93b8a9357892fd53dfbb8827d3e28abe4774bd77
[linux-flexiantxendom0-natty.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38
39 #include "internal.h"
40
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags)       (0)
43 #endif
44
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len)              (addr)
47 #endif
48
49 /* No sane architecture will #define these to anything else */
50 #ifndef arch_add_exec_range
51 #define arch_add_exec_range(mm, limit)  do { ; } while (0)
52 #endif
53 #ifndef arch_flush_exec_range
54 #define arch_flush_exec_range(mm)       do { ; } while (0)
55 #endif
56 #ifndef arch_remove_exec_range
57 #define arch_remove_exec_range(mm, limit)       do { ; } while (0)
58 #endif
59
60
61 static void unmap_region(struct mm_struct *mm,
62                 struct vm_area_struct *vma, struct vm_area_struct *prev,
63                 unsigned long start, unsigned long end);
64
65 /*
66  * WARNING: the debugging will use recursive algorithms so never enable this
67  * unless you know what you are doing.
68  */
69 #undef DEBUG_MM_RB
70
71 /* description of effects of mapping type and prot in current implementation.
72  * this is due to the limited x86 page protection hardware.  The expected
73  * behavior is in parens:
74  *
75  * map_type     prot
76  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
77  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
78  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
79  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
80  *              
81  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
82  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
83  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
84  *
85  */
86 pgprot_t protection_map[16] = {
87         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
88         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
89 };
90
91 pgprot_t vm_get_page_prot(unsigned long vm_flags)
92 {
93         return __pgprot(pgprot_val(protection_map[vm_flags &
94                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
95                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
96 }
97 EXPORT_SYMBOL(vm_get_page_prot);
98
99 int sysctl_overcommit_memory = OVERCOMMIT_GUESS;  /* heuristic overcommit */
100 int sysctl_overcommit_ratio = 50;       /* default is 50% */
101 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
102 struct percpu_counter vm_committed_as;
103
104 /*
105  * Check that a process has enough memory to allocate a new virtual
106  * mapping. 0 means there is enough memory for the allocation to
107  * succeed and -ENOMEM implies there is not.
108  *
109  * We currently support three overcommit policies, which are set via the
110  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
111  *
112  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
113  * Additional code 2002 Jul 20 by Robert Love.
114  *
115  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
116  *
117  * Note this is a helper function intended to be used by LSMs which
118  * wish to use this logic.
119  */
120 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
121 {
122         unsigned long free, allowed;
123
124         vm_acct_memory(pages);
125
126         /*
127          * Sometimes we want to use more memory than we have
128          */
129         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
130                 return 0;
131
132         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
133                 unsigned long n;
134
135                 free = global_page_state(NR_FILE_PAGES);
136                 free += nr_swap_pages;
137
138                 /*
139                  * Any slabs which are created with the
140                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141                  * which are reclaimable, under pressure.  The dentry
142                  * cache and most inode caches should fall into this
143                  */
144                 free += global_page_state(NR_SLAB_RECLAIMABLE);
145
146                 /*
147                  * Leave the last 3% for root
148                  */
149                 if (!cap_sys_admin)
150                         free -= free / 32;
151
152                 if (free > pages)
153                         return 0;
154
155                 /*
156                  * nr_free_pages() is very expensive on large systems,
157                  * only call if we're about to fail.
158                  */
159                 n = nr_free_pages();
160
161                 /*
162                  * Leave reserved pages. The pages are not for anonymous pages.
163                  */
164                 if (n <= totalreserve_pages)
165                         goto error;
166                 else
167                         n -= totalreserve_pages;
168
169                 /*
170                  * Leave the last 3% for root
171                  */
172                 if (!cap_sys_admin)
173                         n -= n / 32;
174                 free += n;
175
176                 if (free > pages)
177                         return 0;
178
179                 goto error;
180         }
181
182         allowed = (totalram_pages - hugetlb_total_pages())
183                 * sysctl_overcommit_ratio / 100;
184         /*
185          * Leave the last 3% for root
186          */
187         if (!cap_sys_admin)
188                 allowed -= allowed / 32;
189         allowed += total_swap_pages;
190
191         /* Don't let a single process grow too big:
192            leave 3% of the size of this process for other processes */
193         if (mm)
194                 allowed -= mm->total_vm / 32;
195
196         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
197                 return 0;
198 error:
199         vm_unacct_memory(pages);
200
201         return -ENOMEM;
202 }
203
204 /*
205  * Requires inode->i_mapping->i_mmap_lock
206  */
207 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
208                 struct file *file, struct address_space *mapping)
209 {
210         if (vma->vm_flags & VM_DENYWRITE)
211                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
212         if (vma->vm_flags & VM_SHARED)
213                 mapping->i_mmap_writable--;
214
215         flush_dcache_mmap_lock(mapping);
216         if (unlikely(vma->vm_flags & VM_NONLINEAR))
217                 list_del_init(&vma->shared.vm_set.list);
218         else
219                 vma_prio_tree_remove(vma, &mapping->i_mmap);
220         flush_dcache_mmap_unlock(mapping);
221 }
222
223 /*
224  * Unlink a file-based vm structure from its prio_tree, to hide
225  * vma from rmap and vmtruncate before freeing its page tables.
226  */
227 void unlink_file_vma(struct vm_area_struct *vma)
228 {
229         struct file *file = vma->vm_file;
230
231         if (file) {
232                 struct address_space *mapping = file->f_mapping;
233                 spin_lock(&mapping->i_mmap_lock);
234                 __remove_shared_vm_struct(vma, file, mapping);
235                 spin_unlock(&mapping->i_mmap_lock);
236         }
237 }
238
239 /*
240  * Close a vm structure and free it, returning the next.
241  */
242 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
243 {
244         struct vm_area_struct *next = vma->vm_next;
245
246         might_sleep();
247         if (vma->vm_ops && vma->vm_ops->close)
248                 vma->vm_ops->close(vma);
249         if (vma->vm_file) {
250                 fput(vma->vm_file);
251                 if (vma->vm_flags & VM_EXECUTABLE)
252                         removed_exe_file_vma(vma->vm_mm);
253         }
254         mpol_put(vma_policy(vma));
255         kmem_cache_free(vm_area_cachep, vma);
256         return next;
257 }
258
259 SYSCALL_DEFINE1(brk, unsigned long, brk)
260 {
261         unsigned long rlim, retval;
262         unsigned long newbrk, oldbrk;
263         struct mm_struct *mm = current->mm;
264         unsigned long min_brk;
265
266         down_write(&mm->mmap_sem);
267
268 #ifdef CONFIG_COMPAT_BRK
269         /*
270          * CONFIG_COMPAT_BRK can still be overridden by setting
271          * randomize_va_space to 2, which will still cause mm->start_brk
272          * to be arbitrarily shifted
273          */
274         if (mm->start_brk > PAGE_ALIGN(mm->end_data))
275                 min_brk = mm->start_brk;
276         else
277                 min_brk = mm->end_data;
278 #else
279         min_brk = mm->start_brk;
280 #endif
281         if (brk < min_brk)
282                 goto out;
283
284         /*
285          * Check against rlimit here. If this check is done later after the test
286          * of oldbrk with newbrk then it can escape the test and let the data
287          * segment grow beyond its set limit the in case where the limit is
288          * not page aligned -Ram Gupta
289          */
290         rlim = rlimit(RLIMIT_DATA);
291         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
292                         (mm->end_data - mm->start_data) > rlim)
293                 goto out;
294
295         newbrk = PAGE_ALIGN(brk);
296         oldbrk = PAGE_ALIGN(mm->brk);
297         if (oldbrk == newbrk)
298                 goto set_brk;
299
300         /* Always allow shrinking brk. */
301         if (brk <= mm->brk) {
302                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
303                         goto set_brk;
304                 goto out;
305         }
306
307         /* Check against existing mmap mappings. */
308         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
309                 goto out;
310
311         /* Ok, looks good - let it rip. */
312         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
313                 goto out;
314 set_brk:
315         mm->brk = brk;
316 out:
317         retval = mm->brk;
318         up_write(&mm->mmap_sem);
319         return retval;
320 }
321
322 #ifdef DEBUG_MM_RB
323 static int browse_rb(struct rb_root *root)
324 {
325         int i = 0, j;
326         struct rb_node *nd, *pn = NULL;
327         unsigned long prev = 0, pend = 0;
328
329         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
330                 struct vm_area_struct *vma;
331                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
332                 if (vma->vm_start < prev)
333                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
334                 if (vma->vm_start < pend)
335                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
336                 if (vma->vm_start > vma->vm_end)
337                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
338                 i++;
339                 pn = nd;
340                 prev = vma->vm_start;
341                 pend = vma->vm_end;
342         }
343         j = 0;
344         for (nd = pn; nd; nd = rb_prev(nd)) {
345                 j++;
346         }
347         if (i != j)
348                 printk("backwards %d, forwards %d\n", j, i), i = 0;
349         return i;
350 }
351
352 void validate_mm(struct mm_struct *mm)
353 {
354         int bug = 0;
355         int i = 0;
356         struct vm_area_struct *tmp = mm->mmap;
357         while (tmp) {
358                 tmp = tmp->vm_next;
359                 i++;
360         }
361         if (i != mm->map_count)
362                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
363         i = browse_rb(&mm->mm_rb);
364         if (i != mm->map_count)
365                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
366         BUG_ON(bug);
367 }
368 #else
369 #define validate_mm(mm) do { } while (0)
370 #endif
371
372 static struct vm_area_struct *
373 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
374                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
375                 struct rb_node ** rb_parent)
376 {
377         struct vm_area_struct * vma;
378         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
379
380         __rb_link = &mm->mm_rb.rb_node;
381         rb_prev = __rb_parent = NULL;
382         vma = NULL;
383
384         while (*__rb_link) {
385                 struct vm_area_struct *vma_tmp;
386
387                 __rb_parent = *__rb_link;
388                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
389
390                 if (vma_tmp->vm_end > addr) {
391                         vma = vma_tmp;
392                         if (vma_tmp->vm_start <= addr)
393                                 break;
394                         __rb_link = &__rb_parent->rb_left;
395                 } else {
396                         rb_prev = __rb_parent;
397                         __rb_link = &__rb_parent->rb_right;
398                 }
399         }
400
401         *pprev = NULL;
402         if (rb_prev)
403                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
404         *rb_link = __rb_link;
405         *rb_parent = __rb_parent;
406         return vma;
407 }
408
409 static inline void
410 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
411                 struct vm_area_struct *prev, struct rb_node *rb_parent)
412 {
413         struct vm_area_struct *next;
414
415         if (vma->vm_flags & VM_EXEC)
416                 arch_add_exec_range(mm, vma->vm_end);
417
418         vma->vm_prev = prev;
419         if (prev) {
420                 next = prev->vm_next;
421                 prev->vm_next = vma;
422         } else {
423                 mm->mmap = vma;
424                 if (rb_parent)
425                         next = rb_entry(rb_parent,
426                                         struct vm_area_struct, vm_rb);
427                 else
428                         next = NULL;
429         }
430         vma->vm_next = next;
431         if (next)
432                 next->vm_prev = vma;
433 }
434
435 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
436                 struct rb_node **rb_link, struct rb_node *rb_parent)
437 {
438         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
439         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
440 }
441
442 static void __vma_link_file(struct vm_area_struct *vma)
443 {
444         struct file *file;
445
446         file = vma->vm_file;
447         if (file) {
448                 struct address_space *mapping = file->f_mapping;
449
450                 if (vma->vm_flags & VM_DENYWRITE)
451                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
452                 if (vma->vm_flags & VM_SHARED)
453                         mapping->i_mmap_writable++;
454
455                 flush_dcache_mmap_lock(mapping);
456                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
457                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
458                 else
459                         vma_prio_tree_insert(vma, &mapping->i_mmap);
460                 flush_dcache_mmap_unlock(mapping);
461         }
462 }
463
464 static void
465 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
466         struct vm_area_struct *prev, struct rb_node **rb_link,
467         struct rb_node *rb_parent)
468 {
469         __vma_link_list(mm, vma, prev, rb_parent);
470         __vma_link_rb(mm, vma, rb_link, rb_parent);
471 }
472
473 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
474                         struct vm_area_struct *prev, struct rb_node **rb_link,
475                         struct rb_node *rb_parent)
476 {
477         struct address_space *mapping = NULL;
478
479         if (vma->vm_file)
480                 mapping = vma->vm_file->f_mapping;
481
482         if (mapping) {
483                 spin_lock(&mapping->i_mmap_lock);
484                 vma->vm_truncate_count = mapping->truncate_count;
485         }
486
487         __vma_link(mm, vma, prev, rb_link, rb_parent);
488         __vma_link_file(vma);
489
490         if (mapping)
491                 spin_unlock(&mapping->i_mmap_lock);
492
493         mm->map_count++;
494         validate_mm(mm);
495 }
496
497 /*
498  * Helper for vma_adjust in the split_vma insert case:
499  * insert vm structure into list and rbtree and anon_vma,
500  * but it has already been inserted into prio_tree earlier.
501  */
502 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
503 {
504         struct vm_area_struct *__vma, *prev;
505         struct rb_node **rb_link, *rb_parent;
506
507         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
508         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
509         __vma_link(mm, vma, prev, rb_link, rb_parent);
510         mm->map_count++;
511 }
512
513 static inline void
514 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
515                 struct vm_area_struct *prev)
516 {
517         struct vm_area_struct *next = vma->vm_next;
518
519         prev->vm_next = next;
520         if (next)
521                 next->vm_prev = prev;
522         rb_erase(&vma->vm_rb, &mm->mm_rb);
523         if (mm->mmap_cache == vma)
524                 mm->mmap_cache = prev;
525         if (vma->vm_flags & VM_EXEC)
526                 arch_remove_exec_range(mm, vma->vm_end);
527 }
528
529 /*
530  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
531  * is already present in an i_mmap tree without adjusting the tree.
532  * The following helper function should be used when such adjustments
533  * are necessary.  The "insert" vma (if any) is to be inserted
534  * before we drop the necessary locks.
535  */
536 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
537         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
538 {
539         struct mm_struct *mm = vma->vm_mm;
540         struct vm_area_struct *next = vma->vm_next;
541         struct vm_area_struct *importer = NULL;
542         struct address_space *mapping = NULL;
543         struct prio_tree_root *root = NULL;
544         struct anon_vma *anon_vma = NULL;
545         struct file *file = vma->vm_file;
546         long adjust_next = 0;
547         int remove_next = 0;
548
549         if (next && !insert) {
550                 struct vm_area_struct *exporter = NULL;
551
552                 if (end >= next->vm_end) {
553                         /*
554                          * vma expands, overlapping all the next, and
555                          * perhaps the one after too (mprotect case 6).
556                          */
557 again:                  remove_next = 1 + (end > next->vm_end);
558                         end = next->vm_end;
559                         exporter = next;
560                         importer = vma;
561                 } else if (end > next->vm_start) {
562                         /*
563                          * vma expands, overlapping part of the next:
564                          * mprotect case 5 shifting the boundary up.
565                          */
566                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
567                         exporter = next;
568                         importer = vma;
569                 } else if (end < vma->vm_end) {
570                         /*
571                          * vma shrinks, and !insert tells it's not
572                          * split_vma inserting another: so it must be
573                          * mprotect case 4 shifting the boundary down.
574                          */
575                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
576                         exporter = vma;
577                         importer = next;
578                 }
579
580                 /*
581                  * Easily overlooked: when mprotect shifts the boundary,
582                  * make sure the expanding vma has anon_vma set if the
583                  * shrinking vma had, to cover any anon pages imported.
584                  */
585                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
586                         if (anon_vma_clone(importer, exporter))
587                                 return -ENOMEM;
588                         importer->anon_vma = exporter->anon_vma;
589                 }
590         }
591
592         if (file) {
593                 mapping = file->f_mapping;
594                 if (!(vma->vm_flags & VM_NONLINEAR))
595                         root = &mapping->i_mmap;
596                 spin_lock(&mapping->i_mmap_lock);
597                 if (importer &&
598                     vma->vm_truncate_count != next->vm_truncate_count) {
599                         /*
600                          * unmap_mapping_range might be in progress:
601                          * ensure that the expanding vma is rescanned.
602                          */
603                         importer->vm_truncate_count = 0;
604                 }
605                 if (insert) {
606                         insert->vm_truncate_count = vma->vm_truncate_count;
607                         /*
608                          * Put into prio_tree now, so instantiated pages
609                          * are visible to arm/parisc __flush_dcache_page
610                          * throughout; but we cannot insert into address
611                          * space until vma start or end is updated.
612                          */
613                         __vma_link_file(insert);
614                 }
615         }
616
617         vma_adjust_trans_huge(vma, start, end, adjust_next);
618
619         /*
620          * When changing only vma->vm_end, we don't really need anon_vma
621          * lock. This is a fairly rare case by itself, but the anon_vma
622          * lock may be shared between many sibling processes.  Skipping
623          * the lock for brk adjustments makes a difference sometimes.
624          */
625         if (vma->anon_vma && (insert || importer || start != vma->vm_start)) {
626                 anon_vma = vma->anon_vma;
627                 anon_vma_lock(anon_vma);
628         }
629
630         if (root) {
631                 flush_dcache_mmap_lock(mapping);
632                 vma_prio_tree_remove(vma, root);
633                 if (adjust_next)
634                         vma_prio_tree_remove(next, root);
635         }
636
637         vma->vm_start = start;
638         vma->vm_end = end;
639         vma->vm_pgoff = pgoff;
640         if (adjust_next) {
641                 next->vm_start += adjust_next << PAGE_SHIFT;
642                 next->vm_pgoff += adjust_next;
643         }
644
645         if (root) {
646                 if (adjust_next)
647                         vma_prio_tree_insert(next, root);
648                 vma_prio_tree_insert(vma, root);
649                 flush_dcache_mmap_unlock(mapping);
650         }
651
652         if (remove_next) {
653                 /*
654                  * vma_merge has merged next into vma, and needs
655                  * us to remove next before dropping the locks.
656                  */
657                 __vma_unlink(mm, next, vma);
658                 if (file)
659                         __remove_shared_vm_struct(next, file, mapping);
660         } else if (insert) {
661                 /*
662                  * split_vma has split insert from vma, and needs
663                  * us to insert it before dropping the locks
664                  * (it may either follow vma or precede it).
665                  */
666                 __insert_vm_struct(mm, insert);
667         }
668
669         if (anon_vma)
670                 anon_vma_unlock(anon_vma);
671         if (mapping)
672                 spin_unlock(&mapping->i_mmap_lock);
673
674         if (remove_next) {
675                 if (file) {
676                         fput(file);
677                         if (next->vm_flags & VM_EXECUTABLE)
678                                 removed_exe_file_vma(mm);
679                 }
680                 if (next->anon_vma)
681                         anon_vma_merge(vma, next);
682                 mm->map_count--;
683                 mpol_put(vma_policy(next));
684                 kmem_cache_free(vm_area_cachep, next);
685                 /*
686                  * In mprotect's case 6 (see comments on vma_merge),
687                  * we must remove another next too. It would clutter
688                  * up the code too much to do both in one go.
689                  */
690                 if (remove_next == 2) {
691                         next = vma->vm_next;
692                         goto again;
693                 }
694         }
695
696         validate_mm(mm);
697
698         return 0;
699 }
700
701 /*
702  * If the vma has a ->close operation then the driver probably needs to release
703  * per-vma resources, so we don't attempt to merge those.
704  */
705 static inline int is_mergeable_vma(struct vm_area_struct *vma,
706                         struct file *file, unsigned long vm_flags)
707 {
708         /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
709         if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
710                 return 0;
711         if (vma->vm_file != file)
712                 return 0;
713         if (vma->vm_ops && vma->vm_ops->close)
714                 return 0;
715         return 1;
716 }
717
718 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
719                                         struct anon_vma *anon_vma2)
720 {
721         return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
722 }
723
724 /*
725  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
726  * in front of (at a lower virtual address and file offset than) the vma.
727  *
728  * We cannot merge two vmas if they have differently assigned (non-NULL)
729  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
730  *
731  * We don't check here for the merged mmap wrapping around the end of pagecache
732  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
733  * wrap, nor mmaps which cover the final page at index -1UL.
734  */
735 static int
736 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
737         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
738 {
739         if (is_mergeable_vma(vma, file, vm_flags) &&
740             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
741                 if (vma->vm_pgoff == vm_pgoff)
742                         return 1;
743         }
744         return 0;
745 }
746
747 /*
748  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
749  * beyond (at a higher virtual address and file offset than) the vma.
750  *
751  * We cannot merge two vmas if they have differently assigned (non-NULL)
752  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
753  */
754 static int
755 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
756         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
757 {
758         if (is_mergeable_vma(vma, file, vm_flags) &&
759             is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
760                 pgoff_t vm_pglen;
761                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
762                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
763                         return 1;
764         }
765         return 0;
766 }
767
768 /*
769  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
770  * whether that can be merged with its predecessor or its successor.
771  * Or both (it neatly fills a hole).
772  *
773  * In most cases - when called for mmap, brk or mremap - [addr,end) is
774  * certain not to be mapped by the time vma_merge is called; but when
775  * called for mprotect, it is certain to be already mapped (either at
776  * an offset within prev, or at the start of next), and the flags of
777  * this area are about to be changed to vm_flags - and the no-change
778  * case has already been eliminated.
779  *
780  * The following mprotect cases have to be considered, where AAAA is
781  * the area passed down from mprotect_fixup, never extending beyond one
782  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
783  *
784  *     AAAA             AAAA                AAAA          AAAA
785  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
786  *    cannot merge    might become    might become    might become
787  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
788  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
789  *    mremap move:                                    PPPPNNNNNNNN 8
790  *        AAAA
791  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
792  *    might become    case 1 below    case 2 below    case 3 below
793  *
794  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
795  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
796  */
797 struct vm_area_struct *vma_merge(struct mm_struct *mm,
798                         struct vm_area_struct *prev, unsigned long addr,
799                         unsigned long end, unsigned long vm_flags,
800                         struct anon_vma *anon_vma, struct file *file,
801                         pgoff_t pgoff, struct mempolicy *policy)
802 {
803         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
804         struct vm_area_struct *area, *next;
805         int err;
806
807         /*
808          * We later require that vma->vm_flags == vm_flags,
809          * so this tests vma->vm_flags & VM_SPECIAL, too.
810          */
811         if (vm_flags & VM_SPECIAL)
812                 return NULL;
813
814         if (prev)
815                 next = prev->vm_next;
816         else
817                 next = mm->mmap;
818         area = next;
819         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
820                 next = next->vm_next;
821
822         /*
823          * Can it merge with the predecessor?
824          */
825         if (prev && prev->vm_end == addr &&
826                         mpol_equal(vma_policy(prev), policy) &&
827                         can_vma_merge_after(prev, vm_flags,
828                                                 anon_vma, file, pgoff)) {
829                 /*
830                  * OK, it can.  Can we now merge in the successor as well?
831                  */
832                 if (next && end == next->vm_start &&
833                                 mpol_equal(policy, vma_policy(next)) &&
834                                 can_vma_merge_before(next, vm_flags,
835                                         anon_vma, file, pgoff+pglen) &&
836                                 is_mergeable_anon_vma(prev->anon_vma,
837                                                       next->anon_vma)) {
838                                                         /* cases 1, 6 */
839                         err = vma_adjust(prev, prev->vm_start,
840                                 next->vm_end, prev->vm_pgoff, NULL);
841                 } else                                  /* cases 2, 5, 7 */
842                         err = vma_adjust(prev, prev->vm_start,
843                                 end, prev->vm_pgoff, NULL);
844                 if (prev->vm_flags & VM_EXEC)
845                         arch_add_exec_range(mm, prev->vm_end);
846                 if (err)
847                         return NULL;
848                 khugepaged_enter_vma_merge(prev);
849                 return prev;
850         }
851
852         /*
853          * Can this new request be merged in front of next?
854          */
855         if (next && end == next->vm_start &&
856                         mpol_equal(policy, vma_policy(next)) &&
857                         can_vma_merge_before(next, vm_flags,
858                                         anon_vma, file, pgoff+pglen)) {
859                 if (prev && addr < prev->vm_end)        /* case 4 */
860                         err = vma_adjust(prev, prev->vm_start,
861                                 addr, prev->vm_pgoff, NULL);
862                 else                                    /* cases 3, 8 */
863                         err = vma_adjust(area, addr, next->vm_end,
864                                 next->vm_pgoff - pglen, NULL);
865                 if (err)
866                         return NULL;
867                 khugepaged_enter_vma_merge(area);
868                 return area;
869         }
870
871         return NULL;
872 }
873
874 /*
875  * Rough compatbility check to quickly see if it's even worth looking
876  * at sharing an anon_vma.
877  *
878  * They need to have the same vm_file, and the flags can only differ
879  * in things that mprotect may change.
880  *
881  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
882  * we can merge the two vma's. For example, we refuse to merge a vma if
883  * there is a vm_ops->close() function, because that indicates that the
884  * driver is doing some kind of reference counting. But that doesn't
885  * really matter for the anon_vma sharing case.
886  */
887 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
888 {
889         return a->vm_end == b->vm_start &&
890                 mpol_equal(vma_policy(a), vma_policy(b)) &&
891                 a->vm_file == b->vm_file &&
892                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
893                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
894 }
895
896 /*
897  * Do some basic sanity checking to see if we can re-use the anon_vma
898  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
899  * the same as 'old', the other will be the new one that is trying
900  * to share the anon_vma.
901  *
902  * NOTE! This runs with mm_sem held for reading, so it is possible that
903  * the anon_vma of 'old' is concurrently in the process of being set up
904  * by another page fault trying to merge _that_. But that's ok: if it
905  * is being set up, that automatically means that it will be a singleton
906  * acceptable for merging, so we can do all of this optimistically. But
907  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
908  *
909  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
910  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
911  * is to return an anon_vma that is "complex" due to having gone through
912  * a fork).
913  *
914  * We also make sure that the two vma's are compatible (adjacent,
915  * and with the same memory policies). That's all stable, even with just
916  * a read lock on the mm_sem.
917  */
918 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
919 {
920         if (anon_vma_compatible(a, b)) {
921                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
922
923                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
924                         return anon_vma;
925         }
926         return NULL;
927 }
928
929 /*
930  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
931  * neighbouring vmas for a suitable anon_vma, before it goes off
932  * to allocate a new anon_vma.  It checks because a repetitive
933  * sequence of mprotects and faults may otherwise lead to distinct
934  * anon_vmas being allocated, preventing vma merge in subsequent
935  * mprotect.
936  */
937 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
938 {
939         struct anon_vma *anon_vma;
940         struct vm_area_struct *near;
941
942         near = vma->vm_next;
943         if (!near)
944                 goto try_prev;
945
946         anon_vma = reusable_anon_vma(near, vma, near);
947         if (anon_vma)
948                 return anon_vma;
949 try_prev:
950         /*
951          * It is potentially slow to have to call find_vma_prev here.
952          * But it's only on the first write fault on the vma, not
953          * every time, and we could devise a way to avoid it later
954          * (e.g. stash info in next's anon_vma_node when assigning
955          * an anon_vma, or when trying vma_merge).  Another time.
956          */
957         BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
958         if (!near)
959                 goto none;
960
961         anon_vma = reusable_anon_vma(near, near, vma);
962         if (anon_vma)
963                 return anon_vma;
964 none:
965         /*
966          * There's no absolute need to look only at touching neighbours:
967          * we could search further afield for "compatible" anon_vmas.
968          * But it would probably just be a waste of time searching,
969          * or lead to too many vmas hanging off the same anon_vma.
970          * We're trying to allow mprotect remerging later on,
971          * not trying to minimize memory used for anon_vmas.
972          */
973         return NULL;
974 }
975
976 #ifdef CONFIG_PROC_FS
977 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
978                                                 struct file *file, long pages)
979 {
980         const unsigned long stack_flags
981                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
982
983         if (file) {
984                 mm->shared_vm += pages;
985                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
986                         mm->exec_vm += pages;
987         } else if (flags & stack_flags)
988                 mm->stack_vm += pages;
989         if (flags & (VM_RESERVED|VM_IO))
990                 mm->reserved_vm += pages;
991 }
992 #endif /* CONFIG_PROC_FS */
993
994 /*
995  * The caller must hold down_write(&current->mm->mmap_sem).
996  */
997
998 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
999                         unsigned long len, unsigned long prot,
1000                         unsigned long flags, unsigned long pgoff)
1001 {
1002         struct mm_struct * mm = current->mm;
1003         struct inode *inode;
1004         unsigned int vm_flags;
1005         int error;
1006         unsigned long reqprot = prot;
1007
1008         /*
1009          * Does the application expect PROT_READ to imply PROT_EXEC?
1010          *
1011          * (the exception is when the underlying filesystem is noexec
1012          *  mounted, in which case we dont add PROT_EXEC.)
1013          */
1014         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1015                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1016                         prot |= PROT_EXEC;
1017
1018         if (!len)
1019                 return -EINVAL;
1020
1021         if (!(flags & MAP_FIXED))
1022                 addr = round_hint_to_min(addr);
1023
1024         /* Careful about overflows.. */
1025         len = PAGE_ALIGN(len);
1026         if (!len)
1027                 return -ENOMEM;
1028
1029         /* offset overflow? */
1030         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1031                return -EOVERFLOW;
1032
1033         /* Too many mappings? */
1034         if (mm->map_count > sysctl_max_map_count)
1035                 return -ENOMEM;
1036
1037         /* Obtain the address to map to. we verify (or select) it and ensure
1038          * that it represents a valid section of the address space.
1039          */
1040         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1041         if (addr & ~PAGE_MASK)
1042                 return addr;
1043
1044         /* Do simple checking here so the lower-level routines won't have
1045          * to. we assume access permissions have been handled by the open
1046          * of the memory object, so we don't do any here.
1047          */
1048         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1049                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1050
1051         if (flags & MAP_LOCKED)
1052                 if (!can_do_mlock())
1053                         return -EPERM;
1054
1055         /* mlock MCL_FUTURE? */
1056         if (vm_flags & VM_LOCKED) {
1057                 unsigned long locked, lock_limit;
1058                 locked = len >> PAGE_SHIFT;
1059                 locked += mm->locked_vm;
1060                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1061                 lock_limit >>= PAGE_SHIFT;
1062                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1063                         return -EAGAIN;
1064         }
1065
1066         inode = file ? file->f_path.dentry->d_inode : NULL;
1067
1068         if (file) {
1069                 switch (flags & MAP_TYPE) {
1070                 case MAP_SHARED:
1071                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1072                                 return -EACCES;
1073
1074                         /*
1075                          * Make sure we don't allow writing to an append-only
1076                          * file..
1077                          */
1078                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1079                                 return -EACCES;
1080
1081                         /*
1082                          * Make sure there are no mandatory locks on the file.
1083                          */
1084                         if (locks_verify_locked(inode))
1085                                 return -EAGAIN;
1086
1087                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1088                         if (!(file->f_mode & FMODE_WRITE))
1089                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1090
1091                         /* fall through */
1092                 case MAP_PRIVATE:
1093                         if (!(file->f_mode & FMODE_READ))
1094                                 return -EACCES;
1095                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1096                                 if (vm_flags & VM_EXEC)
1097                                         return -EPERM;
1098                                 vm_flags &= ~VM_MAYEXEC;
1099                         }
1100
1101                         if (!file->f_op || !file->f_op->mmap)
1102                                 return -ENODEV;
1103                         break;
1104
1105                 default:
1106                         return -EINVAL;
1107                 }
1108         } else {
1109                 switch (flags & MAP_TYPE) {
1110                 case MAP_SHARED:
1111                         /*
1112                          * Ignore pgoff.
1113                          */
1114                         pgoff = 0;
1115                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1116                         break;
1117                 case MAP_PRIVATE:
1118                         /*
1119                          * Set pgoff according to addr for anon_vma.
1120                          */
1121                         pgoff = addr >> PAGE_SHIFT;
1122                         break;
1123                 default:
1124                         return -EINVAL;
1125                 }
1126         }
1127
1128         error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1129         if (error)
1130                 return error;
1131
1132         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1133 }
1134 EXPORT_SYMBOL(do_mmap_pgoff);
1135
1136 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1137                 unsigned long, prot, unsigned long, flags,
1138                 unsigned long, fd, unsigned long, pgoff)
1139 {
1140         struct file *file = NULL;
1141         unsigned long retval = -EBADF;
1142
1143         if (!(flags & MAP_ANONYMOUS)) {
1144                 audit_mmap_fd(fd, flags);
1145                 if (unlikely(flags & MAP_HUGETLB))
1146                         return -EINVAL;
1147                 file = fget(fd);
1148                 if (!file)
1149                         goto out;
1150         } else if (flags & MAP_HUGETLB) {
1151                 struct user_struct *user = NULL;
1152                 /*
1153                  * VM_NORESERVE is used because the reservations will be
1154                  * taken when vm_ops->mmap() is called
1155                  * A dummy user value is used because we are not locking
1156                  * memory so no accounting is necessary
1157                  */
1158                 len = ALIGN(len, huge_page_size(&default_hstate));
1159                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1160                                                 &user, HUGETLB_ANONHUGE_INODE);
1161                 if (IS_ERR(file))
1162                         return PTR_ERR(file);
1163         }
1164
1165         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1166
1167         down_write(&current->mm->mmap_sem);
1168         retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1169         up_write(&current->mm->mmap_sem);
1170
1171         if (file)
1172                 fput(file);
1173 out:
1174         return retval;
1175 }
1176
1177 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1178 struct mmap_arg_struct {
1179         unsigned long addr;
1180         unsigned long len;
1181         unsigned long prot;
1182         unsigned long flags;
1183         unsigned long fd;
1184         unsigned long offset;
1185 };
1186
1187 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1188 {
1189         struct mmap_arg_struct a;
1190
1191         if (copy_from_user(&a, arg, sizeof(a)))
1192                 return -EFAULT;
1193         if (a.offset & ~PAGE_MASK)
1194                 return -EINVAL;
1195
1196         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1197                               a.offset >> PAGE_SHIFT);
1198 }
1199 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1200
1201 /*
1202  * Some shared mappigns will want the pages marked read-only
1203  * to track write events. If so, we'll downgrade vm_page_prot
1204  * to the private version (using protection_map[] without the
1205  * VM_SHARED bit).
1206  */
1207 int vma_wants_writenotify(struct vm_area_struct *vma)
1208 {
1209         unsigned int vm_flags = vma->vm_flags;
1210
1211         /* If it was private or non-writable, the write bit is already clear */
1212         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1213                 return 0;
1214
1215         /* The backer wishes to know when pages are first written to? */
1216         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1217                 return 1;
1218
1219         /* The open routine did something to the protections already? */
1220         if (pgprot_val(vma->vm_page_prot) !=
1221             pgprot_val(vm_get_page_prot(vm_flags)))
1222                 return 0;
1223
1224         /* Specialty mapping? */
1225         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1226                 return 0;
1227
1228         /* Can the mapping track the dirty pages? */
1229         return vma->vm_file && vma->vm_file->f_mapping &&
1230                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1231 }
1232
1233 /*
1234  * We account for memory if it's a private writeable mapping,
1235  * not hugepages and VM_NORESERVE wasn't set.
1236  */
1237 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1238 {
1239         /*
1240          * hugetlb has its own accounting separate from the core VM
1241          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1242          */
1243         if (file && is_file_hugepages(file))
1244                 return 0;
1245
1246         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1247 }
1248
1249 unsigned long mmap_region(struct file *file, unsigned long addr,
1250                           unsigned long len, unsigned long flags,
1251                           unsigned int vm_flags, unsigned long pgoff)
1252 {
1253         struct mm_struct *mm = current->mm;
1254         struct vm_area_struct *vma, *prev;
1255         int correct_wcount = 0;
1256         int error;
1257         struct rb_node **rb_link, *rb_parent;
1258         unsigned long charged = 0;
1259         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1260
1261         /* Clear old maps */
1262         error = -ENOMEM;
1263 munmap_back:
1264         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1265         if (vma && vma->vm_start < addr + len) {
1266                 if (do_munmap(mm, addr, len))
1267                         return -ENOMEM;
1268                 goto munmap_back;
1269         }
1270
1271         /* Check against address space limit. */
1272         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1273                 return -ENOMEM;
1274
1275         /*
1276          * Set 'VM_NORESERVE' if we should not account for the
1277          * memory use of this mapping.
1278          */
1279         if ((flags & MAP_NORESERVE)) {
1280                 /* We honor MAP_NORESERVE if allowed to overcommit */
1281                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1282                         vm_flags |= VM_NORESERVE;
1283
1284                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1285                 if (file && is_file_hugepages(file))
1286                         vm_flags |= VM_NORESERVE;
1287         }
1288
1289         /*
1290          * Private writable mapping: check memory availability
1291          */
1292         if (accountable_mapping(file, vm_flags)) {
1293                 charged = len >> PAGE_SHIFT;
1294                 if (security_vm_enough_memory(charged))
1295                         return -ENOMEM;
1296                 vm_flags |= VM_ACCOUNT;
1297         }
1298
1299         /*
1300          * Can we just expand an old mapping?
1301          */
1302         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1303         if (vma)
1304                 goto out;
1305
1306         /*
1307          * Determine the object being mapped and call the appropriate
1308          * specific mapper. the address has already been validated, but
1309          * not unmapped, but the maps are removed from the list.
1310          */
1311         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1312         if (!vma) {
1313                 error = -ENOMEM;
1314                 goto unacct_error;
1315         }
1316
1317         vma->vm_mm = mm;
1318         vma->vm_start = addr;
1319         vma->vm_end = addr + len;
1320         vma->vm_flags = vm_flags;
1321         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1322         vma->vm_pgoff = pgoff;
1323         INIT_LIST_HEAD(&vma->anon_vma_chain);
1324
1325         if (file) {
1326                 error = -EINVAL;
1327                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1328                         goto free_vma;
1329                 if (vm_flags & VM_DENYWRITE) {
1330                         error = deny_write_access(file);
1331                         if (error)
1332                                 goto free_vma;
1333                         correct_wcount = 1;
1334                 }
1335                 vma->vm_file = file;
1336                 get_file(file);
1337                 error = file->f_op->mmap(file, vma);
1338                 if (error)
1339                         goto unmap_and_free_vma;
1340                 if (vm_flags & VM_EXECUTABLE)
1341                         added_exe_file_vma(mm);
1342
1343                 /* Can addr have changed??
1344                  *
1345                  * Answer: Yes, several device drivers can do it in their
1346                  *         f_op->mmap method. -DaveM
1347                  */
1348                 addr = vma->vm_start;
1349                 pgoff = vma->vm_pgoff;
1350                 vm_flags = vma->vm_flags;
1351         } else if (vm_flags & VM_SHARED) {
1352                 error = shmem_zero_setup(vma);
1353                 if (error)
1354                         goto free_vma;
1355         }
1356
1357         if (vma_wants_writenotify(vma)) {
1358                 pgprot_t pprot = vma->vm_page_prot;
1359
1360                 /* Can vma->vm_page_prot have changed??
1361                  *
1362                  * Answer: Yes, drivers may have changed it in their
1363                  *         f_op->mmap method.
1364                  *
1365                  * Ensures that vmas marked as uncached stay that way.
1366                  */
1367                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1368                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1369                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1370         }
1371
1372         vma_link(mm, vma, prev, rb_link, rb_parent);
1373         file = vma->vm_file;
1374
1375         /* Once vma denies write, undo our temporary denial count */
1376         if (correct_wcount)
1377                 atomic_inc(&inode->i_writecount);
1378 out:
1379         perf_event_mmap(vma);
1380
1381         mm->total_vm += len >> PAGE_SHIFT;
1382         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1383         if (vm_flags & VM_LOCKED) {
1384                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1385                         mm->locked_vm += (len >> PAGE_SHIFT);
1386         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1387                 make_pages_present(addr, addr + len);
1388         return addr;
1389
1390 unmap_and_free_vma:
1391         if (correct_wcount)
1392                 atomic_inc(&inode->i_writecount);
1393         vma->vm_file = NULL;
1394         fput(file);
1395
1396         /* Undo any partial mapping done by a device driver. */
1397         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1398         charged = 0;
1399 free_vma:
1400         kmem_cache_free(vm_area_cachep, vma);
1401 unacct_error:
1402         if (charged)
1403                 vm_unacct_memory(charged);
1404         return error;
1405 }
1406
1407 /* Get an address range which is currently unmapped.
1408  * For shmat() with addr=0.
1409  *
1410  * Ugly calling convention alert:
1411  * Return value with the low bits set means error value,
1412  * ie
1413  *      if (ret & ~PAGE_MASK)
1414  *              error = ret;
1415  *
1416  * This function "knows" that -ENOMEM has the bits set.
1417  */
1418 #ifndef HAVE_ARCH_UNMAPPED_AREA
1419 unsigned long
1420 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1421                 unsigned long len, unsigned long pgoff, unsigned long flags)
1422 {
1423         struct mm_struct *mm = current->mm;
1424         struct vm_area_struct *vma;
1425         unsigned long start_addr;
1426
1427         if (len > TASK_SIZE)
1428                 return -ENOMEM;
1429
1430         if (flags & MAP_FIXED)
1431                 return addr;
1432
1433         if (addr) {
1434                 addr = PAGE_ALIGN(addr);
1435                 vma = find_vma(mm, addr);
1436                 if (TASK_SIZE - len >= addr &&
1437                     (!vma || addr + len <= vma->vm_start))
1438                         return addr;
1439         }
1440         if (len > mm->cached_hole_size) {
1441                 start_addr = addr = mm->free_area_cache;
1442         } else {
1443                 start_addr = addr = TASK_UNMAPPED_BASE;
1444                 mm->cached_hole_size = 0;
1445         }
1446
1447 full_search:
1448         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1449                 /* At this point:  (!vma || addr < vma->vm_end). */
1450                 if (TASK_SIZE - len < addr) {
1451                         /*
1452                          * Start a new search - just in case we missed
1453                          * some holes.
1454                          */
1455                         if (start_addr != TASK_UNMAPPED_BASE) {
1456                                 addr = TASK_UNMAPPED_BASE;
1457                                 start_addr = addr;
1458                                 mm->cached_hole_size = 0;
1459                                 goto full_search;
1460                         }
1461                         return -ENOMEM;
1462                 }
1463                 if (!vma || addr + len <= vma->vm_start) {
1464                         /*
1465                          * Remember the place where we stopped the search:
1466                          */
1467                         mm->free_area_cache = addr + len;
1468                         return addr;
1469                 }
1470                 if (addr + mm->cached_hole_size < vma->vm_start)
1471                         mm->cached_hole_size = vma->vm_start - addr;
1472                 addr = vma->vm_end;
1473         }
1474 }
1475 #endif  
1476
1477 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1478 {
1479         /*
1480          * Is this a new hole at the lowest possible address?
1481          */
1482         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1483                 mm->free_area_cache = addr;
1484                 mm->cached_hole_size = ~0UL;
1485         }
1486 }
1487
1488 /*
1489  * This mmap-allocator allocates new areas top-down from below the
1490  * stack's low limit (the base):
1491  */
1492 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1493 unsigned long
1494 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1495                           const unsigned long len, const unsigned long pgoff,
1496                           const unsigned long flags)
1497 {
1498         struct vm_area_struct *vma;
1499         struct mm_struct *mm = current->mm;
1500         unsigned long addr = addr0;
1501
1502         /* requested length too big for entire address space */
1503         if (len > TASK_SIZE)
1504                 return -ENOMEM;
1505
1506         if (flags & MAP_FIXED)
1507                 return addr;
1508
1509         /* requesting a specific address */
1510         if (addr) {
1511                 addr = PAGE_ALIGN(addr);
1512                 vma = find_vma(mm, addr);
1513                 if (TASK_SIZE - len >= addr &&
1514                                 (!vma || addr + len <= vma->vm_start))
1515                         return addr;
1516         }
1517
1518         /* check if free_area_cache is useful for us */
1519         if (len <= mm->cached_hole_size) {
1520                 mm->cached_hole_size = 0;
1521                 mm->free_area_cache = mm->mmap_base;
1522         }
1523
1524         /* either no address requested or can't fit in requested address hole */
1525         addr = mm->free_area_cache;
1526
1527         /* make sure it can fit in the remaining address space */
1528         if (addr > len) {
1529                 vma = find_vma(mm, addr-len);
1530                 if (!vma || addr <= vma->vm_start)
1531                         /* remember the address as a hint for next time */
1532                         return (mm->free_area_cache = addr-len);
1533         }
1534
1535         if (mm->mmap_base < len)
1536                 goto bottomup;
1537
1538         addr = mm->mmap_base-len;
1539
1540         do {
1541                 /*
1542                  * Lookup failure means no vma is above this address,
1543                  * else if new region fits below vma->vm_start,
1544                  * return with success:
1545                  */
1546                 vma = find_vma(mm, addr);
1547                 if (!vma || addr+len <= vma->vm_start)
1548                         /* remember the address as a hint for next time */
1549                         return (mm->free_area_cache = addr);
1550
1551                 /* remember the largest hole we saw so far */
1552                 if (addr + mm->cached_hole_size < vma->vm_start)
1553                         mm->cached_hole_size = vma->vm_start - addr;
1554
1555                 /* try just below the current vma->vm_start */
1556                 addr = vma->vm_start-len;
1557         } while (len < vma->vm_start);
1558
1559 bottomup:
1560         /*
1561          * A failed mmap() very likely causes application failure,
1562          * so fall back to the bottom-up function here. This scenario
1563          * can happen with large stack limits and large mmap()
1564          * allocations.
1565          */
1566         mm->cached_hole_size = ~0UL;
1567         mm->free_area_cache = TASK_UNMAPPED_BASE;
1568         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1569         /*
1570          * Restore the topdown base:
1571          */
1572         mm->free_area_cache = mm->mmap_base;
1573         mm->cached_hole_size = ~0UL;
1574
1575         return addr;
1576 }
1577 #endif
1578
1579 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1580 {
1581         /*
1582          * Is this a new hole at the highest possible address?
1583          */
1584         if (addr > mm->free_area_cache)
1585                 mm->free_area_cache = addr;
1586
1587         /* dont allow allocations above current base */
1588         if (mm->free_area_cache > mm->mmap_base)
1589                 mm->free_area_cache = mm->mmap_base;
1590 }
1591
1592 unsigned long
1593 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1594                 unsigned long pgoff, unsigned long flags)
1595 {
1596         unsigned long (*get_area)(struct file *, unsigned long,
1597                                   unsigned long, unsigned long, unsigned long);
1598
1599         unsigned long error = arch_mmap_check(addr, len, flags);
1600         if (error)
1601                 return error;
1602
1603         /* Careful about overflows.. */
1604         if (len > TASK_SIZE)
1605                 return -ENOMEM;
1606
1607         get_area = current->mm->get_unmapped_area;
1608         if (file && file->f_op && file->f_op->get_unmapped_area)
1609                 get_area = file->f_op->get_unmapped_area;
1610         addr = get_area(file, addr, len, pgoff, flags);
1611         if (IS_ERR_VALUE(addr))
1612                 return addr;
1613
1614         if (addr > TASK_SIZE - len)
1615                 return -ENOMEM;
1616         if (addr & ~PAGE_MASK)
1617                 return -EINVAL;
1618
1619         return arch_rebalance_pgtables(addr, len);
1620 }
1621
1622 EXPORT_SYMBOL(get_unmapped_area);
1623
1624 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1625 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1626 {
1627         struct vm_area_struct *vma = NULL;
1628
1629         if (mm) {
1630                 /* Check the cache first. */
1631                 /* (Cache hit rate is typically around 35%.) */
1632                 vma = mm->mmap_cache;
1633                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1634                         struct rb_node * rb_node;
1635
1636                         rb_node = mm->mm_rb.rb_node;
1637                         vma = NULL;
1638
1639                         while (rb_node) {
1640                                 struct vm_area_struct * vma_tmp;
1641
1642                                 vma_tmp = rb_entry(rb_node,
1643                                                 struct vm_area_struct, vm_rb);
1644
1645                                 if (vma_tmp->vm_end > addr) {
1646                                         vma = vma_tmp;
1647                                         if (vma_tmp->vm_start <= addr)
1648                                                 break;
1649                                         rb_node = rb_node->rb_left;
1650                                 } else
1651                                         rb_node = rb_node->rb_right;
1652                         }
1653                         if (vma)
1654                                 mm->mmap_cache = vma;
1655                 }
1656         }
1657         return vma;
1658 }
1659
1660 EXPORT_SYMBOL(find_vma);
1661
1662 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1663 struct vm_area_struct *
1664 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1665                         struct vm_area_struct **pprev)
1666 {
1667         struct vm_area_struct *vma = NULL, *prev = NULL;
1668         struct rb_node *rb_node;
1669         if (!mm)
1670                 goto out;
1671
1672         /* Guard against addr being lower than the first VMA */
1673         vma = mm->mmap;
1674
1675         /* Go through the RB tree quickly. */
1676         rb_node = mm->mm_rb.rb_node;
1677
1678         while (rb_node) {
1679                 struct vm_area_struct *vma_tmp;
1680                 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1681
1682                 if (addr < vma_tmp->vm_end) {
1683                         rb_node = rb_node->rb_left;
1684                 } else {
1685                         prev = vma_tmp;
1686                         if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1687                                 break;
1688                         rb_node = rb_node->rb_right;
1689                 }
1690         }
1691
1692 out:
1693         *pprev = prev;
1694         return prev ? prev->vm_next : vma;
1695 }
1696
1697 /*
1698  * Verify that the stack growth is acceptable and
1699  * update accounting. This is shared with both the
1700  * grow-up and grow-down cases.
1701  */
1702 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1703 {
1704         struct mm_struct *mm = vma->vm_mm;
1705         struct rlimit *rlim = current->signal->rlim;
1706         unsigned long new_start;
1707
1708         /* address space limit tests */
1709         if (!may_expand_vm(mm, grow))
1710                 return -ENOMEM;
1711
1712         /* Stack limit test */
1713         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1714                 return -ENOMEM;
1715
1716         /* mlock limit tests */
1717         if (vma->vm_flags & VM_LOCKED) {
1718                 unsigned long locked;
1719                 unsigned long limit;
1720                 locked = mm->locked_vm + grow;
1721                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1722                 limit >>= PAGE_SHIFT;
1723                 if (locked > limit && !capable(CAP_IPC_LOCK))
1724                         return -ENOMEM;
1725         }
1726
1727         /* Check to ensure the stack will not grow into a hugetlb-only region */
1728         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1729                         vma->vm_end - size;
1730         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1731                 return -EFAULT;
1732
1733         /*
1734          * Overcommit..  This must be the final test, as it will
1735          * update security statistics.
1736          */
1737         if (security_vm_enough_memory_mm(mm, grow))
1738                 return -ENOMEM;
1739
1740         /* Ok, everything looks good - let it rip */
1741         mm->total_vm += grow;
1742         if (vma->vm_flags & VM_LOCKED)
1743                 mm->locked_vm += grow;
1744         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1745         return 0;
1746 }
1747
1748 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1749 /*
1750  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1751  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1752  */
1753 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1754 {
1755         int error;
1756
1757         if (!(vma->vm_flags & VM_GROWSUP))
1758                 return -EFAULT;
1759
1760         /*
1761          * We must make sure the anon_vma is allocated
1762          * so that the anon_vma locking is not a noop.
1763          */
1764         if (unlikely(anon_vma_prepare(vma)))
1765                 return -ENOMEM;
1766         vma_lock_anon_vma(vma);
1767
1768         /*
1769          * vma->vm_start/vm_end cannot change under us because the caller
1770          * is required to hold the mmap_sem in read mode.  We need the
1771          * anon_vma lock to serialize against concurrent expand_stacks.
1772          * Also guard against wrapping around to address 0.
1773          */
1774         if (address < PAGE_ALIGN(address+4))
1775                 address = PAGE_ALIGN(address+4);
1776         else {
1777                 vma_unlock_anon_vma(vma);
1778                 return -ENOMEM;
1779         }
1780         error = 0;
1781
1782         /* Somebody else might have raced and expanded it already */
1783         if (address > vma->vm_end) {
1784                 unsigned long size, grow;
1785
1786                 size = address - vma->vm_start;
1787                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1788
1789                 error = acct_stack_growth(vma, size, grow);
1790                 if (!error) {
1791                         vma->vm_end = address;
1792                         perf_event_mmap(vma);
1793                 }
1794         }
1795         vma_unlock_anon_vma(vma);
1796         khugepaged_enter_vma_merge(vma);
1797         return error;
1798 }
1799 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1800
1801 /*
1802  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1803  */
1804 static int expand_downwards(struct vm_area_struct *vma,
1805                                    unsigned long address)
1806 {
1807         int error;
1808
1809         /*
1810          * We must make sure the anon_vma is allocated
1811          * so that the anon_vma locking is not a noop.
1812          */
1813         if (unlikely(anon_vma_prepare(vma)))
1814                 return -ENOMEM;
1815
1816         address &= PAGE_MASK;
1817         error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1818         if (error)
1819                 return error;
1820
1821         vma_lock_anon_vma(vma);
1822
1823         /*
1824          * vma->vm_start/vm_end cannot change under us because the caller
1825          * is required to hold the mmap_sem in read mode.  We need the
1826          * anon_vma lock to serialize against concurrent expand_stacks.
1827          */
1828
1829         /* Somebody else might have raced and expanded it already */
1830         if (address < vma->vm_start) {
1831                 unsigned long size, grow;
1832
1833                 size = vma->vm_end - address;
1834                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1835
1836                 error = acct_stack_growth(vma, size, grow);
1837                 if (!error) {
1838                         vma->vm_start = address;
1839                         vma->vm_pgoff -= grow;
1840                         perf_event_mmap(vma);
1841                 }
1842         }
1843         vma_unlock_anon_vma(vma);
1844         khugepaged_enter_vma_merge(vma);
1845         return error;
1846 }
1847
1848 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1849 {
1850         return expand_downwards(vma, address);
1851 }
1852
1853 #ifdef CONFIG_STACK_GROWSUP
1854 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1855 {
1856         return expand_upwards(vma, address);
1857 }
1858
1859 struct vm_area_struct *
1860 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1861 {
1862         struct vm_area_struct *vma, *prev;
1863
1864         addr &= PAGE_MASK;
1865         vma = find_vma_prev(mm, addr, &prev);
1866         if (vma && (vma->vm_start <= addr))
1867                 return vma;
1868         if (!prev || expand_stack(prev, addr))
1869                 return NULL;
1870         if (prev->vm_flags & VM_LOCKED) {
1871                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1872         }
1873         return prev;
1874 }
1875 #else
1876 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1877 {
1878         return expand_downwards(vma, address);
1879 }
1880
1881 struct vm_area_struct *
1882 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1883 {
1884         struct vm_area_struct * vma;
1885         unsigned long start;
1886
1887         addr &= PAGE_MASK;
1888         vma = find_vma(mm,addr);
1889         if (!vma)
1890                 return NULL;
1891         if (vma->vm_start <= addr)
1892                 return vma;
1893         if (!(vma->vm_flags & VM_GROWSDOWN))
1894                 return NULL;
1895         start = vma->vm_start;
1896         if (expand_stack(vma, addr))
1897                 return NULL;
1898         if (vma->vm_flags & VM_LOCKED) {
1899                 mlock_vma_pages_range(vma, addr, start);
1900         }
1901         return vma;
1902 }
1903 #endif
1904
1905 /*
1906  * Ok - we have the memory areas we should free on the vma list,
1907  * so release them, and do the vma updates.
1908  *
1909  * Called with the mm semaphore held.
1910  */
1911 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1912 {
1913         /* Update high watermark before we lower total_vm */
1914         update_hiwater_vm(mm);
1915         do {
1916                 long nrpages = vma_pages(vma);
1917
1918                 mm->total_vm -= nrpages;
1919                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1920                 vma = remove_vma(vma);
1921         } while (vma);
1922         validate_mm(mm);
1923 }
1924
1925 /*
1926  * Get rid of page table information in the indicated region.
1927  *
1928  * Called with the mm semaphore held.
1929  */
1930 static void unmap_region(struct mm_struct *mm,
1931                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1932                 unsigned long start, unsigned long end)
1933 {
1934         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1935         struct mmu_gather *tlb;
1936         unsigned long nr_accounted = 0;
1937
1938         lru_add_drain();
1939         tlb = tlb_gather_mmu(mm, 0);
1940         update_hiwater_rss(mm);
1941         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1942         vm_unacct_memory(nr_accounted);
1943         free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1944                                  next? next->vm_start: 0);
1945         tlb_finish_mmu(tlb, start, end);
1946 }
1947
1948 /*
1949  * Create a list of vma's touched by the unmap, removing them from the mm's
1950  * vma list as we go..
1951  */
1952 static void
1953 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1954         struct vm_area_struct *prev, unsigned long end)
1955 {
1956         struct vm_area_struct **insertion_point;
1957         struct vm_area_struct *tail_vma = NULL;
1958         unsigned long addr;
1959
1960         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1961         vma->vm_prev = NULL;
1962         do {
1963                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1964                 mm->map_count--;
1965                 tail_vma = vma;
1966                 vma = vma->vm_next;
1967         } while (vma && vma->vm_start < end);
1968         *insertion_point = vma;
1969         if (vma)
1970                 vma->vm_prev = prev;
1971         tail_vma->vm_next = NULL;
1972         if (mm->unmap_area == arch_unmap_area)
1973                 addr = prev ? prev->vm_end : mm->mmap_base;
1974         else
1975                 addr = vma ?  vma->vm_start : mm->mmap_base;
1976         mm->unmap_area(mm, addr);
1977         mm->mmap_cache = NULL;          /* Kill the cache. */
1978 }
1979
1980 /*
1981  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1982  * munmap path where it doesn't make sense to fail.
1983  */
1984 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1985               unsigned long addr, int new_below)
1986 {
1987         struct mempolicy *pol;
1988         struct vm_area_struct *new;
1989         int err = -ENOMEM;
1990
1991         if (is_vm_hugetlb_page(vma) && (addr &
1992                                         ~(huge_page_mask(hstate_vma(vma)))))
1993                 return -EINVAL;
1994
1995         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1996         if (!new)
1997                 goto out_err;
1998
1999         /* most fields are the same, copy all, and then fixup */
2000         *new = *vma;
2001
2002         INIT_LIST_HEAD(&new->anon_vma_chain);
2003
2004         if (new_below)
2005                 new->vm_end = addr;
2006         else {
2007                 new->vm_start = addr;
2008                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2009         }
2010
2011         pol = mpol_dup(vma_policy(vma));
2012         if (IS_ERR(pol)) {
2013                 err = PTR_ERR(pol);
2014                 goto out_free_vma;
2015         }
2016         vma_set_policy(new, pol);
2017
2018         if (anon_vma_clone(new, vma))
2019                 goto out_free_mpol;
2020
2021         if (new->vm_file) {
2022                 get_file(new->vm_file);
2023                 if (vma->vm_flags & VM_EXECUTABLE)
2024                         added_exe_file_vma(mm);
2025         }
2026
2027         if (new->vm_ops && new->vm_ops->open)
2028                 new->vm_ops->open(new);
2029
2030         if (new_below) {
2031                 unsigned long old_end = vma->vm_end;
2032
2033                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2034                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2035                 if (vma->vm_flags & VM_EXEC)
2036                         arch_remove_exec_range(mm, old_end);
2037         } else
2038                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2039
2040         /* Success. */
2041         if (!err)
2042                 return 0;
2043
2044         /* Clean everything up if vma_adjust failed. */
2045         if (new->vm_ops && new->vm_ops->close)
2046                 new->vm_ops->close(new);
2047         if (new->vm_file) {
2048                 if (vma->vm_flags & VM_EXECUTABLE)
2049                         removed_exe_file_vma(mm);
2050                 fput(new->vm_file);
2051         }
2052         unlink_anon_vmas(new);
2053  out_free_mpol:
2054         mpol_put(pol);
2055  out_free_vma:
2056         kmem_cache_free(vm_area_cachep, new);
2057  out_err:
2058         return err;
2059 }
2060
2061 /*
2062  * Split a vma into two pieces at address 'addr', a new vma is allocated
2063  * either for the first part or the tail.
2064  */
2065 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2066               unsigned long addr, int new_below)
2067 {
2068         if (mm->map_count >= sysctl_max_map_count)
2069                 return -ENOMEM;
2070
2071         return __split_vma(mm, vma, addr, new_below);
2072 }
2073
2074 /* Munmap is split into 2 main parts -- this part which finds
2075  * what needs doing, and the areas themselves, which do the
2076  * work.  This now handles partial unmappings.
2077  * Jeremy Fitzhardinge <jeremy@goop.org>
2078  */
2079 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2080 {
2081         unsigned long end;
2082         struct vm_area_struct *vma, *prev, *last;
2083
2084         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2085                 return -EINVAL;
2086
2087         if ((len = PAGE_ALIGN(len)) == 0)
2088                 return -EINVAL;
2089
2090         /* Find the first overlapping VMA */
2091         vma = find_vma_prev(mm, start, &prev);
2092         if (!vma)
2093                 return 0;
2094         /* we have  start < vma->vm_end  */
2095
2096         /* if it doesn't overlap, we have nothing.. */
2097         end = start + len;
2098         if (vma->vm_start >= end)
2099                 return 0;
2100
2101         /*
2102          * If we need to split any vma, do it now to save pain later.
2103          *
2104          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2105          * unmapped vm_area_struct will remain in use: so lower split_vma
2106          * places tmp vma above, and higher split_vma places tmp vma below.
2107          */
2108         if (start > vma->vm_start) {
2109                 int error;
2110
2111                 /*
2112                  * Make sure that map_count on return from munmap() will
2113                  * not exceed its limit; but let map_count go just above
2114                  * its limit temporarily, to help free resources as expected.
2115                  */
2116                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2117                         return -ENOMEM;
2118
2119                 error = __split_vma(mm, vma, start, 0);
2120                 if (error)
2121                         return error;
2122                 prev = vma;
2123         }
2124
2125         /* Does it split the last one? */
2126         last = find_vma(mm, end);
2127         if (last && end > last->vm_start) {
2128                 int error = __split_vma(mm, last, end, 1);
2129                 if (error)
2130                         return error;
2131         }
2132         vma = prev? prev->vm_next: mm->mmap;
2133
2134         /*
2135          * unlock any mlock()ed ranges before detaching vmas
2136          */
2137         if (mm->locked_vm) {
2138                 struct vm_area_struct *tmp = vma;
2139                 while (tmp && tmp->vm_start < end) {
2140                         if (tmp->vm_flags & VM_LOCKED) {
2141                                 mm->locked_vm -= vma_pages(tmp);
2142                                 munlock_vma_pages_all(tmp);
2143                         }
2144                         tmp = tmp->vm_next;
2145                 }
2146         }
2147
2148         /*
2149          * Remove the vma's, and unmap the actual pages
2150          */
2151         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2152         unmap_region(mm, vma, prev, start, end);
2153
2154         /* Fix up all other VM information */
2155         remove_vma_list(mm, vma);
2156
2157         return 0;
2158 }
2159
2160 EXPORT_SYMBOL(do_munmap);
2161
2162 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2163 {
2164         int ret;
2165         struct mm_struct *mm = current->mm;
2166
2167         profile_munmap(addr);
2168
2169         down_write(&mm->mmap_sem);
2170         ret = do_munmap(mm, addr, len);
2171         up_write(&mm->mmap_sem);
2172         return ret;
2173 }
2174
2175 static inline void verify_mm_writelocked(struct mm_struct *mm)
2176 {
2177 #ifdef CONFIG_DEBUG_VM
2178         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2179                 WARN_ON(1);
2180                 up_read(&mm->mmap_sem);
2181         }
2182 #endif
2183 }
2184
2185 /*
2186  *  this is really a simplified "do_mmap".  it only handles
2187  *  anonymous maps.  eventually we may be able to do some
2188  *  brk-specific accounting here.
2189  */
2190 unsigned long do_brk(unsigned long addr, unsigned long len)
2191 {
2192         struct mm_struct * mm = current->mm;
2193         struct vm_area_struct * vma, * prev;
2194         unsigned long flags;
2195         struct rb_node ** rb_link, * rb_parent;
2196         pgoff_t pgoff = addr >> PAGE_SHIFT;
2197         int error;
2198
2199         len = PAGE_ALIGN(len);
2200         if (!len)
2201                 return addr;
2202
2203         error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2204         if (error)
2205                 return error;
2206
2207         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2208
2209         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2210         if (error & ~PAGE_MASK)
2211                 return error;
2212
2213         /*
2214          * mlock MCL_FUTURE?
2215          */
2216         if (mm->def_flags & VM_LOCKED) {
2217                 unsigned long locked, lock_limit;
2218                 locked = len >> PAGE_SHIFT;
2219                 locked += mm->locked_vm;
2220                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2221                 lock_limit >>= PAGE_SHIFT;
2222                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2223                         return -EAGAIN;
2224         }
2225
2226         /*
2227          * mm->mmap_sem is required to protect against another thread
2228          * changing the mappings in case we sleep.
2229          */
2230         verify_mm_writelocked(mm);
2231
2232         /*
2233          * Clear old maps.  this also does some error checking for us
2234          */
2235  munmap_back:
2236         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2237         if (vma && vma->vm_start < addr + len) {
2238                 if (do_munmap(mm, addr, len))
2239                         return -ENOMEM;
2240                 goto munmap_back;
2241         }
2242
2243         /* Check against address space limits *after* clearing old maps... */
2244         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2245                 return -ENOMEM;
2246
2247         if (mm->map_count > sysctl_max_map_count)
2248                 return -ENOMEM;
2249
2250         if (security_vm_enough_memory(len >> PAGE_SHIFT))
2251                 return -ENOMEM;
2252
2253         /* Can we just expand an old private anonymous mapping? */
2254         vma = vma_merge(mm, prev, addr, addr + len, flags,
2255                                         NULL, NULL, pgoff, NULL);
2256         if (vma)
2257                 goto out;
2258
2259         /*
2260          * create a vma struct for an anonymous mapping
2261          */
2262         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2263         if (!vma) {
2264                 vm_unacct_memory(len >> PAGE_SHIFT);
2265                 return -ENOMEM;
2266         }
2267
2268         INIT_LIST_HEAD(&vma->anon_vma_chain);
2269         vma->vm_mm = mm;
2270         vma->vm_start = addr;
2271         vma->vm_end = addr + len;
2272         vma->vm_pgoff = pgoff;
2273         vma->vm_flags = flags;
2274         vma->vm_page_prot = vm_get_page_prot(flags);
2275         vma_link(mm, vma, prev, rb_link, rb_parent);
2276 out:
2277         perf_event_mmap(vma);
2278         mm->total_vm += len >> PAGE_SHIFT;
2279         if (flags & VM_LOCKED) {
2280                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2281                         mm->locked_vm += (len >> PAGE_SHIFT);
2282         }
2283         return addr;
2284 }
2285
2286 EXPORT_SYMBOL(do_brk);
2287
2288 /* Release all mmaps. */
2289 void exit_mmap(struct mm_struct *mm)
2290 {
2291         struct mmu_gather *tlb;
2292         struct vm_area_struct *vma;
2293         unsigned long nr_accounted = 0;
2294         unsigned long end;
2295
2296         /* mm's last user has gone, and its about to be pulled down */
2297         mmu_notifier_release(mm);
2298
2299         if (mm->locked_vm) {
2300                 vma = mm->mmap;
2301                 while (vma) {
2302                         if (vma->vm_flags & VM_LOCKED)
2303                                 munlock_vma_pages_all(vma);
2304                         vma = vma->vm_next;
2305                 }
2306         }
2307
2308         arch_exit_mmap(mm);
2309
2310         vma = mm->mmap;
2311         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2312                 return;
2313
2314         lru_add_drain();
2315         flush_cache_mm(mm);
2316         tlb = tlb_gather_mmu(mm, 1);
2317         /* update_hiwater_rss(mm) here? but nobody should be looking */
2318         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2319         end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2320         vm_unacct_memory(nr_accounted);
2321
2322         free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2323         tlb_finish_mmu(tlb, 0, end);
2324         arch_flush_exec_range(mm);
2325
2326         /*
2327          * Walk the list again, actually closing and freeing it,
2328          * with preemption enabled, without holding any MM locks.
2329          */
2330         while (vma)
2331                 vma = remove_vma(vma);
2332
2333         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2334 }
2335
2336 /* Insert vm structure into process list sorted by address
2337  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2338  * then i_mmap_lock is taken here.
2339  */
2340 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2341 {
2342         struct vm_area_struct * __vma, * prev;
2343         struct rb_node ** rb_link, * rb_parent;
2344
2345         /*
2346          * The vm_pgoff of a purely anonymous vma should be irrelevant
2347          * until its first write fault, when page's anon_vma and index
2348          * are set.  But now set the vm_pgoff it will almost certainly
2349          * end up with (unless mremap moves it elsewhere before that
2350          * first wfault), so /proc/pid/maps tells a consistent story.
2351          *
2352          * By setting it to reflect the virtual start address of the
2353          * vma, merges and splits can happen in a seamless way, just
2354          * using the existing file pgoff checks and manipulations.
2355          * Similarly in do_mmap_pgoff and in do_brk.
2356          */
2357         if (!vma->vm_file) {
2358                 BUG_ON(vma->anon_vma);
2359                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2360         }
2361         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2362         if (__vma && __vma->vm_start < vma->vm_end)
2363                 return -ENOMEM;
2364         if ((vma->vm_flags & VM_ACCOUNT) &&
2365              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2366                 return -ENOMEM;
2367         vma_link(mm, vma, prev, rb_link, rb_parent);
2368         return 0;
2369 }
2370
2371 /*
2372  * Copy the vma structure to a new location in the same mm,
2373  * prior to moving page table entries, to effect an mremap move.
2374  */
2375 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2376         unsigned long addr, unsigned long len, pgoff_t pgoff)
2377 {
2378         struct vm_area_struct *vma = *vmap;
2379         unsigned long vma_start = vma->vm_start;
2380         struct mm_struct *mm = vma->vm_mm;
2381         struct vm_area_struct *new_vma, *prev;
2382         struct rb_node **rb_link, *rb_parent;
2383         struct mempolicy *pol;
2384
2385         /*
2386          * If anonymous vma has not yet been faulted, update new pgoff
2387          * to match new location, to increase its chance of merging.
2388          */
2389         if (!vma->vm_file && !vma->anon_vma)
2390                 pgoff = addr >> PAGE_SHIFT;
2391
2392         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2393         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2394                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2395         if (new_vma) {
2396                 /*
2397                  * Source vma may have been merged into new_vma
2398                  */
2399                 if (vma_start >= new_vma->vm_start &&
2400                     vma_start < new_vma->vm_end)
2401                         *vmap = new_vma;
2402         } else {
2403                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2404                 if (new_vma) {
2405                         *new_vma = *vma;
2406                         pol = mpol_dup(vma_policy(vma));
2407                         if (IS_ERR(pol))
2408                                 goto out_free_vma;
2409                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2410                         if (anon_vma_clone(new_vma, vma))
2411                                 goto out_free_mempol;
2412                         vma_set_policy(new_vma, pol);
2413                         new_vma->vm_start = addr;
2414                         new_vma->vm_end = addr + len;
2415                         new_vma->vm_pgoff = pgoff;
2416                         if (new_vma->vm_file) {
2417                                 get_file(new_vma->vm_file);
2418                                 if (vma->vm_flags & VM_EXECUTABLE)
2419                                         added_exe_file_vma(mm);
2420                         }
2421                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2422                                 new_vma->vm_ops->open(new_vma);
2423                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2424                 }
2425         }
2426         return new_vma;
2427
2428  out_free_mempol:
2429         mpol_put(pol);
2430  out_free_vma:
2431         kmem_cache_free(vm_area_cachep, new_vma);
2432         return NULL;
2433 }
2434
2435 /*
2436  * Return true if the calling process may expand its vm space by the passed
2437  * number of pages
2438  */
2439 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2440 {
2441         unsigned long cur = mm->total_vm;       /* pages */
2442         unsigned long lim;
2443
2444         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2445
2446         if (cur + npages > lim)
2447                 return 0;
2448         return 1;
2449 }
2450
2451
2452 static int special_mapping_fault(struct vm_area_struct *vma,
2453                                 struct vm_fault *vmf)
2454 {
2455         pgoff_t pgoff;
2456         struct page **pages;
2457
2458         /*
2459          * special mappings have no vm_file, and in that case, the mm
2460          * uses vm_pgoff internally. So we have to subtract it from here.
2461          * We are allowed to do this because we are the mm; do not copy
2462          * this code into drivers!
2463          */
2464         pgoff = vmf->pgoff - vma->vm_pgoff;
2465
2466         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2467                 pgoff--;
2468
2469         if (*pages) {
2470                 struct page *page = *pages;
2471                 get_page(page);
2472                 vmf->page = page;
2473                 return 0;
2474         }
2475
2476         return VM_FAULT_SIGBUS;
2477 }
2478
2479 /*
2480  * Having a close hook prevents vma merging regardless of flags.
2481  */
2482 static void special_mapping_close(struct vm_area_struct *vma)
2483 {
2484 }
2485
2486 static const struct vm_operations_struct special_mapping_vmops = {
2487         .close = special_mapping_close,
2488         .fault = special_mapping_fault,
2489 };
2490
2491 /*
2492  * Called with mm->mmap_sem held for writing.
2493  * Insert a new vma covering the given region, with the given flags.
2494  * Its pages are supplied by the given array of struct page *.
2495  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2496  * The region past the last page supplied will always produce SIGBUS.
2497  * The array pointer and the pages it points to are assumed to stay alive
2498  * for as long as this mapping might exist.
2499  */
2500 int install_special_mapping(struct mm_struct *mm,
2501                             unsigned long addr, unsigned long len,
2502                             unsigned long vm_flags, struct page **pages)
2503 {
2504         int ret;
2505         struct vm_area_struct *vma;
2506
2507         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2508         if (unlikely(vma == NULL))
2509                 return -ENOMEM;
2510
2511         INIT_LIST_HEAD(&vma->anon_vma_chain);
2512         vma->vm_mm = mm;
2513         vma->vm_start = addr;
2514         vma->vm_end = addr + len;
2515
2516         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2517         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2518
2519         vma->vm_ops = &special_mapping_vmops;
2520         vma->vm_private_data = pages;
2521
2522         ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2523         if (ret)
2524                 goto out;
2525
2526         ret = insert_vm_struct(mm, vma);
2527         if (ret)
2528                 goto out;
2529
2530         mm->total_vm += len >> PAGE_SHIFT;
2531
2532         perf_event_mmap(vma);
2533
2534         return 0;
2535
2536 out:
2537         kmem_cache_free(vm_area_cachep, vma);
2538         return ret;
2539 }
2540
2541 static DEFINE_MUTEX(mm_all_locks_mutex);
2542
2543 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2544 {
2545         if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2546                 /*
2547                  * The LSB of head.next can't change from under us
2548                  * because we hold the mm_all_locks_mutex.
2549                  */
2550                 spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem);
2551                 /*
2552                  * We can safely modify head.next after taking the
2553                  * anon_vma->root->lock. If some other vma in this mm shares
2554                  * the same anon_vma we won't take it again.
2555                  *
2556                  * No need of atomic instructions here, head.next
2557                  * can't change from under us thanks to the
2558                  * anon_vma->root->lock.
2559                  */
2560                 if (__test_and_set_bit(0, (unsigned long *)
2561                                        &anon_vma->root->head.next))
2562                         BUG();
2563         }
2564 }
2565
2566 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2567 {
2568         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2569                 /*
2570                  * AS_MM_ALL_LOCKS can't change from under us because
2571                  * we hold the mm_all_locks_mutex.
2572                  *
2573                  * Operations on ->flags have to be atomic because
2574                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2575                  * mm_all_locks_mutex, there may be other cpus
2576                  * changing other bitflags in parallel to us.
2577                  */
2578                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2579                         BUG();
2580                 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2581         }
2582 }
2583
2584 /*
2585  * This operation locks against the VM for all pte/vma/mm related
2586  * operations that could ever happen on a certain mm. This includes
2587  * vmtruncate, try_to_unmap, and all page faults.
2588  *
2589  * The caller must take the mmap_sem in write mode before calling
2590  * mm_take_all_locks(). The caller isn't allowed to release the
2591  * mmap_sem until mm_drop_all_locks() returns.
2592  *
2593  * mmap_sem in write mode is required in order to block all operations
2594  * that could modify pagetables and free pages without need of
2595  * altering the vma layout (for example populate_range() with
2596  * nonlinear vmas). It's also needed in write mode to avoid new
2597  * anon_vmas to be associated with existing vmas.
2598  *
2599  * A single task can't take more than one mm_take_all_locks() in a row
2600  * or it would deadlock.
2601  *
2602  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2603  * mapping->flags avoid to take the same lock twice, if more than one
2604  * vma in this mm is backed by the same anon_vma or address_space.
2605  *
2606  * We can take all the locks in random order because the VM code
2607  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2608  * takes more than one of them in a row. Secondly we're protected
2609  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2610  *
2611  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2612  * that may have to take thousand of locks.
2613  *
2614  * mm_take_all_locks() can fail if it's interrupted by signals.
2615  */
2616 int mm_take_all_locks(struct mm_struct *mm)
2617 {
2618         struct vm_area_struct *vma;
2619         struct anon_vma_chain *avc;
2620         int ret = -EINTR;
2621
2622         BUG_ON(down_read_trylock(&mm->mmap_sem));
2623
2624         mutex_lock(&mm_all_locks_mutex);
2625
2626         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2627                 if (signal_pending(current))
2628                         goto out_unlock;
2629                 if (vma->vm_file && vma->vm_file->f_mapping)
2630                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2631         }
2632
2633         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2634                 if (signal_pending(current))
2635                         goto out_unlock;
2636                 if (vma->anon_vma)
2637                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2638                                 vm_lock_anon_vma(mm, avc->anon_vma);
2639         }
2640
2641         ret = 0;
2642
2643 out_unlock:
2644         if (ret)
2645                 mm_drop_all_locks(mm);
2646
2647         return ret;
2648 }
2649
2650 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2651 {
2652         if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2653                 /*
2654                  * The LSB of head.next can't change to 0 from under
2655                  * us because we hold the mm_all_locks_mutex.
2656                  *
2657                  * We must however clear the bitflag before unlocking
2658                  * the vma so the users using the anon_vma->head will
2659                  * never see our bitflag.
2660                  *
2661                  * No need of atomic instructions here, head.next
2662                  * can't change from under us until we release the
2663                  * anon_vma->root->lock.
2664                  */
2665                 if (!__test_and_clear_bit(0, (unsigned long *)
2666                                           &anon_vma->root->head.next))
2667                         BUG();
2668                 anon_vma_unlock(anon_vma);
2669         }
2670 }
2671
2672 static void vm_unlock_mapping(struct address_space *mapping)
2673 {
2674         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2675                 /*
2676                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2677                  * because we hold the mm_all_locks_mutex.
2678                  */
2679                 spin_unlock(&mapping->i_mmap_lock);
2680                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2681                                         &mapping->flags))
2682                         BUG();
2683         }
2684 }
2685
2686 /*
2687  * The mmap_sem cannot be released by the caller until
2688  * mm_drop_all_locks() returns.
2689  */
2690 void mm_drop_all_locks(struct mm_struct *mm)
2691 {
2692         struct vm_area_struct *vma;
2693         struct anon_vma_chain *avc;
2694
2695         BUG_ON(down_read_trylock(&mm->mmap_sem));
2696         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2697
2698         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2699                 if (vma->anon_vma)
2700                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2701                                 vm_unlock_anon_vma(avc->anon_vma);
2702                 if (vma->vm_file && vma->vm_file->f_mapping)
2703                         vm_unlock_mapping(vma->vm_file->f_mapping);
2704         }
2705
2706         mutex_unlock(&mm_all_locks_mutex);
2707 }
2708
2709 /*
2710  * initialise the VMA slab
2711  */
2712 void __init mmap_init(void)
2713 {
2714         int ret;
2715
2716         ret = percpu_counter_init(&vm_committed_as, 0);
2717         VM_BUG_ON(ret);
2718 }