inet_hashtables: Add inet_lookup_skb helpers
[linux-flexiantxendom0-natty.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53
54 #include <linux/types.h>
55 #include <linux/fcntl.h>
56 #include <linux/module.h>
57 #include <linux/random.h>
58 #include <linux/cache.h>
59 #include <linux/jhash.h>
60 #include <linux/init.h>
61 #include <linux/times.h>
62
63 #include <net/net_namespace.h>
64 #include <net/icmp.h>
65 #include <net/inet_hashtables.h>
66 #include <net/tcp.h>
67 #include <net/transp_v6.h>
68 #include <net/ipv6.h>
69 #include <net/inet_common.h>
70 #include <net/timewait_sock.h>
71 #include <net/xfrm.h>
72 #include <net/netdma.h>
73
74 #include <linux/inet.h>
75 #include <linux/ipv6.h>
76 #include <linux/stddef.h>
77 #include <linux/proc_fs.h>
78 #include <linux/seq_file.h>
79
80 #include <linux/crypto.h>
81 #include <linux/scatterlist.h>
82
83 int sysctl_tcp_tw_reuse __read_mostly;
84 int sysctl_tcp_low_latency __read_mostly;
85
86
87 #ifdef CONFIG_TCP_MD5SIG
88 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
89                                                    __be32 addr);
90 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
91                                __be32 daddr, __be32 saddr, struct tcphdr *th);
92 #else
93 static inline
94 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
95 {
96         return NULL;
97 }
98 #endif
99
100 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
101         .lhash_lock  = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock),
102         .lhash_users = ATOMIC_INIT(0),
103         .lhash_wait  = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
104 };
105
106 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
107 {
108         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
109                                           ip_hdr(skb)->saddr,
110                                           tcp_hdr(skb)->dest,
111                                           tcp_hdr(skb)->source);
112 }
113
114 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
115 {
116         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
117         struct tcp_sock *tp = tcp_sk(sk);
118
119         /* With PAWS, it is safe from the viewpoint
120            of data integrity. Even without PAWS it is safe provided sequence
121            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
122
123            Actually, the idea is close to VJ's one, only timestamp cache is
124            held not per host, but per port pair and TW bucket is used as state
125            holder.
126
127            If TW bucket has been already destroyed we fall back to VJ's scheme
128            and use initial timestamp retrieved from peer table.
129          */
130         if (tcptw->tw_ts_recent_stamp &&
131             (twp == NULL || (sysctl_tcp_tw_reuse &&
132                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
133                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
134                 if (tp->write_seq == 0)
135                         tp->write_seq = 1;
136                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
137                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
138                 sock_hold(sktw);
139                 return 1;
140         }
141
142         return 0;
143 }
144
145 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
146
147 /* This will initiate an outgoing connection. */
148 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
149 {
150         struct inet_sock *inet = inet_sk(sk);
151         struct tcp_sock *tp = tcp_sk(sk);
152         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153         struct rtable *rt;
154         __be32 daddr, nexthop;
155         int tmp;
156         int err;
157
158         if (addr_len < sizeof(struct sockaddr_in))
159                 return -EINVAL;
160
161         if (usin->sin_family != AF_INET)
162                 return -EAFNOSUPPORT;
163
164         nexthop = daddr = usin->sin_addr.s_addr;
165         if (inet->opt && inet->opt->srr) {
166                 if (!daddr)
167                         return -EINVAL;
168                 nexthop = inet->opt->faddr;
169         }
170
171         tmp = ip_route_connect(&rt, nexthop, inet->saddr,
172                                RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
173                                IPPROTO_TCP,
174                                inet->sport, usin->sin_port, sk, 1);
175         if (tmp < 0) {
176                 if (tmp == -ENETUNREACH)
177                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
178                 return tmp;
179         }
180
181         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
182                 ip_rt_put(rt);
183                 return -ENETUNREACH;
184         }
185
186         if (!inet->opt || !inet->opt->srr)
187                 daddr = rt->rt_dst;
188
189         if (!inet->saddr)
190                 inet->saddr = rt->rt_src;
191         inet->rcv_saddr = inet->saddr;
192
193         if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
194                 /* Reset inherited state */
195                 tp->rx_opt.ts_recent       = 0;
196                 tp->rx_opt.ts_recent_stamp = 0;
197                 tp->write_seq              = 0;
198         }
199
200         if (tcp_death_row.sysctl_tw_recycle &&
201             !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
202                 struct inet_peer *peer = rt_get_peer(rt);
203                 /*
204                  * VJ's idea. We save last timestamp seen from
205                  * the destination in peer table, when entering state
206                  * TIME-WAIT * and initialize rx_opt.ts_recent from it,
207                  * when trying new connection.
208                  */
209                 if (peer != NULL &&
210                     peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) {
211                         tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
212                         tp->rx_opt.ts_recent = peer->tcp_ts;
213                 }
214         }
215
216         inet->dport = usin->sin_port;
217         inet->daddr = daddr;
218
219         inet_csk(sk)->icsk_ext_hdr_len = 0;
220         if (inet->opt)
221                 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
222
223         tp->rx_opt.mss_clamp = 536;
224
225         /* Socket identity is still unknown (sport may be zero).
226          * However we set state to SYN-SENT and not releasing socket
227          * lock select source port, enter ourselves into the hash tables and
228          * complete initialization after this.
229          */
230         tcp_set_state(sk, TCP_SYN_SENT);
231         err = inet_hash_connect(&tcp_death_row, sk);
232         if (err)
233                 goto failure;
234
235         err = ip_route_newports(&rt, IPPROTO_TCP,
236                                 inet->sport, inet->dport, sk);
237         if (err)
238                 goto failure;
239
240         /* OK, now commit destination to socket.  */
241         sk->sk_gso_type = SKB_GSO_TCPV4;
242         sk_setup_caps(sk, &rt->u.dst);
243
244         if (!tp->write_seq)
245                 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
246                                                            inet->daddr,
247                                                            inet->sport,
248                                                            usin->sin_port);
249
250         inet->id = tp->write_seq ^ jiffies;
251
252         err = tcp_connect(sk);
253         rt = NULL;
254         if (err)
255                 goto failure;
256
257         return 0;
258
259 failure:
260         /*
261          * This unhashes the socket and releases the local port,
262          * if necessary.
263          */
264         tcp_set_state(sk, TCP_CLOSE);
265         ip_rt_put(rt);
266         sk->sk_route_caps = 0;
267         inet->dport = 0;
268         return err;
269 }
270
271 /*
272  * This routine does path mtu discovery as defined in RFC1191.
273  */
274 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
275 {
276         struct dst_entry *dst;
277         struct inet_sock *inet = inet_sk(sk);
278
279         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
280          * send out by Linux are always <576bytes so they should go through
281          * unfragmented).
282          */
283         if (sk->sk_state == TCP_LISTEN)
284                 return;
285
286         /* We don't check in the destentry if pmtu discovery is forbidden
287          * on this route. We just assume that no packet_to_big packets
288          * are send back when pmtu discovery is not active.
289          * There is a small race when the user changes this flag in the
290          * route, but I think that's acceptable.
291          */
292         if ((dst = __sk_dst_check(sk, 0)) == NULL)
293                 return;
294
295         dst->ops->update_pmtu(dst, mtu);
296
297         /* Something is about to be wrong... Remember soft error
298          * for the case, if this connection will not able to recover.
299          */
300         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
301                 sk->sk_err_soft = EMSGSIZE;
302
303         mtu = dst_mtu(dst);
304
305         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
306             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
307                 tcp_sync_mss(sk, mtu);
308
309                 /* Resend the TCP packet because it's
310                  * clear that the old packet has been
311                  * dropped. This is the new "fast" path mtu
312                  * discovery.
313                  */
314                 tcp_simple_retransmit(sk);
315         } /* else let the usual retransmit timer handle it */
316 }
317
318 /*
319  * This routine is called by the ICMP module when it gets some
320  * sort of error condition.  If err < 0 then the socket should
321  * be closed and the error returned to the user.  If err > 0
322  * it's just the icmp type << 8 | icmp code.  After adjustment
323  * header points to the first 8 bytes of the tcp header.  We need
324  * to find the appropriate port.
325  *
326  * The locking strategy used here is very "optimistic". When
327  * someone else accesses the socket the ICMP is just dropped
328  * and for some paths there is no check at all.
329  * A more general error queue to queue errors for later handling
330  * is probably better.
331  *
332  */
333
334 void tcp_v4_err(struct sk_buff *skb, u32 info)
335 {
336         struct iphdr *iph = (struct iphdr *)skb->data;
337         struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
338         struct tcp_sock *tp;
339         struct inet_sock *inet;
340         const int type = icmp_hdr(skb)->type;
341         const int code = icmp_hdr(skb)->code;
342         struct sock *sk;
343         __u32 seq;
344         int err;
345         struct net *net = dev_net(skb->dev);
346
347         if (skb->len < (iph->ihl << 2) + 8) {
348                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
349                 return;
350         }
351
352         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
353                         iph->saddr, th->source, inet_iif(skb));
354         if (!sk) {
355                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
356                 return;
357         }
358         if (sk->sk_state == TCP_TIME_WAIT) {
359                 inet_twsk_put(inet_twsk(sk));
360                 return;
361         }
362
363         bh_lock_sock(sk);
364         /* If too many ICMPs get dropped on busy
365          * servers this needs to be solved differently.
366          */
367         if (sock_owned_by_user(sk))
368                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
369
370         if (sk->sk_state == TCP_CLOSE)
371                 goto out;
372
373         tp = tcp_sk(sk);
374         seq = ntohl(th->seq);
375         if (sk->sk_state != TCP_LISTEN &&
376             !between(seq, tp->snd_una, tp->snd_nxt)) {
377                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
378                 goto out;
379         }
380
381         switch (type) {
382         case ICMP_SOURCE_QUENCH:
383                 /* Just silently ignore these. */
384                 goto out;
385         case ICMP_PARAMETERPROB:
386                 err = EPROTO;
387                 break;
388         case ICMP_DEST_UNREACH:
389                 if (code > NR_ICMP_UNREACH)
390                         goto out;
391
392                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
393                         if (!sock_owned_by_user(sk))
394                                 do_pmtu_discovery(sk, iph, info);
395                         goto out;
396                 }
397
398                 err = icmp_err_convert[code].errno;
399                 break;
400         case ICMP_TIME_EXCEEDED:
401                 err = EHOSTUNREACH;
402                 break;
403         default:
404                 goto out;
405         }
406
407         switch (sk->sk_state) {
408                 struct request_sock *req, **prev;
409         case TCP_LISTEN:
410                 if (sock_owned_by_user(sk))
411                         goto out;
412
413                 req = inet_csk_search_req(sk, &prev, th->dest,
414                                           iph->daddr, iph->saddr);
415                 if (!req)
416                         goto out;
417
418                 /* ICMPs are not backlogged, hence we cannot get
419                    an established socket here.
420                  */
421                 WARN_ON(req->sk);
422
423                 if (seq != tcp_rsk(req)->snt_isn) {
424                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
425                         goto out;
426                 }
427
428                 /*
429                  * Still in SYN_RECV, just remove it silently.
430                  * There is no good way to pass the error to the newly
431                  * created socket, and POSIX does not want network
432                  * errors returned from accept().
433                  */
434                 inet_csk_reqsk_queue_drop(sk, req, prev);
435                 goto out;
436
437         case TCP_SYN_SENT:
438         case TCP_SYN_RECV:  /* Cannot happen.
439                                It can f.e. if SYNs crossed.
440                              */
441                 if (!sock_owned_by_user(sk)) {
442                         sk->sk_err = err;
443
444                         sk->sk_error_report(sk);
445
446                         tcp_done(sk);
447                 } else {
448                         sk->sk_err_soft = err;
449                 }
450                 goto out;
451         }
452
453         /* If we've already connected we will keep trying
454          * until we time out, or the user gives up.
455          *
456          * rfc1122 4.2.3.9 allows to consider as hard errors
457          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
458          * but it is obsoleted by pmtu discovery).
459          *
460          * Note, that in modern internet, where routing is unreliable
461          * and in each dark corner broken firewalls sit, sending random
462          * errors ordered by their masters even this two messages finally lose
463          * their original sense (even Linux sends invalid PORT_UNREACHs)
464          *
465          * Now we are in compliance with RFCs.
466          *                                                      --ANK (980905)
467          */
468
469         inet = inet_sk(sk);
470         if (!sock_owned_by_user(sk) && inet->recverr) {
471                 sk->sk_err = err;
472                 sk->sk_error_report(sk);
473         } else  { /* Only an error on timeout */
474                 sk->sk_err_soft = err;
475         }
476
477 out:
478         bh_unlock_sock(sk);
479         sock_put(sk);
480 }
481
482 /* This routine computes an IPv4 TCP checksum. */
483 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
484 {
485         struct inet_sock *inet = inet_sk(sk);
486         struct tcphdr *th = tcp_hdr(skb);
487
488         if (skb->ip_summed == CHECKSUM_PARTIAL) {
489                 th->check = ~tcp_v4_check(len, inet->saddr,
490                                           inet->daddr, 0);
491                 skb->csum_start = skb_transport_header(skb) - skb->head;
492                 skb->csum_offset = offsetof(struct tcphdr, check);
493         } else {
494                 th->check = tcp_v4_check(len, inet->saddr, inet->daddr,
495                                          csum_partial((char *)th,
496                                                       th->doff << 2,
497                                                       skb->csum));
498         }
499 }
500
501 int tcp_v4_gso_send_check(struct sk_buff *skb)
502 {
503         const struct iphdr *iph;
504         struct tcphdr *th;
505
506         if (!pskb_may_pull(skb, sizeof(*th)))
507                 return -EINVAL;
508
509         iph = ip_hdr(skb);
510         th = tcp_hdr(skb);
511
512         th->check = 0;
513         th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
514         skb->csum_start = skb_transport_header(skb) - skb->head;
515         skb->csum_offset = offsetof(struct tcphdr, check);
516         skb->ip_summed = CHECKSUM_PARTIAL;
517         return 0;
518 }
519
520 /*
521  *      This routine will send an RST to the other tcp.
522  *
523  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
524  *                    for reset.
525  *      Answer: if a packet caused RST, it is not for a socket
526  *              existing in our system, if it is matched to a socket,
527  *              it is just duplicate segment or bug in other side's TCP.
528  *              So that we build reply only basing on parameters
529  *              arrived with segment.
530  *      Exception: precedence violation. We do not implement it in any case.
531  */
532
533 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
534 {
535         struct tcphdr *th = tcp_hdr(skb);
536         struct {
537                 struct tcphdr th;
538 #ifdef CONFIG_TCP_MD5SIG
539                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
540 #endif
541         } rep;
542         struct ip_reply_arg arg;
543 #ifdef CONFIG_TCP_MD5SIG
544         struct tcp_md5sig_key *key;
545 #endif
546         struct net *net;
547
548         /* Never send a reset in response to a reset. */
549         if (th->rst)
550                 return;
551
552         if (skb->rtable->rt_type != RTN_LOCAL)
553                 return;
554
555         /* Swap the send and the receive. */
556         memset(&rep, 0, sizeof(rep));
557         rep.th.dest   = th->source;
558         rep.th.source = th->dest;
559         rep.th.doff   = sizeof(struct tcphdr) / 4;
560         rep.th.rst    = 1;
561
562         if (th->ack) {
563                 rep.th.seq = th->ack_seq;
564         } else {
565                 rep.th.ack = 1;
566                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
567                                        skb->len - (th->doff << 2));
568         }
569
570         memset(&arg, 0, sizeof(arg));
571         arg.iov[0].iov_base = (unsigned char *)&rep;
572         arg.iov[0].iov_len  = sizeof(rep.th);
573
574 #ifdef CONFIG_TCP_MD5SIG
575         key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
576         if (key) {
577                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
578                                    (TCPOPT_NOP << 16) |
579                                    (TCPOPT_MD5SIG << 8) |
580                                    TCPOLEN_MD5SIG);
581                 /* Update length and the length the header thinks exists */
582                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
583                 rep.th.doff = arg.iov[0].iov_len / 4;
584
585                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
586                                      key, ip_hdr(skb)->daddr,
587                                      ip_hdr(skb)->saddr, &rep.th);
588         }
589 #endif
590         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
591                                       ip_hdr(skb)->saddr, /* XXX */
592                                       sizeof(struct tcphdr), IPPROTO_TCP, 0);
593         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
594         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
595
596         net = dev_net(skb->dst->dev);
597         ip_send_reply(net->ipv4.tcp_sock, skb,
598                       &arg, arg.iov[0].iov_len);
599
600         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
601         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
602 }
603
604 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
605    outside socket context is ugly, certainly. What can I do?
606  */
607
608 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
609                             u32 win, u32 ts, int oif,
610                             struct tcp_md5sig_key *key,
611                             int reply_flags)
612 {
613         struct tcphdr *th = tcp_hdr(skb);
614         struct {
615                 struct tcphdr th;
616                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
617 #ifdef CONFIG_TCP_MD5SIG
618                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
619 #endif
620                         ];
621         } rep;
622         struct ip_reply_arg arg;
623         struct net *net = dev_net(skb->dst->dev);
624
625         memset(&rep.th, 0, sizeof(struct tcphdr));
626         memset(&arg, 0, sizeof(arg));
627
628         arg.iov[0].iov_base = (unsigned char *)&rep;
629         arg.iov[0].iov_len  = sizeof(rep.th);
630         if (ts) {
631                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
632                                    (TCPOPT_TIMESTAMP << 8) |
633                                    TCPOLEN_TIMESTAMP);
634                 rep.opt[1] = htonl(tcp_time_stamp);
635                 rep.opt[2] = htonl(ts);
636                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
637         }
638
639         /* Swap the send and the receive. */
640         rep.th.dest    = th->source;
641         rep.th.source  = th->dest;
642         rep.th.doff    = arg.iov[0].iov_len / 4;
643         rep.th.seq     = htonl(seq);
644         rep.th.ack_seq = htonl(ack);
645         rep.th.ack     = 1;
646         rep.th.window  = htons(win);
647
648 #ifdef CONFIG_TCP_MD5SIG
649         if (key) {
650                 int offset = (ts) ? 3 : 0;
651
652                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
653                                           (TCPOPT_NOP << 16) |
654                                           (TCPOPT_MD5SIG << 8) |
655                                           TCPOLEN_MD5SIG);
656                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
657                 rep.th.doff = arg.iov[0].iov_len/4;
658
659                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
660                                     key, ip_hdr(skb)->saddr,
661                                     ip_hdr(skb)->daddr, &rep.th);
662         }
663 #endif
664         arg.flags = reply_flags;
665         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
666                                       ip_hdr(skb)->saddr, /* XXX */
667                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
668         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
669         if (oif)
670                 arg.bound_dev_if = oif;
671
672         ip_send_reply(net->ipv4.tcp_sock, skb,
673                       &arg, arg.iov[0].iov_len);
674
675         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
676 }
677
678 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
679 {
680         struct inet_timewait_sock *tw = inet_twsk(sk);
681         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
682
683         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
684                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
685                         tcptw->tw_ts_recent,
686                         tw->tw_bound_dev_if,
687                         tcp_twsk_md5_key(tcptw),
688                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
689                         );
690
691         inet_twsk_put(tw);
692 }
693
694 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
695                                   struct request_sock *req)
696 {
697         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
698                         tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
699                         req->ts_recent,
700                         0,
701                         tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
702                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
703 }
704
705 /*
706  *      Send a SYN-ACK after having received a SYN.
707  *      This still operates on a request_sock only, not on a big
708  *      socket.
709  */
710 static int __tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
711                                 struct dst_entry *dst)
712 {
713         const struct inet_request_sock *ireq = inet_rsk(req);
714         int err = -1;
715         struct sk_buff * skb;
716
717         /* First, grab a route. */
718         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
719                 return -1;
720
721         skb = tcp_make_synack(sk, dst, req);
722
723         if (skb) {
724                 struct tcphdr *th = tcp_hdr(skb);
725
726                 th->check = tcp_v4_check(skb->len,
727                                          ireq->loc_addr,
728                                          ireq->rmt_addr,
729                                          csum_partial((char *)th, skb->len,
730                                                       skb->csum));
731
732                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
733                                             ireq->rmt_addr,
734                                             ireq->opt);
735                 err = net_xmit_eval(err);
736         }
737
738         dst_release(dst);
739         return err;
740 }
741
742 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req)
743 {
744         return __tcp_v4_send_synack(sk, req, NULL);
745 }
746
747 /*
748  *      IPv4 request_sock destructor.
749  */
750 static void tcp_v4_reqsk_destructor(struct request_sock *req)
751 {
752         kfree(inet_rsk(req)->opt);
753 }
754
755 #ifdef CONFIG_SYN_COOKIES
756 static void syn_flood_warning(struct sk_buff *skb)
757 {
758         static unsigned long warntime;
759
760         if (time_after(jiffies, (warntime + HZ * 60))) {
761                 warntime = jiffies;
762                 printk(KERN_INFO
763                        "possible SYN flooding on port %d. Sending cookies.\n",
764                        ntohs(tcp_hdr(skb)->dest));
765         }
766 }
767 #endif
768
769 /*
770  * Save and compile IPv4 options into the request_sock if needed.
771  */
772 static struct ip_options *tcp_v4_save_options(struct sock *sk,
773                                               struct sk_buff *skb)
774 {
775         struct ip_options *opt = &(IPCB(skb)->opt);
776         struct ip_options *dopt = NULL;
777
778         if (opt && opt->optlen) {
779                 int opt_size = optlength(opt);
780                 dopt = kmalloc(opt_size, GFP_ATOMIC);
781                 if (dopt) {
782                         if (ip_options_echo(dopt, skb)) {
783                                 kfree(dopt);
784                                 dopt = NULL;
785                         }
786                 }
787         }
788         return dopt;
789 }
790
791 #ifdef CONFIG_TCP_MD5SIG
792 /*
793  * RFC2385 MD5 checksumming requires a mapping of
794  * IP address->MD5 Key.
795  * We need to maintain these in the sk structure.
796  */
797
798 /* Find the Key structure for an address.  */
799 static struct tcp_md5sig_key *
800                         tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
801 {
802         struct tcp_sock *tp = tcp_sk(sk);
803         int i;
804
805         if (!tp->md5sig_info || !tp->md5sig_info->entries4)
806                 return NULL;
807         for (i = 0; i < tp->md5sig_info->entries4; i++) {
808                 if (tp->md5sig_info->keys4[i].addr == addr)
809                         return &tp->md5sig_info->keys4[i].base;
810         }
811         return NULL;
812 }
813
814 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
815                                          struct sock *addr_sk)
816 {
817         return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr);
818 }
819
820 EXPORT_SYMBOL(tcp_v4_md5_lookup);
821
822 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
823                                                       struct request_sock *req)
824 {
825         return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
826 }
827
828 /* This can be called on a newly created socket, from other files */
829 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
830                       u8 *newkey, u8 newkeylen)
831 {
832         /* Add Key to the list */
833         struct tcp_md5sig_key *key;
834         struct tcp_sock *tp = tcp_sk(sk);
835         struct tcp4_md5sig_key *keys;
836
837         key = tcp_v4_md5_do_lookup(sk, addr);
838         if (key) {
839                 /* Pre-existing entry - just update that one. */
840                 kfree(key->key);
841                 key->key = newkey;
842                 key->keylen = newkeylen;
843         } else {
844                 struct tcp_md5sig_info *md5sig;
845
846                 if (!tp->md5sig_info) {
847                         tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
848                                                   GFP_ATOMIC);
849                         if (!tp->md5sig_info) {
850                                 kfree(newkey);
851                                 return -ENOMEM;
852                         }
853                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
854                 }
855                 if (tcp_alloc_md5sig_pool() == NULL) {
856                         kfree(newkey);
857                         return -ENOMEM;
858                 }
859                 md5sig = tp->md5sig_info;
860
861                 if (md5sig->alloced4 == md5sig->entries4) {
862                         keys = kmalloc((sizeof(*keys) *
863                                         (md5sig->entries4 + 1)), GFP_ATOMIC);
864                         if (!keys) {
865                                 kfree(newkey);
866                                 tcp_free_md5sig_pool();
867                                 return -ENOMEM;
868                         }
869
870                         if (md5sig->entries4)
871                                 memcpy(keys, md5sig->keys4,
872                                        sizeof(*keys) * md5sig->entries4);
873
874                         /* Free old key list, and reference new one */
875                         kfree(md5sig->keys4);
876                         md5sig->keys4 = keys;
877                         md5sig->alloced4++;
878                 }
879                 md5sig->entries4++;
880                 md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
881                 md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
882                 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
883         }
884         return 0;
885 }
886
887 EXPORT_SYMBOL(tcp_v4_md5_do_add);
888
889 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
890                                u8 *newkey, u8 newkeylen)
891 {
892         return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr,
893                                  newkey, newkeylen);
894 }
895
896 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
897 {
898         struct tcp_sock *tp = tcp_sk(sk);
899         int i;
900
901         for (i = 0; i < tp->md5sig_info->entries4; i++) {
902                 if (tp->md5sig_info->keys4[i].addr == addr) {
903                         /* Free the key */
904                         kfree(tp->md5sig_info->keys4[i].base.key);
905                         tp->md5sig_info->entries4--;
906
907                         if (tp->md5sig_info->entries4 == 0) {
908                                 kfree(tp->md5sig_info->keys4);
909                                 tp->md5sig_info->keys4 = NULL;
910                                 tp->md5sig_info->alloced4 = 0;
911                         } else if (tp->md5sig_info->entries4 != i) {
912                                 /* Need to do some manipulation */
913                                 memmove(&tp->md5sig_info->keys4[i],
914                                         &tp->md5sig_info->keys4[i+1],
915                                         (tp->md5sig_info->entries4 - i) *
916                                          sizeof(struct tcp4_md5sig_key));
917                         }
918                         tcp_free_md5sig_pool();
919                         return 0;
920                 }
921         }
922         return -ENOENT;
923 }
924
925 EXPORT_SYMBOL(tcp_v4_md5_do_del);
926
927 static void tcp_v4_clear_md5_list(struct sock *sk)
928 {
929         struct tcp_sock *tp = tcp_sk(sk);
930
931         /* Free each key, then the set of key keys,
932          * the crypto element, and then decrement our
933          * hold on the last resort crypto.
934          */
935         if (tp->md5sig_info->entries4) {
936                 int i;
937                 for (i = 0; i < tp->md5sig_info->entries4; i++)
938                         kfree(tp->md5sig_info->keys4[i].base.key);
939                 tp->md5sig_info->entries4 = 0;
940                 tcp_free_md5sig_pool();
941         }
942         if (tp->md5sig_info->keys4) {
943                 kfree(tp->md5sig_info->keys4);
944                 tp->md5sig_info->keys4 = NULL;
945                 tp->md5sig_info->alloced4  = 0;
946         }
947 }
948
949 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
950                                  int optlen)
951 {
952         struct tcp_md5sig cmd;
953         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
954         u8 *newkey;
955
956         if (optlen < sizeof(cmd))
957                 return -EINVAL;
958
959         if (copy_from_user(&cmd, optval, sizeof(cmd)))
960                 return -EFAULT;
961
962         if (sin->sin_family != AF_INET)
963                 return -EINVAL;
964
965         if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
966                 if (!tcp_sk(sk)->md5sig_info)
967                         return -ENOENT;
968                 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
969         }
970
971         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
972                 return -EINVAL;
973
974         if (!tcp_sk(sk)->md5sig_info) {
975                 struct tcp_sock *tp = tcp_sk(sk);
976                 struct tcp_md5sig_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
977
978                 if (!p)
979                         return -EINVAL;
980
981                 tp->md5sig_info = p;
982                 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
983         }
984
985         newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
986         if (!newkey)
987                 return -ENOMEM;
988         return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
989                                  newkey, cmd.tcpm_keylen);
990 }
991
992 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
993                                         __be32 daddr, __be32 saddr, int nbytes)
994 {
995         struct tcp4_pseudohdr *bp;
996         struct scatterlist sg;
997
998         bp = &hp->md5_blk.ip4;
999
1000         /*
1001          * 1. the TCP pseudo-header (in the order: source IP address,
1002          * destination IP address, zero-padded protocol number, and
1003          * segment length)
1004          */
1005         bp->saddr = saddr;
1006         bp->daddr = daddr;
1007         bp->pad = 0;
1008         bp->protocol = IPPROTO_TCP;
1009         bp->len = cpu_to_be16(nbytes);
1010
1011         sg_init_one(&sg, bp, sizeof(*bp));
1012         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1013 }
1014
1015 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1016                                __be32 daddr, __be32 saddr, struct tcphdr *th)
1017 {
1018         struct tcp_md5sig_pool *hp;
1019         struct hash_desc *desc;
1020
1021         hp = tcp_get_md5sig_pool();
1022         if (!hp)
1023                 goto clear_hash_noput;
1024         desc = &hp->md5_desc;
1025
1026         if (crypto_hash_init(desc))
1027                 goto clear_hash;
1028         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1029                 goto clear_hash;
1030         if (tcp_md5_hash_header(hp, th))
1031                 goto clear_hash;
1032         if (tcp_md5_hash_key(hp, key))
1033                 goto clear_hash;
1034         if (crypto_hash_final(desc, md5_hash))
1035                 goto clear_hash;
1036
1037         tcp_put_md5sig_pool();
1038         return 0;
1039
1040 clear_hash:
1041         tcp_put_md5sig_pool();
1042 clear_hash_noput:
1043         memset(md5_hash, 0, 16);
1044         return 1;
1045 }
1046
1047 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1048                         struct sock *sk, struct request_sock *req,
1049                         struct sk_buff *skb)
1050 {
1051         struct tcp_md5sig_pool *hp;
1052         struct hash_desc *desc;
1053         struct tcphdr *th = tcp_hdr(skb);
1054         __be32 saddr, daddr;
1055
1056         if (sk) {
1057                 saddr = inet_sk(sk)->saddr;
1058                 daddr = inet_sk(sk)->daddr;
1059         } else if (req) {
1060                 saddr = inet_rsk(req)->loc_addr;
1061                 daddr = inet_rsk(req)->rmt_addr;
1062         } else {
1063                 const struct iphdr *iph = ip_hdr(skb);
1064                 saddr = iph->saddr;
1065                 daddr = iph->daddr;
1066         }
1067
1068         hp = tcp_get_md5sig_pool();
1069         if (!hp)
1070                 goto clear_hash_noput;
1071         desc = &hp->md5_desc;
1072
1073         if (crypto_hash_init(desc))
1074                 goto clear_hash;
1075
1076         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1077                 goto clear_hash;
1078         if (tcp_md5_hash_header(hp, th))
1079                 goto clear_hash;
1080         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1081                 goto clear_hash;
1082         if (tcp_md5_hash_key(hp, key))
1083                 goto clear_hash;
1084         if (crypto_hash_final(desc, md5_hash))
1085                 goto clear_hash;
1086
1087         tcp_put_md5sig_pool();
1088         return 0;
1089
1090 clear_hash:
1091         tcp_put_md5sig_pool();
1092 clear_hash_noput:
1093         memset(md5_hash, 0, 16);
1094         return 1;
1095 }
1096
1097 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1098
1099 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1100 {
1101         /*
1102          * This gets called for each TCP segment that arrives
1103          * so we want to be efficient.
1104          * We have 3 drop cases:
1105          * o No MD5 hash and one expected.
1106          * o MD5 hash and we're not expecting one.
1107          * o MD5 hash and its wrong.
1108          */
1109         __u8 *hash_location = NULL;
1110         struct tcp_md5sig_key *hash_expected;
1111         const struct iphdr *iph = ip_hdr(skb);
1112         struct tcphdr *th = tcp_hdr(skb);
1113         int genhash;
1114         unsigned char newhash[16];
1115
1116         hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1117         hash_location = tcp_parse_md5sig_option(th);
1118
1119         /* We've parsed the options - do we have a hash? */
1120         if (!hash_expected && !hash_location)
1121                 return 0;
1122
1123         if (hash_expected && !hash_location) {
1124                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1125                 return 1;
1126         }
1127
1128         if (!hash_expected && hash_location) {
1129                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1130                 return 1;
1131         }
1132
1133         /* Okay, so this is hash_expected and hash_location -
1134          * so we need to calculate the checksum.
1135          */
1136         genhash = tcp_v4_md5_hash_skb(newhash,
1137                                       hash_expected,
1138                                       NULL, NULL, skb);
1139
1140         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1141                 if (net_ratelimit()) {
1142                         printk(KERN_INFO "MD5 Hash failed for "
1143                                "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)%s\n",
1144                                NIPQUAD(iph->saddr), ntohs(th->source),
1145                                NIPQUAD(iph->daddr), ntohs(th->dest),
1146                                genhash ? " tcp_v4_calc_md5_hash failed" : "");
1147                 }
1148                 return 1;
1149         }
1150         return 0;
1151 }
1152
1153 #endif
1154
1155 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1156         .family         =       PF_INET,
1157         .obj_size       =       sizeof(struct tcp_request_sock),
1158         .rtx_syn_ack    =       tcp_v4_send_synack,
1159         .send_ack       =       tcp_v4_reqsk_send_ack,
1160         .destructor     =       tcp_v4_reqsk_destructor,
1161         .send_reset     =       tcp_v4_send_reset,
1162 };
1163
1164 #ifdef CONFIG_TCP_MD5SIG
1165 static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1166         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1167 };
1168 #endif
1169
1170 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1171         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
1172         .twsk_unique    = tcp_twsk_unique,
1173         .twsk_destructor= tcp_twsk_destructor,
1174 };
1175
1176 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1177 {
1178         struct inet_request_sock *ireq;
1179         struct tcp_options_received tmp_opt;
1180         struct request_sock *req;
1181         __be32 saddr = ip_hdr(skb)->saddr;
1182         __be32 daddr = ip_hdr(skb)->daddr;
1183         __u32 isn = TCP_SKB_CB(skb)->when;
1184         struct dst_entry *dst = NULL;
1185 #ifdef CONFIG_SYN_COOKIES
1186         int want_cookie = 0;
1187 #else
1188 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1189 #endif
1190
1191         /* Never answer to SYNs send to broadcast or multicast */
1192         if (skb->rtable->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1193                 goto drop;
1194
1195         /* TW buckets are converted to open requests without
1196          * limitations, they conserve resources and peer is
1197          * evidently real one.
1198          */
1199         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1200 #ifdef CONFIG_SYN_COOKIES
1201                 if (sysctl_tcp_syncookies) {
1202                         want_cookie = 1;
1203                 } else
1204 #endif
1205                 goto drop;
1206         }
1207
1208         /* Accept backlog is full. If we have already queued enough
1209          * of warm entries in syn queue, drop request. It is better than
1210          * clogging syn queue with openreqs with exponentially increasing
1211          * timeout.
1212          */
1213         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1214                 goto drop;
1215
1216         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1217         if (!req)
1218                 goto drop;
1219
1220 #ifdef CONFIG_TCP_MD5SIG
1221         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1222 #endif
1223
1224         tcp_clear_options(&tmp_opt);
1225         tmp_opt.mss_clamp = 536;
1226         tmp_opt.user_mss  = tcp_sk(sk)->rx_opt.user_mss;
1227
1228         tcp_parse_options(skb, &tmp_opt, 0);
1229
1230         if (want_cookie && !tmp_opt.saw_tstamp)
1231                 tcp_clear_options(&tmp_opt);
1232
1233         if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
1234                 /* Some OSes (unknown ones, but I see them on web server, which
1235                  * contains information interesting only for windows'
1236                  * users) do not send their stamp in SYN. It is easy case.
1237                  * We simply do not advertise TS support.
1238                  */
1239                 tmp_opt.saw_tstamp = 0;
1240                 tmp_opt.tstamp_ok  = 0;
1241         }
1242         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1243
1244         tcp_openreq_init(req, &tmp_opt, skb);
1245
1246         if (security_inet_conn_request(sk, skb, req))
1247                 goto drop_and_free;
1248
1249         ireq = inet_rsk(req);
1250         ireq->loc_addr = daddr;
1251         ireq->rmt_addr = saddr;
1252         ireq->no_srccheck = inet_sk(sk)->transparent;
1253         ireq->opt = tcp_v4_save_options(sk, skb);
1254         if (!want_cookie)
1255                 TCP_ECN_create_request(req, tcp_hdr(skb));
1256
1257         if (want_cookie) {
1258 #ifdef CONFIG_SYN_COOKIES
1259                 syn_flood_warning(skb);
1260                 req->cookie_ts = tmp_opt.tstamp_ok;
1261 #endif
1262                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1263         } else if (!isn) {
1264                 struct inet_peer *peer = NULL;
1265
1266                 /* VJ's idea. We save last timestamp seen
1267                  * from the destination in peer table, when entering
1268                  * state TIME-WAIT, and check against it before
1269                  * accepting new connection request.
1270                  *
1271                  * If "isn" is not zero, this request hit alive
1272                  * timewait bucket, so that all the necessary checks
1273                  * are made in the function processing timewait state.
1274                  */
1275                 if (tmp_opt.saw_tstamp &&
1276                     tcp_death_row.sysctl_tw_recycle &&
1277                     (dst = inet_csk_route_req(sk, req)) != NULL &&
1278                     (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1279                     peer->v4daddr == saddr) {
1280                         if (get_seconds() < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1281                             (s32)(peer->tcp_ts - req->ts_recent) >
1282                                                         TCP_PAWS_WINDOW) {
1283                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1284                                 goto drop_and_release;
1285                         }
1286                 }
1287                 /* Kill the following clause, if you dislike this way. */
1288                 else if (!sysctl_tcp_syncookies &&
1289                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1290                           (sysctl_max_syn_backlog >> 2)) &&
1291                          (!peer || !peer->tcp_ts_stamp) &&
1292                          (!dst || !dst_metric(dst, RTAX_RTT))) {
1293                         /* Without syncookies last quarter of
1294                          * backlog is filled with destinations,
1295                          * proven to be alive.
1296                          * It means that we continue to communicate
1297                          * to destinations, already remembered
1298                          * to the moment of synflood.
1299                          */
1300                         LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
1301                                        "request from " NIPQUAD_FMT "/%u\n",
1302                                        NIPQUAD(saddr),
1303                                        ntohs(tcp_hdr(skb)->source));
1304                         goto drop_and_release;
1305                 }
1306
1307                 isn = tcp_v4_init_sequence(skb);
1308         }
1309         tcp_rsk(req)->snt_isn = isn;
1310
1311         if (__tcp_v4_send_synack(sk, req, dst) || want_cookie)
1312                 goto drop_and_free;
1313
1314         inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1315         return 0;
1316
1317 drop_and_release:
1318         dst_release(dst);
1319 drop_and_free:
1320         reqsk_free(req);
1321 drop:
1322         return 0;
1323 }
1324
1325
1326 /*
1327  * The three way handshake has completed - we got a valid synack -
1328  * now create the new socket.
1329  */
1330 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1331                                   struct request_sock *req,
1332                                   struct dst_entry *dst)
1333 {
1334         struct inet_request_sock *ireq;
1335         struct inet_sock *newinet;
1336         struct tcp_sock *newtp;
1337         struct sock *newsk;
1338 #ifdef CONFIG_TCP_MD5SIG
1339         struct tcp_md5sig_key *key;
1340 #endif
1341
1342         if (sk_acceptq_is_full(sk))
1343                 goto exit_overflow;
1344
1345         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1346                 goto exit;
1347
1348         newsk = tcp_create_openreq_child(sk, req, skb);
1349         if (!newsk)
1350                 goto exit;
1351
1352         newsk->sk_gso_type = SKB_GSO_TCPV4;
1353         sk_setup_caps(newsk, dst);
1354
1355         newtp                 = tcp_sk(newsk);
1356         newinet               = inet_sk(newsk);
1357         ireq                  = inet_rsk(req);
1358         newinet->daddr        = ireq->rmt_addr;
1359         newinet->rcv_saddr    = ireq->loc_addr;
1360         newinet->saddr        = ireq->loc_addr;
1361         newinet->opt          = ireq->opt;
1362         ireq->opt             = NULL;
1363         newinet->mc_index     = inet_iif(skb);
1364         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1365         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1366         if (newinet->opt)
1367                 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1368         newinet->id = newtp->write_seq ^ jiffies;
1369
1370         tcp_mtup_init(newsk);
1371         tcp_sync_mss(newsk, dst_mtu(dst));
1372         newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1373         if (tcp_sk(sk)->rx_opt.user_mss &&
1374             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1375                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1376
1377         tcp_initialize_rcv_mss(newsk);
1378
1379 #ifdef CONFIG_TCP_MD5SIG
1380         /* Copy over the MD5 key from the original socket */
1381         if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) {
1382                 /*
1383                  * We're using one, so create a matching key
1384                  * on the newsk structure. If we fail to get
1385                  * memory, then we end up not copying the key
1386                  * across. Shucks.
1387                  */
1388                 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1389                 if (newkey != NULL)
1390                         tcp_v4_md5_do_add(newsk, inet_sk(sk)->daddr,
1391                                           newkey, key->keylen);
1392                 newsk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1393         }
1394 #endif
1395
1396         __inet_hash_nolisten(newsk);
1397         __inet_inherit_port(sk, newsk);
1398
1399         return newsk;
1400
1401 exit_overflow:
1402         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1403 exit:
1404         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1405         dst_release(dst);
1406         return NULL;
1407 }
1408
1409 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1410 {
1411         struct tcphdr *th = tcp_hdr(skb);
1412         const struct iphdr *iph = ip_hdr(skb);
1413         struct sock *nsk;
1414         struct request_sock **prev;
1415         /* Find possible connection requests. */
1416         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1417                                                        iph->saddr, iph->daddr);
1418         if (req)
1419                 return tcp_check_req(sk, skb, req, prev);
1420
1421         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1422                         th->source, iph->daddr, th->dest, inet_iif(skb));
1423
1424         if (nsk) {
1425                 if (nsk->sk_state != TCP_TIME_WAIT) {
1426                         bh_lock_sock(nsk);
1427                         return nsk;
1428                 }
1429                 inet_twsk_put(inet_twsk(nsk));
1430                 return NULL;
1431         }
1432
1433 #ifdef CONFIG_SYN_COOKIES
1434         if (!th->rst && !th->syn && th->ack)
1435                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1436 #endif
1437         return sk;
1438 }
1439
1440 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1441 {
1442         const struct iphdr *iph = ip_hdr(skb);
1443
1444         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1445                 if (!tcp_v4_check(skb->len, iph->saddr,
1446                                   iph->daddr, skb->csum)) {
1447                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1448                         return 0;
1449                 }
1450         }
1451
1452         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1453                                        skb->len, IPPROTO_TCP, 0);
1454
1455         if (skb->len <= 76) {
1456                 return __skb_checksum_complete(skb);
1457         }
1458         return 0;
1459 }
1460
1461
1462 /* The socket must have it's spinlock held when we get
1463  * here.
1464  *
1465  * We have a potential double-lock case here, so even when
1466  * doing backlog processing we use the BH locking scheme.
1467  * This is because we cannot sleep with the original spinlock
1468  * held.
1469  */
1470 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1471 {
1472         struct sock *rsk;
1473 #ifdef CONFIG_TCP_MD5SIG
1474         /*
1475          * We really want to reject the packet as early as possible
1476          * if:
1477          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1478          *  o There is an MD5 option and we're not expecting one
1479          */
1480         if (tcp_v4_inbound_md5_hash(sk, skb))
1481                 goto discard;
1482 #endif
1483
1484         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1485                 TCP_CHECK_TIMER(sk);
1486                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1487                         rsk = sk;
1488                         goto reset;
1489                 }
1490                 TCP_CHECK_TIMER(sk);
1491                 return 0;
1492         }
1493
1494         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1495                 goto csum_err;
1496
1497         if (sk->sk_state == TCP_LISTEN) {
1498                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1499                 if (!nsk)
1500                         goto discard;
1501
1502                 if (nsk != sk) {
1503                         if (tcp_child_process(sk, nsk, skb)) {
1504                                 rsk = nsk;
1505                                 goto reset;
1506                         }
1507                         return 0;
1508                 }
1509         }
1510
1511         TCP_CHECK_TIMER(sk);
1512         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1513                 rsk = sk;
1514                 goto reset;
1515         }
1516         TCP_CHECK_TIMER(sk);
1517         return 0;
1518
1519 reset:
1520         tcp_v4_send_reset(rsk, skb);
1521 discard:
1522         kfree_skb(skb);
1523         /* Be careful here. If this function gets more complicated and
1524          * gcc suffers from register pressure on the x86, sk (in %ebx)
1525          * might be destroyed here. This current version compiles correctly,
1526          * but you have been warned.
1527          */
1528         return 0;
1529
1530 csum_err:
1531         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1532         goto discard;
1533 }
1534
1535 /*
1536  *      From tcp_input.c
1537  */
1538
1539 int tcp_v4_rcv(struct sk_buff *skb)
1540 {
1541         const struct iphdr *iph;
1542         struct tcphdr *th;
1543         struct sock *sk;
1544         int ret;
1545         struct net *net = dev_net(skb->dev);
1546
1547         if (skb->pkt_type != PACKET_HOST)
1548                 goto discard_it;
1549
1550         /* Count it even if it's bad */
1551         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1552
1553         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1554                 goto discard_it;
1555
1556         th = tcp_hdr(skb);
1557
1558         if (th->doff < sizeof(struct tcphdr) / 4)
1559                 goto bad_packet;
1560         if (!pskb_may_pull(skb, th->doff * 4))
1561                 goto discard_it;
1562
1563         /* An explanation is required here, I think.
1564          * Packet length and doff are validated by header prediction,
1565          * provided case of th->doff==0 is eliminated.
1566          * So, we defer the checks. */
1567         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1568                 goto bad_packet;
1569
1570         th = tcp_hdr(skb);
1571         iph = ip_hdr(skb);
1572         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1573         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1574                                     skb->len - th->doff * 4);
1575         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1576         TCP_SKB_CB(skb)->when    = 0;
1577         TCP_SKB_CB(skb)->flags   = iph->tos;
1578         TCP_SKB_CB(skb)->sacked  = 0;
1579
1580         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1581         if (!sk)
1582                 goto no_tcp_socket;
1583
1584 process:
1585         if (sk->sk_state == TCP_TIME_WAIT)
1586                 goto do_time_wait;
1587
1588         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1589                 goto discard_and_relse;
1590         nf_reset(skb);
1591
1592         if (sk_filter(sk, skb))
1593                 goto discard_and_relse;
1594
1595         skb->dev = NULL;
1596
1597         bh_lock_sock_nested(sk);
1598         ret = 0;
1599         if (!sock_owned_by_user(sk)) {
1600 #ifdef CONFIG_NET_DMA
1601                 struct tcp_sock *tp = tcp_sk(sk);
1602                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1603                         tp->ucopy.dma_chan = get_softnet_dma();
1604                 if (tp->ucopy.dma_chan)
1605                         ret = tcp_v4_do_rcv(sk, skb);
1606                 else
1607 #endif
1608                 {
1609                         if (!tcp_prequeue(sk, skb))
1610                         ret = tcp_v4_do_rcv(sk, skb);
1611                 }
1612         } else
1613                 sk_add_backlog(sk, skb);
1614         bh_unlock_sock(sk);
1615
1616         sock_put(sk);
1617
1618         return ret;
1619
1620 no_tcp_socket:
1621         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1622                 goto discard_it;
1623
1624         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1625 bad_packet:
1626                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1627         } else {
1628                 tcp_v4_send_reset(NULL, skb);
1629         }
1630
1631 discard_it:
1632         /* Discard frame. */
1633         kfree_skb(skb);
1634         return 0;
1635
1636 discard_and_relse:
1637         sock_put(sk);
1638         goto discard_it;
1639
1640 do_time_wait:
1641         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1642                 inet_twsk_put(inet_twsk(sk));
1643                 goto discard_it;
1644         }
1645
1646         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1647                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1648                 inet_twsk_put(inet_twsk(sk));
1649                 goto discard_it;
1650         }
1651         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1652         case TCP_TW_SYN: {
1653                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1654                                                         &tcp_hashinfo,
1655                                                         iph->daddr, th->dest,
1656                                                         inet_iif(skb));
1657                 if (sk2) {
1658                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1659                         inet_twsk_put(inet_twsk(sk));
1660                         sk = sk2;
1661                         goto process;
1662                 }
1663                 /* Fall through to ACK */
1664         }
1665         case TCP_TW_ACK:
1666                 tcp_v4_timewait_ack(sk, skb);
1667                 break;
1668         case TCP_TW_RST:
1669                 goto no_tcp_socket;
1670         case TCP_TW_SUCCESS:;
1671         }
1672         goto discard_it;
1673 }
1674
1675 /* VJ's idea. Save last timestamp seen from this destination
1676  * and hold it at least for normal timewait interval to use for duplicate
1677  * segment detection in subsequent connections, before they enter synchronized
1678  * state.
1679  */
1680
1681 int tcp_v4_remember_stamp(struct sock *sk)
1682 {
1683         struct inet_sock *inet = inet_sk(sk);
1684         struct tcp_sock *tp = tcp_sk(sk);
1685         struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1686         struct inet_peer *peer = NULL;
1687         int release_it = 0;
1688
1689         if (!rt || rt->rt_dst != inet->daddr) {
1690                 peer = inet_getpeer(inet->daddr, 1);
1691                 release_it = 1;
1692         } else {
1693                 if (!rt->peer)
1694                         rt_bind_peer(rt, 1);
1695                 peer = rt->peer;
1696         }
1697
1698         if (peer) {
1699                 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1700                     (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1701                      peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1702                         peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1703                         peer->tcp_ts = tp->rx_opt.ts_recent;
1704                 }
1705                 if (release_it)
1706                         inet_putpeer(peer);
1707                 return 1;
1708         }
1709
1710         return 0;
1711 }
1712
1713 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1714 {
1715         struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1716
1717         if (peer) {
1718                 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1719
1720                 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1721                     (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1722                      peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1723                         peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1724                         peer->tcp_ts       = tcptw->tw_ts_recent;
1725                 }
1726                 inet_putpeer(peer);
1727                 return 1;
1728         }
1729
1730         return 0;
1731 }
1732
1733 struct inet_connection_sock_af_ops ipv4_specific = {
1734         .queue_xmit        = ip_queue_xmit,
1735         .send_check        = tcp_v4_send_check,
1736         .rebuild_header    = inet_sk_rebuild_header,
1737         .conn_request      = tcp_v4_conn_request,
1738         .syn_recv_sock     = tcp_v4_syn_recv_sock,
1739         .remember_stamp    = tcp_v4_remember_stamp,
1740         .net_header_len    = sizeof(struct iphdr),
1741         .setsockopt        = ip_setsockopt,
1742         .getsockopt        = ip_getsockopt,
1743         .addr2sockaddr     = inet_csk_addr2sockaddr,
1744         .sockaddr_len      = sizeof(struct sockaddr_in),
1745         .bind_conflict     = inet_csk_bind_conflict,
1746 #ifdef CONFIG_COMPAT
1747         .compat_setsockopt = compat_ip_setsockopt,
1748         .compat_getsockopt = compat_ip_getsockopt,
1749 #endif
1750 };
1751
1752 #ifdef CONFIG_TCP_MD5SIG
1753 static struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1754         .md5_lookup             = tcp_v4_md5_lookup,
1755         .calc_md5_hash          = tcp_v4_md5_hash_skb,
1756         .md5_add                = tcp_v4_md5_add_func,
1757         .md5_parse              = tcp_v4_parse_md5_keys,
1758 };
1759 #endif
1760
1761 /* NOTE: A lot of things set to zero explicitly by call to
1762  *       sk_alloc() so need not be done here.
1763  */
1764 static int tcp_v4_init_sock(struct sock *sk)
1765 {
1766         struct inet_connection_sock *icsk = inet_csk(sk);
1767         struct tcp_sock *tp = tcp_sk(sk);
1768
1769         skb_queue_head_init(&tp->out_of_order_queue);
1770         tcp_init_xmit_timers(sk);
1771         tcp_prequeue_init(tp);
1772
1773         icsk->icsk_rto = TCP_TIMEOUT_INIT;
1774         tp->mdev = TCP_TIMEOUT_INIT;
1775
1776         /* So many TCP implementations out there (incorrectly) count the
1777          * initial SYN frame in their delayed-ACK and congestion control
1778          * algorithms that we must have the following bandaid to talk
1779          * efficiently to them.  -DaveM
1780          */
1781         tp->snd_cwnd = 2;
1782
1783         /* See draft-stevens-tcpca-spec-01 for discussion of the
1784          * initialization of these values.
1785          */
1786         tp->snd_ssthresh = 0x7fffffff;  /* Infinity */
1787         tp->snd_cwnd_clamp = ~0;
1788         tp->mss_cache = 536;
1789
1790         tp->reordering = sysctl_tcp_reordering;
1791         icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1792
1793         sk->sk_state = TCP_CLOSE;
1794
1795         sk->sk_write_space = sk_stream_write_space;
1796         sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1797
1798         icsk->icsk_af_ops = &ipv4_specific;
1799         icsk->icsk_sync_mss = tcp_sync_mss;
1800 #ifdef CONFIG_TCP_MD5SIG
1801         tp->af_specific = &tcp_sock_ipv4_specific;
1802 #endif
1803
1804         sk->sk_sndbuf = sysctl_tcp_wmem[1];
1805         sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1806
1807         atomic_inc(&tcp_sockets_allocated);
1808
1809         return 0;
1810 }
1811
1812 void tcp_v4_destroy_sock(struct sock *sk)
1813 {
1814         struct tcp_sock *tp = tcp_sk(sk);
1815
1816         tcp_clear_xmit_timers(sk);
1817
1818         tcp_cleanup_congestion_control(sk);
1819
1820         /* Cleanup up the write buffer. */
1821         tcp_write_queue_purge(sk);
1822
1823         /* Cleans up our, hopefully empty, out_of_order_queue. */
1824         __skb_queue_purge(&tp->out_of_order_queue);
1825
1826 #ifdef CONFIG_TCP_MD5SIG
1827         /* Clean up the MD5 key list, if any */
1828         if (tp->md5sig_info) {
1829                 tcp_v4_clear_md5_list(sk);
1830                 kfree(tp->md5sig_info);
1831                 tp->md5sig_info = NULL;
1832         }
1833 #endif
1834
1835 #ifdef CONFIG_NET_DMA
1836         /* Cleans up our sk_async_wait_queue */
1837         __skb_queue_purge(&sk->sk_async_wait_queue);
1838 #endif
1839
1840         /* Clean prequeue, it must be empty really */
1841         __skb_queue_purge(&tp->ucopy.prequeue);
1842
1843         /* Clean up a referenced TCP bind bucket. */
1844         if (inet_csk(sk)->icsk_bind_hash)
1845                 inet_put_port(sk);
1846
1847         /*
1848          * If sendmsg cached page exists, toss it.
1849          */
1850         if (sk->sk_sndmsg_page) {
1851                 __free_page(sk->sk_sndmsg_page);
1852                 sk->sk_sndmsg_page = NULL;
1853         }
1854
1855         atomic_dec(&tcp_sockets_allocated);
1856 }
1857
1858 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1859
1860 #ifdef CONFIG_PROC_FS
1861 /* Proc filesystem TCP sock list dumping. */
1862
1863 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1864 {
1865         return hlist_empty(head) ? NULL :
1866                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1867 }
1868
1869 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1870 {
1871         return tw->tw_node.next ?
1872                 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1873 }
1874
1875 static void *listening_get_next(struct seq_file *seq, void *cur)
1876 {
1877         struct inet_connection_sock *icsk;
1878         struct hlist_node *node;
1879         struct sock *sk = cur;
1880         struct tcp_iter_state* st = seq->private;
1881         struct net *net = seq_file_net(seq);
1882
1883         if (!sk) {
1884                 st->bucket = 0;
1885                 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1886                 goto get_sk;
1887         }
1888
1889         ++st->num;
1890
1891         if (st->state == TCP_SEQ_STATE_OPENREQ) {
1892                 struct request_sock *req = cur;
1893
1894                 icsk = inet_csk(st->syn_wait_sk);
1895                 req = req->dl_next;
1896                 while (1) {
1897                         while (req) {
1898                                 if (req->rsk_ops->family == st->family) {
1899                                         cur = req;
1900                                         goto out;
1901                                 }
1902                                 req = req->dl_next;
1903                         }
1904                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1905                                 break;
1906 get_req:
1907                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1908                 }
1909                 sk        = sk_next(st->syn_wait_sk);
1910                 st->state = TCP_SEQ_STATE_LISTENING;
1911                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1912         } else {
1913                 icsk = inet_csk(sk);
1914                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1915                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1916                         goto start_req;
1917                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1918                 sk = sk_next(sk);
1919         }
1920 get_sk:
1921         sk_for_each_from(sk, node) {
1922                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
1923                         cur = sk;
1924                         goto out;
1925                 }
1926                 icsk = inet_csk(sk);
1927                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1928                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1929 start_req:
1930                         st->uid         = sock_i_uid(sk);
1931                         st->syn_wait_sk = sk;
1932                         st->state       = TCP_SEQ_STATE_OPENREQ;
1933                         st->sbucket     = 0;
1934                         goto get_req;
1935                 }
1936                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1937         }
1938         if (++st->bucket < INET_LHTABLE_SIZE) {
1939                 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1940                 goto get_sk;
1941         }
1942         cur = NULL;
1943 out:
1944         return cur;
1945 }
1946
1947 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1948 {
1949         void *rc = listening_get_next(seq, NULL);
1950
1951         while (rc && *pos) {
1952                 rc = listening_get_next(seq, rc);
1953                 --*pos;
1954         }
1955         return rc;
1956 }
1957
1958 static inline int empty_bucket(struct tcp_iter_state *st)
1959 {
1960         return hlist_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
1961                 hlist_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
1962 }
1963
1964 static void *established_get_first(struct seq_file *seq)
1965 {
1966         struct tcp_iter_state* st = seq->private;
1967         struct net *net = seq_file_net(seq);
1968         void *rc = NULL;
1969
1970         for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1971                 struct sock *sk;
1972                 struct hlist_node *node;
1973                 struct inet_timewait_sock *tw;
1974                 rwlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1975
1976                 /* Lockless fast path for the common case of empty buckets */
1977                 if (empty_bucket(st))
1978                         continue;
1979
1980                 read_lock_bh(lock);
1981                 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1982                         if (sk->sk_family != st->family ||
1983                             !net_eq(sock_net(sk), net)) {
1984                                 continue;
1985                         }
1986                         rc = sk;
1987                         goto out;
1988                 }
1989                 st->state = TCP_SEQ_STATE_TIME_WAIT;
1990                 inet_twsk_for_each(tw, node,
1991                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
1992                         if (tw->tw_family != st->family ||
1993                             !net_eq(twsk_net(tw), net)) {
1994                                 continue;
1995                         }
1996                         rc = tw;
1997                         goto out;
1998                 }
1999                 read_unlock_bh(lock);
2000                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2001         }
2002 out:
2003         return rc;
2004 }
2005
2006 static void *established_get_next(struct seq_file *seq, void *cur)
2007 {
2008         struct sock *sk = cur;
2009         struct inet_timewait_sock *tw;
2010         struct hlist_node *node;
2011         struct tcp_iter_state* st = seq->private;
2012         struct net *net = seq_file_net(seq);
2013
2014         ++st->num;
2015
2016         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2017                 tw = cur;
2018                 tw = tw_next(tw);
2019 get_tw:
2020                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2021                         tw = tw_next(tw);
2022                 }
2023                 if (tw) {
2024                         cur = tw;
2025                         goto out;
2026                 }
2027                 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2028                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2029
2030                 /* Look for next non empty bucket */
2031                 while (++st->bucket < tcp_hashinfo.ehash_size &&
2032                                 empty_bucket(st))
2033                         ;
2034                 if (st->bucket >= tcp_hashinfo.ehash_size)
2035                         return NULL;
2036
2037                 read_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2038                 sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
2039         } else
2040                 sk = sk_next(sk);
2041
2042         sk_for_each_from(sk, node) {
2043                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2044                         goto found;
2045         }
2046
2047         st->state = TCP_SEQ_STATE_TIME_WAIT;
2048         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2049         goto get_tw;
2050 found:
2051         cur = sk;
2052 out:
2053         return cur;
2054 }
2055
2056 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2057 {
2058         void *rc = established_get_first(seq);
2059
2060         while (rc && pos) {
2061                 rc = established_get_next(seq, rc);
2062                 --pos;
2063         }
2064         return rc;
2065 }
2066
2067 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2068 {
2069         void *rc;
2070         struct tcp_iter_state* st = seq->private;
2071
2072         inet_listen_lock(&tcp_hashinfo);
2073         st->state = TCP_SEQ_STATE_LISTENING;
2074         rc        = listening_get_idx(seq, &pos);
2075
2076         if (!rc) {
2077                 inet_listen_unlock(&tcp_hashinfo);
2078                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2079                 rc        = established_get_idx(seq, pos);
2080         }
2081
2082         return rc;
2083 }
2084
2085 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2086 {
2087         struct tcp_iter_state* st = seq->private;
2088         st->state = TCP_SEQ_STATE_LISTENING;
2089         st->num = 0;
2090         return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2091 }
2092
2093 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2094 {
2095         void *rc = NULL;
2096         struct tcp_iter_state* st;
2097
2098         if (v == SEQ_START_TOKEN) {
2099                 rc = tcp_get_idx(seq, 0);
2100                 goto out;
2101         }
2102         st = seq->private;
2103
2104         switch (st->state) {
2105         case TCP_SEQ_STATE_OPENREQ:
2106         case TCP_SEQ_STATE_LISTENING:
2107                 rc = listening_get_next(seq, v);
2108                 if (!rc) {
2109                         inet_listen_unlock(&tcp_hashinfo);
2110                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2111                         rc        = established_get_first(seq);
2112                 }
2113                 break;
2114         case TCP_SEQ_STATE_ESTABLISHED:
2115         case TCP_SEQ_STATE_TIME_WAIT:
2116                 rc = established_get_next(seq, v);
2117                 break;
2118         }
2119 out:
2120         ++*pos;
2121         return rc;
2122 }
2123
2124 static void tcp_seq_stop(struct seq_file *seq, void *v)
2125 {
2126         struct tcp_iter_state* st = seq->private;
2127
2128         switch (st->state) {
2129         case TCP_SEQ_STATE_OPENREQ:
2130                 if (v) {
2131                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2132                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2133                 }
2134         case TCP_SEQ_STATE_LISTENING:
2135                 if (v != SEQ_START_TOKEN)
2136                         inet_listen_unlock(&tcp_hashinfo);
2137                 break;
2138         case TCP_SEQ_STATE_TIME_WAIT:
2139         case TCP_SEQ_STATE_ESTABLISHED:
2140                 if (v)
2141                         read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2142                 break;
2143         }
2144 }
2145
2146 static int tcp_seq_open(struct inode *inode, struct file *file)
2147 {
2148         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2149         struct tcp_iter_state *s;
2150         int err;
2151
2152         err = seq_open_net(inode, file, &afinfo->seq_ops,
2153                           sizeof(struct tcp_iter_state));
2154         if (err < 0)
2155                 return err;
2156
2157         s = ((struct seq_file *)file->private_data)->private;
2158         s->family               = afinfo->family;
2159         return 0;
2160 }
2161
2162 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2163 {
2164         int rc = 0;
2165         struct proc_dir_entry *p;
2166
2167         afinfo->seq_fops.open           = tcp_seq_open;
2168         afinfo->seq_fops.read           = seq_read;
2169         afinfo->seq_fops.llseek         = seq_lseek;
2170         afinfo->seq_fops.release        = seq_release_net;
2171
2172         afinfo->seq_ops.start           = tcp_seq_start;
2173         afinfo->seq_ops.next            = tcp_seq_next;
2174         afinfo->seq_ops.stop            = tcp_seq_stop;
2175
2176         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2177                              &afinfo->seq_fops, afinfo);
2178         if (!p)
2179                 rc = -ENOMEM;
2180         return rc;
2181 }
2182
2183 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2184 {
2185         proc_net_remove(net, afinfo->name);
2186 }
2187
2188 static void get_openreq4(struct sock *sk, struct request_sock *req,
2189                          struct seq_file *f, int i, int uid, int *len)
2190 {
2191         const struct inet_request_sock *ireq = inet_rsk(req);
2192         int ttd = req->expires - jiffies;
2193
2194         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2195                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2196                 i,
2197                 ireq->loc_addr,
2198                 ntohs(inet_sk(sk)->sport),
2199                 ireq->rmt_addr,
2200                 ntohs(ireq->rmt_port),
2201                 TCP_SYN_RECV,
2202                 0, 0, /* could print option size, but that is af dependent. */
2203                 1,    /* timers active (only the expire timer) */
2204                 jiffies_to_clock_t(ttd),
2205                 req->retrans,
2206                 uid,
2207                 0,  /* non standard timer */
2208                 0, /* open_requests have no inode */
2209                 atomic_read(&sk->sk_refcnt),
2210                 req,
2211                 len);
2212 }
2213
2214 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2215 {
2216         int timer_active;
2217         unsigned long timer_expires;
2218         struct tcp_sock *tp = tcp_sk(sk);
2219         const struct inet_connection_sock *icsk = inet_csk(sk);
2220         struct inet_sock *inet = inet_sk(sk);
2221         __be32 dest = inet->daddr;
2222         __be32 src = inet->rcv_saddr;
2223         __u16 destp = ntohs(inet->dport);
2224         __u16 srcp = ntohs(inet->sport);
2225
2226         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2227                 timer_active    = 1;
2228                 timer_expires   = icsk->icsk_timeout;
2229         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2230                 timer_active    = 4;
2231                 timer_expires   = icsk->icsk_timeout;
2232         } else if (timer_pending(&sk->sk_timer)) {
2233                 timer_active    = 2;
2234                 timer_expires   = sk->sk_timer.expires;
2235         } else {
2236                 timer_active    = 0;
2237                 timer_expires = jiffies;
2238         }
2239
2240         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2241                         "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2242                 i, src, srcp, dest, destp, sk->sk_state,
2243                 tp->write_seq - tp->snd_una,
2244                 sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog :
2245                                              (tp->rcv_nxt - tp->copied_seq),
2246                 timer_active,
2247                 jiffies_to_clock_t(timer_expires - jiffies),
2248                 icsk->icsk_retransmits,
2249                 sock_i_uid(sk),
2250                 icsk->icsk_probes_out,
2251                 sock_i_ino(sk),
2252                 atomic_read(&sk->sk_refcnt), sk,
2253                 jiffies_to_clock_t(icsk->icsk_rto),
2254                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2255                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2256                 tp->snd_cwnd,
2257                 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh,
2258                 len);
2259 }
2260
2261 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2262                                struct seq_file *f, int i, int *len)
2263 {
2264         __be32 dest, src;
2265         __u16 destp, srcp;
2266         int ttd = tw->tw_ttd - jiffies;
2267
2268         if (ttd < 0)
2269                 ttd = 0;
2270
2271         dest  = tw->tw_daddr;
2272         src   = tw->tw_rcv_saddr;
2273         destp = ntohs(tw->tw_dport);
2274         srcp  = ntohs(tw->tw_sport);
2275
2276         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2277                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2278                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2279                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2280                 atomic_read(&tw->tw_refcnt), tw, len);
2281 }
2282
2283 #define TMPSZ 150
2284
2285 static int tcp4_seq_show(struct seq_file *seq, void *v)
2286 {
2287         struct tcp_iter_state* st;
2288         int len;
2289
2290         if (v == SEQ_START_TOKEN) {
2291                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2292                            "  sl  local_address rem_address   st tx_queue "
2293                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2294                            "inode");
2295                 goto out;
2296         }
2297         st = seq->private;
2298
2299         switch (st->state) {
2300         case TCP_SEQ_STATE_LISTENING:
2301         case TCP_SEQ_STATE_ESTABLISHED:
2302                 get_tcp4_sock(v, seq, st->num, &len);
2303                 break;
2304         case TCP_SEQ_STATE_OPENREQ:
2305                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2306                 break;
2307         case TCP_SEQ_STATE_TIME_WAIT:
2308                 get_timewait4_sock(v, seq, st->num, &len);
2309                 break;
2310         }
2311         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2312 out:
2313         return 0;
2314 }
2315
2316 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2317         .name           = "tcp",
2318         .family         = AF_INET,
2319         .seq_fops       = {
2320                 .owner          = THIS_MODULE,
2321         },
2322         .seq_ops        = {
2323                 .show           = tcp4_seq_show,
2324         },
2325 };
2326
2327 static int tcp4_proc_init_net(struct net *net)
2328 {
2329         return tcp_proc_register(net, &tcp4_seq_afinfo);
2330 }
2331
2332 static void tcp4_proc_exit_net(struct net *net)
2333 {
2334         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2335 }
2336
2337 static struct pernet_operations tcp4_net_ops = {
2338         .init = tcp4_proc_init_net,
2339         .exit = tcp4_proc_exit_net,
2340 };
2341
2342 int __init tcp4_proc_init(void)
2343 {
2344         return register_pernet_subsys(&tcp4_net_ops);
2345 }
2346
2347 void tcp4_proc_exit(void)
2348 {
2349         unregister_pernet_subsys(&tcp4_net_ops);
2350 }
2351 #endif /* CONFIG_PROC_FS */
2352
2353 struct proto tcp_prot = {
2354         .name                   = "TCP",
2355         .owner                  = THIS_MODULE,
2356         .close                  = tcp_close,
2357         .connect                = tcp_v4_connect,
2358         .disconnect             = tcp_disconnect,
2359         .accept                 = inet_csk_accept,
2360         .ioctl                  = tcp_ioctl,
2361         .init                   = tcp_v4_init_sock,
2362         .destroy                = tcp_v4_destroy_sock,
2363         .shutdown               = tcp_shutdown,
2364         .setsockopt             = tcp_setsockopt,
2365         .getsockopt             = tcp_getsockopt,
2366         .recvmsg                = tcp_recvmsg,
2367         .backlog_rcv            = tcp_v4_do_rcv,
2368         .hash                   = inet_hash,
2369         .unhash                 = inet_unhash,
2370         .get_port               = inet_csk_get_port,
2371         .enter_memory_pressure  = tcp_enter_memory_pressure,
2372         .sockets_allocated      = &tcp_sockets_allocated,
2373         .orphan_count           = &tcp_orphan_count,
2374         .memory_allocated       = &tcp_memory_allocated,
2375         .memory_pressure        = &tcp_memory_pressure,
2376         .sysctl_mem             = sysctl_tcp_mem,
2377         .sysctl_wmem            = sysctl_tcp_wmem,
2378         .sysctl_rmem            = sysctl_tcp_rmem,
2379         .max_header             = MAX_TCP_HEADER,
2380         .obj_size               = sizeof(struct tcp_sock),
2381         .twsk_prot              = &tcp_timewait_sock_ops,
2382         .rsk_prot               = &tcp_request_sock_ops,
2383         .h.hashinfo             = &tcp_hashinfo,
2384 #ifdef CONFIG_COMPAT
2385         .compat_setsockopt      = compat_tcp_setsockopt,
2386         .compat_getsockopt      = compat_tcp_getsockopt,
2387 #endif
2388 };
2389
2390
2391 static int __net_init tcp_sk_init(struct net *net)
2392 {
2393         return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2394                                     PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2395 }
2396
2397 static void __net_exit tcp_sk_exit(struct net *net)
2398 {
2399         inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2400         inet_twsk_purge(net, &tcp_hashinfo, &tcp_death_row, AF_INET);
2401 }
2402
2403 static struct pernet_operations __net_initdata tcp_sk_ops = {
2404        .init = tcp_sk_init,
2405        .exit = tcp_sk_exit,
2406 };
2407
2408 void __init tcp_v4_init(void)
2409 {
2410         if (register_pernet_device(&tcp_sk_ops))
2411                 panic("Failed to create the TCP control socket.\n");
2412 }
2413
2414 EXPORT_SYMBOL(ipv4_specific);
2415 EXPORT_SYMBOL(tcp_hashinfo);
2416 EXPORT_SYMBOL(tcp_prot);
2417 EXPORT_SYMBOL(tcp_v4_conn_request);
2418 EXPORT_SYMBOL(tcp_v4_connect);
2419 EXPORT_SYMBOL(tcp_v4_do_rcv);
2420 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2421 EXPORT_SYMBOL(tcp_v4_send_check);
2422 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2423
2424 #ifdef CONFIG_PROC_FS
2425 EXPORT_SYMBOL(tcp_proc_register);
2426 EXPORT_SYMBOL(tcp_proc_unregister);
2427 #endif
2428 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2429