net: Make RFS socket operations not be inet specific.
[linux-flexiantxendom0-natty.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
84
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
87
88
89 #ifdef CONFIG_TCP_MD5SIG
90 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
91                                                    __be32 addr);
92 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
93                                __be32 daddr, __be32 saddr, struct tcphdr *th);
94 #else
95 static inline
96 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
97 {
98         return NULL;
99 }
100 #endif
101
102 struct inet_hashinfo tcp_hashinfo;
103
104 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
105 {
106         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
107                                           ip_hdr(skb)->saddr,
108                                           tcp_hdr(skb)->dest,
109                                           tcp_hdr(skb)->source);
110 }
111
112 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
113 {
114         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115         struct tcp_sock *tp = tcp_sk(sk);
116
117         /* With PAWS, it is safe from the viewpoint
118            of data integrity. Even without PAWS it is safe provided sequence
119            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
120
121            Actually, the idea is close to VJ's one, only timestamp cache is
122            held not per host, but per port pair and TW bucket is used as state
123            holder.
124
125            If TW bucket has been already destroyed we fall back to VJ's scheme
126            and use initial timestamp retrieved from peer table.
127          */
128         if (tcptw->tw_ts_recent_stamp &&
129             (twp == NULL || (sysctl_tcp_tw_reuse &&
130                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
131                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
132                 if (tp->write_seq == 0)
133                         tp->write_seq = 1;
134                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
135                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
136                 sock_hold(sktw);
137                 return 1;
138         }
139
140         return 0;
141 }
142
143 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
144
145 /* This will initiate an outgoing connection. */
146 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
147 {
148         struct inet_sock *inet = inet_sk(sk);
149         struct tcp_sock *tp = tcp_sk(sk);
150         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
151         struct rtable *rt;
152         __be32 daddr, nexthop;
153         int tmp;
154         int err;
155
156         if (addr_len < sizeof(struct sockaddr_in))
157                 return -EINVAL;
158
159         if (usin->sin_family != AF_INET)
160                 return -EAFNOSUPPORT;
161
162         nexthop = daddr = usin->sin_addr.s_addr;
163         if (inet->opt && inet->opt->srr) {
164                 if (!daddr)
165                         return -EINVAL;
166                 nexthop = inet->opt->faddr;
167         }
168
169         tmp = ip_route_connect(&rt, nexthop, inet->inet_saddr,
170                                RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
171                                IPPROTO_TCP,
172                                inet->inet_sport, usin->sin_port, sk, 1);
173         if (tmp < 0) {
174                 if (tmp == -ENETUNREACH)
175                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
176                 return tmp;
177         }
178
179         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
180                 ip_rt_put(rt);
181                 return -ENETUNREACH;
182         }
183
184         if (!inet->opt || !inet->opt->srr)
185                 daddr = rt->rt_dst;
186
187         if (!inet->inet_saddr)
188                 inet->inet_saddr = rt->rt_src;
189         inet->inet_rcv_saddr = inet->inet_saddr;
190
191         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
192                 /* Reset inherited state */
193                 tp->rx_opt.ts_recent       = 0;
194                 tp->rx_opt.ts_recent_stamp = 0;
195                 tp->write_seq              = 0;
196         }
197
198         if (tcp_death_row.sysctl_tw_recycle &&
199             !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
200                 struct inet_peer *peer = rt_get_peer(rt);
201                 /*
202                  * VJ's idea. We save last timestamp seen from
203                  * the destination in peer table, when entering state
204                  * TIME-WAIT * and initialize rx_opt.ts_recent from it,
205                  * when trying new connection.
206                  */
207                 if (peer != NULL &&
208                     (u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
209                         tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
210                         tp->rx_opt.ts_recent = peer->tcp_ts;
211                 }
212         }
213
214         inet->inet_dport = usin->sin_port;
215         inet->inet_daddr = daddr;
216
217         inet_csk(sk)->icsk_ext_hdr_len = 0;
218         if (inet->opt)
219                 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
220
221         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
222
223         /* Socket identity is still unknown (sport may be zero).
224          * However we set state to SYN-SENT and not releasing socket
225          * lock select source port, enter ourselves into the hash tables and
226          * complete initialization after this.
227          */
228         tcp_set_state(sk, TCP_SYN_SENT);
229         err = inet_hash_connect(&tcp_death_row, sk);
230         if (err)
231                 goto failure;
232
233         err = ip_route_newports(&rt, IPPROTO_TCP,
234                                 inet->inet_sport, inet->inet_dport, sk);
235         if (err)
236                 goto failure;
237
238         /* OK, now commit destination to socket.  */
239         sk->sk_gso_type = SKB_GSO_TCPV4;
240         sk_setup_caps(sk, &rt->u.dst);
241
242         if (!tp->write_seq)
243                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
244                                                            inet->inet_daddr,
245                                                            inet->inet_sport,
246                                                            usin->sin_port);
247
248         inet->inet_id = tp->write_seq ^ jiffies;
249
250         err = tcp_connect(sk);
251         rt = NULL;
252         if (err)
253                 goto failure;
254
255         return 0;
256
257 failure:
258         /*
259          * This unhashes the socket and releases the local port,
260          * if necessary.
261          */
262         tcp_set_state(sk, TCP_CLOSE);
263         ip_rt_put(rt);
264         sk->sk_route_caps = 0;
265         inet->inet_dport = 0;
266         return err;
267 }
268
269 /*
270  * This routine does path mtu discovery as defined in RFC1191.
271  */
272 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
273 {
274         struct dst_entry *dst;
275         struct inet_sock *inet = inet_sk(sk);
276
277         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278          * send out by Linux are always <576bytes so they should go through
279          * unfragmented).
280          */
281         if (sk->sk_state == TCP_LISTEN)
282                 return;
283
284         /* We don't check in the destentry if pmtu discovery is forbidden
285          * on this route. We just assume that no packet_to_big packets
286          * are send back when pmtu discovery is not active.
287          * There is a small race when the user changes this flag in the
288          * route, but I think that's acceptable.
289          */
290         if ((dst = __sk_dst_check(sk, 0)) == NULL)
291                 return;
292
293         dst->ops->update_pmtu(dst, mtu);
294
295         /* Something is about to be wrong... Remember soft error
296          * for the case, if this connection will not able to recover.
297          */
298         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
299                 sk->sk_err_soft = EMSGSIZE;
300
301         mtu = dst_mtu(dst);
302
303         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
304             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
305                 tcp_sync_mss(sk, mtu);
306
307                 /* Resend the TCP packet because it's
308                  * clear that the old packet has been
309                  * dropped. This is the new "fast" path mtu
310                  * discovery.
311                  */
312                 tcp_simple_retransmit(sk);
313         } /* else let the usual retransmit timer handle it */
314 }
315
316 /*
317  * This routine is called by the ICMP module when it gets some
318  * sort of error condition.  If err < 0 then the socket should
319  * be closed and the error returned to the user.  If err > 0
320  * it's just the icmp type << 8 | icmp code.  After adjustment
321  * header points to the first 8 bytes of the tcp header.  We need
322  * to find the appropriate port.
323  *
324  * The locking strategy used here is very "optimistic". When
325  * someone else accesses the socket the ICMP is just dropped
326  * and for some paths there is no check at all.
327  * A more general error queue to queue errors for later handling
328  * is probably better.
329  *
330  */
331
332 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
333 {
334         struct iphdr *iph = (struct iphdr *)icmp_skb->data;
335         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
336         struct inet_connection_sock *icsk;
337         struct tcp_sock *tp;
338         struct inet_sock *inet;
339         const int type = icmp_hdr(icmp_skb)->type;
340         const int code = icmp_hdr(icmp_skb)->code;
341         struct sock *sk;
342         struct sk_buff *skb;
343         __u32 seq;
344         __u32 remaining;
345         int err;
346         struct net *net = dev_net(icmp_skb->dev);
347
348         if (icmp_skb->len < (iph->ihl << 2) + 8) {
349                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
350                 return;
351         }
352
353         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
354                         iph->saddr, th->source, inet_iif(icmp_skb));
355         if (!sk) {
356                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
357                 return;
358         }
359         if (sk->sk_state == TCP_TIME_WAIT) {
360                 inet_twsk_put(inet_twsk(sk));
361                 return;
362         }
363
364         bh_lock_sock(sk);
365         /* If too many ICMPs get dropped on busy
366          * servers this needs to be solved differently.
367          */
368         if (sock_owned_by_user(sk))
369                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
370
371         if (sk->sk_state == TCP_CLOSE)
372                 goto out;
373
374         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
375                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
376                 goto out;
377         }
378
379         icsk = inet_csk(sk);
380         tp = tcp_sk(sk);
381         seq = ntohl(th->seq);
382         if (sk->sk_state != TCP_LISTEN &&
383             !between(seq, tp->snd_una, tp->snd_nxt)) {
384                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
385                 goto out;
386         }
387
388         switch (type) {
389         case ICMP_SOURCE_QUENCH:
390                 /* Just silently ignore these. */
391                 goto out;
392         case ICMP_PARAMETERPROB:
393                 err = EPROTO;
394                 break;
395         case ICMP_DEST_UNREACH:
396                 if (code > NR_ICMP_UNREACH)
397                         goto out;
398
399                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
400                         if (!sock_owned_by_user(sk))
401                                 do_pmtu_discovery(sk, iph, info);
402                         goto out;
403                 }
404
405                 err = icmp_err_convert[code].errno;
406                 /* check if icmp_skb allows revert of backoff
407                  * (see draft-zimmermann-tcp-lcd) */
408                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
409                         break;
410                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
411                     !icsk->icsk_backoff)
412                         break;
413
414                 icsk->icsk_backoff--;
415                 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
416                                          icsk->icsk_backoff;
417                 tcp_bound_rto(sk);
418
419                 skb = tcp_write_queue_head(sk);
420                 BUG_ON(!skb);
421
422                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
423                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
424
425                 if (remaining) {
426                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
427                                                   remaining, TCP_RTO_MAX);
428                 } else if (sock_owned_by_user(sk)) {
429                         /* RTO revert clocked out retransmission,
430                          * but socket is locked. Will defer. */
431                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
432                                                   HZ/20, TCP_RTO_MAX);
433                 } else {
434                         /* RTO revert clocked out retransmission.
435                          * Will retransmit now */
436                         tcp_retransmit_timer(sk);
437                 }
438
439                 break;
440         case ICMP_TIME_EXCEEDED:
441                 err = EHOSTUNREACH;
442                 break;
443         default:
444                 goto out;
445         }
446
447         switch (sk->sk_state) {
448                 struct request_sock *req, **prev;
449         case TCP_LISTEN:
450                 if (sock_owned_by_user(sk))
451                         goto out;
452
453                 req = inet_csk_search_req(sk, &prev, th->dest,
454                                           iph->daddr, iph->saddr);
455                 if (!req)
456                         goto out;
457
458                 /* ICMPs are not backlogged, hence we cannot get
459                    an established socket here.
460                  */
461                 WARN_ON(req->sk);
462
463                 if (seq != tcp_rsk(req)->snt_isn) {
464                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
465                         goto out;
466                 }
467
468                 /*
469                  * Still in SYN_RECV, just remove it silently.
470                  * There is no good way to pass the error to the newly
471                  * created socket, and POSIX does not want network
472                  * errors returned from accept().
473                  */
474                 inet_csk_reqsk_queue_drop(sk, req, prev);
475                 goto out;
476
477         case TCP_SYN_SENT:
478         case TCP_SYN_RECV:  /* Cannot happen.
479                                It can f.e. if SYNs crossed.
480                              */
481                 if (!sock_owned_by_user(sk)) {
482                         sk->sk_err = err;
483
484                         sk->sk_error_report(sk);
485
486                         tcp_done(sk);
487                 } else {
488                         sk->sk_err_soft = err;
489                 }
490                 goto out;
491         }
492
493         /* If we've already connected we will keep trying
494          * until we time out, or the user gives up.
495          *
496          * rfc1122 4.2.3.9 allows to consider as hard errors
497          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
498          * but it is obsoleted by pmtu discovery).
499          *
500          * Note, that in modern internet, where routing is unreliable
501          * and in each dark corner broken firewalls sit, sending random
502          * errors ordered by their masters even this two messages finally lose
503          * their original sense (even Linux sends invalid PORT_UNREACHs)
504          *
505          * Now we are in compliance with RFCs.
506          *                                                      --ANK (980905)
507          */
508
509         inet = inet_sk(sk);
510         if (!sock_owned_by_user(sk) && inet->recverr) {
511                 sk->sk_err = err;
512                 sk->sk_error_report(sk);
513         } else  { /* Only an error on timeout */
514                 sk->sk_err_soft = err;
515         }
516
517 out:
518         bh_unlock_sock(sk);
519         sock_put(sk);
520 }
521
522 static void __tcp_v4_send_check(struct sk_buff *skb,
523                                 __be32 saddr, __be32 daddr)
524 {
525         struct tcphdr *th = tcp_hdr(skb);
526
527         if (skb->ip_summed == CHECKSUM_PARTIAL) {
528                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
529                 skb->csum_start = skb_transport_header(skb) - skb->head;
530                 skb->csum_offset = offsetof(struct tcphdr, check);
531         } else {
532                 th->check = tcp_v4_check(skb->len, saddr, daddr,
533                                          csum_partial(th,
534                                                       th->doff << 2,
535                                                       skb->csum));
536         }
537 }
538
539 /* This routine computes an IPv4 TCP checksum. */
540 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
541 {
542         struct inet_sock *inet = inet_sk(sk);
543
544         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
545 }
546
547 int tcp_v4_gso_send_check(struct sk_buff *skb)
548 {
549         const struct iphdr *iph;
550         struct tcphdr *th;
551
552         if (!pskb_may_pull(skb, sizeof(*th)))
553                 return -EINVAL;
554
555         iph = ip_hdr(skb);
556         th = tcp_hdr(skb);
557
558         th->check = 0;
559         skb->ip_summed = CHECKSUM_PARTIAL;
560         __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
561         return 0;
562 }
563
564 /*
565  *      This routine will send an RST to the other tcp.
566  *
567  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
568  *                    for reset.
569  *      Answer: if a packet caused RST, it is not for a socket
570  *              existing in our system, if it is matched to a socket,
571  *              it is just duplicate segment or bug in other side's TCP.
572  *              So that we build reply only basing on parameters
573  *              arrived with segment.
574  *      Exception: precedence violation. We do not implement it in any case.
575  */
576
577 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
578 {
579         struct tcphdr *th = tcp_hdr(skb);
580         struct {
581                 struct tcphdr th;
582 #ifdef CONFIG_TCP_MD5SIG
583                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
584 #endif
585         } rep;
586         struct ip_reply_arg arg;
587 #ifdef CONFIG_TCP_MD5SIG
588         struct tcp_md5sig_key *key;
589 #endif
590         struct net *net;
591
592         /* Never send a reset in response to a reset. */
593         if (th->rst)
594                 return;
595
596         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
597                 return;
598
599         /* Swap the send and the receive. */
600         memset(&rep, 0, sizeof(rep));
601         rep.th.dest   = th->source;
602         rep.th.source = th->dest;
603         rep.th.doff   = sizeof(struct tcphdr) / 4;
604         rep.th.rst    = 1;
605
606         if (th->ack) {
607                 rep.th.seq = th->ack_seq;
608         } else {
609                 rep.th.ack = 1;
610                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
611                                        skb->len - (th->doff << 2));
612         }
613
614         memset(&arg, 0, sizeof(arg));
615         arg.iov[0].iov_base = (unsigned char *)&rep;
616         arg.iov[0].iov_len  = sizeof(rep.th);
617
618 #ifdef CONFIG_TCP_MD5SIG
619         key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
620         if (key) {
621                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
622                                    (TCPOPT_NOP << 16) |
623                                    (TCPOPT_MD5SIG << 8) |
624                                    TCPOLEN_MD5SIG);
625                 /* Update length and the length the header thinks exists */
626                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
627                 rep.th.doff = arg.iov[0].iov_len / 4;
628
629                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
630                                      key, ip_hdr(skb)->saddr,
631                                      ip_hdr(skb)->daddr, &rep.th);
632         }
633 #endif
634         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
635                                       ip_hdr(skb)->saddr, /* XXX */
636                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
637         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
638         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
639
640         net = dev_net(skb_dst(skb)->dev);
641         ip_send_reply(net->ipv4.tcp_sock, skb,
642                       &arg, arg.iov[0].iov_len);
643
644         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
645         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
646 }
647
648 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
649    outside socket context is ugly, certainly. What can I do?
650  */
651
652 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
653                             u32 win, u32 ts, int oif,
654                             struct tcp_md5sig_key *key,
655                             int reply_flags)
656 {
657         struct tcphdr *th = tcp_hdr(skb);
658         struct {
659                 struct tcphdr th;
660                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
661 #ifdef CONFIG_TCP_MD5SIG
662                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
663 #endif
664                         ];
665         } rep;
666         struct ip_reply_arg arg;
667         struct net *net = dev_net(skb_dst(skb)->dev);
668
669         memset(&rep.th, 0, sizeof(struct tcphdr));
670         memset(&arg, 0, sizeof(arg));
671
672         arg.iov[0].iov_base = (unsigned char *)&rep;
673         arg.iov[0].iov_len  = sizeof(rep.th);
674         if (ts) {
675                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
676                                    (TCPOPT_TIMESTAMP << 8) |
677                                    TCPOLEN_TIMESTAMP);
678                 rep.opt[1] = htonl(tcp_time_stamp);
679                 rep.opt[2] = htonl(ts);
680                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
681         }
682
683         /* Swap the send and the receive. */
684         rep.th.dest    = th->source;
685         rep.th.source  = th->dest;
686         rep.th.doff    = arg.iov[0].iov_len / 4;
687         rep.th.seq     = htonl(seq);
688         rep.th.ack_seq = htonl(ack);
689         rep.th.ack     = 1;
690         rep.th.window  = htons(win);
691
692 #ifdef CONFIG_TCP_MD5SIG
693         if (key) {
694                 int offset = (ts) ? 3 : 0;
695
696                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
697                                           (TCPOPT_NOP << 16) |
698                                           (TCPOPT_MD5SIG << 8) |
699                                           TCPOLEN_MD5SIG);
700                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
701                 rep.th.doff = arg.iov[0].iov_len/4;
702
703                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
704                                     key, ip_hdr(skb)->saddr,
705                                     ip_hdr(skb)->daddr, &rep.th);
706         }
707 #endif
708         arg.flags = reply_flags;
709         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
710                                       ip_hdr(skb)->saddr, /* XXX */
711                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
712         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
713         if (oif)
714                 arg.bound_dev_if = oif;
715
716         ip_send_reply(net->ipv4.tcp_sock, skb,
717                       &arg, arg.iov[0].iov_len);
718
719         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
720 }
721
722 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
723 {
724         struct inet_timewait_sock *tw = inet_twsk(sk);
725         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
726
727         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
728                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
729                         tcptw->tw_ts_recent,
730                         tw->tw_bound_dev_if,
731                         tcp_twsk_md5_key(tcptw),
732                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
733                         );
734
735         inet_twsk_put(tw);
736 }
737
738 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
739                                   struct request_sock *req)
740 {
741         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
742                         tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
743                         req->ts_recent,
744                         0,
745                         tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
746                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
747 }
748
749 /*
750  *      Send a SYN-ACK after having received a SYN.
751  *      This still operates on a request_sock only, not on a big
752  *      socket.
753  */
754 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
755                               struct request_sock *req,
756                               struct request_values *rvp)
757 {
758         const struct inet_request_sock *ireq = inet_rsk(req);
759         int err = -1;
760         struct sk_buff * skb;
761
762         /* First, grab a route. */
763         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
764                 return -1;
765
766         skb = tcp_make_synack(sk, dst, req, rvp);
767
768         if (skb) {
769                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
770
771                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
772                                             ireq->rmt_addr,
773                                             ireq->opt);
774                 err = net_xmit_eval(err);
775         }
776
777         dst_release(dst);
778         return err;
779 }
780
781 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
782                               struct request_values *rvp)
783 {
784         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
785         return tcp_v4_send_synack(sk, NULL, req, rvp);
786 }
787
788 /*
789  *      IPv4 request_sock destructor.
790  */
791 static void tcp_v4_reqsk_destructor(struct request_sock *req)
792 {
793         kfree(inet_rsk(req)->opt);
794 }
795
796 #ifdef CONFIG_SYN_COOKIES
797 static void syn_flood_warning(struct sk_buff *skb)
798 {
799         static unsigned long warntime;
800
801         if (time_after(jiffies, (warntime + HZ * 60))) {
802                 warntime = jiffies;
803                 printk(KERN_INFO
804                        "possible SYN flooding on port %d. Sending cookies.\n",
805                        ntohs(tcp_hdr(skb)->dest));
806         }
807 }
808 #endif
809
810 /*
811  * Save and compile IPv4 options into the request_sock if needed.
812  */
813 static struct ip_options *tcp_v4_save_options(struct sock *sk,
814                                               struct sk_buff *skb)
815 {
816         struct ip_options *opt = &(IPCB(skb)->opt);
817         struct ip_options *dopt = NULL;
818
819         if (opt && opt->optlen) {
820                 int opt_size = optlength(opt);
821                 dopt = kmalloc(opt_size, GFP_ATOMIC);
822                 if (dopt) {
823                         if (ip_options_echo(dopt, skb)) {
824                                 kfree(dopt);
825                                 dopt = NULL;
826                         }
827                 }
828         }
829         return dopt;
830 }
831
832 #ifdef CONFIG_TCP_MD5SIG
833 /*
834  * RFC2385 MD5 checksumming requires a mapping of
835  * IP address->MD5 Key.
836  * We need to maintain these in the sk structure.
837  */
838
839 /* Find the Key structure for an address.  */
840 static struct tcp_md5sig_key *
841                         tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
842 {
843         struct tcp_sock *tp = tcp_sk(sk);
844         int i;
845
846         if (!tp->md5sig_info || !tp->md5sig_info->entries4)
847                 return NULL;
848         for (i = 0; i < tp->md5sig_info->entries4; i++) {
849                 if (tp->md5sig_info->keys4[i].addr == addr)
850                         return &tp->md5sig_info->keys4[i].base;
851         }
852         return NULL;
853 }
854
855 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
856                                          struct sock *addr_sk)
857 {
858         return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
859 }
860
861 EXPORT_SYMBOL(tcp_v4_md5_lookup);
862
863 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
864                                                       struct request_sock *req)
865 {
866         return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
867 }
868
869 /* This can be called on a newly created socket, from other files */
870 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
871                       u8 *newkey, u8 newkeylen)
872 {
873         /* Add Key to the list */
874         struct tcp_md5sig_key *key;
875         struct tcp_sock *tp = tcp_sk(sk);
876         struct tcp4_md5sig_key *keys;
877
878         key = tcp_v4_md5_do_lookup(sk, addr);
879         if (key) {
880                 /* Pre-existing entry - just update that one. */
881                 kfree(key->key);
882                 key->key = newkey;
883                 key->keylen = newkeylen;
884         } else {
885                 struct tcp_md5sig_info *md5sig;
886
887                 if (!tp->md5sig_info) {
888                         tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
889                                                   GFP_ATOMIC);
890                         if (!tp->md5sig_info) {
891                                 kfree(newkey);
892                                 return -ENOMEM;
893                         }
894                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
895                 }
896                 if (tcp_alloc_md5sig_pool(sk) == NULL) {
897                         kfree(newkey);
898                         return -ENOMEM;
899                 }
900                 md5sig = tp->md5sig_info;
901
902                 if (md5sig->alloced4 == md5sig->entries4) {
903                         keys = kmalloc((sizeof(*keys) *
904                                         (md5sig->entries4 + 1)), GFP_ATOMIC);
905                         if (!keys) {
906                                 kfree(newkey);
907                                 tcp_free_md5sig_pool();
908                                 return -ENOMEM;
909                         }
910
911                         if (md5sig->entries4)
912                                 memcpy(keys, md5sig->keys4,
913                                        sizeof(*keys) * md5sig->entries4);
914
915                         /* Free old key list, and reference new one */
916                         kfree(md5sig->keys4);
917                         md5sig->keys4 = keys;
918                         md5sig->alloced4++;
919                 }
920                 md5sig->entries4++;
921                 md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
922                 md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
923                 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
924         }
925         return 0;
926 }
927
928 EXPORT_SYMBOL(tcp_v4_md5_do_add);
929
930 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
931                                u8 *newkey, u8 newkeylen)
932 {
933         return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
934                                  newkey, newkeylen);
935 }
936
937 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
938 {
939         struct tcp_sock *tp = tcp_sk(sk);
940         int i;
941
942         for (i = 0; i < tp->md5sig_info->entries4; i++) {
943                 if (tp->md5sig_info->keys4[i].addr == addr) {
944                         /* Free the key */
945                         kfree(tp->md5sig_info->keys4[i].base.key);
946                         tp->md5sig_info->entries4--;
947
948                         if (tp->md5sig_info->entries4 == 0) {
949                                 kfree(tp->md5sig_info->keys4);
950                                 tp->md5sig_info->keys4 = NULL;
951                                 tp->md5sig_info->alloced4 = 0;
952                         } else if (tp->md5sig_info->entries4 != i) {
953                                 /* Need to do some manipulation */
954                                 memmove(&tp->md5sig_info->keys4[i],
955                                         &tp->md5sig_info->keys4[i+1],
956                                         (tp->md5sig_info->entries4 - i) *
957                                          sizeof(struct tcp4_md5sig_key));
958                         }
959                         tcp_free_md5sig_pool();
960                         return 0;
961                 }
962         }
963         return -ENOENT;
964 }
965
966 EXPORT_SYMBOL(tcp_v4_md5_do_del);
967
968 static void tcp_v4_clear_md5_list(struct sock *sk)
969 {
970         struct tcp_sock *tp = tcp_sk(sk);
971
972         /* Free each key, then the set of key keys,
973          * the crypto element, and then decrement our
974          * hold on the last resort crypto.
975          */
976         if (tp->md5sig_info->entries4) {
977                 int i;
978                 for (i = 0; i < tp->md5sig_info->entries4; i++)
979                         kfree(tp->md5sig_info->keys4[i].base.key);
980                 tp->md5sig_info->entries4 = 0;
981                 tcp_free_md5sig_pool();
982         }
983         if (tp->md5sig_info->keys4) {
984                 kfree(tp->md5sig_info->keys4);
985                 tp->md5sig_info->keys4 = NULL;
986                 tp->md5sig_info->alloced4  = 0;
987         }
988 }
989
990 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
991                                  int optlen)
992 {
993         struct tcp_md5sig cmd;
994         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
995         u8 *newkey;
996
997         if (optlen < sizeof(cmd))
998                 return -EINVAL;
999
1000         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1001                 return -EFAULT;
1002
1003         if (sin->sin_family != AF_INET)
1004                 return -EINVAL;
1005
1006         if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1007                 if (!tcp_sk(sk)->md5sig_info)
1008                         return -ENOENT;
1009                 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1010         }
1011
1012         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1013                 return -EINVAL;
1014
1015         if (!tcp_sk(sk)->md5sig_info) {
1016                 struct tcp_sock *tp = tcp_sk(sk);
1017                 struct tcp_md5sig_info *p;
1018
1019                 p = kzalloc(sizeof(*p), sk->sk_allocation);
1020                 if (!p)
1021                         return -EINVAL;
1022
1023                 tp->md5sig_info = p;
1024                 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1025         }
1026
1027         newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1028         if (!newkey)
1029                 return -ENOMEM;
1030         return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1031                                  newkey, cmd.tcpm_keylen);
1032 }
1033
1034 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1035                                         __be32 daddr, __be32 saddr, int nbytes)
1036 {
1037         struct tcp4_pseudohdr *bp;
1038         struct scatterlist sg;
1039
1040         bp = &hp->md5_blk.ip4;
1041
1042         /*
1043          * 1. the TCP pseudo-header (in the order: source IP address,
1044          * destination IP address, zero-padded protocol number, and
1045          * segment length)
1046          */
1047         bp->saddr = saddr;
1048         bp->daddr = daddr;
1049         bp->pad = 0;
1050         bp->protocol = IPPROTO_TCP;
1051         bp->len = cpu_to_be16(nbytes);
1052
1053         sg_init_one(&sg, bp, sizeof(*bp));
1054         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1055 }
1056
1057 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1058                                __be32 daddr, __be32 saddr, struct tcphdr *th)
1059 {
1060         struct tcp_md5sig_pool *hp;
1061         struct hash_desc *desc;
1062
1063         hp = tcp_get_md5sig_pool();
1064         if (!hp)
1065                 goto clear_hash_noput;
1066         desc = &hp->md5_desc;
1067
1068         if (crypto_hash_init(desc))
1069                 goto clear_hash;
1070         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1071                 goto clear_hash;
1072         if (tcp_md5_hash_header(hp, th))
1073                 goto clear_hash;
1074         if (tcp_md5_hash_key(hp, key))
1075                 goto clear_hash;
1076         if (crypto_hash_final(desc, md5_hash))
1077                 goto clear_hash;
1078
1079         tcp_put_md5sig_pool();
1080         return 0;
1081
1082 clear_hash:
1083         tcp_put_md5sig_pool();
1084 clear_hash_noput:
1085         memset(md5_hash, 0, 16);
1086         return 1;
1087 }
1088
1089 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1090                         struct sock *sk, struct request_sock *req,
1091                         struct sk_buff *skb)
1092 {
1093         struct tcp_md5sig_pool *hp;
1094         struct hash_desc *desc;
1095         struct tcphdr *th = tcp_hdr(skb);
1096         __be32 saddr, daddr;
1097
1098         if (sk) {
1099                 saddr = inet_sk(sk)->inet_saddr;
1100                 daddr = inet_sk(sk)->inet_daddr;
1101         } else if (req) {
1102                 saddr = inet_rsk(req)->loc_addr;
1103                 daddr = inet_rsk(req)->rmt_addr;
1104         } else {
1105                 const struct iphdr *iph = ip_hdr(skb);
1106                 saddr = iph->saddr;
1107                 daddr = iph->daddr;
1108         }
1109
1110         hp = tcp_get_md5sig_pool();
1111         if (!hp)
1112                 goto clear_hash_noput;
1113         desc = &hp->md5_desc;
1114
1115         if (crypto_hash_init(desc))
1116                 goto clear_hash;
1117
1118         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1119                 goto clear_hash;
1120         if (tcp_md5_hash_header(hp, th))
1121                 goto clear_hash;
1122         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1123                 goto clear_hash;
1124         if (tcp_md5_hash_key(hp, key))
1125                 goto clear_hash;
1126         if (crypto_hash_final(desc, md5_hash))
1127                 goto clear_hash;
1128
1129         tcp_put_md5sig_pool();
1130         return 0;
1131
1132 clear_hash:
1133         tcp_put_md5sig_pool();
1134 clear_hash_noput:
1135         memset(md5_hash, 0, 16);
1136         return 1;
1137 }
1138
1139 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1140
1141 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1142 {
1143         /*
1144          * This gets called for each TCP segment that arrives
1145          * so we want to be efficient.
1146          * We have 3 drop cases:
1147          * o No MD5 hash and one expected.
1148          * o MD5 hash and we're not expecting one.
1149          * o MD5 hash and its wrong.
1150          */
1151         __u8 *hash_location = NULL;
1152         struct tcp_md5sig_key *hash_expected;
1153         const struct iphdr *iph = ip_hdr(skb);
1154         struct tcphdr *th = tcp_hdr(skb);
1155         int genhash;
1156         unsigned char newhash[16];
1157
1158         hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1159         hash_location = tcp_parse_md5sig_option(th);
1160
1161         /* We've parsed the options - do we have a hash? */
1162         if (!hash_expected && !hash_location)
1163                 return 0;
1164
1165         if (hash_expected && !hash_location) {
1166                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1167                 return 1;
1168         }
1169
1170         if (!hash_expected && hash_location) {
1171                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1172                 return 1;
1173         }
1174
1175         /* Okay, so this is hash_expected and hash_location -
1176          * so we need to calculate the checksum.
1177          */
1178         genhash = tcp_v4_md5_hash_skb(newhash,
1179                                       hash_expected,
1180                                       NULL, NULL, skb);
1181
1182         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1183                 if (net_ratelimit()) {
1184                         printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1185                                &iph->saddr, ntohs(th->source),
1186                                &iph->daddr, ntohs(th->dest),
1187                                genhash ? " tcp_v4_calc_md5_hash failed" : "");
1188                 }
1189                 return 1;
1190         }
1191         return 0;
1192 }
1193
1194 #endif
1195
1196 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1197         .family         =       PF_INET,
1198         .obj_size       =       sizeof(struct tcp_request_sock),
1199         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1200         .send_ack       =       tcp_v4_reqsk_send_ack,
1201         .destructor     =       tcp_v4_reqsk_destructor,
1202         .send_reset     =       tcp_v4_send_reset,
1203         .syn_ack_timeout =      tcp_syn_ack_timeout,
1204 };
1205
1206 #ifdef CONFIG_TCP_MD5SIG
1207 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1208         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1209         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1210 };
1211 #endif
1212
1213 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1214         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
1215         .twsk_unique    = tcp_twsk_unique,
1216         .twsk_destructor= tcp_twsk_destructor,
1217 };
1218
1219 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1220 {
1221         struct tcp_extend_values tmp_ext;
1222         struct tcp_options_received tmp_opt;
1223         u8 *hash_location;
1224         struct request_sock *req;
1225         struct inet_request_sock *ireq;
1226         struct tcp_sock *tp = tcp_sk(sk);
1227         struct dst_entry *dst = NULL;
1228         __be32 saddr = ip_hdr(skb)->saddr;
1229         __be32 daddr = ip_hdr(skb)->daddr;
1230         __u32 isn = TCP_SKB_CB(skb)->when;
1231 #ifdef CONFIG_SYN_COOKIES
1232         int want_cookie = 0;
1233 #else
1234 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1235 #endif
1236
1237         /* Never answer to SYNs send to broadcast or multicast */
1238         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1239                 goto drop;
1240
1241         /* TW buckets are converted to open requests without
1242          * limitations, they conserve resources and peer is
1243          * evidently real one.
1244          */
1245         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1246 #ifdef CONFIG_SYN_COOKIES
1247                 if (sysctl_tcp_syncookies) {
1248                         want_cookie = 1;
1249                 } else
1250 #endif
1251                 goto drop;
1252         }
1253
1254         /* Accept backlog is full. If we have already queued enough
1255          * of warm entries in syn queue, drop request. It is better than
1256          * clogging syn queue with openreqs with exponentially increasing
1257          * timeout.
1258          */
1259         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1260                 goto drop;
1261
1262         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1263         if (!req)
1264                 goto drop;
1265
1266 #ifdef CONFIG_TCP_MD5SIG
1267         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1268 #endif
1269
1270         tcp_clear_options(&tmp_opt);
1271         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1272         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1273         tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1274
1275         if (tmp_opt.cookie_plus > 0 &&
1276             tmp_opt.saw_tstamp &&
1277             !tp->rx_opt.cookie_out_never &&
1278             (sysctl_tcp_cookie_size > 0 ||
1279              (tp->cookie_values != NULL &&
1280               tp->cookie_values->cookie_desired > 0))) {
1281                 u8 *c;
1282                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1283                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1284
1285                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1286                         goto drop_and_release;
1287
1288                 /* Secret recipe starts with IP addresses */
1289                 *mess++ ^= (__force u32)daddr;
1290                 *mess++ ^= (__force u32)saddr;
1291
1292                 /* plus variable length Initiator Cookie */
1293                 c = (u8 *)mess;
1294                 while (l-- > 0)
1295                         *c++ ^= *hash_location++;
1296
1297 #ifdef CONFIG_SYN_COOKIES
1298                 want_cookie = 0;        /* not our kind of cookie */
1299 #endif
1300                 tmp_ext.cookie_out_never = 0; /* false */
1301                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1302         } else if (!tp->rx_opt.cookie_in_always) {
1303                 /* redundant indications, but ensure initialization. */
1304                 tmp_ext.cookie_out_never = 1; /* true */
1305                 tmp_ext.cookie_plus = 0;
1306         } else {
1307                 goto drop_and_release;
1308         }
1309         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1310
1311         if (want_cookie && !tmp_opt.saw_tstamp)
1312                 tcp_clear_options(&tmp_opt);
1313
1314         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1315         tcp_openreq_init(req, &tmp_opt, skb);
1316
1317         ireq = inet_rsk(req);
1318         ireq->loc_addr = daddr;
1319         ireq->rmt_addr = saddr;
1320         ireq->no_srccheck = inet_sk(sk)->transparent;
1321         ireq->opt = tcp_v4_save_options(sk, skb);
1322
1323         if (security_inet_conn_request(sk, skb, req))
1324                 goto drop_and_free;
1325
1326         if (!want_cookie)
1327                 TCP_ECN_create_request(req, tcp_hdr(skb));
1328
1329         if (want_cookie) {
1330 #ifdef CONFIG_SYN_COOKIES
1331                 syn_flood_warning(skb);
1332                 req->cookie_ts = tmp_opt.tstamp_ok;
1333 #endif
1334                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1335         } else if (!isn) {
1336                 struct inet_peer *peer = NULL;
1337
1338                 /* VJ's idea. We save last timestamp seen
1339                  * from the destination in peer table, when entering
1340                  * state TIME-WAIT, and check against it before
1341                  * accepting new connection request.
1342                  *
1343                  * If "isn" is not zero, this request hit alive
1344                  * timewait bucket, so that all the necessary checks
1345                  * are made in the function processing timewait state.
1346                  */
1347                 if (tmp_opt.saw_tstamp &&
1348                     tcp_death_row.sysctl_tw_recycle &&
1349                     (dst = inet_csk_route_req(sk, req)) != NULL &&
1350                     (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1351                     peer->v4daddr == saddr) {
1352                         if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1353                             (s32)(peer->tcp_ts - req->ts_recent) >
1354                                                         TCP_PAWS_WINDOW) {
1355                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1356                                 goto drop_and_release;
1357                         }
1358                 }
1359                 /* Kill the following clause, if you dislike this way. */
1360                 else if (!sysctl_tcp_syncookies &&
1361                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1362                           (sysctl_max_syn_backlog >> 2)) &&
1363                          (!peer || !peer->tcp_ts_stamp) &&
1364                          (!dst || !dst_metric(dst, RTAX_RTT))) {
1365                         /* Without syncookies last quarter of
1366                          * backlog is filled with destinations,
1367                          * proven to be alive.
1368                          * It means that we continue to communicate
1369                          * to destinations, already remembered
1370                          * to the moment of synflood.
1371                          */
1372                         LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1373                                        &saddr, ntohs(tcp_hdr(skb)->source));
1374                         goto drop_and_release;
1375                 }
1376
1377                 isn = tcp_v4_init_sequence(skb);
1378         }
1379         tcp_rsk(req)->snt_isn = isn;
1380
1381         if (tcp_v4_send_synack(sk, dst, req,
1382                                (struct request_values *)&tmp_ext) ||
1383             want_cookie)
1384                 goto drop_and_free;
1385
1386         inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1387         return 0;
1388
1389 drop_and_release:
1390         dst_release(dst);
1391 drop_and_free:
1392         reqsk_free(req);
1393 drop:
1394         return 0;
1395 }
1396
1397
1398 /*
1399  * The three way handshake has completed - we got a valid synack -
1400  * now create the new socket.
1401  */
1402 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1403                                   struct request_sock *req,
1404                                   struct dst_entry *dst)
1405 {
1406         struct inet_request_sock *ireq;
1407         struct inet_sock *newinet;
1408         struct tcp_sock *newtp;
1409         struct sock *newsk;
1410 #ifdef CONFIG_TCP_MD5SIG
1411         struct tcp_md5sig_key *key;
1412 #endif
1413
1414         if (sk_acceptq_is_full(sk))
1415                 goto exit_overflow;
1416
1417         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1418                 goto exit;
1419
1420         newsk = tcp_create_openreq_child(sk, req, skb);
1421         if (!newsk)
1422                 goto exit;
1423
1424         newsk->sk_gso_type = SKB_GSO_TCPV4;
1425         sk_setup_caps(newsk, dst);
1426
1427         newtp                 = tcp_sk(newsk);
1428         newinet               = inet_sk(newsk);
1429         ireq                  = inet_rsk(req);
1430         newinet->inet_daddr   = ireq->rmt_addr;
1431         newinet->inet_rcv_saddr = ireq->loc_addr;
1432         newinet->inet_saddr           = ireq->loc_addr;
1433         newinet->opt          = ireq->opt;
1434         ireq->opt             = NULL;
1435         newinet->mc_index     = inet_iif(skb);
1436         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1437         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1438         if (newinet->opt)
1439                 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1440         newinet->inet_id = newtp->write_seq ^ jiffies;
1441
1442         tcp_mtup_init(newsk);
1443         tcp_sync_mss(newsk, dst_mtu(dst));
1444         newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1445         if (tcp_sk(sk)->rx_opt.user_mss &&
1446             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1447                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1448
1449         tcp_initialize_rcv_mss(newsk);
1450
1451 #ifdef CONFIG_TCP_MD5SIG
1452         /* Copy over the MD5 key from the original socket */
1453         key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1454         if (key != NULL) {
1455                 /*
1456                  * We're using one, so create a matching key
1457                  * on the newsk structure. If we fail to get
1458                  * memory, then we end up not copying the key
1459                  * across. Shucks.
1460                  */
1461                 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1462                 if (newkey != NULL)
1463                         tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1464                                           newkey, key->keylen);
1465                 newsk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1466         }
1467 #endif
1468
1469         __inet_hash_nolisten(newsk, NULL);
1470         __inet_inherit_port(sk, newsk);
1471
1472         return newsk;
1473
1474 exit_overflow:
1475         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1476 exit:
1477         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1478         dst_release(dst);
1479         return NULL;
1480 }
1481
1482 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1483 {
1484         struct tcphdr *th = tcp_hdr(skb);
1485         const struct iphdr *iph = ip_hdr(skb);
1486         struct sock *nsk;
1487         struct request_sock **prev;
1488         /* Find possible connection requests. */
1489         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1490                                                        iph->saddr, iph->daddr);
1491         if (req)
1492                 return tcp_check_req(sk, skb, req, prev);
1493
1494         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1495                         th->source, iph->daddr, th->dest, inet_iif(skb));
1496
1497         if (nsk) {
1498                 if (nsk->sk_state != TCP_TIME_WAIT) {
1499                         bh_lock_sock(nsk);
1500                         return nsk;
1501                 }
1502                 inet_twsk_put(inet_twsk(nsk));
1503                 return NULL;
1504         }
1505
1506 #ifdef CONFIG_SYN_COOKIES
1507         if (!th->rst && !th->syn && th->ack)
1508                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1509 #endif
1510         return sk;
1511 }
1512
1513 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1514 {
1515         const struct iphdr *iph = ip_hdr(skb);
1516
1517         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1518                 if (!tcp_v4_check(skb->len, iph->saddr,
1519                                   iph->daddr, skb->csum)) {
1520                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1521                         return 0;
1522                 }
1523         }
1524
1525         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1526                                        skb->len, IPPROTO_TCP, 0);
1527
1528         if (skb->len <= 76) {
1529                 return __skb_checksum_complete(skb);
1530         }
1531         return 0;
1532 }
1533
1534
1535 /* The socket must have it's spinlock held when we get
1536  * here.
1537  *
1538  * We have a potential double-lock case here, so even when
1539  * doing backlog processing we use the BH locking scheme.
1540  * This is because we cannot sleep with the original spinlock
1541  * held.
1542  */
1543 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1544 {
1545         struct sock *rsk;
1546 #ifdef CONFIG_TCP_MD5SIG
1547         /*
1548          * We really want to reject the packet as early as possible
1549          * if:
1550          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1551          *  o There is an MD5 option and we're not expecting one
1552          */
1553         if (tcp_v4_inbound_md5_hash(sk, skb))
1554                 goto discard;
1555 #endif
1556
1557         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1558                 TCP_CHECK_TIMER(sk);
1559                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1560                         rsk = sk;
1561                         goto reset;
1562                 }
1563                 TCP_CHECK_TIMER(sk);
1564                 return 0;
1565         }
1566
1567         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1568                 goto csum_err;
1569
1570         if (sk->sk_state == TCP_LISTEN) {
1571                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1572                 if (!nsk)
1573                         goto discard;
1574
1575                 if (nsk != sk) {
1576                         if (tcp_child_process(sk, nsk, skb)) {
1577                                 rsk = nsk;
1578                                 goto reset;
1579                         }
1580                         return 0;
1581                 }
1582         }
1583
1584         TCP_CHECK_TIMER(sk);
1585         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1586                 rsk = sk;
1587                 goto reset;
1588         }
1589         TCP_CHECK_TIMER(sk);
1590         return 0;
1591
1592 reset:
1593         tcp_v4_send_reset(rsk, skb);
1594 discard:
1595         kfree_skb(skb);
1596         /* Be careful here. If this function gets more complicated and
1597          * gcc suffers from register pressure on the x86, sk (in %ebx)
1598          * might be destroyed here. This current version compiles correctly,
1599          * but you have been warned.
1600          */
1601         return 0;
1602
1603 csum_err:
1604         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1605         goto discard;
1606 }
1607
1608 /*
1609  *      From tcp_input.c
1610  */
1611
1612 int tcp_v4_rcv(struct sk_buff *skb)
1613 {
1614         const struct iphdr *iph;
1615         struct tcphdr *th;
1616         struct sock *sk;
1617         int ret;
1618         struct net *net = dev_net(skb->dev);
1619
1620         if (skb->pkt_type != PACKET_HOST)
1621                 goto discard_it;
1622
1623         /* Count it even if it's bad */
1624         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1625
1626         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1627                 goto discard_it;
1628
1629         th = tcp_hdr(skb);
1630
1631         if (th->doff < sizeof(struct tcphdr) / 4)
1632                 goto bad_packet;
1633         if (!pskb_may_pull(skb, th->doff * 4))
1634                 goto discard_it;
1635
1636         /* An explanation is required here, I think.
1637          * Packet length and doff are validated by header prediction,
1638          * provided case of th->doff==0 is eliminated.
1639          * So, we defer the checks. */
1640         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1641                 goto bad_packet;
1642
1643         th = tcp_hdr(skb);
1644         iph = ip_hdr(skb);
1645         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1646         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1647                                     skb->len - th->doff * 4);
1648         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1649         TCP_SKB_CB(skb)->when    = 0;
1650         TCP_SKB_CB(skb)->flags   = iph->tos;
1651         TCP_SKB_CB(skb)->sacked  = 0;
1652
1653         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1654         if (!sk)
1655                 goto no_tcp_socket;
1656
1657 process:
1658         if (sk->sk_state == TCP_TIME_WAIT)
1659                 goto do_time_wait;
1660
1661         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1662                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1663                 goto discard_and_relse;
1664         }
1665
1666         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1667                 goto discard_and_relse;
1668         nf_reset(skb);
1669
1670         if (sk_filter(sk, skb))
1671                 goto discard_and_relse;
1672
1673         skb->dev = NULL;
1674
1675         sock_rps_save_rxhash(sk, skb->rxhash);
1676
1677         bh_lock_sock_nested(sk);
1678         ret = 0;
1679         if (!sock_owned_by_user(sk)) {
1680 #ifdef CONFIG_NET_DMA
1681                 struct tcp_sock *tp = tcp_sk(sk);
1682                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1683                         tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1684                 if (tp->ucopy.dma_chan)
1685                         ret = tcp_v4_do_rcv(sk, skb);
1686                 else
1687 #endif
1688                 {
1689                         if (!tcp_prequeue(sk, skb))
1690                                 ret = tcp_v4_do_rcv(sk, skb);
1691                 }
1692         } else if (unlikely(sk_add_backlog(sk, skb))) {
1693                 bh_unlock_sock(sk);
1694                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1695                 goto discard_and_relse;
1696         }
1697         bh_unlock_sock(sk);
1698
1699         sock_put(sk);
1700
1701         return ret;
1702
1703 no_tcp_socket:
1704         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1705                 goto discard_it;
1706
1707         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1708 bad_packet:
1709                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1710         } else {
1711                 tcp_v4_send_reset(NULL, skb);
1712         }
1713
1714 discard_it:
1715         /* Discard frame. */
1716         kfree_skb(skb);
1717         return 0;
1718
1719 discard_and_relse:
1720         sock_put(sk);
1721         goto discard_it;
1722
1723 do_time_wait:
1724         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1725                 inet_twsk_put(inet_twsk(sk));
1726                 goto discard_it;
1727         }
1728
1729         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1730                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1731                 inet_twsk_put(inet_twsk(sk));
1732                 goto discard_it;
1733         }
1734         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1735         case TCP_TW_SYN: {
1736                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1737                                                         &tcp_hashinfo,
1738                                                         iph->daddr, th->dest,
1739                                                         inet_iif(skb));
1740                 if (sk2) {
1741                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1742                         inet_twsk_put(inet_twsk(sk));
1743                         sk = sk2;
1744                         goto process;
1745                 }
1746                 /* Fall through to ACK */
1747         }
1748         case TCP_TW_ACK:
1749                 tcp_v4_timewait_ack(sk, skb);
1750                 break;
1751         case TCP_TW_RST:
1752                 goto no_tcp_socket;
1753         case TCP_TW_SUCCESS:;
1754         }
1755         goto discard_it;
1756 }
1757
1758 /* VJ's idea. Save last timestamp seen from this destination
1759  * and hold it at least for normal timewait interval to use for duplicate
1760  * segment detection in subsequent connections, before they enter synchronized
1761  * state.
1762  */
1763
1764 int tcp_v4_remember_stamp(struct sock *sk)
1765 {
1766         struct inet_sock *inet = inet_sk(sk);
1767         struct tcp_sock *tp = tcp_sk(sk);
1768         struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1769         struct inet_peer *peer = NULL;
1770         int release_it = 0;
1771
1772         if (!rt || rt->rt_dst != inet->inet_daddr) {
1773                 peer = inet_getpeer(inet->inet_daddr, 1);
1774                 release_it = 1;
1775         } else {
1776                 if (!rt->peer)
1777                         rt_bind_peer(rt, 1);
1778                 peer = rt->peer;
1779         }
1780
1781         if (peer) {
1782                 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1783                     ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1784                      peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
1785                         peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
1786                         peer->tcp_ts = tp->rx_opt.ts_recent;
1787                 }
1788                 if (release_it)
1789                         inet_putpeer(peer);
1790                 return 1;
1791         }
1792
1793         return 0;
1794 }
1795
1796 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1797 {
1798         struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1799
1800         if (peer) {
1801                 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1802
1803                 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1804                     ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1805                      peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
1806                         peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
1807                         peer->tcp_ts       = tcptw->tw_ts_recent;
1808                 }
1809                 inet_putpeer(peer);
1810                 return 1;
1811         }
1812
1813         return 0;
1814 }
1815
1816 const struct inet_connection_sock_af_ops ipv4_specific = {
1817         .queue_xmit        = ip_queue_xmit,
1818         .send_check        = tcp_v4_send_check,
1819         .rebuild_header    = inet_sk_rebuild_header,
1820         .conn_request      = tcp_v4_conn_request,
1821         .syn_recv_sock     = tcp_v4_syn_recv_sock,
1822         .remember_stamp    = tcp_v4_remember_stamp,
1823         .net_header_len    = sizeof(struct iphdr),
1824         .setsockopt        = ip_setsockopt,
1825         .getsockopt        = ip_getsockopt,
1826         .addr2sockaddr     = inet_csk_addr2sockaddr,
1827         .sockaddr_len      = sizeof(struct sockaddr_in),
1828         .bind_conflict     = inet_csk_bind_conflict,
1829 #ifdef CONFIG_COMPAT
1830         .compat_setsockopt = compat_ip_setsockopt,
1831         .compat_getsockopt = compat_ip_getsockopt,
1832 #endif
1833 };
1834
1835 #ifdef CONFIG_TCP_MD5SIG
1836 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1837         .md5_lookup             = tcp_v4_md5_lookup,
1838         .calc_md5_hash          = tcp_v4_md5_hash_skb,
1839         .md5_add                = tcp_v4_md5_add_func,
1840         .md5_parse              = tcp_v4_parse_md5_keys,
1841 };
1842 #endif
1843
1844 /* NOTE: A lot of things set to zero explicitly by call to
1845  *       sk_alloc() so need not be done here.
1846  */
1847 static int tcp_v4_init_sock(struct sock *sk)
1848 {
1849         struct inet_connection_sock *icsk = inet_csk(sk);
1850         struct tcp_sock *tp = tcp_sk(sk);
1851
1852         skb_queue_head_init(&tp->out_of_order_queue);
1853         tcp_init_xmit_timers(sk);
1854         tcp_prequeue_init(tp);
1855
1856         icsk->icsk_rto = TCP_TIMEOUT_INIT;
1857         tp->mdev = TCP_TIMEOUT_INIT;
1858
1859         /* So many TCP implementations out there (incorrectly) count the
1860          * initial SYN frame in their delayed-ACK and congestion control
1861          * algorithms that we must have the following bandaid to talk
1862          * efficiently to them.  -DaveM
1863          */
1864         tp->snd_cwnd = 2;
1865
1866         /* See draft-stevens-tcpca-spec-01 for discussion of the
1867          * initialization of these values.
1868          */
1869         tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1870         tp->snd_cwnd_clamp = ~0;
1871         tp->mss_cache = TCP_MSS_DEFAULT;
1872
1873         tp->reordering = sysctl_tcp_reordering;
1874         icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1875
1876         sk->sk_state = TCP_CLOSE;
1877
1878         sk->sk_write_space = sk_stream_write_space;
1879         sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1880
1881         icsk->icsk_af_ops = &ipv4_specific;
1882         icsk->icsk_sync_mss = tcp_sync_mss;
1883 #ifdef CONFIG_TCP_MD5SIG
1884         tp->af_specific = &tcp_sock_ipv4_specific;
1885 #endif
1886
1887         /* TCP Cookie Transactions */
1888         if (sysctl_tcp_cookie_size > 0) {
1889                 /* Default, cookies without s_data_payload. */
1890                 tp->cookie_values =
1891                         kzalloc(sizeof(*tp->cookie_values),
1892                                 sk->sk_allocation);
1893                 if (tp->cookie_values != NULL)
1894                         kref_init(&tp->cookie_values->kref);
1895         }
1896         /* Presumed zeroed, in order of appearance:
1897          *      cookie_in_always, cookie_out_never,
1898          *      s_data_constant, s_data_in, s_data_out
1899          */
1900         sk->sk_sndbuf = sysctl_tcp_wmem[1];
1901         sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1902
1903         local_bh_disable();
1904         percpu_counter_inc(&tcp_sockets_allocated);
1905         local_bh_enable();
1906
1907         return 0;
1908 }
1909
1910 void tcp_v4_destroy_sock(struct sock *sk)
1911 {
1912         struct tcp_sock *tp = tcp_sk(sk);
1913
1914         tcp_clear_xmit_timers(sk);
1915
1916         tcp_cleanup_congestion_control(sk);
1917
1918         /* Cleanup up the write buffer. */
1919         tcp_write_queue_purge(sk);
1920
1921         /* Cleans up our, hopefully empty, out_of_order_queue. */
1922         __skb_queue_purge(&tp->out_of_order_queue);
1923
1924 #ifdef CONFIG_TCP_MD5SIG
1925         /* Clean up the MD5 key list, if any */
1926         if (tp->md5sig_info) {
1927                 tcp_v4_clear_md5_list(sk);
1928                 kfree(tp->md5sig_info);
1929                 tp->md5sig_info = NULL;
1930         }
1931 #endif
1932
1933 #ifdef CONFIG_NET_DMA
1934         /* Cleans up our sk_async_wait_queue */
1935         __skb_queue_purge(&sk->sk_async_wait_queue);
1936 #endif
1937
1938         /* Clean prequeue, it must be empty really */
1939         __skb_queue_purge(&tp->ucopy.prequeue);
1940
1941         /* Clean up a referenced TCP bind bucket. */
1942         if (inet_csk(sk)->icsk_bind_hash)
1943                 inet_put_port(sk);
1944
1945         /*
1946          * If sendmsg cached page exists, toss it.
1947          */
1948         if (sk->sk_sndmsg_page) {
1949                 __free_page(sk->sk_sndmsg_page);
1950                 sk->sk_sndmsg_page = NULL;
1951         }
1952
1953         /* TCP Cookie Transactions */
1954         if (tp->cookie_values != NULL) {
1955                 kref_put(&tp->cookie_values->kref,
1956                          tcp_cookie_values_release);
1957                 tp->cookie_values = NULL;
1958         }
1959
1960         percpu_counter_dec(&tcp_sockets_allocated);
1961 }
1962
1963 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1964
1965 #ifdef CONFIG_PROC_FS
1966 /* Proc filesystem TCP sock list dumping. */
1967
1968 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1969 {
1970         return hlist_nulls_empty(head) ? NULL :
1971                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1972 }
1973
1974 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1975 {
1976         return !is_a_nulls(tw->tw_node.next) ?
1977                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1978 }
1979
1980 static void *listening_get_next(struct seq_file *seq, void *cur)
1981 {
1982         struct inet_connection_sock *icsk;
1983         struct hlist_nulls_node *node;
1984         struct sock *sk = cur;
1985         struct inet_listen_hashbucket *ilb;
1986         struct tcp_iter_state *st = seq->private;
1987         struct net *net = seq_file_net(seq);
1988
1989         if (!sk) {
1990                 st->bucket = 0;
1991                 ilb = &tcp_hashinfo.listening_hash[0];
1992                 spin_lock_bh(&ilb->lock);
1993                 sk = sk_nulls_head(&ilb->head);
1994                 goto get_sk;
1995         }
1996         ilb = &tcp_hashinfo.listening_hash[st->bucket];
1997         ++st->num;
1998
1999         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2000                 struct request_sock *req = cur;
2001
2002                 icsk = inet_csk(st->syn_wait_sk);
2003                 req = req->dl_next;
2004                 while (1) {
2005                         while (req) {
2006                                 if (req->rsk_ops->family == st->family) {
2007                                         cur = req;
2008                                         goto out;
2009                                 }
2010                                 req = req->dl_next;
2011                         }
2012                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2013                                 break;
2014 get_req:
2015                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2016                 }
2017                 sk        = sk_next(st->syn_wait_sk);
2018                 st->state = TCP_SEQ_STATE_LISTENING;
2019                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2020         } else {
2021                 icsk = inet_csk(sk);
2022                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2023                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2024                         goto start_req;
2025                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2026                 sk = sk_next(sk);
2027         }
2028 get_sk:
2029         sk_nulls_for_each_from(sk, node) {
2030                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
2031                         cur = sk;
2032                         goto out;
2033                 }
2034                 icsk = inet_csk(sk);
2035                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2036                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2037 start_req:
2038                         st->uid         = sock_i_uid(sk);
2039                         st->syn_wait_sk = sk;
2040                         st->state       = TCP_SEQ_STATE_OPENREQ;
2041                         st->sbucket     = 0;
2042                         goto get_req;
2043                 }
2044                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2045         }
2046         spin_unlock_bh(&ilb->lock);
2047         if (++st->bucket < INET_LHTABLE_SIZE) {
2048                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2049                 spin_lock_bh(&ilb->lock);
2050                 sk = sk_nulls_head(&ilb->head);
2051                 goto get_sk;
2052         }
2053         cur = NULL;
2054 out:
2055         return cur;
2056 }
2057
2058 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2059 {
2060         void *rc = listening_get_next(seq, NULL);
2061
2062         while (rc && *pos) {
2063                 rc = listening_get_next(seq, rc);
2064                 --*pos;
2065         }
2066         return rc;
2067 }
2068
2069 static inline int empty_bucket(struct tcp_iter_state *st)
2070 {
2071         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2072                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2073 }
2074
2075 static void *established_get_first(struct seq_file *seq)
2076 {
2077         struct tcp_iter_state *st = seq->private;
2078         struct net *net = seq_file_net(seq);
2079         void *rc = NULL;
2080
2081         for (st->bucket = 0; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2082                 struct sock *sk;
2083                 struct hlist_nulls_node *node;
2084                 struct inet_timewait_sock *tw;
2085                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2086
2087                 /* Lockless fast path for the common case of empty buckets */
2088                 if (empty_bucket(st))
2089                         continue;
2090
2091                 spin_lock_bh(lock);
2092                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2093                         if (sk->sk_family != st->family ||
2094                             !net_eq(sock_net(sk), net)) {
2095                                 continue;
2096                         }
2097                         rc = sk;
2098                         goto out;
2099                 }
2100                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2101                 inet_twsk_for_each(tw, node,
2102                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2103                         if (tw->tw_family != st->family ||
2104                             !net_eq(twsk_net(tw), net)) {
2105                                 continue;
2106                         }
2107                         rc = tw;
2108                         goto out;
2109                 }
2110                 spin_unlock_bh(lock);
2111                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2112         }
2113 out:
2114         return rc;
2115 }
2116
2117 static void *established_get_next(struct seq_file *seq, void *cur)
2118 {
2119         struct sock *sk = cur;
2120         struct inet_timewait_sock *tw;
2121         struct hlist_nulls_node *node;
2122         struct tcp_iter_state *st = seq->private;
2123         struct net *net = seq_file_net(seq);
2124
2125         ++st->num;
2126
2127         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2128                 tw = cur;
2129                 tw = tw_next(tw);
2130 get_tw:
2131                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2132                         tw = tw_next(tw);
2133                 }
2134                 if (tw) {
2135                         cur = tw;
2136                         goto out;
2137                 }
2138                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2139                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2140
2141                 /* Look for next non empty bucket */
2142                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2143                                 empty_bucket(st))
2144                         ;
2145                 if (st->bucket > tcp_hashinfo.ehash_mask)
2146                         return NULL;
2147
2148                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2149                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2150         } else
2151                 sk = sk_nulls_next(sk);
2152
2153         sk_nulls_for_each_from(sk, node) {
2154                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2155                         goto found;
2156         }
2157
2158         st->state = TCP_SEQ_STATE_TIME_WAIT;
2159         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2160         goto get_tw;
2161 found:
2162         cur = sk;
2163 out:
2164         return cur;
2165 }
2166
2167 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2168 {
2169         void *rc = established_get_first(seq);
2170
2171         while (rc && pos) {
2172                 rc = established_get_next(seq, rc);
2173                 --pos;
2174         }
2175         return rc;
2176 }
2177
2178 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2179 {
2180         void *rc;
2181         struct tcp_iter_state *st = seq->private;
2182
2183         st->state = TCP_SEQ_STATE_LISTENING;
2184         rc        = listening_get_idx(seq, &pos);
2185
2186         if (!rc) {
2187                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2188                 rc        = established_get_idx(seq, pos);
2189         }
2190
2191         return rc;
2192 }
2193
2194 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2195 {
2196         struct tcp_iter_state *st = seq->private;
2197         st->state = TCP_SEQ_STATE_LISTENING;
2198         st->num = 0;
2199         return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2200 }
2201
2202 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2203 {
2204         void *rc = NULL;
2205         struct tcp_iter_state *st;
2206
2207         if (v == SEQ_START_TOKEN) {
2208                 rc = tcp_get_idx(seq, 0);
2209                 goto out;
2210         }
2211         st = seq->private;
2212
2213         switch (st->state) {
2214         case TCP_SEQ_STATE_OPENREQ:
2215         case TCP_SEQ_STATE_LISTENING:
2216                 rc = listening_get_next(seq, v);
2217                 if (!rc) {
2218                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2219                         rc        = established_get_first(seq);
2220                 }
2221                 break;
2222         case TCP_SEQ_STATE_ESTABLISHED:
2223         case TCP_SEQ_STATE_TIME_WAIT:
2224                 rc = established_get_next(seq, v);
2225                 break;
2226         }
2227 out:
2228         ++*pos;
2229         return rc;
2230 }
2231
2232 static void tcp_seq_stop(struct seq_file *seq, void *v)
2233 {
2234         struct tcp_iter_state *st = seq->private;
2235
2236         switch (st->state) {
2237         case TCP_SEQ_STATE_OPENREQ:
2238                 if (v) {
2239                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2240                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2241                 }
2242         case TCP_SEQ_STATE_LISTENING:
2243                 if (v != SEQ_START_TOKEN)
2244                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2245                 break;
2246         case TCP_SEQ_STATE_TIME_WAIT:
2247         case TCP_SEQ_STATE_ESTABLISHED:
2248                 if (v)
2249                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2250                 break;
2251         }
2252 }
2253
2254 static int tcp_seq_open(struct inode *inode, struct file *file)
2255 {
2256         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2257         struct tcp_iter_state *s;
2258         int err;
2259
2260         err = seq_open_net(inode, file, &afinfo->seq_ops,
2261                           sizeof(struct tcp_iter_state));
2262         if (err < 0)
2263                 return err;
2264
2265         s = ((struct seq_file *)file->private_data)->private;
2266         s->family               = afinfo->family;
2267         return 0;
2268 }
2269
2270 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2271 {
2272         int rc = 0;
2273         struct proc_dir_entry *p;
2274
2275         afinfo->seq_fops.open           = tcp_seq_open;
2276         afinfo->seq_fops.read           = seq_read;
2277         afinfo->seq_fops.llseek         = seq_lseek;
2278         afinfo->seq_fops.release        = seq_release_net;
2279
2280         afinfo->seq_ops.start           = tcp_seq_start;
2281         afinfo->seq_ops.next            = tcp_seq_next;
2282         afinfo->seq_ops.stop            = tcp_seq_stop;
2283
2284         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2285                              &afinfo->seq_fops, afinfo);
2286         if (!p)
2287                 rc = -ENOMEM;
2288         return rc;
2289 }
2290
2291 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2292 {
2293         proc_net_remove(net, afinfo->name);
2294 }
2295
2296 static void get_openreq4(struct sock *sk, struct request_sock *req,
2297                          struct seq_file *f, int i, int uid, int *len)
2298 {
2299         const struct inet_request_sock *ireq = inet_rsk(req);
2300         int ttd = req->expires - jiffies;
2301
2302         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2303                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2304                 i,
2305                 ireq->loc_addr,
2306                 ntohs(inet_sk(sk)->inet_sport),
2307                 ireq->rmt_addr,
2308                 ntohs(ireq->rmt_port),
2309                 TCP_SYN_RECV,
2310                 0, 0, /* could print option size, but that is af dependent. */
2311                 1,    /* timers active (only the expire timer) */
2312                 jiffies_to_clock_t(ttd),
2313                 req->retrans,
2314                 uid,
2315                 0,  /* non standard timer */
2316                 0, /* open_requests have no inode */
2317                 atomic_read(&sk->sk_refcnt),
2318                 req,
2319                 len);
2320 }
2321
2322 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2323 {
2324         int timer_active;
2325         unsigned long timer_expires;
2326         struct tcp_sock *tp = tcp_sk(sk);
2327         const struct inet_connection_sock *icsk = inet_csk(sk);
2328         struct inet_sock *inet = inet_sk(sk);
2329         __be32 dest = inet->inet_daddr;
2330         __be32 src = inet->inet_rcv_saddr;
2331         __u16 destp = ntohs(inet->inet_dport);
2332         __u16 srcp = ntohs(inet->inet_sport);
2333         int rx_queue;
2334
2335         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2336                 timer_active    = 1;
2337                 timer_expires   = icsk->icsk_timeout;
2338         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2339                 timer_active    = 4;
2340                 timer_expires   = icsk->icsk_timeout;
2341         } else if (timer_pending(&sk->sk_timer)) {
2342                 timer_active    = 2;
2343                 timer_expires   = sk->sk_timer.expires;
2344         } else {
2345                 timer_active    = 0;
2346                 timer_expires = jiffies;
2347         }
2348
2349         if (sk->sk_state == TCP_LISTEN)
2350                 rx_queue = sk->sk_ack_backlog;
2351         else
2352                 /*
2353                  * because we dont lock socket, we might find a transient negative value
2354                  */
2355                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2356
2357         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2358                         "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2359                 i, src, srcp, dest, destp, sk->sk_state,
2360                 tp->write_seq - tp->snd_una,
2361                 rx_queue,
2362                 timer_active,
2363                 jiffies_to_clock_t(timer_expires - jiffies),
2364                 icsk->icsk_retransmits,
2365                 sock_i_uid(sk),
2366                 icsk->icsk_probes_out,
2367                 sock_i_ino(sk),
2368                 atomic_read(&sk->sk_refcnt), sk,
2369                 jiffies_to_clock_t(icsk->icsk_rto),
2370                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2371                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2372                 tp->snd_cwnd,
2373                 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2374                 len);
2375 }
2376
2377 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2378                                struct seq_file *f, int i, int *len)
2379 {
2380         __be32 dest, src;
2381         __u16 destp, srcp;
2382         int ttd = tw->tw_ttd - jiffies;
2383
2384         if (ttd < 0)
2385                 ttd = 0;
2386
2387         dest  = tw->tw_daddr;
2388         src   = tw->tw_rcv_saddr;
2389         destp = ntohs(tw->tw_dport);
2390         srcp  = ntohs(tw->tw_sport);
2391
2392         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2393                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2394                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2395                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2396                 atomic_read(&tw->tw_refcnt), tw, len);
2397 }
2398
2399 #define TMPSZ 150
2400
2401 static int tcp4_seq_show(struct seq_file *seq, void *v)
2402 {
2403         struct tcp_iter_state *st;
2404         int len;
2405
2406         if (v == SEQ_START_TOKEN) {
2407                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2408                            "  sl  local_address rem_address   st tx_queue "
2409                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2410                            "inode");
2411                 goto out;
2412         }
2413         st = seq->private;
2414
2415         switch (st->state) {
2416         case TCP_SEQ_STATE_LISTENING:
2417         case TCP_SEQ_STATE_ESTABLISHED:
2418                 get_tcp4_sock(v, seq, st->num, &len);
2419                 break;
2420         case TCP_SEQ_STATE_OPENREQ:
2421                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2422                 break;
2423         case TCP_SEQ_STATE_TIME_WAIT:
2424                 get_timewait4_sock(v, seq, st->num, &len);
2425                 break;
2426         }
2427         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2428 out:
2429         return 0;
2430 }
2431
2432 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2433         .name           = "tcp",
2434         .family         = AF_INET,
2435         .seq_fops       = {
2436                 .owner          = THIS_MODULE,
2437         },
2438         .seq_ops        = {
2439                 .show           = tcp4_seq_show,
2440         },
2441 };
2442
2443 static int __net_init tcp4_proc_init_net(struct net *net)
2444 {
2445         return tcp_proc_register(net, &tcp4_seq_afinfo);
2446 }
2447
2448 static void __net_exit tcp4_proc_exit_net(struct net *net)
2449 {
2450         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2451 }
2452
2453 static struct pernet_operations tcp4_net_ops = {
2454         .init = tcp4_proc_init_net,
2455         .exit = tcp4_proc_exit_net,
2456 };
2457
2458 int __init tcp4_proc_init(void)
2459 {
2460         return register_pernet_subsys(&tcp4_net_ops);
2461 }
2462
2463 void tcp4_proc_exit(void)
2464 {
2465         unregister_pernet_subsys(&tcp4_net_ops);
2466 }
2467 #endif /* CONFIG_PROC_FS */
2468
2469 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2470 {
2471         struct iphdr *iph = skb_gro_network_header(skb);
2472
2473         switch (skb->ip_summed) {
2474         case CHECKSUM_COMPLETE:
2475                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2476                                   skb->csum)) {
2477                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2478                         break;
2479                 }
2480
2481                 /* fall through */
2482         case CHECKSUM_NONE:
2483                 NAPI_GRO_CB(skb)->flush = 1;
2484                 return NULL;
2485         }
2486
2487         return tcp_gro_receive(head, skb);
2488 }
2489 EXPORT_SYMBOL(tcp4_gro_receive);
2490
2491 int tcp4_gro_complete(struct sk_buff *skb)
2492 {
2493         struct iphdr *iph = ip_hdr(skb);
2494         struct tcphdr *th = tcp_hdr(skb);
2495
2496         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2497                                   iph->saddr, iph->daddr, 0);
2498         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2499
2500         return tcp_gro_complete(skb);
2501 }
2502 EXPORT_SYMBOL(tcp4_gro_complete);
2503
2504 struct proto tcp_prot = {
2505         .name                   = "TCP",
2506         .owner                  = THIS_MODULE,
2507         .close                  = tcp_close,
2508         .connect                = tcp_v4_connect,
2509         .disconnect             = tcp_disconnect,
2510         .accept                 = inet_csk_accept,
2511         .ioctl                  = tcp_ioctl,
2512         .init                   = tcp_v4_init_sock,
2513         .destroy                = tcp_v4_destroy_sock,
2514         .shutdown               = tcp_shutdown,
2515         .setsockopt             = tcp_setsockopt,
2516         .getsockopt             = tcp_getsockopt,
2517         .recvmsg                = tcp_recvmsg,
2518         .backlog_rcv            = tcp_v4_do_rcv,
2519         .hash                   = inet_hash,
2520         .unhash                 = inet_unhash,
2521         .get_port               = inet_csk_get_port,
2522         .enter_memory_pressure  = tcp_enter_memory_pressure,
2523         .sockets_allocated      = &tcp_sockets_allocated,
2524         .orphan_count           = &tcp_orphan_count,
2525         .memory_allocated       = &tcp_memory_allocated,
2526         .memory_pressure        = &tcp_memory_pressure,
2527         .sysctl_mem             = sysctl_tcp_mem,
2528         .sysctl_wmem            = sysctl_tcp_wmem,
2529         .sysctl_rmem            = sysctl_tcp_rmem,
2530         .max_header             = MAX_TCP_HEADER,
2531         .obj_size               = sizeof(struct tcp_sock),
2532         .slab_flags             = SLAB_DESTROY_BY_RCU,
2533         .twsk_prot              = &tcp_timewait_sock_ops,
2534         .rsk_prot               = &tcp_request_sock_ops,
2535         .h.hashinfo             = &tcp_hashinfo,
2536 #ifdef CONFIG_COMPAT
2537         .compat_setsockopt      = compat_tcp_setsockopt,
2538         .compat_getsockopt      = compat_tcp_getsockopt,
2539 #endif
2540 };
2541
2542
2543 static int __net_init tcp_sk_init(struct net *net)
2544 {
2545         return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2546                                     PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2547 }
2548
2549 static void __net_exit tcp_sk_exit(struct net *net)
2550 {
2551         inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2552 }
2553
2554 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2555 {
2556         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2557 }
2558
2559 static struct pernet_operations __net_initdata tcp_sk_ops = {
2560        .init       = tcp_sk_init,
2561        .exit       = tcp_sk_exit,
2562        .exit_batch = tcp_sk_exit_batch,
2563 };
2564
2565 void __init tcp_v4_init(void)
2566 {
2567         inet_hashinfo_init(&tcp_hashinfo);
2568         if (register_pernet_subsys(&tcp_sk_ops))
2569                 panic("Failed to create the TCP control socket.\n");
2570 }
2571
2572 EXPORT_SYMBOL(ipv4_specific);
2573 EXPORT_SYMBOL(tcp_hashinfo);
2574 EXPORT_SYMBOL(tcp_prot);
2575 EXPORT_SYMBOL(tcp_v4_conn_request);
2576 EXPORT_SYMBOL(tcp_v4_connect);
2577 EXPORT_SYMBOL(tcp_v4_do_rcv);
2578 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2579 EXPORT_SYMBOL(tcp_v4_send_check);
2580 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2581
2582 #ifdef CONFIG_PROC_FS
2583 EXPORT_SYMBOL(tcp_proc_register);
2584 EXPORT_SYMBOL(tcp_proc_unregister);
2585 #endif
2586 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2587