UBUNTU: Ubuntu-2.6.38-11.47
[linux-flexiantxendom0-natty.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 #include <linux/poll.h>
34
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <linux/swapops.h>
38 #include <linux/page_cgroup.h>
39
40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41                                  unsigned char);
42 static void free_swap_count_continuations(struct swap_info_struct *);
43 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44
45 static DEFINE_SPINLOCK(swap_lock);
46 static unsigned int nr_swapfiles;
47 long nr_swap_pages;
48 long total_swap_pages;
49 static int least_priority;
50
51 static const char Bad_file[] = "Bad swap file entry ";
52 static const char Unused_file[] = "Unused swap file entry ";
53 static const char Bad_offset[] = "Bad swap offset entry ";
54 static const char Unused_offset[] = "Unused swap offset entry ";
55
56 static struct swap_list_t swap_list = {-1, -1};
57
58 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
59
60 static DEFINE_MUTEX(swapon_mutex);
61
62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
63 /* Activity counter to indicate that a swapon or swapoff has occurred */
64 static atomic_t proc_poll_event = ATOMIC_INIT(0);
65
66 static inline unsigned char swap_count(unsigned char ent)
67 {
68         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
69 }
70
71 /* returns 1 if swap entry is freed */
72 static int
73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
74 {
75         swp_entry_t entry = swp_entry(si->type, offset);
76         struct page *page;
77         int ret = 0;
78
79         page = find_get_page(&swapper_space, entry.val);
80         if (!page)
81                 return 0;
82         /*
83          * This function is called from scan_swap_map() and it's called
84          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85          * We have to use trylock for avoiding deadlock. This is a special
86          * case and you should use try_to_free_swap() with explicit lock_page()
87          * in usual operations.
88          */
89         if (trylock_page(page)) {
90                 ret = try_to_free_swap(page);
91                 unlock_page(page);
92         }
93         page_cache_release(page);
94         return ret;
95 }
96
97 /*
98  * We need this because the bdev->unplug_fn can sleep and we cannot
99  * hold swap_lock while calling the unplug_fn. And swap_lock
100  * cannot be turned into a mutex.
101  */
102 static DECLARE_RWSEM(swap_unplug_sem);
103
104 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
105 {
106         swp_entry_t entry;
107
108         down_read(&swap_unplug_sem);
109         entry.val = page_private(page);
110         if (PageSwapCache(page)) {
111                 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
112                 struct backing_dev_info *bdi;
113
114                 /*
115                  * If the page is removed from swapcache from under us (with a
116                  * racy try_to_unuse/swapoff) we need an additional reference
117                  * count to avoid reading garbage from page_private(page) above.
118                  * If the WARN_ON triggers during a swapoff it maybe the race
119                  * condition and it's harmless. However if it triggers without
120                  * swapoff it signals a problem.
121                  */
122                 WARN_ON(page_count(page) <= 1);
123
124                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
125                 blk_run_backing_dev(bdi, page);
126         }
127         up_read(&swap_unplug_sem);
128 }
129
130 /*
131  * swapon tell device that all the old swap contents can be discarded,
132  * to allow the swap device to optimize its wear-levelling.
133  */
134 static int discard_swap(struct swap_info_struct *si)
135 {
136         struct swap_extent *se;
137         sector_t start_block;
138         sector_t nr_blocks;
139         int err = 0;
140
141         /* Do not discard the swap header page! */
142         se = &si->first_swap_extent;
143         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
144         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
145         if (nr_blocks) {
146                 err = blkdev_issue_discard(si->bdev, start_block,
147                                 nr_blocks, GFP_KERNEL, 0);
148                 if (err)
149                         return err;
150                 cond_resched();
151         }
152
153         list_for_each_entry(se, &si->first_swap_extent.list, list) {
154                 start_block = se->start_block << (PAGE_SHIFT - 9);
155                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
156
157                 err = blkdev_issue_discard(si->bdev, start_block,
158                                 nr_blocks, GFP_KERNEL, 0);
159                 if (err)
160                         break;
161
162                 cond_resched();
163         }
164         return err;             /* That will often be -EOPNOTSUPP */
165 }
166
167 /*
168  * swap allocation tell device that a cluster of swap can now be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static void discard_swap_cluster(struct swap_info_struct *si,
172                                  pgoff_t start_page, pgoff_t nr_pages)
173 {
174         struct swap_extent *se = si->curr_swap_extent;
175         int found_extent = 0;
176
177         while (nr_pages) {
178                 struct list_head *lh;
179
180                 if (se->start_page <= start_page &&
181                     start_page < se->start_page + se->nr_pages) {
182                         pgoff_t offset = start_page - se->start_page;
183                         sector_t start_block = se->start_block + offset;
184                         sector_t nr_blocks = se->nr_pages - offset;
185
186                         if (nr_blocks > nr_pages)
187                                 nr_blocks = nr_pages;
188                         start_page += nr_blocks;
189                         nr_pages -= nr_blocks;
190
191                         if (!found_extent++)
192                                 si->curr_swap_extent = se;
193
194                         start_block <<= PAGE_SHIFT - 9;
195                         nr_blocks <<= PAGE_SHIFT - 9;
196                         if (blkdev_issue_discard(si->bdev, start_block,
197                                     nr_blocks, GFP_NOIO, 0))
198                                 break;
199                 }
200
201                 lh = se->list.next;
202                 se = list_entry(lh, struct swap_extent, list);
203         }
204 }
205
206 static int wait_for_discard(void *word)
207 {
208         schedule();
209         return 0;
210 }
211
212 #define SWAPFILE_CLUSTER        256
213 #define LATENCY_LIMIT           256
214
215 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
216                                           unsigned char usage)
217 {
218         unsigned long offset;
219         unsigned long scan_base;
220         unsigned long last_in_cluster = 0;
221         int latency_ration = LATENCY_LIMIT;
222         int found_free_cluster = 0;
223
224         /*
225          * We try to cluster swap pages by allocating them sequentially
226          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
227          * way, however, we resort to first-free allocation, starting
228          * a new cluster.  This prevents us from scattering swap pages
229          * all over the entire swap partition, so that we reduce
230          * overall disk seek times between swap pages.  -- sct
231          * But we do now try to find an empty cluster.  -Andrea
232          * And we let swap pages go all over an SSD partition.  Hugh
233          */
234
235         si->flags += SWP_SCANNING;
236         scan_base = offset = si->cluster_next;
237
238         if (unlikely(!si->cluster_nr--)) {
239                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
240                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
241                         goto checks;
242                 }
243                 if (si->flags & SWP_DISCARDABLE) {
244                         /*
245                          * Start range check on racing allocations, in case
246                          * they overlap the cluster we eventually decide on
247                          * (we scan without swap_lock to allow preemption).
248                          * It's hardly conceivable that cluster_nr could be
249                          * wrapped during our scan, but don't depend on it.
250                          */
251                         if (si->lowest_alloc)
252                                 goto checks;
253                         si->lowest_alloc = si->max;
254                         si->highest_alloc = 0;
255                 }
256                 spin_unlock(&swap_lock);
257
258                 /*
259                  * If seek is expensive, start searching for new cluster from
260                  * start of partition, to minimize the span of allocated swap.
261                  * But if seek is cheap, search from our current position, so
262                  * that swap is allocated from all over the partition: if the
263                  * Flash Translation Layer only remaps within limited zones,
264                  * we don't want to wear out the first zone too quickly.
265                  */
266                 if (!(si->flags & SWP_SOLIDSTATE))
267                         scan_base = offset = si->lowest_bit;
268                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
269
270                 /* Locate the first empty (unaligned) cluster */
271                 for (; last_in_cluster <= si->highest_bit; offset++) {
272                         if (si->swap_map[offset])
273                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
274                         else if (offset == last_in_cluster) {
275                                 spin_lock(&swap_lock);
276                                 offset -= SWAPFILE_CLUSTER - 1;
277                                 si->cluster_next = offset;
278                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
279                                 found_free_cluster = 1;
280                                 goto checks;
281                         }
282                         if (unlikely(--latency_ration < 0)) {
283                                 cond_resched();
284                                 latency_ration = LATENCY_LIMIT;
285                         }
286                 }
287
288                 offset = si->lowest_bit;
289                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
290
291                 /* Locate the first empty (unaligned) cluster */
292                 for (; last_in_cluster < scan_base; offset++) {
293                         if (si->swap_map[offset])
294                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
295                         else if (offset == last_in_cluster) {
296                                 spin_lock(&swap_lock);
297                                 offset -= SWAPFILE_CLUSTER - 1;
298                                 si->cluster_next = offset;
299                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
300                                 found_free_cluster = 1;
301                                 goto checks;
302                         }
303                         if (unlikely(--latency_ration < 0)) {
304                                 cond_resched();
305                                 latency_ration = LATENCY_LIMIT;
306                         }
307                 }
308
309                 offset = scan_base;
310                 spin_lock(&swap_lock);
311                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
312                 si->lowest_alloc = 0;
313         }
314
315 checks:
316         if (!(si->flags & SWP_WRITEOK))
317                 goto no_page;
318         if (!si->highest_bit)
319                 goto no_page;
320         if (offset > si->highest_bit)
321                 scan_base = offset = si->lowest_bit;
322
323         /* reuse swap entry of cache-only swap if not busy. */
324         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
325                 int swap_was_freed;
326                 spin_unlock(&swap_lock);
327                 swap_was_freed = __try_to_reclaim_swap(si, offset);
328                 spin_lock(&swap_lock);
329                 /* entry was freed successfully, try to use this again */
330                 if (swap_was_freed)
331                         goto checks;
332                 goto scan; /* check next one */
333         }
334
335         if (si->swap_map[offset])
336                 goto scan;
337
338         if (offset == si->lowest_bit)
339                 si->lowest_bit++;
340         if (offset == si->highest_bit)
341                 si->highest_bit--;
342         si->inuse_pages++;
343         if (si->inuse_pages == si->pages) {
344                 si->lowest_bit = si->max;
345                 si->highest_bit = 0;
346         }
347         si->swap_map[offset] = usage;
348         si->cluster_next = offset + 1;
349         si->flags -= SWP_SCANNING;
350
351         if (si->lowest_alloc) {
352                 /*
353                  * Only set when SWP_DISCARDABLE, and there's a scan
354                  * for a free cluster in progress or just completed.
355                  */
356                 if (found_free_cluster) {
357                         /*
358                          * To optimize wear-levelling, discard the
359                          * old data of the cluster, taking care not to
360                          * discard any of its pages that have already
361                          * been allocated by racing tasks (offset has
362                          * already stepped over any at the beginning).
363                          */
364                         if (offset < si->highest_alloc &&
365                             si->lowest_alloc <= last_in_cluster)
366                                 last_in_cluster = si->lowest_alloc - 1;
367                         si->flags |= SWP_DISCARDING;
368                         spin_unlock(&swap_lock);
369
370                         if (offset < last_in_cluster)
371                                 discard_swap_cluster(si, offset,
372                                         last_in_cluster - offset + 1);
373
374                         spin_lock(&swap_lock);
375                         si->lowest_alloc = 0;
376                         si->flags &= ~SWP_DISCARDING;
377
378                         smp_mb();       /* wake_up_bit advises this */
379                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
380
381                 } else if (si->flags & SWP_DISCARDING) {
382                         /*
383                          * Delay using pages allocated by racing tasks
384                          * until the whole discard has been issued. We
385                          * could defer that delay until swap_writepage,
386                          * but it's easier to keep this self-contained.
387                          */
388                         spin_unlock(&swap_lock);
389                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
390                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
391                         spin_lock(&swap_lock);
392                 } else {
393                         /*
394                          * Note pages allocated by racing tasks while
395                          * scan for a free cluster is in progress, so
396                          * that its final discard can exclude them.
397                          */
398                         if (offset < si->lowest_alloc)
399                                 si->lowest_alloc = offset;
400                         if (offset > si->highest_alloc)
401                                 si->highest_alloc = offset;
402                 }
403         }
404         return offset;
405
406 scan:
407         spin_unlock(&swap_lock);
408         while (++offset <= si->highest_bit) {
409                 if (!si->swap_map[offset]) {
410                         spin_lock(&swap_lock);
411                         goto checks;
412                 }
413                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
414                         spin_lock(&swap_lock);
415                         goto checks;
416                 }
417                 if (unlikely(--latency_ration < 0)) {
418                         cond_resched();
419                         latency_ration = LATENCY_LIMIT;
420                 }
421         }
422         offset = si->lowest_bit;
423         while (++offset < scan_base) {
424                 if (!si->swap_map[offset]) {
425                         spin_lock(&swap_lock);
426                         goto checks;
427                 }
428                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
429                         spin_lock(&swap_lock);
430                         goto checks;
431                 }
432                 if (unlikely(--latency_ration < 0)) {
433                         cond_resched();
434                         latency_ration = LATENCY_LIMIT;
435                 }
436         }
437         spin_lock(&swap_lock);
438
439 no_page:
440         si->flags -= SWP_SCANNING;
441         return 0;
442 }
443
444 swp_entry_t get_swap_page(void)
445 {
446         struct swap_info_struct *si;
447         pgoff_t offset;
448         int type, next;
449         int wrapped = 0;
450
451         spin_lock(&swap_lock);
452         if (nr_swap_pages <= 0)
453                 goto noswap;
454         nr_swap_pages--;
455
456         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
457                 si = swap_info[type];
458                 next = si->next;
459                 if (next < 0 ||
460                     (!wrapped && si->prio != swap_info[next]->prio)) {
461                         next = swap_list.head;
462                         wrapped++;
463                 }
464
465                 if (!si->highest_bit)
466                         continue;
467                 if (!(si->flags & SWP_WRITEOK))
468                         continue;
469
470                 swap_list.next = next;
471                 /* This is called for allocating swap entry for cache */
472                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
473                 if (offset) {
474                         spin_unlock(&swap_lock);
475                         return swp_entry(type, offset);
476                 }
477                 next = swap_list.next;
478         }
479
480         nr_swap_pages++;
481 noswap:
482         spin_unlock(&swap_lock);
483         return (swp_entry_t) {0};
484 }
485
486 /* The only caller of this function is now susupend routine */
487 swp_entry_t get_swap_page_of_type(int type)
488 {
489         struct swap_info_struct *si;
490         pgoff_t offset;
491
492         spin_lock(&swap_lock);
493         si = swap_info[type];
494         if (si && (si->flags & SWP_WRITEOK)) {
495                 nr_swap_pages--;
496                 /* This is called for allocating swap entry, not cache */
497                 offset = scan_swap_map(si, 1);
498                 if (offset) {
499                         spin_unlock(&swap_lock);
500                         return swp_entry(type, offset);
501                 }
502                 nr_swap_pages++;
503         }
504         spin_unlock(&swap_lock);
505         return (swp_entry_t) {0};
506 }
507
508 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
509 {
510         struct swap_info_struct *p;
511         unsigned long offset, type;
512
513         if (!entry.val)
514                 goto out;
515         type = swp_type(entry);
516         if (type >= nr_swapfiles)
517                 goto bad_nofile;
518         p = swap_info[type];
519         if (!(p->flags & SWP_USED))
520                 goto bad_device;
521         offset = swp_offset(entry);
522         if (offset >= p->max)
523                 goto bad_offset;
524         if (!p->swap_map[offset])
525                 goto bad_free;
526         spin_lock(&swap_lock);
527         return p;
528
529 bad_free:
530         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
531         goto out;
532 bad_offset:
533         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
534         goto out;
535 bad_device:
536         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
537         goto out;
538 bad_nofile:
539         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
540 out:
541         return NULL;
542 }
543
544 static unsigned char swap_entry_free(struct swap_info_struct *p,
545                                      swp_entry_t entry, unsigned char usage)
546 {
547         unsigned long offset = swp_offset(entry);
548         unsigned char count;
549         unsigned char has_cache;
550
551         count = p->swap_map[offset];
552         has_cache = count & SWAP_HAS_CACHE;
553         count &= ~SWAP_HAS_CACHE;
554
555         if (usage == SWAP_HAS_CACHE) {
556                 VM_BUG_ON(!has_cache);
557                 has_cache = 0;
558         } else if (count == SWAP_MAP_SHMEM) {
559                 /*
560                  * Or we could insist on shmem.c using a special
561                  * swap_shmem_free() and free_shmem_swap_and_cache()...
562                  */
563                 count = 0;
564         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
565                 if (count == COUNT_CONTINUED) {
566                         if (swap_count_continued(p, offset, count))
567                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
568                         else
569                                 count = SWAP_MAP_MAX;
570                 } else
571                         count--;
572         }
573
574         if (!count)
575                 mem_cgroup_uncharge_swap(entry);
576
577         usage = count | has_cache;
578         p->swap_map[offset] = usage;
579
580         /* free if no reference */
581         if (!usage) {
582                 struct gendisk *disk = p->bdev->bd_disk;
583                 if (offset < p->lowest_bit)
584                         p->lowest_bit = offset;
585                 if (offset > p->highest_bit)
586                         p->highest_bit = offset;
587                 if (swap_list.next >= 0 &&
588                     p->prio > swap_info[swap_list.next]->prio)
589                         swap_list.next = p->type;
590                 nr_swap_pages++;
591                 p->inuse_pages--;
592                 if ((p->flags & SWP_BLKDEV) &&
593                                 disk->fops->swap_slot_free_notify)
594                         disk->fops->swap_slot_free_notify(p->bdev, offset);
595         }
596
597         if (!swap_count(count)) {
598                 mem_cgroup_uncharge_swap(entry);
599                         if (p->notify_swap_entry_free_fn)
600                                 p->notify_swap_entry_free_fn(offset);
601         }
602
603         return usage;
604 }
605
606 /*
607  * Caller has made sure that the swapdevice corresponding to entry
608  * is still around or has not been recycled.
609  */
610 void swap_free(swp_entry_t entry)
611 {
612         struct swap_info_struct *p;
613
614         p = swap_info_get(entry);
615         if (p) {
616                 swap_entry_free(p, entry, 1);
617                 spin_unlock(&swap_lock);
618         }
619 }
620
621 /*
622  * Called after dropping swapcache to decrease refcnt to swap entries.
623  */
624 void swapcache_free(swp_entry_t entry, struct page *page)
625 {
626         struct swap_info_struct *p;
627         unsigned char count;
628
629         p = swap_info_get(entry);
630         if (p) {
631                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
632                 if (page)
633                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
634                 spin_unlock(&swap_lock);
635         }
636 }
637
638 /*
639  * How many references to page are currently swapped out?
640  * This does not give an exact answer when swap count is continued,
641  * but does include the high COUNT_CONTINUED flag to allow for that.
642  */
643 static inline int page_swapcount(struct page *page)
644 {
645         int count = 0;
646         struct swap_info_struct *p;
647         swp_entry_t entry;
648
649         entry.val = page_private(page);
650         p = swap_info_get(entry);
651         if (p) {
652                 count = swap_count(p->swap_map[swp_offset(entry)]);
653                 spin_unlock(&swap_lock);
654         }
655         return count;
656 }
657
658 /*
659  * We can write to an anon page without COW if there are no other references
660  * to it.  And as a side-effect, free up its swap: because the old content
661  * on disk will never be read, and seeking back there to write new content
662  * later would only waste time away from clustering.
663  */
664 int reuse_swap_page(struct page *page)
665 {
666         int count;
667
668         VM_BUG_ON(!PageLocked(page));
669         if (unlikely(PageKsm(page)))
670                 return 0;
671         count = page_mapcount(page);
672         if (count <= 1 && PageSwapCache(page)) {
673                 count += page_swapcount(page);
674                 if (count == 1 && !PageWriteback(page)) {
675                         delete_from_swap_cache(page);
676                         SetPageDirty(page);
677                 }
678         }
679         return count <= 1;
680 }
681
682 /*
683  * If swap is getting full, or if there are no more mappings of this page,
684  * then try_to_free_swap is called to free its swap space.
685  */
686 int try_to_free_swap(struct page *page)
687 {
688         VM_BUG_ON(!PageLocked(page));
689
690         if (!PageSwapCache(page))
691                 return 0;
692         if (PageWriteback(page))
693                 return 0;
694         if (page_swapcount(page))
695                 return 0;
696
697         /*
698          * Once hibernation has begun to create its image of memory,
699          * there's a danger that one of the calls to try_to_free_swap()
700          * - most probably a call from __try_to_reclaim_swap() while
701          * hibernation is allocating its own swap pages for the image,
702          * but conceivably even a call from memory reclaim - will free
703          * the swap from a page which has already been recorded in the
704          * image as a clean swapcache page, and then reuse its swap for
705          * another page of the image.  On waking from hibernation, the
706          * original page might be freed under memory pressure, then
707          * later read back in from swap, now with the wrong data.
708          *
709          * Hibernation clears bits from gfp_allowed_mask to prevent
710          * memory reclaim from writing to disk, so check that here.
711          */
712         if (!(gfp_allowed_mask & __GFP_IO))
713                 return 0;
714
715         delete_from_swap_cache(page);
716         SetPageDirty(page);
717         return 1;
718 }
719
720 /*
721  * Free the swap entry like above, but also try to
722  * free the page cache entry if it is the last user.
723  */
724 int free_swap_and_cache(swp_entry_t entry)
725 {
726         struct swap_info_struct *p;
727         struct page *page = NULL;
728
729         if (non_swap_entry(entry))
730                 return 1;
731
732         p = swap_info_get(entry);
733         if (p) {
734                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
735                         page = find_get_page(&swapper_space, entry.val);
736                         if (page && !trylock_page(page)) {
737                                 page_cache_release(page);
738                                 page = NULL;
739                         }
740                 }
741                 spin_unlock(&swap_lock);
742         }
743         if (page) {
744                 /*
745                  * Not mapped elsewhere, or swap space full? Free it!
746                  * Also recheck PageSwapCache now page is locked (above).
747                  */
748                 if (PageSwapCache(page) && !PageWriteback(page) &&
749                                 (!page_mapped(page) || vm_swap_full())) {
750                         delete_from_swap_cache(page);
751                         SetPageDirty(page);
752                 }
753                 unlock_page(page);
754                 page_cache_release(page);
755         }
756         return p != NULL;
757 }
758
759 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
760 /**
761  * mem_cgroup_count_swap_user - count the user of a swap entry
762  * @ent: the swap entry to be checked
763  * @pagep: the pointer for the swap cache page of the entry to be stored
764  *
765  * Returns the number of the user of the swap entry. The number is valid only
766  * for swaps of anonymous pages.
767  * If the entry is found on swap cache, the page is stored to pagep with
768  * refcount of it being incremented.
769  */
770 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
771 {
772         struct page *page;
773         struct swap_info_struct *p;
774         int count = 0;
775
776         page = find_get_page(&swapper_space, ent.val);
777         if (page)
778                 count += page_mapcount(page);
779         p = swap_info_get(ent);
780         if (p) {
781                 count += swap_count(p->swap_map[swp_offset(ent)]);
782                 spin_unlock(&swap_lock);
783         }
784
785         *pagep = page;
786         return count;
787 }
788 #endif
789
790 #ifdef CONFIG_HIBERNATION
791 /*
792  * Find the swap type that corresponds to given device (if any).
793  *
794  * @offset - number of the PAGE_SIZE-sized block of the device, starting
795  * from 0, in which the swap header is expected to be located.
796  *
797  * This is needed for the suspend to disk (aka swsusp).
798  */
799 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
800 {
801         struct block_device *bdev = NULL;
802         int type;
803
804         if (device)
805                 bdev = bdget(device);
806
807         spin_lock(&swap_lock);
808         for (type = 0; type < nr_swapfiles; type++) {
809                 struct swap_info_struct *sis = swap_info[type];
810
811                 if (!(sis->flags & SWP_WRITEOK))
812                         continue;
813
814                 if (!bdev) {
815                         if (bdev_p)
816                                 *bdev_p = bdgrab(sis->bdev);
817
818                         spin_unlock(&swap_lock);
819                         return type;
820                 }
821                 if (bdev == sis->bdev) {
822                         struct swap_extent *se = &sis->first_swap_extent;
823
824                         if (se->start_block == offset) {
825                                 if (bdev_p)
826                                         *bdev_p = bdgrab(sis->bdev);
827
828                                 spin_unlock(&swap_lock);
829                                 bdput(bdev);
830                                 return type;
831                         }
832                 }
833         }
834         spin_unlock(&swap_lock);
835         if (bdev)
836                 bdput(bdev);
837
838         return -ENODEV;
839 }
840
841 /*
842  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
843  * corresponding to given index in swap_info (swap type).
844  */
845 sector_t swapdev_block(int type, pgoff_t offset)
846 {
847         struct block_device *bdev;
848
849         if ((unsigned int)type >= nr_swapfiles)
850                 return 0;
851         if (!(swap_info[type]->flags & SWP_WRITEOK))
852                 return 0;
853         return map_swap_entry(swp_entry(type, offset), &bdev);
854 }
855
856 /*
857  * Return either the total number of swap pages of given type, or the number
858  * of free pages of that type (depending on @free)
859  *
860  * This is needed for software suspend
861  */
862 unsigned int count_swap_pages(int type, int free)
863 {
864         unsigned int n = 0;
865
866         spin_lock(&swap_lock);
867         if ((unsigned int)type < nr_swapfiles) {
868                 struct swap_info_struct *sis = swap_info[type];
869
870                 if (sis->flags & SWP_WRITEOK) {
871                         n = sis->pages;
872                         if (free)
873                                 n -= sis->inuse_pages;
874                 }
875         }
876         spin_unlock(&swap_lock);
877         return n;
878 }
879 #endif /* CONFIG_HIBERNATION */
880
881 /*
882  * No need to decide whether this PTE shares the swap entry with others,
883  * just let do_wp_page work it out if a write is requested later - to
884  * force COW, vm_page_prot omits write permission from any private vma.
885  */
886 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
887                 unsigned long addr, swp_entry_t entry, struct page *page)
888 {
889         struct mem_cgroup *ptr = NULL;
890         spinlock_t *ptl;
891         pte_t *pte;
892         int ret = 1;
893
894         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
895                 ret = -ENOMEM;
896                 goto out_nolock;
897         }
898
899         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
900         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
901                 if (ret > 0)
902                         mem_cgroup_cancel_charge_swapin(ptr);
903                 ret = 0;
904                 goto out;
905         }
906
907         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
908         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
909         get_page(page);
910         set_pte_at(vma->vm_mm, addr, pte,
911                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
912         page_add_anon_rmap(page, vma, addr);
913         mem_cgroup_commit_charge_swapin(page, ptr);
914         swap_free(entry);
915         /*
916          * Move the page to the active list so it is not
917          * immediately swapped out again after swapon.
918          */
919         activate_page(page);
920 out:
921         pte_unmap_unlock(pte, ptl);
922 out_nolock:
923         return ret;
924 }
925
926 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
927                                 unsigned long addr, unsigned long end,
928                                 swp_entry_t entry, struct page *page)
929 {
930         pte_t swp_pte = swp_entry_to_pte(entry);
931         pte_t *pte;
932         int ret = 0;
933
934         /*
935          * We don't actually need pte lock while scanning for swp_pte: since
936          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
937          * page table while we're scanning; though it could get zapped, and on
938          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
939          * of unmatched parts which look like swp_pte, so unuse_pte must
940          * recheck under pte lock.  Scanning without pte lock lets it be
941          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
942          */
943         pte = pte_offset_map(pmd, addr);
944         do {
945                 /*
946                  * swapoff spends a _lot_ of time in this loop!
947                  * Test inline before going to call unuse_pte.
948                  */
949                 if (unlikely(pte_same(*pte, swp_pte))) {
950                         pte_unmap(pte);
951                         ret = unuse_pte(vma, pmd, addr, entry, page);
952                         if (ret)
953                                 goto out;
954                         pte = pte_offset_map(pmd, addr);
955                 }
956         } while (pte++, addr += PAGE_SIZE, addr != end);
957         pte_unmap(pte - 1);
958 out:
959         return ret;
960 }
961
962 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
963                                 unsigned long addr, unsigned long end,
964                                 swp_entry_t entry, struct page *page)
965 {
966         pmd_t *pmd;
967         unsigned long next;
968         int ret;
969
970         pmd = pmd_offset(pud, addr);
971         do {
972                 next = pmd_addr_end(addr, end);
973                 if (unlikely(pmd_trans_huge(*pmd)))
974                         continue;
975                 if (pmd_none_or_clear_bad(pmd))
976                         continue;
977                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
978                 if (ret)
979                         return ret;
980         } while (pmd++, addr = next, addr != end);
981         return 0;
982 }
983
984 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
985                                 unsigned long addr, unsigned long end,
986                                 swp_entry_t entry, struct page *page)
987 {
988         pud_t *pud;
989         unsigned long next;
990         int ret;
991
992         pud = pud_offset(pgd, addr);
993         do {
994                 next = pud_addr_end(addr, end);
995                 if (pud_none_or_clear_bad(pud))
996                         continue;
997                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
998                 if (ret)
999                         return ret;
1000         } while (pud++, addr = next, addr != end);
1001         return 0;
1002 }
1003
1004 static int unuse_vma(struct vm_area_struct *vma,
1005                                 swp_entry_t entry, struct page *page)
1006 {
1007         pgd_t *pgd;
1008         unsigned long addr, end, next;
1009         int ret;
1010
1011         if (page_anon_vma(page)) {
1012                 addr = page_address_in_vma(page, vma);
1013                 if (addr == -EFAULT)
1014                         return 0;
1015                 else
1016                         end = addr + PAGE_SIZE;
1017         } else {
1018                 addr = vma->vm_start;
1019                 end = vma->vm_end;
1020         }
1021
1022         pgd = pgd_offset(vma->vm_mm, addr);
1023         do {
1024                 next = pgd_addr_end(addr, end);
1025                 if (pgd_none_or_clear_bad(pgd))
1026                         continue;
1027                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1028                 if (ret)
1029                         return ret;
1030         } while (pgd++, addr = next, addr != end);
1031         return 0;
1032 }
1033
1034 static int unuse_mm(struct mm_struct *mm,
1035                                 swp_entry_t entry, struct page *page)
1036 {
1037         struct vm_area_struct *vma;
1038         int ret = 0;
1039
1040         if (!down_read_trylock(&mm->mmap_sem)) {
1041                 /*
1042                  * Activate page so shrink_inactive_list is unlikely to unmap
1043                  * its ptes while lock is dropped, so swapoff can make progress.
1044                  */
1045                 activate_page(page);
1046                 unlock_page(page);
1047                 down_read(&mm->mmap_sem);
1048                 lock_page(page);
1049         }
1050         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1051                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1052                         break;
1053         }
1054         up_read(&mm->mmap_sem);
1055         return (ret < 0)? ret: 0;
1056 }
1057
1058 /*
1059  * Scan swap_map from current position to next entry still in use.
1060  * Recycle to start on reaching the end, returning 0 when empty.
1061  */
1062 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1063                                         unsigned int prev)
1064 {
1065         unsigned int max = si->max;
1066         unsigned int i = prev;
1067         unsigned char count;
1068
1069         /*
1070          * No need for swap_lock here: we're just looking
1071          * for whether an entry is in use, not modifying it; false
1072          * hits are okay, and sys_swapoff() has already prevented new
1073          * allocations from this area (while holding swap_lock).
1074          */
1075         for (;;) {
1076                 if (++i >= max) {
1077                         if (!prev) {
1078                                 i = 0;
1079                                 break;
1080                         }
1081                         /*
1082                          * No entries in use at top of swap_map,
1083                          * loop back to start and recheck there.
1084                          */
1085                         max = prev + 1;
1086                         prev = 0;
1087                         i = 1;
1088                 }
1089                 count = si->swap_map[i];
1090                 if (count && swap_count(count) != SWAP_MAP_BAD)
1091                         break;
1092         }
1093         return i;
1094 }
1095
1096 /*
1097  * We completely avoid races by reading each swap page in advance,
1098  * and then search for the process using it.  All the necessary
1099  * page table adjustments can then be made atomically.
1100  */
1101 static int try_to_unuse(unsigned int type)
1102 {
1103         struct swap_info_struct *si = swap_info[type];
1104         struct mm_struct *start_mm;
1105         unsigned char *swap_map;
1106         unsigned char swcount;
1107         struct page *page;
1108         swp_entry_t entry;
1109         unsigned int i = 0;
1110         int retval = 0;
1111
1112         /*
1113          * When searching mms for an entry, a good strategy is to
1114          * start at the first mm we freed the previous entry from
1115          * (though actually we don't notice whether we or coincidence
1116          * freed the entry).  Initialize this start_mm with a hold.
1117          *
1118          * A simpler strategy would be to start at the last mm we
1119          * freed the previous entry from; but that would take less
1120          * advantage of mmlist ordering, which clusters forked mms
1121          * together, child after parent.  If we race with dup_mmap(), we
1122          * prefer to resolve parent before child, lest we miss entries
1123          * duplicated after we scanned child: using last mm would invert
1124          * that.
1125          */
1126         start_mm = &init_mm;
1127         atomic_inc(&init_mm.mm_users);
1128
1129         /*
1130          * Keep on scanning until all entries have gone.  Usually,
1131          * one pass through swap_map is enough, but not necessarily:
1132          * there are races when an instance of an entry might be missed.
1133          */
1134         while ((i = find_next_to_unuse(si, i)) != 0) {
1135                 if (signal_pending(current)) {
1136                         retval = -EINTR;
1137                         break;
1138                 }
1139
1140                 /*
1141                  * Get a page for the entry, using the existing swap
1142                  * cache page if there is one.  Otherwise, get a clean
1143                  * page and read the swap into it.
1144                  */
1145                 swap_map = &si->swap_map[i];
1146                 entry = swp_entry(type, i);
1147                 page = read_swap_cache_async(entry,
1148                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1149                 if (!page) {
1150                         /*
1151                          * Either swap_duplicate() failed because entry
1152                          * has been freed independently, and will not be
1153                          * reused since sys_swapoff() already disabled
1154                          * allocation from here, or alloc_page() failed.
1155                          */
1156                         if (!*swap_map)
1157                                 continue;
1158                         retval = -ENOMEM;
1159                         break;
1160                 }
1161
1162                 /*
1163                  * Don't hold on to start_mm if it looks like exiting.
1164                  */
1165                 if (atomic_read(&start_mm->mm_users) == 1) {
1166                         mmput(start_mm);
1167                         start_mm = &init_mm;
1168                         atomic_inc(&init_mm.mm_users);
1169                 }
1170
1171                 /*
1172                  * Wait for and lock page.  When do_swap_page races with
1173                  * try_to_unuse, do_swap_page can handle the fault much
1174                  * faster than try_to_unuse can locate the entry.  This
1175                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1176                  * defer to do_swap_page in such a case - in some tests,
1177                  * do_swap_page and try_to_unuse repeatedly compete.
1178                  */
1179                 wait_on_page_locked(page);
1180                 wait_on_page_writeback(page);
1181                 lock_page(page);
1182                 wait_on_page_writeback(page);
1183
1184                 /*
1185                  * Remove all references to entry.
1186                  */
1187                 swcount = *swap_map;
1188                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1189                         retval = shmem_unuse(entry, page);
1190                         /* page has already been unlocked and released */
1191                         if (retval < 0)
1192                                 break;
1193                         continue;
1194                 }
1195                 if (swap_count(swcount) && start_mm != &init_mm)
1196                         retval = unuse_mm(start_mm, entry, page);
1197
1198                 if (swap_count(*swap_map)) {
1199                         int set_start_mm = (*swap_map >= swcount);
1200                         struct list_head *p = &start_mm->mmlist;
1201                         struct mm_struct *new_start_mm = start_mm;
1202                         struct mm_struct *prev_mm = start_mm;
1203                         struct mm_struct *mm;
1204
1205                         atomic_inc(&new_start_mm->mm_users);
1206                         atomic_inc(&prev_mm->mm_users);
1207                         spin_lock(&mmlist_lock);
1208                         while (swap_count(*swap_map) && !retval &&
1209                                         (p = p->next) != &start_mm->mmlist) {
1210                                 mm = list_entry(p, struct mm_struct, mmlist);
1211                                 if (!atomic_inc_not_zero(&mm->mm_users))
1212                                         continue;
1213                                 spin_unlock(&mmlist_lock);
1214                                 mmput(prev_mm);
1215                                 prev_mm = mm;
1216
1217                                 cond_resched();
1218
1219                                 swcount = *swap_map;
1220                                 if (!swap_count(swcount)) /* any usage ? */
1221                                         ;
1222                                 else if (mm == &init_mm)
1223                                         set_start_mm = 1;
1224                                 else
1225                                         retval = unuse_mm(mm, entry, page);
1226
1227                                 if (set_start_mm && *swap_map < swcount) {
1228                                         mmput(new_start_mm);
1229                                         atomic_inc(&mm->mm_users);
1230                                         new_start_mm = mm;
1231                                         set_start_mm = 0;
1232                                 }
1233                                 spin_lock(&mmlist_lock);
1234                         }
1235                         spin_unlock(&mmlist_lock);
1236                         mmput(prev_mm);
1237                         mmput(start_mm);
1238                         start_mm = new_start_mm;
1239                 }
1240                 if (retval) {
1241                         unlock_page(page);
1242                         page_cache_release(page);
1243                         break;
1244                 }
1245
1246                 /*
1247                  * If a reference remains (rare), we would like to leave
1248                  * the page in the swap cache; but try_to_unmap could
1249                  * then re-duplicate the entry once we drop page lock,
1250                  * so we might loop indefinitely; also, that page could
1251                  * not be swapped out to other storage meanwhile.  So:
1252                  * delete from cache even if there's another reference,
1253                  * after ensuring that the data has been saved to disk -
1254                  * since if the reference remains (rarer), it will be
1255                  * read from disk into another page.  Splitting into two
1256                  * pages would be incorrect if swap supported "shared
1257                  * private" pages, but they are handled by tmpfs files.
1258                  *
1259                  * Given how unuse_vma() targets one particular offset
1260                  * in an anon_vma, once the anon_vma has been determined,
1261                  * this splitting happens to be just what is needed to
1262                  * handle where KSM pages have been swapped out: re-reading
1263                  * is unnecessarily slow, but we can fix that later on.
1264                  */
1265                 if (swap_count(*swap_map) &&
1266                      PageDirty(page) && PageSwapCache(page)) {
1267                         struct writeback_control wbc = {
1268                                 .sync_mode = WB_SYNC_NONE,
1269                         };
1270
1271                         swap_writepage(page, &wbc);
1272                         lock_page(page);
1273                         wait_on_page_writeback(page);
1274                 }
1275
1276                 /*
1277                  * It is conceivable that a racing task removed this page from
1278                  * swap cache just before we acquired the page lock at the top,
1279                  * or while we dropped it in unuse_mm().  The page might even
1280                  * be back in swap cache on another swap area: that we must not
1281                  * delete, since it may not have been written out to swap yet.
1282                  */
1283                 if (PageSwapCache(page) &&
1284                     likely(page_private(page) == entry.val))
1285                         delete_from_swap_cache(page);
1286
1287                 /*
1288                  * So we could skip searching mms once swap count went
1289                  * to 1, we did not mark any present ptes as dirty: must
1290                  * mark page dirty so shrink_page_list will preserve it.
1291                  */
1292                 SetPageDirty(page);
1293                 unlock_page(page);
1294                 page_cache_release(page);
1295
1296                 /*
1297                  * Make sure that we aren't completely killing
1298                  * interactive performance.
1299                  */
1300                 cond_resched();
1301         }
1302
1303         mmput(start_mm);
1304         return retval;
1305 }
1306
1307 /*
1308  * After a successful try_to_unuse, if no swap is now in use, we know
1309  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1310  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1311  * added to the mmlist just after page_duplicate - before would be racy.
1312  */
1313 static void drain_mmlist(void)
1314 {
1315         struct list_head *p, *next;
1316         unsigned int type;
1317
1318         for (type = 0; type < nr_swapfiles; type++)
1319                 if (swap_info[type]->inuse_pages)
1320                         return;
1321         spin_lock(&mmlist_lock);
1322         list_for_each_safe(p, next, &init_mm.mmlist)
1323                 list_del_init(p);
1324         spin_unlock(&mmlist_lock);
1325 }
1326
1327 /*
1328  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1329  * corresponds to page offset for the specified swap entry.
1330  * Note that the type of this function is sector_t, but it returns page offset
1331  * into the bdev, not sector offset.
1332  */
1333 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1334 {
1335         struct swap_info_struct *sis;
1336         struct swap_extent *start_se;
1337         struct swap_extent *se;
1338         pgoff_t offset;
1339
1340         sis = swap_info[swp_type(entry)];
1341         *bdev = sis->bdev;
1342
1343         offset = swp_offset(entry);
1344         start_se = sis->curr_swap_extent;
1345         se = start_se;
1346
1347         for ( ; ; ) {
1348                 struct list_head *lh;
1349
1350                 if (se->start_page <= offset &&
1351                                 offset < (se->start_page + se->nr_pages)) {
1352                         return se->start_block + (offset - se->start_page);
1353                 }
1354                 lh = se->list.next;
1355                 se = list_entry(lh, struct swap_extent, list);
1356                 sis->curr_swap_extent = se;
1357                 BUG_ON(se == start_se);         /* It *must* be present */
1358         }
1359 }
1360
1361 /*
1362  * Returns the page offset into bdev for the specified page's swap entry.
1363  */
1364 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1365 {
1366         swp_entry_t entry;
1367         entry.val = page_private(page);
1368         return map_swap_entry(entry, bdev);
1369 }
1370
1371 /*
1372  * Free all of a swapdev's extent information
1373  */
1374 static void destroy_swap_extents(struct swap_info_struct *sis)
1375 {
1376         while (!list_empty(&sis->first_swap_extent.list)) {
1377                 struct swap_extent *se;
1378
1379                 se = list_entry(sis->first_swap_extent.list.next,
1380                                 struct swap_extent, list);
1381                 list_del(&se->list);
1382                 kfree(se);
1383         }
1384 }
1385
1386 /*
1387  * Add a block range (and the corresponding page range) into this swapdev's
1388  * extent list.  The extent list is kept sorted in page order.
1389  *
1390  * This function rather assumes that it is called in ascending page order.
1391  */
1392 static int
1393 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1394                 unsigned long nr_pages, sector_t start_block)
1395 {
1396         struct swap_extent *se;
1397         struct swap_extent *new_se;
1398         struct list_head *lh;
1399
1400         if (start_page == 0) {
1401                 se = &sis->first_swap_extent;
1402                 sis->curr_swap_extent = se;
1403                 se->start_page = 0;
1404                 se->nr_pages = nr_pages;
1405                 se->start_block = start_block;
1406                 return 1;
1407         } else {
1408                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1409                 se = list_entry(lh, struct swap_extent, list);
1410                 BUG_ON(se->start_page + se->nr_pages != start_page);
1411                 if (se->start_block + se->nr_pages == start_block) {
1412                         /* Merge it */
1413                         se->nr_pages += nr_pages;
1414                         return 0;
1415                 }
1416         }
1417
1418         /*
1419          * No merge.  Insert a new extent, preserving ordering.
1420          */
1421         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1422         if (new_se == NULL)
1423                 return -ENOMEM;
1424         new_se->start_page = start_page;
1425         new_se->nr_pages = nr_pages;
1426         new_se->start_block = start_block;
1427
1428         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1429         return 1;
1430 }
1431
1432 /*
1433  * A `swap extent' is a simple thing which maps a contiguous range of pages
1434  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1435  * is built at swapon time and is then used at swap_writepage/swap_readpage
1436  * time for locating where on disk a page belongs.
1437  *
1438  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1439  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1440  * swap files identically.
1441  *
1442  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1443  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1444  * swapfiles are handled *identically* after swapon time.
1445  *
1446  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1447  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1448  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1449  * requirements, they are simply tossed out - we will never use those blocks
1450  * for swapping.
1451  *
1452  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1453  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1454  * which will scribble on the fs.
1455  *
1456  * The amount of disk space which a single swap extent represents varies.
1457  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1458  * extents in the list.  To avoid much list walking, we cache the previous
1459  * search location in `curr_swap_extent', and start new searches from there.
1460  * This is extremely effective.  The average number of iterations in
1461  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1462  */
1463 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1464 {
1465         struct inode *inode;
1466         unsigned blocks_per_page;
1467         unsigned long page_no;
1468         unsigned blkbits;
1469         sector_t probe_block;
1470         sector_t last_block;
1471         sector_t lowest_block = -1;
1472         sector_t highest_block = 0;
1473         int nr_extents = 0;
1474         int ret;
1475
1476         inode = sis->swap_file->f_mapping->host;
1477         if (S_ISBLK(inode->i_mode)) {
1478                 ret = add_swap_extent(sis, 0, sis->max, 0);
1479                 *span = sis->pages;
1480                 goto out;
1481         }
1482
1483         blkbits = inode->i_blkbits;
1484         blocks_per_page = PAGE_SIZE >> blkbits;
1485
1486         /*
1487          * Map all the blocks into the extent list.  This code doesn't try
1488          * to be very smart.
1489          */
1490         probe_block = 0;
1491         page_no = 0;
1492         last_block = i_size_read(inode) >> blkbits;
1493         while ((probe_block + blocks_per_page) <= last_block &&
1494                         page_no < sis->max) {
1495                 unsigned block_in_page;
1496                 sector_t first_block;
1497
1498                 first_block = bmap(inode, probe_block);
1499                 if (first_block == 0)
1500                         goto bad_bmap;
1501
1502                 /*
1503                  * It must be PAGE_SIZE aligned on-disk
1504                  */
1505                 if (first_block & (blocks_per_page - 1)) {
1506                         probe_block++;
1507                         goto reprobe;
1508                 }
1509
1510                 for (block_in_page = 1; block_in_page < blocks_per_page;
1511                                         block_in_page++) {
1512                         sector_t block;
1513
1514                         block = bmap(inode, probe_block + block_in_page);
1515                         if (block == 0)
1516                                 goto bad_bmap;
1517                         if (block != first_block + block_in_page) {
1518                                 /* Discontiguity */
1519                                 probe_block++;
1520                                 goto reprobe;
1521                         }
1522                 }
1523
1524                 first_block >>= (PAGE_SHIFT - blkbits);
1525                 if (page_no) {  /* exclude the header page */
1526                         if (first_block < lowest_block)
1527                                 lowest_block = first_block;
1528                         if (first_block > highest_block)
1529                                 highest_block = first_block;
1530                 }
1531
1532                 /*
1533                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1534                  */
1535                 ret = add_swap_extent(sis, page_no, 1, first_block);
1536                 if (ret < 0)
1537                         goto out;
1538                 nr_extents += ret;
1539                 page_no++;
1540                 probe_block += blocks_per_page;
1541 reprobe:
1542                 continue;
1543         }
1544         ret = nr_extents;
1545         *span = 1 + highest_block - lowest_block;
1546         if (page_no == 0)
1547                 page_no = 1;    /* force Empty message */
1548         sis->max = page_no;
1549         sis->pages = page_no - 1;
1550         sis->highest_bit = page_no - 1;
1551 out:
1552         return ret;
1553 bad_bmap:
1554         printk(KERN_ERR "swapon: swapfile has holes\n");
1555         ret = -EINVAL;
1556         goto out;
1557 }
1558
1559 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1560 {
1561         struct swap_info_struct *p = NULL;
1562         unsigned char *swap_map;
1563         struct file *swap_file, *victim;
1564         struct address_space *mapping;
1565         struct inode *inode;
1566         char *pathname;
1567         int i, type, prev;
1568         int err;
1569
1570         if (!capable(CAP_SYS_ADMIN))
1571                 return -EPERM;
1572
1573         pathname = getname(specialfile);
1574         err = PTR_ERR(pathname);
1575         if (IS_ERR(pathname))
1576                 goto out;
1577
1578         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1579         putname(pathname);
1580         err = PTR_ERR(victim);
1581         if (IS_ERR(victim))
1582                 goto out;
1583
1584         mapping = victim->f_mapping;
1585         prev = -1;
1586         spin_lock(&swap_lock);
1587         for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1588                 p = swap_info[type];
1589                 if (p->flags & SWP_WRITEOK) {
1590                         if (p->swap_file->f_mapping == mapping)
1591                                 break;
1592                 }
1593                 prev = type;
1594         }
1595         if (type < 0) {
1596                 err = -EINVAL;
1597                 spin_unlock(&swap_lock);
1598                 goto out_dput;
1599         }
1600         if (!security_vm_enough_memory(p->pages))
1601                 vm_unacct_memory(p->pages);
1602         else {
1603                 err = -ENOMEM;
1604                 spin_unlock(&swap_lock);
1605                 goto out_dput;
1606         }
1607         if (prev < 0)
1608                 swap_list.head = p->next;
1609         else
1610                 swap_info[prev]->next = p->next;
1611         if (type == swap_list.next) {
1612                 /* just pick something that's safe... */
1613                 swap_list.next = swap_list.head;
1614         }
1615         if (p->prio < 0) {
1616                 for (i = p->next; i >= 0; i = swap_info[i]->next)
1617                         swap_info[i]->prio = p->prio--;
1618                 least_priority++;
1619         }
1620         nr_swap_pages -= p->pages;
1621         total_swap_pages -= p->pages;
1622         p->flags &= ~SWP_WRITEOK;
1623         spin_unlock(&swap_lock);
1624
1625         current->flags |= PF_OOM_ORIGIN;
1626         err = try_to_unuse(type);
1627         current->flags &= ~PF_OOM_ORIGIN;
1628
1629         if (err) {
1630                 /* re-insert swap space back into swap_list */
1631                 spin_lock(&swap_lock);
1632                 if (p->prio < 0)
1633                         p->prio = --least_priority;
1634                 prev = -1;
1635                 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1636                         if (p->prio >= swap_info[i]->prio)
1637                                 break;
1638                         prev = i;
1639                 }
1640                 p->next = i;
1641                 if (prev < 0)
1642                         swap_list.head = swap_list.next = type;
1643                 else
1644                         swap_info[prev]->next = type;
1645                 nr_swap_pages += p->pages;
1646                 total_swap_pages += p->pages;
1647                 p->flags |= SWP_WRITEOK;
1648                 spin_unlock(&swap_lock);
1649                 goto out_dput;
1650         }
1651
1652         /* wait for any unplug function to finish */
1653         down_write(&swap_unplug_sem);
1654         up_write(&swap_unplug_sem);
1655
1656         destroy_swap_extents(p);
1657         if (p->flags & SWP_CONTINUED)
1658                 free_swap_count_continuations(p);
1659
1660         mutex_lock(&swapon_mutex);
1661         spin_lock(&swap_lock);
1662         drain_mmlist();
1663
1664         /* wait for anyone still in scan_swap_map */
1665         p->highest_bit = 0;             /* cuts scans short */
1666         while (p->flags >= SWP_SCANNING) {
1667                 spin_unlock(&swap_lock);
1668                 schedule_timeout_uninterruptible(1);
1669                 spin_lock(&swap_lock);
1670         }
1671
1672         swap_file = p->swap_file;
1673         p->swap_file = NULL;
1674         p->max = 0;
1675         swap_map = p->swap_map;
1676         p->swap_map = NULL;
1677         p->flags = 0;
1678         spin_unlock(&swap_lock);
1679         mutex_unlock(&swapon_mutex);
1680         vfree(swap_map);
1681         /* Destroy swap account informatin */
1682         swap_cgroup_swapoff(type);
1683
1684         inode = mapping->host;
1685         if (S_ISBLK(inode->i_mode)) {
1686                 struct block_device *bdev = I_BDEV(inode);
1687                 set_blocksize(bdev, p->old_block_size);
1688                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1689         } else {
1690                 mutex_lock(&inode->i_mutex);
1691                 inode->i_flags &= ~S_SWAPFILE;
1692                 mutex_unlock(&inode->i_mutex);
1693         }
1694         filp_close(swap_file, NULL);
1695         err = 0;
1696         atomic_inc(&proc_poll_event);
1697         wake_up_interruptible(&proc_poll_wait);
1698
1699 out_dput:
1700         filp_close(victim, NULL);
1701 out:
1702         return err;
1703 }
1704
1705 #ifdef CONFIG_PROC_FS
1706 struct proc_swaps {
1707         struct seq_file seq;
1708         int event;
1709 };
1710
1711 static unsigned swaps_poll(struct file *file, poll_table *wait)
1712 {
1713         struct proc_swaps *s = file->private_data;
1714
1715         poll_wait(file, &proc_poll_wait, wait);
1716
1717         if (s->event != atomic_read(&proc_poll_event)) {
1718                 s->event = atomic_read(&proc_poll_event);
1719                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1720         }
1721
1722         return POLLIN | POLLRDNORM;
1723 }
1724
1725 /* iterator */
1726 static void *swap_start(struct seq_file *swap, loff_t *pos)
1727 {
1728         struct swap_info_struct *si;
1729         int type;
1730         loff_t l = *pos;
1731
1732         mutex_lock(&swapon_mutex);
1733
1734         if (!l)
1735                 return SEQ_START_TOKEN;
1736
1737         for (type = 0; type < nr_swapfiles; type++) {
1738                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1739                 si = swap_info[type];
1740                 if (!(si->flags & SWP_USED) || !si->swap_map)
1741                         continue;
1742                 if (!--l)
1743                         return si;
1744         }
1745
1746         return NULL;
1747 }
1748
1749 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1750 {
1751         struct swap_info_struct *si = v;
1752         int type;
1753
1754         if (v == SEQ_START_TOKEN)
1755                 type = 0;
1756         else
1757                 type = si->type + 1;
1758
1759         for (; type < nr_swapfiles; type++) {
1760                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1761                 si = swap_info[type];
1762                 if (!(si->flags & SWP_USED) || !si->swap_map)
1763                         continue;
1764                 ++*pos;
1765                 return si;
1766         }
1767
1768         return NULL;
1769 }
1770
1771 static void swap_stop(struct seq_file *swap, void *v)
1772 {
1773         mutex_unlock(&swapon_mutex);
1774 }
1775
1776 static int swap_show(struct seq_file *swap, void *v)
1777 {
1778         struct swap_info_struct *si = v;
1779         struct file *file;
1780         int len;
1781
1782         if (si == SEQ_START_TOKEN) {
1783                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1784                 return 0;
1785         }
1786
1787         file = si->swap_file;
1788         len = seq_path(swap, &file->f_path, " \t\n\\");
1789         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1790                         len < 40 ? 40 - len : 1, " ",
1791                         S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1792                                 "partition" : "file\t",
1793                         si->pages << (PAGE_SHIFT - 10),
1794                         si->inuse_pages << (PAGE_SHIFT - 10),
1795                         si->prio);
1796         return 0;
1797 }
1798
1799 static const struct seq_operations swaps_op = {
1800         .start =        swap_start,
1801         .next =         swap_next,
1802         .stop =         swap_stop,
1803         .show =         swap_show
1804 };
1805
1806 static int swaps_open(struct inode *inode, struct file *file)
1807 {
1808         struct proc_swaps *s;
1809         int ret;
1810
1811         s = kmalloc(sizeof(struct proc_swaps), GFP_KERNEL);
1812         if (!s)
1813                 return -ENOMEM;
1814
1815         file->private_data = s;
1816
1817         ret = seq_open(file, &swaps_op);
1818         if (ret) {
1819                 kfree(s);
1820                 return ret;
1821         }
1822
1823         s->seq.private = s;
1824         s->event = atomic_read(&proc_poll_event);
1825         return ret;
1826 }
1827
1828 static const struct file_operations proc_swaps_operations = {
1829         .open           = swaps_open,
1830         .read           = seq_read,
1831         .llseek         = seq_lseek,
1832         .release        = seq_release,
1833         .poll           = swaps_poll,
1834 };
1835
1836 static int __init procswaps_init(void)
1837 {
1838         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1839         return 0;
1840 }
1841 __initcall(procswaps_init);
1842 #endif /* CONFIG_PROC_FS */
1843
1844 #ifdef MAX_SWAPFILES_CHECK
1845 static int __init max_swapfiles_check(void)
1846 {
1847         MAX_SWAPFILES_CHECK();
1848         return 0;
1849 }
1850 late_initcall(max_swapfiles_check);
1851 #endif
1852
1853 /*
1854  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1855  *
1856  * The swapon system call
1857  */
1858 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1859 {
1860         struct swap_info_struct *p;
1861         char *name = NULL;
1862         struct block_device *bdev = NULL;
1863         struct file *swap_file = NULL;
1864         struct address_space *mapping;
1865         unsigned int type;
1866         int i, prev;
1867         int error;
1868         union swap_header *swap_header;
1869         unsigned int nr_good_pages;
1870         int nr_extents = 0;
1871         sector_t span;
1872         unsigned long maxpages;
1873         unsigned long swapfilepages;
1874         unsigned char *swap_map = NULL;
1875         struct page *page = NULL;
1876         struct inode *inode = NULL;
1877         int did_down = 0;
1878
1879         if (!capable(CAP_SYS_ADMIN))
1880                 return -EPERM;
1881
1882         p = kzalloc(sizeof(*p), GFP_KERNEL);
1883         if (!p)
1884                 return -ENOMEM;
1885
1886         spin_lock(&swap_lock);
1887         for (type = 0; type < nr_swapfiles; type++) {
1888                 if (!(swap_info[type]->flags & SWP_USED))
1889                         break;
1890         }
1891         error = -EPERM;
1892         if (type >= MAX_SWAPFILES) {
1893                 spin_unlock(&swap_lock);
1894                 kfree(p);
1895                 goto out;
1896         }
1897         if (type >= nr_swapfiles) {
1898                 p->type = type;
1899                 swap_info[type] = p;
1900                 /*
1901                  * Write swap_info[type] before nr_swapfiles, in case a
1902                  * racing procfs swap_start() or swap_next() is reading them.
1903                  * (We never shrink nr_swapfiles, we never free this entry.)
1904                  */
1905                 smp_wmb();
1906                 nr_swapfiles++;
1907         } else {
1908                 kfree(p);
1909                 p = swap_info[type];
1910                 /*
1911                  * Do not memset this entry: a racing procfs swap_next()
1912                  * would be relying on p->type to remain valid.
1913                  */
1914         }
1915         INIT_LIST_HEAD(&p->first_swap_extent.list);
1916         p->flags = SWP_USED;
1917         p->next = -1;
1918         spin_unlock(&swap_lock);
1919
1920         name = getname(specialfile);
1921         error = PTR_ERR(name);
1922         if (IS_ERR(name)) {
1923                 name = NULL;
1924                 goto bad_swap_2;
1925         }
1926         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1927         error = PTR_ERR(swap_file);
1928         if (IS_ERR(swap_file)) {
1929                 swap_file = NULL;
1930                 goto bad_swap_2;
1931         }
1932
1933         p->swap_file = swap_file;
1934         mapping = swap_file->f_mapping;
1935         inode = mapping->host;
1936
1937         error = -EBUSY;
1938         for (i = 0; i < nr_swapfiles; i++) {
1939                 struct swap_info_struct *q = swap_info[i];
1940
1941                 if (i == type || !q->swap_file)
1942                         continue;
1943                 if (mapping == q->swap_file->f_mapping)
1944                         goto bad_swap;
1945         }
1946
1947         error = -EINVAL;
1948         if (S_ISBLK(inode->i_mode)) {
1949                 bdev = bdgrab(I_BDEV(inode));
1950                 error = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1951                                    sys_swapon);
1952                 if (error < 0) {
1953                         bdev = NULL;
1954                         error = -EINVAL;
1955                         goto bad_swap;
1956                 }
1957                 p->old_block_size = block_size(bdev);
1958                 error = set_blocksize(bdev, PAGE_SIZE);
1959                 if (error < 0)
1960                         goto bad_swap;
1961                 p->bdev = bdev;
1962                 p->flags |= SWP_BLKDEV;
1963         } else if (S_ISREG(inode->i_mode)) {
1964                 p->bdev = inode->i_sb->s_bdev;
1965                 mutex_lock(&inode->i_mutex);
1966                 did_down = 1;
1967                 if (IS_SWAPFILE(inode)) {
1968                         error = -EBUSY;
1969                         goto bad_swap;
1970                 }
1971         } else {
1972                 goto bad_swap;
1973         }
1974
1975         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1976
1977         /*
1978          * Read the swap header.
1979          */
1980         if (!mapping->a_ops->readpage) {
1981                 error = -EINVAL;
1982                 goto bad_swap;
1983         }
1984         page = read_mapping_page(mapping, 0, swap_file);
1985         if (IS_ERR(page)) {
1986                 error = PTR_ERR(page);
1987                 goto bad_swap;
1988         }
1989         swap_header = kmap(page);
1990
1991         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1992                 printk(KERN_ERR "Unable to find swap-space signature\n");
1993                 error = -EINVAL;
1994                 goto bad_swap;
1995         }
1996
1997         /* swap partition endianess hack... */
1998         if (swab32(swap_header->info.version) == 1) {
1999                 swab32s(&swap_header->info.version);
2000                 swab32s(&swap_header->info.last_page);
2001                 swab32s(&swap_header->info.nr_badpages);
2002                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2003                         swab32s(&swap_header->info.badpages[i]);
2004         }
2005         /* Check the swap header's sub-version */
2006         if (swap_header->info.version != 1) {
2007                 printk(KERN_WARNING
2008                        "Unable to handle swap header version %d\n",
2009                        swap_header->info.version);
2010                 error = -EINVAL;
2011                 goto bad_swap;
2012         }
2013
2014         p->lowest_bit  = 1;
2015         p->cluster_next = 1;
2016         p->cluster_nr = 0;
2017
2018         /*
2019          * Find out how many pages are allowed for a single swap
2020          * device. There are two limiting factors: 1) the number of
2021          * bits for the swap offset in the swp_entry_t type and
2022          * 2) the number of bits in the a swap pte as defined by
2023          * the different architectures. In order to find the
2024          * largest possible bit mask a swap entry with swap type 0
2025          * and swap offset ~0UL is created, encoded to a swap pte,
2026          * decoded to a swp_entry_t again and finally the swap
2027          * offset is extracted. This will mask all the bits from
2028          * the initial ~0UL mask that can't be encoded in either
2029          * the swp_entry_t or the architecture definition of a
2030          * swap pte.
2031          */
2032         maxpages = swp_offset(pte_to_swp_entry(
2033                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2034         if (maxpages > swap_header->info.last_page) {
2035                 maxpages = swap_header->info.last_page + 1;
2036                 /* p->max is an unsigned int: don't overflow it */
2037                 if ((unsigned int)maxpages == 0)
2038                         maxpages = UINT_MAX;
2039         }
2040         p->highest_bit = maxpages - 1;
2041
2042         error = -EINVAL;
2043         if (!maxpages)
2044                 goto bad_swap;
2045         if (swapfilepages && maxpages > swapfilepages) {
2046                 printk(KERN_WARNING
2047                        "Swap area shorter than signature indicates\n");
2048                 goto bad_swap;
2049         }
2050         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2051                 goto bad_swap;
2052         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2053                 goto bad_swap;
2054
2055         /* OK, set up the swap map and apply the bad block list */
2056         swap_map = vmalloc(maxpages);
2057         if (!swap_map) {
2058                 error = -ENOMEM;
2059                 goto bad_swap;
2060         }
2061
2062         memset(swap_map, 0, maxpages);
2063         nr_good_pages = maxpages - 1;   /* omit header page */
2064
2065         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2066                 unsigned int page_nr = swap_header->info.badpages[i];
2067                 if (page_nr == 0 || page_nr > swap_header->info.last_page) {
2068                         error = -EINVAL;
2069                         goto bad_swap;
2070                 }
2071                 if (page_nr < maxpages) {
2072                         swap_map[page_nr] = SWAP_MAP_BAD;
2073                         nr_good_pages--;
2074                 }
2075         }
2076
2077         error = swap_cgroup_swapon(type, maxpages);
2078         if (error)
2079                 goto bad_swap;
2080
2081         if (nr_good_pages) {
2082                 swap_map[0] = SWAP_MAP_BAD;
2083                 p->max = maxpages;
2084                 p->pages = nr_good_pages;
2085                 nr_extents = setup_swap_extents(p, &span);
2086                 if (nr_extents < 0) {
2087                         error = nr_extents;
2088                         goto bad_swap;
2089                 }
2090                 nr_good_pages = p->pages;
2091         }
2092         if (!nr_good_pages) {
2093                 printk(KERN_WARNING "Empty swap-file\n");
2094                 error = -EINVAL;
2095                 goto bad_swap;
2096         }
2097
2098         if (p->bdev) {
2099                 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2100                         p->flags |= SWP_SOLIDSTATE;
2101                         p->cluster_next = 1 + (random32() % p->highest_bit);
2102                 }
2103                 if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2104                         p->flags |= SWP_DISCARDABLE;
2105         }
2106
2107         mutex_lock(&swapon_mutex);
2108         spin_lock(&swap_lock);
2109         if (swap_flags & SWAP_FLAG_PREFER)
2110                 p->prio =
2111                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2112         else
2113                 p->prio = --least_priority;
2114         p->swap_map = swap_map;
2115         p->flags |= SWP_WRITEOK;
2116         nr_swap_pages += nr_good_pages;
2117         total_swap_pages += nr_good_pages;
2118
2119         printk(KERN_INFO "Adding %uk swap on %s.  "
2120                         "Priority:%d extents:%d across:%lluk %s%s\n",
2121                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2122                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2123                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2124                 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2125
2126         /* insert swap space into swap_list: */
2127         prev = -1;
2128         for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2129                 if (p->prio >= swap_info[i]->prio)
2130                         break;
2131                 prev = i;
2132         }
2133         p->next = i;
2134         if (prev < 0)
2135                 swap_list.head = swap_list.next = type;
2136         else
2137                 swap_info[prev]->next = type;
2138         spin_unlock(&swap_lock);
2139         mutex_unlock(&swapon_mutex);
2140         atomic_inc(&proc_poll_event);
2141         wake_up_interruptible(&proc_poll_wait);
2142
2143         error = 0;
2144         goto out;
2145 bad_swap:
2146         if (bdev) {
2147                 set_blocksize(bdev, p->old_block_size);
2148                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2149         }
2150         destroy_swap_extents(p);
2151         swap_cgroup_swapoff(type);
2152 bad_swap_2:
2153         spin_lock(&swap_lock);
2154         p->swap_file = NULL;
2155         p->flags = 0;
2156         spin_unlock(&swap_lock);
2157         vfree(swap_map);
2158         if (swap_file) {
2159                 if (did_down) {
2160                         mutex_unlock(&inode->i_mutex);
2161                         did_down = 0;
2162                 }
2163                 filp_close(swap_file, NULL);
2164         }
2165 out:
2166         if (page && !IS_ERR(page)) {
2167                 kunmap(page);
2168                 page_cache_release(page);
2169         }
2170         if (name)
2171                 putname(name);
2172         if (did_down) {
2173                 if (!error)
2174                         inode->i_flags |= S_SWAPFILE;
2175                 mutex_unlock(&inode->i_mutex);
2176         }
2177         return error;
2178 }
2179
2180 void si_swapinfo(struct sysinfo *val)
2181 {
2182         unsigned int type;
2183         unsigned long nr_to_be_unused = 0;
2184
2185         spin_lock(&swap_lock);
2186         for (type = 0; type < nr_swapfiles; type++) {
2187                 struct swap_info_struct *si = swap_info[type];
2188
2189                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2190                         nr_to_be_unused += si->inuse_pages;
2191         }
2192         val->freeswap = nr_swap_pages + nr_to_be_unused;
2193         val->totalswap = total_swap_pages + nr_to_be_unused;
2194         spin_unlock(&swap_lock);
2195 }
2196
2197 /*
2198  * Verify that a swap entry is valid and increment its swap map count.
2199  *
2200  * Returns error code in following case.
2201  * - success -> 0
2202  * - swp_entry is invalid -> EINVAL
2203  * - swp_entry is migration entry -> EINVAL
2204  * - swap-cache reference is requested but there is already one. -> EEXIST
2205  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2206  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2207  */
2208 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2209 {
2210         struct swap_info_struct *p;
2211         unsigned long offset, type;
2212         unsigned char count;
2213         unsigned char has_cache;
2214         int err = -EINVAL;
2215
2216         if (non_swap_entry(entry))
2217                 goto out;
2218
2219         type = swp_type(entry);
2220         if (type >= nr_swapfiles)
2221                 goto bad_file;
2222         p = swap_info[type];
2223         offset = swp_offset(entry);
2224
2225         spin_lock(&swap_lock);
2226         if (unlikely(offset >= p->max))
2227                 goto unlock_out;
2228
2229         count = p->swap_map[offset];
2230         has_cache = count & SWAP_HAS_CACHE;
2231         count &= ~SWAP_HAS_CACHE;
2232         err = 0;
2233
2234         if (usage == SWAP_HAS_CACHE) {
2235
2236                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2237                 if (!has_cache && count)
2238                         has_cache = SWAP_HAS_CACHE;
2239                 else if (has_cache)             /* someone else added cache */
2240                         err = -EEXIST;
2241                 else                            /* no users remaining */
2242                         err = -ENOENT;
2243
2244         } else if (count || has_cache) {
2245
2246                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2247                         count += usage;
2248                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2249                         err = -EINVAL;
2250                 else if (swap_count_continued(p, offset, count))
2251                         count = COUNT_CONTINUED;
2252                 else
2253                         err = -ENOMEM;
2254         } else
2255                 err = -ENOENT;                  /* unused swap entry */
2256
2257         p->swap_map[offset] = count | has_cache;
2258
2259 unlock_out:
2260         spin_unlock(&swap_lock);
2261 out:
2262         return err;
2263
2264 bad_file:
2265         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2266         goto out;
2267 }
2268
2269 /*
2270  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2271  * (in which case its reference count is never incremented).
2272  */
2273 void swap_shmem_alloc(swp_entry_t entry)
2274 {
2275         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2276 }
2277
2278 /*
2279  * Increase reference count of swap entry by 1.
2280  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2281  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2282  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2283  * might occur if a page table entry has got corrupted.
2284  */
2285 int swap_duplicate(swp_entry_t entry)
2286 {
2287         int err = 0;
2288
2289         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2290                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2291         return err;
2292 }
2293
2294 /*
2295  * @entry: swap entry for which we allocate swap cache.
2296  *
2297  * Called when allocating swap cache for existing swap entry,
2298  * This can return error codes. Returns 0 at success.
2299  * -EBUSY means there is a swap cache.
2300  * Note: return code is different from swap_duplicate().
2301  */
2302 int swapcache_prepare(swp_entry_t entry)
2303 {
2304         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2305 }
2306
2307 /*
2308  * Sets callback for event when swap_map[offset] == 0
2309  * i.e. page at this swap offset is not longer used.
2310  *
2311  * type: identifies swap file
2312  * fn: callback function
2313  */
2314 void set_notify_swap_entry_free(unsigned type, void (*fn) (unsigned long))
2315 {
2316         struct swap_info_struct *sis;
2317         sis = swap_info[type];
2318         BUG_ON(!sis);
2319         sis->notify_swap_entry_free_fn = fn;
2320         return;
2321 }
2322 EXPORT_SYMBOL(set_notify_swap_entry_free);
2323
2324 /*
2325  * swap_lock prevents swap_map being freed. Don't grab an extra
2326  * reference on the swaphandle, it doesn't matter if it becomes unused.
2327  */
2328 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2329 {
2330         struct swap_info_struct *si;
2331         int our_page_cluster = page_cluster;
2332         pgoff_t target, toff;
2333         pgoff_t base, end;
2334         int nr_pages = 0;
2335
2336         if (!our_page_cluster)  /* no readahead */
2337                 return 0;
2338
2339         si = swap_info[swp_type(entry)];
2340         target = swp_offset(entry);
2341         base = (target >> our_page_cluster) << our_page_cluster;
2342         end = base + (1 << our_page_cluster);
2343         if (!base)              /* first page is swap header */
2344                 base++;
2345
2346         spin_lock(&swap_lock);
2347         if (end > si->max)      /* don't go beyond end of map */
2348                 end = si->max;
2349
2350         /* Count contiguous allocated slots above our target */
2351         for (toff = target; ++toff < end; nr_pages++) {
2352                 /* Don't read in free or bad pages */
2353                 if (!si->swap_map[toff])
2354                         break;
2355                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2356                         break;
2357         }
2358         /* Count contiguous allocated slots below our target */
2359         for (toff = target; --toff >= base; nr_pages++) {
2360                 /* Don't read in free or bad pages */
2361                 if (!si->swap_map[toff])
2362                         break;
2363                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2364                         break;
2365         }
2366         spin_unlock(&swap_lock);
2367
2368         /*
2369          * Indicate starting offset, and return number of pages to get:
2370          * if only 1, say 0, since there's then no readahead to be done.
2371          */
2372         *offset = ++toff;
2373         return nr_pages? ++nr_pages: 0;
2374 }
2375
2376 /*
2377  * add_swap_count_continuation - called when a swap count is duplicated
2378  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2379  * page of the original vmalloc'ed swap_map, to hold the continuation count
2380  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2381  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2382  *
2383  * These continuation pages are seldom referenced: the common paths all work
2384  * on the original swap_map, only referring to a continuation page when the
2385  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2386  *
2387  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2388  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2389  * can be called after dropping locks.
2390  */
2391 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2392 {
2393         struct swap_info_struct *si;
2394         struct page *head;
2395         struct page *page;
2396         struct page *list_page;
2397         pgoff_t offset;
2398         unsigned char count;
2399
2400         /*
2401          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2402          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2403          */
2404         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2405
2406         si = swap_info_get(entry);
2407         if (!si) {
2408                 /*
2409                  * An acceptable race has occurred since the failing
2410                  * __swap_duplicate(): the swap entry has been freed,
2411                  * perhaps even the whole swap_map cleared for swapoff.
2412                  */
2413                 goto outer;
2414         }
2415
2416         offset = swp_offset(entry);
2417         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2418
2419         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2420                 /*
2421                  * The higher the swap count, the more likely it is that tasks
2422                  * will race to add swap count continuation: we need to avoid
2423                  * over-provisioning.
2424                  */
2425                 goto out;
2426         }
2427
2428         if (!page) {
2429                 spin_unlock(&swap_lock);
2430                 return -ENOMEM;
2431         }
2432
2433         /*
2434          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2435          * no architecture is using highmem pages for kernel pagetables: so it
2436          * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2437          */
2438         head = vmalloc_to_page(si->swap_map + offset);
2439         offset &= ~PAGE_MASK;
2440
2441         /*
2442          * Page allocation does not initialize the page's lru field,
2443          * but it does always reset its private field.
2444          */
2445         if (!page_private(head)) {
2446                 BUG_ON(count & COUNT_CONTINUED);
2447                 INIT_LIST_HEAD(&head->lru);
2448                 set_page_private(head, SWP_CONTINUED);
2449                 si->flags |= SWP_CONTINUED;
2450         }
2451
2452         list_for_each_entry(list_page, &head->lru, lru) {
2453                 unsigned char *map;
2454
2455                 /*
2456                  * If the previous map said no continuation, but we've found
2457                  * a continuation page, free our allocation and use this one.
2458                  */
2459                 if (!(count & COUNT_CONTINUED))
2460                         goto out;
2461
2462                 map = kmap_atomic(list_page, KM_USER0) + offset;
2463                 count = *map;
2464                 kunmap_atomic(map, KM_USER0);
2465
2466                 /*
2467                  * If this continuation count now has some space in it,
2468                  * free our allocation and use this one.
2469                  */
2470                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2471                         goto out;
2472         }
2473
2474         list_add_tail(&page->lru, &head->lru);
2475         page = NULL;                    /* now it's attached, don't free it */
2476 out:
2477         spin_unlock(&swap_lock);
2478 outer:
2479         if (page)
2480                 __free_page(page);
2481         return 0;
2482 }
2483
2484 /*
2485  * swap_count_continued - when the original swap_map count is incremented
2486  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2487  * into, carry if so, or else fail until a new continuation page is allocated;
2488  * when the original swap_map count is decremented from 0 with continuation,
2489  * borrow from the continuation and report whether it still holds more.
2490  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2491  */
2492 static bool swap_count_continued(struct swap_info_struct *si,
2493                                  pgoff_t offset, unsigned char count)
2494 {
2495         struct page *head;
2496         struct page *page;
2497         unsigned char *map;
2498
2499         head = vmalloc_to_page(si->swap_map + offset);
2500         if (page_private(head) != SWP_CONTINUED) {
2501                 BUG_ON(count & COUNT_CONTINUED);
2502                 return false;           /* need to add count continuation */
2503         }
2504
2505         offset &= ~PAGE_MASK;
2506         page = list_entry(head->lru.next, struct page, lru);
2507         map = kmap_atomic(page, KM_USER0) + offset;
2508
2509         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2510                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2511
2512         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2513                 /*
2514                  * Think of how you add 1 to 999
2515                  */
2516                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2517                         kunmap_atomic(map, KM_USER0);
2518                         page = list_entry(page->lru.next, struct page, lru);
2519                         BUG_ON(page == head);
2520                         map = kmap_atomic(page, KM_USER0) + offset;
2521                 }
2522                 if (*map == SWAP_CONT_MAX) {
2523                         kunmap_atomic(map, KM_USER0);
2524                         page = list_entry(page->lru.next, struct page, lru);
2525                         if (page == head)
2526                                 return false;   /* add count continuation */
2527                         map = kmap_atomic(page, KM_USER0) + offset;
2528 init_map:               *map = 0;               /* we didn't zero the page */
2529                 }
2530                 *map += 1;
2531                 kunmap_atomic(map, KM_USER0);
2532                 page = list_entry(page->lru.prev, struct page, lru);
2533                 while (page != head) {
2534                         map = kmap_atomic(page, KM_USER0) + offset;
2535                         *map = COUNT_CONTINUED;
2536                         kunmap_atomic(map, KM_USER0);
2537                         page = list_entry(page->lru.prev, struct page, lru);
2538                 }
2539                 return true;                    /* incremented */
2540
2541         } else {                                /* decrementing */
2542                 /*
2543                  * Think of how you subtract 1 from 1000
2544                  */
2545                 BUG_ON(count != COUNT_CONTINUED);
2546                 while (*map == COUNT_CONTINUED) {
2547                         kunmap_atomic(map, KM_USER0);
2548                         page = list_entry(page->lru.next, struct page, lru);
2549                         BUG_ON(page == head);
2550                         map = kmap_atomic(page, KM_USER0) + offset;
2551                 }
2552                 BUG_ON(*map == 0);
2553                 *map -= 1;
2554                 if (*map == 0)
2555                         count = 0;
2556                 kunmap_atomic(map, KM_USER0);
2557                 page = list_entry(page->lru.prev, struct page, lru);
2558                 while (page != head) {
2559                         map = kmap_atomic(page, KM_USER0) + offset;
2560                         *map = SWAP_CONT_MAX | count;
2561                         count = COUNT_CONTINUED;
2562                         kunmap_atomic(map, KM_USER0);
2563                         page = list_entry(page->lru.prev, struct page, lru);
2564                 }
2565                 return count == COUNT_CONTINUED;
2566         }
2567 }
2568
2569 /*
2570  * free_swap_count_continuations - swapoff free all the continuation pages
2571  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2572  */
2573 static void free_swap_count_continuations(struct swap_info_struct *si)
2574 {
2575         pgoff_t offset;
2576
2577         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2578                 struct page *head;
2579                 head = vmalloc_to_page(si->swap_map + offset);
2580                 if (page_private(head)) {
2581                         struct list_head *this, *next;
2582                         list_for_each_safe(this, next, &head->lru) {
2583                                 struct page *page;
2584                                 page = list_entry(this, struct page, lru);
2585                                 list_del(this);
2586                                 __free_page(page);
2587                         }
2588                 }
2589         }
2590 }