UBUNTU: Ubuntu-2.6.38-12.51
[linux-flexiantxendom0-natty.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58
59 #include <trace/events/fs.h>
60
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64 #include "internal.h"
65
66 int core_uses_pid;
67 char core_pattern[CORENAME_MAX_SIZE] = "core";
68 unsigned int core_pipe_limit;
69 int suid_dumpable = 0;
70
71 struct core_name {
72         char *corename;
73         int used, size;
74 };
75 static atomic_t call_count = ATOMIC_INIT(1);
76
77 /* The maximal length of core_pattern is also specified in sysctl.c */
78
79 static LIST_HEAD(formats);
80 static DEFINE_RWLOCK(binfmt_lock);
81
82 int __register_binfmt(struct linux_binfmt * fmt, int insert)
83 {
84         if (!fmt)
85                 return -EINVAL;
86         write_lock(&binfmt_lock);
87         insert ? list_add(&fmt->lh, &formats) :
88                  list_add_tail(&fmt->lh, &formats);
89         write_unlock(&binfmt_lock);
90         return 0;       
91 }
92
93 EXPORT_SYMBOL(__register_binfmt);
94
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97         write_lock(&binfmt_lock);
98         list_del(&fmt->lh);
99         write_unlock(&binfmt_lock);
100 }
101
102 EXPORT_SYMBOL(unregister_binfmt);
103
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106         module_put(fmt->module);
107 }
108
109 /*
110  * Note that a shared library must be both readable and executable due to
111  * security reasons.
112  *
113  * Also note that we take the address to load from from the file itself.
114  */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117         struct file *file;
118         char *tmp = getname(library);
119         int error = PTR_ERR(tmp);
120
121         if (IS_ERR(tmp))
122                 goto out;
123
124         file = do_filp_open(AT_FDCWD, tmp,
125                                 O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 0,
126                                 MAY_READ | MAY_EXEC | MAY_OPEN);
127         putname(tmp);
128         error = PTR_ERR(file);
129         if (IS_ERR(file))
130                 goto out;
131
132         error = -EINVAL;
133         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
134                 goto exit;
135
136         error = -EACCES;
137         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
138                 goto exit;
139
140         fsnotify_open(file);
141
142         error = -ENOEXEC;
143         if(file->f_op) {
144                 struct linux_binfmt * fmt;
145
146                 read_lock(&binfmt_lock);
147                 list_for_each_entry(fmt, &formats, lh) {
148                         if (!fmt->load_shlib)
149                                 continue;
150                         if (!try_module_get(fmt->module))
151                                 continue;
152                         read_unlock(&binfmt_lock);
153                         error = fmt->load_shlib(file);
154                         read_lock(&binfmt_lock);
155                         put_binfmt(fmt);
156                         if (error != -ENOEXEC)
157                                 break;
158                 }
159                 read_unlock(&binfmt_lock);
160         }
161 exit:
162         fput(file);
163 out:
164         return error;
165 }
166
167 #ifdef CONFIG_MMU
168
169 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
170 {
171         struct mm_struct *mm = current->mm;
172         long diff = (long)(pages - bprm->vma_pages);
173
174         if (!mm || !diff)
175                 return;
176
177         bprm->vma_pages = pages;
178
179 #ifdef SPLIT_RSS_COUNTING
180         add_mm_counter(mm, MM_ANONPAGES, diff);
181 #else
182         spin_lock(&mm->page_table_lock);
183         add_mm_counter(mm, MM_ANONPAGES, diff);
184         spin_unlock(&mm->page_table_lock);
185 #endif
186 }
187
188 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
189                 int write)
190 {
191         struct page *page;
192         int ret;
193
194 #ifdef CONFIG_STACK_GROWSUP
195         if (write) {
196                 ret = expand_stack_downwards(bprm->vma, pos);
197                 if (ret < 0)
198                         return NULL;
199         }
200 #endif
201         ret = get_user_pages(current, bprm->mm, pos,
202                         1, write, 1, &page, NULL);
203         if (ret <= 0)
204                 return NULL;
205
206         if (write) {
207                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
208                 struct rlimit *rlim;
209
210                 acct_arg_size(bprm, size / PAGE_SIZE);
211
212                 /*
213                  * We've historically supported up to 32 pages (ARG_MAX)
214                  * of argument strings even with small stacks
215                  */
216                 if (size <= ARG_MAX)
217                         return page;
218
219                 /*
220                  * Limit to 1/4-th the stack size for the argv+env strings.
221                  * This ensures that:
222                  *  - the remaining binfmt code will not run out of stack space,
223                  *  - the program will have a reasonable amount of stack left
224                  *    to work from.
225                  */
226                 rlim = current->signal->rlim;
227                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
228                         put_page(page);
229                         return NULL;
230                 }
231         }
232
233         return page;
234 }
235
236 static void put_arg_page(struct page *page)
237 {
238         put_page(page);
239 }
240
241 static void free_arg_page(struct linux_binprm *bprm, int i)
242 {
243 }
244
245 static void free_arg_pages(struct linux_binprm *bprm)
246 {
247 }
248
249 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
250                 struct page *page)
251 {
252         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
253 }
254
255 static int __bprm_mm_init(struct linux_binprm *bprm)
256 {
257         int err;
258         struct vm_area_struct *vma = NULL;
259         struct mm_struct *mm = bprm->mm;
260
261         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
262         if (!vma)
263                 return -ENOMEM;
264
265         down_write(&mm->mmap_sem);
266         vma->vm_mm = mm;
267
268         /*
269          * Place the stack at the largest stack address the architecture
270          * supports. Later, we'll move this to an appropriate place. We don't
271          * use STACK_TOP because that can depend on attributes which aren't
272          * configured yet.
273          */
274         BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
275         vma->vm_end = STACK_TOP_MAX;
276         vma->vm_start = vma->vm_end - PAGE_SIZE;
277         vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
278         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
279         INIT_LIST_HEAD(&vma->anon_vma_chain);
280
281         err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
282         if (err)
283                 goto err;
284
285         err = insert_vm_struct(mm, vma);
286         if (err)
287                 goto err;
288
289         mm->stack_vm = mm->total_vm = 1;
290         up_write(&mm->mmap_sem);
291         bprm->p = vma->vm_end - sizeof(void *);
292         return 0;
293 err:
294         up_write(&mm->mmap_sem);
295         bprm->vma = NULL;
296         kmem_cache_free(vm_area_cachep, vma);
297         return err;
298 }
299
300 static bool valid_arg_len(struct linux_binprm *bprm, long len)
301 {
302         return len <= MAX_ARG_STRLEN;
303 }
304
305 #else
306
307 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
308 {
309 }
310
311 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
312                 int write)
313 {
314         struct page *page;
315
316         page = bprm->page[pos / PAGE_SIZE];
317         if (!page && write) {
318                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
319                 if (!page)
320                         return NULL;
321                 bprm->page[pos / PAGE_SIZE] = page;
322         }
323
324         return page;
325 }
326
327 static void put_arg_page(struct page *page)
328 {
329 }
330
331 static void free_arg_page(struct linux_binprm *bprm, int i)
332 {
333         if (bprm->page[i]) {
334                 __free_page(bprm->page[i]);
335                 bprm->page[i] = NULL;
336         }
337 }
338
339 static void free_arg_pages(struct linux_binprm *bprm)
340 {
341         int i;
342
343         for (i = 0; i < MAX_ARG_PAGES; i++)
344                 free_arg_page(bprm, i);
345 }
346
347 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
348                 struct page *page)
349 {
350 }
351
352 static int __bprm_mm_init(struct linux_binprm *bprm)
353 {
354         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
355         return 0;
356 }
357
358 static bool valid_arg_len(struct linux_binprm *bprm, long len)
359 {
360         return len <= bprm->p;
361 }
362
363 #endif /* CONFIG_MMU */
364
365 /*
366  * Create a new mm_struct and populate it with a temporary stack
367  * vm_area_struct.  We don't have enough context at this point to set the stack
368  * flags, permissions, and offset, so we use temporary values.  We'll update
369  * them later in setup_arg_pages().
370  */
371 int bprm_mm_init(struct linux_binprm *bprm)
372 {
373         int err;
374         struct mm_struct *mm = NULL;
375
376         bprm->mm = mm = mm_alloc();
377         err = -ENOMEM;
378         if (!mm)
379                 goto err;
380
381         err = init_new_context(current, mm);
382         if (err)
383                 goto err;
384
385         err = __bprm_mm_init(bprm);
386         if (err)
387                 goto err;
388
389         return 0;
390
391 err:
392         if (mm) {
393                 bprm->mm = NULL;
394                 mmdrop(mm);
395         }
396
397         return err;
398 }
399
400 /*
401  * count() counts the number of strings in array ARGV.
402  */
403 static int count(const char __user * const __user * argv, int max)
404 {
405         int i = 0;
406
407         if (argv != NULL) {
408                 for (;;) {
409                         const char __user * p;
410
411                         if (get_user(p, argv))
412                                 return -EFAULT;
413                         if (!p)
414                                 break;
415                         argv++;
416                         if (i++ >= max)
417                                 return -E2BIG;
418
419                         if (fatal_signal_pending(current))
420                                 return -ERESTARTNOHAND;
421                         cond_resched();
422                 }
423         }
424         return i;
425 }
426
427 /*
428  * 'copy_strings()' copies argument/environment strings from the old
429  * processes's memory to the new process's stack.  The call to get_user_pages()
430  * ensures the destination page is created and not swapped out.
431  */
432 static int copy_strings(int argc, const char __user *const __user *argv,
433                         struct linux_binprm *bprm)
434 {
435         struct page *kmapped_page = NULL;
436         char *kaddr = NULL;
437         unsigned long kpos = 0;
438         int ret;
439
440         while (argc-- > 0) {
441                 const char __user *str;
442                 int len;
443                 unsigned long pos;
444
445                 if (get_user(str, argv+argc) ||
446                                 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
447                         ret = -EFAULT;
448                         goto out;
449                 }
450
451                 if (!valid_arg_len(bprm, len)) {
452                         ret = -E2BIG;
453                         goto out;
454                 }
455
456                 /* We're going to work our way backwords. */
457                 pos = bprm->p;
458                 str += len;
459                 bprm->p -= len;
460
461                 while (len > 0) {
462                         int offset, bytes_to_copy;
463
464                         if (fatal_signal_pending(current)) {
465                                 ret = -ERESTARTNOHAND;
466                                 goto out;
467                         }
468                         cond_resched();
469
470                         offset = pos % PAGE_SIZE;
471                         if (offset == 0)
472                                 offset = PAGE_SIZE;
473
474                         bytes_to_copy = offset;
475                         if (bytes_to_copy > len)
476                                 bytes_to_copy = len;
477
478                         offset -= bytes_to_copy;
479                         pos -= bytes_to_copy;
480                         str -= bytes_to_copy;
481                         len -= bytes_to_copy;
482
483                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
484                                 struct page *page;
485
486                                 page = get_arg_page(bprm, pos, 1);
487                                 if (!page) {
488                                         ret = -E2BIG;
489                                         goto out;
490                                 }
491
492                                 if (kmapped_page) {
493                                         flush_kernel_dcache_page(kmapped_page);
494                                         kunmap(kmapped_page);
495                                         put_arg_page(kmapped_page);
496                                 }
497                                 kmapped_page = page;
498                                 kaddr = kmap(kmapped_page);
499                                 kpos = pos & PAGE_MASK;
500                                 flush_arg_page(bprm, kpos, kmapped_page);
501                         }
502                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
503                                 ret = -EFAULT;
504                                 goto out;
505                         }
506                 }
507         }
508         ret = 0;
509 out:
510         if (kmapped_page) {
511                 flush_kernel_dcache_page(kmapped_page);
512                 kunmap(kmapped_page);
513                 put_arg_page(kmapped_page);
514         }
515         return ret;
516 }
517
518 /*
519  * Like copy_strings, but get argv and its values from kernel memory.
520  */
521 int copy_strings_kernel(int argc, const char *const *argv,
522                         struct linux_binprm *bprm)
523 {
524         int r;
525         mm_segment_t oldfs = get_fs();
526         set_fs(KERNEL_DS);
527         r = copy_strings(argc, (const char __user *const  __user *)argv, bprm);
528         set_fs(oldfs);
529         return r;
530 }
531 EXPORT_SYMBOL(copy_strings_kernel);
532
533 #ifdef CONFIG_MMU
534
535 /*
536  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
537  * the binfmt code determines where the new stack should reside, we shift it to
538  * its final location.  The process proceeds as follows:
539  *
540  * 1) Use shift to calculate the new vma endpoints.
541  * 2) Extend vma to cover both the old and new ranges.  This ensures the
542  *    arguments passed to subsequent functions are consistent.
543  * 3) Move vma's page tables to the new range.
544  * 4) Free up any cleared pgd range.
545  * 5) Shrink the vma to cover only the new range.
546  */
547 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
548 {
549         struct mm_struct *mm = vma->vm_mm;
550         unsigned long old_start = vma->vm_start;
551         unsigned long old_end = vma->vm_end;
552         unsigned long length = old_end - old_start;
553         unsigned long new_start = old_start - shift;
554         unsigned long new_end = old_end - shift;
555         struct mmu_gather *tlb;
556
557         BUG_ON(new_start > new_end);
558
559         /*
560          * ensure there are no vmas between where we want to go
561          * and where we are
562          */
563         if (vma != find_vma(mm, new_start))
564                 return -EFAULT;
565
566         /*
567          * cover the whole range: [new_start, old_end)
568          */
569         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
570                 return -ENOMEM;
571
572         /*
573          * move the page tables downwards, on failure we rely on
574          * process cleanup to remove whatever mess we made.
575          */
576         if (length != move_page_tables(vma, old_start,
577                                        vma, new_start, length))
578                 return -ENOMEM;
579
580         lru_add_drain();
581         tlb = tlb_gather_mmu(mm, 0);
582         if (new_end > old_start) {
583                 /*
584                  * when the old and new regions overlap clear from new_end.
585                  */
586                 free_pgd_range(tlb, new_end, old_end, new_end,
587                         vma->vm_next ? vma->vm_next->vm_start : 0);
588         } else {
589                 /*
590                  * otherwise, clean from old_start; this is done to not touch
591                  * the address space in [new_end, old_start) some architectures
592                  * have constraints on va-space that make this illegal (IA64) -
593                  * for the others its just a little faster.
594                  */
595                 free_pgd_range(tlb, old_start, old_end, new_end,
596                         vma->vm_next ? vma->vm_next->vm_start : 0);
597         }
598         tlb_finish_mmu(tlb, new_end, old_end);
599
600         /*
601          * Shrink the vma to just the new range.  Always succeeds.
602          */
603         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
604
605         return 0;
606 }
607
608 /*
609  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
610  * the stack is optionally relocated, and some extra space is added.
611  */
612 int setup_arg_pages(struct linux_binprm *bprm,
613                     unsigned long stack_top,
614                     int executable_stack)
615 {
616         unsigned long ret;
617         unsigned long stack_shift;
618         struct mm_struct *mm = current->mm;
619         struct vm_area_struct *vma = bprm->vma;
620         struct vm_area_struct *prev = NULL;
621         unsigned long vm_flags;
622         unsigned long stack_base;
623         unsigned long stack_size;
624         unsigned long stack_expand;
625         unsigned long rlim_stack;
626
627 #ifdef CONFIG_STACK_GROWSUP
628         /* Limit stack size to 1GB */
629         stack_base = rlimit_max(RLIMIT_STACK);
630         if (stack_base > (1 << 30))
631                 stack_base = 1 << 30;
632
633         /* Make sure we didn't let the argument array grow too large. */
634         if (vma->vm_end - vma->vm_start > stack_base)
635                 return -ENOMEM;
636
637         stack_base = PAGE_ALIGN(stack_top - stack_base);
638
639         stack_shift = vma->vm_start - stack_base;
640         mm->arg_start = bprm->p - stack_shift;
641         bprm->p = vma->vm_end - stack_shift;
642 #else
643         stack_top = arch_align_stack(stack_top);
644         stack_top = PAGE_ALIGN(stack_top);
645
646         if (unlikely(stack_top < mmap_min_addr) ||
647             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
648                 return -ENOMEM;
649
650         stack_shift = vma->vm_end - stack_top;
651
652         bprm->p -= stack_shift;
653         mm->arg_start = bprm->p;
654 #endif
655
656         if (bprm->loader)
657                 bprm->loader -= stack_shift;
658         bprm->exec -= stack_shift;
659
660         down_write(&mm->mmap_sem);
661         vm_flags = VM_STACK_FLAGS;
662
663         /*
664          * Adjust stack execute permissions; explicitly enable for
665          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
666          * (arch default) otherwise.
667          */
668         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
669                 vm_flags |= VM_EXEC;
670         else if (executable_stack == EXSTACK_DISABLE_X)
671                 vm_flags &= ~VM_EXEC;
672         vm_flags |= mm->def_flags;
673         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
674
675         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
676                         vm_flags);
677         if (ret)
678                 goto out_unlock;
679         BUG_ON(prev != vma);
680
681         /* Move stack pages down in memory. */
682         if (stack_shift) {
683                 ret = shift_arg_pages(vma, stack_shift);
684                 if (ret)
685                         goto out_unlock;
686         }
687
688         /* mprotect_fixup is overkill to remove the temporary stack flags */
689         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
690
691         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
692         stack_size = vma->vm_end - vma->vm_start;
693         /*
694          * Align this down to a page boundary as expand_stack
695          * will align it up.
696          */
697         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
698 #ifdef CONFIG_STACK_GROWSUP
699         if (stack_size + stack_expand > rlim_stack)
700                 stack_base = vma->vm_start + rlim_stack;
701         else
702                 stack_base = vma->vm_end + stack_expand;
703 #else
704         if (stack_size + stack_expand > rlim_stack)
705                 stack_base = vma->vm_end - rlim_stack;
706         else
707                 stack_base = vma->vm_start - stack_expand;
708 #endif
709         current->mm->start_stack = bprm->p;
710         ret = expand_stack(vma, stack_base);
711         if (ret)
712                 ret = -EFAULT;
713
714 out_unlock:
715         up_write(&mm->mmap_sem);
716         return ret;
717 }
718 EXPORT_SYMBOL(setup_arg_pages);
719
720 #endif /* CONFIG_MMU */
721
722 struct file *open_exec(const char *name)
723 {
724         struct file *file;
725         int err;
726
727         file = do_filp_open(AT_FDCWD, name,
728                                 O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 0,
729                                 MAY_EXEC | MAY_OPEN);
730         if (IS_ERR(file))
731                 goto out;
732
733         err = -EACCES;
734         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
735                 goto exit;
736
737         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
738                 goto exit;
739
740         fsnotify_open(file);
741
742         trace_open_exec(name);
743
744         err = deny_write_access(file);
745         if (err)
746                 goto exit;
747
748 out:
749         return file;
750
751 exit:
752         fput(file);
753         return ERR_PTR(err);
754 }
755 EXPORT_SYMBOL(open_exec);
756
757 int kernel_read(struct file *file, loff_t offset,
758                 char *addr, unsigned long count)
759 {
760         mm_segment_t old_fs;
761         loff_t pos = offset;
762         int result;
763
764         old_fs = get_fs();
765         set_fs(get_ds());
766         /* The cast to a user pointer is valid due to the set_fs() */
767         result = vfs_read(file, (void __user *)addr, count, &pos);
768         set_fs(old_fs);
769         return result;
770 }
771
772 EXPORT_SYMBOL(kernel_read);
773
774 static int exec_mmap(struct mm_struct *mm)
775 {
776         struct task_struct *tsk;
777         struct mm_struct * old_mm, *active_mm;
778
779         /* Notify parent that we're no longer interested in the old VM */
780         tsk = current;
781         old_mm = current->mm;
782         sync_mm_rss(tsk, old_mm);
783         mm_release(tsk, old_mm);
784
785         if (old_mm) {
786                 /*
787                  * Make sure that if there is a core dump in progress
788                  * for the old mm, we get out and die instead of going
789                  * through with the exec.  We must hold mmap_sem around
790                  * checking core_state and changing tsk->mm.
791                  */
792                 down_read(&old_mm->mmap_sem);
793                 if (unlikely(old_mm->core_state)) {
794                         up_read(&old_mm->mmap_sem);
795                         return -EINTR;
796                 }
797         }
798         task_lock(tsk);
799         active_mm = tsk->active_mm;
800         tsk->mm = mm;
801         tsk->active_mm = mm;
802         activate_mm(active_mm, mm);
803         if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
804                 atomic_dec(&old_mm->oom_disable_count);
805                 atomic_inc(&tsk->mm->oom_disable_count);
806         }
807         task_unlock(tsk);
808         arch_pick_mmap_layout(mm);
809         if (old_mm) {
810                 up_read(&old_mm->mmap_sem);
811                 BUG_ON(active_mm != old_mm);
812                 mm_update_next_owner(old_mm);
813                 mmput(old_mm);
814                 return 0;
815         }
816         mmdrop(active_mm);
817         return 0;
818 }
819
820 /*
821  * This function makes sure the current process has its own signal table,
822  * so that flush_signal_handlers can later reset the handlers without
823  * disturbing other processes.  (Other processes might share the signal
824  * table via the CLONE_SIGHAND option to clone().)
825  */
826 static int de_thread(struct task_struct *tsk)
827 {
828         struct signal_struct *sig = tsk->signal;
829         struct sighand_struct *oldsighand = tsk->sighand;
830         spinlock_t *lock = &oldsighand->siglock;
831
832         if (thread_group_empty(tsk))
833                 goto no_thread_group;
834
835         /*
836          * Kill all other threads in the thread group.
837          */
838         spin_lock_irq(lock);
839         if (signal_group_exit(sig)) {
840                 /*
841                  * Another group action in progress, just
842                  * return so that the signal is processed.
843                  */
844                 spin_unlock_irq(lock);
845                 return -EAGAIN;
846         }
847
848         sig->group_exit_task = tsk;
849         sig->notify_count = zap_other_threads(tsk);
850         if (!thread_group_leader(tsk))
851                 sig->notify_count--;
852
853         while (sig->notify_count) {
854                 __set_current_state(TASK_UNINTERRUPTIBLE);
855                 spin_unlock_irq(lock);
856                 schedule();
857                 spin_lock_irq(lock);
858         }
859         spin_unlock_irq(lock);
860
861         /*
862          * At this point all other threads have exited, all we have to
863          * do is to wait for the thread group leader to become inactive,
864          * and to assume its PID:
865          */
866         if (!thread_group_leader(tsk)) {
867                 struct task_struct *leader = tsk->group_leader;
868
869                 sig->notify_count = -1; /* for exit_notify() */
870                 for (;;) {
871                         write_lock_irq(&tasklist_lock);
872                         if (likely(leader->exit_state))
873                                 break;
874                         __set_current_state(TASK_UNINTERRUPTIBLE);
875                         write_unlock_irq(&tasklist_lock);
876                         schedule();
877                 }
878
879                 /*
880                  * The only record we have of the real-time age of a
881                  * process, regardless of execs it's done, is start_time.
882                  * All the past CPU time is accumulated in signal_struct
883                  * from sister threads now dead.  But in this non-leader
884                  * exec, nothing survives from the original leader thread,
885                  * whose birth marks the true age of this process now.
886                  * When we take on its identity by switching to its PID, we
887                  * also take its birthdate (always earlier than our own).
888                  */
889                 tsk->start_time = leader->start_time;
890
891                 BUG_ON(!same_thread_group(leader, tsk));
892                 BUG_ON(has_group_leader_pid(tsk));
893                 /*
894                  * An exec() starts a new thread group with the
895                  * TGID of the previous thread group. Rehash the
896                  * two threads with a switched PID, and release
897                  * the former thread group leader:
898                  */
899
900                 /* Become a process group leader with the old leader's pid.
901                  * The old leader becomes a thread of the this thread group.
902                  * Note: The old leader also uses this pid until release_task
903                  *       is called.  Odd but simple and correct.
904                  */
905                 detach_pid(tsk, PIDTYPE_PID);
906                 tsk->pid = leader->pid;
907                 attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
908                 transfer_pid(leader, tsk, PIDTYPE_PGID);
909                 transfer_pid(leader, tsk, PIDTYPE_SID);
910
911                 list_replace_rcu(&leader->tasks, &tsk->tasks);
912                 list_replace_init(&leader->sibling, &tsk->sibling);
913
914                 tsk->group_leader = tsk;
915                 leader->group_leader = tsk;
916
917                 tsk->exit_signal = SIGCHLD;
918
919                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
920                 leader->exit_state = EXIT_DEAD;
921                 write_unlock_irq(&tasklist_lock);
922
923                 release_task(leader);
924         }
925
926         sig->group_exit_task = NULL;
927         sig->notify_count = 0;
928
929 no_thread_group:
930         if (current->mm)
931                 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
932
933         exit_itimers(sig);
934         flush_itimer_signals();
935
936         if (atomic_read(&oldsighand->count) != 1) {
937                 struct sighand_struct *newsighand;
938                 /*
939                  * This ->sighand is shared with the CLONE_SIGHAND
940                  * but not CLONE_THREAD task, switch to the new one.
941                  */
942                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
943                 if (!newsighand)
944                         return -ENOMEM;
945
946                 atomic_set(&newsighand->count, 1);
947                 memcpy(newsighand->action, oldsighand->action,
948                        sizeof(newsighand->action));
949
950                 write_lock_irq(&tasklist_lock);
951                 spin_lock(&oldsighand->siglock);
952                 rcu_assign_pointer(tsk->sighand, newsighand);
953                 spin_unlock(&oldsighand->siglock);
954                 write_unlock_irq(&tasklist_lock);
955
956                 __cleanup_sighand(oldsighand);
957         }
958
959         BUG_ON(!thread_group_leader(tsk));
960         return 0;
961 }
962
963 /*
964  * These functions flushes out all traces of the currently running executable
965  * so that a new one can be started
966  */
967 static void flush_old_files(struct files_struct * files)
968 {
969         long j = -1;
970         struct fdtable *fdt;
971
972         spin_lock(&files->file_lock);
973         for (;;) {
974                 unsigned long set, i;
975
976                 j++;
977                 i = j * __NFDBITS;
978                 fdt = files_fdtable(files);
979                 if (i >= fdt->max_fds)
980                         break;
981                 set = fdt->close_on_exec->fds_bits[j];
982                 if (!set)
983                         continue;
984                 fdt->close_on_exec->fds_bits[j] = 0;
985                 spin_unlock(&files->file_lock);
986                 for ( ; set ; i++,set >>= 1) {
987                         if (set & 1) {
988                                 sys_close(i);
989                         }
990                 }
991                 spin_lock(&files->file_lock);
992
993         }
994         spin_unlock(&files->file_lock);
995 }
996
997 char *get_task_comm(char *buf, struct task_struct *tsk)
998 {
999         /* buf must be at least sizeof(tsk->comm) in size */
1000         task_lock(tsk);
1001         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1002         task_unlock(tsk);
1003         return buf;
1004 }
1005
1006 void set_task_comm(struct task_struct *tsk, char *buf)
1007 {
1008         task_lock(tsk);
1009
1010         /*
1011          * Threads may access current->comm without holding
1012          * the task lock, so write the string carefully.
1013          * Readers without a lock may see incomplete new
1014          * names but are safe from non-terminating string reads.
1015          */
1016         memset(tsk->comm, 0, TASK_COMM_LEN);
1017         wmb();
1018         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1019         task_unlock(tsk);
1020         perf_event_comm(tsk);
1021 }
1022
1023 int flush_old_exec(struct linux_binprm * bprm)
1024 {
1025         int retval;
1026
1027         /*
1028          * Make sure we have a private signal table and that
1029          * we are unassociated from the previous thread group.
1030          */
1031         retval = de_thread(current);
1032         if (retval)
1033                 goto out;
1034
1035         set_mm_exe_file(bprm->mm, bprm->file);
1036
1037         /*
1038          * Release all of the old mmap stuff
1039          */
1040         acct_arg_size(bprm, 0);
1041         retval = exec_mmap(bprm->mm);
1042         if (retval)
1043                 goto out;
1044
1045         bprm->mm = NULL;                /* We're using it now */
1046
1047         current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1048         flush_thread();
1049         current->personality &= ~bprm->per_clear;
1050
1051         return 0;
1052
1053 out:
1054         return retval;
1055 }
1056 EXPORT_SYMBOL(flush_old_exec);
1057
1058 void setup_new_exec(struct linux_binprm * bprm)
1059 {
1060         int i, ch;
1061         const char *name;
1062         char tcomm[sizeof(current->comm)];
1063
1064         arch_pick_mmap_layout(current->mm);
1065
1066         /* This is the point of no return */
1067         current->sas_ss_sp = current->sas_ss_size = 0;
1068
1069         if (current_euid() == current_uid() && current_egid() == current_gid())
1070                 set_dumpable(current->mm, 1);
1071         else
1072                 set_dumpable(current->mm, suid_dumpable);
1073
1074         name = bprm->filename;
1075
1076         /* Copies the binary name from after last slash */
1077         for (i=0; (ch = *(name++)) != '\0';) {
1078                 if (ch == '/')
1079                         i = 0; /* overwrite what we wrote */
1080                 else
1081                         if (i < (sizeof(tcomm) - 1))
1082                                 tcomm[i++] = ch;
1083         }
1084         tcomm[i] = '\0';
1085         set_task_comm(current, tcomm);
1086
1087         /* Set the new mm task size. We have to do that late because it may
1088          * depend on TIF_32BIT which is only updated in flush_thread() on
1089          * some architectures like powerpc
1090          */
1091         current->mm->task_size = TASK_SIZE;
1092
1093         /* install the new credentials */
1094         if (bprm->cred->uid != current_euid() ||
1095             bprm->cred->gid != current_egid()) {
1096                 current->pdeath_signal = 0;
1097         } else if (file_permission(bprm->file, MAY_READ) ||
1098                    bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1099                 set_dumpable(current->mm, suid_dumpable);
1100         }
1101
1102         /*
1103          * Flush performance counters when crossing a
1104          * security domain:
1105          */
1106         if (!get_dumpable(current->mm))
1107                 perf_event_exit_task(current);
1108
1109         /* An exec changes our domain. We are no longer part of the thread
1110            group */
1111
1112         current->self_exec_id++;
1113                         
1114         flush_signal_handlers(current, 0);
1115         flush_old_files(current->files);
1116 }
1117 EXPORT_SYMBOL(setup_new_exec);
1118
1119 /*
1120  * Prepare credentials and lock ->cred_guard_mutex.
1121  * install_exec_creds() commits the new creds and drops the lock.
1122  * Or, if exec fails before, free_bprm() should release ->cred and
1123  * and unlock.
1124  */
1125 int prepare_bprm_creds(struct linux_binprm *bprm)
1126 {
1127         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1128                 return -ERESTARTNOINTR;
1129
1130         bprm->cred = prepare_exec_creds();
1131         if (likely(bprm->cred))
1132                 return 0;
1133
1134         mutex_unlock(&current->signal->cred_guard_mutex);
1135         return -ENOMEM;
1136 }
1137
1138 void free_bprm(struct linux_binprm *bprm)
1139 {
1140         free_arg_pages(bprm);
1141         if (bprm->cred) {
1142                 mutex_unlock(&current->signal->cred_guard_mutex);
1143                 abort_creds(bprm->cred);
1144         }
1145         kfree(bprm);
1146 }
1147
1148 /*
1149  * install the new credentials for this executable
1150  */
1151 void install_exec_creds(struct linux_binprm *bprm)
1152 {
1153         security_bprm_committing_creds(bprm);
1154
1155         commit_creds(bprm->cred);
1156         bprm->cred = NULL;
1157         /*
1158          * cred_guard_mutex must be held at least to this point to prevent
1159          * ptrace_attach() from altering our determination of the task's
1160          * credentials; any time after this it may be unlocked.
1161          */
1162         security_bprm_committed_creds(bprm);
1163         mutex_unlock(&current->signal->cred_guard_mutex);
1164 }
1165 EXPORT_SYMBOL(install_exec_creds);
1166
1167 /*
1168  * determine how safe it is to execute the proposed program
1169  * - the caller must hold ->cred_guard_mutex to protect against
1170  *   PTRACE_ATTACH
1171  */
1172 int check_unsafe_exec(struct linux_binprm *bprm)
1173 {
1174         struct task_struct *p = current, *t;
1175         unsigned n_fs;
1176         int res = 0;
1177
1178         bprm->unsafe = tracehook_unsafe_exec(p);
1179
1180         n_fs = 1;
1181         spin_lock(&p->fs->lock);
1182         rcu_read_lock();
1183         for (t = next_thread(p); t != p; t = next_thread(t)) {
1184                 if (t->fs == p->fs)
1185                         n_fs++;
1186         }
1187         rcu_read_unlock();
1188
1189         if (p->fs->users > n_fs) {
1190                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1191         } else {
1192                 res = -EAGAIN;
1193                 if (!p->fs->in_exec) {
1194                         p->fs->in_exec = 1;
1195                         res = 1;
1196                 }
1197         }
1198         spin_unlock(&p->fs->lock);
1199
1200         return res;
1201 }
1202
1203 /* 
1204  * Fill the binprm structure from the inode. 
1205  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1206  *
1207  * This may be called multiple times for binary chains (scripts for example).
1208  */
1209 int prepare_binprm(struct linux_binprm *bprm)
1210 {
1211         umode_t mode;
1212         struct inode * inode = bprm->file->f_path.dentry->d_inode;
1213         int retval;
1214
1215         mode = inode->i_mode;
1216         if (bprm->file->f_op == NULL)
1217                 return -EACCES;
1218
1219         /* clear any previous set[ug]id data from a previous binary */
1220         bprm->cred->euid = current_euid();
1221         bprm->cred->egid = current_egid();
1222
1223         if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1224                 /* Set-uid? */
1225                 if (mode & S_ISUID) {
1226                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1227                         bprm->cred->euid = inode->i_uid;
1228                 }
1229
1230                 /* Set-gid? */
1231                 /*
1232                  * If setgid is set but no group execute bit then this
1233                  * is a candidate for mandatory locking, not a setgid
1234                  * executable.
1235                  */
1236                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1237                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1238                         bprm->cred->egid = inode->i_gid;
1239                 }
1240         }
1241
1242         /* fill in binprm security blob */
1243         retval = security_bprm_set_creds(bprm);
1244         if (retval)
1245                 return retval;
1246         bprm->cred_prepared = 1;
1247
1248         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1249         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1250 }
1251
1252 EXPORT_SYMBOL(prepare_binprm);
1253
1254 /*
1255  * Arguments are '\0' separated strings found at the location bprm->p
1256  * points to; chop off the first by relocating brpm->p to right after
1257  * the first '\0' encountered.
1258  */
1259 int remove_arg_zero(struct linux_binprm *bprm)
1260 {
1261         int ret = 0;
1262         unsigned long offset;
1263         char *kaddr;
1264         struct page *page;
1265
1266         if (!bprm->argc)
1267                 return 0;
1268
1269         do {
1270                 offset = bprm->p & ~PAGE_MASK;
1271                 page = get_arg_page(bprm, bprm->p, 0);
1272                 if (!page) {
1273                         ret = -EFAULT;
1274                         goto out;
1275                 }
1276                 kaddr = kmap_atomic(page, KM_USER0);
1277
1278                 for (; offset < PAGE_SIZE && kaddr[offset];
1279                                 offset++, bprm->p++)
1280                         ;
1281
1282                 kunmap_atomic(kaddr, KM_USER0);
1283                 put_arg_page(page);
1284
1285                 if (offset == PAGE_SIZE)
1286                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1287         } while (offset == PAGE_SIZE);
1288
1289         bprm->p++;
1290         bprm->argc--;
1291         ret = 0;
1292
1293 out:
1294         return ret;
1295 }
1296 EXPORT_SYMBOL(remove_arg_zero);
1297
1298 /*
1299  * cycle the list of binary formats handler, until one recognizes the image
1300  */
1301 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1302 {
1303         unsigned int depth = bprm->recursion_depth;
1304         int try,retval;
1305         struct linux_binfmt *fmt;
1306
1307         retval = security_bprm_check(bprm);
1308         if (retval)
1309                 return retval;
1310
1311         /* kernel module loader fixup */
1312         /* so we don't try to load run modprobe in kernel space. */
1313         set_fs(USER_DS);
1314
1315         retval = audit_bprm(bprm);
1316         if (retval)
1317                 return retval;
1318
1319         retval = -ENOENT;
1320         for (try=0; try<2; try++) {
1321                 read_lock(&binfmt_lock);
1322                 list_for_each_entry(fmt, &formats, lh) {
1323                         int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1324                         if (!fn)
1325                                 continue;
1326                         if (!try_module_get(fmt->module))
1327                                 continue;
1328                         read_unlock(&binfmt_lock);
1329                         retval = fn(bprm, regs);
1330                         /*
1331                          * Restore the depth counter to its starting value
1332                          * in this call, so we don't have to rely on every
1333                          * load_binary function to restore it on return.
1334                          */
1335                         bprm->recursion_depth = depth;
1336                         if (retval >= 0) {
1337                                 if (depth == 0)
1338                                         tracehook_report_exec(fmt, bprm, regs);
1339                                 put_binfmt(fmt);
1340                                 allow_write_access(bprm->file);
1341                                 if (bprm->file)
1342                                         fput(bprm->file);
1343                                 bprm->file = NULL;
1344                                 current->did_exec = 1;
1345                                 proc_exec_connector(current);
1346                                 return retval;
1347                         }
1348                         read_lock(&binfmt_lock);
1349                         put_binfmt(fmt);
1350                         if (retval != -ENOEXEC || bprm->mm == NULL)
1351                                 break;
1352                         if (!bprm->file) {
1353                                 read_unlock(&binfmt_lock);
1354                                 return retval;
1355                         }
1356                 }
1357                 read_unlock(&binfmt_lock);
1358                 if (retval != -ENOEXEC || bprm->mm == NULL) {
1359                         break;
1360 #ifdef CONFIG_MODULES
1361                 } else {
1362 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1363                         if (printable(bprm->buf[0]) &&
1364                             printable(bprm->buf[1]) &&
1365                             printable(bprm->buf[2]) &&
1366                             printable(bprm->buf[3]))
1367                                 break; /* -ENOEXEC */
1368                         request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1369 #endif
1370                 }
1371         }
1372         return retval;
1373 }
1374
1375 EXPORT_SYMBOL(search_binary_handler);
1376
1377 /*
1378  * sys_execve() executes a new program.
1379  */
1380 int do_execve(const char * filename,
1381         const char __user *const __user *argv,
1382         const char __user *const __user *envp,
1383         struct pt_regs * regs)
1384 {
1385         struct linux_binprm *bprm;
1386         struct file *file;
1387         struct files_struct *displaced;
1388         bool clear_in_exec;
1389         int retval;
1390
1391         retval = unshare_files(&displaced);
1392         if (retval)
1393                 goto out_ret;
1394
1395         retval = -ENOMEM;
1396         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1397         if (!bprm)
1398                 goto out_files;
1399
1400         retval = prepare_bprm_creds(bprm);
1401         if (retval)
1402                 goto out_free;
1403
1404         retval = check_unsafe_exec(bprm);
1405         if (retval < 0)
1406                 goto out_free;
1407         clear_in_exec = retval;
1408         current->in_execve = 1;
1409
1410         file = open_exec(filename);
1411         retval = PTR_ERR(file);
1412         if (IS_ERR(file))
1413                 goto out_unmark;
1414
1415         sched_exec();
1416
1417         bprm->file = file;
1418         bprm->filename = filename;
1419         bprm->interp = filename;
1420
1421         retval = bprm_mm_init(bprm);
1422         if (retval)
1423                 goto out_file;
1424
1425         bprm->argc = count(argv, MAX_ARG_STRINGS);
1426         if ((retval = bprm->argc) < 0)
1427                 goto out;
1428
1429         bprm->envc = count(envp, MAX_ARG_STRINGS);
1430         if ((retval = bprm->envc) < 0)
1431                 goto out;
1432
1433         retval = prepare_binprm(bprm);
1434         if (retval < 0)
1435                 goto out;
1436
1437         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1438         if (retval < 0)
1439                 goto out;
1440
1441         bprm->exec = bprm->p;
1442         retval = copy_strings(bprm->envc, envp, bprm);
1443         if (retval < 0)
1444                 goto out;
1445
1446         retval = copy_strings(bprm->argc, argv, bprm);
1447         if (retval < 0)
1448                 goto out;
1449
1450         retval = search_binary_handler(bprm,regs);
1451         if (retval < 0)
1452                 goto out;
1453
1454         /* execve succeeded */
1455         current->fs->in_exec = 0;
1456         current->in_execve = 0;
1457         acct_update_integrals(current);
1458         free_bprm(bprm);
1459         if (displaced)
1460                 put_files_struct(displaced);
1461         return retval;
1462
1463 out:
1464         if (bprm->mm) {
1465                 acct_arg_size(bprm, 0);
1466                 mmput(bprm->mm);
1467         }
1468
1469 out_file:
1470         if (bprm->file) {
1471                 allow_write_access(bprm->file);
1472                 fput(bprm->file);
1473         }
1474
1475 out_unmark:
1476         if (clear_in_exec)
1477                 current->fs->in_exec = 0;
1478         current->in_execve = 0;
1479
1480 out_free:
1481         free_bprm(bprm);
1482
1483 out_files:
1484         if (displaced)
1485                 reset_files_struct(displaced);
1486 out_ret:
1487         return retval;
1488 }
1489
1490 void set_binfmt(struct linux_binfmt *new)
1491 {
1492         struct mm_struct *mm = current->mm;
1493
1494         if (mm->binfmt)
1495                 module_put(mm->binfmt->module);
1496
1497         mm->binfmt = new;
1498         if (new)
1499                 __module_get(new->module);
1500 }
1501
1502 EXPORT_SYMBOL(set_binfmt);
1503
1504 static int expand_corename(struct core_name *cn)
1505 {
1506         char *old_corename = cn->corename;
1507
1508         cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1509         cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1510
1511         if (!cn->corename) {
1512                 kfree(old_corename);
1513                 return -ENOMEM;
1514         }
1515
1516         return 0;
1517 }
1518
1519 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1520 {
1521         char *cur;
1522         int need;
1523         int ret;
1524         va_list arg;
1525
1526         va_start(arg, fmt);
1527         need = vsnprintf(NULL, 0, fmt, arg);
1528         va_end(arg);
1529
1530         if (likely(need < cn->size - cn->used - 1))
1531                 goto out_printf;
1532
1533         ret = expand_corename(cn);
1534         if (ret)
1535                 goto expand_fail;
1536
1537 out_printf:
1538         cur = cn->corename + cn->used;
1539         va_start(arg, fmt);
1540         vsnprintf(cur, need + 1, fmt, arg);
1541         va_end(arg);
1542         cn->used += need;
1543         return 0;
1544
1545 expand_fail:
1546         return ret;
1547 }
1548
1549 /* format_corename will inspect the pattern parameter, and output a
1550  * name into corename, which must have space for at least
1551  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1552  */
1553 static int format_corename(struct core_name *cn, long signr)
1554 {
1555         const struct cred *cred = current_cred();
1556         const char *pat_ptr = core_pattern;
1557         int ispipe = (*pat_ptr == '|');
1558         int pid_in_pattern = 0;
1559         int err = 0;
1560
1561         cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1562         cn->corename = kmalloc(cn->size, GFP_KERNEL);
1563         cn->used = 0;
1564
1565         if (!cn->corename)
1566                 return -ENOMEM;
1567
1568         /* Repeat as long as we have more pattern to process and more output
1569            space */
1570         while (*pat_ptr) {
1571                 if (*pat_ptr != '%') {
1572                         if (*pat_ptr == 0)
1573                                 goto out;
1574                         err = cn_printf(cn, "%c", *pat_ptr++);
1575                 } else {
1576                         switch (*++pat_ptr) {
1577                         /* single % at the end, drop that */
1578                         case 0:
1579                                 goto out;
1580                         /* Double percent, output one percent */
1581                         case '%':
1582                                 err = cn_printf(cn, "%c", '%');
1583                                 break;
1584                         /* pid */
1585                         case 'p':
1586                                 pid_in_pattern = 1;
1587                                 err = cn_printf(cn, "%d",
1588                                               task_tgid_vnr(current));
1589                                 break;
1590                         /* uid */
1591                         case 'u':
1592                                 err = cn_printf(cn, "%d", cred->uid);
1593                                 break;
1594                         /* gid */
1595                         case 'g':
1596                                 err = cn_printf(cn, "%d", cred->gid);
1597                                 break;
1598                         /* signal that caused the coredump */
1599                         case 's':
1600                                 err = cn_printf(cn, "%ld", signr);
1601                                 break;
1602                         /* UNIX time of coredump */
1603                         case 't': {
1604                                 struct timeval tv;
1605                                 do_gettimeofday(&tv);
1606                                 err = cn_printf(cn, "%lu", tv.tv_sec);
1607                                 break;
1608                         }
1609                         /* hostname */
1610                         case 'h':
1611                                 down_read(&uts_sem);
1612                                 err = cn_printf(cn, "%s",
1613                                               utsname()->nodename);
1614                                 up_read(&uts_sem);
1615                                 break;
1616                         /* executable */
1617                         case 'e':
1618                                 err = cn_printf(cn, "%s", current->comm);
1619                                 break;
1620                         /* core limit size */
1621                         case 'c':
1622                                 err = cn_printf(cn, "%lu",
1623                                               rlimit(RLIMIT_CORE));
1624                                 break;
1625                         default:
1626                                 break;
1627                         }
1628                         ++pat_ptr;
1629                 }
1630
1631                 if (err)
1632                         return err;
1633         }
1634
1635         /* Backward compatibility with core_uses_pid:
1636          *
1637          * If core_pattern does not include a %p (as is the default)
1638          * and core_uses_pid is set, then .%pid will be appended to
1639          * the filename. Do not do this for piped commands. */
1640         if (!ispipe && !pid_in_pattern && core_uses_pid) {
1641                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1642                 if (err)
1643                         return err;
1644         }
1645 out:
1646         return ispipe;
1647 }
1648
1649 static int zap_process(struct task_struct *start, int exit_code)
1650 {
1651         struct task_struct *t;
1652         int nr = 0;
1653
1654         start->signal->flags = SIGNAL_GROUP_EXIT;
1655         start->signal->group_exit_code = exit_code;
1656         start->signal->group_stop_count = 0;
1657
1658         t = start;
1659         do {
1660                 if (t != current && t->mm) {
1661                         sigaddset(&t->pending.signal, SIGKILL);
1662                         signal_wake_up(t, 1);
1663                         nr++;
1664                 }
1665         } while_each_thread(start, t);
1666
1667         return nr;
1668 }
1669
1670 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1671                                 struct core_state *core_state, int exit_code)
1672 {
1673         struct task_struct *g, *p;
1674         unsigned long flags;
1675         int nr = -EAGAIN;
1676
1677         spin_lock_irq(&tsk->sighand->siglock);
1678         if (!signal_group_exit(tsk->signal)) {
1679                 mm->core_state = core_state;
1680                 nr = zap_process(tsk, exit_code);
1681         }
1682         spin_unlock_irq(&tsk->sighand->siglock);
1683         if (unlikely(nr < 0))
1684                 return nr;
1685
1686         if (atomic_read(&mm->mm_users) == nr + 1)
1687                 goto done;
1688         /*
1689          * We should find and kill all tasks which use this mm, and we should
1690          * count them correctly into ->nr_threads. We don't take tasklist
1691          * lock, but this is safe wrt:
1692          *
1693          * fork:
1694          *      None of sub-threads can fork after zap_process(leader). All
1695          *      processes which were created before this point should be
1696          *      visible to zap_threads() because copy_process() adds the new
1697          *      process to the tail of init_task.tasks list, and lock/unlock
1698          *      of ->siglock provides a memory barrier.
1699          *
1700          * do_exit:
1701          *      The caller holds mm->mmap_sem. This means that the task which
1702          *      uses this mm can't pass exit_mm(), so it can't exit or clear
1703          *      its ->mm.
1704          *
1705          * de_thread:
1706          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
1707          *      we must see either old or new leader, this does not matter.
1708          *      However, it can change p->sighand, so lock_task_sighand(p)
1709          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
1710          *      it can't fail.
1711          *
1712          *      Note also that "g" can be the old leader with ->mm == NULL
1713          *      and already unhashed and thus removed from ->thread_group.
1714          *      This is OK, __unhash_process()->list_del_rcu() does not
1715          *      clear the ->next pointer, we will find the new leader via
1716          *      next_thread().
1717          */
1718         rcu_read_lock();
1719         for_each_process(g) {
1720                 if (g == tsk->group_leader)
1721                         continue;
1722                 if (g->flags & PF_KTHREAD)
1723                         continue;
1724                 p = g;
1725                 do {
1726                         if (p->mm) {
1727                                 if (unlikely(p->mm == mm)) {
1728                                         lock_task_sighand(p, &flags);
1729                                         nr += zap_process(p, exit_code);
1730                                         unlock_task_sighand(p, &flags);
1731                                 }
1732                                 break;
1733                         }
1734                 } while_each_thread(g, p);
1735         }
1736         rcu_read_unlock();
1737 done:
1738         atomic_set(&core_state->nr_threads, nr);
1739         return nr;
1740 }
1741
1742 static int coredump_wait(int exit_code, struct core_state *core_state)
1743 {
1744         struct task_struct *tsk = current;
1745         struct mm_struct *mm = tsk->mm;
1746         struct completion *vfork_done;
1747         int core_waiters = -EBUSY;
1748
1749         init_completion(&core_state->startup);
1750         core_state->dumper.task = tsk;
1751         core_state->dumper.next = NULL;
1752
1753         down_write(&mm->mmap_sem);
1754         if (!mm->core_state)
1755                 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1756         up_write(&mm->mmap_sem);
1757
1758         if (unlikely(core_waiters < 0))
1759                 goto fail;
1760
1761         /*
1762          * Make sure nobody is waiting for us to release the VM,
1763          * otherwise we can deadlock when we wait on each other
1764          */
1765         vfork_done = tsk->vfork_done;
1766         if (vfork_done) {
1767                 tsk->vfork_done = NULL;
1768                 complete(vfork_done);
1769         }
1770
1771         if (core_waiters)
1772                 wait_for_completion(&core_state->startup);
1773 fail:
1774         return core_waiters;
1775 }
1776
1777 static void coredump_finish(struct mm_struct *mm)
1778 {
1779         struct core_thread *curr, *next;
1780         struct task_struct *task;
1781
1782         next = mm->core_state->dumper.next;
1783         while ((curr = next) != NULL) {
1784                 next = curr->next;
1785                 task = curr->task;
1786                 /*
1787                  * see exit_mm(), curr->task must not see
1788                  * ->task == NULL before we read ->next.
1789                  */
1790                 smp_mb();
1791                 curr->task = NULL;
1792                 wake_up_process(task);
1793         }
1794
1795         mm->core_state = NULL;
1796 }
1797
1798 /*
1799  * set_dumpable converts traditional three-value dumpable to two flags and
1800  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1801  * these bits are not changed atomically.  So get_dumpable can observe the
1802  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1803  * return either old dumpable or new one by paying attention to the order of
1804  * modifying the bits.
1805  *
1806  * dumpable |   mm->flags (binary)
1807  * old  new | initial interim  final
1808  * ---------+-----------------------
1809  *  0    1  |   00      01      01
1810  *  0    2  |   00      10(*)   11
1811  *  1    0  |   01      00      00
1812  *  1    2  |   01      11      11
1813  *  2    0  |   11      10(*)   00
1814  *  2    1  |   11      11      01
1815  *
1816  * (*) get_dumpable regards interim value of 10 as 11.
1817  */
1818 void set_dumpable(struct mm_struct *mm, int value)
1819 {
1820         switch (value) {
1821         case 0:
1822                 clear_bit(MMF_DUMPABLE, &mm->flags);
1823                 smp_wmb();
1824                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1825                 break;
1826         case 1:
1827                 set_bit(MMF_DUMPABLE, &mm->flags);
1828                 smp_wmb();
1829                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1830                 break;
1831         case 2:
1832                 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1833                 smp_wmb();
1834                 set_bit(MMF_DUMPABLE, &mm->flags);
1835                 break;
1836         }
1837 }
1838
1839 static int __get_dumpable(unsigned long mm_flags)
1840 {
1841         int ret;
1842
1843         ret = mm_flags & MMF_DUMPABLE_MASK;
1844         return (ret >= 2) ? 2 : ret;
1845 }
1846
1847 int get_dumpable(struct mm_struct *mm)
1848 {
1849         return __get_dumpable(mm->flags);
1850 }
1851
1852 static void wait_for_dump_helpers(struct file *file)
1853 {
1854         struct pipe_inode_info *pipe;
1855
1856         pipe = file->f_path.dentry->d_inode->i_pipe;
1857
1858         pipe_lock(pipe);
1859         pipe->readers++;
1860         pipe->writers--;
1861
1862         while ((pipe->readers > 1) && (!signal_pending(current))) {
1863                 wake_up_interruptible_sync(&pipe->wait);
1864                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1865                 pipe_wait(pipe);
1866         }
1867
1868         pipe->readers--;
1869         pipe->writers++;
1870         pipe_unlock(pipe);
1871
1872 }
1873
1874
1875 /*
1876  * uhm_pipe_setup
1877  * helper function to customize the process used
1878  * to collect the core in userspace.  Specifically
1879  * it sets up a pipe and installs it as fd 0 (stdin)
1880  * for the process.  Returns 0 on success, or
1881  * PTR_ERR on failure.
1882  * Note that it also sets the core limit to 1.  This
1883  * is a special value that we use to trap recursive
1884  * core dumps
1885  */
1886 static int umh_pipe_setup(struct subprocess_info *info)
1887 {
1888         struct file *rp, *wp;
1889         struct fdtable *fdt;
1890         struct coredump_params *cp = (struct coredump_params *)info->data;
1891         struct files_struct *cf = current->files;
1892
1893         wp = create_write_pipe(0);
1894         if (IS_ERR(wp))
1895                 return PTR_ERR(wp);
1896
1897         rp = create_read_pipe(wp, 0);
1898         if (IS_ERR(rp)) {
1899                 free_write_pipe(wp);
1900                 return PTR_ERR(rp);
1901         }
1902
1903         cp->file = wp;
1904
1905         sys_close(0);
1906         fd_install(0, rp);
1907         spin_lock(&cf->file_lock);
1908         fdt = files_fdtable(cf);
1909         FD_SET(0, fdt->open_fds);
1910         FD_CLR(0, fdt->close_on_exec);
1911         spin_unlock(&cf->file_lock);
1912
1913         /* and disallow core files too */
1914         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1915
1916         return 0;
1917 }
1918
1919 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1920 {
1921         struct core_state core_state;
1922         struct core_name cn;
1923         struct mm_struct *mm = current->mm;
1924         struct linux_binfmt * binfmt;
1925         const struct cred *old_cred;
1926         struct cred *cred;
1927         int retval = 0;
1928         int flag = 0;
1929         int ispipe;
1930         static atomic_t core_dump_count = ATOMIC_INIT(0);
1931         struct coredump_params cprm = {
1932                 .signr = signr,
1933                 .regs = regs,
1934                 .limit = rlimit(RLIMIT_CORE),
1935                 /*
1936                  * We must use the same mm->flags while dumping core to avoid
1937                  * inconsistency of bit flags, since this flag is not protected
1938                  * by any locks.
1939                  */
1940                 .mm_flags = mm->flags,
1941         };
1942
1943         audit_core_dumps(signr);
1944
1945         binfmt = mm->binfmt;
1946         if (!binfmt || !binfmt->core_dump)
1947                 goto fail;
1948         if (!__get_dumpable(cprm.mm_flags))
1949                 goto fail;
1950
1951         cred = prepare_creds();
1952         if (!cred)
1953                 goto fail;
1954         /*
1955          *      We cannot trust fsuid as being the "true" uid of the
1956          *      process nor do we know its entire history. We only know it
1957          *      was tainted so we dump it as root in mode 2.
1958          */
1959         if (__get_dumpable(cprm.mm_flags) == 2) {
1960                 /* Setuid core dump mode */
1961                 flag = O_EXCL;          /* Stop rewrite attacks */
1962                 cred->fsuid = 0;        /* Dump root private */
1963         }
1964
1965         retval = coredump_wait(exit_code, &core_state);
1966         if (retval < 0)
1967                 goto fail_creds;
1968
1969         old_cred = override_creds(cred);
1970
1971         /*
1972          * Clear any false indication of pending signals that might
1973          * be seen by the filesystem code called to write the core file.
1974          */
1975         clear_thread_flag(TIF_SIGPENDING);
1976
1977         ispipe = format_corename(&cn, signr);
1978
1979         if (ispipe == -ENOMEM) {
1980                 printk(KERN_WARNING "format_corename failed\n");
1981                 printk(KERN_WARNING "Aborting core\n");
1982                 goto fail_corename;
1983         }
1984
1985         if (ispipe) {
1986                 int dump_count;
1987                 char **helper_argv;
1988
1989                 if (cprm.limit == 1) {
1990                         /*
1991                          * Normally core limits are irrelevant to pipes, since
1992                          * we're not writing to the file system, but we use
1993                          * cprm.limit of 1 here as a speacial value. Any
1994                          * non-1 limit gets set to RLIM_INFINITY below, but
1995                          * a limit of 0 skips the dump.  This is a consistent
1996                          * way to catch recursive crashes.  We can still crash
1997                          * if the core_pattern binary sets RLIM_CORE =  !1
1998                          * but it runs as root, and can do lots of stupid things
1999                          * Note that we use task_tgid_vnr here to grab the pid
2000                          * of the process group leader.  That way we get the
2001                          * right pid if a thread in a multi-threaded
2002                          * core_pattern process dies.
2003                          */
2004                         printk(KERN_WARNING
2005                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
2006                                 task_tgid_vnr(current), current->comm);
2007                         printk(KERN_WARNING "Aborting core\n");
2008                         goto fail_unlock;
2009                 }
2010                 cprm.limit = RLIM_INFINITY;
2011
2012                 dump_count = atomic_inc_return(&core_dump_count);
2013                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2014                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2015                                task_tgid_vnr(current), current->comm);
2016                         printk(KERN_WARNING "Skipping core dump\n");
2017                         goto fail_dropcount;
2018                 }
2019
2020                 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2021                 if (!helper_argv) {
2022                         printk(KERN_WARNING "%s failed to allocate memory\n",
2023                                __func__);
2024                         goto fail_dropcount;
2025                 }
2026
2027                 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2028                                         NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2029                                         NULL, &cprm);
2030                 argv_free(helper_argv);
2031                 if (retval) {
2032                         printk(KERN_INFO "Core dump to %s pipe failed\n",
2033                                cn.corename);
2034                         goto close_fail;
2035                 }
2036         } else {
2037                 struct inode *inode;
2038
2039                 if (cprm.limit < binfmt->min_coredump)
2040                         goto fail_unlock;
2041
2042                 cprm.file = filp_open(cn.corename,
2043                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2044                                  0600);
2045                 if (IS_ERR(cprm.file))
2046                         goto fail_unlock;
2047
2048                 inode = cprm.file->f_path.dentry->d_inode;
2049                 if (inode->i_nlink > 1)
2050                         goto close_fail;
2051                 if (d_unhashed(cprm.file->f_path.dentry))
2052                         goto close_fail;
2053                 /*
2054                  * AK: actually i see no reason to not allow this for named
2055                  * pipes etc, but keep the previous behaviour for now.
2056                  */
2057                 if (!S_ISREG(inode->i_mode))
2058                         goto close_fail;
2059                 /*
2060                  * Dont allow local users get cute and trick others to coredump
2061                  * into their pre-created files.
2062                  */
2063                 if (inode->i_uid != current_fsuid())
2064                         goto close_fail;
2065                 if (!cprm.file->f_op || !cprm.file->f_op->write)
2066                         goto close_fail;
2067                 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2068                         goto close_fail;
2069         }
2070
2071         retval = binfmt->core_dump(&cprm);
2072         if (retval)
2073                 current->signal->group_exit_code |= 0x80;
2074
2075         if (ispipe && core_pipe_limit)
2076                 wait_for_dump_helpers(cprm.file);
2077 close_fail:
2078         if (cprm.file)
2079                 filp_close(cprm.file, NULL);
2080 fail_dropcount:
2081         if (ispipe)
2082                 atomic_dec(&core_dump_count);
2083 fail_unlock:
2084         kfree(cn.corename);
2085 fail_corename:
2086         coredump_finish(mm);
2087         revert_creds(old_cred);
2088 fail_creds:
2089         put_cred(cred);
2090 fail:
2091         return;
2092 }
2093
2094 /*
2095  * Core dumping helper functions.  These are the only things you should
2096  * do on a core-file: use only these functions to write out all the
2097  * necessary info.
2098  */
2099 int dump_write(struct file *file, const void *addr, int nr)
2100 {
2101         return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2102 }
2103 EXPORT_SYMBOL(dump_write);
2104
2105 int dump_seek(struct file *file, loff_t off)
2106 {
2107         int ret = 1;
2108
2109         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2110                 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2111                         return 0;
2112         } else {
2113                 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2114
2115                 if (!buf)
2116                         return 0;
2117                 while (off > 0) {
2118                         unsigned long n = off;
2119
2120                         if (n > PAGE_SIZE)
2121                                 n = PAGE_SIZE;
2122                         if (!dump_write(file, buf, n)) {
2123                                 ret = 0;
2124                                 break;
2125                         }
2126                         off -= n;
2127                 }
2128                 free_page((unsigned long)buf);
2129         }
2130         return ret;
2131 }
2132 EXPORT_SYMBOL(dump_seek);