i386: NX emulation
[linux-flexiantxendom0-natty.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45
46 #include <asm/paravirt.h>
47 #include <asm/apic.h>
48 #include <asm/page.h>
49 #include <asm/xen/pci.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/fixmap.h>
53 #include <asm/processor.h>
54 #include <asm/proto.h>
55 #include <asm/msr-index.h>
56 #include <asm/traps.h>
57 #include <asm/setup.h>
58 #include <asm/desc.h>
59 #include <asm/pgalloc.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/reboot.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
65
66 #include "xen-ops.h"
67 #include "mmu.h"
68 #include "multicalls.h"
69
70 EXPORT_SYMBOL_GPL(hypercall_page);
71
72 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
73 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
74
75 enum xen_domain_type xen_domain_type = XEN_NATIVE;
76 EXPORT_SYMBOL_GPL(xen_domain_type);
77
78 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
79 EXPORT_SYMBOL(machine_to_phys_mapping);
80 unsigned int   machine_to_phys_order;
81 EXPORT_SYMBOL(machine_to_phys_order);
82
83 struct start_info *xen_start_info;
84 EXPORT_SYMBOL_GPL(xen_start_info);
85
86 struct shared_info xen_dummy_shared_info;
87
88 void *xen_initial_gdt;
89
90 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
91 __read_mostly int xen_have_vector_callback;
92 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
93
94 /*
95  * Point at some empty memory to start with. We map the real shared_info
96  * page as soon as fixmap is up and running.
97  */
98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
99
100 /*
101  * Flag to determine whether vcpu info placement is available on all
102  * VCPUs.  We assume it is to start with, and then set it to zero on
103  * the first failure.  This is because it can succeed on some VCPUs
104  * and not others, since it can involve hypervisor memory allocation,
105  * or because the guest failed to guarantee all the appropriate
106  * constraints on all VCPUs (ie buffer can't cross a page boundary).
107  *
108  * Note that any particular CPU may be using a placed vcpu structure,
109  * but we can only optimise if the all are.
110  *
111  * 0: not available, 1: available
112  */
113 static int have_vcpu_info_placement = 1;
114
115 static void clamp_max_cpus(void)
116 {
117 #ifdef CONFIG_SMP
118         if (setup_max_cpus > MAX_VIRT_CPUS)
119                 setup_max_cpus = MAX_VIRT_CPUS;
120 #endif
121 }
122
123 static void xen_vcpu_setup(int cpu)
124 {
125         struct vcpu_register_vcpu_info info;
126         int err;
127         struct vcpu_info *vcpup;
128
129         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
130
131         if (cpu < MAX_VIRT_CPUS)
132                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
133
134         if (!have_vcpu_info_placement) {
135                 if (cpu >= MAX_VIRT_CPUS)
136                         clamp_max_cpus();
137                 return;
138         }
139
140         vcpup = &per_cpu(xen_vcpu_info, cpu);
141         info.mfn = arbitrary_virt_to_mfn(vcpup);
142         info.offset = offset_in_page(vcpup);
143
144         /* Check to see if the hypervisor will put the vcpu_info
145            structure where we want it, which allows direct access via
146            a percpu-variable. */
147         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
148
149         if (err) {
150                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
151                 have_vcpu_info_placement = 0;
152                 clamp_max_cpus();
153         } else {
154                 /* This cpu is using the registered vcpu info, even if
155                    later ones fail to. */
156                 per_cpu(xen_vcpu, cpu) = vcpup;
157         }
158 }
159
160 /*
161  * On restore, set the vcpu placement up again.
162  * If it fails, then we're in a bad state, since
163  * we can't back out from using it...
164  */
165 void xen_vcpu_restore(void)
166 {
167         int cpu;
168
169         for_each_online_cpu(cpu) {
170                 bool other_cpu = (cpu != smp_processor_id());
171
172                 if (other_cpu &&
173                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
174                         BUG();
175
176                 xen_setup_runstate_info(cpu);
177
178                 if (have_vcpu_info_placement)
179                         xen_vcpu_setup(cpu);
180
181                 if (other_cpu &&
182                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
183                         BUG();
184         }
185 }
186
187 static void __init xen_banner(void)
188 {
189         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
190         struct xen_extraversion extra;
191         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
192
193         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
194                pv_info.name);
195         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
196                version >> 16, version & 0xffff, extra.extraversion,
197                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
198 }
199
200 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
201 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
202
203 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
204                       unsigned int *cx, unsigned int *dx)
205 {
206         unsigned maskebx = ~0;
207         unsigned maskecx = ~0;
208         unsigned maskedx = ~0;
209
210         /*
211          * Mask out inconvenient features, to try and disable as many
212          * unsupported kernel subsystems as possible.
213          */
214         switch (*ax) {
215         case 1:
216                 maskecx = cpuid_leaf1_ecx_mask;
217                 maskedx = cpuid_leaf1_edx_mask;
218                 break;
219
220         case 0xb:
221                 /* Suppress extended topology stuff */
222                 maskebx = 0;
223                 break;
224         }
225
226         asm(XEN_EMULATE_PREFIX "cpuid"
227                 : "=a" (*ax),
228                   "=b" (*bx),
229                   "=c" (*cx),
230                   "=d" (*dx)
231                 : "0" (*ax), "2" (*cx));
232
233         *bx &= maskebx;
234         *cx &= maskecx;
235         *dx &= maskedx;
236 }
237
238 static __init void xen_init_cpuid_mask(void)
239 {
240         unsigned int ax, bx, cx, dx;
241
242         cpuid_leaf1_edx_mask =
243                 ~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
244                   (1 << X86_FEATURE_MCA)  |  /* disable MCA */
245                   (1 << X86_FEATURE_MTRR) |  /* disable MTRR */
246                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
247
248         if (!xen_initial_domain())
249                 cpuid_leaf1_edx_mask &=
250                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
251                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
252
253         ax = 1;
254         cx = 0;
255         xen_cpuid(&ax, &bx, &cx, &dx);
256
257         /* cpuid claims we support xsave; try enabling it to see what happens */
258         if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
259                 unsigned long cr4;
260
261                 set_in_cr4(X86_CR4_OSXSAVE);
262                 
263                 cr4 = read_cr4();
264
265                 if ((cr4 & X86_CR4_OSXSAVE) == 0)
266                         cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
267
268                 clear_in_cr4(X86_CR4_OSXSAVE);
269         }
270 }
271
272 static void xen_set_debugreg(int reg, unsigned long val)
273 {
274         HYPERVISOR_set_debugreg(reg, val);
275 }
276
277 static unsigned long xen_get_debugreg(int reg)
278 {
279         return HYPERVISOR_get_debugreg(reg);
280 }
281
282 static void xen_end_context_switch(struct task_struct *next)
283 {
284         xen_mc_flush();
285         paravirt_end_context_switch(next);
286 }
287
288 static unsigned long xen_store_tr(void)
289 {
290         return 0;
291 }
292
293 /*
294  * Set the page permissions for a particular virtual address.  If the
295  * address is a vmalloc mapping (or other non-linear mapping), then
296  * find the linear mapping of the page and also set its protections to
297  * match.
298  */
299 static void set_aliased_prot(void *v, pgprot_t prot)
300 {
301         int level;
302         pte_t *ptep;
303         pte_t pte;
304         unsigned long pfn;
305         struct page *page;
306
307         ptep = lookup_address((unsigned long)v, &level);
308         BUG_ON(ptep == NULL);
309
310         pfn = pte_pfn(*ptep);
311         page = pfn_to_page(pfn);
312
313         pte = pfn_pte(pfn, prot);
314
315         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
316                 BUG();
317
318         if (!PageHighMem(page)) {
319                 void *av = __va(PFN_PHYS(pfn));
320
321                 if (av != v)
322                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
323                                 BUG();
324         } else
325                 kmap_flush_unused();
326 }
327
328 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
329 {
330         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
331         int i;
332
333         for(i = 0; i < entries; i += entries_per_page)
334                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
335 }
336
337 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
338 {
339         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
340         int i;
341
342         for(i = 0; i < entries; i += entries_per_page)
343                 set_aliased_prot(ldt + i, PAGE_KERNEL);
344 }
345
346 static void xen_set_ldt(const void *addr, unsigned entries)
347 {
348         struct mmuext_op *op;
349         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
350
351         op = mcs.args;
352         op->cmd = MMUEXT_SET_LDT;
353         op->arg1.linear_addr = (unsigned long)addr;
354         op->arg2.nr_ents = entries;
355
356         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
357
358         xen_mc_issue(PARAVIRT_LAZY_CPU);
359 }
360
361 #ifdef CONFIG_X86_32
362 static void xen_load_user_cs_desc(int cpu, struct mm_struct *mm)
363 {
364         void *gdt;
365         xmaddr_t mgdt;
366         u64 descriptor;
367         struct desc_struct user_cs;
368
369         gdt = &get_cpu_gdt_table(cpu)[GDT_ENTRY_DEFAULT_USER_CS];
370         mgdt = virt_to_machine(gdt);
371
372         user_cs = mm->context.user_cs;
373         descriptor = (u64) user_cs.a | ((u64) user_cs.b) << 32;
374
375         HYPERVISOR_update_descriptor(mgdt.maddr, descriptor);
376 }
377 #endif /*CONFIG_X86_32*/
378
379 static void xen_load_gdt(const struct desc_ptr *dtr)
380 {
381         unsigned long va = dtr->address;
382         unsigned int size = dtr->size + 1;
383         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
384         unsigned long frames[pages];
385         int f;
386
387         /*
388          * A GDT can be up to 64k in size, which corresponds to 8192
389          * 8-byte entries, or 16 4k pages..
390          */
391
392         BUG_ON(size > 65536);
393         BUG_ON(va & ~PAGE_MASK);
394
395         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
396                 int level;
397                 pte_t *ptep;
398                 unsigned long pfn, mfn;
399                 void *virt;
400
401                 /*
402                  * The GDT is per-cpu and is in the percpu data area.
403                  * That can be virtually mapped, so we need to do a
404                  * page-walk to get the underlying MFN for the
405                  * hypercall.  The page can also be in the kernel's
406                  * linear range, so we need to RO that mapping too.
407                  */
408                 ptep = lookup_address(va, &level);
409                 BUG_ON(ptep == NULL);
410
411                 pfn = pte_pfn(*ptep);
412                 mfn = pfn_to_mfn(pfn);
413                 virt = __va(PFN_PHYS(pfn));
414
415                 frames[f] = mfn;
416
417                 make_lowmem_page_readonly((void *)va);
418                 make_lowmem_page_readonly(virt);
419         }
420
421         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
422                 BUG();
423 }
424
425 /*
426  * load_gdt for early boot, when the gdt is only mapped once
427  */
428 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
429 {
430         unsigned long va = dtr->address;
431         unsigned int size = dtr->size + 1;
432         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
433         unsigned long frames[pages];
434         int f;
435
436         /*
437          * A GDT can be up to 64k in size, which corresponds to 8192
438          * 8-byte entries, or 16 4k pages..
439          */
440
441         BUG_ON(size > 65536);
442         BUG_ON(va & ~PAGE_MASK);
443
444         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
445                 pte_t pte;
446                 unsigned long pfn, mfn;
447
448                 pfn = virt_to_pfn(va);
449                 mfn = pfn_to_mfn(pfn);
450
451                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
452
453                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
454                         BUG();
455
456                 frames[f] = mfn;
457         }
458
459         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
460                 BUG();
461 }
462
463 static void load_TLS_descriptor(struct thread_struct *t,
464                                 unsigned int cpu, unsigned int i)
465 {
466         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
467         xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
468         struct multicall_space mc = __xen_mc_entry(0);
469
470         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
471 }
472
473 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
474 {
475         /*
476          * XXX sleazy hack: If we're being called in a lazy-cpu zone
477          * and lazy gs handling is enabled, it means we're in a
478          * context switch, and %gs has just been saved.  This means we
479          * can zero it out to prevent faults on exit from the
480          * hypervisor if the next process has no %gs.  Either way, it
481          * has been saved, and the new value will get loaded properly.
482          * This will go away as soon as Xen has been modified to not
483          * save/restore %gs for normal hypercalls.
484          *
485          * On x86_64, this hack is not used for %gs, because gs points
486          * to KERNEL_GS_BASE (and uses it for PDA references), so we
487          * must not zero %gs on x86_64
488          *
489          * For x86_64, we need to zero %fs, otherwise we may get an
490          * exception between the new %fs descriptor being loaded and
491          * %fs being effectively cleared at __switch_to().
492          */
493         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
494 #ifdef CONFIG_X86_32
495                 lazy_load_gs(0);
496 #else
497                 loadsegment(fs, 0);
498 #endif
499         }
500
501         xen_mc_batch();
502
503         load_TLS_descriptor(t, cpu, 0);
504         load_TLS_descriptor(t, cpu, 1);
505         load_TLS_descriptor(t, cpu, 2);
506
507         xen_mc_issue(PARAVIRT_LAZY_CPU);
508 }
509
510 #ifdef CONFIG_X86_64
511 static void xen_load_gs_index(unsigned int idx)
512 {
513         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
514                 BUG();
515 }
516 #endif
517
518 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
519                                 const void *ptr)
520 {
521         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
522         u64 entry = *(u64 *)ptr;
523
524         preempt_disable();
525
526         xen_mc_flush();
527         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
528                 BUG();
529
530         preempt_enable();
531 }
532
533 static int cvt_gate_to_trap(int vector, const gate_desc *val,
534                             struct trap_info *info)
535 {
536         unsigned long addr;
537
538         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
539                 return 0;
540
541         info->vector = vector;
542
543         addr = gate_offset(*val);
544 #ifdef CONFIG_X86_64
545         /*
546          * Look for known traps using IST, and substitute them
547          * appropriately.  The debugger ones are the only ones we care
548          * about.  Xen will handle faults like double_fault and
549          * machine_check, so we should never see them.  Warn if
550          * there's an unexpected IST-using fault handler.
551          */
552         if (addr == (unsigned long)debug)
553                 addr = (unsigned long)xen_debug;
554         else if (addr == (unsigned long)int3)
555                 addr = (unsigned long)xen_int3;
556         else if (addr == (unsigned long)stack_segment)
557                 addr = (unsigned long)xen_stack_segment;
558         else if (addr == (unsigned long)double_fault ||
559                  addr == (unsigned long)nmi) {
560                 /* Don't need to handle these */
561                 return 0;
562 #ifdef CONFIG_X86_MCE
563         } else if (addr == (unsigned long)machine_check) {
564                 return 0;
565 #endif
566         } else {
567                 /* Some other trap using IST? */
568                 if (WARN_ON(val->ist != 0))
569                         return 0;
570         }
571 #endif  /* CONFIG_X86_64 */
572         info->address = addr;
573
574         info->cs = gate_segment(*val);
575         info->flags = val->dpl;
576         /* interrupt gates clear IF */
577         if (val->type == GATE_INTERRUPT)
578                 info->flags |= 1 << 2;
579
580         return 1;
581 }
582
583 /* Locations of each CPU's IDT */
584 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
585
586 /* Set an IDT entry.  If the entry is part of the current IDT, then
587    also update Xen. */
588 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
589 {
590         unsigned long p = (unsigned long)&dt[entrynum];
591         unsigned long start, end;
592
593         preempt_disable();
594
595         start = __this_cpu_read(idt_desc.address);
596         end = start + __this_cpu_read(idt_desc.size) + 1;
597
598         xen_mc_flush();
599
600         native_write_idt_entry(dt, entrynum, g);
601
602         if (p >= start && (p + 8) <= end) {
603                 struct trap_info info[2];
604
605                 info[1].address = 0;
606
607                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
608                         if (HYPERVISOR_set_trap_table(info))
609                                 BUG();
610         }
611
612         preempt_enable();
613 }
614
615 static void xen_convert_trap_info(const struct desc_ptr *desc,
616                                   struct trap_info *traps)
617 {
618         unsigned in, out, count;
619
620         count = (desc->size+1) / sizeof(gate_desc);
621         BUG_ON(count > 256);
622
623         for (in = out = 0; in < count; in++) {
624                 gate_desc *entry = (gate_desc*)(desc->address) + in;
625
626                 if (cvt_gate_to_trap(in, entry, &traps[out]))
627                         out++;
628         }
629         traps[out].address = 0;
630 }
631
632 void xen_copy_trap_info(struct trap_info *traps)
633 {
634         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
635
636         xen_convert_trap_info(desc, traps);
637 }
638
639 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
640    hold a spinlock to protect the static traps[] array (static because
641    it avoids allocation, and saves stack space). */
642 static void xen_load_idt(const struct desc_ptr *desc)
643 {
644         static DEFINE_SPINLOCK(lock);
645         static struct trap_info traps[257];
646
647         spin_lock(&lock);
648
649         __get_cpu_var(idt_desc) = *desc;
650
651         xen_convert_trap_info(desc, traps);
652
653         xen_mc_flush();
654         if (HYPERVISOR_set_trap_table(traps))
655                 BUG();
656
657         spin_unlock(&lock);
658 }
659
660 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
661    they're handled differently. */
662 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
663                                 const void *desc, int type)
664 {
665         preempt_disable();
666
667         switch (type) {
668         case DESC_LDT:
669         case DESC_TSS:
670                 /* ignore */
671                 break;
672
673         default: {
674                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
675
676                 xen_mc_flush();
677                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
678                         BUG();
679         }
680
681         }
682
683         preempt_enable();
684 }
685
686 /*
687  * Version of write_gdt_entry for use at early boot-time needed to
688  * update an entry as simply as possible.
689  */
690 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
691                                             const void *desc, int type)
692 {
693         switch (type) {
694         case DESC_LDT:
695         case DESC_TSS:
696                 /* ignore */
697                 break;
698
699         default: {
700                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
701
702                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
703                         dt[entry] = *(struct desc_struct *)desc;
704         }
705
706         }
707 }
708
709 static void xen_load_sp0(struct tss_struct *tss,
710                          struct thread_struct *thread)
711 {
712         struct multicall_space mcs = xen_mc_entry(0);
713         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
714         xen_mc_issue(PARAVIRT_LAZY_CPU);
715 }
716
717 static void xen_set_iopl_mask(unsigned mask)
718 {
719         struct physdev_set_iopl set_iopl;
720
721         /* Force the change at ring 0. */
722         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
723         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
724 }
725
726 static void xen_io_delay(void)
727 {
728 }
729
730 #ifdef CONFIG_X86_LOCAL_APIC
731 static u32 xen_apic_read(u32 reg)
732 {
733         return 0;
734 }
735
736 static void xen_apic_write(u32 reg, u32 val)
737 {
738         /* Warn to see if there's any stray references */
739         WARN_ON(1);
740 }
741
742 static u64 xen_apic_icr_read(void)
743 {
744         return 0;
745 }
746
747 static void xen_apic_icr_write(u32 low, u32 id)
748 {
749         /* Warn to see if there's any stray references */
750         WARN_ON(1);
751 }
752
753 static void xen_apic_wait_icr_idle(void)
754 {
755         return;
756 }
757
758 static u32 xen_safe_apic_wait_icr_idle(void)
759 {
760         return 0;
761 }
762
763 static void set_xen_basic_apic_ops(void)
764 {
765         apic->read = xen_apic_read;
766         apic->write = xen_apic_write;
767         apic->icr_read = xen_apic_icr_read;
768         apic->icr_write = xen_apic_icr_write;
769         apic->wait_icr_idle = xen_apic_wait_icr_idle;
770         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
771 }
772
773 #endif
774
775 static void xen_clts(void)
776 {
777         struct multicall_space mcs;
778
779         mcs = xen_mc_entry(0);
780
781         MULTI_fpu_taskswitch(mcs.mc, 0);
782
783         xen_mc_issue(PARAVIRT_LAZY_CPU);
784 }
785
786 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
787
788 static unsigned long xen_read_cr0(void)
789 {
790         unsigned long cr0 = percpu_read(xen_cr0_value);
791
792         if (unlikely(cr0 == 0)) {
793                 cr0 = native_read_cr0();
794                 percpu_write(xen_cr0_value, cr0);
795         }
796
797         return cr0;
798 }
799
800 static void xen_write_cr0(unsigned long cr0)
801 {
802         struct multicall_space mcs;
803
804         percpu_write(xen_cr0_value, cr0);
805
806         /* Only pay attention to cr0.TS; everything else is
807            ignored. */
808         mcs = xen_mc_entry(0);
809
810         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
811
812         xen_mc_issue(PARAVIRT_LAZY_CPU);
813 }
814
815 static void xen_write_cr4(unsigned long cr4)
816 {
817         cr4 &= ~X86_CR4_PGE;
818         cr4 &= ~X86_CR4_PSE;
819         cr4 &= ~X86_CR4_OSXSAVE;
820
821         native_write_cr4(cr4);
822 }
823
824 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
825 {
826         int ret;
827
828         ret = 0;
829
830         switch (msr) {
831 #ifdef CONFIG_X86_64
832                 unsigned which;
833                 u64 base;
834
835         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
836         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
837         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
838
839         set:
840                 base = ((u64)high << 32) | low;
841                 if (HYPERVISOR_set_segment_base(which, base) != 0)
842                         ret = -EIO;
843                 break;
844 #endif
845
846         case MSR_STAR:
847         case MSR_CSTAR:
848         case MSR_LSTAR:
849         case MSR_SYSCALL_MASK:
850         case MSR_IA32_SYSENTER_CS:
851         case MSR_IA32_SYSENTER_ESP:
852         case MSR_IA32_SYSENTER_EIP:
853                 /* Fast syscall setup is all done in hypercalls, so
854                    these are all ignored.  Stub them out here to stop
855                    Xen console noise. */
856                 break;
857
858         case MSR_IA32_CR_PAT:
859                 if (smp_processor_id() == 0)
860                         xen_set_pat(((u64)high << 32) | low);
861                 break;
862
863         default:
864                 ret = native_write_msr_safe(msr, low, high);
865         }
866
867         return ret;
868 }
869
870 void xen_setup_shared_info(void)
871 {
872         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
873                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
874                            xen_start_info->shared_info);
875
876                 HYPERVISOR_shared_info =
877                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
878         } else
879                 HYPERVISOR_shared_info =
880                         (struct shared_info *)__va(xen_start_info->shared_info);
881
882 #ifndef CONFIG_SMP
883         /* In UP this is as good a place as any to set up shared info */
884         xen_setup_vcpu_info_placement();
885 #endif
886
887         xen_setup_mfn_list_list();
888 }
889
890 /* This is called once we have the cpu_possible_map */
891 void xen_setup_vcpu_info_placement(void)
892 {
893         int cpu;
894
895         for_each_possible_cpu(cpu)
896                 xen_vcpu_setup(cpu);
897
898         /* xen_vcpu_setup managed to place the vcpu_info within the
899            percpu area for all cpus, so make use of it */
900         if (have_vcpu_info_placement) {
901                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
902                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
903                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
904                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
905                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
906         }
907 }
908
909 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
910                           unsigned long addr, unsigned len)
911 {
912         char *start, *end, *reloc;
913         unsigned ret;
914
915         start = end = reloc = NULL;
916
917 #define SITE(op, x)                                                     \
918         case PARAVIRT_PATCH(op.x):                                      \
919         if (have_vcpu_info_placement) {                                 \
920                 start = (char *)xen_##x##_direct;                       \
921                 end = xen_##x##_direct_end;                             \
922                 reloc = xen_##x##_direct_reloc;                         \
923         }                                                               \
924         goto patch_site
925
926         switch (type) {
927                 SITE(pv_irq_ops, irq_enable);
928                 SITE(pv_irq_ops, irq_disable);
929                 SITE(pv_irq_ops, save_fl);
930                 SITE(pv_irq_ops, restore_fl);
931 #undef SITE
932
933         patch_site:
934                 if (start == NULL || (end-start) > len)
935                         goto default_patch;
936
937                 ret = paravirt_patch_insns(insnbuf, len, start, end);
938
939                 /* Note: because reloc is assigned from something that
940                    appears to be an array, gcc assumes it's non-null,
941                    but doesn't know its relationship with start and
942                    end. */
943                 if (reloc > start && reloc < end) {
944                         int reloc_off = reloc - start;
945                         long *relocp = (long *)(insnbuf + reloc_off);
946                         long delta = start - (char *)addr;
947
948                         *relocp += delta;
949                 }
950                 break;
951
952         default_patch:
953         default:
954                 ret = paravirt_patch_default(type, clobbers, insnbuf,
955                                              addr, len);
956                 break;
957         }
958
959         return ret;
960 }
961
962 static const struct pv_info xen_info __initdata = {
963         .paravirt_enabled = 1,
964         .shared_kernel_pmd = 0,
965
966         .name = "Xen",
967 };
968
969 static const struct pv_init_ops xen_init_ops __initdata = {
970         .patch = xen_patch,
971 };
972
973 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
974         .cpuid = xen_cpuid,
975
976         .set_debugreg = xen_set_debugreg,
977         .get_debugreg = xen_get_debugreg,
978
979         .clts = xen_clts,
980
981         .read_cr0 = xen_read_cr0,
982         .write_cr0 = xen_write_cr0,
983
984         .read_cr4 = native_read_cr4,
985         .read_cr4_safe = native_read_cr4_safe,
986         .write_cr4 = xen_write_cr4,
987
988         .wbinvd = native_wbinvd,
989
990         .read_msr = native_read_msr_safe,
991         .write_msr = xen_write_msr_safe,
992         .read_tsc = native_read_tsc,
993         .read_pmc = native_read_pmc,
994
995         .iret = xen_iret,
996         .irq_enable_sysexit = xen_sysexit,
997 #ifdef CONFIG_X86_64
998         .usergs_sysret32 = xen_sysret32,
999         .usergs_sysret64 = xen_sysret64,
1000 #endif
1001
1002         .load_tr_desc = paravirt_nop,
1003         .set_ldt = xen_set_ldt,
1004 #ifdef CONFIG_X86_32
1005         .load_user_cs_desc = xen_load_user_cs_desc,
1006 #endif /*CONFIG_X86_32*/
1007         .load_gdt = xen_load_gdt,
1008         .load_idt = xen_load_idt,
1009         .load_tls = xen_load_tls,
1010 #ifdef CONFIG_X86_64
1011         .load_gs_index = xen_load_gs_index,
1012 #endif
1013
1014         .alloc_ldt = xen_alloc_ldt,
1015         .free_ldt = xen_free_ldt,
1016
1017         .store_gdt = native_store_gdt,
1018         .store_idt = native_store_idt,
1019         .store_tr = xen_store_tr,
1020
1021         .write_ldt_entry = xen_write_ldt_entry,
1022         .write_gdt_entry = xen_write_gdt_entry,
1023         .write_idt_entry = xen_write_idt_entry,
1024         .load_sp0 = xen_load_sp0,
1025
1026         .set_iopl_mask = xen_set_iopl_mask,
1027         .io_delay = xen_io_delay,
1028
1029         /* Xen takes care of %gs when switching to usermode for us */
1030         .swapgs = paravirt_nop,
1031
1032         .start_context_switch = paravirt_start_context_switch,
1033         .end_context_switch = xen_end_context_switch,
1034 };
1035
1036 static const struct pv_apic_ops xen_apic_ops __initdata = {
1037 #ifdef CONFIG_X86_LOCAL_APIC
1038         .startup_ipi_hook = paravirt_nop,
1039 #endif
1040 };
1041
1042 static void xen_reboot(int reason)
1043 {
1044         struct sched_shutdown r = { .reason = reason };
1045
1046         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1047                 BUG();
1048 }
1049
1050 static void xen_restart(char *msg)
1051 {
1052         xen_reboot(SHUTDOWN_reboot);
1053 }
1054
1055 static void xen_emergency_restart(void)
1056 {
1057         xen_reboot(SHUTDOWN_reboot);
1058 }
1059
1060 static void xen_machine_halt(void)
1061 {
1062         xen_reboot(SHUTDOWN_poweroff);
1063 }
1064
1065 static void xen_crash_shutdown(struct pt_regs *regs)
1066 {
1067         xen_reboot(SHUTDOWN_crash);
1068 }
1069
1070 static int
1071 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1072 {
1073         xen_reboot(SHUTDOWN_crash);
1074         return NOTIFY_DONE;
1075 }
1076
1077 static struct notifier_block xen_panic_block = {
1078         .notifier_call= xen_panic_event,
1079 };
1080
1081 int xen_panic_handler_init(void)
1082 {
1083         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1084         return 0;
1085 }
1086
1087 static const struct machine_ops __initdata xen_machine_ops = {
1088         .restart = xen_restart,
1089         .halt = xen_machine_halt,
1090         .power_off = xen_machine_halt,
1091         .shutdown = xen_machine_halt,
1092         .crash_shutdown = xen_crash_shutdown,
1093         .emergency_restart = xen_emergency_restart,
1094 };
1095
1096 /*
1097  * Set up the GDT and segment registers for -fstack-protector.  Until
1098  * we do this, we have to be careful not to call any stack-protected
1099  * function, which is most of the kernel.
1100  */
1101 static void __init xen_setup_stackprotector(void)
1102 {
1103         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1104         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1105
1106         setup_stack_canary_segment(0);
1107         switch_to_new_gdt(0);
1108
1109         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1110         pv_cpu_ops.load_gdt = xen_load_gdt;
1111 }
1112
1113 /* First C function to be called on Xen boot */
1114 asmlinkage void __init xen_start_kernel(void)
1115 {
1116         struct physdev_set_iopl set_iopl;
1117         int rc;
1118         pgd_t *pgd;
1119
1120         if (!xen_start_info)
1121                 return;
1122
1123         xen_domain_type = XEN_PV_DOMAIN;
1124
1125         xen_setup_machphys_mapping();
1126
1127         /* Install Xen paravirt ops */
1128         pv_info = xen_info;
1129         pv_init_ops = xen_init_ops;
1130         pv_cpu_ops = xen_cpu_ops;
1131         pv_apic_ops = xen_apic_ops;
1132
1133         x86_init.resources.memory_setup = xen_memory_setup;
1134         x86_init.oem.arch_setup = xen_arch_setup;
1135         x86_init.oem.banner = xen_banner;
1136
1137         xen_init_time_ops();
1138
1139         /*
1140          * Set up some pagetable state before starting to set any ptes.
1141          */
1142
1143         xen_init_mmu_ops();
1144
1145         /* Prevent unwanted bits from being set in PTEs. */
1146         __supported_pte_mask &= ~_PAGE_GLOBAL;
1147         if (!xen_initial_domain())
1148                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1149
1150         __supported_pte_mask |= _PAGE_IOMAP;
1151
1152         /*
1153          * Prevent page tables from being allocated in highmem, even
1154          * if CONFIG_HIGHPTE is enabled.
1155          */
1156         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1157
1158         /* Work out if we support NX */
1159         x86_configure_nx();
1160
1161         xen_setup_features();
1162
1163         /* Get mfn list */
1164         if (!xen_feature(XENFEAT_auto_translated_physmap))
1165                 xen_build_dynamic_phys_to_machine();
1166
1167         /*
1168          * Set up kernel GDT and segment registers, mainly so that
1169          * -fstack-protector code can be executed.
1170          */
1171         xen_setup_stackprotector();
1172
1173         xen_init_irq_ops();
1174         xen_init_cpuid_mask();
1175
1176 #ifdef CONFIG_X86_LOCAL_APIC
1177         /*
1178          * set up the basic apic ops.
1179          */
1180         set_xen_basic_apic_ops();
1181 #endif
1182
1183         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1184                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1185                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1186         }
1187
1188         machine_ops = xen_machine_ops;
1189
1190         /*
1191          * The only reliable way to retain the initial address of the
1192          * percpu gdt_page is to remember it here, so we can go and
1193          * mark it RW later, when the initial percpu area is freed.
1194          */
1195         xen_initial_gdt = &per_cpu(gdt_page, 0);
1196
1197         xen_smp_init();
1198
1199 #ifdef CONFIG_ACPI_NUMA
1200         /*
1201          * The pages we from Xen are not related to machine pages, so
1202          * any NUMA information the kernel tries to get from ACPI will
1203          * be meaningless.  Prevent it from trying.
1204          */
1205         acpi_numa = -1;
1206 #endif
1207
1208         pgd = (pgd_t *)xen_start_info->pt_base;
1209
1210         if (!xen_initial_domain())
1211                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1212
1213         __supported_pte_mask |= _PAGE_IOMAP;
1214         /* Don't do the full vcpu_info placement stuff until we have a
1215            possible map and a non-dummy shared_info. */
1216         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1217
1218         local_irq_disable();
1219         early_boot_irqs_disabled = true;
1220
1221         memblock_init();
1222
1223         xen_raw_console_write("mapping kernel into physical memory\n");
1224         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1225         xen_ident_map_ISA();
1226
1227         /* Allocate and initialize top and mid mfn levels for p2m structure */
1228         xen_build_mfn_list_list();
1229
1230         /* keep using Xen gdt for now; no urgent need to change it */
1231
1232 #ifdef CONFIG_X86_32
1233         pv_info.kernel_rpl = 1;
1234         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1235                 pv_info.kernel_rpl = 0;
1236 #else
1237         pv_info.kernel_rpl = 0;
1238 #endif
1239         /* set the limit of our address space */
1240         xen_reserve_top();
1241
1242         /* We used to do this in xen_arch_setup, but that is too late on AMD
1243          * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1244          * which pokes 0xcf8 port.
1245          */
1246         set_iopl.iopl = 1;
1247         rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1248         if (rc != 0)
1249                 xen_raw_printk("physdev_op failed %d\n", rc);
1250
1251 #ifdef CONFIG_X86_32
1252         /* set up basic CPUID stuff */
1253         cpu_detect(&new_cpu_data);
1254         new_cpu_data.hard_math = 1;
1255         new_cpu_data.wp_works_ok = 1;
1256         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1257 #endif
1258
1259         /* Poke various useful things into boot_params */
1260         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1261         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1262                 ? __pa(xen_start_info->mod_start) : 0;
1263         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1264         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1265
1266         if (!xen_initial_domain()) {
1267                 add_preferred_console("xenboot", 0, NULL);
1268                 add_preferred_console("tty", 0, NULL);
1269                 add_preferred_console("hvc", 0, NULL);
1270                 if (pci_xen)
1271                         x86_init.pci.arch_init = pci_xen_init;
1272         } else {
1273                 /* Make sure ACS will be enabled */
1274                 pci_request_acs();
1275         }
1276                 
1277
1278         xen_raw_console_write("about to get started...\n");
1279
1280         xen_setup_runstate_info(0);
1281
1282         /* Start the world */
1283 #ifdef CONFIG_X86_32
1284         i386_start_kernel();
1285 #else
1286         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1287 #endif
1288 }
1289
1290 static int init_hvm_pv_info(int *major, int *minor)
1291 {
1292         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1293         u64 pfn;
1294
1295         base = xen_cpuid_base();
1296         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1297
1298         *major = eax >> 16;
1299         *minor = eax & 0xffff;
1300         printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1301
1302         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1303
1304         pfn = __pa(hypercall_page);
1305         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1306
1307         xen_setup_features();
1308
1309         pv_info = xen_info;
1310         pv_info.kernel_rpl = 0;
1311
1312         xen_domain_type = XEN_HVM_DOMAIN;
1313
1314         return 0;
1315 }
1316
1317 void xen_hvm_init_shared_info(void)
1318 {
1319         int cpu;
1320         struct xen_add_to_physmap xatp;
1321         static struct shared_info *shared_info_page = 0;
1322
1323         if (!shared_info_page)
1324                 shared_info_page = (struct shared_info *)
1325                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1326         xatp.domid = DOMID_SELF;
1327         xatp.idx = 0;
1328         xatp.space = XENMAPSPACE_shared_info;
1329         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1330         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1331                 BUG();
1332
1333         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1334
1335         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1336          * page, we use it in the event channel upcall and in some pvclock
1337          * related functions. We don't need the vcpu_info placement
1338          * optimizations because we don't use any pv_mmu or pv_irq op on
1339          * HVM.
1340          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1341          * online but xen_hvm_init_shared_info is run at resume time too and
1342          * in that case multiple vcpus might be online. */
1343         for_each_online_cpu(cpu) {
1344                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1345         }
1346 }
1347
1348 #ifdef CONFIG_XEN_PVHVM
1349 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1350                                     unsigned long action, void *hcpu)
1351 {
1352         int cpu = (long)hcpu;
1353         switch (action) {
1354         case CPU_UP_PREPARE:
1355                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1356                 break;
1357         default:
1358                 break;
1359         }
1360         return NOTIFY_OK;
1361 }
1362
1363 static struct notifier_block __cpuinitdata xen_hvm_cpu_notifier = {
1364         .notifier_call  = xen_hvm_cpu_notify,
1365 };
1366
1367 static void __init xen_hvm_guest_init(void)
1368 {
1369         int r;
1370         int major, minor;
1371
1372         r = init_hvm_pv_info(&major, &minor);
1373         if (r < 0)
1374                 return;
1375
1376         xen_hvm_init_shared_info();
1377
1378         if (xen_feature(XENFEAT_hvm_callback_vector))
1379                 xen_have_vector_callback = 1;
1380         register_cpu_notifier(&xen_hvm_cpu_notifier);
1381         xen_unplug_emulated_devices();
1382         have_vcpu_info_placement = 0;
1383         x86_init.irqs.intr_init = xen_init_IRQ;
1384         xen_hvm_init_time_ops();
1385         xen_hvm_init_mmu_ops();
1386 }
1387
1388 static bool __init xen_hvm_platform(void)
1389 {
1390         if (xen_pv_domain())
1391                 return false;
1392
1393         if (!xen_cpuid_base())
1394                 return false;
1395
1396         return true;
1397 }
1398
1399 bool xen_hvm_need_lapic(void)
1400 {
1401         if (xen_pv_domain())
1402                 return false;
1403         if (!xen_hvm_domain())
1404                 return false;
1405         if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1406                 return false;
1407         return true;
1408 }
1409 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1410
1411 const __refconst struct hypervisor_x86 x86_hyper_xen_hvm = {
1412         .name                   = "Xen HVM",
1413         .detect                 = xen_hvm_platform,
1414         .init_platform          = xen_hvm_guest_init,
1415 };
1416 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1417 #endif