rt2x00: Don't kick TX queue after each frame
[linux-flexiantxendom0-natty.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 queue specific routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
33                                       struct txentry_desc *txdesc)
34 {
35         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
36         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
37         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
38         struct ieee80211_rate *rate =
39             ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
40         const struct rt2x00_rate *hwrate;
41         unsigned int data_length;
42         unsigned int duration;
43         unsigned int residual;
44         u16 frame_control;
45
46         memset(txdesc, 0, sizeof(*txdesc));
47
48         /*
49          * Initialize information from queue
50          */
51         txdesc->queue = entry->queue->qid;
52         txdesc->cw_min = entry->queue->cw_min;
53         txdesc->cw_max = entry->queue->cw_max;
54         txdesc->aifs = entry->queue->aifs;
55
56         /* Data length should be extended with 4 bytes for CRC */
57         data_length = entry->skb->len + 4;
58
59         /*
60          * Read required fields from ieee80211 header.
61          */
62         frame_control = le16_to_cpu(hdr->frame_control);
63
64         /*
65          * Check whether this frame is to be acked.
66          */
67         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
68                 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
69
70         /*
71          * Check if this is a RTS/CTS frame
72          */
73         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
74                 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
75                 if (is_rts_frame(frame_control))
76                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
77                 else
78                         __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
79                 if (tx_info->control.rts_cts_rate_idx >= 0)
80                         rate =
81                             ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
82         }
83
84         /*
85          * Determine retry information.
86          */
87         txdesc->retry_limit = tx_info->control.retry_limit;
88         if (tx_info->flags & IEEE80211_TX_CTL_LONG_RETRY_LIMIT)
89                 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
90
91         /*
92          * Check if more fragments are pending
93          */
94         if (ieee80211_get_morefrag(hdr)) {
95                 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
96                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
97         }
98
99         /*
100          * Beacons and probe responses require the tsf timestamp
101          * to be inserted into the frame.
102          */
103         if (txdesc->queue == QID_BEACON || is_probe_resp(frame_control))
104                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
105
106         /*
107          * Determine with what IFS priority this frame should be send.
108          * Set ifs to IFS_SIFS when the this is not the first fragment,
109          * or this fragment came after RTS/CTS.
110          */
111         if (test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
112                 txdesc->ifs = IFS_SIFS;
113         } else if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
114                 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
115                 txdesc->ifs = IFS_BACKOFF;
116         } else {
117                 txdesc->ifs = IFS_SIFS;
118         }
119
120         /*
121          * PLCP setup
122          * Length calculation depends on OFDM/CCK rate.
123          */
124         hwrate = rt2x00_get_rate(rate->hw_value);
125         txdesc->signal = hwrate->plcp;
126         txdesc->service = 0x04;
127
128         if (hwrate->flags & DEV_RATE_OFDM) {
129                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags);
130
131                 txdesc->length_high = (data_length >> 6) & 0x3f;
132                 txdesc->length_low = data_length & 0x3f;
133         } else {
134                 /*
135                  * Convert length to microseconds.
136                  */
137                 residual = get_duration_res(data_length, hwrate->bitrate);
138                 duration = get_duration(data_length, hwrate->bitrate);
139
140                 if (residual != 0) {
141                         duration++;
142
143                         /*
144                          * Check if we need to set the Length Extension
145                          */
146                         if (hwrate->bitrate == 110 && residual <= 30)
147                                 txdesc->service |= 0x80;
148                 }
149
150                 txdesc->length_high = (duration >> 8) & 0xff;
151                 txdesc->length_low = duration & 0xff;
152
153                 /*
154                  * When preamble is enabled we should set the
155                  * preamble bit for the signal.
156                  */
157                 if (rt2x00_get_rate_preamble(rate->hw_value))
158                         txdesc->signal |= 0x08;
159         }
160 }
161 EXPORT_SYMBOL_GPL(rt2x00queue_create_tx_descriptor);
162
163 void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
164                                      struct txentry_desc *txdesc)
165 {
166         struct data_queue *queue = entry->queue;
167         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
168
169         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
170
171         /*
172          * All processing on the frame has been completed, this means
173          * it is now ready to be dumped to userspace through debugfs.
174          */
175         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
176
177         /*
178          * Check if we need to kick the queue, there are however a few rules
179          *      1) Don't kick beacon queue
180          *      2) Don't kick unless this is the last in frame in a burst.
181          *         When the burst flag is set, this frame is always followed
182          *         by another frame which in some way are related to eachother.
183          *         This is true for fragments, RTS or CTS-to-self frames.
184          *      3) Rule 2 can be broken when the available entries
185          *         in the queue are less then a certain threshold.
186          */
187         if (entry->queue->qid == QID_BEACON)
188                 return;
189
190         if (rt2x00queue_threshold(queue) ||
191             !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
192                 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
193 }
194 EXPORT_SYMBOL_GPL(rt2x00queue_write_tx_descriptor);
195
196 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
197 {
198         struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
199         struct txentry_desc txdesc;
200
201         if (unlikely(rt2x00queue_full(queue)))
202                 return -EINVAL;
203
204         if (__test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
205                 ERROR(queue->rt2x00dev,
206                       "Arrived at non-free entry in the non-full queue %d.\n"
207                       "Please file bug report to %s.\n",
208                       queue->qid, DRV_PROJECT);
209                 return -EINVAL;
210         }
211
212         /*
213          * Copy all TX descriptor information into txdesc,
214          * after that we are free to use the skb->cb array
215          * for our information.
216          */
217         entry->skb = skb;
218         rt2x00queue_create_tx_descriptor(entry, &txdesc);
219
220         if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
221                 __clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
222                 return -EIO;
223         }
224
225         __set_bit(ENTRY_DATA_PENDING, &entry->flags);
226
227         rt2x00queue_index_inc(queue, Q_INDEX);
228         rt2x00queue_write_tx_descriptor(entry, &txdesc);
229
230         return 0;
231 }
232
233 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
234                                          const enum data_queue_qid queue)
235 {
236         int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
237
238         if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
239                 return &rt2x00dev->tx[queue];
240
241         if (!rt2x00dev->bcn)
242                 return NULL;
243
244         if (queue == QID_BEACON)
245                 return &rt2x00dev->bcn[0];
246         else if (queue == QID_ATIM && atim)
247                 return &rt2x00dev->bcn[1];
248
249         return NULL;
250 }
251 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
252
253 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
254                                           enum queue_index index)
255 {
256         struct queue_entry *entry;
257         unsigned long irqflags;
258
259         if (unlikely(index >= Q_INDEX_MAX)) {
260                 ERROR(queue->rt2x00dev,
261                       "Entry requested from invalid index type (%d)\n", index);
262                 return NULL;
263         }
264
265         spin_lock_irqsave(&queue->lock, irqflags);
266
267         entry = &queue->entries[queue->index[index]];
268
269         spin_unlock_irqrestore(&queue->lock, irqflags);
270
271         return entry;
272 }
273 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
274
275 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
276 {
277         unsigned long irqflags;
278
279         if (unlikely(index >= Q_INDEX_MAX)) {
280                 ERROR(queue->rt2x00dev,
281                       "Index change on invalid index type (%d)\n", index);
282                 return;
283         }
284
285         spin_lock_irqsave(&queue->lock, irqflags);
286
287         queue->index[index]++;
288         if (queue->index[index] >= queue->limit)
289                 queue->index[index] = 0;
290
291         if (index == Q_INDEX) {
292                 queue->length++;
293         } else if (index == Q_INDEX_DONE) {
294                 queue->length--;
295                 queue->count ++;
296         }
297
298         spin_unlock_irqrestore(&queue->lock, irqflags);
299 }
300 EXPORT_SYMBOL_GPL(rt2x00queue_index_inc);
301
302 static void rt2x00queue_reset(struct data_queue *queue)
303 {
304         unsigned long irqflags;
305
306         spin_lock_irqsave(&queue->lock, irqflags);
307
308         queue->count = 0;
309         queue->length = 0;
310         memset(queue->index, 0, sizeof(queue->index));
311
312         spin_unlock_irqrestore(&queue->lock, irqflags);
313 }
314
315 void rt2x00queue_init_rx(struct rt2x00_dev *rt2x00dev)
316 {
317         struct data_queue *queue = rt2x00dev->rx;
318         unsigned int i;
319
320         rt2x00queue_reset(queue);
321
322         if (!rt2x00dev->ops->lib->init_rxentry)
323                 return;
324
325         for (i = 0; i < queue->limit; i++)
326                 rt2x00dev->ops->lib->init_rxentry(rt2x00dev,
327                                                   &queue->entries[i]);
328 }
329
330 void rt2x00queue_init_tx(struct rt2x00_dev *rt2x00dev)
331 {
332         struct data_queue *queue;
333         unsigned int i;
334
335         txall_queue_for_each(rt2x00dev, queue) {
336                 rt2x00queue_reset(queue);
337
338                 if (!rt2x00dev->ops->lib->init_txentry)
339                         continue;
340
341                 for (i = 0; i < queue->limit; i++)
342                         rt2x00dev->ops->lib->init_txentry(rt2x00dev,
343                                                           &queue->entries[i]);
344         }
345 }
346
347 static int rt2x00queue_alloc_entries(struct data_queue *queue,
348                                      const struct data_queue_desc *qdesc)
349 {
350         struct queue_entry *entries;
351         unsigned int entry_size;
352         unsigned int i;
353
354         rt2x00queue_reset(queue);
355
356         queue->limit = qdesc->entry_num;
357         queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
358         queue->data_size = qdesc->data_size;
359         queue->desc_size = qdesc->desc_size;
360
361         /*
362          * Allocate all queue entries.
363          */
364         entry_size = sizeof(*entries) + qdesc->priv_size;
365         entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
366         if (!entries)
367                 return -ENOMEM;
368
369 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
370         ( ((char *)(__base)) + ((__limit) * (__esize)) + \
371             ((__index) * (__psize)) )
372
373         for (i = 0; i < queue->limit; i++) {
374                 entries[i].flags = 0;
375                 entries[i].queue = queue;
376                 entries[i].skb = NULL;
377                 entries[i].entry_idx = i;
378                 entries[i].priv_data =
379                     QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
380                                             sizeof(*entries), qdesc->priv_size);
381         }
382
383 #undef QUEUE_ENTRY_PRIV_OFFSET
384
385         queue->entries = entries;
386
387         return 0;
388 }
389
390 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
391 {
392         struct data_queue *queue;
393         int status;
394
395
396         status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
397         if (status)
398                 goto exit;
399
400         tx_queue_for_each(rt2x00dev, queue) {
401                 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
402                 if (status)
403                         goto exit;
404         }
405
406         status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
407         if (status)
408                 goto exit;
409
410         if (!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags))
411                 return 0;
412
413         status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
414                                            rt2x00dev->ops->atim);
415         if (status)
416                 goto exit;
417
418         return 0;
419
420 exit:
421         ERROR(rt2x00dev, "Queue entries allocation failed.\n");
422
423         rt2x00queue_uninitialize(rt2x00dev);
424
425         return status;
426 }
427
428 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
429 {
430         struct data_queue *queue;
431
432         queue_for_each(rt2x00dev, queue) {
433                 kfree(queue->entries);
434                 queue->entries = NULL;
435         }
436 }
437
438 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
439                              struct data_queue *queue, enum data_queue_qid qid)
440 {
441         spin_lock_init(&queue->lock);
442
443         queue->rt2x00dev = rt2x00dev;
444         queue->qid = qid;
445         queue->aifs = 2;
446         queue->cw_min = 5;
447         queue->cw_max = 10;
448 }
449
450 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
451 {
452         struct data_queue *queue;
453         enum data_queue_qid qid;
454         unsigned int req_atim =
455             !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
456
457         /*
458          * We need the following queues:
459          * RX: 1
460          * TX: ops->tx_queues
461          * Beacon: 1
462          * Atim: 1 (if required)
463          */
464         rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
465
466         queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
467         if (!queue) {
468                 ERROR(rt2x00dev, "Queue allocation failed.\n");
469                 return -ENOMEM;
470         }
471
472         /*
473          * Initialize pointers
474          */
475         rt2x00dev->rx = queue;
476         rt2x00dev->tx = &queue[1];
477         rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
478
479         /*
480          * Initialize queue parameters.
481          * RX: qid = QID_RX
482          * TX: qid = QID_AC_BE + index
483          * TX: cw_min: 2^5 = 32.
484          * TX: cw_max: 2^10 = 1024.
485          * BCN: qid = QID_BEACON
486          * ATIM: qid = QID_ATIM
487          */
488         rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
489
490         qid = QID_AC_BE;
491         tx_queue_for_each(rt2x00dev, queue)
492                 rt2x00queue_init(rt2x00dev, queue, qid++);
493
494         rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
495         if (req_atim)
496                 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
497
498         return 0;
499 }
500
501 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
502 {
503         kfree(rt2x00dev->rx);
504         rt2x00dev->rx = NULL;
505         rt2x00dev->tx = NULL;
506         rt2x00dev->bcn = NULL;
507 }