8f7656194417821e97e0882e1d611d6721d3e688
[linux-flexiantxendom0-natty.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
23
24 /*
25  * By default transparent hugepage support is enabled for all mappings
26  * and khugepaged scans all mappings. Defrag is only invoked by
27  * khugepaged hugepage allocations and by page faults inside
28  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29  * allocations.
30  */
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52 /*
53  * default collapse hugepages if there is at least one pte mapped like
54  * it would have happened if the vma was large enough during page
55  * fault.
56  */
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
63
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
67
68 /**
69  * struct mm_slot - hash lookup from mm to mm_slot
70  * @hash: hash collision list
71  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72  * @mm: the mm that this information is valid for
73  */
74 struct mm_slot {
75         struct hlist_node hash;
76         struct list_head mm_node;
77         struct mm_struct *mm;
78 };
79
80 /**
81  * struct khugepaged_scan - cursor for scanning
82  * @mm_head: the head of the mm list to scan
83  * @mm_slot: the current mm_slot we are scanning
84  * @address: the next address inside that to be scanned
85  *
86  * There is only the one khugepaged_scan instance of this cursor structure.
87  */
88 struct khugepaged_scan {
89         struct list_head mm_head;
90         struct mm_slot *mm_slot;
91         unsigned long address;
92 } khugepaged_scan = {
93         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
94 };
95
96
97 static int set_recommended_min_free_kbytes(void)
98 {
99         struct zone *zone;
100         int nr_zones = 0;
101         unsigned long recommended_min;
102         extern int min_free_kbytes;
103
104         if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
105                       &transparent_hugepage_flags) &&
106             !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
107                       &transparent_hugepage_flags))
108                 return 0;
109
110         for_each_populated_zone(zone)
111                 nr_zones++;
112
113         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114         recommended_min = pageblock_nr_pages * nr_zones * 2;
115
116         /*
117          * Make sure that on average at least two pageblocks are almost free
118          * of another type, one for a migratetype to fall back to and a
119          * second to avoid subsequent fallbacks of other types There are 3
120          * MIGRATE_TYPES we care about.
121          */
122         recommended_min += pageblock_nr_pages * nr_zones *
123                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124
125         /* don't ever allow to reserve more than 5% of the lowmem */
126         recommended_min = min(recommended_min,
127                               (unsigned long) nr_free_buffer_pages() / 20);
128         recommended_min <<= (PAGE_SHIFT-10);
129
130         if (recommended_min > min_free_kbytes)
131                 min_free_kbytes = recommended_min;
132         setup_per_zone_wmarks();
133         return 0;
134 }
135 late_initcall(set_recommended_min_free_kbytes);
136
137 static int start_khugepaged(void)
138 {
139         int err = 0;
140         if (khugepaged_enabled()) {
141                 int wakeup;
142                 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
143                         err = -ENOMEM;
144                         goto out;
145                 }
146                 mutex_lock(&khugepaged_mutex);
147                 if (!khugepaged_thread)
148                         khugepaged_thread = kthread_run(khugepaged, NULL,
149                                                         "khugepaged");
150                 if (unlikely(IS_ERR(khugepaged_thread))) {
151                         printk(KERN_ERR
152                                "khugepaged: kthread_run(khugepaged) failed\n");
153                         err = PTR_ERR(khugepaged_thread);
154                         khugepaged_thread = NULL;
155                 }
156                 wakeup = !list_empty(&khugepaged_scan.mm_head);
157                 mutex_unlock(&khugepaged_mutex);
158                 if (wakeup)
159                         wake_up_interruptible(&khugepaged_wait);
160
161                 set_recommended_min_free_kbytes();
162         } else
163                 /* wakeup to exit */
164                 wake_up_interruptible(&khugepaged_wait);
165 out:
166         return err;
167 }
168
169 #ifdef CONFIG_SYSFS
170
171 static ssize_t double_flag_show(struct kobject *kobj,
172                                 struct kobj_attribute *attr, char *buf,
173                                 enum transparent_hugepage_flag enabled,
174                                 enum transparent_hugepage_flag req_madv)
175 {
176         if (test_bit(enabled, &transparent_hugepage_flags)) {
177                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
178                 return sprintf(buf, "[always] madvise never\n");
179         } else if (test_bit(req_madv, &transparent_hugepage_flags))
180                 return sprintf(buf, "always [madvise] never\n");
181         else
182                 return sprintf(buf, "always madvise [never]\n");
183 }
184 static ssize_t double_flag_store(struct kobject *kobj,
185                                  struct kobj_attribute *attr,
186                                  const char *buf, size_t count,
187                                  enum transparent_hugepage_flag enabled,
188                                  enum transparent_hugepage_flag req_madv)
189 {
190         if (!memcmp("always", buf,
191                     min(sizeof("always")-1, count))) {
192                 set_bit(enabled, &transparent_hugepage_flags);
193                 clear_bit(req_madv, &transparent_hugepage_flags);
194         } else if (!memcmp("madvise", buf,
195                            min(sizeof("madvise")-1, count))) {
196                 clear_bit(enabled, &transparent_hugepage_flags);
197                 set_bit(req_madv, &transparent_hugepage_flags);
198         } else if (!memcmp("never", buf,
199                            min(sizeof("never")-1, count))) {
200                 clear_bit(enabled, &transparent_hugepage_flags);
201                 clear_bit(req_madv, &transparent_hugepage_flags);
202         } else
203                 return -EINVAL;
204
205         return count;
206 }
207
208 static ssize_t enabled_show(struct kobject *kobj,
209                             struct kobj_attribute *attr, char *buf)
210 {
211         return double_flag_show(kobj, attr, buf,
212                                 TRANSPARENT_HUGEPAGE_FLAG,
213                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
214 }
215 static ssize_t enabled_store(struct kobject *kobj,
216                              struct kobj_attribute *attr,
217                              const char *buf, size_t count)
218 {
219         ssize_t ret;
220
221         ret = double_flag_store(kobj, attr, buf, count,
222                                 TRANSPARENT_HUGEPAGE_FLAG,
223                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
224
225         if (ret > 0) {
226                 int err = start_khugepaged();
227                 if (err)
228                         ret = err;
229         }
230
231         if (ret > 0 &&
232             (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
233                       &transparent_hugepage_flags) ||
234              test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
235                       &transparent_hugepage_flags)))
236                 set_recommended_min_free_kbytes();
237
238         return ret;
239 }
240 static struct kobj_attribute enabled_attr =
241         __ATTR(enabled, 0644, enabled_show, enabled_store);
242
243 static ssize_t single_flag_show(struct kobject *kobj,
244                                 struct kobj_attribute *attr, char *buf,
245                                 enum transparent_hugepage_flag flag)
246 {
247         return sprintf(buf, "%d\n",
248                        !!test_bit(flag, &transparent_hugepage_flags));
249 }
250
251 static ssize_t single_flag_store(struct kobject *kobj,
252                                  struct kobj_attribute *attr,
253                                  const char *buf, size_t count,
254                                  enum transparent_hugepage_flag flag)
255 {
256         unsigned long value;
257         int ret;
258
259         ret = kstrtoul(buf, 10, &value);
260         if (ret < 0)
261                 return ret;
262         if (value > 1)
263                 return -EINVAL;
264
265         if (value)
266                 set_bit(flag, &transparent_hugepage_flags);
267         else
268                 clear_bit(flag, &transparent_hugepage_flags);
269
270         return count;
271 }
272
273 /*
274  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
275  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
276  * memory just to allocate one more hugepage.
277  */
278 static ssize_t defrag_show(struct kobject *kobj,
279                            struct kobj_attribute *attr, char *buf)
280 {
281         return double_flag_show(kobj, attr, buf,
282                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
283                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
284 }
285 static ssize_t defrag_store(struct kobject *kobj,
286                             struct kobj_attribute *attr,
287                             const char *buf, size_t count)
288 {
289         return double_flag_store(kobj, attr, buf, count,
290                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
291                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
292 }
293 static struct kobj_attribute defrag_attr =
294         __ATTR(defrag, 0644, defrag_show, defrag_store);
295
296 #ifdef CONFIG_DEBUG_VM
297 static ssize_t debug_cow_show(struct kobject *kobj,
298                                 struct kobj_attribute *attr, char *buf)
299 {
300         return single_flag_show(kobj, attr, buf,
301                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
302 }
303 static ssize_t debug_cow_store(struct kobject *kobj,
304                                struct kobj_attribute *attr,
305                                const char *buf, size_t count)
306 {
307         return single_flag_store(kobj, attr, buf, count,
308                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
309 }
310 static struct kobj_attribute debug_cow_attr =
311         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
312 #endif /* CONFIG_DEBUG_VM */
313
314 static struct attribute *hugepage_attr[] = {
315         &enabled_attr.attr,
316         &defrag_attr.attr,
317 #ifdef CONFIG_DEBUG_VM
318         &debug_cow_attr.attr,
319 #endif
320         NULL,
321 };
322
323 static struct attribute_group hugepage_attr_group = {
324         .attrs = hugepage_attr,
325 };
326
327 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
328                                          struct kobj_attribute *attr,
329                                          char *buf)
330 {
331         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
332 }
333
334 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
335                                           struct kobj_attribute *attr,
336                                           const char *buf, size_t count)
337 {
338         unsigned long msecs;
339         int err;
340
341         err = strict_strtoul(buf, 10, &msecs);
342         if (err || msecs > UINT_MAX)
343                 return -EINVAL;
344
345         khugepaged_scan_sleep_millisecs = msecs;
346         wake_up_interruptible(&khugepaged_wait);
347
348         return count;
349 }
350 static struct kobj_attribute scan_sleep_millisecs_attr =
351         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
352                scan_sleep_millisecs_store);
353
354 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
355                                           struct kobj_attribute *attr,
356                                           char *buf)
357 {
358         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
359 }
360
361 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
362                                            struct kobj_attribute *attr,
363                                            const char *buf, size_t count)
364 {
365         unsigned long msecs;
366         int err;
367
368         err = strict_strtoul(buf, 10, &msecs);
369         if (err || msecs > UINT_MAX)
370                 return -EINVAL;
371
372         khugepaged_alloc_sleep_millisecs = msecs;
373         wake_up_interruptible(&khugepaged_wait);
374
375         return count;
376 }
377 static struct kobj_attribute alloc_sleep_millisecs_attr =
378         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
379                alloc_sleep_millisecs_store);
380
381 static ssize_t pages_to_scan_show(struct kobject *kobj,
382                                   struct kobj_attribute *attr,
383                                   char *buf)
384 {
385         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
386 }
387 static ssize_t pages_to_scan_store(struct kobject *kobj,
388                                    struct kobj_attribute *attr,
389                                    const char *buf, size_t count)
390 {
391         int err;
392         unsigned long pages;
393
394         err = strict_strtoul(buf, 10, &pages);
395         if (err || !pages || pages > UINT_MAX)
396                 return -EINVAL;
397
398         khugepaged_pages_to_scan = pages;
399
400         return count;
401 }
402 static struct kobj_attribute pages_to_scan_attr =
403         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
404                pages_to_scan_store);
405
406 static ssize_t pages_collapsed_show(struct kobject *kobj,
407                                     struct kobj_attribute *attr,
408                                     char *buf)
409 {
410         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
411 }
412 static struct kobj_attribute pages_collapsed_attr =
413         __ATTR_RO(pages_collapsed);
414
415 static ssize_t full_scans_show(struct kobject *kobj,
416                                struct kobj_attribute *attr,
417                                char *buf)
418 {
419         return sprintf(buf, "%u\n", khugepaged_full_scans);
420 }
421 static struct kobj_attribute full_scans_attr =
422         __ATTR_RO(full_scans);
423
424 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
425                                       struct kobj_attribute *attr, char *buf)
426 {
427         return single_flag_show(kobj, attr, buf,
428                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
429 }
430 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
431                                        struct kobj_attribute *attr,
432                                        const char *buf, size_t count)
433 {
434         return single_flag_store(kobj, attr, buf, count,
435                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
436 }
437 static struct kobj_attribute khugepaged_defrag_attr =
438         __ATTR(defrag, 0644, khugepaged_defrag_show,
439                khugepaged_defrag_store);
440
441 /*
442  * max_ptes_none controls if khugepaged should collapse hugepages over
443  * any unmapped ptes in turn potentially increasing the memory
444  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
445  * reduce the available free memory in the system as it
446  * runs. Increasing max_ptes_none will instead potentially reduce the
447  * free memory in the system during the khugepaged scan.
448  */
449 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
450                                              struct kobj_attribute *attr,
451                                              char *buf)
452 {
453         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
454 }
455 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
456                                               struct kobj_attribute *attr,
457                                               const char *buf, size_t count)
458 {
459         int err;
460         unsigned long max_ptes_none;
461
462         err = strict_strtoul(buf, 10, &max_ptes_none);
463         if (err || max_ptes_none > HPAGE_PMD_NR-1)
464                 return -EINVAL;
465
466         khugepaged_max_ptes_none = max_ptes_none;
467
468         return count;
469 }
470 static struct kobj_attribute khugepaged_max_ptes_none_attr =
471         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
472                khugepaged_max_ptes_none_store);
473
474 static struct attribute *khugepaged_attr[] = {
475         &khugepaged_defrag_attr.attr,
476         &khugepaged_max_ptes_none_attr.attr,
477         &pages_to_scan_attr.attr,
478         &pages_collapsed_attr.attr,
479         &full_scans_attr.attr,
480         &scan_sleep_millisecs_attr.attr,
481         &alloc_sleep_millisecs_attr.attr,
482         NULL,
483 };
484
485 static struct attribute_group khugepaged_attr_group = {
486         .attrs = khugepaged_attr,
487         .name = "khugepaged",
488 };
489 #endif /* CONFIG_SYSFS */
490
491 static int __init hugepage_init(void)
492 {
493         int err;
494 #ifdef CONFIG_SYSFS
495         static struct kobject *hugepage_kobj;
496 #endif
497
498         err = -EINVAL;
499         if (!has_transparent_hugepage()) {
500                 transparent_hugepage_flags = 0;
501                 goto out;
502         }
503
504 #ifdef CONFIG_SYSFS
505         err = -ENOMEM;
506         hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
507         if (unlikely(!hugepage_kobj)) {
508                 printk(KERN_ERR "hugepage: failed kobject create\n");
509                 goto out;
510         }
511
512         err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
513         if (err) {
514                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
515                 goto out;
516         }
517
518         err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
519         if (err) {
520                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
521                 goto out;
522         }
523 #endif
524
525         err = khugepaged_slab_init();
526         if (err)
527                 goto out;
528
529         err = mm_slots_hash_init();
530         if (err) {
531                 khugepaged_slab_free();
532                 goto out;
533         }
534
535         /*
536          * By default disable transparent hugepages on smaller systems,
537          * where the extra memory used could hurt more than TLB overhead
538          * is likely to save.  The admin can still enable it through /sys.
539          */
540         if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
541                 transparent_hugepage_flags = 0;
542
543         start_khugepaged();
544
545         set_recommended_min_free_kbytes();
546
547 out:
548         return err;
549 }
550 module_init(hugepage_init)
551
552 static int __init setup_transparent_hugepage(char *str)
553 {
554         int ret = 0;
555         if (!str)
556                 goto out;
557         if (!strcmp(str, "always")) {
558                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
559                         &transparent_hugepage_flags);
560                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
561                           &transparent_hugepage_flags);
562                 ret = 1;
563         } else if (!strcmp(str, "madvise")) {
564                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
565                           &transparent_hugepage_flags);
566                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
567                         &transparent_hugepage_flags);
568                 ret = 1;
569         } else if (!strcmp(str, "never")) {
570                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
571                           &transparent_hugepage_flags);
572                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
573                           &transparent_hugepage_flags);
574                 ret = 1;
575         }
576 out:
577         if (!ret)
578                 printk(KERN_WARNING
579                        "transparent_hugepage= cannot parse, ignored\n");
580         return ret;
581 }
582 __setup("transparent_hugepage=", setup_transparent_hugepage);
583
584 static void prepare_pmd_huge_pte(pgtable_t pgtable,
585                                  struct mm_struct *mm)
586 {
587         assert_spin_locked(&mm->page_table_lock);
588
589         /* FIFO */
590         if (!mm->pmd_huge_pte)
591                 INIT_LIST_HEAD(&pgtable->lru);
592         else
593                 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
594         mm->pmd_huge_pte = pgtable;
595 }
596
597 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
598 {
599         if (likely(vma->vm_flags & VM_WRITE))
600                 pmd = pmd_mkwrite(pmd);
601         return pmd;
602 }
603
604 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
605                                         struct vm_area_struct *vma,
606                                         unsigned long haddr, pmd_t *pmd,
607                                         struct page *page)
608 {
609         int ret = 0;
610         pgtable_t pgtable;
611
612         VM_BUG_ON(!PageCompound(page));
613         pgtable = pte_alloc_one(mm, haddr);
614         if (unlikely(!pgtable)) {
615                 mem_cgroup_uncharge_page(page);
616                 put_page(page);
617                 return VM_FAULT_OOM;
618         }
619
620         clear_huge_page(page, haddr, HPAGE_PMD_NR);
621         __SetPageUptodate(page);
622
623         spin_lock(&mm->page_table_lock);
624         if (unlikely(!pmd_none(*pmd))) {
625                 spin_unlock(&mm->page_table_lock);
626                 mem_cgroup_uncharge_page(page);
627                 put_page(page);
628                 pte_free(mm, pgtable);
629         } else {
630                 pmd_t entry;
631                 entry = mk_pmd(page, vma->vm_page_prot);
632                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
633                 entry = pmd_mkhuge(entry);
634                 /*
635                  * The spinlocking to take the lru_lock inside
636                  * page_add_new_anon_rmap() acts as a full memory
637                  * barrier to be sure clear_huge_page writes become
638                  * visible after the set_pmd_at() write.
639                  */
640                 page_add_new_anon_rmap(page, vma, haddr);
641                 set_pmd_at(mm, haddr, pmd, entry);
642                 prepare_pmd_huge_pte(pgtable, mm);
643                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
644                 spin_unlock(&mm->page_table_lock);
645         }
646
647         return ret;
648 }
649
650 static inline gfp_t alloc_hugepage_gfpmask(int defrag)
651 {
652         return GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT);
653 }
654
655 static inline struct page *alloc_hugepage_vma(int defrag,
656                                               struct vm_area_struct *vma,
657                                               unsigned long haddr, int nd)
658 {
659         return alloc_pages_vma(alloc_hugepage_gfpmask(defrag),
660                                HPAGE_PMD_ORDER, vma, haddr, nd);
661 }
662
663 #ifndef CONFIG_NUMA
664 static inline struct page *alloc_hugepage(int defrag)
665 {
666         return alloc_pages(alloc_hugepage_gfpmask(defrag),
667                            HPAGE_PMD_ORDER);
668 }
669 #endif
670
671 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
672                                unsigned long address, pmd_t *pmd,
673                                unsigned int flags)
674 {
675         struct page *page;
676         unsigned long haddr = address & HPAGE_PMD_MASK;
677         pte_t *pte;
678
679         if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
680                 if (unlikely(anon_vma_prepare(vma)))
681                         return VM_FAULT_OOM;
682                 if (unlikely(khugepaged_enter(vma)))
683                         return VM_FAULT_OOM;
684                 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
685                                           vma, haddr, numa_node_id());
686                 if (unlikely(!page))
687                         goto out;
688                 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
689                         put_page(page);
690                         goto out;
691                 }
692
693                 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
694         }
695 out:
696         /*
697          * Use __pte_alloc instead of pte_alloc_map, because we can't
698          * run pte_offset_map on the pmd, if an huge pmd could
699          * materialize from under us from a different thread.
700          */
701         if (unlikely(__pte_alloc(mm, vma, pmd, address)))
702                 return VM_FAULT_OOM;
703         /* if an huge pmd materialized from under us just retry later */
704         if (unlikely(pmd_trans_huge(*pmd)))
705                 return 0;
706         /*
707          * A regular pmd is established and it can't morph into a huge pmd
708          * from under us anymore at this point because we hold the mmap_sem
709          * read mode and khugepaged takes it in write mode. So now it's
710          * safe to run pte_offset_map().
711          */
712         pte = pte_offset_map(pmd, address);
713         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
714 }
715
716 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
717                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
718                   struct vm_area_struct *vma)
719 {
720         struct page *src_page;
721         pmd_t pmd;
722         pgtable_t pgtable;
723         int ret;
724
725         ret = -ENOMEM;
726         pgtable = pte_alloc_one(dst_mm, addr);
727         if (unlikely(!pgtable))
728                 goto out;
729
730         spin_lock(&dst_mm->page_table_lock);
731         spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
732
733         ret = -EAGAIN;
734         pmd = *src_pmd;
735         if (unlikely(!pmd_trans_huge(pmd))) {
736                 pte_free(dst_mm, pgtable);
737                 goto out_unlock;
738         }
739         if (unlikely(pmd_trans_splitting(pmd))) {
740                 /* split huge page running from under us */
741                 spin_unlock(&src_mm->page_table_lock);
742                 spin_unlock(&dst_mm->page_table_lock);
743                 pte_free(dst_mm, pgtable);
744
745                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
746                 goto out;
747         }
748         src_page = pmd_page(pmd);
749         VM_BUG_ON(!PageHead(src_page));
750         get_page(src_page);
751         page_dup_rmap(src_page);
752         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
753
754         pmdp_set_wrprotect(src_mm, addr, src_pmd);
755         pmd = pmd_mkold(pmd_wrprotect(pmd));
756         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
757         prepare_pmd_huge_pte(pgtable, dst_mm);
758
759         ret = 0;
760 out_unlock:
761         spin_unlock(&src_mm->page_table_lock);
762         spin_unlock(&dst_mm->page_table_lock);
763 out:
764         return ret;
765 }
766
767 /* no "address" argument so destroys page coloring of some arch */
768 pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
769 {
770         pgtable_t pgtable;
771
772         assert_spin_locked(&mm->page_table_lock);
773
774         /* FIFO */
775         pgtable = mm->pmd_huge_pte;
776         if (list_empty(&pgtable->lru))
777                 mm->pmd_huge_pte = NULL;
778         else {
779                 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
780                                               struct page, lru);
781                 list_del(&pgtable->lru);
782         }
783         return pgtable;
784 }
785
786 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
787                                         struct vm_area_struct *vma,
788                                         unsigned long address,
789                                         pmd_t *pmd, pmd_t orig_pmd,
790                                         struct page *page,
791                                         unsigned long haddr)
792 {
793         pgtable_t pgtable;
794         pmd_t _pmd;
795         int ret = 0, i;
796         struct page **pages;
797
798         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
799                         GFP_KERNEL);
800         if (unlikely(!pages)) {
801                 ret |= VM_FAULT_OOM;
802                 goto out;
803         }
804
805         for (i = 0; i < HPAGE_PMD_NR; i++) {
806                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE,
807                                                vma, address, page_to_nid(page));
808                 if (unlikely(!pages[i] ||
809                              mem_cgroup_newpage_charge(pages[i], mm,
810                                                        GFP_KERNEL))) {
811                         if (pages[i])
812                                 put_page(pages[i]);
813                         mem_cgroup_uncharge_start();
814                         while (--i >= 0) {
815                                 mem_cgroup_uncharge_page(pages[i]);
816                                 put_page(pages[i]);
817                         }
818                         mem_cgroup_uncharge_end();
819                         kfree(pages);
820                         ret |= VM_FAULT_OOM;
821                         goto out;
822                 }
823         }
824
825         for (i = 0; i < HPAGE_PMD_NR; i++) {
826                 copy_user_highpage(pages[i], page + i,
827                                    haddr + PAGE_SHIFT*i, vma);
828                 __SetPageUptodate(pages[i]);
829                 cond_resched();
830         }
831
832         spin_lock(&mm->page_table_lock);
833         if (unlikely(!pmd_same(*pmd, orig_pmd)))
834                 goto out_free_pages;
835         VM_BUG_ON(!PageHead(page));
836
837         pmdp_clear_flush_notify(vma, haddr, pmd);
838         /* leave pmd empty until pte is filled */
839
840         pgtable = get_pmd_huge_pte(mm);
841         pmd_populate(mm, &_pmd, pgtable);
842
843         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
844                 pte_t *pte, entry;
845                 entry = mk_pte(pages[i], vma->vm_page_prot);
846                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
847                 page_add_new_anon_rmap(pages[i], vma, haddr);
848                 pte = pte_offset_map(&_pmd, haddr);
849                 VM_BUG_ON(!pte_none(*pte));
850                 set_pte_at(mm, haddr, pte, entry);
851                 pte_unmap(pte);
852         }
853         kfree(pages);
854
855         mm->nr_ptes++;
856         smp_wmb(); /* make pte visible before pmd */
857         pmd_populate(mm, pmd, pgtable);
858         page_remove_rmap(page);
859         spin_unlock(&mm->page_table_lock);
860
861         ret |= VM_FAULT_WRITE;
862         put_page(page);
863
864 out:
865         return ret;
866
867 out_free_pages:
868         spin_unlock(&mm->page_table_lock);
869         mem_cgroup_uncharge_start();
870         for (i = 0; i < HPAGE_PMD_NR; i++) {
871                 mem_cgroup_uncharge_page(pages[i]);
872                 put_page(pages[i]);
873         }
874         mem_cgroup_uncharge_end();
875         kfree(pages);
876         goto out;
877 }
878
879 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
880                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
881 {
882         int ret = 0;
883         struct page *page, *new_page;
884         unsigned long haddr;
885
886         VM_BUG_ON(!vma->anon_vma);
887         spin_lock(&mm->page_table_lock);
888         if (unlikely(!pmd_same(*pmd, orig_pmd)))
889                 goto out_unlock;
890
891         page = pmd_page(orig_pmd);
892         VM_BUG_ON(!PageCompound(page) || !PageHead(page));
893         haddr = address & HPAGE_PMD_MASK;
894         if (page_mapcount(page) == 1) {
895                 pmd_t entry;
896                 entry = pmd_mkyoung(orig_pmd);
897                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
898                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
899                         update_mmu_cache(vma, address, entry);
900                 ret |= VM_FAULT_WRITE;
901                 goto out_unlock;
902         }
903         get_page(page);
904         spin_unlock(&mm->page_table_lock);
905
906         if (transparent_hugepage_enabled(vma) &&
907             !transparent_hugepage_debug_cow())
908                 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
909                                               vma, haddr, numa_node_id());
910         else
911                 new_page = NULL;
912
913         if (unlikely(!new_page)) {
914                 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
915                                                    pmd, orig_pmd, page, haddr);
916                 put_page(page);
917                 goto out;
918         }
919
920         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
921                 put_page(new_page);
922                 put_page(page);
923                 ret |= VM_FAULT_OOM;
924                 goto out;
925         }
926
927         copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
928         __SetPageUptodate(new_page);
929
930         spin_lock(&mm->page_table_lock);
931         put_page(page);
932         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
933                 mem_cgroup_uncharge_page(new_page);
934                 put_page(new_page);
935         } else {
936                 pmd_t entry;
937                 VM_BUG_ON(!PageHead(page));
938                 entry = mk_pmd(new_page, vma->vm_page_prot);
939                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
940                 entry = pmd_mkhuge(entry);
941                 pmdp_clear_flush_notify(vma, haddr, pmd);
942                 page_add_new_anon_rmap(new_page, vma, haddr);
943                 set_pmd_at(mm, haddr, pmd, entry);
944                 update_mmu_cache(vma, address, entry);
945                 page_remove_rmap(page);
946                 put_page(page);
947                 ret |= VM_FAULT_WRITE;
948         }
949 out_unlock:
950         spin_unlock(&mm->page_table_lock);
951 out:
952         return ret;
953 }
954
955 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
956                                    unsigned long addr,
957                                    pmd_t *pmd,
958                                    unsigned int flags)
959 {
960         struct page *page = NULL;
961
962         assert_spin_locked(&mm->page_table_lock);
963
964         if (flags & FOLL_WRITE && !pmd_write(*pmd))
965                 goto out;
966
967         page = pmd_page(*pmd);
968         VM_BUG_ON(!PageHead(page));
969         if (flags & FOLL_TOUCH) {
970                 pmd_t _pmd;
971                 /*
972                  * We should set the dirty bit only for FOLL_WRITE but
973                  * for now the dirty bit in the pmd is meaningless.
974                  * And if the dirty bit will become meaningful and
975                  * we'll only set it with FOLL_WRITE, an atomic
976                  * set_bit will be required on the pmd to set the
977                  * young bit, instead of the current set_pmd_at.
978                  */
979                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
980                 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
981         }
982         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
983         VM_BUG_ON(!PageCompound(page));
984         if (flags & FOLL_GET)
985                 get_page(page);
986
987 out:
988         return page;
989 }
990
991 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
992                  pmd_t *pmd)
993 {
994         int ret = 0;
995
996         spin_lock(&tlb->mm->page_table_lock);
997         if (likely(pmd_trans_huge(*pmd))) {
998                 if (unlikely(pmd_trans_splitting(*pmd))) {
999                         spin_unlock(&tlb->mm->page_table_lock);
1000                         wait_split_huge_page(vma->anon_vma,
1001                                              pmd);
1002                 } else {
1003                         struct page *page;
1004                         pgtable_t pgtable;
1005                         pgtable = get_pmd_huge_pte(tlb->mm);
1006                         page = pmd_page(*pmd);
1007                         pmd_clear(pmd);
1008                         page_remove_rmap(page);
1009                         VM_BUG_ON(page_mapcount(page) < 0);
1010                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1011                         VM_BUG_ON(!PageHead(page));
1012                         spin_unlock(&tlb->mm->page_table_lock);
1013                         tlb_remove_page(tlb, page);
1014                         pte_free(tlb->mm, pgtable);
1015                         ret = 1;
1016                 }
1017         } else
1018                 spin_unlock(&tlb->mm->page_table_lock);
1019
1020         return ret;
1021 }
1022
1023 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1024                 unsigned long addr, unsigned long end,
1025                 unsigned char *vec)
1026 {
1027         int ret = 0;
1028
1029         spin_lock(&vma->vm_mm->page_table_lock);
1030         if (likely(pmd_trans_huge(*pmd))) {
1031                 ret = !pmd_trans_splitting(*pmd);
1032                 spin_unlock(&vma->vm_mm->page_table_lock);
1033                 if (unlikely(!ret))
1034                         wait_split_huge_page(vma->anon_vma, pmd);
1035                 else {
1036                         /*
1037                          * All logical pages in the range are present
1038                          * if backed by a huge page.
1039                          */
1040                         memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1041                 }
1042         } else
1043                 spin_unlock(&vma->vm_mm->page_table_lock);
1044
1045         return ret;
1046 }
1047
1048 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1049                 unsigned long addr, pgprot_t newprot)
1050 {
1051         struct mm_struct *mm = vma->vm_mm;
1052         int ret = 0;
1053
1054         spin_lock(&mm->page_table_lock);
1055         if (likely(pmd_trans_huge(*pmd))) {
1056                 if (unlikely(pmd_trans_splitting(*pmd))) {
1057                         spin_unlock(&mm->page_table_lock);
1058                         wait_split_huge_page(vma->anon_vma, pmd);
1059                 } else {
1060                         pmd_t entry;
1061
1062                         entry = pmdp_get_and_clear(mm, addr, pmd);
1063                         entry = pmd_modify(entry, newprot);
1064                         set_pmd_at(mm, addr, pmd, entry);
1065                         spin_unlock(&vma->vm_mm->page_table_lock);
1066                         flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1067                         ret = 1;
1068                 }
1069         } else
1070                 spin_unlock(&vma->vm_mm->page_table_lock);
1071
1072         return ret;
1073 }
1074
1075 pmd_t *page_check_address_pmd(struct page *page,
1076                               struct mm_struct *mm,
1077                               unsigned long address,
1078                               enum page_check_address_pmd_flag flag)
1079 {
1080         pgd_t *pgd;
1081         pud_t *pud;
1082         pmd_t *pmd, *ret = NULL;
1083
1084         if (address & ~HPAGE_PMD_MASK)
1085                 goto out;
1086
1087         pgd = pgd_offset(mm, address);
1088         if (!pgd_present(*pgd))
1089                 goto out;
1090
1091         pud = pud_offset(pgd, address);
1092         if (!pud_present(*pud))
1093                 goto out;
1094
1095         pmd = pmd_offset(pud, address);
1096         if (pmd_none(*pmd))
1097                 goto out;
1098         if (pmd_page(*pmd) != page)
1099                 goto out;
1100         /*
1101          * split_vma() may create temporary aliased mappings. There is
1102          * no risk as long as all huge pmd are found and have their
1103          * splitting bit set before __split_huge_page_refcount
1104          * runs. Finding the same huge pmd more than once during the
1105          * same rmap walk is not a problem.
1106          */
1107         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1108             pmd_trans_splitting(*pmd))
1109                 goto out;
1110         if (pmd_trans_huge(*pmd)) {
1111                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1112                           !pmd_trans_splitting(*pmd));
1113                 ret = pmd;
1114         }
1115 out:
1116         return ret;
1117 }
1118
1119 static int __split_huge_page_splitting(struct page *page,
1120                                        struct vm_area_struct *vma,
1121                                        unsigned long address)
1122 {
1123         struct mm_struct *mm = vma->vm_mm;
1124         pmd_t *pmd;
1125         int ret = 0;
1126
1127         spin_lock(&mm->page_table_lock);
1128         pmd = page_check_address_pmd(page, mm, address,
1129                                      PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1130         if (pmd) {
1131                 /*
1132                  * We can't temporarily set the pmd to null in order
1133                  * to split it, the pmd must remain marked huge at all
1134                  * times or the VM won't take the pmd_trans_huge paths
1135                  * and it won't wait on the anon_vma->root->lock to
1136                  * serialize against split_huge_page*.
1137                  */
1138                 pmdp_splitting_flush_notify(vma, address, pmd);
1139                 ret = 1;
1140         }
1141         spin_unlock(&mm->page_table_lock);
1142
1143         return ret;
1144 }
1145
1146 static void __split_huge_page_refcount(struct page *page)
1147 {
1148         int i;
1149         unsigned long head_index = page->index;
1150         struct zone *zone = page_zone(page);
1151         int zonestat;
1152
1153         /* prevent PageLRU to go away from under us, and freeze lru stats */
1154         spin_lock_irq(&zone->lru_lock);
1155         compound_lock(page);
1156
1157         for (i = 1; i < HPAGE_PMD_NR; i++) {
1158                 struct page *page_tail = page + i;
1159
1160                 /* tail_page->_count cannot change */
1161                 atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1162                 BUG_ON(page_count(page) <= 0);
1163                 atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1164                 BUG_ON(atomic_read(&page_tail->_count) <= 0);
1165
1166                 /* after clearing PageTail the gup refcount can be released */
1167                 smp_mb();
1168
1169                 /*
1170                  * retain hwpoison flag of the poisoned tail page:
1171                  *   fix for the unsuitable process killed on Guest Machine(KVM)
1172                  *   by the memory-failure.
1173                  */
1174                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1175                 page_tail->flags |= (page->flags &
1176                                      ((1L << PG_referenced) |
1177                                       (1L << PG_swapbacked) |
1178                                       (1L << PG_mlocked) |
1179                                       (1L << PG_uptodate)));
1180                 page_tail->flags |= (1L << PG_dirty);
1181
1182                 /*
1183                  * 1) clear PageTail before overwriting first_page
1184                  * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1185                  */
1186                 smp_wmb();
1187
1188                 /*
1189                  * __split_huge_page_splitting() already set the
1190                  * splitting bit in all pmd that could map this
1191                  * hugepage, that will ensure no CPU can alter the
1192                  * mapcount on the head page. The mapcount is only
1193                  * accounted in the head page and it has to be
1194                  * transferred to all tail pages in the below code. So
1195                  * for this code to be safe, the split the mapcount
1196                  * can't change. But that doesn't mean userland can't
1197                  * keep changing and reading the page contents while
1198                  * we transfer the mapcount, so the pmd splitting
1199                  * status is achieved setting a reserved bit in the
1200                  * pmd, not by clearing the present bit.
1201                 */
1202                 BUG_ON(page_mapcount(page_tail));
1203                 page_tail->_mapcount = page->_mapcount;
1204
1205                 BUG_ON(page_tail->mapping);
1206                 page_tail->mapping = page->mapping;
1207
1208                 page_tail->index = ++head_index;
1209
1210                 BUG_ON(!PageAnon(page_tail));
1211                 BUG_ON(!PageUptodate(page_tail));
1212                 BUG_ON(!PageDirty(page_tail));
1213                 BUG_ON(!PageSwapBacked(page_tail));
1214
1215                 mem_cgroup_split_huge_fixup(page, page_tail);
1216
1217                 lru_add_page_tail(zone, page, page_tail);
1218         }
1219
1220         __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1221         __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1222
1223         /*
1224          * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1225          * so adjust those appropriately if this page is on the LRU.
1226          */
1227         if (PageLRU(page)) {
1228                 zonestat = NR_LRU_BASE + page_lru(page);
1229                 __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1230         }
1231
1232         ClearPageCompound(page);
1233         compound_unlock(page);
1234         spin_unlock_irq(&zone->lru_lock);
1235
1236         for (i = 1; i < HPAGE_PMD_NR; i++) {
1237                 struct page *page_tail = page + i;
1238                 BUG_ON(page_count(page_tail) <= 0);
1239                 /*
1240                  * Tail pages may be freed if there wasn't any mapping
1241                  * like if add_to_swap() is running on a lru page that
1242                  * had its mapping zapped. And freeing these pages
1243                  * requires taking the lru_lock so we do the put_page
1244                  * of the tail pages after the split is complete.
1245                  */
1246                 put_page(page_tail);
1247         }
1248
1249         /*
1250          * Only the head page (now become a regular page) is required
1251          * to be pinned by the caller.
1252          */
1253         BUG_ON(page_count(page) <= 0);
1254 }
1255
1256 static int __split_huge_page_map(struct page *page,
1257                                  struct vm_area_struct *vma,
1258                                  unsigned long address)
1259 {
1260         struct mm_struct *mm = vma->vm_mm;
1261         pmd_t *pmd, _pmd;
1262         int ret = 0, i;
1263         pgtable_t pgtable;
1264         unsigned long haddr;
1265
1266         spin_lock(&mm->page_table_lock);
1267         pmd = page_check_address_pmd(page, mm, address,
1268                                      PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1269         if (pmd) {
1270                 pgtable = get_pmd_huge_pte(mm);
1271                 pmd_populate(mm, &_pmd, pgtable);
1272
1273                 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1274                      i++, haddr += PAGE_SIZE) {
1275                         pte_t *pte, entry;
1276                         BUG_ON(PageCompound(page+i));
1277                         entry = mk_pte(page + i, vma->vm_page_prot);
1278                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1279                         if (!pmd_write(*pmd))
1280                                 entry = pte_wrprotect(entry);
1281                         else
1282                                 BUG_ON(page_mapcount(page) != 1);
1283                         if (!pmd_young(*pmd))
1284                                 entry = pte_mkold(entry);
1285                         pte = pte_offset_map(&_pmd, haddr);
1286                         BUG_ON(!pte_none(*pte));
1287                         set_pte_at(mm, haddr, pte, entry);
1288                         pte_unmap(pte);
1289                 }
1290
1291                 mm->nr_ptes++;
1292                 smp_wmb(); /* make pte visible before pmd */
1293                 /*
1294                  * Up to this point the pmd is present and huge and
1295                  * userland has the whole access to the hugepage
1296                  * during the split (which happens in place). If we
1297                  * overwrite the pmd with the not-huge version
1298                  * pointing to the pte here (which of course we could
1299                  * if all CPUs were bug free), userland could trigger
1300                  * a small page size TLB miss on the small sized TLB
1301                  * while the hugepage TLB entry is still established
1302                  * in the huge TLB. Some CPU doesn't like that. See
1303                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1304                  * Erratum 383 on page 93. Intel should be safe but is
1305                  * also warns that it's only safe if the permission
1306                  * and cache attributes of the two entries loaded in
1307                  * the two TLB is identical (which should be the case
1308                  * here). But it is generally safer to never allow
1309                  * small and huge TLB entries for the same virtual
1310                  * address to be loaded simultaneously. So instead of
1311                  * doing "pmd_populate(); flush_tlb_range();" we first
1312                  * mark the current pmd notpresent (atomically because
1313                  * here the pmd_trans_huge and pmd_trans_splitting
1314                  * must remain set at all times on the pmd until the
1315                  * split is complete for this pmd), then we flush the
1316                  * SMP TLB and finally we write the non-huge version
1317                  * of the pmd entry with pmd_populate.
1318                  */
1319                 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1320                 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1321                 pmd_populate(mm, pmd, pgtable);
1322                 ret = 1;
1323         }
1324         spin_unlock(&mm->page_table_lock);
1325
1326         return ret;
1327 }
1328
1329 /* must be called with anon_vma->root->lock hold */
1330 static void __split_huge_page(struct page *page,
1331                               struct anon_vma *anon_vma)
1332 {
1333         int mapcount, mapcount2;
1334         struct anon_vma_chain *avc;
1335
1336         BUG_ON(!PageHead(page));
1337         BUG_ON(PageTail(page));
1338
1339         mapcount = 0;
1340         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1341                 struct vm_area_struct *vma = avc->vma;
1342                 unsigned long addr = vma_address(page, vma);
1343                 BUG_ON(is_vma_temporary_stack(vma));
1344                 if (addr == -EFAULT)
1345                         continue;
1346                 mapcount += __split_huge_page_splitting(page, vma, addr);
1347         }
1348         /*
1349          * It is critical that new vmas are added to the tail of the
1350          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1351          * and establishes a child pmd before
1352          * __split_huge_page_splitting() freezes the parent pmd (so if
1353          * we fail to prevent copy_huge_pmd() from running until the
1354          * whole __split_huge_page() is complete), we will still see
1355          * the newly established pmd of the child later during the
1356          * walk, to be able to set it as pmd_trans_splitting too.
1357          */
1358         if (mapcount != page_mapcount(page))
1359                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1360                        mapcount, page_mapcount(page));
1361         BUG_ON(mapcount != page_mapcount(page));
1362
1363         __split_huge_page_refcount(page);
1364
1365         mapcount2 = 0;
1366         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1367                 struct vm_area_struct *vma = avc->vma;
1368                 unsigned long addr = vma_address(page, vma);
1369                 BUG_ON(is_vma_temporary_stack(vma));
1370                 if (addr == -EFAULT)
1371                         continue;
1372                 mapcount2 += __split_huge_page_map(page, vma, addr);
1373         }
1374         if (mapcount != mapcount2)
1375                 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1376                        mapcount, mapcount2, page_mapcount(page));
1377         BUG_ON(mapcount != mapcount2);
1378 }
1379
1380 int split_huge_page(struct page *page)
1381 {
1382         struct anon_vma *anon_vma;
1383         int ret = 1;
1384
1385         BUG_ON(!PageAnon(page));
1386         anon_vma = page_lock_anon_vma(page);
1387         if (!anon_vma)
1388                 goto out;
1389         ret = 0;
1390         if (!PageCompound(page))
1391                 goto out_unlock;
1392
1393         BUG_ON(!PageSwapBacked(page));
1394         __split_huge_page(page, anon_vma);
1395
1396         BUG_ON(PageCompound(page));
1397 out_unlock:
1398         page_unlock_anon_vma(anon_vma);
1399 out:
1400         return ret;
1401 }
1402
1403 int hugepage_madvise(struct vm_area_struct *vma,
1404                      unsigned long *vm_flags, int advice)
1405 {
1406         switch (advice) {
1407         case MADV_HUGEPAGE:
1408                 /*
1409                  * Be somewhat over-protective like KSM for now!
1410                  */
1411                 if (*vm_flags & (VM_HUGEPAGE |
1412                                  VM_SHARED   | VM_MAYSHARE   |
1413                                  VM_PFNMAP   | VM_IO      | VM_DONTEXPAND |
1414                                  VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1415                                  VM_MIXEDMAP | VM_SAO))
1416                         return -EINVAL;
1417                 *vm_flags &= ~VM_NOHUGEPAGE;
1418                 *vm_flags |= VM_HUGEPAGE;
1419                 /*
1420                  * If the vma become good for khugepaged to scan,
1421                  * register it here without waiting a page fault that
1422                  * may not happen any time soon.
1423                  */
1424                 if (unlikely(khugepaged_enter_vma_merge(vma)))
1425                         return -ENOMEM;
1426                 break;
1427         case MADV_NOHUGEPAGE:
1428                 /*
1429                  * Be somewhat over-protective like KSM for now!
1430                  */
1431                 if (*vm_flags & (VM_NOHUGEPAGE |
1432                                  VM_SHARED   | VM_MAYSHARE   |
1433                                  VM_PFNMAP   | VM_IO      | VM_DONTEXPAND |
1434                                  VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1435                                  VM_MIXEDMAP | VM_SAO))
1436                         return -EINVAL;
1437                 *vm_flags &= ~VM_HUGEPAGE;
1438                 *vm_flags |= VM_NOHUGEPAGE;
1439                 /*
1440                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1441                  * this vma even if we leave the mm registered in khugepaged if
1442                  * it got registered before VM_NOHUGEPAGE was set.
1443                  */
1444                 break;
1445         }
1446
1447         return 0;
1448 }
1449
1450 static int __init khugepaged_slab_init(void)
1451 {
1452         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1453                                           sizeof(struct mm_slot),
1454                                           __alignof__(struct mm_slot), 0, NULL);
1455         if (!mm_slot_cache)
1456                 return -ENOMEM;
1457
1458         return 0;
1459 }
1460
1461 static void __init khugepaged_slab_free(void)
1462 {
1463         kmem_cache_destroy(mm_slot_cache);
1464         mm_slot_cache = NULL;
1465 }
1466
1467 static inline struct mm_slot *alloc_mm_slot(void)
1468 {
1469         if (!mm_slot_cache)     /* initialization failed */
1470                 return NULL;
1471         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1472 }
1473
1474 static inline void free_mm_slot(struct mm_slot *mm_slot)
1475 {
1476         kmem_cache_free(mm_slot_cache, mm_slot);
1477 }
1478
1479 static int __init mm_slots_hash_init(void)
1480 {
1481         mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1482                                 GFP_KERNEL);
1483         if (!mm_slots_hash)
1484                 return -ENOMEM;
1485         return 0;
1486 }
1487
1488 #if 0
1489 static void __init mm_slots_hash_free(void)
1490 {
1491         kfree(mm_slots_hash);
1492         mm_slots_hash = NULL;
1493 }
1494 #endif
1495
1496 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1497 {
1498         struct mm_slot *mm_slot;
1499         struct hlist_head *bucket;
1500         struct hlist_node *node;
1501
1502         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1503                                 % MM_SLOTS_HASH_HEADS];
1504         hlist_for_each_entry(mm_slot, node, bucket, hash) {
1505                 if (mm == mm_slot->mm)
1506                         return mm_slot;
1507         }
1508         return NULL;
1509 }
1510
1511 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1512                                     struct mm_slot *mm_slot)
1513 {
1514         struct hlist_head *bucket;
1515
1516         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1517                                 % MM_SLOTS_HASH_HEADS];
1518         mm_slot->mm = mm;
1519         hlist_add_head(&mm_slot->hash, bucket);
1520 }
1521
1522 static inline int khugepaged_test_exit(struct mm_struct *mm)
1523 {
1524         return atomic_read(&mm->mm_users) == 0;
1525 }
1526
1527 int __khugepaged_enter(struct mm_struct *mm)
1528 {
1529         struct mm_slot *mm_slot;
1530         int wakeup;
1531
1532         mm_slot = alloc_mm_slot();
1533         if (!mm_slot)
1534                 return -ENOMEM;
1535
1536         /* __khugepaged_exit() must not run from under us */
1537         VM_BUG_ON(khugepaged_test_exit(mm));
1538         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1539                 free_mm_slot(mm_slot);
1540                 return 0;
1541         }
1542
1543         spin_lock(&khugepaged_mm_lock);
1544         insert_to_mm_slots_hash(mm, mm_slot);
1545         /*
1546          * Insert just behind the scanning cursor, to let the area settle
1547          * down a little.
1548          */
1549         wakeup = list_empty(&khugepaged_scan.mm_head);
1550         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1551         spin_unlock(&khugepaged_mm_lock);
1552
1553         atomic_inc(&mm->mm_count);
1554         if (wakeup)
1555                 wake_up_interruptible(&khugepaged_wait);
1556
1557         return 0;
1558 }
1559
1560 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1561 {
1562         unsigned long hstart, hend;
1563         if (!vma->anon_vma)
1564                 /*
1565                  * Not yet faulted in so we will register later in the
1566                  * page fault if needed.
1567                  */
1568                 return 0;
1569         if (vma->vm_file || vma->vm_ops)
1570                 /* khugepaged not yet working on file or special mappings */
1571                 return 0;
1572         VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1573         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1574         hend = vma->vm_end & HPAGE_PMD_MASK;
1575         if (hstart < hend)
1576                 return khugepaged_enter(vma);
1577         return 0;
1578 }
1579
1580 void __khugepaged_exit(struct mm_struct *mm)
1581 {
1582         struct mm_slot *mm_slot;
1583         int free = 0;
1584
1585         spin_lock(&khugepaged_mm_lock);
1586         mm_slot = get_mm_slot(mm);
1587         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1588                 hlist_del(&mm_slot->hash);
1589                 list_del(&mm_slot->mm_node);
1590                 free = 1;
1591         }
1592
1593         if (free) {
1594                 spin_unlock(&khugepaged_mm_lock);
1595                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1596                 free_mm_slot(mm_slot);
1597                 mmdrop(mm);
1598         } else if (mm_slot) {
1599                 spin_unlock(&khugepaged_mm_lock);
1600                 /*
1601                  * This is required to serialize against
1602                  * khugepaged_test_exit() (which is guaranteed to run
1603                  * under mmap sem read mode). Stop here (after we
1604                  * return all pagetables will be destroyed) until
1605                  * khugepaged has finished working on the pagetables
1606                  * under the mmap_sem.
1607                  */
1608                 down_write(&mm->mmap_sem);
1609                 up_write(&mm->mmap_sem);
1610         } else
1611                 spin_unlock(&khugepaged_mm_lock);
1612 }
1613
1614 static void release_pte_page(struct page *page)
1615 {
1616         /* 0 stands for page_is_file_cache(page) == false */
1617         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1618         unlock_page(page);
1619         putback_lru_page(page);
1620 }
1621
1622 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1623 {
1624         while (--_pte >= pte) {
1625                 pte_t pteval = *_pte;
1626                 if (!pte_none(pteval))
1627                         release_pte_page(pte_page(pteval));
1628         }
1629 }
1630
1631 static void release_all_pte_pages(pte_t *pte)
1632 {
1633         release_pte_pages(pte, pte + HPAGE_PMD_NR);
1634 }
1635
1636 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1637                                         unsigned long address,
1638                                         pte_t *pte)
1639 {
1640         struct page *page;
1641         pte_t *_pte;
1642         int referenced = 0, isolated = 0, none = 0;
1643         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1644              _pte++, address += PAGE_SIZE) {
1645                 pte_t pteval = *_pte;
1646                 if (pte_none(pteval)) {
1647                         if (++none <= khugepaged_max_ptes_none)
1648                                 continue;
1649                         else {
1650                                 release_pte_pages(pte, _pte);
1651                                 goto out;
1652                         }
1653                 }
1654                 if (!pte_present(pteval) || !pte_write(pteval)) {
1655                         release_pte_pages(pte, _pte);
1656                         goto out;
1657                 }
1658                 page = vm_normal_page(vma, address, pteval);
1659                 if (unlikely(!page)) {
1660                         release_pte_pages(pte, _pte);
1661                         goto out;
1662                 }
1663                 VM_BUG_ON(PageCompound(page));
1664                 BUG_ON(!PageAnon(page));
1665                 VM_BUG_ON(!PageSwapBacked(page));
1666
1667                 /* cannot use mapcount: can't collapse if there's a gup pin */
1668                 if (page_count(page) != 1) {
1669                         release_pte_pages(pte, _pte);
1670                         goto out;
1671                 }
1672                 /*
1673                  * We can do it before isolate_lru_page because the
1674                  * page can't be freed from under us. NOTE: PG_lock
1675                  * is needed to serialize against split_huge_page
1676                  * when invoked from the VM.
1677                  */
1678                 if (!trylock_page(page)) {
1679                         release_pte_pages(pte, _pte);
1680                         goto out;
1681                 }
1682                 /*
1683                  * Isolate the page to avoid collapsing an hugepage
1684                  * currently in use by the VM.
1685                  */
1686                 if (isolate_lru_page(page)) {
1687                         unlock_page(page);
1688                         release_pte_pages(pte, _pte);
1689                         goto out;
1690                 }
1691                 /* 0 stands for page_is_file_cache(page) == false */
1692                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1693                 VM_BUG_ON(!PageLocked(page));
1694                 VM_BUG_ON(PageLRU(page));
1695
1696                 /* If there is no mapped pte young don't collapse the page */
1697                 if (pte_young(pteval) || PageReferenced(page) ||
1698                     mmu_notifier_test_young(vma->vm_mm, address))
1699                         referenced = 1;
1700         }
1701         if (unlikely(!referenced))
1702                 release_all_pte_pages(pte);
1703         else
1704                 isolated = 1;
1705 out:
1706         return isolated;
1707 }
1708
1709 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1710                                       struct vm_area_struct *vma,
1711                                       unsigned long address,
1712                                       spinlock_t *ptl)
1713 {
1714         pte_t *_pte;
1715         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1716                 pte_t pteval = *_pte;
1717                 struct page *src_page;
1718
1719                 if (pte_none(pteval)) {
1720                         clear_user_highpage(page, address);
1721                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1722                 } else {
1723                         src_page = pte_page(pteval);
1724                         copy_user_highpage(page, src_page, address, vma);
1725                         VM_BUG_ON(page_mapcount(src_page) != 1);
1726                         VM_BUG_ON(page_count(src_page) != 2);
1727                         release_pte_page(src_page);
1728                         /*
1729                          * ptl mostly unnecessary, but preempt has to
1730                          * be disabled to update the per-cpu stats
1731                          * inside page_remove_rmap().
1732                          */
1733                         spin_lock(ptl);
1734                         /*
1735                          * paravirt calls inside pte_clear here are
1736                          * superfluous.
1737                          */
1738                         pte_clear(vma->vm_mm, address, _pte);
1739                         page_remove_rmap(src_page);
1740                         spin_unlock(ptl);
1741                         free_page_and_swap_cache(src_page);
1742                 }
1743
1744                 address += PAGE_SIZE;
1745                 page++;
1746         }
1747 }
1748
1749 static void collapse_huge_page(struct mm_struct *mm,
1750                                unsigned long address,
1751                                struct page **hpage,
1752                                struct vm_area_struct *vma,
1753                                int node)
1754 {
1755         pgd_t *pgd;
1756         pud_t *pud;
1757         pmd_t *pmd, _pmd;
1758         pte_t *pte;
1759         pgtable_t pgtable;
1760         struct page *new_page;
1761         spinlock_t *ptl;
1762         int isolated;
1763         unsigned long hstart, hend;
1764
1765         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1766 #ifndef CONFIG_NUMA
1767         VM_BUG_ON(!*hpage);
1768         new_page = *hpage;
1769         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1770                 up_read(&mm->mmap_sem);
1771                 return;
1772         }
1773 #else
1774         VM_BUG_ON(*hpage);
1775         /*
1776          * Allocate the page while the vma is still valid and under
1777          * the mmap_sem read mode so there is no memory allocation
1778          * later when we take the mmap_sem in write mode. This is more
1779          * friendly behavior (OTOH it may actually hide bugs) to
1780          * filesystems in userland with daemons allocating memory in
1781          * the userland I/O paths.  Allocating memory with the
1782          * mmap_sem in read mode is good idea also to allow greater
1783          * scalability.
1784          */
1785         new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1786                                       node);
1787         if (unlikely(!new_page)) {
1788                 up_read(&mm->mmap_sem);
1789                 *hpage = ERR_PTR(-ENOMEM);
1790                 return;
1791         }
1792         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1793                 up_read(&mm->mmap_sem);
1794                 put_page(new_page);
1795                 return;
1796         }
1797 #endif
1798
1799         /* after allocating the hugepage upgrade to mmap_sem write mode */
1800         up_read(&mm->mmap_sem);
1801
1802         /*
1803          * Prevent all access to pagetables with the exception of
1804          * gup_fast later hanlded by the ptep_clear_flush and the VM
1805          * handled by the anon_vma lock + PG_lock.
1806          */
1807         down_write(&mm->mmap_sem);
1808         if (unlikely(khugepaged_test_exit(mm)))
1809                 goto out;
1810
1811         vma = find_vma(mm, address);
1812         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1813         hend = vma->vm_end & HPAGE_PMD_MASK;
1814         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1815                 goto out;
1816
1817         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1818             (vma->vm_flags & VM_NOHUGEPAGE))
1819                 goto out;
1820
1821         /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
1822         if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
1823                 goto out;
1824         if (is_vma_temporary_stack(vma))
1825                 goto out;
1826         VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1827
1828         pgd = pgd_offset(mm, address);
1829         if (!pgd_present(*pgd))
1830                 goto out;
1831
1832         pud = pud_offset(pgd, address);
1833         if (!pud_present(*pud))
1834                 goto out;
1835
1836         pmd = pmd_offset(pud, address);
1837         /* pmd can't go away or become huge under us */
1838         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1839                 goto out;
1840
1841         anon_vma_lock(vma->anon_vma);
1842
1843         pte = pte_offset_map(pmd, address);
1844         ptl = pte_lockptr(mm, pmd);
1845
1846         spin_lock(&mm->page_table_lock); /* probably unnecessary */
1847         /*
1848          * After this gup_fast can't run anymore. This also removes
1849          * any huge TLB entry from the CPU so we won't allow
1850          * huge and small TLB entries for the same virtual address
1851          * to avoid the risk of CPU bugs in that area.
1852          */
1853         _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1854         spin_unlock(&mm->page_table_lock);
1855
1856         spin_lock(ptl);
1857         isolated = __collapse_huge_page_isolate(vma, address, pte);
1858         spin_unlock(ptl);
1859
1860         if (unlikely(!isolated)) {
1861                 pte_unmap(pte);
1862                 spin_lock(&mm->page_table_lock);
1863                 BUG_ON(!pmd_none(*pmd));
1864                 set_pmd_at(mm, address, pmd, _pmd);
1865                 spin_unlock(&mm->page_table_lock);
1866                 anon_vma_unlock(vma->anon_vma);
1867                 goto out;
1868         }
1869
1870         /*
1871          * All pages are isolated and locked so anon_vma rmap
1872          * can't run anymore.
1873          */
1874         anon_vma_unlock(vma->anon_vma);
1875
1876         __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1877         pte_unmap(pte);
1878         __SetPageUptodate(new_page);
1879         pgtable = pmd_pgtable(_pmd);
1880         VM_BUG_ON(page_count(pgtable) != 1);
1881         VM_BUG_ON(page_mapcount(pgtable) != 0);
1882
1883         _pmd = mk_pmd(new_page, vma->vm_page_prot);
1884         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1885         _pmd = pmd_mkhuge(_pmd);
1886
1887         /*
1888          * spin_lock() below is not the equivalent of smp_wmb(), so
1889          * this is needed to avoid the copy_huge_page writes to become
1890          * visible after the set_pmd_at() write.
1891          */
1892         smp_wmb();
1893
1894         spin_lock(&mm->page_table_lock);
1895         BUG_ON(!pmd_none(*pmd));
1896         page_add_new_anon_rmap(new_page, vma, address);
1897         set_pmd_at(mm, address, pmd, _pmd);
1898         update_mmu_cache(vma, address, entry);
1899         prepare_pmd_huge_pte(pgtable, mm);
1900         mm->nr_ptes--;
1901         spin_unlock(&mm->page_table_lock);
1902
1903 #ifndef CONFIG_NUMA
1904         *hpage = NULL;
1905 #endif
1906         khugepaged_pages_collapsed++;
1907 out_up_write:
1908         up_write(&mm->mmap_sem);
1909         return;
1910
1911 out:
1912         mem_cgroup_uncharge_page(new_page);
1913 #ifdef CONFIG_NUMA
1914         put_page(new_page);
1915 #endif
1916         goto out_up_write;
1917 }
1918
1919 static int khugepaged_scan_pmd(struct mm_struct *mm,
1920                                struct vm_area_struct *vma,
1921                                unsigned long address,
1922                                struct page **hpage)
1923 {
1924         pgd_t *pgd;
1925         pud_t *pud;
1926         pmd_t *pmd;
1927         pte_t *pte, *_pte;
1928         int ret = 0, referenced = 0, none = 0;
1929         struct page *page;
1930         unsigned long _address;
1931         spinlock_t *ptl;
1932         int node = -1;
1933
1934         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1935
1936         pgd = pgd_offset(mm, address);
1937         if (!pgd_present(*pgd))
1938                 goto out;
1939
1940         pud = pud_offset(pgd, address);
1941         if (!pud_present(*pud))
1942                 goto out;
1943
1944         pmd = pmd_offset(pud, address);
1945         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1946                 goto out;
1947
1948         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1949         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1950              _pte++, _address += PAGE_SIZE) {
1951                 pte_t pteval = *_pte;
1952                 if (pte_none(pteval)) {
1953                         if (++none <= khugepaged_max_ptes_none)
1954                                 continue;
1955                         else
1956                                 goto out_unmap;
1957                 }
1958                 if (!pte_present(pteval) || !pte_write(pteval))
1959                         goto out_unmap;
1960                 page = vm_normal_page(vma, _address, pteval);
1961                 if (unlikely(!page))
1962                         goto out_unmap;
1963                 /*
1964                  * Chose the node of the first page. This could
1965                  * be more sophisticated and look at more pages,
1966                  * but isn't for now.
1967                  */
1968                 if (node == -1)
1969                         node = page_to_nid(page);
1970                 VM_BUG_ON(PageCompound(page));
1971                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1972                         goto out_unmap;
1973                 /* cannot use mapcount: can't collapse if there's a gup pin */
1974                 if (page_count(page) != 1)
1975                         goto out_unmap;
1976                 if (pte_young(pteval) || PageReferenced(page) ||
1977                     mmu_notifier_test_young(vma->vm_mm, address))
1978                         referenced = 1;
1979         }
1980         if (referenced)
1981                 ret = 1;
1982 out_unmap:
1983         pte_unmap_unlock(pte, ptl);
1984         if (ret)
1985                 /* collapse_huge_page will return with the mmap_sem released */
1986                 collapse_huge_page(mm, address, hpage, vma, node);
1987 out:
1988         return ret;
1989 }
1990
1991 static void collect_mm_slot(struct mm_slot *mm_slot)
1992 {
1993         struct mm_struct *mm = mm_slot->mm;
1994
1995         VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
1996
1997         if (khugepaged_test_exit(mm)) {
1998                 /* free mm_slot */
1999                 hlist_del(&mm_slot->hash);
2000                 list_del(&mm_slot->mm_node);
2001
2002                 /*
2003                  * Not strictly needed because the mm exited already.
2004                  *
2005                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2006                  */
2007
2008                 /* khugepaged_mm_lock actually not necessary for the below */
2009                 free_mm_slot(mm_slot);
2010                 mmdrop(mm);
2011         }
2012 }
2013
2014 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2015                                             struct page **hpage)
2016 {
2017         struct mm_slot *mm_slot;
2018         struct mm_struct *mm;
2019         struct vm_area_struct *vma;
2020         int progress = 0;
2021
2022         VM_BUG_ON(!pages);
2023         VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2024
2025         if (khugepaged_scan.mm_slot)
2026                 mm_slot = khugepaged_scan.mm_slot;
2027         else {
2028                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2029                                      struct mm_slot, mm_node);
2030                 khugepaged_scan.address = 0;
2031                 khugepaged_scan.mm_slot = mm_slot;
2032         }
2033         spin_unlock(&khugepaged_mm_lock);
2034
2035         mm = mm_slot->mm;
2036         down_read(&mm->mmap_sem);
2037         if (unlikely(khugepaged_test_exit(mm)))
2038                 vma = NULL;
2039         else
2040                 vma = find_vma(mm, khugepaged_scan.address);
2041
2042         progress++;
2043         for (; vma; vma = vma->vm_next) {
2044                 unsigned long hstart, hend;
2045
2046                 cond_resched();
2047                 if (unlikely(khugepaged_test_exit(mm))) {
2048                         progress++;
2049                         break;
2050                 }
2051
2052                 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2053                      !khugepaged_always()) ||
2054                     (vma->vm_flags & VM_NOHUGEPAGE)) {
2055                 skip:
2056                         progress++;
2057                         continue;
2058                 }
2059                 /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
2060                 if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
2061                         goto skip;
2062                 if (is_vma_temporary_stack(vma))
2063                         goto skip;
2064
2065                 VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
2066
2067                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2068                 hend = vma->vm_end & HPAGE_PMD_MASK;
2069                 if (hstart >= hend)
2070                         goto skip;
2071                 if (khugepaged_scan.address > hend)
2072                         goto skip;
2073                 if (khugepaged_scan.address < hstart)
2074                         khugepaged_scan.address = hstart;
2075                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2076
2077                 while (khugepaged_scan.address < hend) {
2078                         int ret;
2079                         cond_resched();
2080                         if (unlikely(khugepaged_test_exit(mm)))
2081                                 goto breakouterloop;
2082
2083                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2084                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2085                                   hend);
2086                         ret = khugepaged_scan_pmd(mm, vma,
2087                                                   khugepaged_scan.address,
2088                                                   hpage);
2089                         /* move to next address */
2090                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2091                         progress += HPAGE_PMD_NR;
2092                         if (ret)
2093                                 /* we released mmap_sem so break loop */
2094                                 goto breakouterloop_mmap_sem;
2095                         if (progress >= pages)
2096                                 goto breakouterloop;
2097                 }
2098         }
2099 breakouterloop:
2100         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2101 breakouterloop_mmap_sem:
2102
2103         spin_lock(&khugepaged_mm_lock);
2104         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2105         /*
2106          * Release the current mm_slot if this mm is about to die, or
2107          * if we scanned all vmas of this mm.
2108          */
2109         if (khugepaged_test_exit(mm) || !vma) {
2110                 /*
2111                  * Make sure that if mm_users is reaching zero while
2112                  * khugepaged runs here, khugepaged_exit will find
2113                  * mm_slot not pointing to the exiting mm.
2114                  */
2115                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2116                         khugepaged_scan.mm_slot = list_entry(
2117                                 mm_slot->mm_node.next,
2118                                 struct mm_slot, mm_node);
2119                         khugepaged_scan.address = 0;
2120                 } else {
2121                         khugepaged_scan.mm_slot = NULL;
2122                         khugepaged_full_scans++;
2123                 }
2124
2125                 collect_mm_slot(mm_slot);
2126         }
2127
2128         return progress;
2129 }
2130
2131 static int khugepaged_has_work(void)
2132 {
2133         return !list_empty(&khugepaged_scan.mm_head) &&
2134                 khugepaged_enabled();
2135 }
2136
2137 static int khugepaged_wait_event(void)
2138 {
2139         return !list_empty(&khugepaged_scan.mm_head) ||
2140                 !khugepaged_enabled();
2141 }
2142
2143 static void khugepaged_do_scan(struct page **hpage)
2144 {
2145         unsigned int progress = 0, pass_through_head = 0;
2146         unsigned int pages = khugepaged_pages_to_scan;
2147
2148         barrier(); /* write khugepaged_pages_to_scan to local stack */
2149
2150         while (progress < pages) {
2151                 cond_resched();
2152
2153 #ifndef CONFIG_NUMA
2154                 if (!*hpage) {
2155                         *hpage = alloc_hugepage(khugepaged_defrag());
2156                         if (unlikely(!*hpage))
2157                                 break;
2158                 }
2159 #else
2160                 if (IS_ERR(*hpage))
2161                         break;
2162 #endif
2163
2164                 if (unlikely(kthread_should_stop() || freezing(current)))
2165                         break;
2166
2167                 spin_lock(&khugepaged_mm_lock);
2168                 if (!khugepaged_scan.mm_slot)
2169                         pass_through_head++;
2170                 if (khugepaged_has_work() &&
2171                     pass_through_head < 2)
2172                         progress += khugepaged_scan_mm_slot(pages - progress,
2173                                                             hpage);
2174                 else
2175                         progress = pages;
2176                 spin_unlock(&khugepaged_mm_lock);
2177         }
2178 }
2179
2180 static void khugepaged_alloc_sleep(void)
2181 {
2182         DEFINE_WAIT(wait);
2183         add_wait_queue(&khugepaged_wait, &wait);
2184         schedule_timeout_interruptible(
2185                 msecs_to_jiffies(
2186                         khugepaged_alloc_sleep_millisecs));
2187         remove_wait_queue(&khugepaged_wait, &wait);
2188 }
2189
2190 #ifndef CONFIG_NUMA
2191 static struct page *khugepaged_alloc_hugepage(void)
2192 {
2193         struct page *hpage;
2194
2195         do {
2196                 hpage = alloc_hugepage(khugepaged_defrag());
2197                 if (!hpage)
2198                         khugepaged_alloc_sleep();
2199         } while (unlikely(!hpage) &&
2200                  likely(khugepaged_enabled()));
2201         return hpage;
2202 }
2203 #endif
2204
2205 static void khugepaged_loop(void)
2206 {
2207         struct page *hpage;
2208
2209 #ifdef CONFIG_NUMA
2210         hpage = NULL;
2211 #endif
2212         while (likely(khugepaged_enabled())) {
2213 #ifndef CONFIG_NUMA
2214                 hpage = khugepaged_alloc_hugepage();
2215                 if (unlikely(!hpage))
2216                         break;
2217 #else
2218                 if (IS_ERR(hpage)) {
2219                         khugepaged_alloc_sleep();
2220                         hpage = NULL;
2221                 }
2222 #endif
2223
2224                 khugepaged_do_scan(&hpage);
2225 #ifndef CONFIG_NUMA
2226                 if (hpage)
2227                         put_page(hpage);
2228 #endif
2229                 try_to_freeze();
2230                 if (unlikely(kthread_should_stop()))
2231                         break;
2232                 if (khugepaged_has_work()) {
2233                         DEFINE_WAIT(wait);
2234                         if (!khugepaged_scan_sleep_millisecs)
2235                                 continue;
2236                         add_wait_queue(&khugepaged_wait, &wait);
2237                         schedule_timeout_interruptible(
2238                                 msecs_to_jiffies(
2239                                         khugepaged_scan_sleep_millisecs));
2240                         remove_wait_queue(&khugepaged_wait, &wait);
2241                 } else if (khugepaged_enabled())
2242                         wait_event_freezable(khugepaged_wait,
2243                                              khugepaged_wait_event());
2244         }
2245 }
2246
2247 static int khugepaged(void *none)
2248 {
2249         struct mm_slot *mm_slot;
2250
2251         set_freezable();
2252         set_user_nice(current, 19);
2253
2254         /* serialize with start_khugepaged() */
2255         mutex_lock(&khugepaged_mutex);
2256
2257         for (;;) {
2258                 mutex_unlock(&khugepaged_mutex);
2259                 VM_BUG_ON(khugepaged_thread != current);
2260                 khugepaged_loop();
2261                 VM_BUG_ON(khugepaged_thread != current);
2262
2263                 mutex_lock(&khugepaged_mutex);
2264                 if (!khugepaged_enabled())
2265                         break;
2266                 if (unlikely(kthread_should_stop()))
2267                         break;
2268         }
2269
2270         spin_lock(&khugepaged_mm_lock);
2271         mm_slot = khugepaged_scan.mm_slot;
2272         khugepaged_scan.mm_slot = NULL;
2273         if (mm_slot)
2274                 collect_mm_slot(mm_slot);
2275         spin_unlock(&khugepaged_mm_lock);
2276
2277         khugepaged_thread = NULL;
2278         mutex_unlock(&khugepaged_mutex);
2279
2280         return 0;
2281 }
2282
2283 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2284 {
2285         struct page *page;
2286
2287         spin_lock(&mm->page_table_lock);
2288         if (unlikely(!pmd_trans_huge(*pmd))) {
2289                 spin_unlock(&mm->page_table_lock);
2290                 return;
2291         }
2292         page = pmd_page(*pmd);
2293         VM_BUG_ON(!page_count(page));
2294         get_page(page);
2295         spin_unlock(&mm->page_table_lock);
2296
2297         split_huge_page(page);
2298
2299         put_page(page);
2300         BUG_ON(pmd_trans_huge(*pmd));
2301 }
2302
2303 static void split_huge_page_address(struct mm_struct *mm,
2304                                     unsigned long address)
2305 {
2306         pgd_t *pgd;
2307         pud_t *pud;
2308         pmd_t *pmd;
2309
2310         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2311
2312         pgd = pgd_offset(mm, address);
2313         if (!pgd_present(*pgd))
2314                 return;
2315
2316         pud = pud_offset(pgd, address);
2317         if (!pud_present(*pud))
2318                 return;
2319
2320         pmd = pmd_offset(pud, address);
2321         if (!pmd_present(*pmd))
2322                 return;
2323         /*
2324          * Caller holds the mmap_sem write mode, so a huge pmd cannot
2325          * materialize from under us.
2326          */
2327         split_huge_page_pmd(mm, pmd);
2328 }
2329
2330 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2331                              unsigned long start,
2332                              unsigned long end,
2333                              long adjust_next)
2334 {
2335         /*
2336          * If the new start address isn't hpage aligned and it could
2337          * previously contain an hugepage: check if we need to split
2338          * an huge pmd.
2339          */
2340         if (start & ~HPAGE_PMD_MASK &&
2341             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2342             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2343                 split_huge_page_address(vma->vm_mm, start);
2344
2345         /*
2346          * If the new end address isn't hpage aligned and it could
2347          * previously contain an hugepage: check if we need to split
2348          * an huge pmd.
2349          */
2350         if (end & ~HPAGE_PMD_MASK &&
2351             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2352             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2353                 split_huge_page_address(vma->vm_mm, end);
2354
2355         /*
2356          * If we're also updating the vma->vm_next->vm_start, if the new
2357          * vm_next->vm_start isn't page aligned and it could previously
2358          * contain an hugepage: check if we need to split an huge pmd.
2359          */
2360         if (adjust_next > 0) {
2361                 struct vm_area_struct *next = vma->vm_next;
2362                 unsigned long nstart = next->vm_start;
2363                 nstart += adjust_next << PAGE_SHIFT;
2364                 if (nstart & ~HPAGE_PMD_MASK &&
2365                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2366                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2367                         split_huge_page_address(next->vm_mm, nstart);
2368         }
2369 }