcpu);
1306         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1307                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1308         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1309                 : kvm->arch.xen_hvm_config.blob_size_32;
1310         u32 page_num = data & ~PAGE_MASK;
1311         u64 page_addr = data & PAGE_MASK;
1312         u8 *page;
1313         int r;
1314
1315         r = -E2BIG;
1316         if (page_num >= blob_size)
1317                 goto out;
1318         r = -ENOMEM;
1319         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1320         if (!page)
1321                 goto out;
1322         r = -EFAULT;
1323         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1324                 goto out_free;
1325         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1326                 goto out_free;
1327         r = 0;
1328 out_free:
1329         kfree(page);
1330 out:
1331         return r;
1332 }
1333
1334 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1335 {
1336         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1337 }
1338
1339 static bool kvm_hv_msr_partition_wide(u32 msr)
1340 {
1341         bool r = false;
1342         switch (msr) {
1343         case HV_X64_MSR_GUEST_OS_ID:
1344         case HV_X64_MSR_HYPERCALL:
1345                 r = true;
1346                 break;
1347         }
1348
1349         return r;
1350 }
1351
1352 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1353 {
1354         struct kvm *kvm = vcpu->kvm;
1355
1356         switch (msr) {
1357         case HV_X64_MSR_GUEST_OS_ID:
1358                 kvm->arch.hv_guest_os_id = data;
1359                 /* setting guest os id to zero disables hypercall page */
1360                 if (!kvm->arch.hv_guest_os_id)
1361                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1362                 break;
1363         case HV_X64_MSR_HYPERCALL: {
1364                 u64 gfn;
1365                 unsigned long addr;
1366                 u8 instructions[4];
1367
1368                 /* if guest os id is not set hypercall should remain disabled */
1369                 if (!kvm->arch.hv_guest_os_id)
1370                         break;
1371                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1372                         kvm->arch.hv_hypercall = data;
1373                         break;
1374                 }
1375                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1376                 addr = gfn_to_hva(kvm, gfn);
1377                 if (kvm_is_error_hva(addr))
1378                         return 1;
1379                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1380                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1381                 if (copy_to_user((void __user *)addr, instructions, 4))
1382                         return 1;
1383                 kvm->arch.hv_hypercall = data;
1384                 break;
1385         }
1386         default:
1387                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1388                           "data 0x%llx\n", msr, data);
1389                 return 1;
1390         }
1391         return 0;
1392 }
1393
1394 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1395 {
1396         switch (msr) {
1397         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1398                 unsigned long addr;
1399
1400                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1401                         vcpu->arch.hv_vapic = data;
1402                         break;
1403                 }
1404                 addr = gfn_to_hva(vcpu->kvm, data >>
1405                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1406                 if (kvm_is_error_hva(addr))
1407                         return 1;
1408                 if (clear_user((void __user *)addr, PAGE_SIZE))
1409                         return 1;
1410                 vcpu->arch.hv_vapic = data;
1411                 break;
1412         }
1413         case HV_X64_MSR_EOI:
1414                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1415         case HV_X64_MSR_ICR:
1416                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1417         case HV_X64_MSR_TPR:
1418                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1419         default:
1420                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1421                           "data 0x%llx\n", msr, data);
1422                 return 1;
1423         }
1424
1425         return 0;
1426 }
1427
1428 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1429 {
1430         gpa_t gpa = data & ~0x3f;
1431
1432         /* Bits 2:5 are resrved, Should be zero */
1433         if (data & 0x3c)
1434                 return 1;
1435
1436         vcpu->arch.apf.msr_val = data;
1437
1438         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1439                 kvm_clear_async_pf_completion_queue(vcpu);
1440                 kvm_async_pf_hash_reset(vcpu);
1441                 return 0;
1442         }
1443
1444         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1445                 return 1;
1446
1447         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1448         kvm_async_pf_wakeup_all(vcpu);
1449         return 0;
1450 }
1451
1452 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1453 {
1454         switch (msr) {
1455         case MSR_EFER:
1456                 return set_efer(vcpu, data);
1457         case MSR_K7_HWCR:
1458                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1459                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1460                 if (data != 0) {
1461                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1462                                 data);
1463                         return 1;
1464                 }
1465                 break;
1466         case MSR_FAM10H_MMIO_CONF_BASE:
1467                 if (data != 0) {
1468                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1469                                 "0x%llx\n", data);
1470                         return 1;
1471                 }
1472                 break;
1473         case MSR_AMD64_NB_CFG:
1474                 break;
1475         case MSR_IA32_DEBUGCTLMSR:
1476                 if (!data) {
1477                         /* We support the non-activated case already */
1478                         break;
1479                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1480                         /* Values other than LBR and BTF are vendor-specific,
1481                            thus reserved and should throw a #GP */
1482                         return 1;
1483                 }
1484                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1485                         __func__, data);
1486                 break;
1487         case MSR_IA32_UCODE_REV:
1488         case MSR_IA32_UCODE_WRITE:
1489         case MSR_VM_HSAVE_PA:
1490         case MSR_AMD64_PATCH_LOADER:
1491                 break;
1492         case 0x200 ... 0x2ff:
1493                 return set_msr_mtrr(vcpu, msr, data);
1494         case MSR_IA32_APICBASE:
1495                 kvm_set_apic_base(vcpu, data);
1496                 break;
1497         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1498                 return kvm_x2apic_msr_write(vcpu, msr, data);
1499         case MSR_IA32_MISC_ENABLE:
1500                 vcpu->arch.ia32_misc_enable_msr = data;
1501                 break;
1502         case MSR_KVM_WALL_CLOCK_NEW:
1503         case MSR_KVM_WALL_CLOCK:
1504                 vcpu->kvm->arch.wall_clock = data;
1505                 kvm_write_wall_clock(vcpu->kvm, data);
1506                 break;
1507         case MSR_KVM_SYSTEM_TIME_NEW:
1508         case MSR_KVM_SYSTEM_TIME: {
1509                 if (vcpu->arch.time_page) {
1510                         kvm_release_page_dirty(vcpu->arch.time_page);
1511                         vcpu->arch.time_page = NULL;
1512                 }
1513
1514                 vcpu->arch.time = data;
1515                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1516
1517                 /* we verify if the enable bit is set... */
1518                 if (!(data & 1))
1519                         break;
1520
1521                 /* ...but clean it before doing the actual write */
1522                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1523
1524                 vcpu->arch.time_page =
1525                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1526
1527                 if (is_error_page(vcpu->arch.time_page)) {
1528                         kvm_release_page_clean(vcpu->arch.time_page);
1529                         vcpu->arch.time_page = NULL;
1530                 }
1531                 break;
1532         }
1533         case MSR_KVM_ASYNC_PF_EN:
1534                 if (kvm_pv_enable_async_pf(vcpu, data))
1535                         return 1;
1536                 break;
1537         case MSR_IA32_MCG_CTL:
1538         case MSR_IA32_MCG_STATUS:
1539         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1540                 return set_msr_mce(vcpu, msr, data);
1541
1542         /* Performance counters are not protected by a CPUID bit,
1543          * so we should check all of them in the generic path for the sake of
1544          * cross vendor migration.
1545          * Writing a zero into the event select MSRs disables them,
1546          * which we perfectly emulate ;-). Any other value should be at least
1547          * reported, some guests depend on them.
1548          */
1549         case MSR_P6_EVNTSEL0:
1550         case MSR_P6_EVNTSEL1:
1551         case MSR_K7_EVNTSEL0:
1552         case MSR_K7_EVNTSEL1:
1553         case MSR_K7_EVNTSEL2:
1554         case MSR_K7_EVNTSEL3:
1555                 if (data != 0)
1556                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1557                                 "0x%x data 0x%llx\n", msr, data);
1558                 break;
1559         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1560          * so we ignore writes to make it happy.
1561          */
1562         case MSR_P6_PERFCTR0:
1563         case MSR_P6_PERFCTR1:
1564         case MSR_K7_PERFCTR0:
1565         case MSR_K7_PERFCTR1:
1566         case MSR_K7_PERFCTR2:
1567         case MSR_K7_PERFCTR3:
1568                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1569                         "0x%x data 0x%llx\n", msr, data);
1570                 break;
1571         case MSR_K7_CLK_CTL:
1572                 /*
1573                  * Ignore all writes to this no longer documented MSR.
1574                  * Writes are only relevant for old K7 processors,
1575                  * all pre-dating SVM, but a recommended workaround from
1576                  * AMD for these chips. It is possible to speicify the
1577                  * affected processor models on the command line, hence
1578                  * the need to ignore the workaround.
1579                  */
1580                 break;
1581         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1582                 if (kvm_hv_msr_partition_wide(msr)) {
1583                         int r;
1584                         mutex_lock(&vcpu->kvm->lock);
1585                         r = set_msr_hyperv_pw(vcpu, msr, data);
1586                         mutex_unlock(&vcpu->kvm->lock);
1587                         return r;
1588                 } else
1589                         return set_msr_hyperv(vcpu, msr, data);
1590                 break;
1591         default:
1592                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1593                         return xen_hvm_config(vcpu, data);
1594                 if (!ignore_msrs) {
1595                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1596                                 msr, data);
1597                         return 1;
1598                 } else {
1599                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1600                                 msr, data);
1601                         break;
1602                 }
1603         }
1604         return 0;
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1607
1608
1609 /*
1610  * Reads an msr value (of 'msr_index') into 'pdata'.
1611  * Returns 0 on success, non-0 otherwise.
1612  * Assumes vcpu_load() was already called.
1613  */
1614 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1615 {
1616         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1617 }
1618
1619 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1620 {
1621         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1622
1623         if (!msr_mtrr_valid(msr))
1624                 return 1;
1625
1626         if (msr == MSR_MTRRdefType)
1627                 *pdata = vcpu->arch.mtrr_state.def_type +
1628                          (vcpu->arch.mtrr_state.enabled << 10);
1629         else if (msr == MSR_MTRRfix64K_00000)
1630                 *pdata = p[0];
1631         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1632                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1633         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1634                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1635         else if (msr == MSR_IA32_CR_PAT)
1636                 *pdata = vcpu->arch.pat;
1637         else {  /* Variable MTRRs */
1638                 int idx, is_mtrr_mask;
1639                 u64 *pt;
1640
1641                 idx = (msr - 0x200) / 2;
1642                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1643                 if (!is_mtrr_mask)
1644                         pt =
1645                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1646                 else
1647                         pt =
1648                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1649                 *pdata = *pt;
1650         }
1651
1652         return 0;
1653 }
1654
1655 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1656 {
1657         u64 data;
1658         u64 mcg_cap = vcpu->arch.mcg_cap;
1659         unsigned bank_num = mcg_cap & 0xff;
1660
1661         switch (msr) {
1662         case MSR_IA32_P5_MC_ADDR:
1663         case MSR_IA32_P5_MC_TYPE:
1664                 data = 0;
1665                 break;
1666         case MSR_IA32_MCG_CAP:
1667                 data = vcpu->arch.mcg_cap;
1668                 break;
1669         case MSR_IA32_MCG_CTL:
1670                 if (!(mcg_cap & MCG_CTL_P))
1671                         return 1;
1672                 data = vcpu->arch.mcg_ctl;
1673                 break;
1674         case MSR_IA32_MCG_STATUS:
1675                 data = vcpu->arch.mcg_status;
1676                 break;
1677         default:
1678                 if (msr >= MSR_IA32_MC0_CTL &&
1679                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1680                         u32 offset = msr - MSR_IA32_MC0_CTL;
1681                         data = vcpu->arch.mce_banks[offset];
1682                         break;
1683                 }
1684                 return 1;
1685         }
1686         *pdata = data;
1687         return 0;
1688 }
1689
1690 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1691 {
1692         u64 data = 0;
1693         struct kvm *kvm = vcpu->kvm;
1694
1695         switch (msr) {
1696         case HV_X64_MSR_GUEST_OS_ID:
1697                 data = kvm->arch.hv_guest_os_id;
1698                 break;
1699         case HV_X64_MSR_HYPERCALL:
1700                 data = kvm->arch.hv_hypercall;
1701                 break;
1702         default:
1703                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1704                 return 1;
1705         }
1706
1707         *pdata = data;
1708         return 0;
1709 }
1710
1711 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1712 {
1713         u64 data = 0;
1714
1715         switch (msr) {
1716         case HV_X64_MSR_VP_INDEX: {
1717                 int r;
1718                 struct kvm_vcpu *v;
1719                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1720                         if (v == vcpu)
1721                                 data = r;
1722                 break;
1723         }
1724         case HV_X64_MSR_EOI:
1725                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1726         case HV_X64_MSR_ICR:
1727                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1728         case HV_X64_MSR_TPR:
1729                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1730         default:
1731                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1732                 return 1;
1733         }
1734         *pdata = data;
1735         return 0;
1736 }
1737
1738 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1739 {
1740         u64 data;
1741
1742         switch (msr) {
1743         case MSR_IA32_PLATFORM_ID:
1744         case MSR_IA32_UCODE_REV:
1745         case MSR_IA32_EBL_CR_POWERON:
1746         case MSR_IA32_DEBUGCTLMSR:
1747         case MSR_IA32_LASTBRANCHFROMIP:
1748         case MSR_IA32_LASTBRANCHTOIP:
1749         case MSR_IA32_LASTINTFROMIP:
1750         case MSR_IA32_LASTINTTOIP:
1751         case MSR_K8_SYSCFG:
1752         case MSR_K7_HWCR:
1753         case MSR_VM_HSAVE_PA:
1754         case MSR_P6_PERFCTR0:
1755         case MSR_P6_PERFCTR1:
1756         case MSR_P6_EVNTSEL0:
1757         case MSR_P6_EVNTSEL1:
1758         case MSR_K7_EVNTSEL0:
1759         case MSR_K7_PERFCTR0:
1760         case MSR_K8_INT_PENDING_MSG:
1761         case MSR_AMD64_NB_CFG:
1762         case MSR_FAM10H_MMIO_CONF_BASE:
1763                 data = 0;
1764                 break;
1765         case MSR_MTRRcap:
1766                 data = 0x500 | KVM_NR_VAR_MTRR;
1767                 break;
1768         case 0x200 ... 0x2ff:
1769                 return get_msr_mtrr(vcpu, msr, pdata);
1770         case 0xcd: /* fsb frequency */
1771                 data = 3;
1772                 break;
1773                 /*
1774                  * MSR_EBC_FREQUENCY_ID
1775                  * Conservative value valid for even the basic CPU models.
1776                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1777                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1778                  * and 266MHz for model 3, or 4. Set Core Clock
1779                  * Frequency to System Bus Frequency Ratio to 1 (bits
1780                  * 31:24) even though these are only valid for CPU
1781                  * models > 2, however guests may end up dividing or
1782                  * multiplying by zero otherwise.
1783                  */
1784         case MSR_EBC_FREQUENCY_ID:
1785                 data = 1 << 24;
1786                 break;
1787         case MSR_IA32_APICBASE:
1788                 data = kvm_get_apic_base(vcpu);
1789                 break;
1790         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1791                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1792                 break;
1793         case MSR_IA32_MISC_ENABLE:
1794                 data = vcpu->arch.ia32_misc_enable_msr;
1795                 break;
1796         case MSR_IA32_PERF_STATUS:
1797                 /* TSC increment by tick */
1798                 data = 1000ULL;
1799                 /* CPU multiplier */
1800                 data |= (((uint64_t)4ULL) << 40);
1801                 break;
1802         case MSR_EFER:
1803                 data = vcpu->arch.efer;
1804                 break;
1805         case MSR_KVM_WALL_CLOCK:
1806         case MSR_KVM_WALL_CLOCK_NEW:
1807                 data = vcpu->kvm->arch.wall_clock;
1808                 break;
1809         case MSR_KVM_SYSTEM_TIME:
1810         case MSR_KVM_SYSTEM_TIME_NEW:
1811                 data = vcpu->arch.time;
1812                 break;
1813         case MSR_KVM_ASYNC_PF_EN:
1814                 data = vcpu->arch.apf.msr_val;
1815                 break;
1816         case MSR_IA32_P5_MC_ADDR:
1817         case MSR_IA32_P5_MC_TYPE:
1818         case MSR_IA32_MCG_CAP:
1819         case MSR_IA32_MCG_CTL:
1820         case MSR_IA32_MCG_STATUS:
1821         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1822                 return get_msr_mce(vcpu, msr, pdata);
1823         case MSR_K7_CLK_CTL:
1824                 /*
1825                  * Provide expected ramp-up count for K7. All other
1826                  * are set to zero, indicating minimum divisors for
1827                  * every field.
1828                  *
1829                  * This prevents guest kernels on AMD host with CPU
1830                  * type 6, model 8 and higher from exploding due to
1831                  * the rdmsr failing.
1832                  */
1833                 data = 0x20000000;
1834                 break;
1835         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1836                 if (kvm_hv_msr_partition_wide(msr)) {
1837                         int r;
1838                         mutex_lock(&vcpu->kvm->lock);
1839                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1840                         mutex_unlock(&vcpu->kvm->lock);
1841                         return r;
1842                 } else
1843                         return get_msr_hyperv(vcpu, msr, pdata);
1844                 break;
1845         default:
1846                 if (!ignore_msrs) {
1847                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1848                         return 1;
1849                 } else {
1850                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1851                         data = 0;
1852                 }
1853                 break;
1854         }
1855         *pdata = data;
1856         return 0;
1857 }
1858 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1859
1860 /*
1861  * Read or write a bunch of msrs. All parameters are kernel addresses.
1862  *
1863  * @return number of msrs set successfully.
1864  */
1865 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1866                     struct kvm_msr_entry *entries,
1867                     int (*do_msr)(struct kvm_vcpu *vcpu,
1868                                   unsigned index, u64 *data))
1869 {
1870         int i, idx;
1871
1872         idx = srcu_read_lock(&vcpu->kvm->srcu);
1873         for (i = 0; i < msrs->nmsrs; ++i)
1874                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1875                         break;
1876         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1877
1878         return i;
1879 }
1880
1881 /*
1882  * Read or write a bunch of msrs. Parameters are user addresses.
1883  *
1884  * @return number of msrs set successfully.
1885  */
1886 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1887                   int (*do_msr)(struct kvm_vcpu *vcpu,
1888                                 unsigned index, u64 *data),
1889                   int writeback)
1890 {
1891         struct kvm_msrs msrs;
1892         struct kvm_msr_entry *entries;
1893         int r, n;
1894         unsigned size;
1895
1896         r = -EFAULT;
1897         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1898                 goto out;
1899
1900         r = -E2BIG;
1901         if (msrs.nmsrs >= MAX_IO_MSRS)
1902                 goto out;
1903
1904         r = -ENOMEM;
1905         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1906         entries = kmalloc(size, GFP_KERNEL);
1907         if (!entries)
1908                 goto out;
1909
1910         r = -EFAULT;
1911         if (copy_from_user(entries, user_msrs->entries, size))
1912                 goto out_free;
1913
1914         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1915         if (r < 0)
1916                 goto out_free;
1917
1918         r = -EFAULT;
1919         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1920                 goto out_free;
1921
1922         r = n;
1923
1924 out_free:
1925         kfree(entries);
1926 out:
1927         return r;
1928 }
1929
1930 int kvm_dev_ioctl_check_extension(long ext)
1931 {
1932         int r;
1933
1934         switch (ext) {
1935         case KVM_CAP_IRQCHIP:
1936         case KVM_CAP_HLT:
1937         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1938         case KVM_CAP_SET_TSS_ADDR:
1939         case KVM_CAP_EXT_CPUID:
1940         case KVM_CAP_CLOCKSOURCE:
1941         case KVM_CAP_PIT:
1942         case KVM_CAP_NOP_IO_DELAY:
1943         case KVM_CAP_MP_STATE:
1944         case KVM_CAP_SYNC_MMU:
1945         case KVM_CAP_REINJECT_CONTROL:
1946         case KVM_CAP_IRQ_INJECT_STATUS:
1947         case KVM_CAP_ASSIGN_DEV_IRQ:
1948         case KVM_CAP_IRQFD:
1949         case KVM_CAP_IOEVENTFD:
1950         case KVM_CAP_PIT2:
1951         case KVM_CAP_PIT_STATE2:
1952         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1953         case KVM_CAP_XEN_HVM:
1954         case KVM_CAP_ADJUST_CLOCK:
1955         case KVM_CAP_VCPU_EVENTS:
1956         case KVM_CAP_HYPERV:
1957         case KVM_CAP_HYPERV_VAPIC:
1958         case KVM_CAP_HYPERV_SPIN:
1959         case KVM_CAP_PCI_SEGMENT:
1960         case KVM_CAP_DEBUGREGS:
1961         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1962         case KVM_CAP_XSAVE:
1963         case KVM_CAP_ASYNC_PF:
1964                 r = 1;
1965                 break;
1966         case KVM_CAP_COALESCED_MMIO:
1967                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1968                 break;
1969         case KVM_CAP_VAPIC:
1970                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1971                 break;
1972         case KVM_CAP_NR_VCPUS:
1973                 r = KVM_MAX_VCPUS;
1974                 break;
1975         case KVM_CAP_NR_MEMSLOTS:
1976                 r = KVM_MEMORY_SLOTS;
1977                 break;
1978         case KVM_CAP_PV_MMU:    /* obsolete */
1979                 r = 0;
1980                 break;
1981         case KVM_CAP_IOMMU:
1982                 r = iommu_found();
1983                 break;
1984         case KVM_CAP_MCE:
1985                 r = KVM_MAX_MCE_BANKS;
1986                 break;
1987         case KVM_CAP_XCRS:
1988                 r = cpu_has_xsave;
1989                 break;
1990         default:
1991                 r = 0;
1992                 break;
1993         }
1994         return r;
1995
1996 }
1997
1998 long kvm_arch_dev_ioctl(struct file *filp,
1999                         unsigned int ioctl, unsigned long arg)
2000 {
2001         void __user *argp = (void __user *)arg;
2002         long r;
2003
2004         switch (ioctl) {
2005         case KVM_GET_MSR_INDEX_LIST: {
2006                 struct kvm_msr_list __user *user_msr_list = argp;
2007                 struct kvm_msr_list msr_list;
2008                 unsigned n;
2009
2010                 r = -EFAULT;
2011                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2012                         goto out;
2013                 n = msr_list.nmsrs;
2014                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2015                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2016                         goto out;
2017                 r = -E2BIG;
2018                 if (n < msr_list.nmsrs)
2019                         goto out;
2020                 r = -EFAULT;
2021                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2022                                  num_msrs_to_save * sizeof(u32)))
2023                         goto out;
2024                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2025                                  &emulated_msrs,
2026                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2027                         goto out;
2028                 r = 0;
2029                 break;
2030         }
2031         case KVM_GET_SUPPORTED_CPUID: {
2032                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2033                 struct kvm_cpuid2 cpuid;
2034
2035                 r = -EFAULT;
2036                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2037                         goto out;
2038                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2039                                                       cpuid_arg->entries);
2040                 if (r)
2041                         goto out;
2042
2043                 r = -EFAULT;
2044                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2045                         goto out;
2046                 r = 0;
2047                 break;
2048         }
2049         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2050                 u64 mce_cap;
2051
2052                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2053                 r = -EFAULT;
2054                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2055                         goto out;
2056                 r = 0;
2057                 break;
2058         }
2059         default:
2060                 r = -EINVAL;
2061         }
2062 out:
2063         return r;
2064 }
2065
2066 static void wbinvd_ipi(void *garbage)
2067 {
2068         wbinvd();
2069 }
2070
2071 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2072 {
2073         return vcpu->kvm->arch.iommu_domain &&
2074                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2075 }
2076
2077 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2078 {
2079         /* Address WBINVD may be executed by guest */
2080         if (need_emulate_wbinvd(vcpu)) {
2081                 if (kvm_x86_ops->has_wbinvd_exit())
2082                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2083                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2084                         smp_call_function_single(vcpu->cpu,
2085                                         wbinvd_ipi, NULL, 1);
2086         }
2087
2088         kvm_x86_ops->vcpu_load(vcpu, cpu);
2089         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2090                 /* Make sure TSC doesn't go backwards */
2091                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2092                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2093                 if (tsc_delta < 0)
2094                         mark_tsc_unstable("KVM discovered backwards TSC");
2095                 if (check_tsc_unstable()) {
2096                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2097                         vcpu->arch.tsc_catchup = 1;
2098                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2099                 }
2100                 if (vcpu->cpu != cpu)
2101                         kvm_migrate_timers(vcpu);
2102                 vcpu->cpu = cpu;
2103         }
2104 }
2105
2106 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2107 {
2108         kvm_x86_ops->vcpu_put(vcpu);
2109         kvm_put_guest_fpu(vcpu);
2110         vcpu->arch.last_host_tsc = native_read_tsc();
2111 }
2112
2113 static int is_efer_nx(void)
2114 {
2115         unsigned long long efer = 0;
2116
2117         rdmsrl_safe(MSR_EFER, &efer);
2118         return efer & EFER_NX;
2119 }
2120
2121 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2122 {
2123         int i;
2124         struct kvm_cpuid_entry2 *e, *entry;
2125
2126         entry = NULL;
2127         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2128                 e = &vcpu->arch.cpuid_entries[i];
2129                 if (e->function == 0x80000001) {
2130                         entry = e;
2131                         break;
2132                 }
2133         }
2134         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2135                 entry->edx &= ~(1 << 20);
2136                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2137         }
2138 }
2139
2140 /* when an old userspace process fills a new kernel module */
2141 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2142                                     struct kvm_cpuid *cpuid,
2143                                     struct kvm_cpuid_entry __user *entries)
2144 {
2145         int r, i;
2146         struct kvm_cpuid_entry *cpuid_entries;
2147
2148         r = -E2BIG;
2149         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2150                 goto out;
2151         r = -ENOMEM;
2152         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2153         if (!cpuid_entries)
2154                 goto out;
2155         r = -EFAULT;
2156         if (copy_from_user(cpuid_entries, entries,
2157                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2158                 goto out_free;
2159         for (i = 0; i < cpuid->nent; i++) {
2160                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2161                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2162                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2163                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2164                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2165                 vcpu->arch.cpuid_entries[i].index = 0;
2166                 vcpu->arch.cpuid_entries[i].flags = 0;
2167                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2168                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2169                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2170         }
2171         vcpu->arch.cpuid_nent = cpuid->nent;
2172         cpuid_fix_nx_cap(vcpu);
2173         r = 0;
2174         kvm_apic_set_version(vcpu);
2175         kvm_x86_ops->cpuid_update(vcpu);
2176         update_cpuid(vcpu);
2177
2178 out_free:
2179         vfree(cpuid_entries);
2180 out:
2181         return r;
2182 }
2183
2184 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2185                                      struct kvm_cpuid2 *cpuid,
2186                                      struct kvm_cpuid_entry2 __user *entries)
2187 {
2188         int r;
2189
2190         r = -E2BIG;
2191         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2192                 goto out;
2193         r = -EFAULT;
2194         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2195                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2196                 goto out;
2197         vcpu->arch.cpuid_nent = cpuid->nent;
2198         kvm_apic_set_version(vcpu);
2199         kvm_x86_ops->cpuid_update(vcpu);
2200         update_cpuid(vcpu);
2201         return 0;
2202
2203 out:
2204         return r;
2205 }
2206
2207 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2208                                      struct kvm_cpuid2 *cpuid,
2209                                      struct kvm_cpuid_entry2 __user *entries)
2210 {
2211         int r;
2212
2213         r = -E2BIG;
2214         if (cpuid->nent < vcpu->arch.cpuid_nent)
2215                 goto out;
2216         r = -EFAULT;
2217         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2218                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2219                 goto out;
2220         return 0;
2221
2222 out:
2223         cpuid->nent = vcpu->arch.cpuid_nent;
2224         return r;
2225 }
2226
2227 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2228                            u32 index)
2229 {
2230         entry->function = function;
2231         entry->index = index;
2232         cpuid_count(entry->function, entry->index,
2233                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2234         entry->flags = 0;
2235 }
2236
2237 #define F(x) bit(X86_FEATURE_##x)
2238
2239 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2240                          u32 index, int *nent, int maxnent)
2241 {
2242         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2243 #ifdef CONFIG_X86_64
2244         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2245                                 ? F(GBPAGES) : 0;
2246         unsigned f_lm = F(LM);
2247 #else
2248         unsigned f_gbpages = 0;
2249         unsigned f_lm = 0;
2250 #endif
2251         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2252
2253         /* cpuid 1.edx */
2254         const u32 kvm_supported_word0_x86_features =
2255                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2256                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2257                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2258                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2259                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2260                 0 /* Reserved, DS, ACPI */ | F(MMX) |
2261                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2262                 0 /* HTT, TM, Reserved, PBE */;
2263         /* cpuid 0x80000001.edx */
2264         const u32 kvm_supported_word1_x86_features =
2265                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2266                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2267                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2268                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2269                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2270                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2271                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2272                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2273         /* cpuid 1.ecx */
2274         const u32 kvm_supported_word4_x86_features =
2275                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2276                 0 /* DS-CPL, VMX, SMX, EST */ |
2277                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2278                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2279                 0 /* Reserved, DCA */ | F(XMM4_1) |
2280                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2281                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2282                 F(F16C);
2283         /* cpuid 0x80000001.ecx */
2284         const u32 kvm_supported_word6_x86_features =
2285                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2286                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2287                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2288                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2289
2290         /* all calls to cpuid_count() should be made on the same cpu */
2291         get_cpu();
2292         do_cpuid_1_ent(entry, function, index);
2293         ++*nent;
2294
2295         switch (function) {
2296         case 0:
2297                 entry->eax = min(entry->eax, (u32)0xd);
2298                 break;
2299         case 1:
2300                 entry->edx &= kvm_supported_word0_x86_features;
2301                 entry->ecx &= kvm_supported_word4_x86_features;
2302                 /* we support x2apic emulation even if host does not support
2303                  * it since we emulate x2apic in software */
2304                 entry->ecx |= F(X2APIC);
2305                 break;
2306         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2307          * may return different values. This forces us to get_cpu() before
2308          * issuing the first command, and also to emulate this annoying behavior
2309          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2310         case 2: {
2311                 int t, times = entry->eax & 0xff;
2312
2313                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2314                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2315                 for (t = 1; t < times && *nent < maxnent; ++t) {
2316                         do_cpuid_1_ent(&entry[t], function, 0);
2317                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2318                         ++*nent;
2319                 }
2320                 break;
2321         }
2322         /* function 4 and 0xb have additional index. */
2323         case 4: {
2324                 int i, cache_type;
2325
2326                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2327                 /* read more entries until cache_type is zero */
2328                 for (i = 1; *nent < maxnent; ++i) {
2329                         cache_type = entry[i - 1].eax & 0x1f;
2330                         if (!cache_type)
2331                                 break;
2332                         do_cpuid_1_ent(&entry[i], function, i);
2333                         entry[i].flags |=
2334                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2335                         ++*nent;
2336                 }
2337                 break;
2338         }
2339         case 0xb: {
2340                 int i, level_type;
2341
2342                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2343                 /* read more entries until level_type is zero */
2344                 for (i = 1; *nent < maxnent; ++i) {
2345                         level_type = entry[i - 1].ecx & 0xff00;
2346                         if (!level_type)
2347                                 break;
2348                         do_cpuid_1_ent(&entry[i], function, i);
2349                         entry[i].flags |=
2350                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2351                         ++*nent;
2352                 }
2353                 break;
2354         }
2355         case 0xd: {
2356                 int i;
2357
2358                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2359                 for (i = 1; *nent < maxnent; ++i) {
2360                         if (entry[i - 1].eax == 0 && i != 2)
2361                                 break;
2362                         do_cpuid_1_ent(&entry[i], function, i);
2363                         entry[i].flags |=
2364                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2365                         ++*nent;
2366                 }
2367                 break;
2368         }
2369         case KVM_CPUID_SIGNATURE: {
2370                 char signature[12] = "KVMKVMKVM\0\0";
2371                 u32 *sigptr = (u32 *)signature;
2372                 entry->eax = 0;
2373                 entry->ebx = sigptr[0];
2374                 entry->ecx = sigptr[1];
2375                 entry->edx = sigptr[2];
2376                 break;
2377         }
2378         case KVM_CPUID_FEATURES:
2379                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2380                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2381                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2382                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2383                 entry->ebx = 0;
2384                 entry->ecx = 0;
2385                 entry->edx = 0;
2386                 break;
2387         case 0x80000000:
2388                 entry->eax = min(entry->eax, 0x8000001a);
2389                 break;
2390         case 0x80000001:
2391                 entry->edx &= kvm_supported_word1_x86_features;
2392                 entry->ecx &= kvm_supported_word6_x86_features;
2393                 break;
2394         }
2395
2396         kvm_x86_ops->set_supported_cpuid(function, entry);
2397
2398         put_cpu();
2399 }
2400
2401 #undef F
2402
2403 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2404                                      struct kvm_cpuid_entry2 __user *entries)
2405 {
2406         struct kvm_cpuid_entry2 *cpuid_entries;
2407         int limit, nent = 0, r = -E2BIG;
2408         u32 func;
2409
2410         if (cpuid->nent < 1)
2411                 goto out;
2412         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2413                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2414         r = -ENOMEM;
2415         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2416         if (!cpuid_entries)
2417                 goto out;
2418
2419         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2420         limit = cpuid_entries[0].eax;
2421         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2422                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2423                              &nent, cpuid->nent);
2424         r = -E2BIG;
2425         if (nent >= cpuid->nent)
2426                 goto out_free;
2427
2428         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2429         limit = cpuid_entries[nent - 1].eax;
2430         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2431                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2432                              &nent, cpuid->nent);
2433
2434
2435
2436         r = -E2BIG;
2437         if (nent >= cpuid->nent)
2438                 goto out_free;
2439
2440         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2441                      cpuid->nent);
2442
2443         r = -E2BIG;
2444         if (nent >= cpuid->nent)
2445                 goto out_free;
2446
2447         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2448                      cpuid->nent);
2449
2450         r = -E2BIG;
2451         if (nent >= cpuid->nent)
2452                 goto out_free;
2453
2454         r = -EFAULT;
2455         if (copy_to_user(entries, cpuid_entries,
2456                          nent * sizeof(struct kvm_cpuid_entry2)))
2457                 goto out_free;
2458         cpuid->nent = nent;
2459         r = 0;
2460
2461 out_free:
2462         vfree(cpuid_entries);
2463 out:
2464         return r;
2465 }
2466
2467 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2468                                     struct kvm_lapic_state *s)
2469 {
2470         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2471
2472         return 0;
2473 }
2474
2475 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2476                                     struct kvm_lapic_state *s)
2477 {
2478         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2479         kvm_apic_post_state_restore(vcpu);
2480         update_cr8_intercept(vcpu);
2481
2482         return 0;
2483 }
2484
2485 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2486                                     struct kvm_interrupt *irq)
2487 {
2488         if (irq->irq < 0 || irq->irq >= 256)
2489                 return -EINVAL;
2490         if (irqchip_in_kernel(vcpu->kvm))
2491                 return -ENXIO;
2492
2493         kvm_queue_interrupt(vcpu, irq->irq, false);
2494         kvm_make_request(KVM_REQ_EVENT, vcpu);
2495
2496         return 0;
2497 }
2498
2499 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2500 {
2501         kvm_inject_nmi(vcpu);
2502
2503         return 0;
2504 }
2505
2506 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2507                                            struct kvm_tpr_access_ctl *tac)
2508 {
2509         if (tac->flags)
2510                 return -EINVAL;
2511         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2512         return 0;
2513 }
2514
2515 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2516                                         u64 mcg_cap)
2517 {
2518         int r;
2519         unsigned bank_num = mcg_cap & 0xff, bank;
2520
2521         r = -EINVAL;
2522         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2523                 goto out;
2524         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2525                 goto out;
2526         r = 0;
2527         vcpu->arch.mcg_cap = mcg_cap;
2528         /* Init IA32_MCG_CTL to all 1s */
2529         if (mcg_cap & MCG_CTL_P)
2530                 vcpu->arch.mcg_ctl = ~(u64)0;
2531         /* Init IA32_MCi_CTL to all 1s */
2532         for (bank = 0; bank < bank_num; bank++)
2533                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2534 out:
2535         return r;
2536 }
2537
2538 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2539                                       struct kvm_x86_mce *mce)
2540 {
2541         u64 mcg_cap = vcpu->arch.mcg_cap;
2542         unsigned bank_num = mcg_cap & 0xff;
2543         u64 *banks = vcpu->arch.mce_banks;
2544
2545         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2546                 return -EINVAL;
2547         /*
2548          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2549          * reporting is disabled
2550          */
2551         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2552             vcpu->arch.mcg_ctl != ~(u64)0)
2553                 return 0;
2554         banks += 4 * mce->bank;
2555         /*
2556          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2557          * reporting is disabled for the bank
2558          */
2559         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2560                 return 0;
2561         if (mce->status & MCI_STATUS_UC) {
2562                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2563                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2564                         printk(KERN_DEBUG "kvm: set_mce: "
2565                                "injects mce exception while "
2566                                "previous one is in progress!\n");
2567                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2568                         return 0;
2569                 }
2570                 if (banks[1] & MCI_STATUS_VAL)
2571                         mce->status |= MCI_STATUS_OVER;
2572                 banks[2] = mce->addr;
2573                 banks[3] = mce->misc;
2574                 vcpu->arch.mcg_status = mce->mcg_status;
2575                 banks[1] = mce->status;
2576                 kvm_queue_exception(vcpu, MC_VECTOR);
2577         } else if (!(banks[1] & MCI_STATUS_VAL)
2578                    || !(banks[1] & MCI_STATUS_UC)) {
2579                 if (banks[1] & MCI_STATUS_VAL)
2580                         mce->status |= MCI_STATUS_OVER;
2581                 banks[2] = mce->addr;
2582                 banks[3] = mce->misc;
2583                 banks[1] = mce->status;
2584         } else
2585                 banks[1] |= MCI_STATUS_OVER;
2586         return 0;
2587 }
2588
2589 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2590                                                struct kvm_vcpu_events *events)
2591 {
2592         events->exception.injected =
2593                 vcpu->arch.exception.pending &&
2594                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2595         events->exception.nr = vcpu->arch.exception.nr;
2596         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2597         events->exception.pad = 0;
2598         events->exception.error_code = vcpu->arch.exception.error_code;
2599
2600         events->interrupt.injected =
2601                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2602         events->interrupt.nr = vcpu->arch.interrupt.nr;
2603         events->interrupt.soft = 0;
2604         events->interrupt.shadow =
2605                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2606                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2607
2608         events->nmi.injected = vcpu->arch.nmi_injected;
2609         events->nmi.pending = vcpu->arch.nmi_pending;
2610         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2611         events->nmi.pad = 0;
2612
2613         events->sipi_vector = vcpu->arch.sipi_vector;
2614
2615         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2616                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2617                          | KVM_VCPUEVENT_VALID_SHADOW);
2618         memset(&events->reserved, 0, sizeof(events->reserved));
2619 }
2620
2621 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2622                                               struct kvm_vcpu_events *events)
2623 {
2624         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2625                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2626                               | KVM_VCPUEVENT_VALID_SHADOW))
2627                 return -EINVAL;
2628
2629         vcpu->arch.exception.pending = events->exception.injected;
2630         vcpu->arch.exception.nr = events->exception.nr;
2631         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2632         vcpu->arch.exception.error_code = events->exception.error_code;
2633
2634         vcpu->arch.interrupt.pending = events->interrupt.injected;
2635         vcpu->arch.interrupt.nr = events->interrupt.nr;
2636         vcpu->arch.interrupt.soft = events->interrupt.soft;
2637         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2638                 kvm_pic_clear_isr_ack(vcpu->kvm);
2639         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2640                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2641                                                   events->interrupt.shadow);
2642
2643         vcpu->arch.nmi_injected = events->nmi.injected;
2644         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2645                 vcpu->arch.nmi_pending = events->nmi.pending;
2646         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2647
2648         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2649                 vcpu->arch.sipi_vector = events->sipi_vector;
2650
2651         kvm_make_request(KVM_REQ_EVENT, vcpu);
2652
2653         return 0;
2654 }
2655
2656 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2657                                              struct kvm_debugregs *dbgregs)
2658 {
2659         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2660         dbgregs->dr6 = vcpu->arch.dr6;
2661         dbgregs->dr7 = vcpu->arch.dr7;
2662         dbgregs->flags = 0;
2663         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2664 }
2665
2666 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2667                                             struct kvm_debugregs *dbgregs)
2668 {
2669         if (dbgregs->flags)
2670                 return -EINVAL;
2671
2672         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2673         vcpu->arch.dr6 = dbgregs->dr6;
2674         vcpu->arch.dr7 = dbgregs->dr7;
2675
2676         return 0;
2677 }
2678
2679 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2680                                          struct kvm_xsave *guest_xsave)
2681 {
2682         if (cpu_has_xsave)
2683                 memcpy(guest_xsave->region,
2684                         &vcpu->arch.guest_fpu.state->xsave,
2685                         xstate_size);
2686         else {
2687                 memcpy(guest_xsave->region,
2688                         &vcpu->arch.guest_fpu.state->fxsave,
2689                         sizeof(struct i387_fxsave_struct));
2690                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2691                         XSTATE_FPSSE;
2692         }
2693 }
2694
2695 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2696                                         struct kvm_xsave *guest_xsave)
2697 {
2698         u64 xstate_bv =
2699                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2700
2701         if (cpu_has_xsave)
2702                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2703                         guest_xsave->region, xstate_size);
2704         else {
2705                 if (xstate_bv & ~XSTATE_FPSSE)
2706                         return -EINVAL;
2707                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2708                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2709         }
2710         return 0;
2711 }
2712
2713 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2714                                         struct kvm_xcrs *guest_xcrs)
2715 {
2716         if (!cpu_has_xsave) {
2717                 guest_xcrs->nr_xcrs = 0;
2718                 return;
2719         }
2720
2721         guest_xcrs->nr_xcrs = 1;
2722         guest_xcrs->flags = 0;
2723         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2724         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2725 }
2726
2727 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2728                                        struct kvm_xcrs *guest_xcrs)
2729 {
2730         int i, r = 0;
2731
2732         if (!cpu_has_xsave)
2733                 return -EINVAL;
2734
2735         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2736                 return -EINVAL;
2737
2738         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2739                 /* Only support XCR0 currently */
2740                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2741                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2742                                 guest_xcrs->xcrs[0].value);
2743                         break;
2744                 }
2745         if (r)
2746                 r = -EINVAL;
2747         return r;
2748 }
2749
2750 long kvm_arch_vcpu_ioctl(struct file *filp,
2751                          unsigned int ioctl, unsigned long arg)
2752 {
2753         struct kvm_vcpu *vcpu = filp->private_data;
2754         void __user *argp = (void __user *)arg;
2755         int r;
2756         union {
2757                 struct kvm_lapic_state *lapic;
2758                 struct kvm_xsave *xsave;
2759                 struct kvm_xcrs *xcrs;
2760                 void *buffer;
2761         } u;
2762
2763         u.buffer = NULL;
2764         switch (ioctl) {
2765         case KVM_GET_LAPIC: {
2766                 r = -EINVAL;
2767                 if (!vcpu->arch.apic)
2768                         goto out;
2769                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2770
2771                 r = -ENOMEM;
2772                 if (!u.lapic)
2773                         goto out;
2774                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2775                 if (r)
2776                         goto out;
2777                 r = -EFAULT;
2778                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2779                         goto out;
2780                 r = 0;
2781                 break;
2782         }
2783         case KVM_SET_LAPIC: {
2784                 r = -EINVAL;
2785                 if (!vcpu->arch.apic)
2786                         goto out;
2787                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2788                 r = -ENOMEM;
2789                 if (!u.lapic)
2790                         goto out;
2791                 r = -EFAULT;
2792                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2793                         goto out;
2794                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2795                 if (r)
2796                         goto out;
2797                 r = 0;
2798                 break;
2799         }
2800         case KVM_INTERRUPT: {
2801                 struct kvm_interrupt irq;
2802
2803                 r = -EFAULT;
2804                 if (copy_from_user(&irq, argp, sizeof irq))
2805                         goto out;
2806                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2807                 if (r)
2808                         goto out;
2809                 r = 0;
2810                 break;
2811         }
2812         case KVM_NMI: {
2813                 r = kvm_vcpu_ioctl_nmi(vcpu);
2814                 if (r)
2815                         goto out;
2816                 r = 0;
2817                 break;
2818         }
2819         case KVM_SET_CPUID: {
2820                 struct kvm_cpuid __user *cpuid_arg = argp;
2821                 struct kvm_cpuid cpuid;
2822
2823                 r = -EFAULT;
2824                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2825                         goto out;
2826                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2827                 if (r)
2828                         goto out;
2829                 break;
2830         }
2831         case KVM_SET_CPUID2: {
2832                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2833                 struct kvm_cpuid2 cpuid;
2834
2835                 r = -EFAULT;
2836                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2837                         goto out;
2838                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2839                                               cpuid_arg->entries);
2840                 if (r)
2841                         goto out;
2842                 break;
2843         }
2844         case KVM_GET_CPUID2: {
2845                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2846                 struct kvm_cpuid2 cpuid;
2847
2848                 r = -EFAULT;
2849                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2850                         goto out;
2851                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2852                                               cpuid_arg->entries);
2853                 if (r)
2854                         goto out;
2855                 r = -EFAULT;
2856                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2857                         goto out;
2858                 r = 0;
2859                 break;
2860         }
2861         case KVM_GET_MSRS:
2862                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2863                 break;
2864         case KVM_SET_MSRS:
2865                 r = msr_io(vcpu, argp, do_set_msr, 0);
2866                 break;
2867         case KVM_TPR_ACCESS_REPORTING: {
2868                 struct kvm_tpr_access_ctl tac;
2869
2870                 r = -EFAULT;
2871                 if (copy_from_user(&tac, argp, sizeof tac))
2872                         goto out;
2873                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2874                 if (r)
2875                         goto out;
2876                 r = -EFAULT;
2877                 if (copy_to_user(argp, &tac, sizeof tac))
2878                         goto out;
2879                 r = 0;
2880                 break;
2881         };
2882         case KVM_SET_VAPIC_ADDR: {
2883                 struct kvm_vapic_addr va;
2884
2885                 r = -EINVAL;
2886                 if (!irqchip_in_kernel(vcpu->kvm))
2887                         goto out;
2888                 r = -EFAULT;
2889                 if (copy_from_user(&va, argp, sizeof va))
2890                         goto out;
2891                 r = 0;
2892                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2893                 break;
2894         }
2895         case KVM_X86_SETUP_MCE: {
2896                 u64 mcg_cap;
2897
2898                 r = -EFAULT;
2899                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2900                         goto out;
2901                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2902                 break;
2903         }
2904         case KVM_X86_SET_MCE: {
2905                 struct kvm_x86_mce mce;
2906
2907                 r = -EFAULT;
2908                 if (copy_from_user(&mce, argp, sizeof mce))
2909                         goto out;
2910                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2911                 break;
2912         }
2913         case KVM_GET_VCPU_EVENTS: {
2914                 struct kvm_vcpu_events events;
2915
2916                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2917
2918                 r = -EFAULT;
2919                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2920                         break;
2921                 r = 0;
2922                 break;
2923         }
2924         case KVM_SET_VCPU_EVENTS: {
2925                 struct kvm_vcpu_events events;
2926
2927                 r = -EFAULT;
2928                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2929                         break;
2930
2931                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2932                 break;
2933         }
2934         case KVM_GET_DEBUGREGS: {
2935                 struct kvm_debugregs dbgregs;
2936
2937                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2938
2939                 r = -EFAULT;
2940                 if (copy_to_user(argp, &dbgregs,
2941                                  sizeof(struct kvm_debugregs)))
2942                         break;
2943                 r = 0;
2944                 break;
2945         }
2946         case KVM_SET_DEBUGREGS: {
2947                 struct kvm_debugregs dbgregs;
2948
2949                 r = -EFAULT;
2950                 if (copy_from_user(&dbgregs, argp,
2951                                    sizeof(struct kvm_debugregs)))
2952                         break;
2953
2954                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2955                 break;
2956         }
2957         case KVM_GET_XSAVE: {
2958                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2959                 r = -ENOMEM;
2960                 if (!u.xsave)
2961                         break;
2962
2963                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2964
2965                 r = -EFAULT;
2966                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2967                         break;
2968                 r = 0;
2969                 break;
2970         }
2971         case KVM_SET_XSAVE: {
2972                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2973                 r = -ENOMEM;
2974                 if (!u.xsave)
2975                         break;
2976
2977                 r = -EFAULT;
2978                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2979                         break;
2980
2981                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2982                 break;
2983         }
2984         case KVM_GET_XCRS: {
2985                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2986                 r = -ENOMEM;
2987                 if (!u.xcrs)
2988                         break;
2989
2990                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2991
2992                 r = -EFAULT;
2993                 if (copy_to_user(argp, u.xcrs,
2994                                  sizeof(struct kvm_xcrs)))
2995                         break;
2996                 r = 0;
2997                 break;
2998         }
2999         case KVM_SET_XCRS: {
3000                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3001                 r = -ENOMEM;
3002                 if (!u.xcrs)
3003                         break;
3004
3005                 r = -EFAULT;
3006                 if (copy_from_user(u.xcrs, argp,
3007                                    sizeof(struct kvm_xcrs)))
3008                         break;
3009
3010                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3011                 break;
3012         }
3013         default:
3014                 r = -EINVAL;
3015         }
3016 out:
3017         kfree(u.buffer);
3018         return r;
3019 }
3020
3021 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3022 {
3023         int ret;
3024
3025         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3026                 return -1;
3027         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3028         return ret;
3029 }
3030
3031 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3032                                               u64 ident_addr)
3033 {
3034         kvm->arch.ept_identity_map_addr = ident_addr;
3035         return 0;
3036 }
3037
3038 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3039                                           u32 kvm_nr_mmu_pages)
3040 {
3041         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3042                 return -EINVAL;
3043
3044         mutex_lock(&kvm->slots_lock);
3045         spin_lock(&kvm->mmu_lock);
3046
3047         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3048         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3049
3050         spin_unlock(&kvm->mmu_lock);
3051         mutex_unlock(&kvm->slots_lock);
3052         return 0;
3053 }
3054
3055 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3056 {
3057         return kvm->arch.n_max_mmu_pages;
3058 }
3059
3060 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3061 {
3062         int r;
3063
3064         r = 0;
3065         switch (chip->chip_id) {
3066         case KVM_IRQCHIP_PIC_MASTER:
3067                 memcpy(&chip->chip.pic,
3068                         &pic_irqchip(kvm)->pics[0],
3069                         sizeof(struct kvm_pic_state));
3070                 break;
3071         case KVM_IRQCHIP_PIC_SLAVE:
3072                 memcpy(&chip->chip.pic,
3073                         &pic_irqchip(kvm)->pics[1],
3074                         sizeof(struct kvm_pic_state));
3075                 break;
3076         case KVM_IRQCHIP_IOAPIC:
3077                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3078                 break;
3079         default:
3080                 r = -EINVAL;
3081                 break;
3082         }
3083         return r;
3084 }
3085
3086 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3087 {
3088         int r;
3089
3090         r = 0;
3091         switch (chip->chip_id) {
3092         case KVM_IRQCHIP_PIC_MASTER:
3093                 spin_lock(&pic_irqchip(kvm)->lock);
3094                 memcpy(&pic_irqchip(kvm)->pics[0],
3095                         &chip->chip.pic,
3096                         sizeof(struct kvm_pic_state));
3097                 spin_unlock(&pic_irqchip(kvm)->lock);
3098                 break;
3099         case KVM_IRQCHIP_PIC_SLAVE:
3100                 spin_lock(&pic_irqchip(kvm)->lock);
3101                 memcpy(&pic_irqchip(kvm)->pics[1],
3102                         &chip->chip.pic,
3103                         sizeof(struct kvm_pic_state));
3104                 spin_unlock(&pic_irqchip(kvm)->lock);
3105                 break;
3106         case KVM_IRQCHIP_IOAPIC:
3107                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3108                 break;
3109         default:
3110                 r = -EINVAL;
3111                 break;
3112         }
3113         kvm_pic_update_irq(pic_irqchip(kvm));
3114         return r;
3115 }
3116
3117 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3118 {
3119         int r = 0;
3120
3121         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3122         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3123         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3124         return r;
3125 }
3126
3127 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3128 {
3129         int r = 0;
3130
3131         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3132         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3133         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3134         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3135         return r;
3136 }
3137
3138 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3139 {
3140         int r = 0;
3141
3142         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3143         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3144                 sizeof(ps->channels));
3145         ps->flags = kvm->arch.vpit->pit_state.flags;
3146         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3147         memset(&ps->reserved, 0, sizeof(ps->reserved));
3148         return r;
3149 }
3150
3151 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3152 {
3153         int r = 0, start = 0;
3154         u32 prev_legacy, cur_legacy;
3155         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3156         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3157         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3158         if (!prev_legacy && cur_legacy)
3159                 start = 1;
3160         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3161                sizeof(kvm->arch.vpit->pit_state.channels));
3162         kvm->arch.vpit->pit_state.flags = ps->flags;
3163         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3164         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3165         return r;
3166 }
3167
3168 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3169                                  struct kvm_reinject_control *control)
3170 {
3171         if (!kvm->arch.vpit)
3172                 return -ENXIO;
3173         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3174         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3175         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3176         return 0;
3177 }
3178
3179 /*
3180  * Get (and clear) the dirty memory log for a memory slot.
3181  */
3182 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3183                                       struct kvm_dirty_log *log)
3184 {
3185         int r, i;
3186         struct kvm_memory_slot *memslot;
3187         unsigned long n;
3188         unsigned long is_dirty = 0;
3189
3190         mutex_lock(&kvm->slots_lock);
3191
3192         r = -EINVAL;
3193         if (log->slot >= KVM_MEMORY_SLOTS)
3194                 goto out;
3195
3196         memslot = &kvm->memslots->memslots[log->slot];
3197         r = -ENOENT;
3198         if (!memslot->dirty_bitmap)
3199                 goto out;
3200
3201         n = kvm_dirty_bitmap_bytes(memslot);
3202
3203         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3204                 is_dirty = memslot->dirty_bitmap[i];
3205
3206         /* If nothing is dirty, don't bother messing with page tables. */
3207         if (is_dirty) {
3208                 struct kvm_memslots *slots, *old_slots;
3209                 unsigned long *dirty_bitmap;
3210
3211                 dirty_bitmap = memslot->dirty_bitmap_head;
3212                 if (memslot->dirty_bitmap == dirty_bitmap)
3213                         dirty_bitmap += n / sizeof(long);
3214                 memset(dirty_bitmap, 0, n);
3215
3216                 r = -ENOMEM;
3217                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3218                 if (!slots)
3219                         goto out;
3220                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3221                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3222                 slots->generation++;
3223
3224                 old_slots = kvm->memslots;
3225                 rcu_assign_pointer(kvm->memslots, slots);
3226                 synchronize_srcu_expedited(&kvm->srcu);
3227                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3228                 kfree(old_slots);
3229
3230                 spin_lock(&kvm->mmu_lock);
3231                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3232                 spin_unlock(&kvm->mmu_lock);
3233
3234                 r = -EFAULT;
3235                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3236                         goto out;
3237         } else {
3238                 r = -EFAULT;
3239                 if (clear_user(log->dirty_bitmap, n))
3240                         goto out;
3241         }
3242
3243         r = 0;
3244 out:
3245         mutex_unlock(&kvm->slots_lock);
3246         return r;
3247 }
3248
3249 long kvm_arch_vm_ioctl(struct file *filp,
3250                        unsigned int ioctl, unsigned long arg)
3251 {
3252         struct kvm *kvm = filp->private_data;
3253         void __user *argp = (void __user *)arg;
3254         int r = -ENOTTY;
3255         /*
3256          * This union makes it completely explicit to gcc-3.x
3257          * that these two variables' stack usage should be
3258          * combined, not added together.
3259          */
3260         union {
3261                 struct kvm_pit_state ps;
3262                 struct kvm_pit_state2 ps2;
3263                 struct kvm_pit_config pit_config;
3264         } u;
3265
3266         switch (ioctl) {
3267         case KVM_SET_TSS_ADDR:
3268                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3269                 if (r < 0)
3270                         goto out;
3271                 break;
3272         case KVM_SET_IDENTITY_MAP_ADDR: {
3273                 u64 ident_addr;
3274
3275                 r = -EFAULT;
3276                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3277                         goto out;
3278                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3279                 if (r < 0)
3280                         goto out;
3281                 break;
3282         }
3283         case KVM_SET_NR_MMU_PAGES:
3284                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3285                 if (r)
3286                         goto out;
3287                 break;
3288         case KVM_GET_NR_MMU_PAGES:
3289                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3290                 break;
3291         case KVM_CREATE_IRQCHIP: {
3292                 struct kvm_pic *vpic;
3293
3294                 mutex_lock(&kvm->lock);
3295                 r = -EEXIST;
3296                 if (kvm->arch.vpic)
3297                         goto create_irqchip_unlock;
3298                 r = -ENOMEM;
3299                 vpic = kvm_create_pic(kvm);
3300                 if (vpic) {
3301                         r = kvm_ioapic_init(kvm);
3302                         if (r) {
3303                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3304                                                           &vpic->dev);
3305                                 kfree(vpic);
3306                                 goto create_irqchip_unlock;
3307                         }
3308                 } else
3309                         goto create_irqchip_unlock;
3310                 smp_wmb();
3311                 kvm->arch.vpic = vpic;
3312                 smp_wmb();
3313                 r = kvm_setup_default_irq_routing(kvm);
3314                 if (r) {
3315                         mutex_lock(&kvm->irq_lock);
3316                         kvm_ioapic_destroy(kvm);
3317                         kvm_destroy_pic(kvm);
3318                         mutex_unlock(&kvm->irq_lock);
3319                 }
3320         create_irqchip_unlock:
3321                 mutex_unlock(&kvm->lock);
3322                 break;
3323         }
3324         case KVM_CREATE_PIT:
3325                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3326                 goto create_pit;
3327         case KVM_CREATE_PIT2:
3328                 r = -EFAULT;
3329                 if (copy_from_user(&u.pit_config, argp,
3330                                    sizeof(struct kvm_pit_config)))
3331                         goto out;
3332         create_pit:
3333                 mutex_lock(&kvm->slots_lock);
3334                 r = -EEXIST;
3335                 if (kvm->arch.vpit)
3336                         goto create_pit_unlock;
3337                 r = -ENOMEM;
3338                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3339                 if (kvm->arch.vpit)
3340                         r = 0;
3341         create_pit_unlock:
3342                 mutex_unlock(&kvm->slots_lock);
3343                 break;
3344         case KVM_IRQ_LINE_STATUS:
3345         case KVM_IRQ_LINE: {
3346                 struct kvm_irq_level irq_event;
3347
3348                 r = -EFAULT;
3349                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3350                         goto out;
3351                 r = -ENXIO;
3352                 if (irqchip_in_kernel(kvm)) {
3353                         __s32 status;
3354                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3355                                         irq_event.irq, irq_event.level);
3356                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3357                                 r = -EFAULT;
3358                                 irq_event.status = status;
3359                                 if (copy_to_user(argp, &irq_event,
3360                                                         sizeof irq_event))
3361                                         goto out;
3362                         }
3363                         r = 0;
3364                 }
3365                 break;
3366         }
3367         case KVM_GET_IRQCHIP: {
3368                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3369                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3370
3371                 r = -ENOMEM;
3372                 if (!chip)
3373                         goto out;
3374                 r = -EFAULT;
3375                 if (copy_from_user(chip, argp, sizeof *chip))
3376                         goto get_irqchip_out;
3377                 r = -ENXIO;
3378                 if (!irqchip_in_kernel(kvm))
3379                         goto get_irqchip_out;
3380                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3381                 if (r)
3382                         goto get_irqchip_out;
3383                 r = -EFAULT;
3384                 if (copy_to_user(argp, chip, sizeof *chip))
3385                         goto get_irqchip_out;
3386                 r = 0;
3387         get_irqchip_out:
3388                 kfree(chip);
3389                 if (r)
3390                         goto out;
3391                 break;
3392         }
3393         case KVM_SET_IRQCHIP: {
3394                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3395                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3396
3397                 r = -ENOMEM;
3398                 if (!chip)
3399                         goto out;
3400                 r = -EFAULT;
3401                 if (copy_from_user(chip, argp, sizeof *chip))
3402                         goto set_irqchip_out;
3403                 r = -ENXIO;
3404                 if (!irqchip_in_kernel(kvm))
3405                         goto set_irqchip_out;
3406                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3407                 if (r)
3408                         goto set_irqchip_out;
3409                 r = 0;
3410         set_irqchip_out:
3411                 kfree(chip);
3412                 if (r)
3413                         goto out;
3414                 break;
3415         }
3416         case KVM_GET_PIT: {
3417                 r = -EFAULT;
3418                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3419                         goto out;
3420                 r = -ENXIO;
3421                 if (!kvm->arch.vpit)
3422                         goto out;
3423                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3424                 if (r)
3425                         goto out;
3426                 r = -EFAULT;
3427                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3428                         goto out;
3429                 r = 0;
3430                 break;
3431         }
3432         case KVM_SET_PIT: {
3433                 r = -EFAULT;
3434                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3435                         goto out;
3436                 r = -ENXIO;
3437                 if (!kvm->arch.vpit)
3438                         goto out;
3439                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3440                 if (r)
3441                         goto out;
3442                 r = 0;
3443                 break;
3444         }
3445         case KVM_GET_PIT2: {
3446                 r = -ENXIO;
3447                 if (!kvm->arch.vpit)
3448                         goto out;
3449                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3450                 if (r)
3451                         goto out;
3452                 r = -EFAULT;
3453                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3454                         goto out;
3455                 r = 0;
3456                 break;
3457         }
3458         case KVM_SET_PIT2: {
3459                 r = -EFAULT;
3460                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3461                         goto out;
3462                 r = -ENXIO;
3463                 if (!kvm->arch.vpit)
3464                         goto out;
3465                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3466                 if (r)
3467                         goto out;
3468                 r = 0;
3469                 break;
3470         }
3471         case KVM_REINJECT_CONTROL: {
3472                 struct kvm_reinject_control control;
3473                 r =  -EFAULT;
3474                 if (copy_from_user(&control, argp, sizeof(control)))
3475                         goto out;
3476                 r = kvm_vm_ioctl_reinject(kvm, &control);
3477                 if (r)
3478                         goto out;
3479                 r = 0;
3480                 break;
3481         }
3482         case KVM_XEN_HVM_CONFIG: {
3483                 r = -EFAULT;
3484                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3485                                    sizeof(struct kvm_xen_hvm_config)))
3486                         goto out;
3487                 r = -EINVAL;
3488                 if (kvm->arch.xen_hvm_config.flags)
3489                         goto out;
3490                 r = 0;
3491                 break;
3492         }
3493         case KVM_SET_CLOCK: {
3494                 struct kvm_clock_data user_ns;
3495                 u64 now_ns;
3496                 s64 delta;
3497
3498                 r = -EFAULT;
3499                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3500                         goto out;
3501
3502                 r = -EINVAL;
3503                 if (user_ns.flags)
3504                         goto out;
3505
3506                 r = 0;
3507                 local_irq_disable();
3508                 now_ns = get_kernel_ns();
3509                 delta = user_ns.clock - now_ns;
3510                 local_irq_enable();
3511                 kvm->arch.kvmclock_offset = delta;
3512                 break;
3513         }
3514         case KVM_GET_CLOCK: {
3515                 struct kvm_clock_data user_ns;
3516                 u64 now_ns;
3517
3518                 local_irq_disable();
3519                 now_ns = get_kernel_ns();
3520                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3521                 local_irq_enable();
3522                 user_ns.flags = 0;
3523                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3524
3525                 r = -EFAULT;
3526                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3527                         goto out;
3528                 r = 0;
3529                 break;
3530         }
3531
3532         default:
3533                 ;
3534         }
3535 out:
3536         return r;
3537 }
3538
3539 static void kvm_init_msr_list(void)
3540 {
3541         u32 dummy[2];
3542         unsigned i, j;
3543
3544         /* skip the first msrs in the list. KVM-specific */
3545         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3546                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3547                         continue;
3548                 if (j < i)
3549                         msrs_to_save[j] = msrs_to_save[i];
3550                 j++;
3551         }
3552         num_msrs_to_save = j;
3553 }
3554
3555 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3556                            const void *v)
3557 {
3558         if (vcpu->arch.apic &&
3559             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3560                 return 0;
3561
3562         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3563 }
3564
3565 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3566 {
3567         if (vcpu->arch.apic &&
3568             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3569                 return 0;
3570
3571         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3572 }
3573
3574 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3575                         struct kvm_segment *var, int seg)
3576 {
3577         kvm_x86_ops->set_segment(vcpu, var, seg);
3578 }
3579
3580 void kvm_get_segment(struct kvm_vcpu *vcpu,
3581                      struct kvm_segment *var, int seg)
3582 {
3583         kvm_x86_ops->get_segment(vcpu, var, seg);
3584 }
3585
3586 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3587 {
3588         return gpa;
3589 }
3590
3591 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3592 {
3593         gpa_t t_gpa;
3594         u32 error;
3595
3596         BUG_ON(!mmu_is_nested(vcpu));
3597
3598         /* NPT walks are always user-walks */
3599         access |= PFERR_USER_MASK;
3600         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error);
3601         if (t_gpa == UNMAPPED_GVA)
3602                 vcpu->arch.fault.nested = true;
3603
3604         return t_gpa;
3605 }
3606
3607 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3608 {
3609         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3610         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3611 }
3612
3613  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3614 {
3615         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3616         access |= PFERR_FETCH_MASK;
3617         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3618 }
3619
3620 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3621 {
3622         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3623         access |= PFERR_WRITE_MASK;
3624         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3625 }
3626
3627 /* uses this to access any guest's mapped memory without checking CPL */
3628 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3629 {
3630         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
3631 }
3632
3633 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3634                                       struct kvm_vcpu *vcpu, u32 access,
3635                                       u32 *error)
3636 {
3637         void *data = val;
3638         int r = X86EMUL_CONTINUE;
3639
3640         while (bytes) {
3641                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3642                                                             error);
3643                 unsigned offset = addr & (PAGE_SIZE-1);
3644                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3645                 int ret;
3646
3647                 if (gpa == UNMAPPED_GVA) {
3648                         r = X86EMUL_PROPAGATE_FAULT;
3649                         goto out;
3650                 }
3651                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3652                 if (ret < 0) {
3653                         r = X86EMUL_IO_NEEDED;
3654                         goto out;
3655                 }
3656
3657                 bytes -= toread;
3658                 data += toread;
3659                 addr += toread;
3660         }
3661 out:
3662         return r;
3663 }
3664
3665 /* used for instruction fetching */
3666 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3667                                 struct kvm_vcpu *vcpu, u32 *error)
3668 {
3669         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3670         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3671                                           access | PFERR_FETCH_MASK, error);
3672 }
3673
3674 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3675                                struct kvm_vcpu *vcpu, u32 *error)
3676 {
3677         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3678         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3679                                           error);
3680 }
3681
3682 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3683                                struct kvm_vcpu *vcpu, u32 *error)
3684 {
3685         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3686 }
3687
3688 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3689                                        unsigned int bytes,
3690                                        struct kvm_vcpu *vcpu,
3691                                        u32 *error)
3692 {
3693         void *data = val;
3694         int r = X86EMUL_CONTINUE;
3695
3696         while (bytes) {
3697                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3698                                                              PFERR_WRITE_MASK,
3699                                                              error);
3700                 unsigned offset = addr & (PAGE_SIZE-1);
3701                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3702                 int ret;
3703
3704                 if (gpa == UNMAPPED_GVA) {
3705                         r = X86EMUL_PROPAGATE_FAULT;
3706                         goto out;
3707                 }
3708                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3709                 if (ret < 0) {
3710                         r = X86EMUL_IO_NEEDED;
3711                         goto out;
3712                 }
3713
3714                 bytes -= towrite;
3715                 data += towrite;
3716                 addr += towrite;
3717         }
3718 out:
3719         return r;
3720 }
3721
3722 static int emulator_read_emulated(unsigned long addr,
3723                                   void *val,
3724                                   unsigned int bytes,
3725                                   unsigned int *error_code,
3726                                   struct kvm_vcpu *vcpu)
3727 {
3728         gpa_t                 gpa;
3729
3730         if (vcpu->mmio_read_completed) {
3731                 memcpy(val, vcpu->mmio_data, bytes);
3732                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3733                                vcpu->mmio_phys_addr, *(u64 *)val);
3734                 vcpu->mmio_read_completed = 0;
3735                 return X86EMUL_CONTINUE;
3736         }
3737
3738         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3739
3740         if (gpa == UNMAPPED_GVA)
3741                 return X86EMUL_PROPAGATE_FAULT;
3742
3743         /* For APIC access vmexit */
3744         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3745                 goto mmio;
3746
3747         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3748                                 == X86EMUL_CONTINUE)
3749                 return X86EMUL_CONTINUE;
3750
3751 mmio:
3752         /*
3753          * Is this MMIO handled locally?
3754          */
3755         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3756                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3757                 return X86EMUL_CONTINUE;
3758         }
3759
3760         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3761
3762         vcpu->mmio_needed = 1;
3763         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3764         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3765         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3766         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3767
3768         return X86EMUL_IO_NEEDED;
3769 }
3770
3771 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3772                           const void *val, int bytes)
3773 {
3774         int ret;
3775
3776         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3777         if (ret < 0)
3778                 return 0;
3779         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3780         return 1;
3781 }
3782
3783 static int emulator_write_emulated_onepage(unsigned long addr,
3784                                            const void *val,
3785                                            unsigned int bytes,
3786                                            unsigned int *error_code,
3787                                            struct kvm_vcpu *vcpu)
3788 {
3789         gpa_t                 gpa;
3790
3791         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3792
3793         if (gpa == UNMAPPED_GVA)
3794                 return X86EMUL_PROPAGATE_FAULT;
3795
3796         /* For APIC access vmexit */
3797         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3798                 goto mmio;
3799
3800         if (emulator_write_phys(vcpu, gpa, val, bytes))
3801                 return X86EMUL_CONTINUE;
3802
3803 mmio:
3804         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3805         /*
3806          * Is this MMIO handled locally?
3807          */
3808         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3809                 return X86EMUL_CONTINUE;
3810
3811         vcpu->mmio_needed = 1;
3812         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3813         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3814         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3815         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3816         memcpy(vcpu->run->mmio.data, val, bytes);
3817
3818         return X86EMUL_CONTINUE;
3819 }
3820
3821 int emulator_write_emulated(unsigned long addr,
3822                             const void *val,
3823                             unsigned int bytes,
3824                             unsigned int *error_code,
3825                             struct kvm_vcpu *vcpu)
3826 {
3827         /* Crossing a page boundary? */
3828         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3829                 int rc, now;
3830
3831                 now = -addr & ~PAGE_MASK;
3832                 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3833                                                      vcpu);
3834                 if (rc != X86EMUL_CONTINUE)
3835                         return rc;
3836                 addr += now;
3837                 val += now;
3838                 bytes -= now;
3839         }
3840         return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3841                                                vcpu);
3842 }
3843
3844 #define CMPXCHG_TYPE(t, ptr, old, new) \
3845         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3846
3847 #ifdef CONFIG_X86_64
3848 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3849 #else
3850 #  define CMPXCHG64(ptr, old, new) \
3851         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3852 #endif
3853
3854 static int emulator_cmpxchg_emulated(unsigned long addr,
3855                                      const void *old,
3856                                      const void *new,
3857                                      unsigned int bytes,
3858                                      unsigned int *error_code,
3859                                      struct kvm_vcpu *vcpu)
3860 {
3861         gpa_t gpa;
3862         struct page *page;
3863         char *kaddr;
3864         bool exchanged;
3865
3866         /* guests cmpxchg8b have to be emulated atomically */
3867         if (bytes > 8 || (bytes & (bytes - 1)))
3868                 goto emul_write;
3869
3870         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3871
3872         if (gpa == UNMAPPED_GVA ||
3873             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3874                 goto emul_write;
3875
3876         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3877                 goto emul_write;
3878
3879         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3880         if (is_error_page(page)) {
3881                 kvm_release_page_clean(page);
3882                 goto emul_write;
3883         }
3884
3885         kaddr = kmap_atomic(page, KM_USER0);
3886         kaddr += offset_in_page(gpa);
3887         switch (bytes) {
3888         case 1:
3889                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3890                 break;
3891         case 2:
3892                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3893                 break;
3894         case 4:
3895                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3896                 break;
3897         case 8:
3898                 exchanged = CMPXCHG64(kaddr, old, new);
3899                 break;
3900         default:
3901                 BUG();
3902         }
3903         kunmap_atomic(kaddr, KM_USER0);
3904         kvm_release_page_dirty(page);
3905
3906         if (!exchanged)
3907                 return X86EMUL_CMPXCHG_FAILED;
3908
3909         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3910
3911         return X86EMUL_CONTINUE;
3912
3913 emul_write:
3914         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3915
3916         return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3917 }
3918
3919 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3920 {
3921         /* TODO: String I/O for in kernel device */
3922         int r;
3923
3924         if (vcpu->arch.pio.in)
3925                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3926                                     vcpu->arch.pio.size, pd);
3927         else
3928                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3929                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3930                                      pd);
3931         return r;
3932 }
3933
3934
3935 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3936                              unsigned int count, struct kvm_vcpu *vcpu)
3937 {
3938         if (vcpu->arch.pio.count)
3939                 goto data_avail;
3940
3941         trace_kvm_pio(0, port, size, 1);
3942
3943         vcpu->arch.pio.port = port;
3944         vcpu->arch.pio.in = 1;
3945         vcpu->arch.pio.count  = count;
3946         vcpu->arch.pio.size = size;
3947
3948         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3949         data_avail:
3950                 memcpy(val, vcpu->arch.pio_data, size * count);
3951                 vcpu->arch.pio.count = 0;
3952                 return 1;
3953         }
3954
3955         vcpu->run->exit_reason = KVM_EXIT_IO;
3956         vcpu->run->io.direction = KVM_EXIT_IO_IN;
3957         vcpu->run->io.size = size;
3958         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3959         vcpu->run->io.count = count;
3960         vcpu->run->io.port = port;
3961
3962         return 0;
3963 }
3964
3965 static int emulator_pio_out_emulated(int size, unsigned short port,
3966                               const void *val, unsigned int count,
3967                               struct kvm_vcpu *vcpu)
3968 {
3969         trace_kvm_pio(1, port, size, 1);
3970
3971         vcpu->arch.pio.port = port;
3972         vcpu->arch.pio.in = 0;
3973         vcpu->arch.pio.count = count;
3974         vcpu->arch.pio.size = size;
3975
3976         memcpy(vcpu->arch.pio_data, val, size * count);
3977
3978         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3979                 vcpu->arch.pio.count = 0;
3980                 return 1;
3981         }
3982
3983         vcpu->run->exit_reason = KVM_EXIT_IO;
3984         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3985         vcpu->run->io.size = size;
3986         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3987         vcpu->run->io.count = count;
3988         vcpu->run->io.port = port;
3989
3990         return 0;
3991 }
3992
3993 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3994 {
3995         return kvm_x86_ops->get_segment_base(vcpu, seg);
3996 }
3997
3998 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3999 {
4000         kvm_mmu_invlpg(vcpu, address);
4001         return X86EMUL_CONTINUE;
4002 }
4003
4004 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4005 {
4006         if (!need_emulate_wbinvd(vcpu))
4007                 return X86EMUL_CONTINUE;
4008
4009         if (kvm_x86_ops->has_wbinvd_exit()) {
4010                 int cpu = get_cpu();
4011
4012                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4013                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4014                                 wbinvd_ipi, NULL, 1);
4015                 put_cpu();
4016                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4017         } else
4018                 wbinvd();
4019         return X86EMUL_CONTINUE;
4020 }
4021 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4022
4023 int emulate_clts(struct kvm_vcpu *vcpu)
4024 {
4025         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4026         kvm_x86_ops->fpu_activate(vcpu);
4027         return X86EMUL_CONTINUE;
4028 }
4029
4030 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
4031 {
4032         return _kvm_get_dr(vcpu, dr, dest);
4033 }
4034
4035 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4036 {
4037
4038         return __kvm_set_dr(vcpu, dr, value);
4039 }
4040
4041 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4042 {
4043         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4044 }
4045
4046 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4047 {
4048         unsigned long value;
4049
4050         switch (cr) {
4051         case 0:
4052                 value = kvm_read_cr0(vcpu);
4053                 break;
4054         case 2:
4055                 value = vcpu->arch.cr2;
4056                 break;
4057         case 3:
4058                 value = vcpu->arch.cr3;
4059                 break;
4060         case 4:
4061                 value = kvm_read_cr4(vcpu);
4062                 break;
4063         case 8:
4064                 value = kvm_get_cr8(vcpu);
4065                 break;
4066         default:
4067                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4068                 return 0;
4069         }
4070
4071         return value;
4072 }
4073
4074 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4075 {
4076         int res = 0;
4077
4078         switch (cr) {
4079         case 0:
4080                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4081                 break;
4082         case 2:
4083                 vcpu->arch.cr2 = val;
4084                 break;
4085         case 3:
4086                 res = kvm_set_cr3(vcpu, val);
4087                 break;
4088         case 4:
4089                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4090                 break;
4091         case 8:
4092                 res = __kvm_set_cr8(vcpu, val & 0xfUL);
4093                 break;
4094         default:
4095                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4096                 res = -1;
4097         }
4098
4099         return res;
4100 }
4101
4102 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4103 {
4104         return kvm_x86_ops->get_cpl(vcpu);
4105 }
4106
4107 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4108 {
4109         kvm_x86_ops->get_gdt(vcpu, dt);
4110 }
4111
4112 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4113 {
4114         kvm_x86_ops->get_idt(vcpu, dt);
4115 }
4116
4117 static unsigned long emulator_get_cached_segment_base(int seg,
4118                                                       struct kvm_vcpu *vcpu)
4119 {
4120         return get_segment_base(vcpu, seg);
4121 }
4122
4123 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4124                                            struct kvm_vcpu *vcpu)
4125 {
4126         struct kvm_segment var;
4127
4128         kvm_get_segment(vcpu, &var, seg);
4129
4130         if (var.unusable)
4131                 return false;
4132
4133         if (var.g)
4134                 var.limit >>= 12;
4135         set_desc_limit(desc, var.limit);
4136         set_desc_base(desc, (unsigned long)var.base);
4137         desc->type = var.type;
4138         desc->s = var.s;
4139         desc->dpl = var.dpl;
4140         desc->p = var.present;
4141         desc->avl = var.avl;
4142         desc->l = var.l;
4143         desc->d = var.db;
4144         desc->g = var.g;
4145
4146         return true;
4147 }
4148
4149 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4150                                            struct kvm_vcpu *vcpu)
4151 {
4152         struct kvm_segment var;
4153
4154         /* needed to preserve selector */
4155         kvm_get_segment(vcpu, &var, seg);
4156
4157         var.base = get_desc_base(desc);
4158         var.limit = get_desc_limit(desc);
4159         if (desc->g)
4160                 var.limit = (var.limit << 12) | 0xfff;
4161         var.type = desc->type;
4162         var.present = desc->p;
4163         var.dpl = desc->dpl;
4164         var.db = desc->d;
4165         var.s = desc->s;
4166         var.l = desc->l;
4167         var.g = desc->g;
4168         var.avl = desc->avl;
4169         var.present = desc->p;
4170         var.unusable = !var.present;
4171         var.padding = 0;
4172
4173         kvm_set_segment(vcpu, &var, seg);
4174         return;
4175 }
4176
4177 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4178 {
4179         struct kvm_segment kvm_seg;
4180
4181         kvm_get_segment(vcpu, &kvm_seg, seg);
4182         return kvm_seg.selector;
4183 }
4184
4185 static void emulator_set_segment_selector(u16 sel, int seg,
4186                                           struct kvm_vcpu *vcpu)
4187 {
4188         struct kvm_segment kvm_seg;
4189
4190         kvm_get_segment(vcpu, &kvm_seg, seg);
4191         kvm_seg.selector = sel;
4192         kvm_set_segment(vcpu, &kvm_seg, seg);
4193 }
4194
4195 static struct x86_emulate_ops emulate_ops = {
4196         .read_std            = kvm_read_guest_virt_system,
4197         .write_std           = kvm_write_guest_virt_system,
4198         .fetch               = kvm_fetch_guest_virt,
4199         .read_emulated       = emulator_read_emulated,
4200         .write_emulated      = emulator_write_emulated,
4201         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4202         .pio_in_emulated     = emulator_pio_in_emulated,
4203         .pio_out_emulated    = emulator_pio_out_emulated,
4204         .get_cached_descriptor = emulator_get_cached_descriptor,
4205         .set_cached_descriptor = emulator_set_cached_descriptor,
4206         .get_segment_selector = emulator_get_segment_selector,
4207         .set_segment_selector = emulator_set_segment_selector,
4208         .get_cached_segment_base = emulator_get_cached_segment_base,
4209         .get_gdt             = emulator_get_gdt,
4210         .get_idt             = emulator_get_idt,
4211         .get_cr              = emulator_get_cr,
4212         .set_cr              = emulator_set_cr,
4213         .cpl                 = emulator_get_cpl,
4214         .get_dr              = emulator_get_dr,
4215         .set_dr              = emulator_set_dr,
4216         .set_msr             = kvm_set_msr,
4217         .get_msr             = kvm_get_msr,
4218 };
4219
4220 static void cache_all_regs(struct kvm_vcpu *vcpu)
4221 {
4222         kvm_register_read(vcpu, VCPU_REGS_RAX);
4223         kvm_register_read(vcpu, VCPU_REGS_RSP);
4224         kvm_register_read(vcpu, VCPU_REGS_RIP);
4225         vcpu->arch.regs_dirty = ~0;
4226 }
4227
4228 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4229 {
4230         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4231         /*
4232          * an sti; sti; sequence only disable interrupts for the first
4233          * instruction. So, if the last instruction, be it emulated or
4234          * not, left the system with the INT_STI flag enabled, it
4235          * means that the last instruction is an sti. We should not
4236          * leave the flag on in this case. The same goes for mov ss
4237          */
4238         if (!(int_shadow & mask))
4239                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4240 }
4241
4242 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4243 {
4244         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4245         if (ctxt->exception == PF_VECTOR)
4246                 kvm_propagate_fault(vcpu);
4247         else if (ctxt->error_code_valid)
4248                 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
4249         else
4250                 kvm_queue_exception(vcpu, ctxt->exception);
4251 }
4252
4253 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4254 {
4255         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4256         int cs_db, cs_l;
4257
4258         cache_all_regs(vcpu);
4259
4260         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4261
4262         vcpu->arch.emulate_ctxt.vcpu = vcpu;
4263         vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4264         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4265         vcpu->arch.emulate_ctxt.mode =
4266                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4267                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4268                 ? X86EMUL_MODE_VM86 : cs_l
4269                 ? X86EMUL_MODE_PROT64 : cs_db
4270                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4271         memset(c, 0, sizeof(struct decode_cache));
4272         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4273 }
4274
4275 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4276 {
4277         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4278         int ret;
4279
4280         init_emulate_ctxt(vcpu);
4281
4282         vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4283         vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4284         vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4285         ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4286
4287         if (ret != X86EMUL_CONTINUE)
4288                 return EMULATE_FAIL;
4289
4290         vcpu->arch.emulate_ctxt.eip = c->eip;
4291         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4292         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4293         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4294
4295         if (irq == NMI_VECTOR)
4296                 vcpu->arch.nmi_pending = false;
4297         else
4298                 vcpu->arch.interrupt.pending = false;
4299
4300         return EMULATE_DONE;
4301 }
4302 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4303
4304 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4305 {
4306         ++vcpu->stat.insn_emulation_fail;
4307         trace_kvm_emulate_insn_failed(vcpu);
4308         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4309         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4310         vcpu->run->internal.ndata = 0;
4311         kvm_queue_exception(vcpu, UD_VECTOR);
4312         return EMULATE_FAIL;
4313 }
4314
4315 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4316 {
4317         gpa_t gpa;
4318
4319         if (tdp_enabled)
4320                 return false;
4321
4322         /*
4323          * if emulation was due to access to shadowed page table
4324          * and it failed try to unshadow page and re-entetr the
4325          * guest to let CPU execute the instruction.
4326          */
4327         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4328                 return true;
4329
4330         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4331
4332         if (gpa == UNMAPPED_GVA)
4333                 return true; /* let cpu generate fault */
4334
4335         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4336                 return true;
4337
4338         return false;
4339 }
4340
4341 int emulate_instruction(struct kvm_vcpu *vcpu,
4342                         unsigned long cr2,
4343                         u16 error_code,
4344                         int emulation_type)
4345 {
4346         int r;
4347         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4348
4349         kvm_clear_exception_queue(vcpu);
4350         vcpu->arch.mmio_fault_cr2 = cr2;
4351         /*
4352          * TODO: fix emulate.c to use guest_read/write_register
4353          * instead of direct ->regs accesses, can save hundred cycles
4354          * on Intel for instructions that don't read/change RSP, for
4355          * for example.
4356          */
4357         cache_all_regs(vcpu);
4358
4359         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4360                 init_emulate_ctxt(vcpu);
4361                 vcpu->arch.emulate_ctxt.interruptibility = 0;
4362                 vcpu->arch.emulate_ctxt.exception = -1;
4363                 vcpu->arch.emulate_ctxt.perm_ok = false;
4364
4365                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4366                 if (r == X86EMUL_PROPAGATE_FAULT)
4367                         goto done;
4368
4369                 trace_kvm_emulate_insn_start(vcpu);
4370
4371                 /* Only allow emulation of specific instructions on #UD
4372                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
4373                 if (emulation_type & EMULTYPE_TRAP_UD) {
4374                         if (!c->twobyte)
4375                                 return EMULATE_FAIL;
4376                         switch (c->b) {
4377                         case 0x01: /* VMMCALL */
4378                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4379                                         return EMULATE_FAIL;
4380                                 break;
4381                         case 0x34: /* sysenter */
4382                         case 0x35: /* sysexit */
4383                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4384                                         return EMULATE_FAIL;
4385                                 break;
4386                         case 0x05: /* syscall */
4387                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4388                                         return EMULATE_FAIL;
4389                                 break;
4390                         default:
4391                                 return EMULATE_FAIL;
4392                         }
4393
4394                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4395                                 return EMULATE_FAIL;
4396                 }
4397
4398                 ++vcpu->stat.insn_emulation;
4399                 if (r)  {
4400                         if (reexecute_instruction(vcpu, cr2))
4401                                 return EMULATE_DONE;
4402                         if (emulation_type & EMULTYPE_SKIP)
4403                                 return EMULATE_FAIL;
4404                         return handle_emulation_failure(vcpu);
4405                 }
4406         }
4407
4408         if (emulation_type & EMULTYPE_SKIP) {
4409                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4410                 return EMULATE_DONE;
4411         }
4412
4413         /* this is needed for vmware backdor interface to work since it
4414            changes registers values  during IO operation */
4415         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4416
4417 restart:
4418         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4419
4420         if (r == EMULATION_FAILED) {
4421                 if (reexecute_instruction(vcpu, cr2))
4422                         return EMULATE_DONE;
4423
4424                 return handle_emulation_failure(vcpu);
4425         }
4426
4427 done:
4428         if (vcpu->arch.emulate_ctxt.exception >= 0) {
4429                 inject_emulated_exception(vcpu);
4430                 r = EMULATE_DONE;
4431         } else if (vcpu->arch.pio.count) {
4432                 if (!vcpu->arch.pio.in)
4433                         vcpu->arch.pio.count = 0;
4434                 r = EMULATE_DO_MMIO;
4435         } else if (vcpu->mmio_needed) {
4436                 if (vcpu->mmio_is_write)
4437                         vcpu->mmio_needed = 0;
4438                 r = EMULATE_DO_MMIO;
4439         } else if (r == EMULATION_RESTART)
4440                 goto restart;
4441         else
4442                 r = EMULATE_DONE;
4443
4444         toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4445         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4446         kvm_make_request(KVM_REQ_EVENT, vcpu);
4447         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4448         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4449
4450         return r;
4451 }
4452 EXPORT_SYMBOL_GPL(emulate_instruction);
4453
4454 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4455 {
4456         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4457         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4458         /* do not return to emulator after return from userspace */
4459         vcpu->arch.pio.count = 0;
4460         return ret;
4461 }
4462 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4463
4464 static void tsc_bad(void *info)
4465 {
4466         __get_cpu_var(cpu_tsc_khz) = 0;
4467 }
4468
4469 static void tsc_khz_changed(void *data)
4470 {
4471         struct cpufreq_freqs *freq = data;
4472         unsigned long khz = 0;
4473
4474         if (data)
4475                 khz = freq->new;
4476         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4477                 khz = cpufreq_quick_get(raw_smp_processor_id());
4478         if (!khz)
4479                 khz = tsc_khz;
4480         __get_cpu_var(cpu_tsc_khz) = khz;
4481 }
4482
4483 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4484                                      void *data)
4485 {
4486         struct cpufreq_freqs *freq = data;
4487         struct kvm *kvm;
4488         struct kvm_vcpu *vcpu;
4489         int i, send_ipi = 0;
4490
4491         /*
4492          * We allow guests to temporarily run on slowing clocks,
4493          * provided we notify them after, or to run on accelerating
4494          * clocks, provided we notify them before.  Thus time never
4495          * goes backwards.
4496          *
4497          * However, we have a problem.  We can't atomically update
4498          * the frequency of a given CPU from this function; it is
4499          * merely a notifier, which can be called from any CPU.
4500          * Changing the TSC frequency at arbitrary points in time
4501          * requires a recomputation of local variables related to
4502          * the TSC for each VCPU.  We must flag these local variables
4503          * to be updated and be sure the update takes place with the
4504          * new frequency before any guests proceed.
4505          *
4506          * Unfortunately, the combination of hotplug CPU and frequency
4507          * change creates an intractable locking scenario; the order
4508          * of when these callouts happen is undefined with respect to
4509          * CPU hotplug, and they can race with each other.  As such,
4510          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4511          * undefined; you can actually have a CPU frequency change take
4512          * place in between the computation of X and the setting of the
4513          * variable.  To protect against this problem, all updates of
4514          * the per_cpu tsc_khz variable are done in an interrupt
4515          * protected IPI, and all callers wishing to update the value
4516          * must wait for a synchronous IPI to complete (which is trivial
4517          * if the caller is on the CPU already).  This establishes the
4518          * necessary total order on variable updates.
4519          *
4520          * Note that because a guest time update may take place
4521          * anytime after the setting of the VCPU's request bit, the
4522          * correct TSC value must be set before the request.  However,
4523          * to ensure the update actually makes it to any guest which
4524          * starts running in hardware virtualization between the set
4525          * and the acquisition of the spinlock, we must also ping the
4526          * CPU after setting the request bit.
4527          *
4528          */
4529
4530         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4531                 return 0;
4532         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4533                 return 0;
4534
4535         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4536
4537         spin_lock(&kvm_lock);
4538         list_for_each_entry(kvm, &vm_list, vm_list) {
4539                 kvm_for_each_vcpu(i, vcpu, kvm) {
4540                         if (vcpu->cpu != freq->cpu)
4541                                 continue;
4542                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4543                         if (vcpu->cpu != smp_processor_id())
4544                                 send_ipi = 1;
4545                 }
4546         }
4547         spin_unlock(&kvm_lock);
4548
4549         if (freq->old < freq->new && send_ipi) {
4550                 /*
4551                  * We upscale the frequency.  Must make the guest
4552                  * doesn't see old kvmclock values while running with
4553                  * the new frequency, otherwise we risk the guest sees
4554                  * time go backwards.
4555                  *
4556                  * In case we update the frequency for another cpu
4557                  * (which might be in guest context) send an interrupt
4558                  * to kick the cpu out of guest context.  Next time
4559                  * guest context is entered kvmclock will be updated,
4560                  * so the guest will not see stale values.
4561                  */
4562                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4563         }
4564         return 0;
4565 }
4566
4567 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4568         .notifier_call  = kvmclock_cpufreq_notifier
4569 };
4570
4571 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4572                                         unsigned long action, void *hcpu)
4573 {
4574         unsigned int cpu = (unsigned long)hcpu;
4575
4576         switch (action) {
4577                 case CPU_ONLINE:
4578                 case CPU_DOWN_FAILED:
4579                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4580                         break;
4581                 case CPU_DOWN_PREPARE:
4582                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4583                         break;
4584         }
4585         return NOTIFY_OK;
4586 }
4587
4588 static struct notifier_block kvmclock_cpu_notifier_block = {
4589         .notifier_call  = kvmclock_cpu_notifier,
4590         .priority = -INT_MAX
4591 };
4592
4593 static void kvm_timer_init(void)
4594 {
4595         int cpu;
4596
4597         max_tsc_khz = tsc_khz;
4598         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4599         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4600 #ifdef CONFIG_CPU_FREQ
4601                 struct cpufreq_policy policy;
4602                 memset(&policy, 0, sizeof(policy));
4603                 cpu = get_cpu();
4604                 cpufreq_get_policy(&policy, cpu);
4605                 if (policy.cpuinfo.max_freq)
4606                         max_tsc_khz = policy.cpuinfo.max_freq;
4607                 put_cpu();
4608 #endif
4609                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4610                                           CPUFREQ_TRANSITION_NOTIFIER);
4611         }
4612         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4613         for_each_online_cpu(cpu)
4614                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4615 }
4616
4617 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4618
4619 static int kvm_is_in_guest(void)
4620 {
4621         return percpu_read(current_vcpu) != NULL;
4622 }
4623
4624 static int kvm_is_user_mode(void)
4625 {
4626         int user_mode = 3;
4627
4628         if (percpu_read(current_vcpu))
4629                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4630
4631         return user_mode != 0;
4632 }
4633
4634 static unsigned long kvm_get_guest_ip(void)
4635 {
4636         unsigned long ip = 0;
4637
4638         if (percpu_read(current_vcpu))
4639                 ip = kvm_rip_read(percpu_read(current_vcpu));
4640
4641         return ip;
4642 }
4643
4644 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4645         .is_in_guest            = kvm_is_in_guest,
4646         .is_user_mode           = kvm_is_user_mode,
4647         .get_guest_ip           = kvm_get_guest_ip,
4648 };
4649
4650 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4651 {
4652         percpu_write(current_vcpu, vcpu);
4653 }
4654 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4655
4656 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4657 {
4658         percpu_write(current_vcpu, NULL);
4659 }
4660 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4661
4662 int kvm_arch_init(void *opaque)
4663 {
4664         int r;
4665         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4666
4667         if (kvm_x86_ops) {
4668                 printk(KERN_ERR "kvm: already loaded the other module\n");
4669                 r = -EEXIST;
4670                 goto out;
4671         }
4672
4673         if (!ops->cpu_has_kvm_support()) {
4674                 printk(KERN_ERR "kvm: no hardware support\n");
4675                 r = -EOPNOTSUPP;
4676                 goto out;
4677         }
4678         if (ops->disabled_by_bios()) {
4679                 printk(KERN_ERR "kvm: disabled by bios\n");
4680                 r = -EOPNOTSUPP;
4681                 goto out;
4682         }
4683
4684         r = kvm_mmu_module_init();
4685         if (r)
4686                 goto out;
4687
4688         kvm_init_msr_list();
4689
4690         kvm_x86_ops = ops;
4691         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4692         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4693                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4694
4695         kvm_timer_init();
4696
4697         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4698
4699         if (cpu_has_xsave)
4700                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4701
4702         return 0;
4703
4704 out:
4705         return r;
4706 }
4707
4708 void kvm_arch_exit(void)
4709 {
4710         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4711
4712         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4713                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4714                                             CPUFREQ_TRANSITION_NOTIFIER);
4715         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4716         kvm_x86_ops = NULL;
4717         kvm_mmu_module_exit();
4718 }
4719
4720 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4721 {
4722         ++vcpu->stat.halt_exits;
4723         if (irqchip_in_kernel(vcpu->kvm)) {
4724                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4725                 return 1;
4726         } else {
4727                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4728                 return 0;
4729         }
4730 }
4731 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4732
4733 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4734                            unsigned long a1)
4735 {
4736         if (is_long_mode(vcpu))
4737                 return a0;
4738         else
4739                 return a0 | ((gpa_t)a1 << 32);
4740 }
4741
4742 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4743 {
4744         u64 param, ingpa, outgpa, ret;
4745         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4746         bool fast, longmode;
4747         int cs_db, cs_l;
4748
4749         /*
4750          * hypercall generates UD from non zero cpl and real mode
4751          * per HYPER-V spec
4752          */
4753         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4754                 kvm_queue_exception(vcpu, UD_VECTOR);
4755                 return 0;
4756         }
4757
4758         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4759         longmode = is_long_mode(vcpu) && cs_l == 1;
4760
4761         if (!longmode) {
4762                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4763                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4764                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4765                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4766                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4767                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4768         }
4769 #ifdef CONFIG_X86_64
4770         else {
4771                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4772                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4773                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4774         }
4775 #endif
4776
4777         code = param & 0xffff;
4778         fast = (param >> 16) & 0x1;
4779         rep_cnt = (param >> 32) & 0xfff;
4780         rep_idx = (param >> 48) & 0xfff;
4781
4782         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4783
4784         switch (code) {
4785         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4786                 kvm_vcpu_on_spin(vcpu);
4787                 break;
4788         default:
4789                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4790                 break;
4791         }
4792
4793         ret = res | (((u64)rep_done & 0xfff) << 32);
4794         if (longmode) {
4795                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4796         } else {
4797                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4798                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4799         }
4800
4801         return 1;
4802 }
4803
4804 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4805 {
4806         unsigned long nr, a0, a1, a2, a3, ret;
4807         int r = 1;
4808
4809         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4810                 return kvm_hv_hypercall(vcpu);
4811
4812         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4813         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4814         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4815         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4816         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4817
4818         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4819
4820         if (!is_long_mode(vcpu)) {
4821                 nr &= 0xFFFFFFFF;
4822                 a0 &= 0xFFFFFFFF;
4823                 a1 &= 0xFFFFFFFF;
4824                 a2 &= 0xFFFFFFFF;
4825                 a3 &= 0xFFFFFFFF;
4826         }
4827
4828         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4829                 ret = -KVM_EPERM;
4830                 goto out;
4831         }
4832
4833         switch (nr) {
4834         case KVM_HC_VAPIC_POLL_IRQ:
4835                 ret = 0;
4836                 break;
4837         case KVM_HC_MMU_OP:
4838                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4839                 break;
4840         default:
4841                 ret = -KVM_ENOSYS;
4842                 break;
4843         }
4844 out:
4845         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4846         ++vcpu->stat.hypercalls;
4847         return r;
4848 }
4849 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4850
4851 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4852 {
4853         char instruction[3];
4854         unsigned long rip = kvm_rip_read(vcpu);
4855
4856         /*
4857          * Blow out the MMU to ensure that no other VCPU has an active mapping
4858          * to ensure that the updated hypercall appears atomically across all
4859          * VCPUs.
4860          */
4861         kvm_mmu_zap_all(vcpu->kvm);
4862
4863         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4864
4865         return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4866 }
4867
4868 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4869 {
4870         struct desc_ptr dt = { limit, base };
4871
4872         kvm_x86_ops->set_gdt(vcpu, &dt);
4873 }
4874
4875 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4876 {
4877         struct desc_ptr dt = { limit, base };
4878
4879         kvm_x86_ops->set_idt(vcpu, &dt);
4880 }
4881
4882 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4883 {
4884         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4885         int j, nent = vcpu->arch.cpuid_nent;
4886
4887         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4888         /* when no next entry is found, the current entry[i] is reselected */
4889         for (j = i + 1; ; j = (j + 1) % nent) {
4890                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4891                 if (ej->function == e->function) {
4892                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4893                         return j;
4894                 }
4895         }
4896         return 0; /* silence gcc, even though control never reaches here */
4897 }
4898
4899 /* find an entry with matching function, matching index (if needed), and that
4900  * should be read next (if it's stateful) */
4901 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4902         u32 function, u32 index)
4903 {
4904         if (e->function != function)
4905                 return 0;
4906         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4907                 return 0;
4908         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4909             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4910                 return 0;
4911         return 1;
4912 }
4913
4914 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4915                                               u32 function, u32 index)
4916 {
4917         int i;
4918         struct kvm_cpuid_entry2 *best = NULL;
4919
4920         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4921                 struct kvm_cpuid_entry2 *e;
4922
4923                 e = &vcpu->arch.cpuid_entries[i];
4924                 if (is_matching_cpuid_entry(e, function, index)) {
4925                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4926                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4927                         best = e;
4928                         break;
4929                 }
4930                 /*
4931                  * Both basic or both extended?
4932                  */
4933                 if (((e->function ^ function) & 0x80000000) == 0)
4934                         if (!best || e->function > best->function)
4935                                 best = e;
4936         }
4937         return best;
4938 }
4939 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4940
4941 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4942 {
4943         struct kvm_cpuid_entry2 *best;
4944
4945         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4946         if (!best || best->eax < 0x80000008)
4947                 goto not_found;
4948         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4949         if (best)
4950                 return best->eax & 0xff;
4951 not_found:
4952         return 36;
4953 }
4954
4955 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4956 {
4957         u32 function, index;
4958         struct kvm_cpuid_entry2 *best;
4959
4960         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4961         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4962         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4963         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4964         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4965         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4966         best = kvm_find_cpuid_entry(vcpu, function, index);
4967         if (best) {
4968                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4969                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4970                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4971                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4972         }
4973         kvm_x86_ops->skip_emulated_instruction(vcpu);
4974         trace_kvm_cpuid(function,
4975                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4976                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4977                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4978                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4979 }
4980 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4981
4982 /*
4983  * Check if userspace requested an interrupt window, and that the
4984  * interrupt window is open.
4985  *
4986  * No need to exit to userspace if we already have an interrupt queued.
4987  */
4988 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4989 {
4990         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4991                 vcpu->run->request_interrupt_window &&
4992                 kvm_arch_interrupt_allowed(vcpu));
4993 }
4994
4995 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4996 {
4997         struct kvm_run *kvm_run = vcpu->run;
4998
4999         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5000         kvm_run->cr8 = kvm_get_cr8(vcpu);
5001         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5002         if (irqchip_in_kernel(vcpu->kvm))
5003                 kvm_run->ready_for_interrupt_injection = 1;
5004         else
5005                 kvm_run->ready_for_interrupt_injection =
5006                         kvm_arch_interrupt_allowed(vcpu) &&
5007                         !kvm_cpu_has_interrupt(vcpu) &&
5008                         !kvm_event_needs_reinjection(vcpu);
5009 }
5010
5011 static void vapic_enter(struct kvm_vcpu *vcpu)
5012 {
5013         struct kvm_lapic *apic = vcpu->arch.apic;
5014         struct page *page;
5015
5016         if (!apic || !apic->vapic_addr)
5017                 return;
5018
5019         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5020
5021         vcpu->arch.apic->vapic_page = page;
5022 }
5023
5024 static void vapic_exit(struct kvm_vcpu *vcpu)
5025 {
5026         struct kvm_lapic *apic = vcpu->arch.apic;
5027         int idx;
5028
5029         if (!apic || !apic->vapic_addr)
5030                 return;
5031
5032         idx = srcu_read_lock(&vcpu->kvm->srcu);
5033         kvm_release_page_dirty(apic->vapic_page);
5034         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5035         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5036 }
5037
5038 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5039 {
5040         int max_irr, tpr;
5041
5042         if (!kvm_x86_ops->update_cr8_intercept)
5043                 return;
5044
5045         if (!vcpu->arch.apic)
5046                 return;
5047
5048         if (!vcpu->arch.apic->vapic_addr)
5049                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5050         else
5051                 max_irr = -1;
5052
5053         if (max_irr != -1)
5054                 max_irr >>= 4;
5055
5056         tpr = kvm_lapic_get_cr8(vcpu);
5057
5058         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5059 }
5060
5061 static void inject_pending_event(struct kvm_vcpu *vcpu)
5062 {
5063         /* try to reinject previous events if any */
5064         if (vcpu->arch.exception.pending) {
5065                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5066                                         vcpu->arch.exception.has_error_code,
5067                                         vcpu->arch.exception.error_code);
5068                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5069                                           vcpu->arch.exception.has_error_code,
5070                                           vcpu->arch.exception.error_code,
5071                                           vcpu->arch.exception.reinject);
5072                 return;
5073         }
5074
5075         if (vcpu->arch.nmi_injected) {
5076                 kvm_x86_ops->set_nmi(vcpu);
5077                 return;
5078         }
5079
5080         if (vcpu->arch.interrupt.pending) {
5081                 kvm_x86_ops->set_irq(vcpu);
5082                 return;
5083         }
5084
5085         /* try to inject new event if pending */
5086         if (vcpu->arch.nmi_pending) {
5087                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5088                         vcpu->arch.nmi_pending = false;
5089                         vcpu->arch.nmi_injected = true;
5090                         kvm_x86_ops->set_nmi(vcpu);
5091                 }
5092         } else if (kvm_cpu_has_interrupt(vcpu)) {
5093                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5094                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5095                                             false);
5096                         kvm_x86_ops->set_irq(vcpu);
5097                 }
5098         }
5099 }
5100
5101 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5102 {
5103         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5104                         !vcpu->guest_xcr0_loaded) {
5105                 /* kvm_set_xcr() also depends on this */
5106                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5107                 vcpu->guest_xcr0_loaded = 1;
5108         }
5109 }
5110
5111 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5112 {
5113         if (vcpu->guest_xcr0_loaded) {
5114                 if (vcpu->arch.xcr0 != host_xcr0)
5115                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5116                 vcpu->guest_xcr0_loaded = 0;
5117         }
5118 }
5119
5120 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5121 {
5122         int r;
5123         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5124                 vcpu->run->request_interrupt_window;
5125
5126         if (vcpu->requests) {
5127                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5128                         kvm_mmu_unload(vcpu);
5129                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5130                         __kvm_migrate_timers(vcpu);
5131                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5132                         r = kvm_guest_time_update(vcpu);
5133                         if (unlikely(r))
5134                                 goto out;
5135                 }
5136                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5137                         kvm_mmu_sync_roots(vcpu);
5138                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5139                         kvm_x86_ops->tlb_flush(vcpu);
5140                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5141                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5142                         r = 0;
5143                         goto out;
5144                 }
5145                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5146                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5147                         r = 0;
5148                         goto out;
5149                 }
5150                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5151                         vcpu->fpu_active = 0;
5152                         kvm_x86_ops->fpu_deactivate(vcpu);
5153                 }
5154                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5155                         /* Page is swapped out. Do synthetic halt */
5156                         vcpu->arch.apf.halted = true;
5157                         r = 1;
5158                         goto out;
5159                 }
5160         }
5161
5162         r = kvm_mmu_reload(vcpu);
5163         if (unlikely(r))
5164                 goto out;
5165
5166         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5167                 inject_pending_event(vcpu);
5168
5169                 /* enable NMI/IRQ window open exits if needed */
5170                 if (vcpu->arch.nmi_pending)
5171                         kvm_x86_ops->enable_nmi_window(vcpu);
5172                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5173                         kvm_x86_ops->enable_irq_window(vcpu);
5174
5175                 if (kvm_lapic_enabled(vcpu)) {
5176                         update_cr8_intercept(vcpu);
5177                         kvm_lapic_sync_to_vapic(vcpu);
5178                 }
5179         }
5180
5181         preempt_disable();
5182
5183         kvm_x86_ops->prepare_guest_switch(vcpu);
5184         if (vcpu->fpu_active)
5185                 kvm_load_guest_fpu(vcpu);
5186         kvm_load_guest_xcr0(vcpu);
5187
5188         atomic_set(&vcpu->guest_mode, 1);
5189         smp_wmb();
5190
5191         local_irq_disable();
5192
5193         if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
5194             || need_resched() || signal_pending(current)) {
5195                 atomic_set(&vcpu->guest_mode, 0);
5196                 smp_wmb();
5197                 local_irq_enable();
5198                 preempt_enable();
5199                 kvm_x86_ops->cancel_injection(vcpu);
5200                 r = 1;
5201                 goto out;
5202         }
5203
5204         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5205
5206         kvm_guest_enter();
5207
5208         if (unlikely(vcpu->arch.switch_db_regs)) {
5209                 set_debugreg(0, 7);
5210                 set_debugreg(vcpu->arch.eff_db[0], 0);
5211                 set_debugreg(vcpu->arch.eff_db[1], 1);
5212                 set_debugreg(vcpu->arch.eff_db[2], 2);
5213                 set_debugreg(vcpu->arch.eff_db[3], 3);
5214         }
5215
5216         trace_kvm_entry(vcpu->vcpu_id);
5217         kvm_x86_ops->run(vcpu);
5218
5219         /*
5220          * If the guest has used debug registers, at least dr7
5221          * will be disabled while returning to the host.
5222          * If we don't have active breakpoints in the host, we don't
5223          * care about the messed up debug address registers. But if
5224          * we have some of them active, restore the old state.
5225          */
5226         if (hw_breakpoint_active())
5227                 hw_breakpoint_restore();
5228
5229         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5230
5231         atomic_set(&vcpu->guest_mode, 0);
5232         smp_wmb();
5233         local_irq_enable();
5234
5235         ++vcpu->stat.exits;
5236
5237         /*
5238          * We must have an instruction between local_irq_enable() and
5239          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5240          * the interrupt shadow.  The stat.exits increment will do nicely.
5241          * But we need to prevent reordering, hence this barrier():
5242          */
5243         barrier();
5244
5245         kvm_guest_exit();
5246
5247         preempt_enable();
5248
5249         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5250
5251         /*
5252          * Profile KVM exit RIPs:
5253          */
5254         if (unlikely(prof_on == KVM_PROFILING)) {
5255                 unsigned long rip = kvm_rip_read(vcpu);
5256                 profile_hit(KVM_PROFILING, (void *)rip);
5257         }
5258
5259
5260         kvm_lapic_sync_from_vapic(vcpu);
5261
5262         r = kvm_x86_ops->handle_exit(vcpu);
5263 out:
5264         return r;
5265 }
5266
5267
5268 static int __vcpu_run(struct kvm_vcpu *vcpu)
5269 {
5270         int r;
5271         struct kvm *kvm = vcpu->kvm;
5272
5273         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5274                 pr_debug("vcpu %d received sipi with vector # %x\n",
5275                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5276                 kvm_lapic_reset(vcpu);
5277                 r = kvm_arch_vcpu_reset(vcpu);
5278                 if (r)
5279                         return r;
5280                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5281         }
5282
5283         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5284         vapic_enter(vcpu);
5285
5286         r = 1;
5287         while (r > 0) {
5288                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5289                     !vcpu->arch.apf.halted)
5290                         r = vcpu_enter_guest(vcpu);
5291                 else {
5292                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5293                         kvm_vcpu_block(vcpu);
5294                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5295                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5296                         {
5297                                 switch(vcpu->arch.mp_state) {
5298                                 case KVM_MP_STATE_HALTED:
5299                                         vcpu->arch.mp_state =
5300                                                 KVM_MP_STATE_RUNNABLE;
5301                                 case KVM_MP_STATE_RUNNABLE:
5302                                         vcpu->arch.apf.halted = false;
5303                                         break;
5304                                 case KVM_MP_STATE_SIPI_RECEIVED:
5305                                 default:
5306                                         r = -EINTR;
5307                                         break;
5308                                 }
5309                         }
5310                 }
5311
5312                 if (r <= 0)
5313                         break;
5314
5315                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5316                 if (kvm_cpu_has_pending_timer(vcpu))
5317                         kvm_inject_pending_timer_irqs(vcpu);
5318
5319                 if (dm_request_for_irq_injection(vcpu)) {
5320                         r = -EINTR;
5321                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5322                         ++vcpu->stat.request_irq_exits;
5323                 }
5324
5325                 kvm_check_async_pf_completion(vcpu);
5326
5327                 if (signal_pending(current)) {
5328                         r = -EINTR;
5329                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5330                         ++vcpu->stat.signal_exits;
5331                 }
5332                 if (need_resched()) {
5333                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5334                         kvm_resched(vcpu);
5335                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5336                 }
5337         }
5338
5339         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5340
5341         vapic_exit(vcpu);
5342
5343         return r;
5344 }
5345
5346 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5347 {
5348         int r;
5349         sigset_t sigsaved;
5350
5351         if (vcpu->sigset_active)
5352                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5353
5354         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5355                 kvm_vcpu_block(vcpu);
5356                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5357                 r = -EAGAIN;
5358                 goto out;
5359         }
5360
5361         /* re-sync apic's tpr */
5362         if (!irqchip_in_kernel(vcpu->kvm))
5363                 kvm_set_cr8(vcpu, kvm_run->cr8);
5364
5365         if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5366                 if (vcpu->mmio_needed) {
5367                         memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5368                         vcpu->mmio_read_completed = 1;
5369                         vcpu->mmio_needed = 0;
5370                 }
5371                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5372                 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
5373                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5374                 if (r != EMULATE_DONE) {
5375                         r = 0;
5376                         goto out;
5377                 }
5378         }
5379         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5380                 kvm_register_write(vcpu, VCPU_REGS_RAX,
5381                                      kvm_run->hypercall.ret);
5382
5383         r = __vcpu_run(vcpu);
5384
5385 out:
5386         post_kvm_run_save(vcpu);
5387         if (vcpu->sigset_active)
5388                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5389
5390         return r;
5391 }
5392
5393 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5394 {
5395         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5396         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5397         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5398         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5399         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5400         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5401         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5402         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5403 #ifdef CONFIG_X86_64
5404         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5405         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5406         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5407         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5408         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5409         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5410         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5411         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5412 #endif
5413
5414         regs->rip = kvm_rip_read(vcpu);
5415         regs->rflags = kvm_get_rflags(vcpu);
5416
5417         return 0;
5418 }
5419
5420 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5421 {
5422         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5423         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5424         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5425         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5426         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5427         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5428         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5429         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5430 #ifdef CONFIG_X86_64
5431         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5432         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5433         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5434         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5435         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5436         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5437         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5438         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5439 #endif
5440
5441         kvm_rip_write(vcpu, regs->rip);
5442         kvm_set_rflags(vcpu, regs->rflags);
5443
5444         vcpu->arch.exception.pending = false;
5445
5446         kvm_make_request(KVM_REQ_EVENT, vcpu);
5447
5448         return 0;
5449 }
5450
5451 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5452 {
5453         struct kvm_segment cs;
5454
5455         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5456         *db = cs.db;
5457         *l = cs.l;
5458 }
5459 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5460
5461 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5462                                   struct kvm_sregs *sregs)
5463 {
5464         struct desc_ptr dt;
5465
5466         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5467         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5468         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5469         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5470         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5471         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5472
5473         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5474         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5475
5476         kvm_x86_ops->get_idt(vcpu, &dt);
5477         sregs->idt.limit = dt.size;
5478         sregs->idt.base = dt.address;
5479         kvm_x86_ops->get_gdt(vcpu, &dt);
5480         sregs->gdt.limit = dt.size;
5481         sregs->gdt.base = dt.address;
5482
5483         sregs->cr0 = kvm_read_cr0(vcpu);
5484         sregs->cr2 = vcpu->arch.cr2;
5485         sregs->cr3 = vcpu->arch.cr3;
5486         sregs->cr4 = kvm_read_cr4(vcpu);
5487         sregs->cr8 = kvm_get_cr8(vcpu);
5488         sregs->efer = vcpu->arch.efer;
5489         sregs->apic_base = kvm_get_apic_base(vcpu);
5490
5491         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5492
5493         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5494                 set_bit(vcpu->arch.interrupt.nr,
5495                         (unsigned long *)sregs->interrupt_bitmap);
5496
5497         return 0;
5498 }
5499
5500 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5501                                     struct kvm_mp_state *mp_state)
5502 {
5503         mp_state->mp_state = vcpu->arch.mp_state;
5504         return 0;
5505 }
5506
5507 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5508                                     struct kvm_mp_state *mp_state)
5509 {
5510         vcpu->arch.mp_state = mp_state->mp_state;
5511         kvm_make_request(KVM_REQ_EVENT, vcpu);
5512         return 0;
5513 }
5514
5515 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5516                     bool has_error_code, u32 error_code)
5517 {
5518         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5519         int ret;
5520
5521         init_emulate_ctxt(vcpu);
5522
5523         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5524                                    tss_selector, reason, has_error_code,
5525                                    error_code);
5526
5527         if (ret)
5528                 return EMULATE_FAIL;
5529
5530         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5531         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5532         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5533         kvm_make_request(KVM_REQ_EVENT, vcpu);
5534         return EMULATE_DONE;
5535 }
5536 EXPORT_SYMBOL_GPL(kvm_task_switch);
5537
5538 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5539                                   struct kvm_sregs *sregs)
5540 {
5541         int mmu_reset_needed = 0;
5542         int pending_vec, max_bits;
5543         struct desc_ptr dt;
5544
5545         dt.size = sregs->idt.limit;
5546         dt.address = sregs->idt.base;
5547         kvm_x86_ops->set_idt(vcpu, &dt);
5548         dt.size = sregs->gdt.limit;
5549         dt.address = sregs->gdt.base;
5550         kvm_x86_ops->set_gdt(vcpu, &dt);
5551
5552         vcpu->arch.cr2 = sregs->cr2;
5553         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5554         vcpu->arch.cr3 = sregs->cr3;
5555
5556         kvm_set_cr8(vcpu, sregs->cr8);
5557
5558         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5559         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5560         kvm_set_apic_base(vcpu, sregs->apic_base);
5561
5562         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5563         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5564         vcpu->arch.cr0 = sregs->cr0;
5565
5566         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5567         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5568         if (sregs->cr4 & X86_CR4_OSXSAVE)
5569                 update_cpuid(vcpu);
5570         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5571                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
5572                 mmu_reset_needed = 1;
5573         }
5574
5575         if (mmu_reset_needed)
5576                 kvm_mmu_reset_context(vcpu);
5577
5578         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5579         pending_vec = find_first_bit(
5580                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5581         if (pending_vec < max_bits) {
5582                 kvm_queue_interrupt(vcpu, pending_vec, false);
5583                 pr_debug("Set back pending irq %d\n", pending_vec);
5584                 if (irqchip_in_kernel(vcpu->kvm))
5585                         kvm_pic_clear_isr_ack(vcpu->kvm);
5586         }
5587
5588         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5589         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5590         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5591         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5592         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5593         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5594
5595         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5596         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5597
5598         update_cr8_intercept(vcpu);
5599
5600         /* Older userspace won't unhalt the vcpu on reset. */
5601         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5602             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5603             !is_protmode(vcpu))
5604                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5605
5606         kvm_make_request(KVM_REQ_EVENT, vcpu);
5607
5608         return 0;
5609 }
5610
5611 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5612                                         struct kvm_guest_debug *dbg)
5613 {
5614         unsigned long rflags;
5615         int i, r;
5616
5617         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5618                 r = -EBUSY;
5619                 if (vcpu->arch.exception.pending)
5620                         goto out;
5621                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5622                         kvm_queue_exception(vcpu, DB_VECTOR);
5623                 else
5624                         kvm_queue_exception(vcpu, BP_VECTOR);
5625         }
5626
5627         /*
5628          * Read rflags as long as potentially injected trace flags are still
5629          * filtered out.
5630          */
5631         rflags = kvm_get_rflags(vcpu);
5632
5633         vcpu->guest_debug = dbg->control;
5634         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5635                 vcpu->guest_debug = 0;
5636
5637         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5638                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5639                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5640                 vcpu->arch.switch_db_regs =
5641                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5642         } else {
5643                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5644                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5645                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5646         }
5647
5648         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5649                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5650                         get_segment_base(vcpu, VCPU_SREG_CS);
5651
5652         /*
5653          * Trigger an rflags update that will inject or remove the trace
5654          * flags.
5655          */
5656         kvm_set_rflags(vcpu, rflags);
5657
5658         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5659
5660         r = 0;
5661
5662 out:
5663
5664         return r;
5665 }
5666
5667 /*
5668  * Translate a guest virtual address to a guest physical address.
5669  */
5670 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5671                                     struct kvm_translation *tr)
5672 {
5673         unsigned long vaddr = tr->linear_address;
5674         gpa_t gpa;
5675         int idx;
5676
5677         idx = srcu_read_lock(&vcpu->kvm->srcu);
5678         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5679         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5680         tr->physical_address = gpa;
5681         tr->valid = gpa != UNMAPPED_GVA;
5682         tr->writeable = 1;
5683         tr->usermode = 0;
5684
5685         return 0;
5686 }
5687
5688 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5689 {
5690         struct i387_fxsave_struct *fxsave =
5691                         &vcpu->arch.guest_fpu.state->fxsave;
5692
5693         memcpy(fpu->fpr, fxsave->st_space, 128);
5694         fpu->fcw = fxsave->cwd;
5695         fpu->fsw = fxsave->swd;
5696         fpu->ftwx = fxsave->twd;
5697         fpu->last_opcode = fxsave->fop;
5698         fpu->last_ip = fxsave->rip;
5699         fpu->last_dp = fxsave->rdp;
5700         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5701
5702         return 0;
5703 }
5704
5705 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5706 {
5707         struct i387_fxsave_struct *fxsave =
5708                         &vcpu->arch.guest_fpu.state->fxsave;
5709
5710         memcpy(fxsave->st_space, fpu->fpr, 128);
5711         fxsave->cwd = fpu->fcw;
5712         fxsave->swd = fpu->fsw;
5713         fxsave->twd = fpu->ftwx;
5714         fxsave->fop = fpu->last_opcode;
5715         fxsave->rip = fpu->last_ip;
5716         fxsave->rdp = fpu->last_dp;
5717         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5718
5719         return 0;
5720 }
5721
5722 int fx_init(struct kvm_vcpu *vcpu)
5723 {
5724         int err;
5725
5726         err = fpu_alloc(&vcpu->arch.guest_fpu);
5727         if (err)
5728                 return err;
5729
5730         fpu_finit(&vcpu->arch.guest_fpu);
5731
5732         /*
5733          * Ensure guest xcr0 is valid for loading
5734          */
5735         vcpu->arch.xcr0 = XSTATE_FP;
5736
5737         vcpu->arch.cr0 |= X86_CR0_ET;
5738
5739         return 0;
5740 }
5741 EXPORT_SYMBOL_GPL(fx_init);
5742
5743 static void fx_free(struct kvm_vcpu *vcpu)
5744 {
5745         fpu_free(&vcpu->arch.guest_fpu);
5746 }
5747
5748 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5749 {
5750         if (vcpu->guest_fpu_loaded)
5751                 return;
5752
5753         /*
5754          * Restore all possible states in the guest,
5755          * and assume host would use all available bits.
5756          * Guest xcr0 would be loaded later.
5757          */
5758         kvm_put_guest_xcr0(vcpu);
5759         vcpu->guest_fpu_loaded = 1;
5760         unlazy_fpu(current);
5761         fpu_restore_checking(&vcpu->arch.guest_fpu);
5762         trace_kvm_fpu(1);
5763 }
5764
5765 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5766 {
5767         kvm_put_guest_xcr0(vcpu);
5768
5769         if (!vcpu->guest_fpu_loaded)
5770                 return;
5771
5772         vcpu->guest_fpu_loaded = 0;
5773         fpu_save_init(&vcpu->arch.guest_fpu);
5774         ++vcpu->stat.fpu_reload;
5775         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5776         trace_kvm_fpu(0);
5777 }
5778
5779 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5780 {
5781         if (vcpu->arch.time_page) {
5782                 kvm_release_page_dirty(vcpu->arch.time_page);
5783                 vcpu->arch.time_page = NULL;
5784         }
5785
5786         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5787         fx_free(vcpu);
5788         kvm_x86_ops->vcpu_free(vcpu);
5789 }
5790
5791 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5792                                                 unsigned int id)
5793 {
5794         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5795                 printk_once(KERN_WARNING
5796                 "kvm: SMP vm created on host with unstable TSC; "
5797                 "guest TSC will not be reliable\n");
5798         return kvm_x86_ops->vcpu_create(kvm, id);
5799 }
5800
5801 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5802 {
5803         int r;
5804
5805         vcpu->arch.mtrr_state.have_fixed = 1;
5806         vcpu_load(vcpu);
5807         r = kvm_arch_vcpu_reset(vcpu);
5808         if (r == 0)
5809                 r = kvm_mmu_setup(vcpu);
5810         vcpu_put(vcpu);
5811         if (r < 0)
5812                 goto free_vcpu;
5813
5814         return 0;
5815 free_vcpu:
5816         kvm_x86_ops->vcpu_free(vcpu);
5817         return r;
5818 }
5819
5820 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5821 {
5822         vcpu->arch.apf.msr_val = 0;
5823
5824         vcpu_load(vcpu);
5825         kvm_mmu_unload(vcpu);
5826         vcpu_put(vcpu);
5827
5828         fx_free(vcpu);
5829         kvm_x86_ops->vcpu_free(vcpu);
5830 }
5831
5832 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5833 {
5834         vcpu->arch.nmi_pending = false;
5835         vcpu->arch.nmi_injected = false;
5836
5837         vcpu->arch.switch_db_regs = 0;
5838         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5839         vcpu->arch.dr6 = DR6_FIXED_1;
5840         vcpu->arch.dr7 = DR7_FIXED_1;
5841
5842         kvm_make_request(KVM_REQ_EVENT, vcpu);
5843         vcpu->arch.apf.msr_val = 0;
5844
5845         kvm_clear_async_pf_completion_queue(vcpu);
5846         kvm_async_pf_hash_reset(vcpu);
5847         vcpu->arch.apf.halted = false;
5848
5849         return kvm_x86_ops->vcpu_reset(vcpu);
5850 }
5851
5852 int kvm_arch_hardware_enable(void *garbage)
5853 {
5854         struct kvm *kvm;
5855         struct kvm_vcpu *vcpu;
5856         int i;
5857
5858         kvm_shared_msr_cpu_online();
5859         list_for_each_entry(kvm, &vm_list, vm_list)
5860                 kvm_for_each_vcpu(i, vcpu, kvm)
5861                         if (vcpu->cpu == smp_processor_id())
5862                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5863         return kvm_x86_ops->hardware_enable(garbage);
5864 }
5865
5866 void kvm_arch_hardware_disable(void *garbage)
5867 {
5868         kvm_x86_ops->hardware_disable(garbage);
5869         drop_user_return_notifiers(garbage);
5870 }
5871
5872 int kvm_arch_hardware_setup(void)
5873 {
5874         return kvm_x86_ops->hardware_setup();
5875 }
5876
5877 void kvm_arch_hardware_unsetup(void)
5878 {
5879         kvm_x86_ops->hardware_unsetup();
5880 }
5881
5882 void kvm_arch_check_processor_compat(void *rtn)
5883 {
5884         kvm_x86_ops->check_processor_compatibility(rtn);
5885 }
5886
5887 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5888 {
5889         struct page *page;
5890         struct kvm *kvm;
5891         int r;
5892
5893         BUG_ON(vcpu->kvm == NULL);
5894         kvm = vcpu->kvm;
5895
5896         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5897         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5898         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5899         vcpu->arch.mmu.translate_gpa = translate_gpa;
5900         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5901         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5902                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5903         else
5904                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5905
5906         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5907         if (!page) {
5908                 r = -ENOMEM;
5909                 goto fail;
5910         }
5911         vcpu->arch.pio_data = page_address(page);
5912
5913         if (!kvm->arch.virtual_tsc_khz)
5914                 kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
5915
5916         r = kvm_mmu_create(vcpu);
5917         if (r < 0)
5918                 goto fail_free_pio_data;
5919
5920         if (irqchip_in_kernel(kvm)) {
5921                 r = kvm_create_lapic(vcpu);
5922                 if (r < 0)
5923                         goto fail_mmu_destroy;
5924         }
5925
5926         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5927                                        GFP_KERNEL);
5928         if (!vcpu->arch.mce_banks) {
5929                 r = -ENOMEM;
5930                 goto fail_free_lapic;
5931         }
5932         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5933
5934         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5935                 goto fail_free_mce_banks;
5936
5937         kvm_async_pf_hash_reset(vcpu);
5938
5939         return 0;
5940 fail_free_mce_banks:
5941         kfree(vcpu->arch.mce_banks);
5942 fail_free_lapic:
5943         kvm_free_lapic(vcpu);
5944 fail_mmu_destroy:
5945         kvm_mmu_destroy(vcpu);
5946 fail_free_pio_data:
5947         free_page((unsigned long)vcpu->arch.pio_data);
5948 fail:
5949         return r;
5950 }
5951
5952 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5953 {
5954         int idx;
5955
5956         kfree(vcpu->arch.mce_banks);
5957         kvm_free_lapic(vcpu);
5958         idx = srcu_read_lock(&vcpu->kvm->srcu);
5959         kvm_mmu_destroy(vcpu);
5960         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5961         free_page((unsigned long)vcpu->arch.pio_data);
5962 }
5963
5964 struct  kvm *kvm_arch_create_vm(void)
5965 {
5966         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5967
5968         if (!kvm)
5969                 return ERR_PTR(-ENOMEM);
5970
5971         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5972         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5973
5974         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5975         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5976
5977         spin_lock_init(&kvm->arch.tsc_write_lock);
5978
5979         return kvm;
5980 }
5981
5982 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5983 {
5984         vcpu_load(vcpu);
5985         kvm_mmu_unload(vcpu);
5986         vcpu_put(vcpu);
5987 }
5988
5989 static void kvm_free_vcpus(struct kvm *kvm)
5990 {
5991         unsigned int i;
5992         struct kvm_vcpu *vcpu;
5993
5994         /*
5995          * Unpin any mmu pages first.
5996          */
5997         kvm_for_each_vcpu(i, vcpu, kvm) {
5998                 kvm_clear_async_pf_completion_queue(vcpu);
5999                 kvm_unload_vcpu_mmu(vcpu);
6000         }
6001         kvm_for_each_vcpu(i, vcpu, kvm)
6002                 kvm_arch_vcpu_free(vcpu);
6003
6004         mutex_lock(&kvm->lock);
6005         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6006                 kvm->vcpus[i] = NULL;
6007
6008         atomic_set(&kvm->online_vcpus, 0);
6009         mutex_unlock(&kvm->lock);
6010 }
6011
6012 void kvm_arch_sync_events(struct kvm *kvm)
6013 {
6014         kvm_free_all_assigned_devices(kvm);
6015         kvm_free_pit(kvm);
6016 }
6017
6018 void kvm_arch_destroy_vm(struct kvm *kvm)
6019 {
6020         kvm_iommu_unmap_guest(kvm);
6021         kfree(kvm->arch.vpic);
6022         kfree(kvm->arch.vioapic);
6023         kvm_free_vcpus(kvm);
6024         kvm_free_physmem(kvm);
6025         if (kvm->arch.apic_access_page)
6026                 put_page(kvm->arch.apic_access_page);
6027         if (kvm->arch.ept_identity_pagetable)
6028                 put_page(kvm->arch.ept_identity_pagetable);
6029         cleanup_srcu_struct(&kvm->srcu);
6030         kfree(kvm);
6031 }
6032
6033 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6034                                 struct kvm_memory_slot *memslot,
6035                                 struct kvm_memory_slot old,
6036                                 struct kvm_userspace_memory_region *mem,
6037                                 int user_alloc)
6038 {
6039         int npages = memslot->npages;
6040         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6041
6042         /* Prevent internal slot pages from being moved by fork()/COW. */
6043         if (memslot->id >= KVM_MEMORY_SLOTS)
6044                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6045
6046         /*To keep backward compatibility with older userspace,
6047          *x86 needs to hanlde !user_alloc case.
6048          */
6049         if (!user_alloc) {
6050                 if (npages && !old.rmap) {
6051                         unsigned long userspace_addr;
6052
6053                         down_write(&current->mm->mmap_sem);
6054                         userspace_addr = do_mmap(NULL, 0,
6055                                                  npages * PAGE_SIZE,
6056                                                  PROT_READ | PROT_WRITE,
6057                                                  map_flags,
6058                                                  0);
6059                         up_write(&current->mm->mmap_sem);
6060
6061                         if (IS_ERR((void *)userspace_addr))
6062                                 return PTR_ERR((void *)userspace_addr);
6063
6064                         memslot->userspace_addr = userspace_addr;
6065                 }
6066         }
6067
6068
6069         return 0;
6070 }
6071
6072 void kvm_arch_commit_memory_region(struct kvm *kvm,
6073                                 struct kvm_userspace_memory_region *mem,
6074                                 struct kvm_memory_slot old,
6075                                 int user_alloc)
6076 {
6077
6078         int npages = mem->memory_size >> PAGE_SHIFT;
6079
6080         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6081                 int ret;
6082
6083                 down_write(&current->mm->mmap_sem);
6084                 ret = do_munmap(current->mm, old.userspace_addr,
6085                                 old.npages * PAGE_SIZE);
6086                 up_write(&current->mm->mmap_sem);
6087                 if (ret < 0)
6088                         printk(KERN_WARNING
6089                                "kvm_vm_ioctl_set_memory_region: "
6090                                "failed to munmap memory\n");
6091         }
6092
6093         spin_lock(&kvm->mmu_lock);
6094         if (!kvm->arch.n_requested_mmu_pages) {
6095                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6096                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6097         }
6098
6099         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6100         spin_unlock(&kvm->mmu_lock);
6101 }
6102
6103 void kvm_arch_flush_shadow(struct kvm *kvm)
6104 {
6105         kvm_mmu_zap_all(kvm);
6106         kvm_reload_remote_mmus(kvm);
6107 }
6108
6109 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6110 {
6111         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6112                 !vcpu->arch.apf.halted)
6113                 || !list_empty_careful(&vcpu->async_pf.done)
6114                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6115                 || vcpu->arch.nmi_pending ||
6116                 (kvm_arch_interrupt_allowed(vcpu) &&
6117                  kvm_cpu_has_interrupt(vcpu));
6118 }
6119
6120 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6121 {
6122         int me;
6123         int cpu = vcpu->cpu;
6124
6125         if (waitqueue_active(&vcpu->wq)) {
6126                 wake_up_interruptible(&vcpu->wq);
6127                 ++vcpu->stat.halt_wakeup;
6128         }
6129
6130         me = get_cpu();
6131         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6132                 if (atomic_xchg(&vcpu->guest_mode, 0))
6133                         smp_send_reschedule(cpu);
6134         put_cpu();
6135 }
6136
6137 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6138 {
6139         return kvm_x86_ops->interrupt_allowed(vcpu);
6140 }
6141
6142 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6143 {
6144         unsigned long current_rip = kvm_rip_read(vcpu) +
6145                 get_segment_base(vcpu, VCPU_SREG_CS);
6146
6147         return current_rip == linear_rip;
6148 }
6149 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6150
6151 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6152 {
6153         unsigned long rflags;
6154
6155         rflags = kvm_x86_ops->get_rflags(vcpu);
6156         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6157                 rflags &= ~X86_EFLAGS_TF;
6158         return rflags;
6159 }
6160 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6161
6162 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6163 {
6164         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6165             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6166                 rflags |= X86_EFLAGS_TF;
6167         kvm_x86_ops->set_rflags(vcpu, rflags);
6168         kvm_make_request(KVM_REQ_EVENT, vcpu);
6169 }
6170 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6171
6172 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6173 {
6174         int r;
6175
6176         if (!vcpu->arch.mmu.direct_map || is_error_page(work->page))
6177                 return;
6178
6179         r = kvm_mmu_reload(vcpu);
6180         if (unlikely(r))
6181                 return;
6182
6183         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6184 }
6185
6186 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6187 {
6188         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6189 }
6190
6191 static inline u32 kvm_async_pf_next_probe(u32 key)
6192 {
6193         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6194 }
6195
6196 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6197 {
6198         u32 key = kvm_async_pf_hash_fn(gfn);
6199
6200         while (vcpu->arch.apf.gfns[key] != ~0)
6201                 key = kvm_async_pf_next_probe(key);
6202
6203         vcpu->arch.apf.gfns[key] = gfn;
6204 }
6205
6206 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6207 {
6208         int i;
6209         u32 key = kvm_async_pf_hash_fn(gfn);
6210
6211         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6212                      (vcpu->arch.apf.gfns[key] != gfn &&
6213                       vcpu->arch.apf.gfns[key] != ~0); i++)
6214                 key = kvm_async_pf_next_probe(key);
6215
6216         return key;
6217 }
6218
6219 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6220 {
6221         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6222 }
6223
6224 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6225 {
6226         u32 i, j, k;
6227
6228         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6229         while (true) {
6230                 vcpu->arch.apf.gfns[i] = ~0;
6231                 do {
6232                         j = kvm_async_pf_next_probe(j);
6233                         if (vcpu->arch.apf.gfns[j] == ~0)
6234                                 return;
6235                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6236                         /*
6237                          * k lies cyclically in ]i,j]
6238                          * |    i.k.j |
6239                          * |....j i.k.| or  |.k..j i...|
6240                          */
6241                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6242                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6243                 i = j;
6244         }
6245 }
6246
6247 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6248 {
6249
6250         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6251                                       sizeof(val));
6252 }
6253
6254 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6255                                      struct kvm_async_pf *work)
6256 {
6257         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6258         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6259
6260         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6261             (vcpu->arch.apf.send_user_only &&
6262              kvm_x86_ops->get_cpl(vcpu) == 0))
6263                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6264         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6265                 vcpu->arch.fault.error_code = 0;
6266                 vcpu->arch.fault.address = work->arch.token;
6267                 kvm_inject_page_fault(vcpu);
6268         }
6269 }
6270
6271 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6272                                  struct kvm_async_pf *work)
6273 {
6274         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6275         if (is_error_page(work->page))
6276                 work->arch.token = ~0; /* broadcast wakeup */
6277         else
6278                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6279
6280         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6281             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6282                 vcpu->arch.fault.error_code = 0;
6283                 vcpu->arch.fault.address = work->arch.token;
6284                 kvm_inject_page_fault(vcpu);
6285         }
6286         vcpu->arch.apf.halted = false;
6287 }
6288
6289 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6290 {
6291         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6292                 return true;
6293         else
6294                 return !kvm_event_needs_reinjection(vcpu) &&
6295                         kvm_x86_ops->interrupt_allowed(vcpu);
6296 }
6297
6298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6304 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6305 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6306 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6307 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6308 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6309 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);