firewire: cdev: add PHY pinging
[linux-flexiantxendom0-natty.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bug.h>
22 #include <linux/compiler.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/gfp.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42
43 #include <asm/byteorder.h>
44 #include <asm/page.h>
45 #include <asm/system.h>
46
47 #ifdef CONFIG_PPC_PMAC
48 #include <asm/pmac_feature.h>
49 #endif
50
51 #include "core.h"
52 #include "ohci.h"
53
54 #define DESCRIPTOR_OUTPUT_MORE          0
55 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
56 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
57 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
58 #define DESCRIPTOR_STATUS               (1 << 11)
59 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
60 #define DESCRIPTOR_PING                 (1 << 7)
61 #define DESCRIPTOR_YY                   (1 << 6)
62 #define DESCRIPTOR_NO_IRQ               (0 << 4)
63 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
64 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
65 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
66 #define DESCRIPTOR_WAIT                 (3 << 0)
67
68 struct descriptor {
69         __le16 req_count;
70         __le16 control;
71         __le32 data_address;
72         __le32 branch_address;
73         __le16 res_count;
74         __le16 transfer_status;
75 } __attribute__((aligned(16)));
76
77 #define CONTROL_SET(regs)       (regs)
78 #define CONTROL_CLEAR(regs)     ((regs) + 4)
79 #define COMMAND_PTR(regs)       ((regs) + 12)
80 #define CONTEXT_MATCH(regs)     ((regs) + 16)
81
82 struct ar_buffer {
83         struct descriptor descriptor;
84         struct ar_buffer *next;
85         __le32 data[0];
86 };
87
88 struct ar_context {
89         struct fw_ohci *ohci;
90         struct ar_buffer *current_buffer;
91         struct ar_buffer *last_buffer;
92         void *pointer;
93         u32 regs;
94         struct tasklet_struct tasklet;
95 };
96
97 struct context;
98
99 typedef int (*descriptor_callback_t)(struct context *ctx,
100                                      struct descriptor *d,
101                                      struct descriptor *last);
102
103 /*
104  * A buffer that contains a block of DMA-able coherent memory used for
105  * storing a portion of a DMA descriptor program.
106  */
107 struct descriptor_buffer {
108         struct list_head list;
109         dma_addr_t buffer_bus;
110         size_t buffer_size;
111         size_t used;
112         struct descriptor buffer[0];
113 };
114
115 struct context {
116         struct fw_ohci *ohci;
117         u32 regs;
118         int total_allocation;
119
120         /*
121          * List of page-sized buffers for storing DMA descriptors.
122          * Head of list contains buffers in use and tail of list contains
123          * free buffers.
124          */
125         struct list_head buffer_list;
126
127         /*
128          * Pointer to a buffer inside buffer_list that contains the tail
129          * end of the current DMA program.
130          */
131         struct descriptor_buffer *buffer_tail;
132
133         /*
134          * The descriptor containing the branch address of the first
135          * descriptor that has not yet been filled by the device.
136          */
137         struct descriptor *last;
138
139         /*
140          * The last descriptor in the DMA program.  It contains the branch
141          * address that must be updated upon appending a new descriptor.
142          */
143         struct descriptor *prev;
144
145         descriptor_callback_t callback;
146
147         struct tasklet_struct tasklet;
148 };
149
150 #define IT_HEADER_SY(v)          ((v) <<  0)
151 #define IT_HEADER_TCODE(v)       ((v) <<  4)
152 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
153 #define IT_HEADER_TAG(v)         ((v) << 14)
154 #define IT_HEADER_SPEED(v)       ((v) << 16)
155 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
156
157 struct iso_context {
158         struct fw_iso_context base;
159         struct context context;
160         int excess_bytes;
161         void *header;
162         size_t header_length;
163 };
164
165 #define CONFIG_ROM_SIZE 1024
166
167 struct fw_ohci {
168         struct fw_card card;
169
170         __iomem char *registers;
171         int node_id;
172         int generation;
173         int request_generation; /* for timestamping incoming requests */
174         unsigned quirks;
175         unsigned int pri_req_max;
176         u32 bus_time;
177         bool is_root;
178         bool csr_state_setclear_abdicate;
179
180         /*
181          * Spinlock for accessing fw_ohci data.  Never call out of
182          * this driver with this lock held.
183          */
184         spinlock_t lock;
185
186         struct mutex phy_reg_mutex;
187
188         struct ar_context ar_request_ctx;
189         struct ar_context ar_response_ctx;
190         struct context at_request_ctx;
191         struct context at_response_ctx;
192
193         u32 it_context_mask;
194         struct iso_context *it_context_list;
195         u64 ir_context_channels;
196         u32 ir_context_mask;
197         struct iso_context *ir_context_list;
198
199         __be32    *config_rom;
200         dma_addr_t config_rom_bus;
201         __be32    *next_config_rom;
202         dma_addr_t next_config_rom_bus;
203         __be32     next_header;
204
205         __le32    *self_id_cpu;
206         dma_addr_t self_id_bus;
207         struct tasklet_struct bus_reset_tasklet;
208
209         u32 self_id_buffer[512];
210 };
211
212 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
213 {
214         return container_of(card, struct fw_ohci, card);
215 }
216
217 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
218 #define IR_CONTEXT_BUFFER_FILL          0x80000000
219 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
220 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
221 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
222 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
223
224 #define CONTEXT_RUN     0x8000
225 #define CONTEXT_WAKE    0x1000
226 #define CONTEXT_DEAD    0x0800
227 #define CONTEXT_ACTIVE  0x0400
228
229 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
230 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
231 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
232
233 #define OHCI1394_REGISTER_SIZE          0x800
234 #define OHCI_LOOP_COUNT                 500
235 #define OHCI1394_PCI_HCI_Control        0x40
236 #define SELF_ID_BUF_SIZE                0x800
237 #define OHCI_TCODE_PHY_PACKET           0x0e
238 #define OHCI_VERSION_1_1                0x010010
239
240 static char ohci_driver_name[] = KBUILD_MODNAME;
241
242 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
243 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
244
245 #define QUIRK_CYCLE_TIMER               1
246 #define QUIRK_RESET_PACKET              2
247 #define QUIRK_BE_HEADERS                4
248 #define QUIRK_NO_1394A                  8
249 #define QUIRK_NO_MSI                    16
250
251 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
252 static const struct {
253         unsigned short vendor, device, flags;
254 } ohci_quirks[] = {
255         {PCI_VENDOR_ID_TI,      PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
256                                                             QUIRK_RESET_PACKET |
257                                                             QUIRK_NO_1394A},
258         {PCI_VENDOR_ID_TI,      PCI_ANY_ID,     QUIRK_RESET_PACKET},
259         {PCI_VENDOR_ID_AL,      PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
260         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
261         {PCI_VENDOR_ID_NEC,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
262         {PCI_VENDOR_ID_VIA,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
263         {PCI_VENDOR_ID_APPLE,   PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
264 };
265
266 /* This overrides anything that was found in ohci_quirks[]. */
267 static int param_quirks;
268 module_param_named(quirks, param_quirks, int, 0644);
269 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
270         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
271         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
272         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
273         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
274         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
275         ")");
276
277 #define OHCI_PARAM_DEBUG_AT_AR          1
278 #define OHCI_PARAM_DEBUG_SELFIDS        2
279 #define OHCI_PARAM_DEBUG_IRQS           4
280 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
281
282 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
283
284 static int param_debug;
285 module_param_named(debug, param_debug, int, 0644);
286 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
287         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
288         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
289         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
290         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
291         ", or a combination, or all = -1)");
292
293 static void log_irqs(u32 evt)
294 {
295         if (likely(!(param_debug &
296                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
297                 return;
298
299         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
300             !(evt & OHCI1394_busReset))
301                 return;
302
303         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
304             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
305             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
306             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
307             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
308             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
309             evt & OHCI1394_isochRx              ? " IR"                 : "",
310             evt & OHCI1394_isochTx              ? " IT"                 : "",
311             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
312             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
313             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
314             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
315             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
316             evt & OHCI1394_busReset             ? " busReset"           : "",
317             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
318                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
319                     OHCI1394_respTxComplete | OHCI1394_isochRx |
320                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
321                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
322                     OHCI1394_cycleInconsistent |
323                     OHCI1394_regAccessFail | OHCI1394_busReset)
324                                                 ? " ?"                  : "");
325 }
326
327 static const char *speed[] = {
328         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
329 };
330 static const char *power[] = {
331         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
332         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
333 };
334 static const char port[] = { '.', '-', 'p', 'c', };
335
336 static char _p(u32 *s, int shift)
337 {
338         return port[*s >> shift & 3];
339 }
340
341 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
342 {
343         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
344                 return;
345
346         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
347                   self_id_count, generation, node_id);
348
349         for (; self_id_count--; ++s)
350                 if ((*s & 1 << 23) == 0)
351                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
352                             "%s gc=%d %s %s%s%s\n",
353                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
354                             speed[*s >> 14 & 3], *s >> 16 & 63,
355                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
356                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
357                 else
358                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
359                             *s, *s >> 24 & 63,
360                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
361                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
362 }
363
364 static const char *evts[] = {
365         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
366         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
367         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
368         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
369         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
370         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
371         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
372         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
373         [0x10] = "-reserved-",          [0x11] = "ack_complete",
374         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
375         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
376         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
377         [0x18] = "-reserved-",          [0x19] = "-reserved-",
378         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
379         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
380         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
381         [0x20] = "pending/cancelled",
382 };
383 static const char *tcodes[] = {
384         [0x0] = "QW req",               [0x1] = "BW req",
385         [0x2] = "W resp",               [0x3] = "-reserved-",
386         [0x4] = "QR req",               [0x5] = "BR req",
387         [0x6] = "QR resp",              [0x7] = "BR resp",
388         [0x8] = "cycle start",          [0x9] = "Lk req",
389         [0xa] = "async stream packet",  [0xb] = "Lk resp",
390         [0xc] = "-reserved-",           [0xd] = "-reserved-",
391         [0xe] = "link internal",        [0xf] = "-reserved-",
392 };
393 static const char *phys[] = {
394         [0x0] = "phy config packet",    [0x1] = "link-on packet",
395         [0x2] = "self-id packet",       [0x3] = "-reserved-",
396 };
397
398 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
399 {
400         int tcode = header[0] >> 4 & 0xf;
401         char specific[12];
402
403         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
404                 return;
405
406         if (unlikely(evt >= ARRAY_SIZE(evts)))
407                         evt = 0x1f;
408
409         if (evt == OHCI1394_evt_bus_reset) {
410                 fw_notify("A%c evt_bus_reset, generation %d\n",
411                     dir, (header[2] >> 16) & 0xff);
412                 return;
413         }
414
415         if (header[0] == ~header[1]) {
416                 fw_notify("A%c %s, %s, %08x\n",
417                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
418                 return;
419         }
420
421         switch (tcode) {
422         case 0x0: case 0x6: case 0x8:
423                 snprintf(specific, sizeof(specific), " = %08x",
424                          be32_to_cpu((__force __be32)header[3]));
425                 break;
426         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
427                 snprintf(specific, sizeof(specific), " %x,%x",
428                          header[3] >> 16, header[3] & 0xffff);
429                 break;
430         default:
431                 specific[0] = '\0';
432         }
433
434         switch (tcode) {
435         case 0xe: case 0xa:
436                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
437                 break;
438         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
439                 fw_notify("A%c spd %x tl %02x, "
440                     "%04x -> %04x, %s, "
441                     "%s, %04x%08x%s\n",
442                     dir, speed, header[0] >> 10 & 0x3f,
443                     header[1] >> 16, header[0] >> 16, evts[evt],
444                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
445                 break;
446         default:
447                 fw_notify("A%c spd %x tl %02x, "
448                     "%04x -> %04x, %s, "
449                     "%s%s\n",
450                     dir, speed, header[0] >> 10 & 0x3f,
451                     header[1] >> 16, header[0] >> 16, evts[evt],
452                     tcodes[tcode], specific);
453         }
454 }
455
456 #else
457
458 #define param_debug 0
459 static inline void log_irqs(u32 evt) {}
460 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
461 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
462
463 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
464
465 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
466 {
467         writel(data, ohci->registers + offset);
468 }
469
470 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
471 {
472         return readl(ohci->registers + offset);
473 }
474
475 static inline void flush_writes(const struct fw_ohci *ohci)
476 {
477         /* Do a dummy read to flush writes. */
478         reg_read(ohci, OHCI1394_Version);
479 }
480
481 static int read_phy_reg(struct fw_ohci *ohci, int addr)
482 {
483         u32 val;
484         int i;
485
486         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
487         for (i = 0; i < 3 + 100; i++) {
488                 val = reg_read(ohci, OHCI1394_PhyControl);
489                 if (val & OHCI1394_PhyControl_ReadDone)
490                         return OHCI1394_PhyControl_ReadData(val);
491
492                 /*
493                  * Try a few times without waiting.  Sleeping is necessary
494                  * only when the link/PHY interface is busy.
495                  */
496                 if (i >= 3)
497                         msleep(1);
498         }
499         fw_error("failed to read phy reg\n");
500
501         return -EBUSY;
502 }
503
504 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
505 {
506         int i;
507
508         reg_write(ohci, OHCI1394_PhyControl,
509                   OHCI1394_PhyControl_Write(addr, val));
510         for (i = 0; i < 3 + 100; i++) {
511                 val = reg_read(ohci, OHCI1394_PhyControl);
512                 if (!(val & OHCI1394_PhyControl_WritePending))
513                         return 0;
514
515                 if (i >= 3)
516                         msleep(1);
517         }
518         fw_error("failed to write phy reg\n");
519
520         return -EBUSY;
521 }
522
523 static int update_phy_reg(struct fw_ohci *ohci, int addr,
524                           int clear_bits, int set_bits)
525 {
526         int ret = read_phy_reg(ohci, addr);
527         if (ret < 0)
528                 return ret;
529
530         /*
531          * The interrupt status bits are cleared by writing a one bit.
532          * Avoid clearing them unless explicitly requested in set_bits.
533          */
534         if (addr == 5)
535                 clear_bits |= PHY_INT_STATUS_BITS;
536
537         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
538 }
539
540 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
541 {
542         int ret;
543
544         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
545         if (ret < 0)
546                 return ret;
547
548         return read_phy_reg(ohci, addr);
549 }
550
551 static int ohci_read_phy_reg(struct fw_card *card, int addr)
552 {
553         struct fw_ohci *ohci = fw_ohci(card);
554         int ret;
555
556         mutex_lock(&ohci->phy_reg_mutex);
557         ret = read_phy_reg(ohci, addr);
558         mutex_unlock(&ohci->phy_reg_mutex);
559
560         return ret;
561 }
562
563 static int ohci_update_phy_reg(struct fw_card *card, int addr,
564                                int clear_bits, int set_bits)
565 {
566         struct fw_ohci *ohci = fw_ohci(card);
567         int ret;
568
569         mutex_lock(&ohci->phy_reg_mutex);
570         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
571         mutex_unlock(&ohci->phy_reg_mutex);
572
573         return ret;
574 }
575
576 static int ar_context_add_page(struct ar_context *ctx)
577 {
578         struct device *dev = ctx->ohci->card.device;
579         struct ar_buffer *ab;
580         dma_addr_t uninitialized_var(ab_bus);
581         size_t offset;
582
583         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
584         if (ab == NULL)
585                 return -ENOMEM;
586
587         ab->next = NULL;
588         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
589         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
590                                                     DESCRIPTOR_STATUS |
591                                                     DESCRIPTOR_BRANCH_ALWAYS);
592         offset = offsetof(struct ar_buffer, data);
593         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
594         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
595         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
596         ab->descriptor.branch_address = 0;
597
598         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
599         ctx->last_buffer->next = ab;
600         ctx->last_buffer = ab;
601
602         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
603         flush_writes(ctx->ohci);
604
605         return 0;
606 }
607
608 static void ar_context_release(struct ar_context *ctx)
609 {
610         struct ar_buffer *ab, *ab_next;
611         size_t offset;
612         dma_addr_t ab_bus;
613
614         for (ab = ctx->current_buffer; ab; ab = ab_next) {
615                 ab_next = ab->next;
616                 offset = offsetof(struct ar_buffer, data);
617                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
618                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
619                                   ab, ab_bus);
620         }
621 }
622
623 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
624 #define cond_le32_to_cpu(v) \
625         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
626 #else
627 #define cond_le32_to_cpu(v) le32_to_cpu(v)
628 #endif
629
630 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
631 {
632         struct fw_ohci *ohci = ctx->ohci;
633         struct fw_packet p;
634         u32 status, length, tcode;
635         int evt;
636
637         p.header[0] = cond_le32_to_cpu(buffer[0]);
638         p.header[1] = cond_le32_to_cpu(buffer[1]);
639         p.header[2] = cond_le32_to_cpu(buffer[2]);
640
641         tcode = (p.header[0] >> 4) & 0x0f;
642         switch (tcode) {
643         case TCODE_WRITE_QUADLET_REQUEST:
644         case TCODE_READ_QUADLET_RESPONSE:
645                 p.header[3] = (__force __u32) buffer[3];
646                 p.header_length = 16;
647                 p.payload_length = 0;
648                 break;
649
650         case TCODE_READ_BLOCK_REQUEST :
651                 p.header[3] = cond_le32_to_cpu(buffer[3]);
652                 p.header_length = 16;
653                 p.payload_length = 0;
654                 break;
655
656         case TCODE_WRITE_BLOCK_REQUEST:
657         case TCODE_READ_BLOCK_RESPONSE:
658         case TCODE_LOCK_REQUEST:
659         case TCODE_LOCK_RESPONSE:
660                 p.header[3] = cond_le32_to_cpu(buffer[3]);
661                 p.header_length = 16;
662                 p.payload_length = p.header[3] >> 16;
663                 break;
664
665         case TCODE_WRITE_RESPONSE:
666         case TCODE_READ_QUADLET_REQUEST:
667         case OHCI_TCODE_PHY_PACKET:
668                 p.header_length = 12;
669                 p.payload_length = 0;
670                 break;
671
672         default:
673                 /* FIXME: Stop context, discard everything, and restart? */
674                 p.header_length = 0;
675                 p.payload_length = 0;
676         }
677
678         p.payload = (void *) buffer + p.header_length;
679
680         /* FIXME: What to do about evt_* errors? */
681         length = (p.header_length + p.payload_length + 3) / 4;
682         status = cond_le32_to_cpu(buffer[length]);
683         evt    = (status >> 16) & 0x1f;
684
685         p.ack        = evt - 16;
686         p.speed      = (status >> 21) & 0x7;
687         p.timestamp  = status & 0xffff;
688         p.generation = ohci->request_generation;
689
690         log_ar_at_event('R', p.speed, p.header, evt);
691
692         /*
693          * The OHCI bus reset handler synthesizes a phy packet with
694          * the new generation number when a bus reset happens (see
695          * section 8.4.2.3).  This helps us determine when a request
696          * was received and make sure we send the response in the same
697          * generation.  We only need this for requests; for responses
698          * we use the unique tlabel for finding the matching
699          * request.
700          *
701          * Alas some chips sometimes emit bus reset packets with a
702          * wrong generation.  We set the correct generation for these
703          * at a slightly incorrect time (in bus_reset_tasklet).
704          */
705         if (evt == OHCI1394_evt_bus_reset) {
706                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
707                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
708         } else if (ctx == &ohci->ar_request_ctx) {
709                 fw_core_handle_request(&ohci->card, &p);
710         } else {
711                 fw_core_handle_response(&ohci->card, &p);
712         }
713
714         return buffer + length + 1;
715 }
716
717 static void ar_context_tasklet(unsigned long data)
718 {
719         struct ar_context *ctx = (struct ar_context *)data;
720         struct fw_ohci *ohci = ctx->ohci;
721         struct ar_buffer *ab;
722         struct descriptor *d;
723         void *buffer, *end;
724
725         ab = ctx->current_buffer;
726         d = &ab->descriptor;
727
728         if (d->res_count == 0) {
729                 size_t size, rest, offset;
730                 dma_addr_t start_bus;
731                 void *start;
732
733                 /*
734                  * This descriptor is finished and we may have a
735                  * packet split across this and the next buffer. We
736                  * reuse the page for reassembling the split packet.
737                  */
738
739                 offset = offsetof(struct ar_buffer, data);
740                 start = buffer = ab;
741                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
742
743                 ab = ab->next;
744                 d = &ab->descriptor;
745                 size = buffer + PAGE_SIZE - ctx->pointer;
746                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
747                 memmove(buffer, ctx->pointer, size);
748                 memcpy(buffer + size, ab->data, rest);
749                 ctx->current_buffer = ab;
750                 ctx->pointer = (void *) ab->data + rest;
751                 end = buffer + size + rest;
752
753                 while (buffer < end)
754                         buffer = handle_ar_packet(ctx, buffer);
755
756                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
757                                   start, start_bus);
758                 ar_context_add_page(ctx);
759         } else {
760                 buffer = ctx->pointer;
761                 ctx->pointer = end =
762                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
763
764                 while (buffer < end)
765                         buffer = handle_ar_packet(ctx, buffer);
766         }
767 }
768
769 static int ar_context_init(struct ar_context *ctx,
770                            struct fw_ohci *ohci, u32 regs)
771 {
772         struct ar_buffer ab;
773
774         ctx->regs        = regs;
775         ctx->ohci        = ohci;
776         ctx->last_buffer = &ab;
777         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
778
779         ar_context_add_page(ctx);
780         ar_context_add_page(ctx);
781         ctx->current_buffer = ab.next;
782         ctx->pointer = ctx->current_buffer->data;
783
784         return 0;
785 }
786
787 static void ar_context_run(struct ar_context *ctx)
788 {
789         struct ar_buffer *ab = ctx->current_buffer;
790         dma_addr_t ab_bus;
791         size_t offset;
792
793         offset = offsetof(struct ar_buffer, data);
794         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
795
796         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
797         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
798         flush_writes(ctx->ohci);
799 }
800
801 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
802 {
803         int b, key;
804
805         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
806         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
807
808         /* figure out which descriptor the branch address goes in */
809         if (z == 2 && (b == 3 || key == 2))
810                 return d;
811         else
812                 return d + z - 1;
813 }
814
815 static void context_tasklet(unsigned long data)
816 {
817         struct context *ctx = (struct context *) data;
818         struct descriptor *d, *last;
819         u32 address;
820         int z;
821         struct descriptor_buffer *desc;
822
823         desc = list_entry(ctx->buffer_list.next,
824                         struct descriptor_buffer, list);
825         last = ctx->last;
826         while (last->branch_address != 0) {
827                 struct descriptor_buffer *old_desc = desc;
828                 address = le32_to_cpu(last->branch_address);
829                 z = address & 0xf;
830                 address &= ~0xf;
831
832                 /* If the branch address points to a buffer outside of the
833                  * current buffer, advance to the next buffer. */
834                 if (address < desc->buffer_bus ||
835                                 address >= desc->buffer_bus + desc->used)
836                         desc = list_entry(desc->list.next,
837                                         struct descriptor_buffer, list);
838                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
839                 last = find_branch_descriptor(d, z);
840
841                 if (!ctx->callback(ctx, d, last))
842                         break;
843
844                 if (old_desc != desc) {
845                         /* If we've advanced to the next buffer, move the
846                          * previous buffer to the free list. */
847                         unsigned long flags;
848                         old_desc->used = 0;
849                         spin_lock_irqsave(&ctx->ohci->lock, flags);
850                         list_move_tail(&old_desc->list, &ctx->buffer_list);
851                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
852                 }
853                 ctx->last = last;
854         }
855 }
856
857 /*
858  * Allocate a new buffer and add it to the list of free buffers for this
859  * context.  Must be called with ohci->lock held.
860  */
861 static int context_add_buffer(struct context *ctx)
862 {
863         struct descriptor_buffer *desc;
864         dma_addr_t uninitialized_var(bus_addr);
865         int offset;
866
867         /*
868          * 16MB of descriptors should be far more than enough for any DMA
869          * program.  This will catch run-away userspace or DoS attacks.
870          */
871         if (ctx->total_allocation >= 16*1024*1024)
872                 return -ENOMEM;
873
874         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
875                         &bus_addr, GFP_ATOMIC);
876         if (!desc)
877                 return -ENOMEM;
878
879         offset = (void *)&desc->buffer - (void *)desc;
880         desc->buffer_size = PAGE_SIZE - offset;
881         desc->buffer_bus = bus_addr + offset;
882         desc->used = 0;
883
884         list_add_tail(&desc->list, &ctx->buffer_list);
885         ctx->total_allocation += PAGE_SIZE;
886
887         return 0;
888 }
889
890 static int context_init(struct context *ctx, struct fw_ohci *ohci,
891                         u32 regs, descriptor_callback_t callback)
892 {
893         ctx->ohci = ohci;
894         ctx->regs = regs;
895         ctx->total_allocation = 0;
896
897         INIT_LIST_HEAD(&ctx->buffer_list);
898         if (context_add_buffer(ctx) < 0)
899                 return -ENOMEM;
900
901         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
902                         struct descriptor_buffer, list);
903
904         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
905         ctx->callback = callback;
906
907         /*
908          * We put a dummy descriptor in the buffer that has a NULL
909          * branch address and looks like it's been sent.  That way we
910          * have a descriptor to append DMA programs to.
911          */
912         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
913         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
914         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
915         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
916         ctx->last = ctx->buffer_tail->buffer;
917         ctx->prev = ctx->buffer_tail->buffer;
918
919         return 0;
920 }
921
922 static void context_release(struct context *ctx)
923 {
924         struct fw_card *card = &ctx->ohci->card;
925         struct descriptor_buffer *desc, *tmp;
926
927         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
928                 dma_free_coherent(card->device, PAGE_SIZE, desc,
929                         desc->buffer_bus -
930                         ((void *)&desc->buffer - (void *)desc));
931 }
932
933 /* Must be called with ohci->lock held */
934 static struct descriptor *context_get_descriptors(struct context *ctx,
935                                                   int z, dma_addr_t *d_bus)
936 {
937         struct descriptor *d = NULL;
938         struct descriptor_buffer *desc = ctx->buffer_tail;
939
940         if (z * sizeof(*d) > desc->buffer_size)
941                 return NULL;
942
943         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
944                 /* No room for the descriptor in this buffer, so advance to the
945                  * next one. */
946
947                 if (desc->list.next == &ctx->buffer_list) {
948                         /* If there is no free buffer next in the list,
949                          * allocate one. */
950                         if (context_add_buffer(ctx) < 0)
951                                 return NULL;
952                 }
953                 desc = list_entry(desc->list.next,
954                                 struct descriptor_buffer, list);
955                 ctx->buffer_tail = desc;
956         }
957
958         d = desc->buffer + desc->used / sizeof(*d);
959         memset(d, 0, z * sizeof(*d));
960         *d_bus = desc->buffer_bus + desc->used;
961
962         return d;
963 }
964
965 static void context_run(struct context *ctx, u32 extra)
966 {
967         struct fw_ohci *ohci = ctx->ohci;
968
969         reg_write(ohci, COMMAND_PTR(ctx->regs),
970                   le32_to_cpu(ctx->last->branch_address));
971         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
972         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
973         flush_writes(ohci);
974 }
975
976 static void context_append(struct context *ctx,
977                            struct descriptor *d, int z, int extra)
978 {
979         dma_addr_t d_bus;
980         struct descriptor_buffer *desc = ctx->buffer_tail;
981
982         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
983
984         desc->used += (z + extra) * sizeof(*d);
985         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
986         ctx->prev = find_branch_descriptor(d, z);
987
988         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
989         flush_writes(ctx->ohci);
990 }
991
992 static void context_stop(struct context *ctx)
993 {
994         u32 reg;
995         int i;
996
997         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
998         flush_writes(ctx->ohci);
999
1000         for (i = 0; i < 10; i++) {
1001                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1002                 if ((reg & CONTEXT_ACTIVE) == 0)
1003                         return;
1004
1005                 mdelay(1);
1006         }
1007         fw_error("Error: DMA context still active (0x%08x)\n", reg);
1008 }
1009
1010 struct driver_data {
1011         struct fw_packet *packet;
1012 };
1013
1014 /*
1015  * This function apppends a packet to the DMA queue for transmission.
1016  * Must always be called with the ochi->lock held to ensure proper
1017  * generation handling and locking around packet queue manipulation.
1018  */
1019 static int at_context_queue_packet(struct context *ctx,
1020                                    struct fw_packet *packet)
1021 {
1022         struct fw_ohci *ohci = ctx->ohci;
1023         dma_addr_t d_bus, uninitialized_var(payload_bus);
1024         struct driver_data *driver_data;
1025         struct descriptor *d, *last;
1026         __le32 *header;
1027         int z, tcode;
1028         u32 reg;
1029
1030         d = context_get_descriptors(ctx, 4, &d_bus);
1031         if (d == NULL) {
1032                 packet->ack = RCODE_SEND_ERROR;
1033                 return -1;
1034         }
1035
1036         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1037         d[0].res_count = cpu_to_le16(packet->timestamp);
1038
1039         /*
1040          * The DMA format for asyncronous link packets is different
1041          * from the IEEE1394 layout, so shift the fields around
1042          * accordingly.  If header_length is 8, it's a PHY packet, to
1043          * which we need to prepend an extra quadlet.
1044          */
1045
1046         header = (__le32 *) &d[1];
1047         switch (packet->header_length) {
1048         case 16:
1049         case 12:
1050                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1051                                         (packet->speed << 16));
1052                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1053                                         (packet->header[0] & 0xffff0000));
1054                 header[2] = cpu_to_le32(packet->header[2]);
1055
1056                 tcode = (packet->header[0] >> 4) & 0x0f;
1057                 if (TCODE_IS_BLOCK_PACKET(tcode))
1058                         header[3] = cpu_to_le32(packet->header[3]);
1059                 else
1060                         header[3] = (__force __le32) packet->header[3];
1061
1062                 d[0].req_count = cpu_to_le16(packet->header_length);
1063                 break;
1064
1065         case 8:
1066                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1067                                         (packet->speed << 16));
1068                 header[1] = cpu_to_le32(packet->header[0]);
1069                 header[2] = cpu_to_le32(packet->header[1]);
1070                 d[0].req_count = cpu_to_le16(12);
1071
1072                 if (is_ping_packet(packet->header))
1073                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1074                 break;
1075
1076         case 4:
1077                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1078                                         (packet->speed << 16));
1079                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1080                 d[0].req_count = cpu_to_le16(8);
1081                 break;
1082
1083         default:
1084                 /* BUG(); */
1085                 packet->ack = RCODE_SEND_ERROR;
1086                 return -1;
1087         }
1088
1089         driver_data = (struct driver_data *) &d[3];
1090         driver_data->packet = packet;
1091         packet->driver_data = driver_data;
1092
1093         if (packet->payload_length > 0) {
1094                 payload_bus =
1095                         dma_map_single(ohci->card.device, packet->payload,
1096                                        packet->payload_length, DMA_TO_DEVICE);
1097                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1098                         packet->ack = RCODE_SEND_ERROR;
1099                         return -1;
1100                 }
1101                 packet->payload_bus     = payload_bus;
1102                 packet->payload_mapped  = true;
1103
1104                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1105                 d[2].data_address = cpu_to_le32(payload_bus);
1106                 last = &d[2];
1107                 z = 3;
1108         } else {
1109                 last = &d[0];
1110                 z = 2;
1111         }
1112
1113         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1114                                      DESCRIPTOR_IRQ_ALWAYS |
1115                                      DESCRIPTOR_BRANCH_ALWAYS);
1116
1117         /*
1118          * If the controller and packet generations don't match, we need to
1119          * bail out and try again.  If IntEvent.busReset is set, the AT context
1120          * is halted, so appending to the context and trying to run it is
1121          * futile.  Most controllers do the right thing and just flush the AT
1122          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1123          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1124          * up stalling out.  So we just bail out in software and try again
1125          * later, and everyone is happy.
1126          * FIXME: Document how the locking works.
1127          */
1128         if (ohci->generation != packet->generation ||
1129             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1130                 if (packet->payload_mapped)
1131                         dma_unmap_single(ohci->card.device, payload_bus,
1132                                          packet->payload_length, DMA_TO_DEVICE);
1133                 packet->ack = RCODE_GENERATION;
1134                 return -1;
1135         }
1136
1137         context_append(ctx, d, z, 4 - z);
1138
1139         /* If the context isn't already running, start it up. */
1140         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1141         if ((reg & CONTEXT_RUN) == 0)
1142                 context_run(ctx, 0);
1143
1144         return 0;
1145 }
1146
1147 static int handle_at_packet(struct context *context,
1148                             struct descriptor *d,
1149                             struct descriptor *last)
1150 {
1151         struct driver_data *driver_data;
1152         struct fw_packet *packet;
1153         struct fw_ohci *ohci = context->ohci;
1154         int evt;
1155
1156         if (last->transfer_status == 0)
1157                 /* This descriptor isn't done yet, stop iteration. */
1158                 return 0;
1159
1160         driver_data = (struct driver_data *) &d[3];
1161         packet = driver_data->packet;
1162         if (packet == NULL)
1163                 /* This packet was cancelled, just continue. */
1164                 return 1;
1165
1166         if (packet->payload_mapped)
1167                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1168                                  packet->payload_length, DMA_TO_DEVICE);
1169
1170         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1171         packet->timestamp = le16_to_cpu(last->res_count);
1172
1173         log_ar_at_event('T', packet->speed, packet->header, evt);
1174
1175         switch (evt) {
1176         case OHCI1394_evt_timeout:
1177                 /* Async response transmit timed out. */
1178                 packet->ack = RCODE_CANCELLED;
1179                 break;
1180
1181         case OHCI1394_evt_flushed:
1182                 /*
1183                  * The packet was flushed should give same error as
1184                  * when we try to use a stale generation count.
1185                  */
1186                 packet->ack = RCODE_GENERATION;
1187                 break;
1188
1189         case OHCI1394_evt_missing_ack:
1190                 /*
1191                  * Using a valid (current) generation count, but the
1192                  * node is not on the bus or not sending acks.
1193                  */
1194                 packet->ack = RCODE_NO_ACK;
1195                 break;
1196
1197         case ACK_COMPLETE + 0x10:
1198         case ACK_PENDING + 0x10:
1199         case ACK_BUSY_X + 0x10:
1200         case ACK_BUSY_A + 0x10:
1201         case ACK_BUSY_B + 0x10:
1202         case ACK_DATA_ERROR + 0x10:
1203         case ACK_TYPE_ERROR + 0x10:
1204                 packet->ack = evt - 0x10;
1205                 break;
1206
1207         default:
1208                 packet->ack = RCODE_SEND_ERROR;
1209                 break;
1210         }
1211
1212         packet->callback(packet, &ohci->card, packet->ack);
1213
1214         return 1;
1215 }
1216
1217 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1218 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1219 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1220 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1221 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1222
1223 static void handle_local_rom(struct fw_ohci *ohci,
1224                              struct fw_packet *packet, u32 csr)
1225 {
1226         struct fw_packet response;
1227         int tcode, length, i;
1228
1229         tcode = HEADER_GET_TCODE(packet->header[0]);
1230         if (TCODE_IS_BLOCK_PACKET(tcode))
1231                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1232         else
1233                 length = 4;
1234
1235         i = csr - CSR_CONFIG_ROM;
1236         if (i + length > CONFIG_ROM_SIZE) {
1237                 fw_fill_response(&response, packet->header,
1238                                  RCODE_ADDRESS_ERROR, NULL, 0);
1239         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1240                 fw_fill_response(&response, packet->header,
1241                                  RCODE_TYPE_ERROR, NULL, 0);
1242         } else {
1243                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1244                                  (void *) ohci->config_rom + i, length);
1245         }
1246
1247         fw_core_handle_response(&ohci->card, &response);
1248 }
1249
1250 static void handle_local_lock(struct fw_ohci *ohci,
1251                               struct fw_packet *packet, u32 csr)
1252 {
1253         struct fw_packet response;
1254         int tcode, length, ext_tcode, sel;
1255         __be32 *payload, lock_old;
1256         u32 lock_arg, lock_data;
1257
1258         tcode = HEADER_GET_TCODE(packet->header[0]);
1259         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1260         payload = packet->payload;
1261         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1262
1263         if (tcode == TCODE_LOCK_REQUEST &&
1264             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1265                 lock_arg = be32_to_cpu(payload[0]);
1266                 lock_data = be32_to_cpu(payload[1]);
1267         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1268                 lock_arg = 0;
1269                 lock_data = 0;
1270         } else {
1271                 fw_fill_response(&response, packet->header,
1272                                  RCODE_TYPE_ERROR, NULL, 0);
1273                 goto out;
1274         }
1275
1276         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1277         reg_write(ohci, OHCI1394_CSRData, lock_data);
1278         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1279         reg_write(ohci, OHCI1394_CSRControl, sel);
1280
1281         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1282                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1283         else
1284                 fw_notify("swap not done yet\n");
1285
1286         fw_fill_response(&response, packet->header,
1287                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1288  out:
1289         fw_core_handle_response(&ohci->card, &response);
1290 }
1291
1292 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1293 {
1294         u64 offset;
1295         u32 csr;
1296
1297         if (ctx == &ctx->ohci->at_request_ctx) {
1298                 packet->ack = ACK_PENDING;
1299                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1300         }
1301
1302         offset =
1303                 ((unsigned long long)
1304                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1305                 packet->header[2];
1306         csr = offset - CSR_REGISTER_BASE;
1307
1308         /* Handle config rom reads. */
1309         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1310                 handle_local_rom(ctx->ohci, packet, csr);
1311         else switch (csr) {
1312         case CSR_BUS_MANAGER_ID:
1313         case CSR_BANDWIDTH_AVAILABLE:
1314         case CSR_CHANNELS_AVAILABLE_HI:
1315         case CSR_CHANNELS_AVAILABLE_LO:
1316                 handle_local_lock(ctx->ohci, packet, csr);
1317                 break;
1318         default:
1319                 if (ctx == &ctx->ohci->at_request_ctx)
1320                         fw_core_handle_request(&ctx->ohci->card, packet);
1321                 else
1322                         fw_core_handle_response(&ctx->ohci->card, packet);
1323                 break;
1324         }
1325
1326         if (ctx == &ctx->ohci->at_response_ctx) {
1327                 packet->ack = ACK_COMPLETE;
1328                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1329         }
1330 }
1331
1332 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1333 {
1334         unsigned long flags;
1335         int ret;
1336
1337         spin_lock_irqsave(&ctx->ohci->lock, flags);
1338
1339         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1340             ctx->ohci->generation == packet->generation) {
1341                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1342                 handle_local_request(ctx, packet);
1343                 return;
1344         }
1345
1346         ret = at_context_queue_packet(ctx, packet);
1347         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1348
1349         if (ret < 0)
1350                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1351
1352 }
1353
1354 static u32 cycle_timer_ticks(u32 cycle_timer)
1355 {
1356         u32 ticks;
1357
1358         ticks = cycle_timer & 0xfff;
1359         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1360         ticks += (3072 * 8000) * (cycle_timer >> 25);
1361
1362         return ticks;
1363 }
1364
1365 /*
1366  * Some controllers exhibit one or more of the following bugs when updating the
1367  * iso cycle timer register:
1368  *  - When the lowest six bits are wrapping around to zero, a read that happens
1369  *    at the same time will return garbage in the lowest ten bits.
1370  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1371  *    not incremented for about 60 ns.
1372  *  - Occasionally, the entire register reads zero.
1373  *
1374  * To catch these, we read the register three times and ensure that the
1375  * difference between each two consecutive reads is approximately the same, i.e.
1376  * less than twice the other.  Furthermore, any negative difference indicates an
1377  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1378  * execute, so we have enough precision to compute the ratio of the differences.)
1379  */
1380 static u32 get_cycle_time(struct fw_ohci *ohci)
1381 {
1382         u32 c0, c1, c2;
1383         u32 t0, t1, t2;
1384         s32 diff01, diff12;
1385         int i;
1386
1387         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1388
1389         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1390                 i = 0;
1391                 c1 = c2;
1392                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1393                 do {
1394                         c0 = c1;
1395                         c1 = c2;
1396                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1397                         t0 = cycle_timer_ticks(c0);
1398                         t1 = cycle_timer_ticks(c1);
1399                         t2 = cycle_timer_ticks(c2);
1400                         diff01 = t1 - t0;
1401                         diff12 = t2 - t1;
1402                 } while ((diff01 <= 0 || diff12 <= 0 ||
1403                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1404                          && i++ < 20);
1405         }
1406
1407         return c2;
1408 }
1409
1410 /*
1411  * This function has to be called at least every 64 seconds.  The bus_time
1412  * field stores not only the upper 25 bits of the BUS_TIME register but also
1413  * the most significant bit of the cycle timer in bit 6 so that we can detect
1414  * changes in this bit.
1415  */
1416 static u32 update_bus_time(struct fw_ohci *ohci)
1417 {
1418         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1419
1420         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1421                 ohci->bus_time += 0x40;
1422
1423         return ohci->bus_time | cycle_time_seconds;
1424 }
1425
1426 static void bus_reset_tasklet(unsigned long data)
1427 {
1428         struct fw_ohci *ohci = (struct fw_ohci *)data;
1429         int self_id_count, i, j, reg;
1430         int generation, new_generation;
1431         unsigned long flags;
1432         void *free_rom = NULL;
1433         dma_addr_t free_rom_bus = 0;
1434         bool is_new_root;
1435
1436         reg = reg_read(ohci, OHCI1394_NodeID);
1437         if (!(reg & OHCI1394_NodeID_idValid)) {
1438                 fw_notify("node ID not valid, new bus reset in progress\n");
1439                 return;
1440         }
1441         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1442                 fw_notify("malconfigured bus\n");
1443                 return;
1444         }
1445         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1446                                OHCI1394_NodeID_nodeNumber);
1447
1448         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1449         if (!(ohci->is_root && is_new_root))
1450                 reg_write(ohci, OHCI1394_LinkControlSet,
1451                           OHCI1394_LinkControl_cycleMaster);
1452         ohci->is_root = is_new_root;
1453
1454         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1455         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1456                 fw_notify("inconsistent self IDs\n");
1457                 return;
1458         }
1459         /*
1460          * The count in the SelfIDCount register is the number of
1461          * bytes in the self ID receive buffer.  Since we also receive
1462          * the inverted quadlets and a header quadlet, we shift one
1463          * bit extra to get the actual number of self IDs.
1464          */
1465         self_id_count = (reg >> 3) & 0xff;
1466         if (self_id_count == 0 || self_id_count > 252) {
1467                 fw_notify("inconsistent self IDs\n");
1468                 return;
1469         }
1470         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1471         rmb();
1472
1473         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1474                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1475                         fw_notify("inconsistent self IDs\n");
1476                         return;
1477                 }
1478                 ohci->self_id_buffer[j] =
1479                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1480         }
1481         rmb();
1482
1483         /*
1484          * Check the consistency of the self IDs we just read.  The
1485          * problem we face is that a new bus reset can start while we
1486          * read out the self IDs from the DMA buffer. If this happens,
1487          * the DMA buffer will be overwritten with new self IDs and we
1488          * will read out inconsistent data.  The OHCI specification
1489          * (section 11.2) recommends a technique similar to
1490          * linux/seqlock.h, where we remember the generation of the
1491          * self IDs in the buffer before reading them out and compare
1492          * it to the current generation after reading them out.  If
1493          * the two generations match we know we have a consistent set
1494          * of self IDs.
1495          */
1496
1497         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1498         if (new_generation != generation) {
1499                 fw_notify("recursive bus reset detected, "
1500                           "discarding self ids\n");
1501                 return;
1502         }
1503
1504         /* FIXME: Document how the locking works. */
1505         spin_lock_irqsave(&ohci->lock, flags);
1506
1507         ohci->generation = generation;
1508         context_stop(&ohci->at_request_ctx);
1509         context_stop(&ohci->at_response_ctx);
1510         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1511
1512         if (ohci->quirks & QUIRK_RESET_PACKET)
1513                 ohci->request_generation = generation;
1514
1515         /*
1516          * This next bit is unrelated to the AT context stuff but we
1517          * have to do it under the spinlock also.  If a new config rom
1518          * was set up before this reset, the old one is now no longer
1519          * in use and we can free it. Update the config rom pointers
1520          * to point to the current config rom and clear the
1521          * next_config_rom pointer so a new udpate can take place.
1522          */
1523
1524         if (ohci->next_config_rom != NULL) {
1525                 if (ohci->next_config_rom != ohci->config_rom) {
1526                         free_rom      = ohci->config_rom;
1527                         free_rom_bus  = ohci->config_rom_bus;
1528                 }
1529                 ohci->config_rom      = ohci->next_config_rom;
1530                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1531                 ohci->next_config_rom = NULL;
1532
1533                 /*
1534                  * Restore config_rom image and manually update
1535                  * config_rom registers.  Writing the header quadlet
1536                  * will indicate that the config rom is ready, so we
1537                  * do that last.
1538                  */
1539                 reg_write(ohci, OHCI1394_BusOptions,
1540                           be32_to_cpu(ohci->config_rom[2]));
1541                 ohci->config_rom[0] = ohci->next_header;
1542                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1543                           be32_to_cpu(ohci->next_header));
1544         }
1545
1546 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1547         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1548         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1549 #endif
1550
1551         spin_unlock_irqrestore(&ohci->lock, flags);
1552
1553         if (free_rom)
1554                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1555                                   free_rom, free_rom_bus);
1556
1557         log_selfids(ohci->node_id, generation,
1558                     self_id_count, ohci->self_id_buffer);
1559
1560         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1561                                  self_id_count, ohci->self_id_buffer,
1562                                  ohci->csr_state_setclear_abdicate);
1563         ohci->csr_state_setclear_abdicate = false;
1564 }
1565
1566 static irqreturn_t irq_handler(int irq, void *data)
1567 {
1568         struct fw_ohci *ohci = data;
1569         u32 event, iso_event;
1570         int i;
1571
1572         event = reg_read(ohci, OHCI1394_IntEventClear);
1573
1574         if (!event || !~event)
1575                 return IRQ_NONE;
1576
1577         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1578         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1579         log_irqs(event);
1580
1581         if (event & OHCI1394_selfIDComplete)
1582                 tasklet_schedule(&ohci->bus_reset_tasklet);
1583
1584         if (event & OHCI1394_RQPkt)
1585                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1586
1587         if (event & OHCI1394_RSPkt)
1588                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1589
1590         if (event & OHCI1394_reqTxComplete)
1591                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1592
1593         if (event & OHCI1394_respTxComplete)
1594                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1595
1596         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1597         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1598
1599         while (iso_event) {
1600                 i = ffs(iso_event) - 1;
1601                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1602                 iso_event &= ~(1 << i);
1603         }
1604
1605         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1606         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1607
1608         while (iso_event) {
1609                 i = ffs(iso_event) - 1;
1610                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1611                 iso_event &= ~(1 << i);
1612         }
1613
1614         if (unlikely(event & OHCI1394_regAccessFail))
1615                 fw_error("Register access failure - "
1616                          "please notify linux1394-devel@lists.sf.net\n");
1617
1618         if (unlikely(event & OHCI1394_postedWriteErr))
1619                 fw_error("PCI posted write error\n");
1620
1621         if (unlikely(event & OHCI1394_cycleTooLong)) {
1622                 if (printk_ratelimit())
1623                         fw_notify("isochronous cycle too long\n");
1624                 reg_write(ohci, OHCI1394_LinkControlSet,
1625                           OHCI1394_LinkControl_cycleMaster);
1626         }
1627
1628         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1629                 /*
1630                  * We need to clear this event bit in order to make
1631                  * cycleMatch isochronous I/O work.  In theory we should
1632                  * stop active cycleMatch iso contexts now and restart
1633                  * them at least two cycles later.  (FIXME?)
1634                  */
1635                 if (printk_ratelimit())
1636                         fw_notify("isochronous cycle inconsistent\n");
1637         }
1638
1639         if (event & OHCI1394_cycle64Seconds) {
1640                 spin_lock(&ohci->lock);
1641                 update_bus_time(ohci);
1642                 spin_unlock(&ohci->lock);
1643         }
1644
1645         return IRQ_HANDLED;
1646 }
1647
1648 static int software_reset(struct fw_ohci *ohci)
1649 {
1650         int i;
1651
1652         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1653
1654         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1655                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1656                      OHCI1394_HCControl_softReset) == 0)
1657                         return 0;
1658                 msleep(1);
1659         }
1660
1661         return -EBUSY;
1662 }
1663
1664 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1665 {
1666         size_t size = length * 4;
1667
1668         memcpy(dest, src, size);
1669         if (size < CONFIG_ROM_SIZE)
1670                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1671 }
1672
1673 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1674 {
1675         bool enable_1394a;
1676         int ret, clear, set, offset;
1677
1678         /* Check if the driver should configure link and PHY. */
1679         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1680               OHCI1394_HCControl_programPhyEnable))
1681                 return 0;
1682
1683         /* Paranoia: check whether the PHY supports 1394a, too. */
1684         enable_1394a = false;
1685         ret = read_phy_reg(ohci, 2);
1686         if (ret < 0)
1687                 return ret;
1688         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1689                 ret = read_paged_phy_reg(ohci, 1, 8);
1690                 if (ret < 0)
1691                         return ret;
1692                 if (ret >= 1)
1693                         enable_1394a = true;
1694         }
1695
1696         if (ohci->quirks & QUIRK_NO_1394A)
1697                 enable_1394a = false;
1698
1699         /* Configure PHY and link consistently. */
1700         if (enable_1394a) {
1701                 clear = 0;
1702                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1703         } else {
1704                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1705                 set = 0;
1706         }
1707         ret = update_phy_reg(ohci, 5, clear, set);
1708         if (ret < 0)
1709                 return ret;
1710
1711         if (enable_1394a)
1712                 offset = OHCI1394_HCControlSet;
1713         else
1714                 offset = OHCI1394_HCControlClear;
1715         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1716
1717         /* Clean up: configuration has been taken care of. */
1718         reg_write(ohci, OHCI1394_HCControlClear,
1719                   OHCI1394_HCControl_programPhyEnable);
1720
1721         return 0;
1722 }
1723
1724 static int ohci_enable(struct fw_card *card,
1725                        const __be32 *config_rom, size_t length)
1726 {
1727         struct fw_ohci *ohci = fw_ohci(card);
1728         struct pci_dev *dev = to_pci_dev(card->device);
1729         u32 lps, seconds, version, irqs;
1730         int i, ret;
1731
1732         if (software_reset(ohci)) {
1733                 fw_error("Failed to reset ohci card.\n");
1734                 return -EBUSY;
1735         }
1736
1737         /*
1738          * Now enable LPS, which we need in order to start accessing
1739          * most of the registers.  In fact, on some cards (ALI M5251),
1740          * accessing registers in the SClk domain without LPS enabled
1741          * will lock up the machine.  Wait 50msec to make sure we have
1742          * full link enabled.  However, with some cards (well, at least
1743          * a JMicron PCIe card), we have to try again sometimes.
1744          */
1745         reg_write(ohci, OHCI1394_HCControlSet,
1746                   OHCI1394_HCControl_LPS |
1747                   OHCI1394_HCControl_postedWriteEnable);
1748         flush_writes(ohci);
1749
1750         for (lps = 0, i = 0; !lps && i < 3; i++) {
1751                 msleep(50);
1752                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1753                       OHCI1394_HCControl_LPS;
1754         }
1755
1756         if (!lps) {
1757                 fw_error("Failed to set Link Power Status\n");
1758                 return -EIO;
1759         }
1760
1761         reg_write(ohci, OHCI1394_HCControlClear,
1762                   OHCI1394_HCControl_noByteSwapData);
1763
1764         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1765         reg_write(ohci, OHCI1394_LinkControlSet,
1766                   OHCI1394_LinkControl_rcvSelfID |
1767                   OHCI1394_LinkControl_rcvPhyPkt |
1768                   OHCI1394_LinkControl_cycleTimerEnable |
1769                   OHCI1394_LinkControl_cycleMaster);
1770
1771         reg_write(ohci, OHCI1394_ATRetries,
1772                   OHCI1394_MAX_AT_REQ_RETRIES |
1773                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1774                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
1775                   (200 << 16));
1776
1777         seconds = lower_32_bits(get_seconds());
1778         reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
1779         ohci->bus_time = seconds & ~0x3f;
1780
1781         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1782         if (version >= OHCI_VERSION_1_1) {
1783                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
1784                           0xfffffffe);
1785                 card->broadcast_channel_auto_allocated = true;
1786         }
1787
1788         /* Get implemented bits of the priority arbitration request counter. */
1789         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
1790         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
1791         reg_write(ohci, OHCI1394_FairnessControl, 0);
1792         card->priority_budget_implemented = ohci->pri_req_max != 0;
1793
1794         ar_context_run(&ohci->ar_request_ctx);
1795         ar_context_run(&ohci->ar_response_ctx);
1796
1797         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1798         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1799         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1800
1801         ret = configure_1394a_enhancements(ohci);
1802         if (ret < 0)
1803                 return ret;
1804
1805         /* Activate link_on bit and contender bit in our self ID packets.*/
1806         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1807         if (ret < 0)
1808                 return ret;
1809
1810         /*
1811          * When the link is not yet enabled, the atomic config rom
1812          * update mechanism described below in ohci_set_config_rom()
1813          * is not active.  We have to update ConfigRomHeader and
1814          * BusOptions manually, and the write to ConfigROMmap takes
1815          * effect immediately.  We tie this to the enabling of the
1816          * link, so we have a valid config rom before enabling - the
1817          * OHCI requires that ConfigROMhdr and BusOptions have valid
1818          * values before enabling.
1819          *
1820          * However, when the ConfigROMmap is written, some controllers
1821          * always read back quadlets 0 and 2 from the config rom to
1822          * the ConfigRomHeader and BusOptions registers on bus reset.
1823          * They shouldn't do that in this initial case where the link
1824          * isn't enabled.  This means we have to use the same
1825          * workaround here, setting the bus header to 0 and then write
1826          * the right values in the bus reset tasklet.
1827          */
1828
1829         if (config_rom) {
1830                 ohci->next_config_rom =
1831                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1832                                            &ohci->next_config_rom_bus,
1833                                            GFP_KERNEL);
1834                 if (ohci->next_config_rom == NULL)
1835                         return -ENOMEM;
1836
1837                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1838         } else {
1839                 /*
1840                  * In the suspend case, config_rom is NULL, which
1841                  * means that we just reuse the old config rom.
1842                  */
1843                 ohci->next_config_rom = ohci->config_rom;
1844                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1845         }
1846
1847         ohci->next_header = ohci->next_config_rom[0];
1848         ohci->next_config_rom[0] = 0;
1849         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1850         reg_write(ohci, OHCI1394_BusOptions,
1851                   be32_to_cpu(ohci->next_config_rom[2]));
1852         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1853
1854         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1855
1856         if (!(ohci->quirks & QUIRK_NO_MSI))
1857                 pci_enable_msi(dev);
1858         if (request_irq(dev->irq, irq_handler,
1859                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1860                         ohci_driver_name, ohci)) {
1861                 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1862                 pci_disable_msi(dev);
1863                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1864                                   ohci->config_rom, ohci->config_rom_bus);
1865                 return -EIO;
1866         }
1867
1868         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1869                 OHCI1394_RQPkt | OHCI1394_RSPkt |
1870                 OHCI1394_isochTx | OHCI1394_isochRx |
1871                 OHCI1394_postedWriteErr |
1872                 OHCI1394_selfIDComplete |
1873                 OHCI1394_regAccessFail |
1874                 OHCI1394_cycle64Seconds |
1875                 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1876                 OHCI1394_masterIntEnable;
1877         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1878                 irqs |= OHCI1394_busReset;
1879         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1880
1881         reg_write(ohci, OHCI1394_HCControlSet,
1882                   OHCI1394_HCControl_linkEnable |
1883                   OHCI1394_HCControl_BIBimageValid);
1884         flush_writes(ohci);
1885
1886         /* We are ready to go, reset bus to finish initialization. */
1887         fw_schedule_bus_reset(&ohci->card, false, true);
1888
1889         return 0;
1890 }
1891
1892 static int ohci_set_config_rom(struct fw_card *card,
1893                                const __be32 *config_rom, size_t length)
1894 {
1895         struct fw_ohci *ohci;
1896         unsigned long flags;
1897         int ret = -EBUSY;
1898         __be32 *next_config_rom;
1899         dma_addr_t uninitialized_var(next_config_rom_bus);
1900
1901         ohci = fw_ohci(card);
1902
1903         /*
1904          * When the OHCI controller is enabled, the config rom update
1905          * mechanism is a bit tricky, but easy enough to use.  See
1906          * section 5.5.6 in the OHCI specification.
1907          *
1908          * The OHCI controller caches the new config rom address in a
1909          * shadow register (ConfigROMmapNext) and needs a bus reset
1910          * for the changes to take place.  When the bus reset is
1911          * detected, the controller loads the new values for the
1912          * ConfigRomHeader and BusOptions registers from the specified
1913          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1914          * shadow register. All automatically and atomically.
1915          *
1916          * Now, there's a twist to this story.  The automatic load of
1917          * ConfigRomHeader and BusOptions doesn't honor the
1918          * noByteSwapData bit, so with a be32 config rom, the
1919          * controller will load be32 values in to these registers
1920          * during the atomic update, even on litte endian
1921          * architectures.  The workaround we use is to put a 0 in the
1922          * header quadlet; 0 is endian agnostic and means that the
1923          * config rom isn't ready yet.  In the bus reset tasklet we
1924          * then set up the real values for the two registers.
1925          *
1926          * We use ohci->lock to avoid racing with the code that sets
1927          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1928          */
1929
1930         next_config_rom =
1931                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1932                                    &next_config_rom_bus, GFP_KERNEL);
1933         if (next_config_rom == NULL)
1934                 return -ENOMEM;
1935
1936         spin_lock_irqsave(&ohci->lock, flags);
1937
1938         if (ohci->next_config_rom == NULL) {
1939                 ohci->next_config_rom = next_config_rom;
1940                 ohci->next_config_rom_bus = next_config_rom_bus;
1941
1942                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1943
1944                 ohci->next_header = config_rom[0];
1945                 ohci->next_config_rom[0] = 0;
1946
1947                 reg_write(ohci, OHCI1394_ConfigROMmap,
1948                           ohci->next_config_rom_bus);
1949                 ret = 0;
1950         }
1951
1952         spin_unlock_irqrestore(&ohci->lock, flags);
1953
1954         /*
1955          * Now initiate a bus reset to have the changes take
1956          * effect. We clean up the old config rom memory and DMA
1957          * mappings in the bus reset tasklet, since the OHCI
1958          * controller could need to access it before the bus reset
1959          * takes effect.
1960          */
1961         if (ret == 0)
1962                 fw_schedule_bus_reset(&ohci->card, true, true);
1963         else
1964                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1965                                   next_config_rom, next_config_rom_bus);
1966
1967         return ret;
1968 }
1969
1970 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1971 {
1972         struct fw_ohci *ohci = fw_ohci(card);
1973
1974         at_context_transmit(&ohci->at_request_ctx, packet);
1975 }
1976
1977 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1978 {
1979         struct fw_ohci *ohci = fw_ohci(card);
1980
1981         at_context_transmit(&ohci->at_response_ctx, packet);
1982 }
1983
1984 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1985 {
1986         struct fw_ohci *ohci = fw_ohci(card);
1987         struct context *ctx = &ohci->at_request_ctx;
1988         struct driver_data *driver_data = packet->driver_data;
1989         int ret = -ENOENT;
1990
1991         tasklet_disable(&ctx->tasklet);
1992
1993         if (packet->ack != 0)
1994                 goto out;
1995
1996         if (packet->payload_mapped)
1997                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1998                                  packet->payload_length, DMA_TO_DEVICE);
1999
2000         log_ar_at_event('T', packet->speed, packet->header, 0x20);
2001         driver_data->packet = NULL;
2002         packet->ack = RCODE_CANCELLED;
2003         packet->callback(packet, &ohci->card, packet->ack);
2004         ret = 0;
2005  out:
2006         tasklet_enable(&ctx->tasklet);
2007
2008         return ret;
2009 }
2010
2011 static int ohci_enable_phys_dma(struct fw_card *card,
2012                                 int node_id, int generation)
2013 {
2014 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2015         return 0;
2016 #else
2017         struct fw_ohci *ohci = fw_ohci(card);
2018         unsigned long flags;
2019         int n, ret = 0;
2020
2021         /*
2022          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2023          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2024          */
2025
2026         spin_lock_irqsave(&ohci->lock, flags);
2027
2028         if (ohci->generation != generation) {
2029                 ret = -ESTALE;
2030                 goto out;
2031         }
2032
2033         /*
2034          * Note, if the node ID contains a non-local bus ID, physical DMA is
2035          * enabled for _all_ nodes on remote buses.
2036          */
2037
2038         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2039         if (n < 32)
2040                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2041         else
2042                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2043
2044         flush_writes(ohci);
2045  out:
2046         spin_unlock_irqrestore(&ohci->lock, flags);
2047
2048         return ret;
2049 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2050 }
2051
2052 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2053 {
2054         struct fw_ohci *ohci = fw_ohci(card);
2055         unsigned long flags;
2056         u32 value;
2057
2058         switch (csr_offset) {
2059         case CSR_STATE_CLEAR:
2060         case CSR_STATE_SET:
2061                 if (ohci->is_root &&
2062                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2063                      OHCI1394_LinkControl_cycleMaster))
2064                         value = CSR_STATE_BIT_CMSTR;
2065                 else
2066                         value = 0;
2067                 if (ohci->csr_state_setclear_abdicate)
2068                         value |= CSR_STATE_BIT_ABDICATE;
2069
2070                 return value;
2071
2072         case CSR_NODE_IDS:
2073                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2074
2075         case CSR_CYCLE_TIME:
2076                 return get_cycle_time(ohci);
2077
2078         case CSR_BUS_TIME:
2079                 /*
2080                  * We might be called just after the cycle timer has wrapped
2081                  * around but just before the cycle64Seconds handler, so we
2082                  * better check here, too, if the bus time needs to be updated.
2083                  */
2084                 spin_lock_irqsave(&ohci->lock, flags);
2085                 value = update_bus_time(ohci);
2086                 spin_unlock_irqrestore(&ohci->lock, flags);
2087                 return value;
2088
2089         case CSR_BUSY_TIMEOUT:
2090                 value = reg_read(ohci, OHCI1394_ATRetries);
2091                 return (value >> 4) & 0x0ffff00f;
2092
2093         case CSR_PRIORITY_BUDGET:
2094                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2095                         (ohci->pri_req_max << 8);
2096
2097         default:
2098                 WARN_ON(1);
2099                 return 0;
2100         }
2101 }
2102
2103 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2104 {
2105         struct fw_ohci *ohci = fw_ohci(card);
2106         unsigned long flags;
2107
2108         switch (csr_offset) {
2109         case CSR_STATE_CLEAR:
2110                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2111                         reg_write(ohci, OHCI1394_LinkControlClear,
2112                                   OHCI1394_LinkControl_cycleMaster);
2113                         flush_writes(ohci);
2114                 }
2115                 if (value & CSR_STATE_BIT_ABDICATE)
2116                         ohci->csr_state_setclear_abdicate = false;
2117                 break;
2118
2119         case CSR_STATE_SET:
2120                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2121                         reg_write(ohci, OHCI1394_LinkControlSet,
2122                                   OHCI1394_LinkControl_cycleMaster);
2123                         flush_writes(ohci);
2124                 }
2125                 if (value & CSR_STATE_BIT_ABDICATE)
2126                         ohci->csr_state_setclear_abdicate = true;
2127                 break;
2128
2129         case CSR_NODE_IDS:
2130                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2131                 flush_writes(ohci);
2132                 break;
2133
2134         case CSR_CYCLE_TIME:
2135                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2136                 reg_write(ohci, OHCI1394_IntEventSet,
2137                           OHCI1394_cycleInconsistent);
2138                 flush_writes(ohci);
2139                 break;
2140
2141         case CSR_BUS_TIME:
2142                 spin_lock_irqsave(&ohci->lock, flags);
2143                 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2144                 spin_unlock_irqrestore(&ohci->lock, flags);
2145                 break;
2146
2147         case CSR_BUSY_TIMEOUT:
2148                 value = (value & 0xf) | ((value & 0xf) << 4) |
2149                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2150                 reg_write(ohci, OHCI1394_ATRetries, value);
2151                 flush_writes(ohci);
2152                 break;
2153
2154         case CSR_PRIORITY_BUDGET:
2155                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2156                 flush_writes(ohci);
2157                 break;
2158
2159         default:
2160                 WARN_ON(1);
2161                 break;
2162         }
2163 }
2164
2165 static void copy_iso_headers(struct iso_context *ctx, void *p)
2166 {
2167         int i = ctx->header_length;
2168
2169         if (i + ctx->base.header_size > PAGE_SIZE)
2170                 return;
2171
2172         /*
2173          * The iso header is byteswapped to little endian by
2174          * the controller, but the remaining header quadlets
2175          * are big endian.  We want to present all the headers
2176          * as big endian, so we have to swap the first quadlet.
2177          */
2178         if (ctx->base.header_size > 0)
2179                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2180         if (ctx->base.header_size > 4)
2181                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2182         if (ctx->base.header_size > 8)
2183                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2184         ctx->header_length += ctx->base.header_size;
2185 }
2186
2187 static int handle_ir_packet_per_buffer(struct context *context,
2188                                        struct descriptor *d,
2189                                        struct descriptor *last)
2190 {
2191         struct iso_context *ctx =
2192                 container_of(context, struct iso_context, context);
2193         struct descriptor *pd;
2194         __le32 *ir_header;
2195         void *p;
2196
2197         for (pd = d; pd <= last; pd++) {
2198                 if (pd->transfer_status)
2199                         break;
2200         }
2201         if (pd > last)
2202                 /* Descriptor(s) not done yet, stop iteration */
2203                 return 0;
2204
2205         p = last + 1;
2206         copy_iso_headers(ctx, p);
2207
2208         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2209                 ir_header = (__le32 *) p;
2210                 ctx->base.callback(&ctx->base,
2211                                    le32_to_cpu(ir_header[0]) & 0xffff,
2212                                    ctx->header_length, ctx->header,
2213                                    ctx->base.callback_data);
2214                 ctx->header_length = 0;
2215         }
2216
2217         return 1;
2218 }
2219
2220 static int handle_it_packet(struct context *context,
2221                             struct descriptor *d,
2222                             struct descriptor *last)
2223 {
2224         struct iso_context *ctx =
2225                 container_of(context, struct iso_context, context);
2226         int i;
2227         struct descriptor *pd;
2228
2229         for (pd = d; pd <= last; pd++)
2230                 if (pd->transfer_status)
2231                         break;
2232         if (pd > last)
2233                 /* Descriptor(s) not done yet, stop iteration */
2234                 return 0;
2235
2236         i = ctx->header_length;
2237         if (i + 4 < PAGE_SIZE) {
2238                 /* Present this value as big-endian to match the receive code */
2239                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2240                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2241                                 le16_to_cpu(pd->res_count));
2242                 ctx->header_length += 4;
2243         }
2244         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2245                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2246                                    ctx->header_length, ctx->header,
2247                                    ctx->base.callback_data);
2248                 ctx->header_length = 0;
2249         }
2250         return 1;
2251 }
2252
2253 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2254                                 int type, int channel, size_t header_size)
2255 {
2256         struct fw_ohci *ohci = fw_ohci(card);
2257         struct iso_context *ctx, *list;
2258         descriptor_callback_t callback;
2259         u64 *channels, dont_care = ~0ULL;
2260         u32 *mask, regs;
2261         unsigned long flags;
2262         int index, ret = -ENOMEM;
2263
2264         if (type == FW_ISO_CONTEXT_TRANSMIT) {
2265                 channels = &dont_care;
2266                 mask = &ohci->it_context_mask;
2267                 list = ohci->it_context_list;
2268                 callback = handle_it_packet;
2269         } else {
2270                 channels = &ohci->ir_context_channels;
2271                 mask = &ohci->ir_context_mask;
2272                 list = ohci->ir_context_list;
2273                 callback = handle_ir_packet_per_buffer;
2274         }
2275
2276         spin_lock_irqsave(&ohci->lock, flags);
2277         index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2278         if (index >= 0) {
2279                 *channels &= ~(1ULL << channel);
2280                 *mask &= ~(1 << index);
2281         }
2282         spin_unlock_irqrestore(&ohci->lock, flags);
2283
2284         if (index < 0)
2285                 return ERR_PTR(-EBUSY);
2286
2287         if (type == FW_ISO_CONTEXT_TRANSMIT)
2288                 regs = OHCI1394_IsoXmitContextBase(index);
2289         else
2290                 regs = OHCI1394_IsoRcvContextBase(index);
2291
2292         ctx = &list[index];
2293         memset(ctx, 0, sizeof(*ctx));
2294         ctx->header_length = 0;
2295         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2296         if (ctx->header == NULL)
2297                 goto out;
2298
2299         ret = context_init(&ctx->context, ohci, regs, callback);
2300         if (ret < 0)
2301                 goto out_with_header;
2302
2303         return &ctx->base;
2304
2305  out_with_header:
2306         free_page((unsigned long)ctx->header);
2307  out:
2308         spin_lock_irqsave(&ohci->lock, flags);
2309         *mask |= 1 << index;
2310         spin_unlock_irqrestore(&ohci->lock, flags);
2311
2312         return ERR_PTR(ret);
2313 }
2314
2315 static int ohci_start_iso(struct fw_iso_context *base,
2316                           s32 cycle, u32 sync, u32 tags)
2317 {
2318         struct iso_context *ctx = container_of(base, struct iso_context, base);
2319         struct fw_ohci *ohci = ctx->context.ohci;
2320         u32 control, match;
2321         int index;
2322
2323         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2324                 index = ctx - ohci->it_context_list;
2325                 match = 0;
2326                 if (cycle >= 0)
2327                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2328                                 (cycle & 0x7fff) << 16;
2329
2330                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2331                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2332                 context_run(&ctx->context, match);
2333         } else {
2334                 index = ctx - ohci->ir_context_list;
2335                 control = IR_CONTEXT_ISOCH_HEADER;
2336                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2337                 if (cycle >= 0) {
2338                         match |= (cycle & 0x07fff) << 12;
2339                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2340                 }
2341
2342                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2343                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2344                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2345                 context_run(&ctx->context, control);
2346         }
2347
2348         return 0;
2349 }
2350
2351 static int ohci_stop_iso(struct fw_iso_context *base)
2352 {
2353         struct fw_ohci *ohci = fw_ohci(base->card);
2354         struct iso_context *ctx = container_of(base, struct iso_context, base);
2355         int index;
2356
2357         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2358                 index = ctx - ohci->it_context_list;
2359                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2360         } else {
2361                 index = ctx - ohci->ir_context_list;
2362                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2363         }
2364         flush_writes(ohci);
2365         context_stop(&ctx->context);
2366
2367         return 0;
2368 }
2369
2370 static void ohci_free_iso_context(struct fw_iso_context *base)
2371 {
2372         struct fw_ohci *ohci = fw_ohci(base->card);
2373         struct iso_context *ctx = container_of(base, struct iso_context, base);
2374         unsigned long flags;
2375         int index;
2376
2377         ohci_stop_iso(base);
2378         context_release(&ctx->context);
2379         free_page((unsigned long)ctx->header);
2380
2381         spin_lock_irqsave(&ohci->lock, flags);
2382
2383         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2384                 index = ctx - ohci->it_context_list;
2385                 ohci->it_context_mask |= 1 << index;
2386         } else {
2387                 index = ctx - ohci->ir_context_list;
2388                 ohci->ir_context_mask |= 1 << index;
2389                 ohci->ir_context_channels |= 1ULL << base->channel;
2390         }
2391
2392         spin_unlock_irqrestore(&ohci->lock, flags);
2393 }
2394
2395 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2396                                    struct fw_iso_packet *packet,
2397                                    struct fw_iso_buffer *buffer,
2398                                    unsigned long payload)
2399 {
2400         struct iso_context *ctx = container_of(base, struct iso_context, base);
2401         struct descriptor *d, *last, *pd;
2402         struct fw_iso_packet *p;
2403         __le32 *header;
2404         dma_addr_t d_bus, page_bus;
2405         u32 z, header_z, payload_z, irq;
2406         u32 payload_index, payload_end_index, next_page_index;
2407         int page, end_page, i, length, offset;
2408
2409         p = packet;
2410         payload_index = payload;
2411
2412         if (p->skip)
2413                 z = 1;
2414         else
2415                 z = 2;
2416         if (p->header_length > 0)
2417                 z++;
2418
2419         /* Determine the first page the payload isn't contained in. */
2420         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2421         if (p->payload_length > 0)
2422                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2423         else
2424                 payload_z = 0;
2425
2426         z += payload_z;
2427
2428         /* Get header size in number of descriptors. */
2429         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2430
2431         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2432         if (d == NULL)
2433                 return -ENOMEM;
2434
2435         if (!p->skip) {
2436                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2437                 d[0].req_count = cpu_to_le16(8);
2438                 /*
2439                  * Link the skip address to this descriptor itself.  This causes
2440                  * a context to skip a cycle whenever lost cycles or FIFO
2441                  * overruns occur, without dropping the data.  The application
2442                  * should then decide whether this is an error condition or not.
2443                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2444                  */
2445                 d[0].branch_address = cpu_to_le32(d_bus | z);
2446
2447                 header = (__le32 *) &d[1];
2448                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2449                                         IT_HEADER_TAG(p->tag) |
2450                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2451                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2452                                         IT_HEADER_SPEED(ctx->base.speed));
2453                 header[1] =
2454                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2455                                                           p->payload_length));
2456         }
2457
2458         if (p->header_length > 0) {
2459                 d[2].req_count    = cpu_to_le16(p->header_length);
2460                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2461                 memcpy(&d[z], p->header, p->header_length);
2462         }
2463
2464         pd = d + z - payload_z;
2465         payload_end_index = payload_index + p->payload_length;
2466         for (i = 0; i < payload_z; i++) {
2467                 page               = payload_index >> PAGE_SHIFT;
2468                 offset             = payload_index & ~PAGE_MASK;
2469                 next_page_index    = (page + 1) << PAGE_SHIFT;
2470                 length             =
2471                         min(next_page_index, payload_end_index) - payload_index;
2472                 pd[i].req_count    = cpu_to_le16(length);
2473
2474                 page_bus = page_private(buffer->pages[page]);
2475                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2476
2477                 payload_index += length;
2478         }
2479
2480         if (p->interrupt)
2481                 irq = DESCRIPTOR_IRQ_ALWAYS;
2482         else
2483                 irq = DESCRIPTOR_NO_IRQ;
2484
2485         last = z == 2 ? d : d + z - 1;
2486         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2487                                      DESCRIPTOR_STATUS |
2488                                      DESCRIPTOR_BRANCH_ALWAYS |
2489                                      irq);
2490
2491         context_append(&ctx->context, d, z, header_z);
2492
2493         return 0;
2494 }
2495
2496 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2497                                         struct fw_iso_packet *packet,
2498                                         struct fw_iso_buffer *buffer,
2499                                         unsigned long payload)
2500 {
2501         struct iso_context *ctx = container_of(base, struct iso_context, base);
2502         struct descriptor *d, *pd;
2503         struct fw_iso_packet *p = packet;
2504         dma_addr_t d_bus, page_bus;
2505         u32 z, header_z, rest;
2506         int i, j, length;
2507         int page, offset, packet_count, header_size, payload_per_buffer;
2508
2509         /*
2510          * The OHCI controller puts the isochronous header and trailer in the
2511          * buffer, so we need at least 8 bytes.
2512          */
2513         packet_count = p->header_length / ctx->base.header_size;
2514         header_size  = max(ctx->base.header_size, (size_t)8);
2515
2516         /* Get header size in number of descriptors. */
2517         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2518         page     = payload >> PAGE_SHIFT;
2519         offset   = payload & ~PAGE_MASK;
2520         payload_per_buffer = p->payload_length / packet_count;
2521
2522         for (i = 0; i < packet_count; i++) {
2523                 /* d points to the header descriptor */
2524                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2525                 d = context_get_descriptors(&ctx->context,
2526                                 z + header_z, &d_bus);
2527                 if (d == NULL)
2528                         return -ENOMEM;
2529
2530                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2531                                               DESCRIPTOR_INPUT_MORE);
2532                 if (p->skip && i == 0)
2533                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2534                 d->req_count    = cpu_to_le16(header_size);
2535                 d->res_count    = d->req_count;
2536                 d->transfer_status = 0;
2537                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2538
2539                 rest = payload_per_buffer;
2540                 pd = d;
2541                 for (j = 1; j < z; j++) {
2542                         pd++;
2543                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2544                                                   DESCRIPTOR_INPUT_MORE);
2545
2546                         if (offset + rest < PAGE_SIZE)
2547                                 length = rest;
2548                         else
2549                                 length = PAGE_SIZE - offset;
2550                         pd->req_count = cpu_to_le16(length);
2551                         pd->res_count = pd->req_count;
2552                         pd->transfer_status = 0;
2553
2554                         page_bus = page_private(buffer->pages[page]);
2555                         pd->data_address = cpu_to_le32(page_bus + offset);
2556
2557                         offset = (offset + length) & ~PAGE_MASK;
2558                         rest -= length;
2559                         if (offset == 0)
2560                                 page++;
2561                 }
2562                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2563                                           DESCRIPTOR_INPUT_LAST |
2564                                           DESCRIPTOR_BRANCH_ALWAYS);
2565                 if (p->interrupt && i == packet_count - 1)
2566                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2567
2568                 context_append(&ctx->context, d, z, header_z);
2569         }
2570
2571         return 0;
2572 }
2573
2574 static int ohci_queue_iso(struct fw_iso_context *base,
2575                           struct fw_iso_packet *packet,
2576                           struct fw_iso_buffer *buffer,
2577                           unsigned long payload)
2578 {
2579         struct iso_context *ctx = container_of(base, struct iso_context, base);
2580         unsigned long flags;
2581         int ret;
2582
2583         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2584         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2585                 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2586         else
2587                 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2588                                                         buffer, payload);
2589         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2590
2591         return ret;
2592 }
2593
2594 static const struct fw_card_driver ohci_driver = {
2595         .enable                 = ohci_enable,
2596         .read_phy_reg           = ohci_read_phy_reg,
2597         .update_phy_reg         = ohci_update_phy_reg,
2598         .set_config_rom         = ohci_set_config_rom,
2599         .send_request           = ohci_send_request,
2600         .send_response          = ohci_send_response,
2601         .cancel_packet          = ohci_cancel_packet,
2602         .enable_phys_dma        = ohci_enable_phys_dma,
2603         .read_csr               = ohci_read_csr,
2604         .write_csr              = ohci_write_csr,
2605
2606         .allocate_iso_context   = ohci_allocate_iso_context,
2607         .free_iso_context       = ohci_free_iso_context,
2608         .queue_iso              = ohci_queue_iso,
2609         .start_iso              = ohci_start_iso,
2610         .stop_iso               = ohci_stop_iso,
2611 };
2612
2613 #ifdef CONFIG_PPC_PMAC
2614 static void pmac_ohci_on(struct pci_dev *dev)
2615 {
2616         if (machine_is(powermac)) {
2617                 struct device_node *ofn = pci_device_to_OF_node(dev);
2618
2619                 if (ofn) {
2620                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2621                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2622                 }
2623         }
2624 }
2625
2626 static void pmac_ohci_off(struct pci_dev *dev)
2627 {
2628         if (machine_is(powermac)) {
2629                 struct device_node *ofn = pci_device_to_OF_node(dev);
2630
2631                 if (ofn) {
2632                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2633                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2634                 }
2635         }
2636 }
2637 #else
2638 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2639 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2640 #endif /* CONFIG_PPC_PMAC */
2641
2642 static int __devinit pci_probe(struct pci_dev *dev,
2643                                const struct pci_device_id *ent)
2644 {
2645         struct fw_ohci *ohci;
2646         u32 bus_options, max_receive, link_speed, version, link_enh;
2647         u64 guid;
2648         int i, err, n_ir, n_it;
2649         size_t size;
2650
2651         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2652         if (ohci == NULL) {
2653                 err = -ENOMEM;
2654                 goto fail;
2655         }
2656
2657         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2658
2659         pmac_ohci_on(dev);
2660
2661         err = pci_enable_device(dev);
2662         if (err) {
2663                 fw_error("Failed to enable OHCI hardware\n");
2664                 goto fail_free;
2665         }
2666
2667         pci_set_master(dev);
2668         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2669         pci_set_drvdata(dev, ohci);
2670
2671         spin_lock_init(&ohci->lock);
2672         mutex_init(&ohci->phy_reg_mutex);
2673
2674         tasklet_init(&ohci->bus_reset_tasklet,
2675                      bus_reset_tasklet, (unsigned long)ohci);
2676
2677         err = pci_request_region(dev, 0, ohci_driver_name);
2678         if (err) {
2679                 fw_error("MMIO resource unavailable\n");
2680                 goto fail_disable;
2681         }
2682
2683         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2684         if (ohci->registers == NULL) {
2685                 fw_error("Failed to remap registers\n");
2686                 err = -ENXIO;
2687                 goto fail_iomem;
2688         }
2689
2690         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2691                 if (ohci_quirks[i].vendor == dev->vendor &&
2692                     (ohci_quirks[i].device == dev->device ||
2693                      ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2694                         ohci->quirks = ohci_quirks[i].flags;
2695                         break;
2696                 }
2697         if (param_quirks)
2698                 ohci->quirks = param_quirks;
2699
2700         /* TI OHCI-Lynx and compatible: set recommended configuration bits. */
2701         if (dev->vendor == PCI_VENDOR_ID_TI) {
2702                 pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);
2703
2704                 /* adjust latency of ATx FIFO: use 1.7 KB threshold */
2705                 link_enh &= ~TI_LinkEnh_atx_thresh_mask;
2706                 link_enh |= TI_LinkEnh_atx_thresh_1_7K;
2707
2708                 /* use priority arbitration for asynchronous responses */
2709                 link_enh |= TI_LinkEnh_enab_unfair;
2710
2711                 /* required for aPhyEnhanceEnable to work */
2712                 link_enh |= TI_LinkEnh_enab_accel;
2713
2714                 pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
2715         }
2716
2717         ar_context_init(&ohci->ar_request_ctx, ohci,
2718                         OHCI1394_AsReqRcvContextControlSet);
2719
2720         ar_context_init(&ohci->ar_response_ctx, ohci,
2721                         OHCI1394_AsRspRcvContextControlSet);
2722
2723         context_init(&ohci->at_request_ctx, ohci,
2724                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2725
2726         context_init(&ohci->at_response_ctx, ohci,
2727                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2728
2729         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2730         ohci->ir_context_channels = ~0ULL;
2731         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2732         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2733         n_ir = hweight32(ohci->ir_context_mask);
2734         size = sizeof(struct iso_context) * n_ir;
2735         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2736
2737         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2738         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2739         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2740         n_it = hweight32(ohci->it_context_mask);
2741         size = sizeof(struct iso_context) * n_it;
2742         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2743
2744         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2745                 err = -ENOMEM;
2746                 goto fail_contexts;
2747         }
2748
2749         /* self-id dma buffer allocation */
2750         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2751                                                SELF_ID_BUF_SIZE,
2752                                                &ohci->self_id_bus,
2753                                                GFP_KERNEL);
2754         if (ohci->self_id_cpu == NULL) {
2755                 err = -ENOMEM;
2756                 goto fail_contexts;
2757         }
2758
2759         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2760         max_receive = (bus_options >> 12) & 0xf;
2761         link_speed = bus_options & 0x7;
2762         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2763                 reg_read(ohci, OHCI1394_GUIDLo);
2764
2765         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2766         if (err)
2767                 goto fail_self_id;
2768
2769         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2770         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2771                   "%d IR + %d IT contexts, quirks 0x%x\n",
2772                   dev_name(&dev->dev), version >> 16, version & 0xff,
2773                   n_ir, n_it, ohci->quirks);
2774
2775         return 0;
2776
2777  fail_self_id:
2778         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2779                           ohci->self_id_cpu, ohci->self_id_bus);
2780  fail_contexts:
2781         kfree(ohci->ir_context_list);
2782         kfree(ohci->it_context_list);
2783         context_release(&ohci->at_response_ctx);
2784         context_release(&ohci->at_request_ctx);
2785         ar_context_release(&ohci->ar_response_ctx);
2786         ar_context_release(&ohci->ar_request_ctx);
2787         pci_iounmap(dev, ohci->registers);
2788  fail_iomem:
2789         pci_release_region(dev, 0);
2790  fail_disable:
2791         pci_disable_device(dev);
2792  fail_free:
2793         kfree(&ohci->card);
2794         pmac_ohci_off(dev);
2795  fail:
2796         if (err == -ENOMEM)
2797                 fw_error("Out of memory\n");
2798
2799         return err;
2800 }
2801
2802 static void pci_remove(struct pci_dev *dev)
2803 {
2804         struct fw_ohci *ohci;
2805
2806         ohci = pci_get_drvdata(dev);
2807         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2808         flush_writes(ohci);
2809         fw_core_remove_card(&ohci->card);
2810
2811         /*
2812          * FIXME: Fail all pending packets here, now that the upper
2813          * layers can't queue any more.
2814          */
2815
2816         software_reset(ohci);
2817         free_irq(dev->irq, ohci);
2818
2819         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2820                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2821                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2822         if (ohci->config_rom)
2823                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2824                                   ohci->config_rom, ohci->config_rom_bus);
2825         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2826                           ohci->self_id_cpu, ohci->self_id_bus);
2827         ar_context_release(&ohci->ar_request_ctx);
2828         ar_context_release(&ohci->ar_response_ctx);
2829         context_release(&ohci->at_request_ctx);
2830         context_release(&ohci->at_response_ctx);
2831         kfree(ohci->it_context_list);
2832         kfree(ohci->ir_context_list);
2833         pci_disable_msi(dev);
2834         pci_iounmap(dev, ohci->registers);
2835         pci_release_region(dev, 0);
2836         pci_disable_device(dev);
2837         kfree(&ohci->card);
2838         pmac_ohci_off(dev);
2839
2840         fw_notify("Removed fw-ohci device.\n");
2841 }
2842
2843 #ifdef CONFIG_PM
2844 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2845 {
2846         struct fw_ohci *ohci = pci_get_drvdata(dev);
2847         int err;
2848
2849         software_reset(ohci);
2850         free_irq(dev->irq, ohci);
2851         pci_disable_msi(dev);
2852         err = pci_save_state(dev);
2853         if (err) {
2854                 fw_error("pci_save_state failed\n");
2855                 return err;
2856         }
2857         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2858         if (err)
2859                 fw_error("pci_set_power_state failed with %d\n", err);
2860         pmac_ohci_off(dev);
2861
2862         return 0;
2863 }
2864
2865 static int pci_resume(struct pci_dev *dev)
2866 {
2867         struct fw_ohci *ohci = pci_get_drvdata(dev);
2868         int err;
2869
2870         pmac_ohci_on(dev);
2871         pci_set_power_state(dev, PCI_D0);
2872         pci_restore_state(dev);
2873         err = pci_enable_device(dev);
2874         if (err) {
2875                 fw_error("pci_enable_device failed\n");
2876                 return err;
2877         }
2878
2879         return ohci_enable(&ohci->card, NULL, 0);
2880 }
2881 #endif
2882
2883 static const struct pci_device_id pci_table[] = {
2884         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2885         { }
2886 };
2887
2888 MODULE_DEVICE_TABLE(pci, pci_table);
2889
2890 static struct pci_driver fw_ohci_pci_driver = {
2891         .name           = ohci_driver_name,
2892         .id_table       = pci_table,
2893         .probe          = pci_probe,
2894         .remove         = pci_remove,
2895 #ifdef CONFIG_PM
2896         .resume         = pci_resume,
2897         .suspend        = pci_suspend,
2898 #endif
2899 };
2900
2901 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2902 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2903 MODULE_LICENSE("GPL");
2904
2905 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2906 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2907 MODULE_ALIAS("ohci1394");
2908 #endif
2909
2910 static int __init fw_ohci_init(void)
2911 {
2912         return pci_register_driver(&fw_ohci_pci_driver);
2913 }
2914
2915 static void __exit fw_ohci_cleanup(void)
2916 {
2917         pci_unregister_driver(&fw_ohci_pci_driver);
2918 }
2919
2920 module_init(fw_ohci_init);
2921 module_exit(fw_ohci_cleanup);