UBUNTU: Ubuntu-2.6.38-12.51
[linux-flexiantxendom0-natty.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include <trace/events/vfs.h>
31 #include "internal.h"
32
33 /*
34  * Passed into wb_writeback(), essentially a subset of writeback_control
35  */
36 struct wb_writeback_work {
37         long nr_pages;
38         struct super_block *sb;
39         enum writeback_sync_modes sync_mode;
40         unsigned int for_kupdate:1;
41         unsigned int range_cyclic:1;
42         unsigned int for_background:1;
43
44         struct list_head list;          /* pending work list */
45         struct completion *done;        /* set if the caller waits */
46 };
47
48 /*
49  * Include the creation of the trace points after defining the
50  * wb_writeback_work structure so that the definition remains local to this
51  * file.
52  */
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/writeback.h>
55
56 /*
57  * We don't actually have pdflush, but this one is exported though /proc...
58  */
59 int nr_pdflush_threads;
60
61 /**
62  * writeback_in_progress - determine whether there is writeback in progress
63  * @bdi: the device's backing_dev_info structure.
64  *
65  * Determine whether there is writeback waiting to be handled against a
66  * backing device.
67  */
68 int writeback_in_progress(struct backing_dev_info *bdi)
69 {
70         return test_bit(BDI_writeback_running, &bdi->state);
71 }
72
73 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
74 {
75         struct super_block *sb = inode->i_sb;
76
77         if (strcmp(sb->s_type->name, "bdev") == 0)
78                 return inode->i_mapping->backing_dev_info;
79
80         return sb->s_bdi;
81 }
82
83 static inline struct inode *wb_inode(struct list_head *head)
84 {
85         return list_entry(head, struct inode, i_wb_list);
86 }
87
88 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
89 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
90 {
91         if (bdi->wb.task) {
92                 wake_up_process(bdi->wb.task);
93         } else {
94                 /*
95                  * The bdi thread isn't there, wake up the forker thread which
96                  * will create and run it.
97                  */
98                 wake_up_process(default_backing_dev_info.wb.task);
99         }
100 }
101
102 static void bdi_queue_work(struct backing_dev_info *bdi,
103                            struct wb_writeback_work *work)
104 {
105         trace_writeback_queue(bdi, work);
106
107         spin_lock_bh(&bdi->wb_lock);
108         list_add_tail(&work->list, &bdi->work_list);
109         if (!bdi->wb.task)
110                 trace_writeback_nothread(bdi, work);
111         bdi_wakeup_flusher(bdi);
112         spin_unlock_bh(&bdi->wb_lock);
113 }
114
115 static void
116 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
117                       bool range_cyclic)
118 {
119         struct wb_writeback_work *work;
120
121         /*
122          * This is WB_SYNC_NONE writeback, so if allocation fails just
123          * wakeup the thread for old dirty data writeback
124          */
125         work = kzalloc(sizeof(*work), GFP_ATOMIC);
126         if (!work) {
127                 if (bdi->wb.task) {
128                         trace_writeback_nowork(bdi);
129                         wake_up_process(bdi->wb.task);
130                 }
131                 return;
132         }
133
134         work->sync_mode = WB_SYNC_NONE;
135         work->nr_pages  = nr_pages;
136         work->range_cyclic = range_cyclic;
137
138         bdi_queue_work(bdi, work);
139 }
140
141 /**
142  * bdi_start_writeback - start writeback
143  * @bdi: the backing device to write from
144  * @nr_pages: the number of pages to write
145  *
146  * Description:
147  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
148  *   started when this function returns, we make no guarentees on
149  *   completion. Caller need not hold sb s_umount semaphore.
150  *
151  */
152 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
153 {
154         __bdi_start_writeback(bdi, nr_pages, true);
155 }
156
157 /**
158  * bdi_start_background_writeback - start background writeback
159  * @bdi: the backing device to write from
160  *
161  * Description:
162  *   This makes sure WB_SYNC_NONE background writeback happens. When
163  *   this function returns, it is only guaranteed that for given BDI
164  *   some IO is happening if we are over background dirty threshold.
165  *   Caller need not hold sb s_umount semaphore.
166  */
167 void bdi_start_background_writeback(struct backing_dev_info *bdi)
168 {
169         /*
170          * We just wake up the flusher thread. It will perform background
171          * writeback as soon as there is no other work to do.
172          */
173         trace_writeback_wake_background(bdi);
174         spin_lock_bh(&bdi->wb_lock);
175         bdi_wakeup_flusher(bdi);
176         spin_unlock_bh(&bdi->wb_lock);
177 }
178
179 /*
180  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
181  * furthest end of its superblock's dirty-inode list.
182  *
183  * Before stamping the inode's ->dirtied_when, we check to see whether it is
184  * already the most-recently-dirtied inode on the b_dirty list.  If that is
185  * the case then the inode must have been redirtied while it was being written
186  * out and we don't reset its dirtied_when.
187  */
188 static void redirty_tail(struct inode *inode)
189 {
190         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
191
192         if (!list_empty(&wb->b_dirty)) {
193                 struct inode *tail;
194
195                 tail = wb_inode(wb->b_dirty.next);
196                 if (time_before(inode->dirtied_when, tail->dirtied_when))
197                         inode->dirtied_when = jiffies;
198         }
199         list_move(&inode->i_wb_list, &wb->b_dirty);
200 }
201
202 /*
203  * requeue inode for re-scanning after bdi->b_io list is exhausted.
204  */
205 static void requeue_io(struct inode *inode)
206 {
207         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
208
209         list_move(&inode->i_wb_list, &wb->b_more_io);
210 }
211
212 static void inode_sync_complete(struct inode *inode)
213 {
214         /*
215          * Prevent speculative execution through spin_unlock(&inode_lock);
216          */
217         smp_mb();
218         wake_up_bit(&inode->i_state, __I_SYNC);
219 }
220
221 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
222 {
223         bool ret = time_after(inode->dirtied_when, t);
224 #ifndef CONFIG_64BIT
225         /*
226          * For inodes being constantly redirtied, dirtied_when can get stuck.
227          * It _appears_ to be in the future, but is actually in distant past.
228          * This test is necessary to prevent such wrapped-around relative times
229          * from permanently stopping the whole bdi writeback.
230          */
231         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
232 #endif
233         return ret;
234 }
235
236 /*
237  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
238  */
239 static void move_expired_inodes(struct list_head *delaying_queue,
240                                struct list_head *dispatch_queue,
241                                 unsigned long *older_than_this)
242 {
243         LIST_HEAD(tmp);
244         struct list_head *pos, *node;
245         struct super_block *sb = NULL;
246         struct inode *inode;
247         int do_sb_sort = 0;
248
249         while (!list_empty(delaying_queue)) {
250                 inode = wb_inode(delaying_queue->prev);
251                 if (older_than_this &&
252                     inode_dirtied_after(inode, *older_than_this))
253                         break;
254                 if (sb && sb != inode->i_sb)
255                         do_sb_sort = 1;
256                 sb = inode->i_sb;
257                 list_move(&inode->i_wb_list, &tmp);
258         }
259
260         /* just one sb in list, splice to dispatch_queue and we're done */
261         if (!do_sb_sort) {
262                 list_splice(&tmp, dispatch_queue);
263                 return;
264         }
265
266         /* Move inodes from one superblock together */
267         while (!list_empty(&tmp)) {
268                 sb = wb_inode(tmp.prev)->i_sb;
269                 list_for_each_prev_safe(pos, node, &tmp) {
270                         inode = wb_inode(pos);
271                         if (inode->i_sb == sb)
272                                 list_move(&inode->i_wb_list, dispatch_queue);
273                 }
274         }
275 }
276
277 /*
278  * Queue all expired dirty inodes for io, eldest first.
279  * Before
280  *         newly dirtied     b_dirty    b_io    b_more_io
281  *         =============>    gf         edc     BA
282  * After
283  *         newly dirtied     b_dirty    b_io    b_more_io
284  *         =============>    g          fBAedc
285  *                                           |
286  *                                           +--> dequeue for IO
287  */
288 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
289 {
290         list_splice_init(&wb->b_more_io, &wb->b_io);
291         move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
292 }
293
294 static int write_inode(struct inode *inode, struct writeback_control *wbc)
295 {
296         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
297                 return inode->i_sb->s_op->write_inode(inode, wbc);
298         return 0;
299 }
300
301 /*
302  * Wait for writeback on an inode to complete.
303  */
304 static void inode_wait_for_writeback(struct inode *inode)
305 {
306         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
307         wait_queue_head_t *wqh;
308
309         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
310          while (inode->i_state & I_SYNC) {
311                 spin_unlock(&inode_lock);
312                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
313                 spin_lock(&inode_lock);
314         }
315 }
316
317 /*
318  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
319  * caller has ref on the inode (either via __iget or via syscall against an fd)
320  * or the inode has I_WILL_FREE set (via generic_forget_inode)
321  *
322  * If `wait' is set, wait on the writeout.
323  *
324  * The whole writeout design is quite complex and fragile.  We want to avoid
325  * starvation of particular inodes when others are being redirtied, prevent
326  * livelocks, etc.
327  *
328  * Called under inode_lock.
329  */
330 static int
331 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
332 {
333         struct address_space *mapping = inode->i_mapping;
334         unsigned dirty;
335         int ret;
336
337         if (!atomic_read(&inode->i_count))
338                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
339         else
340                 WARN_ON(inode->i_state & I_WILL_FREE);
341
342         if (inode->i_state & I_SYNC) {
343                 /*
344                  * If this inode is locked for writeback and we are not doing
345                  * writeback-for-data-integrity, move it to b_more_io so that
346                  * writeback can proceed with the other inodes on s_io.
347                  *
348                  * We'll have another go at writing back this inode when we
349                  * completed a full scan of b_io.
350                  */
351                 if (wbc->sync_mode != WB_SYNC_ALL) {
352                         requeue_io(inode);
353                         return 0;
354                 }
355
356                 /*
357                  * It's a data-integrity sync.  We must wait.
358                  */
359                 inode_wait_for_writeback(inode);
360         }
361
362         BUG_ON(inode->i_state & I_SYNC);
363
364         /* Set I_SYNC, reset I_DIRTY_PAGES */
365         inode->i_state |= I_SYNC;
366         inode->i_state &= ~I_DIRTY_PAGES;
367         spin_unlock(&inode_lock);
368
369         ret = do_writepages(mapping, wbc);
370
371         /*
372          * Make sure to wait on the data before writing out the metadata.
373          * This is important for filesystems that modify metadata on data
374          * I/O completion.
375          */
376         if (wbc->sync_mode == WB_SYNC_ALL) {
377                 int err = filemap_fdatawait(mapping);
378                 if (ret == 0)
379                         ret = err;
380         }
381
382         /*
383          * Some filesystems may redirty the inode during the writeback
384          * due to delalloc, clear dirty metadata flags right before
385          * write_inode()
386          */
387         spin_lock(&inode_lock);
388         dirty = inode->i_state & I_DIRTY;
389         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
390         spin_unlock(&inode_lock);
391         /* Don't write the inode if only I_DIRTY_PAGES was set */
392         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
393                 int err = write_inode(inode, wbc);
394                 if (ret == 0)
395                         ret = err;
396         }
397
398         spin_lock(&inode_lock);
399         inode->i_state &= ~I_SYNC;
400         if (!(inode->i_state & I_FREEING)) {
401                 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
402                         /*
403                          * We didn't write back all the pages.  nfs_writepages()
404                          * sometimes bales out without doing anything.
405                          */
406                         inode->i_state |= I_DIRTY_PAGES;
407                         if (wbc->nr_to_write <= 0) {
408                                 /*
409                                  * slice used up: queue for next turn
410                                  */
411                                 requeue_io(inode);
412                         } else {
413                                 /*
414                                  * Writeback blocked by something other than
415                                  * congestion. Delay the inode for some time to
416                                  * avoid spinning on the CPU (100% iowait)
417                                  * retrying writeback of the dirty page/inode
418                                  * that cannot be performed immediately.
419                                  */
420                                 redirty_tail(inode);
421                         }
422                 } else if (inode->i_state & I_DIRTY) {
423                         /*
424                          * Filesystems can dirty the inode during writeback
425                          * operations, such as delayed allocation during
426                          * submission or metadata updates after data IO
427                          * completion.
428                          */
429                         redirty_tail(inode);
430                 } else {
431                         /*
432                          * The inode is clean.  At this point we either have
433                          * a reference to the inode or it's on it's way out.
434                          * No need to add it back to the LRU.
435                          */
436                         list_del_init(&inode->i_wb_list);
437                 }
438         }
439         inode_sync_complete(inode);
440         return ret;
441 }
442
443 /*
444  * For background writeback the caller does not have the sb pinned
445  * before calling writeback. So make sure that we do pin it, so it doesn't
446  * go away while we are writing inodes from it.
447  */
448 static bool pin_sb_for_writeback(struct super_block *sb)
449 {
450         spin_lock(&sb_lock);
451         if (list_empty(&sb->s_instances)) {
452                 spin_unlock(&sb_lock);
453                 return false;
454         }
455
456         sb->s_count++;
457         spin_unlock(&sb_lock);
458
459         if (down_read_trylock(&sb->s_umount)) {
460                 if (sb->s_root)
461                         return true;
462                 up_read(&sb->s_umount);
463         }
464
465         put_super(sb);
466         return false;
467 }
468
469 /*
470  * Write a portion of b_io inodes which belong to @sb.
471  *
472  * If @only_this_sb is true, then find and write all such
473  * inodes. Otherwise write only ones which go sequentially
474  * in reverse order.
475  *
476  * Return 1, if the caller writeback routine should be
477  * interrupted. Otherwise return 0.
478  */
479 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
480                 struct writeback_control *wbc, bool only_this_sb)
481 {
482         while (!list_empty(&wb->b_io)) {
483                 long pages_skipped;
484                 struct inode *inode = wb_inode(wb->b_io.prev);
485
486                 if (inode->i_sb != sb) {
487                         if (only_this_sb) {
488                                 /*
489                                  * We only want to write back data for this
490                                  * superblock, move all inodes not belonging
491                                  * to it back onto the dirty list.
492                                  */
493                                 redirty_tail(inode);
494                                 continue;
495                         }
496
497                         /*
498                          * The inode belongs to a different superblock.
499                          * Bounce back to the caller to unpin this and
500                          * pin the next superblock.
501                          */
502                         return 0;
503                 }
504
505                 /*
506                  * Don't bother with new inodes or inodes beeing freed, first
507                  * kind does not need peridic writeout yet, and for the latter
508                  * kind writeout is handled by the freer.
509                  */
510                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
511                         requeue_io(inode);
512                         continue;
513                 }
514
515                 /*
516                  * Was this inode dirtied after sync_sb_inodes was called?
517                  * This keeps sync from extra jobs and livelock.
518                  */
519                 if (inode_dirtied_after(inode, wbc->wb_start))
520                         return 1;
521
522                 __iget(inode);
523                 pages_skipped = wbc->pages_skipped;
524                 writeback_single_inode(inode, wbc);
525                 if (wbc->pages_skipped != pages_skipped) {
526                         /*
527                          * writeback is not making progress due to locked
528                          * buffers.  Skip this inode for now.
529                          */
530                         redirty_tail(inode);
531                 }
532                 spin_unlock(&inode_lock);
533                 iput(inode);
534                 cond_resched();
535                 spin_lock(&inode_lock);
536                 if (wbc->nr_to_write <= 0) {
537                         wbc->more_io = 1;
538                         return 1;
539                 }
540                 if (!list_empty(&wb->b_more_io))
541                         wbc->more_io = 1;
542         }
543         /* b_io is empty */
544         return 1;
545 }
546
547 void writeback_inodes_wb(struct bdi_writeback *wb,
548                 struct writeback_control *wbc)
549 {
550         int ret = 0;
551
552         if (!wbc->wb_start)
553                 wbc->wb_start = jiffies; /* livelock avoidance */
554         spin_lock(&inode_lock);
555         if (!wbc->for_kupdate || list_empty(&wb->b_io))
556                 queue_io(wb, wbc->older_than_this);
557
558         while (!list_empty(&wb->b_io)) {
559                 struct inode *inode = wb_inode(wb->b_io.prev);
560                 struct super_block *sb = inode->i_sb;
561
562                 if (!pin_sb_for_writeback(sb)) {
563                         requeue_io(inode);
564                         continue;
565                 }
566                 ret = writeback_sb_inodes(sb, wb, wbc, false);
567                 drop_super(sb);
568
569                 if (ret)
570                         break;
571         }
572         spin_unlock(&inode_lock);
573         /* Leave any unwritten inodes on b_io */
574 }
575
576 static void __writeback_inodes_sb(struct super_block *sb,
577                 struct bdi_writeback *wb, struct writeback_control *wbc)
578 {
579         WARN_ON(!rwsem_is_locked(&sb->s_umount));
580
581         spin_lock(&inode_lock);
582         if (!wbc->for_kupdate || list_empty(&wb->b_io))
583                 queue_io(wb, wbc->older_than_this);
584         writeback_sb_inodes(sb, wb, wbc, true);
585         spin_unlock(&inode_lock);
586 }
587
588 /*
589  * The maximum number of pages to writeout in a single bdi flush/kupdate
590  * operation.  We do this so we don't hold I_SYNC against an inode for
591  * enormous amounts of time, which would block a userspace task which has
592  * been forced to throttle against that inode.  Also, the code reevaluates
593  * the dirty each time it has written this many pages.
594  */
595 #define MAX_WRITEBACK_PAGES     1024
596
597 static inline bool over_bground_thresh(void)
598 {
599         unsigned long background_thresh, dirty_thresh;
600
601         global_dirty_limits(&background_thresh, &dirty_thresh);
602
603         return (global_page_state(NR_FILE_DIRTY) +
604                 global_page_state(NR_UNSTABLE_NFS) > background_thresh);
605 }
606
607 /*
608  * Explicit flushing or periodic writeback of "old" data.
609  *
610  * Define "old": the first time one of an inode's pages is dirtied, we mark the
611  * dirtying-time in the inode's address_space.  So this periodic writeback code
612  * just walks the superblock inode list, writing back any inodes which are
613  * older than a specific point in time.
614  *
615  * Try to run once per dirty_writeback_interval.  But if a writeback event
616  * takes longer than a dirty_writeback_interval interval, then leave a
617  * one-second gap.
618  *
619  * older_than_this takes precedence over nr_to_write.  So we'll only write back
620  * all dirty pages if they are all attached to "old" mappings.
621  */
622 static long wb_writeback(struct bdi_writeback *wb,
623                          struct wb_writeback_work *work)
624 {
625         struct writeback_control wbc = {
626                 .sync_mode              = work->sync_mode,
627                 .older_than_this        = NULL,
628                 .for_kupdate            = work->for_kupdate,
629                 .for_background         = work->for_background,
630                 .range_cyclic           = work->range_cyclic,
631         };
632         unsigned long oldest_jif;
633         long wrote = 0;
634         long write_chunk;
635         struct inode *inode;
636
637         if (wbc.for_kupdate) {
638                 wbc.older_than_this = &oldest_jif;
639                 oldest_jif = jiffies -
640                                 msecs_to_jiffies(dirty_expire_interval * 10);
641         }
642         if (!wbc.range_cyclic) {
643                 wbc.range_start = 0;
644                 wbc.range_end = LLONG_MAX;
645         }
646
647         /*
648          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
649          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
650          * here avoids calling into writeback_inodes_wb() more than once.
651          *
652          * The intended call sequence for WB_SYNC_ALL writeback is:
653          *
654          *      wb_writeback()
655          *          __writeback_inodes_sb()     <== called only once
656          *              write_cache_pages()     <== called once for each inode
657          *                   (quickly) tag currently dirty pages
658          *                   (maybe slowly) sync all tagged pages
659          */
660         if (wbc.sync_mode == WB_SYNC_NONE)
661                 write_chunk = MAX_WRITEBACK_PAGES;
662         else
663                 write_chunk = LONG_MAX;
664
665         wbc.wb_start = jiffies; /* livelock avoidance */
666         for (;;) {
667                 /*
668                  * Stop writeback when nr_pages has been consumed
669                  */
670                 if (work->nr_pages <= 0)
671                         break;
672
673                 /*
674                  * Background writeout and kupdate-style writeback may
675                  * run forever. Stop them if there is other work to do
676                  * so that e.g. sync can proceed. They'll be restarted
677                  * after the other works are all done.
678                  */
679                 if ((work->for_background || work->for_kupdate) &&
680                     !list_empty(&wb->bdi->work_list))
681                         break;
682
683                 /*
684                  * For background writeout, stop when we are below the
685                  * background dirty threshold
686                  */
687                 if (work->for_background && !over_bground_thresh())
688                         break;
689
690                 wbc.more_io = 0;
691                 wbc.nr_to_write = write_chunk;
692                 wbc.pages_skipped = 0;
693
694                 trace_wbc_writeback_start(&wbc, wb->bdi);
695                 if (work->sb)
696                         __writeback_inodes_sb(work->sb, wb, &wbc);
697                 else
698                         writeback_inodes_wb(wb, &wbc);
699                 trace_wbc_writeback_written(&wbc, wb->bdi);
700
701                 work->nr_pages -= write_chunk - wbc.nr_to_write;
702                 wrote += write_chunk - wbc.nr_to_write;
703
704                 /*
705                  * If we consumed everything, see if we have more
706                  */
707                 if (wbc.nr_to_write <= 0)
708                         continue;
709                 /*
710                  * Didn't write everything and we don't have more IO, bail
711                  */
712                 if (!wbc.more_io)
713                         break;
714                 /*
715                  * Did we write something? Try for more
716                  */
717                 if (wbc.nr_to_write < write_chunk)
718                         continue;
719                 /*
720                  * Nothing written. Wait for some inode to
721                  * become available for writeback. Otherwise
722                  * we'll just busyloop.
723                  */
724                 spin_lock(&inode_lock);
725                 if (!list_empty(&wb->b_more_io))  {
726                         inode = wb_inode(wb->b_more_io.prev);
727                         trace_wbc_writeback_wait(&wbc, wb->bdi);
728                         inode_wait_for_writeback(inode);
729                 }
730                 spin_unlock(&inode_lock);
731         }
732
733         return wrote;
734 }
735
736 /*
737  * Return the next wb_writeback_work struct that hasn't been processed yet.
738  */
739 static struct wb_writeback_work *
740 get_next_work_item(struct backing_dev_info *bdi)
741 {
742         struct wb_writeback_work *work = NULL;
743
744         spin_lock_bh(&bdi->wb_lock);
745         if (!list_empty(&bdi->work_list)) {
746                 work = list_entry(bdi->work_list.next,
747                                   struct wb_writeback_work, list);
748                 list_del_init(&work->list);
749         }
750         spin_unlock_bh(&bdi->wb_lock);
751         return work;
752 }
753
754 /*
755  * Add in the number of potentially dirty inodes, because each inode
756  * write can dirty pagecache in the underlying blockdev.
757  */
758 static unsigned long get_nr_dirty_pages(void)
759 {
760         return global_page_state(NR_FILE_DIRTY) +
761                 global_page_state(NR_UNSTABLE_NFS) +
762                 get_nr_dirty_inodes();
763 }
764
765 static long wb_check_background_flush(struct bdi_writeback *wb)
766 {
767         if (over_bground_thresh()) {
768
769                 struct wb_writeback_work work = {
770                         .nr_pages       = LONG_MAX,
771                         .sync_mode      = WB_SYNC_NONE,
772                         .for_background = 1,
773                         .range_cyclic   = 1,
774                 };
775
776                 return wb_writeback(wb, &work);
777         }
778
779         return 0;
780 }
781
782 static long wb_check_old_data_flush(struct bdi_writeback *wb)
783 {
784         unsigned long expired;
785         long nr_pages;
786
787         /*
788          * When set to zero, disable periodic writeback
789          */
790         if (!dirty_writeback_interval)
791                 return 0;
792
793         expired = wb->last_old_flush +
794                         msecs_to_jiffies(dirty_writeback_interval * 10);
795         if (time_before(jiffies, expired))
796                 return 0;
797
798         wb->last_old_flush = jiffies;
799         nr_pages = get_nr_dirty_pages();
800
801         if (nr_pages) {
802                 struct wb_writeback_work work = {
803                         .nr_pages       = nr_pages,
804                         .sync_mode      = WB_SYNC_NONE,
805                         .for_kupdate    = 1,
806                         .range_cyclic   = 1,
807                 };
808
809                 return wb_writeback(wb, &work);
810         }
811
812         return 0;
813 }
814
815 /*
816  * Retrieve work items and do the writeback they describe
817  */
818 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
819 {
820         struct backing_dev_info *bdi = wb->bdi;
821         struct wb_writeback_work *work;
822         long wrote = 0;
823
824         set_bit(BDI_writeback_running, &wb->bdi->state);
825         while ((work = get_next_work_item(bdi)) != NULL) {
826                 /*
827                  * Override sync mode, in case we must wait for completion
828                  * because this thread is exiting now.
829                  */
830                 if (force_wait)
831                         work->sync_mode = WB_SYNC_ALL;
832
833                 trace_writeback_exec(bdi, work);
834
835                 wrote += wb_writeback(wb, work);
836
837                 /*
838                  * Notify the caller of completion if this is a synchronous
839                  * work item, otherwise just free it.
840                  */
841                 if (work->done)
842                         complete(work->done);
843                 else
844                         kfree(work);
845         }
846
847         /*
848          * Check for periodic writeback, kupdated() style
849          */
850         wrote += wb_check_old_data_flush(wb);
851         wrote += wb_check_background_flush(wb);
852         clear_bit(BDI_writeback_running, &wb->bdi->state);
853
854         return wrote;
855 }
856
857 /*
858  * Handle writeback of dirty data for the device backed by this bdi. Also
859  * wakes up periodically and does kupdated style flushing.
860  */
861 int bdi_writeback_thread(void *data)
862 {
863         struct bdi_writeback *wb = data;
864         struct backing_dev_info *bdi = wb->bdi;
865         long pages_written;
866
867         current->flags |= PF_SWAPWRITE;
868         set_freezable();
869         wb->last_active = jiffies;
870
871         /*
872          * Our parent may run at a different priority, just set us to normal
873          */
874         set_user_nice(current, 0);
875
876         trace_writeback_thread_start(bdi);
877
878         while (!kthread_should_stop()) {
879                 /*
880                  * Remove own delayed wake-up timer, since we are already awake
881                  * and we'll take care of the preriodic write-back.
882                  */
883                 del_timer(&wb->wakeup_timer);
884
885                 pages_written = wb_do_writeback(wb, 0);
886
887                 trace_writeback_pages_written(pages_written);
888
889                 if (pages_written)
890                         wb->last_active = jiffies;
891
892                 set_current_state(TASK_INTERRUPTIBLE);
893                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
894                         __set_current_state(TASK_RUNNING);
895                         continue;
896                 }
897
898                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
899                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
900                 else {
901                         /*
902                          * We have nothing to do, so can go sleep without any
903                          * timeout and save power. When a work is queued or
904                          * something is made dirty - we will be woken up.
905                          */
906                         schedule();
907                 }
908
909                 try_to_freeze();
910         }
911
912         /* Flush any work that raced with us exiting */
913         if (!list_empty(&bdi->work_list))
914                 wb_do_writeback(wb, 1);
915
916         trace_writeback_thread_stop(bdi);
917         return 0;
918 }
919
920
921 /*
922  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
923  * the whole world.
924  */
925 void wakeup_flusher_threads(long nr_pages)
926 {
927         struct backing_dev_info *bdi;
928
929         if (!nr_pages) {
930                 nr_pages = global_page_state(NR_FILE_DIRTY) +
931                                 global_page_state(NR_UNSTABLE_NFS);
932         }
933
934         rcu_read_lock();
935         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
936                 if (!bdi_has_dirty_io(bdi))
937                         continue;
938                 __bdi_start_writeback(bdi, nr_pages, false);
939         }
940         rcu_read_unlock();
941 }
942
943 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
944 {
945         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
946                 struct dentry *dentry;
947                 const char *name = "?";
948
949                 dentry = d_find_alias(inode);
950                 if (dentry) {
951                         spin_lock(&dentry->d_lock);
952                         name = (const char *) dentry->d_name.name;
953                 }
954                 printk(KERN_DEBUG
955                        "%s(%d): dirtied inode %lu (%s) on %s\n",
956                        current->comm, task_pid_nr(current), inode->i_ino,
957                        name, inode->i_sb->s_id);
958                 if (dentry) {
959                         spin_unlock(&dentry->d_lock);
960                         dput(dentry);
961                 }
962         }
963 }
964
965 /**
966  *      __mark_inode_dirty -    internal function
967  *      @inode: inode to mark
968  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
969  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
970  *      mark_inode_dirty_sync.
971  *
972  * Put the inode on the super block's dirty list.
973  *
974  * CAREFUL! We mark it dirty unconditionally, but move it onto the
975  * dirty list only if it is hashed or if it refers to a blockdev.
976  * If it was not hashed, it will never be added to the dirty list
977  * even if it is later hashed, as it will have been marked dirty already.
978  *
979  * In short, make sure you hash any inodes _before_ you start marking
980  * them dirty.
981  *
982  * This function *must* be atomic for the I_DIRTY_PAGES case -
983  * set_page_dirty() is called under spinlock in several places.
984  *
985  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
986  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
987  * the kernel-internal blockdev inode represents the dirtying time of the
988  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
989  * page->mapping->host, so the page-dirtying time is recorded in the internal
990  * blockdev inode.
991  */
992 void __mark_inode_dirty(struct inode *inode, int flags)
993 {
994         struct super_block *sb = inode->i_sb;
995         struct backing_dev_info *bdi = NULL;
996         bool wakeup_bdi = false;
997
998         /*
999          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1000          * dirty the inode itself
1001          */
1002         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1003                 if (sb->s_op->dirty_inode)
1004                         sb->s_op->dirty_inode(inode);
1005         }
1006
1007         /*
1008          * make sure that changes are seen by all cpus before we test i_state
1009          * -- mikulas
1010          */
1011         smp_mb();
1012
1013         /* avoid the locking if we can */
1014         if ((inode->i_state & flags) == flags)
1015                 return;
1016
1017         trace_dirty_inode(inode, current);
1018
1019         if (unlikely(block_dump))
1020                 block_dump___mark_inode_dirty(inode);
1021
1022         spin_lock(&inode_lock);
1023         if ((inode->i_state & flags) != flags) {
1024                 const int was_dirty = inode->i_state & I_DIRTY;
1025
1026                 inode->i_state |= flags;
1027
1028                 /*
1029                  * If the inode is being synced, just update its dirty state.
1030                  * The unlocker will place the inode on the appropriate
1031                  * superblock list, based upon its state.
1032                  */
1033                 if (inode->i_state & I_SYNC)
1034                         goto out;
1035
1036                 /*
1037                  * Only add valid (hashed) inodes to the superblock's
1038                  * dirty list.  Add blockdev inodes as well.
1039                  */
1040                 if (!S_ISBLK(inode->i_mode)) {
1041                         if (inode_unhashed(inode))
1042                                 goto out;
1043                 }
1044                 if (inode->i_state & I_FREEING)
1045                         goto out;
1046
1047                 /*
1048                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1049                  * reposition it (that would break b_dirty time-ordering).
1050                  */
1051                 if (!was_dirty) {
1052                         bdi = inode_to_bdi(inode);
1053
1054                         if (bdi_cap_writeback_dirty(bdi)) {
1055                                 WARN(!test_bit(BDI_registered, &bdi->state),
1056                                      "bdi-%s not registered\n", bdi->name);
1057
1058                                 /*
1059                                  * If this is the first dirty inode for this
1060                                  * bdi, we have to wake-up the corresponding
1061                                  * bdi thread to make sure background
1062                                  * write-back happens later.
1063                                  */
1064                                 if (!wb_has_dirty_io(&bdi->wb))
1065                                         wakeup_bdi = true;
1066                         }
1067
1068                         inode->dirtied_when = jiffies;
1069                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1070                 }
1071         }
1072 out:
1073         spin_unlock(&inode_lock);
1074
1075         if (wakeup_bdi)
1076                 bdi_wakeup_thread_delayed(bdi);
1077 }
1078 EXPORT_SYMBOL(__mark_inode_dirty);
1079
1080 /*
1081  * Write out a superblock's list of dirty inodes.  A wait will be performed
1082  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1083  *
1084  * If older_than_this is non-NULL, then only write out inodes which
1085  * had their first dirtying at a time earlier than *older_than_this.
1086  *
1087  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1088  * This function assumes that the blockdev superblock's inodes are backed by
1089  * a variety of queues, so all inodes are searched.  For other superblocks,
1090  * assume that all inodes are backed by the same queue.
1091  *
1092  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1093  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1094  * on the writer throttling path, and we get decent balancing between many
1095  * throttled threads: we don't want them all piling up on inode_sync_wait.
1096  */
1097 static void wait_sb_inodes(struct super_block *sb)
1098 {
1099         struct inode *inode, *old_inode = NULL;
1100
1101         /*
1102          * We need to be protected against the filesystem going from
1103          * r/o to r/w or vice versa.
1104          */
1105         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1106
1107         spin_lock(&inode_lock);
1108
1109         /*
1110          * Data integrity sync. Must wait for all pages under writeback,
1111          * because there may have been pages dirtied before our sync
1112          * call, but which had writeout started before we write it out.
1113          * In which case, the inode may not be on the dirty list, but
1114          * we still have to wait for that writeout.
1115          */
1116         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1117                 struct address_space *mapping;
1118
1119                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1120                         continue;
1121                 mapping = inode->i_mapping;
1122                 if (mapping->nrpages == 0)
1123                         continue;
1124                 __iget(inode);
1125                 spin_unlock(&inode_lock);
1126                 /*
1127                  * We hold a reference to 'inode' so it couldn't have
1128                  * been removed from s_inodes list while we dropped the
1129                  * inode_lock.  We cannot iput the inode now as we can
1130                  * be holding the last reference and we cannot iput it
1131                  * under inode_lock. So we keep the reference and iput
1132                  * it later.
1133                  */
1134                 iput(old_inode);
1135                 old_inode = inode;
1136
1137                 filemap_fdatawait(mapping);
1138
1139                 cond_resched();
1140
1141                 spin_lock(&inode_lock);
1142         }
1143         spin_unlock(&inode_lock);
1144         iput(old_inode);
1145 }
1146
1147 /**
1148  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1149  * @sb: the superblock
1150  * @nr: the number of pages to write
1151  *
1152  * Start writeback on some inodes on this super_block. No guarantees are made
1153  * on how many (if any) will be written, and this function does not wait
1154  * for IO completion of submitted IO.
1155  */
1156 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1157 {
1158         DECLARE_COMPLETION_ONSTACK(done);
1159         struct wb_writeback_work work = {
1160                 .sb             = sb,
1161                 .sync_mode      = WB_SYNC_NONE,
1162                 .done           = &done,
1163                 .nr_pages       = nr,
1164         };
1165
1166         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1167         bdi_queue_work(sb->s_bdi, &work);
1168         wait_for_completion(&done);
1169 }
1170 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1171
1172 /**
1173  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1174  * @sb: the superblock
1175  *
1176  * Start writeback on some inodes on this super_block. No guarantees are made
1177  * on how many (if any) will be written, and this function does not wait
1178  * for IO completion of submitted IO.
1179  */
1180 void writeback_inodes_sb(struct super_block *sb)
1181 {
1182         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1183 }
1184 EXPORT_SYMBOL(writeback_inodes_sb);
1185
1186 /**
1187  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1188  * @sb: the superblock
1189  *
1190  * Invoke writeback_inodes_sb if no writeback is currently underway.
1191  * Returns 1 if writeback was started, 0 if not.
1192  */
1193 int writeback_inodes_sb_if_idle(struct super_block *sb)
1194 {
1195         if (!writeback_in_progress(sb->s_bdi)) {
1196                 down_read(&sb->s_umount);
1197                 writeback_inodes_sb(sb);
1198                 up_read(&sb->s_umount);
1199                 return 1;
1200         } else
1201                 return 0;
1202 }
1203 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1204
1205 /**
1206  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1207  * @sb: the superblock
1208  * @nr: the number of pages to write
1209  *
1210  * Invoke writeback_inodes_sb if no writeback is currently underway.
1211  * Returns 1 if writeback was started, 0 if not.
1212  */
1213 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1214                                    unsigned long nr)
1215 {
1216         if (!writeback_in_progress(sb->s_bdi)) {
1217                 down_read(&sb->s_umount);
1218                 writeback_inodes_sb_nr(sb, nr);
1219                 up_read(&sb->s_umount);
1220                 return 1;
1221         } else
1222                 return 0;
1223 }
1224 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1225
1226 /**
1227  * sync_inodes_sb       -       sync sb inode pages
1228  * @sb: the superblock
1229  *
1230  * This function writes and waits on any dirty inode belonging to this
1231  * super_block.
1232  */
1233 void sync_inodes_sb(struct super_block *sb)
1234 {
1235         DECLARE_COMPLETION_ONSTACK(done);
1236         struct wb_writeback_work work = {
1237                 .sb             = sb,
1238                 .sync_mode      = WB_SYNC_ALL,
1239                 .nr_pages       = LONG_MAX,
1240                 .range_cyclic   = 0,
1241                 .done           = &done,
1242         };
1243
1244         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1245
1246         bdi_queue_work(sb->s_bdi, &work);
1247         wait_for_completion(&done);
1248
1249         wait_sb_inodes(sb);
1250 }
1251 EXPORT_SYMBOL(sync_inodes_sb);
1252
1253 /**
1254  * write_inode_now      -       write an inode to disk
1255  * @inode: inode to write to disk
1256  * @sync: whether the write should be synchronous or not
1257  *
1258  * This function commits an inode to disk immediately if it is dirty. This is
1259  * primarily needed by knfsd.
1260  *
1261  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1262  */
1263 int write_inode_now(struct inode *inode, int sync)
1264 {
1265         int ret;
1266         struct writeback_control wbc = {
1267                 .nr_to_write = LONG_MAX,
1268                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1269                 .range_start = 0,
1270                 .range_end = LLONG_MAX,
1271         };
1272
1273         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1274                 wbc.nr_to_write = 0;
1275
1276         might_sleep();
1277         spin_lock(&inode_lock);
1278         ret = writeback_single_inode(inode, &wbc);
1279         spin_unlock(&inode_lock);
1280         if (sync)
1281                 inode_sync_wait(inode);
1282         return ret;
1283 }
1284 EXPORT_SYMBOL(write_inode_now);
1285
1286 /**
1287  * sync_inode - write an inode and its pages to disk.
1288  * @inode: the inode to sync
1289  * @wbc: controls the writeback mode
1290  *
1291  * sync_inode() will write an inode and its pages to disk.  It will also
1292  * correctly update the inode on its superblock's dirty inode lists and will
1293  * update inode->i_state.
1294  *
1295  * The caller must have a ref on the inode.
1296  */
1297 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1298 {
1299         int ret;
1300
1301         spin_lock(&inode_lock);
1302         ret = writeback_single_inode(inode, wbc);
1303         spin_unlock(&inode_lock);
1304         return ret;
1305 }
1306 EXPORT_SYMBOL(sync_inode);
1307
1308 /**
1309  * sync_inode_metadata - write an inode to disk
1310  * @inode: the inode to sync
1311  * @wait: wait for I/O to complete.
1312  *
1313  * Write an inode to disk and adjust its dirty state after completion.
1314  *
1315  * Note: only writes the actual inode, no associated data or other metadata.
1316  */
1317 int sync_inode_metadata(struct inode *inode, int wait)
1318 {
1319         struct writeback_control wbc = {
1320                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1321                 .nr_to_write = 0, /* metadata-only */
1322         };
1323
1324         return sync_inode(inode, &wbc);
1325 }
1326 EXPORT_SYMBOL(sync_inode_metadata);