8ab8410314363871da25fa9f613578f5ebe01783
[linux-flexiantxendom0-natty.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES      5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account         (0)
74 #endif
75
76 /*
77  * Per memcg event counter is incremented at every pagein/pageout. This counter
78  * is used for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  *
81  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82  */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86 /*
87  * Statistics for memory cgroup.
88  */
89 enum mem_cgroup_stat_index {
90         /*
91          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92          */
93         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
94         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
95         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
97         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
98         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100         /* incremented at every  pagein/pageout */
101         MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
103
104         MEM_CGROUP_STAT_NSTATS,
105 };
106
107 struct mem_cgroup_stat_cpu {
108         s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110
111 /*
112  * per-zone information in memory controller.
113  */
114 struct mem_cgroup_per_zone {
115         /*
116          * spin_lock to protect the per cgroup LRU
117          */
118         struct list_head        lists[NR_LRU_LISTS];
119         unsigned long           count[NR_LRU_LISTS];
120
121         struct zone_reclaim_stat reclaim_stat;
122         struct rb_node          tree_node;      /* RB tree node */
123         unsigned long long      usage_in_excess;/* Set to the value by which */
124                                                 /* the soft limit is exceeded*/
125         bool                    on_tree;
126         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
127                                                 /* use container_of        */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
131
132 struct mem_cgroup_per_node {
133         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135
136 struct mem_cgroup_lru_info {
137         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139
140 /*
141  * Cgroups above their limits are maintained in a RB-Tree, independent of
142  * their hierarchy representation
143  */
144
145 struct mem_cgroup_tree_per_zone {
146         struct rb_root rb_root;
147         spinlock_t lock;
148 };
149
150 struct mem_cgroup_tree_per_node {
151         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_tree {
155         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160 struct mem_cgroup_threshold {
161         struct eventfd_ctx *eventfd;
162         u64 threshold;
163 };
164
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167         /* An array index points to threshold just below usage. */
168         int current_threshold;
169         /* Size of entries[] */
170         unsigned int size;
171         /* Array of thresholds */
172         struct mem_cgroup_threshold entries[0];
173 };
174
175 struct mem_cgroup_thresholds {
176         /* Primary thresholds array */
177         struct mem_cgroup_threshold_ary *primary;
178         /*
179          * Spare threshold array.
180          * This is needed to make mem_cgroup_unregister_event() "never fail".
181          * It must be able to store at least primary->size - 1 entries.
182          */
183         struct mem_cgroup_threshold_ary *spare;
184 };
185
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188         struct list_head list;
189         struct eventfd_ctx *eventfd;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195 /*
196  * The memory controller data structure. The memory controller controls both
197  * page cache and RSS per cgroup. We would eventually like to provide
198  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199  * to help the administrator determine what knobs to tune.
200  *
201  * TODO: Add a water mark for the memory controller. Reclaim will begin when
202  * we hit the water mark. May be even add a low water mark, such that
203  * no reclaim occurs from a cgroup at it's low water mark, this is
204  * a feature that will be implemented much later in the future.
205  */
206 struct mem_cgroup {
207         struct cgroup_subsys_state css;
208         /*
209          * the counter to account for memory usage
210          */
211         struct res_counter res;
212         /*
213          * the counter to account for mem+swap usage.
214          */
215         struct res_counter memsw;
216         /*
217          * Per cgroup active and inactive list, similar to the
218          * per zone LRU lists.
219          */
220         struct mem_cgroup_lru_info info;
221
222         /*
223           protect against reclaim related member.
224         */
225         spinlock_t reclaim_param_lock;
226
227         /*
228          * While reclaiming in a hierarchy, we cache the last child we
229          * reclaimed from.
230          */
231         int last_scanned_child;
232         /*
233          * Should the accounting and control be hierarchical, per subtree?
234          */
235         bool use_hierarchy;
236         atomic_t        oom_lock;
237         atomic_t        refcnt;
238
239         unsigned int    swappiness;
240         /* OOM-Killer disable */
241         int             oom_kill_disable;
242
243         /* set when res.limit == memsw.limit */
244         bool            memsw_is_minimum;
245
246         /* protect arrays of thresholds */
247         struct mutex thresholds_lock;
248
249         /* thresholds for memory usage. RCU-protected */
250         struct mem_cgroup_thresholds thresholds;
251
252         /* thresholds for mem+swap usage. RCU-protected */
253         struct mem_cgroup_thresholds memsw_thresholds;
254
255         /* For oom notifier event fd */
256         struct list_head oom_notify;
257
258         /*
259          * Should we move charges of a task when a task is moved into this
260          * mem_cgroup ? And what type of charges should we move ?
261          */
262         unsigned long   move_charge_at_immigrate;
263         /*
264          * percpu counter.
265          */
266         struct mem_cgroup_stat_cpu *stat;
267         /*
268          * used when a cpu is offlined or other synchronizations
269          * See mem_cgroup_read_stat().
270          */
271         struct mem_cgroup_stat_cpu nocpu_base;
272         spinlock_t pcp_counter_lock;
273 };
274
275 /* Stuffs for move charges at task migration. */
276 /*
277  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278  * left-shifted bitmap of these types.
279  */
280 enum move_type {
281         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
282         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
283         NR_MOVE_TYPE,
284 };
285
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288         spinlock_t        lock; /* for from, to */
289         struct mem_cgroup *from;
290         struct mem_cgroup *to;
291         unsigned long precharge;
292         unsigned long moved_charge;
293         unsigned long moved_swap;
294         struct task_struct *moving_task;        /* a task moving charges */
295         wait_queue_head_t waitq;                /* a waitq for other context */
296 } mc = {
297         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299 };
300
301 static bool move_anon(void)
302 {
303         return test_bit(MOVE_CHARGE_TYPE_ANON,
304                                         &mc.to->move_charge_at_immigrate);
305 }
306
307 static bool move_file(void)
308 {
309         return test_bit(MOVE_CHARGE_TYPE_FILE,
310                                         &mc.to->move_charge_at_immigrate);
311 }
312
313 /*
314  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315  * limit reclaim to prevent infinite loops, if they ever occur.
316  */
317 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
318 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
320 enum charge_type {
321         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322         MEM_CGROUP_CHARGE_TYPE_MAPPED,
323         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
324         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
325         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
326         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
327         NR_CHARGE_TYPE,
328 };
329
330 /* only for here (for easy reading.) */
331 #define PCGF_CACHE      (1UL << PCG_CACHE)
332 #define PCGF_USED       (1UL << PCG_USED)
333 #define PCGF_LOCK       (1UL << PCG_LOCK)
334 /* Not used, but added here for completeness */
335 #define PCGF_ACCT       (1UL << PCG_ACCT)
336
337 /* for encoding cft->private value on file */
338 #define _MEM                    (0)
339 #define _MEMSWAP                (1)
340 #define _OOM_TYPE               (2)
341 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
343 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
344 /* Used for OOM nofiier */
345 #define OOM_CONTROL             (0)
346
347 /*
348  * Reclaim flags for mem_cgroup_hierarchical_reclaim
349  */
350 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
351 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
353 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
355 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356
357 static void mem_cgroup_get(struct mem_cgroup *mem);
358 static void mem_cgroup_put(struct mem_cgroup *mem);
359 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360 static void drain_all_stock_async(void);
361
362 static struct mem_cgroup_per_zone *
363 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364 {
365         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366 }
367
368 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369 {
370         return &mem->css;
371 }
372
373 static struct mem_cgroup_per_zone *
374 page_cgroup_zoneinfo(struct page_cgroup *pc)
375 {
376         struct mem_cgroup *mem = pc->mem_cgroup;
377         int nid = page_cgroup_nid(pc);
378         int zid = page_cgroup_zid(pc);
379
380         if (!mem)
381                 return NULL;
382
383         return mem_cgroup_zoneinfo(mem, nid, zid);
384 }
385
386 static struct mem_cgroup_tree_per_zone *
387 soft_limit_tree_node_zone(int nid, int zid)
388 {
389         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390 }
391
392 static struct mem_cgroup_tree_per_zone *
393 soft_limit_tree_from_page(struct page *page)
394 {
395         int nid = page_to_nid(page);
396         int zid = page_zonenum(page);
397
398         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static void
402 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403                                 struct mem_cgroup_per_zone *mz,
404                                 struct mem_cgroup_tree_per_zone *mctz,
405                                 unsigned long long new_usage_in_excess)
406 {
407         struct rb_node **p = &mctz->rb_root.rb_node;
408         struct rb_node *parent = NULL;
409         struct mem_cgroup_per_zone *mz_node;
410
411         if (mz->on_tree)
412                 return;
413
414         mz->usage_in_excess = new_usage_in_excess;
415         if (!mz->usage_in_excess)
416                 return;
417         while (*p) {
418                 parent = *p;
419                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420                                         tree_node);
421                 if (mz->usage_in_excess < mz_node->usage_in_excess)
422                         p = &(*p)->rb_left;
423                 /*
424                  * We can't avoid mem cgroups that are over their soft
425                  * limit by the same amount
426                  */
427                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428                         p = &(*p)->rb_right;
429         }
430         rb_link_node(&mz->tree_node, parent, p);
431         rb_insert_color(&mz->tree_node, &mctz->rb_root);
432         mz->on_tree = true;
433 }
434
435 static void
436 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437                                 struct mem_cgroup_per_zone *mz,
438                                 struct mem_cgroup_tree_per_zone *mctz)
439 {
440         if (!mz->on_tree)
441                 return;
442         rb_erase(&mz->tree_node, &mctz->rb_root);
443         mz->on_tree = false;
444 }
445
446 static void
447 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448                                 struct mem_cgroup_per_zone *mz,
449                                 struct mem_cgroup_tree_per_zone *mctz)
450 {
451         spin_lock(&mctz->lock);
452         __mem_cgroup_remove_exceeded(mem, mz, mctz);
453         spin_unlock(&mctz->lock);
454 }
455
456
457 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458 {
459         unsigned long long excess;
460         struct mem_cgroup_per_zone *mz;
461         struct mem_cgroup_tree_per_zone *mctz;
462         int nid = page_to_nid(page);
463         int zid = page_zonenum(page);
464         mctz = soft_limit_tree_from_page(page);
465
466         /*
467          * Necessary to update all ancestors when hierarchy is used.
468          * because their event counter is not touched.
469          */
470         for (; mem; mem = parent_mem_cgroup(mem)) {
471                 mz = mem_cgroup_zoneinfo(mem, nid, zid);
472                 excess = res_counter_soft_limit_excess(&mem->res);
473                 /*
474                  * We have to update the tree if mz is on RB-tree or
475                  * mem is over its softlimit.
476                  */
477                 if (excess || mz->on_tree) {
478                         spin_lock(&mctz->lock);
479                         /* if on-tree, remove it */
480                         if (mz->on_tree)
481                                 __mem_cgroup_remove_exceeded(mem, mz, mctz);
482                         /*
483                          * Insert again. mz->usage_in_excess will be updated.
484                          * If excess is 0, no tree ops.
485                          */
486                         __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487                         spin_unlock(&mctz->lock);
488                 }
489         }
490 }
491
492 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493 {
494         int node, zone;
495         struct mem_cgroup_per_zone *mz;
496         struct mem_cgroup_tree_per_zone *mctz;
497
498         for_each_node_state(node, N_POSSIBLE) {
499                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500                         mz = mem_cgroup_zoneinfo(mem, node, zone);
501                         mctz = soft_limit_tree_node_zone(node, zone);
502                         mem_cgroup_remove_exceeded(mem, mz, mctz);
503                 }
504         }
505 }
506
507 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
508 {
509         return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
510 }
511
512 static struct mem_cgroup_per_zone *
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514 {
515         struct rb_node *rightmost = NULL;
516         struct mem_cgroup_per_zone *mz;
517
518 retry:
519         mz = NULL;
520         rightmost = rb_last(&mctz->rb_root);
521         if (!rightmost)
522                 goto done;              /* Nothing to reclaim from */
523
524         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525         /*
526          * Remove the node now but someone else can add it back,
527          * we will to add it back at the end of reclaim to its correct
528          * position in the tree.
529          */
530         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532                 !css_tryget(&mz->mem->css))
533                 goto retry;
534 done:
535         return mz;
536 }
537
538 static struct mem_cgroup_per_zone *
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540 {
541         struct mem_cgroup_per_zone *mz;
542
543         spin_lock(&mctz->lock);
544         mz = __mem_cgroup_largest_soft_limit_node(mctz);
545         spin_unlock(&mctz->lock);
546         return mz;
547 }
548
549 /*
550  * Implementation Note: reading percpu statistics for memcg.
551  *
552  * Both of vmstat[] and percpu_counter has threshold and do periodic
553  * synchronization to implement "quick" read. There are trade-off between
554  * reading cost and precision of value. Then, we may have a chance to implement
555  * a periodic synchronizion of counter in memcg's counter.
556  *
557  * But this _read() function is used for user interface now. The user accounts
558  * memory usage by memory cgroup and he _always_ requires exact value because
559  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560  * have to visit all online cpus and make sum. So, for now, unnecessary
561  * synchronization is not implemented. (just implemented for cpu hotplug)
562  *
563  * If there are kernel internal actions which can make use of some not-exact
564  * value, and reading all cpu value can be performance bottleneck in some
565  * common workload, threashold and synchonization as vmstat[] should be
566  * implemented.
567  */
568 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569                 enum mem_cgroup_stat_index idx)
570 {
571         int cpu;
572         s64 val = 0;
573
574         get_online_cpus();
575         for_each_online_cpu(cpu)
576                 val += per_cpu(mem->stat->count[idx], cpu);
577 #ifdef CONFIG_HOTPLUG_CPU
578         spin_lock(&mem->pcp_counter_lock);
579         val += mem->nocpu_base.count[idx];
580         spin_unlock(&mem->pcp_counter_lock);
581 #endif
582         put_online_cpus();
583         return val;
584 }
585
586 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
587 {
588         s64 ret;
589
590         ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591         ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592         return ret;
593 }
594
595 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596                                          bool charge)
597 {
598         int val = (charge) ? 1 : -1;
599         this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600 }
601
602 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603                                          struct page_cgroup *pc,
604                                          bool charge)
605 {
606         int val = (charge) ? 1 : -1;
607
608         preempt_disable();
609
610         if (PageCgroupCache(pc))
611                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
612         else
613                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
614
615         if (charge)
616                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
617         else
618                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
619         __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
620
621         preempt_enable();
622 }
623
624 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
625                                         enum lru_list idx)
626 {
627         int nid, zid;
628         struct mem_cgroup_per_zone *mz;
629         u64 total = 0;
630
631         for_each_online_node(nid)
632                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
633                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
634                         total += MEM_CGROUP_ZSTAT(mz, idx);
635                 }
636         return total;
637 }
638
639 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
640 {
641         s64 val;
642
643         val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
644
645         return !(val & ((1 << event_mask_shift) - 1));
646 }
647
648 /*
649  * Check events in order.
650  *
651  */
652 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
653 {
654         /* threshold event is triggered in finer grain than soft limit */
655         if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
656                 mem_cgroup_threshold(mem);
657                 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
658                         mem_cgroup_update_tree(mem, page);
659         }
660 }
661
662 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
663 {
664         return container_of(cgroup_subsys_state(cont,
665                                 mem_cgroup_subsys_id), struct mem_cgroup,
666                                 css);
667 }
668
669 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
670 {
671         /*
672          * mm_update_next_owner() may clear mm->owner to NULL
673          * if it races with swapoff, page migration, etc.
674          * So this can be called with p == NULL.
675          */
676         if (unlikely(!p))
677                 return NULL;
678
679         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
680                                 struct mem_cgroup, css);
681 }
682
683 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
684 {
685         struct mem_cgroup *mem = NULL;
686
687         if (!mm)
688                 return NULL;
689         /*
690          * Because we have no locks, mm->owner's may be being moved to other
691          * cgroup. We use css_tryget() here even if this looks
692          * pessimistic (rather than adding locks here).
693          */
694         rcu_read_lock();
695         do {
696                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
697                 if (unlikely(!mem))
698                         break;
699         } while (!css_tryget(&mem->css));
700         rcu_read_unlock();
701         return mem;
702 }
703
704 /* The caller has to guarantee "mem" exists before calling this */
705 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
706 {
707         struct cgroup_subsys_state *css;
708         int found;
709
710         if (!mem) /* ROOT cgroup has the smallest ID */
711                 return root_mem_cgroup; /*css_put/get against root is ignored*/
712         if (!mem->use_hierarchy) {
713                 if (css_tryget(&mem->css))
714                         return mem;
715                 return NULL;
716         }
717         rcu_read_lock();
718         /*
719          * searching a memory cgroup which has the smallest ID under given
720          * ROOT cgroup. (ID >= 1)
721          */
722         css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
723         if (css && css_tryget(css))
724                 mem = container_of(css, struct mem_cgroup, css);
725         else
726                 mem = NULL;
727         rcu_read_unlock();
728         return mem;
729 }
730
731 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
732                                         struct mem_cgroup *root,
733                                         bool cond)
734 {
735         int nextid = css_id(&iter->css) + 1;
736         int found;
737         int hierarchy_used;
738         struct cgroup_subsys_state *css;
739
740         hierarchy_used = iter->use_hierarchy;
741
742         css_put(&iter->css);
743         /* If no ROOT, walk all, ignore hierarchy */
744         if (!cond || (root && !hierarchy_used))
745                 return NULL;
746
747         if (!root)
748                 root = root_mem_cgroup;
749
750         do {
751                 iter = NULL;
752                 rcu_read_lock();
753
754                 css = css_get_next(&mem_cgroup_subsys, nextid,
755                                 &root->css, &found);
756                 if (css && css_tryget(css))
757                         iter = container_of(css, struct mem_cgroup, css);
758                 rcu_read_unlock();
759                 /* If css is NULL, no more cgroups will be found */
760                 nextid = found + 1;
761         } while (css && !iter);
762
763         return iter;
764 }
765 /*
766  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
767  * be careful that "break" loop is not allowed. We have reference count.
768  * Instead of that modify "cond" to be false and "continue" to exit the loop.
769  */
770 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
771         for (iter = mem_cgroup_start_loop(root);\
772              iter != NULL;\
773              iter = mem_cgroup_get_next(iter, root, cond))
774
775 #define for_each_mem_cgroup_tree(iter, root) \
776         for_each_mem_cgroup_tree_cond(iter, root, true)
777
778 #define for_each_mem_cgroup_all(iter) \
779         for_each_mem_cgroup_tree_cond(iter, NULL, true)
780
781
782 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
783 {
784         return (mem == root_mem_cgroup);
785 }
786
787 /*
788  * Following LRU functions are allowed to be used without PCG_LOCK.
789  * Operations are called by routine of global LRU independently from memcg.
790  * What we have to take care of here is validness of pc->mem_cgroup.
791  *
792  * Changes to pc->mem_cgroup happens when
793  * 1. charge
794  * 2. moving account
795  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
796  * It is added to LRU before charge.
797  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
798  * When moving account, the page is not on LRU. It's isolated.
799  */
800
801 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
802 {
803         struct page_cgroup *pc;
804         struct mem_cgroup_per_zone *mz;
805
806         if (mem_cgroup_disabled())
807                 return;
808         pc = lookup_page_cgroup(page);
809         /* can happen while we handle swapcache. */
810         if (!TestClearPageCgroupAcctLRU(pc))
811                 return;
812         VM_BUG_ON(!pc->mem_cgroup);
813         /*
814          * We don't check PCG_USED bit. It's cleared when the "page" is finally
815          * removed from global LRU.
816          */
817         mz = page_cgroup_zoneinfo(pc);
818         MEM_CGROUP_ZSTAT(mz, lru) -= 1;
819         if (mem_cgroup_is_root(pc->mem_cgroup))
820                 return;
821         VM_BUG_ON(list_empty(&pc->lru));
822         list_del_init(&pc->lru);
823 }
824
825 void mem_cgroup_del_lru(struct page *page)
826 {
827         mem_cgroup_del_lru_list(page, page_lru(page));
828 }
829
830 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
831 {
832         struct mem_cgroup_per_zone *mz;
833         struct page_cgroup *pc;
834
835         if (mem_cgroup_disabled())
836                 return;
837
838         pc = lookup_page_cgroup(page);
839         /*
840          * Used bit is set without atomic ops but after smp_wmb().
841          * For making pc->mem_cgroup visible, insert smp_rmb() here.
842          */
843         smp_rmb();
844         /* unused or root page is not rotated. */
845         if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
846                 return;
847         mz = page_cgroup_zoneinfo(pc);
848         list_move(&pc->lru, &mz->lists[lru]);
849 }
850
851 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
852 {
853         struct page_cgroup *pc;
854         struct mem_cgroup_per_zone *mz;
855
856         if (mem_cgroup_disabled())
857                 return;
858         pc = lookup_page_cgroup(page);
859         VM_BUG_ON(PageCgroupAcctLRU(pc));
860         /*
861          * Used bit is set without atomic ops but after smp_wmb().
862          * For making pc->mem_cgroup visible, insert smp_rmb() here.
863          */
864         smp_rmb();
865         if (!PageCgroupUsed(pc))
866                 return;
867
868         mz = page_cgroup_zoneinfo(pc);
869         MEM_CGROUP_ZSTAT(mz, lru) += 1;
870         SetPageCgroupAcctLRU(pc);
871         if (mem_cgroup_is_root(pc->mem_cgroup))
872                 return;
873         list_add(&pc->lru, &mz->lists[lru]);
874 }
875
876 /*
877  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
878  * lru because the page may.be reused after it's fully uncharged (because of
879  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
880  * it again. This function is only used to charge SwapCache. It's done under
881  * lock_page and expected that zone->lru_lock is never held.
882  */
883 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
884 {
885         unsigned long flags;
886         struct zone *zone = page_zone(page);
887         struct page_cgroup *pc = lookup_page_cgroup(page);
888
889         spin_lock_irqsave(&zone->lru_lock, flags);
890         /*
891          * Forget old LRU when this page_cgroup is *not* used. This Used bit
892          * is guarded by lock_page() because the page is SwapCache.
893          */
894         if (!PageCgroupUsed(pc))
895                 mem_cgroup_del_lru_list(page, page_lru(page));
896         spin_unlock_irqrestore(&zone->lru_lock, flags);
897 }
898
899 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
900 {
901         unsigned long flags;
902         struct zone *zone = page_zone(page);
903         struct page_cgroup *pc = lookup_page_cgroup(page);
904
905         spin_lock_irqsave(&zone->lru_lock, flags);
906         /* link when the page is linked to LRU but page_cgroup isn't */
907         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
908                 mem_cgroup_add_lru_list(page, page_lru(page));
909         spin_unlock_irqrestore(&zone->lru_lock, flags);
910 }
911
912
913 void mem_cgroup_move_lists(struct page *page,
914                            enum lru_list from, enum lru_list to)
915 {
916         if (mem_cgroup_disabled())
917                 return;
918         mem_cgroup_del_lru_list(page, from);
919         mem_cgroup_add_lru_list(page, to);
920 }
921
922 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
923 {
924         int ret;
925         struct mem_cgroup *curr = NULL;
926         struct task_struct *p;
927
928         p = find_lock_task_mm(task);
929         if (!p)
930                 return 0;
931         curr = try_get_mem_cgroup_from_mm(p->mm);
932         task_unlock(p);
933         if (!curr)
934                 return 0;
935         /*
936          * We should check use_hierarchy of "mem" not "curr". Because checking
937          * use_hierarchy of "curr" here make this function true if hierarchy is
938          * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
939          * hierarchy(even if use_hierarchy is disabled in "mem").
940          */
941         if (mem->use_hierarchy)
942                 ret = css_is_ancestor(&curr->css, &mem->css);
943         else
944                 ret = (curr == mem);
945         css_put(&curr->css);
946         return ret;
947 }
948
949 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
950 {
951         unsigned long active;
952         unsigned long inactive;
953         unsigned long gb;
954         unsigned long inactive_ratio;
955
956         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
957         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
958
959         gb = (inactive + active) >> (30 - PAGE_SHIFT);
960         if (gb)
961                 inactive_ratio = int_sqrt(10 * gb);
962         else
963                 inactive_ratio = 1;
964
965         if (present_pages) {
966                 present_pages[0] = inactive;
967                 present_pages[1] = active;
968         }
969
970         return inactive_ratio;
971 }
972
973 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
974 {
975         unsigned long active;
976         unsigned long inactive;
977         unsigned long present_pages[2];
978         unsigned long inactive_ratio;
979
980         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
981
982         inactive = present_pages[0];
983         active = present_pages[1];
984
985         if (inactive * inactive_ratio < active)
986                 return 1;
987
988         return 0;
989 }
990
991 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
992 {
993         unsigned long active;
994         unsigned long inactive;
995
996         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
997         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
998
999         return (active > inactive);
1000 }
1001
1002 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1003                                        struct zone *zone,
1004                                        enum lru_list lru)
1005 {
1006         int nid = zone_to_nid(zone);
1007         int zid = zone_idx(zone);
1008         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1009
1010         return MEM_CGROUP_ZSTAT(mz, lru);
1011 }
1012
1013 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1014                                                       struct zone *zone)
1015 {
1016         int nid = zone_to_nid(zone);
1017         int zid = zone_idx(zone);
1018         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1019
1020         return &mz->reclaim_stat;
1021 }
1022
1023 struct zone_reclaim_stat *
1024 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1025 {
1026         struct page_cgroup *pc;
1027         struct mem_cgroup_per_zone *mz;
1028
1029         if (mem_cgroup_disabled())
1030                 return NULL;
1031
1032         pc = lookup_page_cgroup(page);
1033         /*
1034          * Used bit is set without atomic ops but after smp_wmb().
1035          * For making pc->mem_cgroup visible, insert smp_rmb() here.
1036          */
1037         smp_rmb();
1038         if (!PageCgroupUsed(pc))
1039                 return NULL;
1040
1041         mz = page_cgroup_zoneinfo(pc);
1042         if (!mz)
1043                 return NULL;
1044
1045         return &mz->reclaim_stat;
1046 }
1047
1048 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1049                                         struct list_head *dst,
1050                                         unsigned long *scanned, int order,
1051                                         int mode, struct zone *z,
1052                                         struct mem_cgroup *mem_cont,
1053                                         int active, int file)
1054 {
1055         unsigned long nr_taken = 0;
1056         struct page *page;
1057         unsigned long scan;
1058         LIST_HEAD(pc_list);
1059         struct list_head *src;
1060         struct page_cgroup *pc, *tmp;
1061         int nid = zone_to_nid(z);
1062         int zid = zone_idx(z);
1063         struct mem_cgroup_per_zone *mz;
1064         int lru = LRU_FILE * file + active;
1065         int ret;
1066
1067         BUG_ON(!mem_cont);
1068         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1069         src = &mz->lists[lru];
1070
1071         scan = 0;
1072         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1073                 if (scan >= nr_to_scan)
1074                         break;
1075
1076                 page = pc->page;
1077                 if (unlikely(!PageCgroupUsed(pc)))
1078                         continue;
1079                 if (unlikely(!PageLRU(page)))
1080                         continue;
1081
1082                 scan++;
1083                 ret = __isolate_lru_page(page, mode, file);
1084                 switch (ret) {
1085                 case 0:
1086                         list_move(&page->lru, dst);
1087                         mem_cgroup_del_lru(page);
1088                         nr_taken += hpage_nr_pages(page);
1089                         break;
1090                 case -EBUSY:
1091                         /* we don't affect global LRU but rotate in our LRU */
1092                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1093                         break;
1094                 default:
1095                         break;
1096                 }
1097         }
1098
1099         *scanned = scan;
1100
1101         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1102                                       0, 0, 0, mode);
1103
1104         return nr_taken;
1105 }
1106
1107 #define mem_cgroup_from_res_counter(counter, member)    \
1108         container_of(counter, struct mem_cgroup, member)
1109
1110 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1111 {
1112         if (do_swap_account) {
1113                 if (res_counter_check_under_limit(&mem->res) &&
1114                         res_counter_check_under_limit(&mem->memsw))
1115                         return true;
1116         } else
1117                 if (res_counter_check_under_limit(&mem->res))
1118                         return true;
1119         return false;
1120 }
1121
1122 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1123 {
1124         struct cgroup *cgrp = memcg->css.cgroup;
1125         unsigned int swappiness;
1126
1127         /* root ? */
1128         if (cgrp->parent == NULL)
1129                 return vm_swappiness;
1130
1131         spin_lock(&memcg->reclaim_param_lock);
1132         swappiness = memcg->swappiness;
1133         spin_unlock(&memcg->reclaim_param_lock);
1134
1135         return swappiness;
1136 }
1137
1138 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1139 {
1140         int cpu;
1141
1142         get_online_cpus();
1143         spin_lock(&mem->pcp_counter_lock);
1144         for_each_online_cpu(cpu)
1145                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1146         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1147         spin_unlock(&mem->pcp_counter_lock);
1148         put_online_cpus();
1149
1150         synchronize_rcu();
1151 }
1152
1153 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1154 {
1155         int cpu;
1156
1157         if (!mem)
1158                 return;
1159         get_online_cpus();
1160         spin_lock(&mem->pcp_counter_lock);
1161         for_each_online_cpu(cpu)
1162                 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1163         mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1164         spin_unlock(&mem->pcp_counter_lock);
1165         put_online_cpus();
1166 }
1167 /*
1168  * 2 routines for checking "mem" is under move_account() or not.
1169  *
1170  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1171  *                        for avoiding race in accounting. If true,
1172  *                        pc->mem_cgroup may be overwritten.
1173  *
1174  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1175  *                        under hierarchy of moving cgroups. This is for
1176  *                        waiting at hith-memory prressure caused by "move".
1177  */
1178
1179 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1180 {
1181         VM_BUG_ON(!rcu_read_lock_held());
1182         return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1183 }
1184
1185 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1186 {
1187         struct mem_cgroup *from;
1188         struct mem_cgroup *to;
1189         bool ret = false;
1190         /*
1191          * Unlike task_move routines, we access mc.to, mc.from not under
1192          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1193          */
1194         spin_lock(&mc.lock);
1195         from = mc.from;
1196         to = mc.to;
1197         if (!from)
1198                 goto unlock;
1199         if (from == mem || to == mem
1200             || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1201             || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1202                 ret = true;
1203 unlock:
1204         spin_unlock(&mc.lock);
1205         return ret;
1206 }
1207
1208 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1209 {
1210         if (mc.moving_task && current != mc.moving_task) {
1211                 if (mem_cgroup_under_move(mem)) {
1212                         DEFINE_WAIT(wait);
1213                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1214                         /* moving charge context might have finished. */
1215                         if (mc.moving_task)
1216                                 schedule();
1217                         finish_wait(&mc.waitq, &wait);
1218                         return true;
1219                 }
1220         }
1221         return false;
1222 }
1223
1224 /**
1225  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1226  * @memcg: The memory cgroup that went over limit
1227  * @p: Task that is going to be killed
1228  *
1229  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1230  * enabled
1231  */
1232 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1233 {
1234         struct cgroup *task_cgrp;
1235         struct cgroup *mem_cgrp;
1236         /*
1237          * Need a buffer in BSS, can't rely on allocations. The code relies
1238          * on the assumption that OOM is serialized for memory controller.
1239          * If this assumption is broken, revisit this code.
1240          */
1241         static char memcg_name[PATH_MAX];
1242         int ret;
1243
1244         if (!memcg || !p)
1245                 return;
1246
1247
1248         rcu_read_lock();
1249
1250         mem_cgrp = memcg->css.cgroup;
1251         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1252
1253         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1254         if (ret < 0) {
1255                 /*
1256                  * Unfortunately, we are unable to convert to a useful name
1257                  * But we'll still print out the usage information
1258                  */
1259                 rcu_read_unlock();
1260                 goto done;
1261         }
1262         rcu_read_unlock();
1263
1264         printk(KERN_INFO "Task in %s killed", memcg_name);
1265
1266         rcu_read_lock();
1267         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1268         if (ret < 0) {
1269                 rcu_read_unlock();
1270                 goto done;
1271         }
1272         rcu_read_unlock();
1273
1274         /*
1275          * Continues from above, so we don't need an KERN_ level
1276          */
1277         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1278 done:
1279
1280         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1281                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1282                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1283                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1284         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1285                 "failcnt %llu\n",
1286                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1287                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1288                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1289 }
1290
1291 /*
1292  * This function returns the number of memcg under hierarchy tree. Returns
1293  * 1(self count) if no children.
1294  */
1295 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1296 {
1297         int num = 0;
1298         struct mem_cgroup *iter;
1299
1300         for_each_mem_cgroup_tree(iter, mem)
1301                 num++;
1302         return num;
1303 }
1304
1305 /*
1306  * Return the memory (and swap, if configured) limit for a memcg.
1307  */
1308 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1309 {
1310         u64 limit;
1311         u64 memsw;
1312
1313         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1314         limit += total_swap_pages << PAGE_SHIFT;
1315
1316         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1317         /*
1318          * If memsw is finite and limits the amount of swap space available
1319          * to this memcg, return that limit.
1320          */
1321         return min(limit, memsw);
1322 }
1323
1324 /*
1325  * Visit the first child (need not be the first child as per the ordering
1326  * of the cgroup list, since we track last_scanned_child) of @mem and use
1327  * that to reclaim free pages from.
1328  */
1329 static struct mem_cgroup *
1330 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1331 {
1332         struct mem_cgroup *ret = NULL;
1333         struct cgroup_subsys_state *css;
1334         int nextid, found;
1335
1336         if (!root_mem->use_hierarchy) {
1337                 css_get(&root_mem->css);
1338                 ret = root_mem;
1339         }
1340
1341         while (!ret) {
1342                 rcu_read_lock();
1343                 nextid = root_mem->last_scanned_child + 1;
1344                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1345                                    &found);
1346                 if (css && css_tryget(css))
1347                         ret = container_of(css, struct mem_cgroup, css);
1348
1349                 rcu_read_unlock();
1350                 /* Updates scanning parameter */
1351                 spin_lock(&root_mem->reclaim_param_lock);
1352                 if (!css) {
1353                         /* this means start scan from ID:1 */
1354                         root_mem->last_scanned_child = 0;
1355                 } else
1356                         root_mem->last_scanned_child = found;
1357                 spin_unlock(&root_mem->reclaim_param_lock);
1358         }
1359
1360         return ret;
1361 }
1362
1363 /*
1364  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1365  * we reclaimed from, so that we don't end up penalizing one child extensively
1366  * based on its position in the children list.
1367  *
1368  * root_mem is the original ancestor that we've been reclaim from.
1369  *
1370  * We give up and return to the caller when we visit root_mem twice.
1371  * (other groups can be removed while we're walking....)
1372  *
1373  * If shrink==true, for avoiding to free too much, this returns immedieately.
1374  */
1375 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1376                                                 struct zone *zone,
1377                                                 gfp_t gfp_mask,
1378                                                 unsigned long reclaim_options)
1379 {
1380         struct mem_cgroup *victim;
1381         int ret, total = 0;
1382         int loop = 0;
1383         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1384         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1385         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1386         unsigned long excess = mem_cgroup_get_excess(root_mem);
1387
1388         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1389         if (root_mem->memsw_is_minimum)
1390                 noswap = true;
1391
1392         while (1) {
1393                 victim = mem_cgroup_select_victim(root_mem);
1394                 if (victim == root_mem) {
1395                         loop++;
1396                         if (loop >= 1)
1397                                 drain_all_stock_async();
1398                         if (loop >= 2) {
1399                                 /*
1400                                  * If we have not been able to reclaim
1401                                  * anything, it might because there are
1402                                  * no reclaimable pages under this hierarchy
1403                                  */
1404                                 if (!check_soft || !total) {
1405                                         css_put(&victim->css);
1406                                         break;
1407                                 }
1408                                 /*
1409                                  * We want to do more targetted reclaim.
1410                                  * excess >> 2 is not to excessive so as to
1411                                  * reclaim too much, nor too less that we keep
1412                                  * coming back to reclaim from this cgroup
1413                                  */
1414                                 if (total >= (excess >> 2) ||
1415                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1416                                         css_put(&victim->css);
1417                                         break;
1418                                 }
1419                         }
1420                 }
1421                 if (!mem_cgroup_local_usage(victim)) {
1422                         /* this cgroup's local usage == 0 */
1423                         css_put(&victim->css);
1424                         continue;
1425                 }
1426                 /* we use swappiness of local cgroup */
1427                 if (check_soft)
1428                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1429                                 noswap, get_swappiness(victim), zone);
1430                 else
1431                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1432                                                 noswap, get_swappiness(victim));
1433                 css_put(&victim->css);
1434                 /*
1435                  * At shrinking usage, we can't check we should stop here or
1436                  * reclaim more. It's depends on callers. last_scanned_child
1437                  * will work enough for keeping fairness under tree.
1438                  */
1439                 if (shrink)
1440                         return ret;
1441                 total += ret;
1442                 if (check_soft) {
1443                         if (res_counter_check_under_soft_limit(&root_mem->res))
1444                                 return total;
1445                 } else if (mem_cgroup_check_under_limit(root_mem))
1446                         return 1 + total;
1447         }
1448         return total;
1449 }
1450
1451 /*
1452  * Check OOM-Killer is already running under our hierarchy.
1453  * If someone is running, return false.
1454  */
1455 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1456 {
1457         int x, lock_count = 0;
1458         struct mem_cgroup *iter;
1459
1460         for_each_mem_cgroup_tree(iter, mem) {
1461                 x = atomic_inc_return(&iter->oom_lock);
1462                 lock_count = max(x, lock_count);
1463         }
1464
1465         if (lock_count == 1)
1466                 return true;
1467         return false;
1468 }
1469
1470 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1471 {
1472         struct mem_cgroup *iter;
1473
1474         /*
1475          * When a new child is created while the hierarchy is under oom,
1476          * mem_cgroup_oom_lock() may not be called. We have to use
1477          * atomic_add_unless() here.
1478          */
1479         for_each_mem_cgroup_tree(iter, mem)
1480                 atomic_add_unless(&iter->oom_lock, -1, 0);
1481         return 0;
1482 }
1483
1484
1485 static DEFINE_MUTEX(memcg_oom_mutex);
1486 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1487
1488 struct oom_wait_info {
1489         struct mem_cgroup *mem;
1490         wait_queue_t    wait;
1491 };
1492
1493 static int memcg_oom_wake_function(wait_queue_t *wait,
1494         unsigned mode, int sync, void *arg)
1495 {
1496         struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1497         struct oom_wait_info *oom_wait_info;
1498
1499         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1500
1501         if (oom_wait_info->mem == wake_mem)
1502                 goto wakeup;
1503         /* if no hierarchy, no match */
1504         if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1505                 return 0;
1506         /*
1507          * Both of oom_wait_info->mem and wake_mem are stable under us.
1508          * Then we can use css_is_ancestor without taking care of RCU.
1509          */
1510         if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1511             !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1512                 return 0;
1513
1514 wakeup:
1515         return autoremove_wake_function(wait, mode, sync, arg);
1516 }
1517
1518 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1519 {
1520         /* for filtering, pass "mem" as argument. */
1521         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1522 }
1523
1524 static void memcg_oom_recover(struct mem_cgroup *mem)
1525 {
1526         if (mem && atomic_read(&mem->oom_lock))
1527                 memcg_wakeup_oom(mem);
1528 }
1529
1530 /*
1531  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1532  */
1533 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1534 {
1535         struct oom_wait_info owait;
1536         bool locked, need_to_kill;
1537
1538         owait.mem = mem;
1539         owait.wait.flags = 0;
1540         owait.wait.func = memcg_oom_wake_function;
1541         owait.wait.private = current;
1542         INIT_LIST_HEAD(&owait.wait.task_list);
1543         need_to_kill = true;
1544         /* At first, try to OOM lock hierarchy under mem.*/
1545         mutex_lock(&memcg_oom_mutex);
1546         locked = mem_cgroup_oom_lock(mem);
1547         /*
1548          * Even if signal_pending(), we can't quit charge() loop without
1549          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1550          * under OOM is always welcomed, use TASK_KILLABLE here.
1551          */
1552         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1553         if (!locked || mem->oom_kill_disable)
1554                 need_to_kill = false;
1555         if (locked)
1556                 mem_cgroup_oom_notify(mem);
1557         mutex_unlock(&memcg_oom_mutex);
1558
1559         if (need_to_kill) {
1560                 finish_wait(&memcg_oom_waitq, &owait.wait);
1561                 mem_cgroup_out_of_memory(mem, mask);
1562         } else {
1563                 schedule();
1564                 finish_wait(&memcg_oom_waitq, &owait.wait);
1565         }
1566         mutex_lock(&memcg_oom_mutex);
1567         mem_cgroup_oom_unlock(mem);
1568         memcg_wakeup_oom(mem);
1569         mutex_unlock(&memcg_oom_mutex);
1570
1571         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1572                 return false;
1573         /* Give chance to dying process */
1574         schedule_timeout(1);
1575         return true;
1576 }
1577
1578 /*
1579  * Currently used to update mapped file statistics, but the routine can be
1580  * generalized to update other statistics as well.
1581  *
1582  * Notes: Race condition
1583  *
1584  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1585  * it tends to be costly. But considering some conditions, we doesn't need
1586  * to do so _always_.
1587  *
1588  * Considering "charge", lock_page_cgroup() is not required because all
1589  * file-stat operations happen after a page is attached to radix-tree. There
1590  * are no race with "charge".
1591  *
1592  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1593  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1594  * if there are race with "uncharge". Statistics itself is properly handled
1595  * by flags.
1596  *
1597  * Considering "move", this is an only case we see a race. To make the race
1598  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1599  * possibility of race condition. If there is, we take a lock.
1600  */
1601
1602 void mem_cgroup_update_page_stat(struct page *page,
1603                                  enum mem_cgroup_page_stat_item idx, int val)
1604 {
1605         struct mem_cgroup *mem;
1606         struct page_cgroup *pc = lookup_page_cgroup(page);
1607         bool need_unlock = false;
1608         unsigned long uninitialized_var(flags);
1609
1610         if (unlikely(!pc))
1611                 return;
1612
1613         rcu_read_lock();
1614         mem = pc->mem_cgroup;
1615         if (unlikely(!mem || !PageCgroupUsed(pc)))
1616                 goto out;
1617         /* pc->mem_cgroup is unstable ? */
1618         if (unlikely(mem_cgroup_stealed(mem))) {
1619                 /* take a lock against to access pc->mem_cgroup */
1620                 move_lock_page_cgroup(pc, &flags);
1621                 need_unlock = true;
1622                 mem = pc->mem_cgroup;
1623                 if (!mem || !PageCgroupUsed(pc))
1624                         goto out;
1625         }
1626
1627         switch (idx) {
1628         case MEMCG_NR_FILE_MAPPED:
1629                 if (val > 0)
1630                         SetPageCgroupFileMapped(pc);
1631                 else if (!page_mapped(page))
1632                         ClearPageCgroupFileMapped(pc);
1633                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1634                 break;
1635         default:
1636                 BUG();
1637         }
1638
1639         this_cpu_add(mem->stat->count[idx], val);
1640
1641 out:
1642         if (unlikely(need_unlock))
1643                 move_unlock_page_cgroup(pc, &flags);
1644         rcu_read_unlock();
1645         return;
1646 }
1647 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1648
1649 /*
1650  * size of first charge trial. "32" comes from vmscan.c's magic value.
1651  * TODO: maybe necessary to use big numbers in big irons.
1652  */
1653 #define CHARGE_SIZE     (32 * PAGE_SIZE)
1654 struct memcg_stock_pcp {
1655         struct mem_cgroup *cached; /* this never be root cgroup */
1656         int charge;
1657         struct work_struct work;
1658 };
1659 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1660 static atomic_t memcg_drain_count;
1661
1662 /*
1663  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1664  * from local stock and true is returned. If the stock is 0 or charges from a
1665  * cgroup which is not current target, returns false. This stock will be
1666  * refilled.
1667  */
1668 static bool consume_stock(struct mem_cgroup *mem)
1669 {
1670         struct memcg_stock_pcp *stock;
1671         bool ret = true;
1672
1673         stock = &get_cpu_var(memcg_stock);
1674         if (mem == stock->cached && stock->charge)
1675                 stock->charge -= PAGE_SIZE;
1676         else /* need to call res_counter_charge */
1677                 ret = false;
1678         put_cpu_var(memcg_stock);
1679         return ret;
1680 }
1681
1682 /*
1683  * Returns stocks cached in percpu to res_counter and reset cached information.
1684  */
1685 static void drain_stock(struct memcg_stock_pcp *stock)
1686 {
1687         struct mem_cgroup *old = stock->cached;
1688
1689         if (stock->charge) {
1690                 res_counter_uncharge(&old->res, stock->charge);
1691                 if (do_swap_account)
1692                         res_counter_uncharge(&old->memsw, stock->charge);
1693         }
1694         stock->cached = NULL;
1695         stock->charge = 0;
1696 }
1697
1698 /*
1699  * This must be called under preempt disabled or must be called by
1700  * a thread which is pinned to local cpu.
1701  */
1702 static void drain_local_stock(struct work_struct *dummy)
1703 {
1704         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1705         drain_stock(stock);
1706 }
1707
1708 /*
1709  * Cache charges(val) which is from res_counter, to local per_cpu area.
1710  * This will be consumed by consume_stock() function, later.
1711  */
1712 static void refill_stock(struct mem_cgroup *mem, int val)
1713 {
1714         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1715
1716         if (stock->cached != mem) { /* reset if necessary */
1717                 drain_stock(stock);
1718                 stock->cached = mem;
1719         }
1720         stock->charge += val;
1721         put_cpu_var(memcg_stock);
1722 }
1723
1724 /*
1725  * Tries to drain stocked charges in other cpus. This function is asynchronous
1726  * and just put a work per cpu for draining localy on each cpu. Caller can
1727  * expects some charges will be back to res_counter later but cannot wait for
1728  * it.
1729  */
1730 static void drain_all_stock_async(void)
1731 {
1732         int cpu;
1733         /* This function is for scheduling "drain" in asynchronous way.
1734          * The result of "drain" is not directly handled by callers. Then,
1735          * if someone is calling drain, we don't have to call drain more.
1736          * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1737          * there is a race. We just do loose check here.
1738          */
1739         if (atomic_read(&memcg_drain_count))
1740                 return;
1741         /* Notify other cpus that system-wide "drain" is running */
1742         atomic_inc(&memcg_drain_count);
1743         get_online_cpus();
1744         for_each_online_cpu(cpu) {
1745                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1746                 schedule_work_on(cpu, &stock->work);
1747         }
1748         put_online_cpus();
1749         atomic_dec(&memcg_drain_count);
1750         /* We don't wait for flush_work */
1751 }
1752
1753 /* This is a synchronous drain interface. */
1754 static void drain_all_stock_sync(void)
1755 {
1756         /* called when force_empty is called */
1757         atomic_inc(&memcg_drain_count);
1758         schedule_on_each_cpu(drain_local_stock);
1759         atomic_dec(&memcg_drain_count);
1760 }
1761
1762 /*
1763  * This function drains percpu counter value from DEAD cpu and
1764  * move it to local cpu. Note that this function can be preempted.
1765  */
1766 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1767 {
1768         int i;
1769
1770         spin_lock(&mem->pcp_counter_lock);
1771         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1772                 s64 x = per_cpu(mem->stat->count[i], cpu);
1773
1774                 per_cpu(mem->stat->count[i], cpu) = 0;
1775                 mem->nocpu_base.count[i] += x;
1776         }
1777         /* need to clear ON_MOVE value, works as a kind of lock. */
1778         per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1779         spin_unlock(&mem->pcp_counter_lock);
1780 }
1781
1782 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1783 {
1784         int idx = MEM_CGROUP_ON_MOVE;
1785
1786         spin_lock(&mem->pcp_counter_lock);
1787         per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1788         spin_unlock(&mem->pcp_counter_lock);
1789 }
1790
1791 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1792                                         unsigned long action,
1793                                         void *hcpu)
1794 {
1795         int cpu = (unsigned long)hcpu;
1796         struct memcg_stock_pcp *stock;
1797         struct mem_cgroup *iter;
1798
1799         if ((action == CPU_ONLINE)) {
1800                 for_each_mem_cgroup_all(iter)
1801                         synchronize_mem_cgroup_on_move(iter, cpu);
1802                 return NOTIFY_OK;
1803         }
1804
1805         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1806                 return NOTIFY_OK;
1807
1808         for_each_mem_cgroup_all(iter)
1809                 mem_cgroup_drain_pcp_counter(iter, cpu);
1810
1811         stock = &per_cpu(memcg_stock, cpu);
1812         drain_stock(stock);
1813         return NOTIFY_OK;
1814 }
1815
1816
1817 /* See __mem_cgroup_try_charge() for details */
1818 enum {
1819         CHARGE_OK,              /* success */
1820         CHARGE_RETRY,           /* need to retry but retry is not bad */
1821         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
1822         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
1823         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
1824 };
1825
1826 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1827                                 int csize, bool oom_check)
1828 {
1829         struct mem_cgroup *mem_over_limit;
1830         struct res_counter *fail_res;
1831         unsigned long flags = 0;
1832         int ret;
1833
1834         ret = res_counter_charge(&mem->res, csize, &fail_res);
1835
1836         if (likely(!ret)) {
1837                 if (!do_swap_account)
1838                         return CHARGE_OK;
1839                 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1840                 if (likely(!ret))
1841                         return CHARGE_OK;
1842
1843                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1844                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1845         } else
1846                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1847
1848         if (csize > PAGE_SIZE) /* change csize and retry */
1849                 return CHARGE_RETRY;
1850
1851         if (!(gfp_mask & __GFP_WAIT))
1852                 return CHARGE_WOULDBLOCK;
1853
1854         ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1855                                         gfp_mask, flags);
1856         /*
1857          * try_to_free_mem_cgroup_pages() might not give us a full
1858          * picture of reclaim. Some pages are reclaimed and might be
1859          * moved to swap cache or just unmapped from the cgroup.
1860          * Check the limit again to see if the reclaim reduced the
1861          * current usage of the cgroup before giving up
1862          */
1863         if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1864                 return CHARGE_RETRY;
1865
1866         /*
1867          * At task move, charge accounts can be doubly counted. So, it's
1868          * better to wait until the end of task_move if something is going on.
1869          */
1870         if (mem_cgroup_wait_acct_move(mem_over_limit))
1871                 return CHARGE_RETRY;
1872
1873         /* If we don't need to call oom-killer at el, return immediately */
1874         if (!oom_check)
1875                 return CHARGE_NOMEM;
1876         /* check OOM */
1877         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1878                 return CHARGE_OOM_DIE;
1879
1880         return CHARGE_RETRY;
1881 }
1882
1883 /*
1884  * Unlike exported interface, "oom" parameter is added. if oom==true,
1885  * oom-killer can be invoked.
1886  */
1887 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1888                                    gfp_t gfp_mask,
1889                                    struct mem_cgroup **memcg, bool oom,
1890                                    int page_size)
1891 {
1892         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1893         struct mem_cgroup *mem = NULL;
1894         int ret;
1895         int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1896
1897         /*
1898          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1899          * in system level. So, allow to go ahead dying process in addition to
1900          * MEMDIE process.
1901          */
1902         if (unlikely(test_thread_flag(TIF_MEMDIE)
1903                      || fatal_signal_pending(current)))
1904                 goto bypass;
1905
1906         /*
1907          * We always charge the cgroup the mm_struct belongs to.
1908          * The mm_struct's mem_cgroup changes on task migration if the
1909          * thread group leader migrates. It's possible that mm is not
1910          * set, if so charge the init_mm (happens for pagecache usage).
1911          */
1912         if (!*memcg && !mm)
1913                 goto bypass;
1914 again:
1915         if (*memcg) { /* css should be a valid one */
1916                 mem = *memcg;
1917                 VM_BUG_ON(css_is_removed(&mem->css));
1918                 if (mem_cgroup_is_root(mem))
1919                         goto done;
1920                 if (page_size == PAGE_SIZE && consume_stock(mem))
1921                         goto done;
1922                 css_get(&mem->css);
1923         } else {
1924                 struct task_struct *p;
1925
1926                 rcu_read_lock();
1927                 p = rcu_dereference(mm->owner);
1928                 /*
1929                  * Because we don't have task_lock(), "p" can exit.
1930                  * In that case, "mem" can point to root or p can be NULL with
1931                  * race with swapoff. Then, we have small risk of mis-accouning.
1932                  * But such kind of mis-account by race always happens because
1933                  * we don't have cgroup_mutex(). It's overkill and we allo that
1934                  * small race, here.
1935                  * (*) swapoff at el will charge against mm-struct not against
1936                  * task-struct. So, mm->owner can be NULL.
1937                  */
1938                 mem = mem_cgroup_from_task(p);
1939                 if (!mem || mem_cgroup_is_root(mem)) {
1940                         rcu_read_unlock();
1941                         goto done;
1942                 }
1943                 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1944                         /*
1945                          * It seems dagerous to access memcg without css_get().
1946                          * But considering how consume_stok works, it's not
1947                          * necessary. If consume_stock success, some charges
1948                          * from this memcg are cached on this cpu. So, we
1949                          * don't need to call css_get()/css_tryget() before
1950                          * calling consume_stock().
1951                          */
1952                         rcu_read_unlock();
1953                         goto done;
1954                 }
1955                 /* after here, we may be blocked. we need to get refcnt */
1956                 if (!css_tryget(&mem->css)) {
1957                         rcu_read_unlock();
1958                         goto again;
1959                 }
1960                 rcu_read_unlock();
1961         }
1962
1963         do {
1964                 bool oom_check;
1965
1966                 /* If killed, bypass charge */
1967                 if (fatal_signal_pending(current)) {
1968                         css_put(&mem->css);
1969                         goto bypass;
1970                 }
1971
1972                 oom_check = false;
1973                 if (oom && !nr_oom_retries) {
1974                         oom_check = true;
1975                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1976                 }
1977
1978                 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1979
1980                 switch (ret) {
1981                 case CHARGE_OK:
1982                         break;
1983                 case CHARGE_RETRY: /* not in OOM situation but retry */
1984                         csize = page_size;
1985                         css_put(&mem->css);
1986                         mem = NULL;
1987                         goto again;
1988                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1989                         css_put(&mem->css);
1990                         goto nomem;
1991                 case CHARGE_NOMEM: /* OOM routine works */
1992                         if (!oom) {
1993                                 css_put(&mem->css);
1994                                 goto nomem;
1995                         }
1996                         /* If oom, we never return -ENOMEM */
1997                         nr_oom_retries--;
1998                         break;
1999                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2000                         css_put(&mem->css);
2001                         goto bypass;
2002                 }
2003         } while (ret != CHARGE_OK);
2004
2005         if (csize > page_size)
2006                 refill_stock(mem, csize - page_size);
2007         css_put(&mem->css);
2008 done:
2009         *memcg = mem;
2010         return 0;
2011 nomem:
2012         *memcg = NULL;
2013         return -ENOMEM;
2014 bypass:
2015         *memcg = NULL;
2016         return 0;
2017 }
2018
2019 /*
2020  * Somemtimes we have to undo a charge we got by try_charge().
2021  * This function is for that and do uncharge, put css's refcnt.
2022  * gotten by try_charge().
2023  */
2024 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2025                                                         unsigned long count)
2026 {
2027         if (!mem_cgroup_is_root(mem)) {
2028                 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2029                 if (do_swap_account)
2030                         res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2031         }
2032 }
2033
2034 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2035                                      int page_size)
2036 {
2037         __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2038 }
2039
2040 /*
2041  * A helper function to get mem_cgroup from ID. must be called under
2042  * rcu_read_lock(). The caller must check css_is_removed() or some if
2043  * it's concern. (dropping refcnt from swap can be called against removed
2044  * memcg.)
2045  */
2046 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2047 {
2048         struct cgroup_subsys_state *css;
2049
2050         /* ID 0 is unused ID */
2051         if (!id)
2052                 return NULL;
2053         css = css_lookup(&mem_cgroup_subsys, id);
2054         if (!css)
2055                 return NULL;
2056         return container_of(css, struct mem_cgroup, css);
2057 }
2058
2059 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2060 {
2061         struct mem_cgroup *mem = NULL;
2062         struct page_cgroup *pc;
2063         unsigned short id;
2064         swp_entry_t ent;
2065
2066         VM_BUG_ON(!PageLocked(page));
2067
2068         pc = lookup_page_cgroup(page);
2069         lock_page_cgroup(pc);
2070         if (PageCgroupUsed(pc)) {
2071                 mem = pc->mem_cgroup;
2072                 if (mem && !css_tryget(&mem->css))
2073                         mem = NULL;
2074         } else if (PageSwapCache(page)) {
2075                 ent.val = page_private(page);
2076                 id = lookup_swap_cgroup(ent);
2077                 rcu_read_lock();
2078                 mem = mem_cgroup_lookup(id);
2079                 if (mem && !css_tryget(&mem->css))
2080                         mem = NULL;
2081                 rcu_read_unlock();
2082         }
2083         unlock_page_cgroup(pc);
2084         return mem;
2085 }
2086
2087 /*
2088  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2089  * USED state. If already USED, uncharge and return.
2090  */
2091 static void ____mem_cgroup_commit_charge(struct mem_cgroup *mem,
2092                                          struct page_cgroup *pc,
2093                                          enum charge_type ctype)
2094 {
2095         pc->mem_cgroup = mem;
2096         /*
2097          * We access a page_cgroup asynchronously without lock_page_cgroup().
2098          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2099          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2100          * before USED bit, we need memory barrier here.
2101          * See mem_cgroup_add_lru_list(), etc.
2102          */
2103         smp_wmb();
2104         switch (ctype) {
2105         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2106         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2107                 SetPageCgroupCache(pc);
2108                 SetPageCgroupUsed(pc);
2109                 break;
2110         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2111                 ClearPageCgroupCache(pc);
2112                 SetPageCgroupUsed(pc);
2113                 break;
2114         default:
2115                 break;
2116         }
2117
2118         mem_cgroup_charge_statistics(mem, pc, true);
2119 }
2120
2121 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2122                                        struct page_cgroup *pc,
2123                                        enum charge_type ctype,
2124                                        int page_size)
2125 {
2126         int i;
2127         int count = page_size >> PAGE_SHIFT;
2128
2129         /* try_charge() can return NULL to *memcg, taking care of it. */
2130         if (!mem)
2131                 return;
2132
2133         lock_page_cgroup(pc);
2134         if (unlikely(PageCgroupUsed(pc))) {
2135                 unlock_page_cgroup(pc);
2136                 mem_cgroup_cancel_charge(mem, page_size);
2137                 return;
2138         }
2139
2140         /*
2141          * we don't need page_cgroup_lock about tail pages, becase they are not
2142          * accessed by any other context at this point.
2143          */
2144         for (i = 0; i < count; i++)
2145                 ____mem_cgroup_commit_charge(mem, pc + i, ctype);
2146
2147         unlock_page_cgroup(pc);
2148         /*
2149          * "charge_statistics" updated event counter. Then, check it.
2150          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2151          * if they exceeds softlimit.
2152          */
2153         memcg_check_events(mem, pc->page);
2154 }
2155
2156 /**
2157  * __mem_cgroup_move_account - move account of the page
2158  * @pc: page_cgroup of the page.
2159  * @from: mem_cgroup which the page is moved from.
2160  * @to: mem_cgroup which the page is moved to. @from != @to.
2161  * @uncharge: whether we should call uncharge and css_put against @from.
2162  *
2163  * The caller must confirm following.
2164  * - page is not on LRU (isolate_page() is useful.)
2165  * - the pc is locked, used, and ->mem_cgroup points to @from.
2166  *
2167  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2168  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2169  * true, this function does "uncharge" from old cgroup, but it doesn't if
2170  * @uncharge is false, so a caller should do "uncharge".
2171  */
2172
2173 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2174         struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2175 {
2176         VM_BUG_ON(from == to);
2177         VM_BUG_ON(PageLRU(pc->page));
2178         VM_BUG_ON(!page_is_cgroup_locked(pc));
2179         VM_BUG_ON(!PageCgroupUsed(pc));
2180         VM_BUG_ON(pc->mem_cgroup != from);
2181
2182         if (PageCgroupFileMapped(pc)) {
2183                 /* Update mapped_file data for mem_cgroup */
2184                 preempt_disable();
2185                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2186                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2187                 preempt_enable();
2188         }
2189         mem_cgroup_charge_statistics(from, pc, false);
2190         if (uncharge)
2191                 /* This is not "cancel", but cancel_charge does all we need. */
2192                 mem_cgroup_cancel_charge(from, PAGE_SIZE);
2193
2194         /* caller should have done css_get */
2195         pc->mem_cgroup = to;
2196         mem_cgroup_charge_statistics(to, pc, true);
2197         /*
2198          * We charges against "to" which may not have any tasks. Then, "to"
2199          * can be under rmdir(). But in current implementation, caller of
2200          * this function is just force_empty() and move charge, so it's
2201          * garanteed that "to" is never removed. So, we don't check rmdir
2202          * status here.
2203          */
2204 }
2205
2206 /*
2207  * check whether the @pc is valid for moving account and call
2208  * __mem_cgroup_move_account()
2209  */
2210 static int mem_cgroup_move_account(struct page_cgroup *pc,
2211                 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2212 {
2213         int ret = -EINVAL;
2214         unsigned long flags;
2215
2216         lock_page_cgroup(pc);
2217         if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2218                 move_lock_page_cgroup(pc, &flags);
2219                 __mem_cgroup_move_account(pc, from, to, uncharge);
2220                 move_unlock_page_cgroup(pc, &flags);
2221                 ret = 0;
2222         }
2223         unlock_page_cgroup(pc);
2224         /*
2225          * check events
2226          */
2227         memcg_check_events(to, pc->page);
2228         memcg_check_events(from, pc->page);
2229         return ret;
2230 }
2231
2232 /*
2233  * move charges to its parent.
2234  */
2235
2236 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2237                                   struct mem_cgroup *child,
2238                                   gfp_t gfp_mask)
2239 {
2240         struct page *page = pc->page;
2241         struct cgroup *cg = child->css.cgroup;
2242         struct cgroup *pcg = cg->parent;
2243         struct mem_cgroup *parent;
2244         int ret;
2245
2246         /* Is ROOT ? */
2247         if (!pcg)
2248                 return -EINVAL;
2249
2250         ret = -EBUSY;
2251         if (!get_page_unless_zero(page))
2252                 goto out;
2253         if (isolate_lru_page(page))
2254                 goto put;
2255
2256         parent = mem_cgroup_from_cont(pcg);
2257         ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false,
2258                                       PAGE_SIZE);
2259         if (ret || !parent)
2260                 goto put_back;
2261
2262         ret = mem_cgroup_move_account(pc, child, parent, true);
2263         if (ret)
2264                 mem_cgroup_cancel_charge(parent, PAGE_SIZE);
2265 put_back:
2266         putback_lru_page(page);
2267 put:
2268         put_page(page);
2269 out:
2270         return ret;
2271 }
2272
2273 /*
2274  * Charge the memory controller for page usage.
2275  * Return
2276  * 0 if the charge was successful
2277  * < 0 if the cgroup is over its limit
2278  */
2279 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2280                                 gfp_t gfp_mask, enum charge_type ctype)
2281 {
2282         struct mem_cgroup *mem = NULL;
2283         struct page_cgroup *pc;
2284         int ret;
2285         int page_size = PAGE_SIZE;
2286
2287         if (PageTransHuge(page)) {
2288                 page_size <<= compound_order(page);
2289                 VM_BUG_ON(!PageTransHuge(page));
2290         }
2291
2292         pc = lookup_page_cgroup(page);
2293         /* can happen at boot */
2294         if (unlikely(!pc))
2295                 return 0;
2296         prefetchw(pc);
2297
2298         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2299         if (ret || !mem)
2300                 return ret;
2301
2302         __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2303         return 0;
2304 }
2305
2306 int mem_cgroup_newpage_charge(struct page *page,
2307                               struct mm_struct *mm, gfp_t gfp_mask)
2308 {
2309         if (mem_cgroup_disabled())
2310                 return 0;
2311         /*
2312          * If already mapped, we don't have to account.
2313          * If page cache, page->mapping has address_space.
2314          * But page->mapping may have out-of-use anon_vma pointer,
2315          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2316          * is NULL.
2317          */
2318         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2319                 return 0;
2320         if (unlikely(!mm))
2321                 mm = &init_mm;
2322         return mem_cgroup_charge_common(page, mm, gfp_mask,
2323                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2324 }
2325
2326 static void
2327 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2328                                         enum charge_type ctype);
2329
2330 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2331                                 gfp_t gfp_mask)
2332 {
2333         int ret;
2334
2335         if (mem_cgroup_disabled())
2336                 return 0;
2337         if (PageCompound(page))
2338                 return 0;
2339         /*
2340          * Corner case handling. This is called from add_to_page_cache()
2341          * in usual. But some FS (shmem) precharges this page before calling it
2342          * and call add_to_page_cache() with GFP_NOWAIT.
2343          *
2344          * For GFP_NOWAIT case, the page may be pre-charged before calling
2345          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2346          * charge twice. (It works but has to pay a bit larger cost.)
2347          * And when the page is SwapCache, it should take swap information
2348          * into account. This is under lock_page() now.
2349          */
2350         if (!(gfp_mask & __GFP_WAIT)) {
2351                 struct page_cgroup *pc;
2352
2353                 pc = lookup_page_cgroup(page);
2354                 if (!pc)
2355                         return 0;
2356                 lock_page_cgroup(pc);
2357                 if (PageCgroupUsed(pc)) {
2358                         unlock_page_cgroup(pc);
2359                         return 0;
2360                 }
2361                 unlock_page_cgroup(pc);
2362         }
2363
2364         if (unlikely(!mm))
2365                 mm = &init_mm;
2366
2367         if (page_is_file_cache(page))
2368                 return mem_cgroup_charge_common(page, mm, gfp_mask,
2369                                 MEM_CGROUP_CHARGE_TYPE_CACHE);
2370
2371         /* shmem */
2372         if (PageSwapCache(page)) {
2373                 struct mem_cgroup *mem = NULL;
2374
2375                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2376                 if (!ret)
2377                         __mem_cgroup_commit_charge_swapin(page, mem,
2378                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2379         } else
2380                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2381                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2382
2383         return ret;
2384 }
2385
2386 /*
2387  * While swap-in, try_charge -> commit or cancel, the page is locked.
2388  * And when try_charge() successfully returns, one refcnt to memcg without
2389  * struct page_cgroup is acquired. This refcnt will be consumed by
2390  * "commit()" or removed by "cancel()"
2391  */
2392 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2393                                  struct page *page,
2394                                  gfp_t mask, struct mem_cgroup **ptr)
2395 {
2396         struct mem_cgroup *mem;
2397         int ret;
2398
2399         if (mem_cgroup_disabled())
2400                 return 0;
2401
2402         if (!do_swap_account)
2403                 goto charge_cur_mm;
2404         /*
2405          * A racing thread's fault, or swapoff, may have already updated
2406          * the pte, and even removed page from swap cache: in those cases
2407          * do_swap_page()'s pte_same() test will fail; but there's also a
2408          * KSM case which does need to charge the page.
2409          */
2410         if (!PageSwapCache(page))
2411                 goto charge_cur_mm;
2412         mem = try_get_mem_cgroup_from_page(page);
2413         if (!mem)
2414                 goto charge_cur_mm;
2415         *ptr = mem;
2416         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2417         css_put(&mem->css);
2418         return ret;
2419 charge_cur_mm:
2420         if (unlikely(!mm))
2421                 mm = &init_mm;
2422         return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2423 }
2424
2425 static void
2426 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2427                                         enum charge_type ctype)
2428 {
2429         struct page_cgroup *pc;
2430
2431         if (mem_cgroup_disabled())
2432                 return;
2433         if (!ptr)
2434                 return;
2435         cgroup_exclude_rmdir(&ptr->css);
2436         pc = lookup_page_cgroup(page);
2437         mem_cgroup_lru_del_before_commit_swapcache(page);
2438         __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2439         mem_cgroup_lru_add_after_commit_swapcache(page);
2440         /*
2441          * Now swap is on-memory. This means this page may be
2442          * counted both as mem and swap....double count.
2443          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2444          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2445          * may call delete_from_swap_cache() before reach here.
2446          */
2447         if (do_swap_account && PageSwapCache(page)) {
2448                 swp_entry_t ent = {.val = page_private(page)};
2449                 unsigned short id;
2450                 struct mem_cgroup *memcg;
2451
2452                 id = swap_cgroup_record(ent, 0);
2453                 rcu_read_lock();
2454                 memcg = mem_cgroup_lookup(id);
2455                 if (memcg) {
2456                         /*
2457                          * This recorded memcg can be obsolete one. So, avoid
2458                          * calling css_tryget
2459                          */
2460                         if (!mem_cgroup_is_root(memcg))
2461                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2462                         mem_cgroup_swap_statistics(memcg, false);
2463                         mem_cgroup_put(memcg);
2464                 }
2465                 rcu_read_unlock();
2466         }
2467         /*
2468          * At swapin, we may charge account against cgroup which has no tasks.
2469          * So, rmdir()->pre_destroy() can be called while we do this charge.
2470          * In that case, we need to call pre_destroy() again. check it here.
2471          */
2472         cgroup_release_and_wakeup_rmdir(&ptr->css);
2473 }
2474
2475 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2476 {
2477         __mem_cgroup_commit_charge_swapin(page, ptr,
2478                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2479 }
2480
2481 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2482 {
2483         if (mem_cgroup_disabled())
2484                 return;
2485         if (!mem)
2486                 return;
2487         mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2488 }
2489
2490 static void
2491 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2492               int page_size)
2493 {
2494         struct memcg_batch_info *batch = NULL;
2495         bool uncharge_memsw = true;
2496         /* If swapout, usage of swap doesn't decrease */
2497         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2498                 uncharge_memsw = false;
2499
2500         batch = &current->memcg_batch;
2501         /*
2502          * In usual, we do css_get() when we remember memcg pointer.
2503          * But in this case, we keep res->usage until end of a series of
2504          * uncharges. Then, it's ok to ignore memcg's refcnt.
2505          */
2506         if (!batch->memcg)
2507                 batch->memcg = mem;
2508         /*
2509          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2510          * In those cases, all pages freed continously can be expected to be in
2511          * the same cgroup and we have chance to coalesce uncharges.
2512          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2513          * because we want to do uncharge as soon as possible.
2514          */
2515
2516         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2517                 goto direct_uncharge;
2518
2519         if (page_size != PAGE_SIZE)
2520                 goto direct_uncharge;
2521
2522         /*
2523          * In typical case, batch->memcg == mem. This means we can
2524          * merge a series of uncharges to an uncharge of res_counter.
2525          * If not, we uncharge res_counter ony by one.
2526          */
2527         if (batch->memcg != mem)
2528                 goto direct_uncharge;
2529         /* remember freed charge and uncharge it later */
2530         batch->bytes += PAGE_SIZE;
2531         if (uncharge_memsw)
2532                 batch->memsw_bytes += PAGE_SIZE;
2533         return;
2534 direct_uncharge:
2535         res_counter_uncharge(&mem->res, page_size);
2536         if (uncharge_memsw)
2537                 res_counter_uncharge(&mem->memsw, page_size);
2538         if (unlikely(batch->memcg != mem))
2539                 memcg_oom_recover(mem);
2540         return;
2541 }
2542
2543 /*
2544  * uncharge if !page_mapped(page)
2545  */
2546 static struct mem_cgroup *
2547 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2548 {
2549         int i;
2550         int count;
2551         struct page_cgroup *pc;
2552         struct mem_cgroup *mem = NULL;
2553         int page_size = PAGE_SIZE;
2554
2555         if (mem_cgroup_disabled())
2556                 return NULL;
2557
2558         if (PageSwapCache(page))
2559                 return NULL;
2560
2561         if (PageTransHuge(page)) {
2562                 page_size <<= compound_order(page);
2563                 VM_BUG_ON(!PageTransHuge(page));
2564         }
2565
2566         count = page_size >> PAGE_SHIFT;
2567         /*
2568          * Check if our page_cgroup is valid
2569          */
2570         pc = lookup_page_cgroup(page);
2571         if (unlikely(!pc || !PageCgroupUsed(pc)))
2572                 return NULL;
2573
2574         lock_page_cgroup(pc);
2575
2576         mem = pc->mem_cgroup;
2577
2578         if (!PageCgroupUsed(pc))
2579                 goto unlock_out;
2580
2581         switch (ctype) {
2582         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2583         case MEM_CGROUP_CHARGE_TYPE_DROP:
2584                 /* See mem_cgroup_prepare_migration() */
2585                 if (page_mapped(page) || PageCgroupMigration(pc))
2586                         goto unlock_out;
2587                 break;
2588         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2589                 if (!PageAnon(page)) {  /* Shared memory */
2590                         if (page->mapping && !page_is_file_cache(page))
2591                                 goto unlock_out;
2592                 } else if (page_mapped(page)) /* Anon */
2593                                 goto unlock_out;
2594                 break;
2595         default:
2596                 break;
2597         }
2598
2599         for (i = 0; i < count; i++)
2600                 mem_cgroup_charge_statistics(mem, pc + i, false);
2601
2602         ClearPageCgroupUsed(pc);
2603         /*
2604          * pc->mem_cgroup is not cleared here. It will be accessed when it's
2605          * freed from LRU. This is safe because uncharged page is expected not
2606          * to be reused (freed soon). Exception is SwapCache, it's handled by
2607          * special functions.
2608          */
2609
2610         unlock_page_cgroup(pc);
2611         /*
2612          * even after unlock, we have mem->res.usage here and this memcg
2613          * will never be freed.
2614          */
2615         memcg_check_events(mem, page);
2616         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2617                 mem_cgroup_swap_statistics(mem, true);
2618                 mem_cgroup_get(mem);
2619         }
2620         if (!mem_cgroup_is_root(mem))
2621                 __do_uncharge(mem, ctype, page_size);
2622
2623         return mem;
2624
2625 unlock_out:
2626         unlock_page_cgroup(pc);
2627         return NULL;
2628 }
2629
2630 void mem_cgroup_uncharge_page(struct page *page)
2631 {
2632         /* early check. */
2633         if (page_mapped(page))
2634                 return;
2635         if (page->mapping && !PageAnon(page))
2636                 return;
2637         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2638 }
2639
2640 void mem_cgroup_uncharge_cache_page(struct page *page)
2641 {
2642         VM_BUG_ON(page_mapped(page));
2643         VM_BUG_ON(page->mapping);
2644         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2645 }
2646
2647 /*
2648  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2649  * In that cases, pages are freed continuously and we can expect pages
2650  * are in the same memcg. All these calls itself limits the number of
2651  * pages freed at once, then uncharge_start/end() is called properly.
2652  * This may be called prural(2) times in a context,
2653  */
2654
2655 void mem_cgroup_uncharge_start(void)
2656 {
2657         current->memcg_batch.do_batch++;
2658         /* We can do nest. */
2659         if (current->memcg_batch.do_batch == 1) {
2660                 current->memcg_batch.memcg = NULL;
2661                 current->memcg_batch.bytes = 0;
2662                 current->memcg_batch.memsw_bytes = 0;
2663         }
2664 }
2665
2666 void mem_cgroup_uncharge_end(void)
2667 {
2668         struct memcg_batch_info *batch = &current->memcg_batch;
2669
2670         if (!batch->do_batch)
2671                 return;
2672
2673         batch->do_batch--;
2674         if (batch->do_batch) /* If stacked, do nothing. */
2675                 return;
2676
2677         if (!batch->memcg)
2678                 return;
2679         /*
2680          * This "batch->memcg" is valid without any css_get/put etc...
2681          * bacause we hide charges behind us.
2682          */
2683         if (batch->bytes)
2684                 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2685         if (batch->memsw_bytes)
2686                 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2687         memcg_oom_recover(batch->memcg);
2688         /* forget this pointer (for sanity check) */
2689         batch->memcg = NULL;
2690 }
2691
2692 #ifdef CONFIG_SWAP
2693 /*
2694  * called after __delete_from_swap_cache() and drop "page" account.
2695  * memcg information is recorded to swap_cgroup of "ent"
2696  */
2697 void
2698 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2699 {
2700         struct mem_cgroup *memcg;
2701         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2702
2703         if (!swapout) /* this was a swap cache but the swap is unused ! */
2704                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2705
2706         memcg = __mem_cgroup_uncharge_common(page, ctype);
2707
2708         /*
2709          * record memcg information,  if swapout && memcg != NULL,
2710          * mem_cgroup_get() was called in uncharge().
2711          */
2712         if (do_swap_account && swapout && memcg)
2713                 swap_cgroup_record(ent, css_id(&memcg->css));
2714 }
2715 #endif
2716
2717 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2718 /*
2719  * called from swap_entry_free(). remove record in swap_cgroup and
2720  * uncharge "memsw" account.
2721  */
2722 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2723 {
2724         struct mem_cgroup *memcg;
2725         unsigned short id;
2726
2727         if (!do_swap_account)
2728                 return;
2729
2730         id = swap_cgroup_record(ent, 0);
2731         rcu_read_lock();
2732         memcg = mem_cgroup_lookup(id);
2733         if (memcg) {
2734                 /*
2735                  * We uncharge this because swap is freed.
2736                  * This memcg can be obsolete one. We avoid calling css_tryget
2737                  */
2738                 if (!mem_cgroup_is_root(memcg))
2739                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2740                 mem_cgroup_swap_statistics(memcg, false);
2741                 mem_cgroup_put(memcg);
2742         }
2743         rcu_read_unlock();
2744 }
2745
2746 /**
2747  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2748  * @entry: swap entry to be moved
2749  * @from:  mem_cgroup which the entry is moved from
2750  * @to:  mem_cgroup which the entry is moved to
2751  * @need_fixup: whether we should fixup res_counters and refcounts.
2752  *
2753  * It succeeds only when the swap_cgroup's record for this entry is the same
2754  * as the mem_cgroup's id of @from.
2755  *
2756  * Returns 0 on success, -EINVAL on failure.
2757  *
2758  * The caller must have charged to @to, IOW, called res_counter_charge() about
2759  * both res and memsw, and called css_get().
2760  */
2761 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2762                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2763 {
2764         unsigned short old_id, new_id;
2765
2766         old_id = css_id(&from->css);
2767         new_id = css_id(&to->css);
2768
2769         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2770                 mem_cgroup_swap_statistics(from, false);
2771                 mem_cgroup_swap_statistics(to, true);
2772                 /*
2773                  * This function is only called from task migration context now.
2774                  * It postpones res_counter and refcount handling till the end
2775                  * of task migration(mem_cgroup_clear_mc()) for performance
2776                  * improvement. But we cannot postpone mem_cgroup_get(to)
2777                  * because if the process that has been moved to @to does
2778                  * swap-in, the refcount of @to might be decreased to 0.
2779                  */
2780                 mem_cgroup_get(to);
2781                 if (need_fixup) {
2782                         if (!mem_cgroup_is_root(from))
2783                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2784                         mem_cgroup_put(from);
2785                         /*
2786                          * we charged both to->res and to->memsw, so we should
2787                          * uncharge to->res.
2788                          */
2789                         if (!mem_cgroup_is_root(to))
2790                                 res_counter_uncharge(&to->res, PAGE_SIZE);
2791                 }
2792                 return 0;
2793         }
2794         return -EINVAL;
2795 }
2796 #else
2797 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2798                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2799 {
2800         return -EINVAL;
2801 }
2802 #endif
2803
2804 /*
2805  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2806  * page belongs to.
2807  */
2808 int mem_cgroup_prepare_migration(struct page *page,
2809         struct page *newpage, struct mem_cgroup **ptr)
2810 {
2811         struct page_cgroup *pc;
2812         struct mem_cgroup *mem = NULL;
2813         enum charge_type ctype;
2814         int ret = 0;
2815
2816         VM_BUG_ON(PageTransHuge(page));
2817         if (mem_cgroup_disabled())
2818                 return 0;
2819
2820         pc = lookup_page_cgroup(page);
2821         lock_page_cgroup(pc);
2822         if (PageCgroupUsed(pc)) {
2823                 mem = pc->mem_cgroup;
2824                 css_get(&mem->css);
2825                 /*
2826                  * At migrating an anonymous page, its mapcount goes down
2827                  * to 0 and uncharge() will be called. But, even if it's fully
2828                  * unmapped, migration may fail and this page has to be
2829                  * charged again. We set MIGRATION flag here and delay uncharge
2830                  * until end_migration() is called
2831                  *
2832                  * Corner Case Thinking
2833                  * A)
2834                  * When the old page was mapped as Anon and it's unmap-and-freed
2835                  * while migration was ongoing.
2836                  * If unmap finds the old page, uncharge() of it will be delayed
2837                  * until end_migration(). If unmap finds a new page, it's
2838                  * uncharged when it make mapcount to be 1->0. If unmap code
2839                  * finds swap_migration_entry, the new page will not be mapped
2840                  * and end_migration() will find it(mapcount==0).
2841                  *
2842                  * B)
2843                  * When the old page was mapped but migraion fails, the kernel
2844                  * remaps it. A charge for it is kept by MIGRATION flag even
2845                  * if mapcount goes down to 0. We can do remap successfully
2846                  * without charging it again.
2847                  *
2848                  * C)
2849                  * The "old" page is under lock_page() until the end of
2850                  * migration, so, the old page itself will not be swapped-out.
2851                  * If the new page is swapped out before end_migraton, our
2852                  * hook to usual swap-out path will catch the event.
2853                  */
2854                 if (PageAnon(page))
2855                         SetPageCgroupMigration(pc);
2856         }
2857         unlock_page_cgroup(pc);
2858         /*
2859          * If the page is not charged at this point,
2860          * we return here.
2861          */
2862         if (!mem)
2863                 return 0;
2864
2865         *ptr = mem;
2866         ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2867         css_put(&mem->css);/* drop extra refcnt */
2868         if (ret || *ptr == NULL) {
2869                 if (PageAnon(page)) {
2870                         lock_page_cgroup(pc);
2871                         ClearPageCgroupMigration(pc);
2872                         unlock_page_cgroup(pc);
2873                         /*
2874                          * The old page may be fully unmapped while we kept it.
2875                          */
2876                         mem_cgroup_uncharge_page(page);
2877                 }
2878                 return -ENOMEM;
2879         }
2880         /*
2881          * We charge new page before it's used/mapped. So, even if unlock_page()
2882          * is called before end_migration, we can catch all events on this new
2883          * page. In the case new page is migrated but not remapped, new page's
2884          * mapcount will be finally 0 and we call uncharge in end_migration().
2885          */
2886         pc = lookup_page_cgroup(newpage);
2887         if (PageAnon(page))
2888                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2889         else if (page_is_file_cache(page))
2890                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2891         else
2892                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2893         __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2894         return ret;
2895 }
2896
2897 /* remove redundant charge if migration failed*/
2898 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2899         struct page *oldpage, struct page *newpage, bool migration_ok)
2900 {
2901         struct page *used, *unused;
2902         struct page_cgroup *pc;
2903
2904         if (!mem)
2905                 return;
2906         /* blocks rmdir() */
2907         cgroup_exclude_rmdir(&mem->css);
2908         if (!migration_ok) {
2909                 used = oldpage;
2910                 unused = newpage;
2911         } else {
2912                 used = newpage;
2913                 unused = oldpage;
2914         }
2915         /*
2916          * We disallowed uncharge of pages under migration because mapcount
2917          * of the page goes down to zero, temporarly.
2918          * Clear the flag and check the page should be charged.
2919          */
2920         pc = lookup_page_cgroup(oldpage);
2921         lock_page_cgroup(pc);
2922         ClearPageCgroupMigration(pc);
2923         unlock_page_cgroup(pc);
2924
2925         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2926
2927         /*
2928          * If a page is a file cache, radix-tree replacement is very atomic
2929          * and we can skip this check. When it was an Anon page, its mapcount
2930          * goes down to 0. But because we added MIGRATION flage, it's not
2931          * uncharged yet. There are several case but page->mapcount check
2932          * and USED bit check in mem_cgroup_uncharge_page() will do enough
2933          * check. (see prepare_charge() also)
2934          */
2935         if (PageAnon(used))
2936                 mem_cgroup_uncharge_page(used);
2937         /*
2938          * At migration, we may charge account against cgroup which has no
2939          * tasks.
2940          * So, rmdir()->pre_destroy() can be called while we do this charge.
2941          * In that case, we need to call pre_destroy() again. check it here.
2942          */
2943         cgroup_release_and_wakeup_rmdir(&mem->css);
2944 }
2945
2946 /*
2947  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2948  * Calling hierarchical_reclaim is not enough because we should update
2949  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2950  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2951  * not from the memcg which this page would be charged to.
2952  * try_charge_swapin does all of these works properly.
2953  */
2954 int mem_cgroup_shmem_charge_fallback(struct page *page,
2955                             struct mm_struct *mm,
2956                             gfp_t gfp_mask)
2957 {
2958         struct mem_cgroup *mem = NULL;
2959         int ret;
2960
2961         if (mem_cgroup_disabled())
2962                 return 0;
2963
2964         ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2965         if (!ret)
2966                 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2967
2968         return ret;
2969 }
2970
2971 static DEFINE_MUTEX(set_limit_mutex);
2972
2973 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2974                                 unsigned long long val)
2975 {
2976         int retry_count;
2977         u64 memswlimit, memlimit;
2978         int ret = 0;
2979         int children = mem_cgroup_count_children(memcg);
2980         u64 curusage, oldusage;
2981         int enlarge;
2982
2983         /*
2984          * For keeping hierarchical_reclaim simple, how long we should retry
2985          * is depends on callers. We set our retry-count to be function
2986          * of # of children which we should visit in this loop.
2987          */
2988         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2989
2990         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2991
2992         enlarge = 0;
2993         while (retry_count) {
2994                 if (signal_pending(current)) {
2995                         ret = -EINTR;
2996                         break;
2997                 }
2998                 /*
2999                  * Rather than hide all in some function, I do this in
3000                  * open coded manner. You see what this really does.
3001                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3002                  */
3003                 mutex_lock(&set_limit_mutex);
3004                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3005                 if (memswlimit < val) {
3006                         ret = -EINVAL;
3007                         mutex_unlock(&set_limit_mutex);
3008                         break;
3009                 }
3010
3011                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3012                 if (memlimit < val)
3013                         enlarge = 1;
3014
3015                 ret = res_counter_set_limit(&memcg->res, val);
3016                 if (!ret) {
3017                         if (memswlimit == val)
3018                                 memcg->memsw_is_minimum = true;
3019                         else
3020                                 memcg->memsw_is_minimum = false;
3021                 }
3022                 mutex_unlock(&set_limit_mutex);
3023
3024                 if (!ret)
3025                         break;
3026
3027                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3028                                                 MEM_CGROUP_RECLAIM_SHRINK);
3029                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3030                 /* Usage is reduced ? */
3031                 if (curusage >= oldusage)
3032                         retry_count--;
3033                 else
3034                         oldusage = curusage;
3035         }
3036         if (!ret && enlarge)
3037                 memcg_oom_recover(memcg);
3038
3039         return ret;
3040 }
3041
3042 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3043                                         unsigned long long val)
3044 {
3045         int retry_count;
3046         u64 memlimit, memswlimit, oldusage, curusage;
3047         int children = mem_cgroup_count_children(memcg);
3048         int ret = -EBUSY;
3049         int enlarge = 0;
3050
3051         /* see mem_cgroup_resize_res_limit */
3052         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3053         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3054         while (retry_count) {
3055                 if (signal_pending(current)) {
3056                         ret = -EINTR;
3057                         break;
3058                 }
3059                 /*
3060                  * Rather than hide all in some function, I do this in
3061                  * open coded manner. You see what this really does.
3062                  * We have to guarantee mem->res.limit < mem->memsw.limit.
3063                  */
3064                 mutex_lock(&set_limit_mutex);
3065                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3066                 if (memlimit > val) {
3067                         ret = -EINVAL;
3068                         mutex_unlock(&set_limit_mutex);
3069                         break;
3070                 }
3071                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3072                 if (memswlimit < val)
3073                         enlarge = 1;
3074                 ret = res_counter_set_limit(&memcg->memsw, val);
3075                 if (!ret) {
3076                         if (memlimit == val)
3077                                 memcg->memsw_is_minimum = true;
3078                         else
3079                                 memcg->memsw_is_minimum = false;
3080                 }
3081                 mutex_unlock(&set_limit_mutex);
3082
3083                 if (!ret)
3084                         break;
3085
3086                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3087                                                 MEM_CGROUP_RECLAIM_NOSWAP |
3088                                                 MEM_CGROUP_RECLAIM_SHRINK);
3089                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3090                 /* Usage is reduced ? */
3091                 if (curusage >= oldusage)
3092                         retry_count--;
3093                 else
3094                         oldusage = curusage;
3095         }
3096         if (!ret && enlarge)
3097                 memcg_oom_recover(memcg);
3098         return ret;
3099 }
3100
3101 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3102                                             gfp_t gfp_mask)
3103 {
3104         unsigned long nr_reclaimed = 0;
3105         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3106         unsigned long reclaimed;
3107         int loop = 0;
3108         struct mem_cgroup_tree_per_zone *mctz;
3109         unsigned long long excess;
3110
3111         if (order > 0)
3112                 return 0;
3113
3114         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3115         /*
3116          * This loop can run a while, specially if mem_cgroup's continuously
3117          * keep exceeding their soft limit and putting the system under
3118          * pressure
3119          */
3120         do {
3121                 if (next_mz)
3122                         mz = next_mz;
3123                 else
3124                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3125                 if (!mz)
3126                         break;
3127
3128                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3129                                                 gfp_mask,
3130                                                 MEM_CGROUP_RECLAIM_SOFT);
3131                 nr_reclaimed += reclaimed;
3132                 spin_lock(&mctz->lock);
3133
3134                 /*
3135                  * If we failed to reclaim anything from this memory cgroup
3136                  * it is time to move on to the next cgroup
3137                  */
3138                 next_mz = NULL;
3139                 if (!reclaimed) {
3140                         do {
3141                                 /*
3142                                  * Loop until we find yet another one.
3143                                  *
3144                                  * By the time we get the soft_limit lock
3145                                  * again, someone might have aded the
3146                                  * group back on the RB tree. Iterate to
3147                                  * make sure we get a different mem.
3148                                  * mem_cgroup_largest_soft_limit_node returns
3149                                  * NULL if no other cgroup is present on
3150                                  * the tree
3151                                  */
3152                                 next_mz =
3153                                 __mem_cgroup_largest_soft_limit_node(mctz);
3154                                 if (next_mz == mz) {
3155                                         css_put(&next_mz->mem->css);
3156                                         next_mz = NULL;
3157                                 } else /* next_mz == NULL or other memcg */
3158                                         break;
3159                         } while (1);
3160                 }
3161                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3162                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3163                 /*
3164                  * One school of thought says that we should not add
3165                  * back the node to the tree if reclaim returns 0.
3166                  * But our reclaim could return 0, simply because due
3167                  * to priority we are exposing a smaller subset of
3168                  * memory to reclaim from. Consider this as a longer
3169                  * term TODO.
3170                  */
3171                 /* If excess == 0, no tree ops */
3172                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3173                 spin_unlock(&mctz->lock);
3174                 css_put(&mz->mem->css);
3175                 loop++;
3176                 /*
3177                  * Could not reclaim anything and there are no more
3178                  * mem cgroups to try or we seem to be looping without
3179                  * reclaiming anything.
3180                  */
3181                 if (!nr_reclaimed &&
3182                         (next_mz == NULL ||
3183                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3184                         break;
3185         } while (!nr_reclaimed);
3186         if (next_mz)
3187                 css_put(&next_mz->mem->css);
3188         return nr_reclaimed;
3189 }
3190
3191 /*
3192  * This routine traverse page_cgroup in given list and drop them all.
3193  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3194  */
3195 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3196                                 int node, int zid, enum lru_list lru)
3197 {
3198         struct zone *zone;
3199         struct mem_cgroup_per_zone *mz;
3200         struct page_cgroup *pc, *busy;
3201         unsigned long flags, loop;
3202         struct list_head *list;
3203         int ret = 0;
3204
3205         zone = &NODE_DATA(node)->node_zones[zid];
3206         mz = mem_cgroup_zoneinfo(mem, node, zid);
3207         list = &mz->lists[lru];
3208
3209         loop = MEM_CGROUP_ZSTAT(mz, lru);
3210         /* give some margin against EBUSY etc...*/
3211         loop += 256;
3212         busy = NULL;
3213         while (loop--) {
3214                 ret = 0;
3215                 spin_lock_irqsave(&zone->lru_lock, flags);
3216                 if (list_empty(list)) {
3217                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3218                         break;
3219                 }
3220                 pc = list_entry(list->prev, struct page_cgroup, lru);
3221                 if (busy == pc) {
3222                         list_move(&pc->lru, list);
3223                         busy = NULL;
3224                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3225                         continue;
3226                 }
3227                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3228
3229                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3230                 if (ret == -ENOMEM)
3231                         break;
3232
3233                 if (ret == -EBUSY || ret == -EINVAL) {
3234                         /* found lock contention or "pc" is obsolete. */
3235                         busy = pc;
3236                         cond_resched();
3237                 } else
3238                         busy = NULL;
3239         }
3240
3241         if (!ret && !list_empty(list))
3242                 return -EBUSY;
3243         return ret;
3244 }
3245
3246 /*
3247  * make mem_cgroup's charge to be 0 if there is no task.
3248  * This enables deleting this mem_cgroup.
3249  */
3250 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3251 {
3252         int ret;
3253         int node, zid, shrink;
3254         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3255         struct cgroup *cgrp = mem->css.cgroup;
3256
3257         css_get(&mem->css);
3258
3259         shrink = 0;
3260         /* should free all ? */
3261         if (free_all)
3262                 goto try_to_free;
3263 move_account:
3264         do {
3265                 ret = -EBUSY;
3266                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3267                         goto out;
3268                 ret = -EINTR;
3269                 if (signal_pending(current))
3270                         goto out;
3271                 /* This is for making all *used* pages to be on LRU. */
3272                 lru_add_drain_all();
3273                 drain_all_stock_sync();
3274                 ret = 0;
3275                 mem_cgroup_start_move(mem);
3276                 for_each_node_state(node, N_HIGH_MEMORY) {
3277                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3278                                 enum lru_list l;
3279                                 for_each_lru(l) {
3280                                         ret = mem_cgroup_force_empty_list(mem,
3281                                                         node, zid, l);
3282                                         if (ret)
3283                                                 break;
3284                                 }
3285                         }
3286                         if (ret)
3287                                 break;
3288                 }
3289                 mem_cgroup_end_move(mem);
3290                 memcg_oom_recover(mem);
3291                 /* it seems parent cgroup doesn't have enough mem */
3292                 if (ret == -ENOMEM)
3293                         goto try_to_free;
3294                 cond_resched();
3295         /* "ret" should also be checked to ensure all lists are empty. */
3296         } while (mem->res.usage > 0 || ret);
3297 out:
3298         css_put(&mem->css);
3299         return ret;
3300
3301 try_to_free:
3302         /* returns EBUSY if there is a task or if we come here twice. */
3303         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3304                 ret = -EBUSY;
3305                 goto out;
3306         }
3307         /* we call try-to-free pages for make this cgroup empty */
3308         lru_add_drain_all();
3309         /* try to free all pages in this cgroup */
3310         shrink = 1;
3311         while (nr_retries && mem->res.usage > 0) {
3312                 int progress;
3313
3314                 if (signal_pending(current)) {
3315                         ret = -EINTR;
3316                         goto out;
3317                 }
3318                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3319                                                 false, get_swappiness(mem));
3320                 if (!progress) {
3321                         nr_retries--;
3322                         /* maybe some writeback is necessary */
3323                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3324                 }
3325
3326         }
3327         lru_add_drain();
3328         /* try move_account...there may be some *locked* pages. */
3329         goto move_account;
3330 }
3331
3332 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3333 {
3334         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3335 }
3336
3337
3338 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3339 {
3340         return mem_cgroup_from_cont(cont)->use_hierarchy;
3341 }
3342
3343 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3344                                         u64 val)
3345 {
3346         int retval = 0;
3347         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3348         struct cgroup *parent = cont->parent;
3349         struct mem_cgroup *parent_mem = NULL;
3350
3351         if (parent)
3352                 parent_mem = mem_cgroup_from_cont(parent);
3353
3354         cgroup_lock();
3355         /*
3356          * If parent's use_hierarchy is set, we can't make any modifications
3357          * in the child subtrees. If it is unset, then the change can
3358          * occur, provided the current cgroup has no children.
3359          *
3360          * For the root cgroup, parent_mem is NULL, we allow value to be
3361          * set if there are no children.
3362          */
3363         if ((!parent_mem || !parent_mem->use_hierarchy) &&
3364                                 (val == 1 || val == 0)) {
3365                 if (list_empty(&cont->children))
3366                         mem->use_hierarchy = val;
3367                 else
3368                         retval = -EBUSY;
3369         } else
3370                 retval = -EINVAL;
3371         cgroup_unlock();
3372
3373         return retval;
3374 }
3375
3376
3377 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3378                                 enum mem_cgroup_stat_index idx)
3379 {
3380         struct mem_cgroup *iter;
3381         s64 val = 0;
3382
3383         /* each per cpu's value can be minus.Then, use s64 */
3384         for_each_mem_cgroup_tree(iter, mem)
3385                 val += mem_cgroup_read_stat(iter, idx);
3386
3387         if (val < 0) /* race ? */
3388                 val = 0;
3389         return val;
3390 }
3391
3392 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3393 {
3394         u64 val;
3395
3396         if (!mem_cgroup_is_root(mem)) {
3397                 if (!swap)
3398                         return res_counter_read_u64(&mem->res, RES_USAGE);
3399                 else
3400                         return res_counter_read_u64(&mem->memsw, RES_USAGE);
3401         }
3402
3403         val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3404         val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3405
3406         if (swap)
3407                 val += mem_cgroup_get_recursive_idx_stat(mem,
3408                                 MEM_CGROUP_STAT_SWAPOUT);
3409
3410         return val << PAGE_SHIFT;
3411 }
3412
3413 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3414 {
3415         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3416         u64 val;
3417         int type, name;
3418
3419         type = MEMFILE_TYPE(cft->private);
3420         name = MEMFILE_ATTR(cft->private);
3421         switch (type) {
3422         case _MEM:
3423                 if (name == RES_USAGE)
3424                         val = mem_cgroup_usage(mem, false);
3425                 else
3426                         val = res_counter_read_u64(&mem->res, name);
3427                 break;
3428         case _MEMSWAP:
3429                 if (name == RES_USAGE)
3430                         val = mem_cgroup_usage(mem, true);
3431                 else
3432                         val = res_counter_read_u64(&mem->memsw, name);
3433                 break;
3434         default:
3435                 BUG();
3436                 break;
3437         }
3438         return val;
3439 }
3440 /*
3441  * The user of this function is...
3442  * RES_LIMIT.
3443  */
3444 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3445                             const char *buffer)
3446 {
3447         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3448         int type, name;
3449         unsigned long long val;
3450         int ret;
3451
3452         type = MEMFILE_TYPE(cft->private);
3453         name = MEMFILE_ATTR(cft->private);
3454         switch (name) {
3455         case RES_LIMIT:
3456                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3457                         ret = -EINVAL;
3458                         break;
3459                 }
3460                 /* This function does all necessary parse...reuse it */
3461                 ret = res_counter_memparse_write_strategy(buffer, &val);
3462                 if (ret)
3463                         break;
3464                 if (type == _MEM)
3465                         ret = mem_cgroup_resize_limit(memcg, val);
3466                 else
3467                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3468                 break;
3469         case RES_SOFT_LIMIT:
3470                 ret = res_counter_memparse_write_strategy(buffer, &val);
3471                 if (ret)
3472                         break;
3473                 /*
3474                  * For memsw, soft limits are hard to implement in terms
3475                  * of semantics, for now, we support soft limits for
3476                  * control without swap
3477                  */
3478                 if (type == _MEM)
3479                         ret = res_counter_set_soft_limit(&memcg->res, val);
3480                 else
3481                         ret = -EINVAL;
3482                 break;
3483         default:
3484                 ret = -EINVAL; /* should be BUG() ? */
3485                 break;
3486         }
3487         return ret;
3488 }
3489
3490 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3491                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3492 {
3493         struct cgroup *cgroup;
3494         unsigned long long min_limit, min_memsw_limit, tmp;
3495
3496         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3497         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3498         cgroup = memcg->css.cgroup;
3499         if (!memcg->use_hierarchy)
3500                 goto out;
3501
3502         while (cgroup->parent) {
3503                 cgroup = cgroup->parent;
3504                 memcg = mem_cgroup_from_cont(cgroup);
3505                 if (!memcg->use_hierarchy)
3506                         break;
3507                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3508                 min_limit = min(min_limit, tmp);
3509                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3510                 min_memsw_limit = min(min_memsw_limit, tmp);
3511         }
3512 out:
3513         *mem_limit = min_limit;
3514         *memsw_limit = min_memsw_limit;
3515         return;
3516 }
3517
3518 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3519 {
3520         struct mem_cgroup *mem;
3521         int type, name;
3522
3523         mem = mem_cgroup_from_cont(cont);
3524         type = MEMFILE_TYPE(event);
3525         name = MEMFILE_ATTR(event);
3526         switch (name) {
3527         case RES_MAX_USAGE:
3528                 if (type == _MEM)
3529                         res_counter_reset_max(&mem->res);
3530                 else
3531                         res_counter_reset_max(&mem->memsw);
3532                 break;
3533         case RES_FAILCNT:
3534                 if (type == _MEM)
3535                         res_counter_reset_failcnt(&mem->res);
3536                 else
3537                         res_counter_reset_failcnt(&mem->memsw);
3538                 break;
3539         }
3540
3541         return 0;
3542 }
3543
3544 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3545                                         struct cftype *cft)
3546 {
3547         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3548 }
3549
3550 #ifdef CONFIG_MMU
3551 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3552                                         struct cftype *cft, u64 val)
3553 {
3554         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3555
3556         if (val >= (1 << NR_MOVE_TYPE))
3557                 return -EINVAL;
3558         /*
3559          * We check this value several times in both in can_attach() and
3560          * attach(), so we need cgroup lock to prevent this value from being
3561          * inconsistent.
3562          */
3563         cgroup_lock();
3564         mem->move_charge_at_immigrate = val;
3565         cgroup_unlock();
3566
3567         return 0;
3568 }
3569 #else
3570 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3571                                         struct cftype *cft, u64 val)
3572 {
3573         return -ENOSYS;
3574 }
3575 #endif
3576
3577
3578 /* For read statistics */
3579 enum {
3580         MCS_CACHE,
3581         MCS_RSS,
3582         MCS_FILE_MAPPED,
3583         MCS_PGPGIN,
3584         MCS_PGPGOUT,
3585         MCS_SWAP,
3586         MCS_INACTIVE_ANON,
3587         MCS_ACTIVE_ANON,
3588         MCS_INACTIVE_FILE,
3589         MCS_ACTIVE_FILE,
3590         MCS_UNEVICTABLE,
3591         NR_MCS_STAT,
3592 };
3593
3594 struct mcs_total_stat {
3595         s64 stat[NR_MCS_STAT];
3596 };
3597
3598 struct {
3599         char *local_name;
3600         char *total_name;
3601 } memcg_stat_strings[NR_MCS_STAT] = {
3602         {"cache", "total_cache"},
3603         {"rss", "total_rss"},
3604         {"mapped_file", "total_mapped_file"},
3605         {"pgpgin", "total_pgpgin"},
3606         {"pgpgout", "total_pgpgout"},
3607         {"swap", "total_swap"},
3608         {"inactive_anon", "total_inactive_anon"},
3609         {"active_anon", "total_active_anon"},
3610         {"inactive_file", "total_inactive_file"},
3611         {"active_file", "total_active_file"},
3612         {"unevictable", "total_unevictable"}
3613 };
3614
3615
3616 static void
3617 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3618 {
3619         s64 val;
3620
3621         /* per cpu stat */
3622         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3623         s->stat[MCS_CACHE] += val * PAGE_SIZE;
3624         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3625         s->stat[MCS_RSS] += val * PAGE_SIZE;
3626         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3627         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3628         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3629         s->stat[MCS_PGPGIN] += val;
3630         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3631         s->stat[MCS_PGPGOUT] += val;
3632         if (do_swap_account) {
3633                 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3634                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3635         }
3636
3637         /* per zone stat */
3638         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3639         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3640         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3641         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3642         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3643         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3644         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3645         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3646         val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3647         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3648 }
3649
3650 static void
3651 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3652 {
3653         struct mem_cgroup *iter;
3654
3655         for_each_mem_cgroup_tree(iter, mem)
3656                 mem_cgroup_get_local_stat(iter, s);
3657 }
3658
3659 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3660                                  struct cgroup_map_cb *cb)
3661 {
3662         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3663         struct mcs_total_stat mystat;
3664         int i;
3665
3666         memset(&mystat, 0, sizeof(mystat));
3667         mem_cgroup_get_local_stat(mem_cont, &mystat);
3668
3669         for (i = 0; i < NR_MCS_STAT; i++) {
3670                 if (i == MCS_SWAP && !do_swap_account)
3671                         continue;
3672                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3673         }
3674
3675         /* Hierarchical information */
3676         {
3677                 unsigned long long limit, memsw_limit;
3678                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3679                 cb->fill(cb, "hierarchical_memory_limit", limit);
3680                 if (do_swap_account)
3681                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3682         }
3683
3684         memset(&mystat, 0, sizeof(mystat));
3685         mem_cgroup_get_total_stat(mem_cont, &mystat);
3686         for (i = 0; i < NR_MCS_STAT; i++) {
3687                 if (i == MCS_SWAP && !do_swap_account)
3688                         continue;
3689                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3690         }
3691
3692 #ifdef CONFIG_DEBUG_VM
3693         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3694
3695         {
3696                 int nid, zid;
3697                 struct mem_cgroup_per_zone *mz;
3698                 unsigned long recent_rotated[2] = {0, 0};
3699                 unsigned long recent_scanned[2] = {0, 0};
3700
3701                 for_each_online_node(nid)
3702                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3703                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3704
3705                                 recent_rotated[0] +=
3706                                         mz->reclaim_stat.recent_rotated[0];
3707                                 recent_rotated[1] +=
3708                                         mz->reclaim_stat.recent_rotated[1];
3709                                 recent_scanned[0] +=
3710                                         mz->reclaim_stat.recent_scanned[0];
3711                                 recent_scanned[1] +=
3712                                         mz->reclaim_stat.recent_scanned[1];
3713                         }
3714                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3715                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3716                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3717                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3718         }
3719 #endif
3720
3721         return 0;
3722 }
3723
3724 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3725 {
3726         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3727
3728         return get_swappiness(memcg);
3729 }
3730
3731 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3732                                        u64 val)
3733 {
3734         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3735         struct mem_cgroup *parent;
3736
3737         if (val > 100)
3738                 return -EINVAL;
3739
3740         if (cgrp->parent == NULL)
3741                 return -EINVAL;
3742
3743         parent = mem_cgroup_from_cont(cgrp->parent);
3744
3745         cgroup_lock();
3746
3747         /* If under hierarchy, only empty-root can set this value */
3748         if ((parent->use_hierarchy) ||
3749             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3750                 cgroup_unlock();
3751                 return -EINVAL;
3752         }
3753
3754         spin_lock(&memcg->reclaim_param_lock);
3755         memcg->swappiness = val;
3756         spin_unlock(&memcg->reclaim_param_lock);
3757
3758         cgroup_unlock();
3759
3760         return 0;
3761 }
3762
3763 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3764 {
3765         struct mem_cgroup_threshold_ary *t;
3766         u64 usage;
3767         int i;
3768
3769         rcu_read_lock();
3770         if (!swap)
3771                 t = rcu_dereference(memcg->thresholds.primary);
3772         else
3773                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3774
3775         if (!t)
3776                 goto unlock;
3777
3778         usage = mem_cgroup_usage(memcg, swap);
3779
3780         /*
3781          * current_threshold points to threshold just below usage.
3782          * If it's not true, a threshold was crossed after last
3783          * call of __mem_cgroup_threshold().
3784          */
3785         i = t->current_threshold;
3786
3787         /*
3788          * Iterate backward over array of thresholds starting from
3789          * current_threshold and check if a threshold is crossed.
3790          * If none of thresholds below usage is crossed, we read
3791          * only one element of the array here.
3792          */
3793         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3794                 eventfd_signal(t->entries[i].eventfd, 1);
3795
3796         /* i = current_threshold + 1 */
3797         i++;
3798
3799         /*
3800          * Iterate forward over array of thresholds starting from
3801          * current_threshold+1 and check if a threshold is crossed.
3802          * If none of thresholds above usage is crossed, we read
3803          * only one element of the array here.
3804          */
3805         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3806                 eventfd_signal(t->entries[i].eventfd, 1);
3807
3808         /* Update current_threshold */
3809         t->current_threshold = i - 1;
3810 unlock:
3811         rcu_read_unlock();
3812 }
3813
3814 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3815 {
3816         while (memcg) {
3817                 __mem_cgroup_threshold(memcg, false);
3818                 if (do_swap_account)
3819                         __mem_cgroup_threshold(memcg, true);
3820
3821                 memcg = parent_mem_cgroup(memcg);
3822         }
3823 }
3824
3825 static int compare_thresholds(const void *a, const void *b)
3826 {
3827         const struct mem_cgroup_threshold *_a = a;
3828         const struct mem_cgroup_threshold *_b = b;
3829
3830         return _a->threshold - _b->threshold;
3831 }
3832
3833 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3834 {
3835         struct mem_cgroup_eventfd_list *ev;
3836
3837         list_for_each_entry(ev, &mem->oom_notify, list)
3838                 eventfd_signal(ev->eventfd, 1);
3839         return 0;
3840 }
3841
3842 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3843 {
3844         struct mem_cgroup *iter;
3845
3846         for_each_mem_cgroup_tree(iter, mem)
3847                 mem_cgroup_oom_notify_cb(iter);
3848 }
3849
3850 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3851         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3852 {
3853         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3854         struct mem_cgroup_thresholds *thresholds;
3855         struct mem_cgroup_threshold_ary *new;
3856         int type = MEMFILE_TYPE(cft->private);
3857         u64 threshold, usage;
3858         int i, size, ret;
3859
3860         ret = res_counter_memparse_write_strategy(args, &threshold);
3861         if (ret)
3862                 return ret;
3863
3864         mutex_lock(&memcg->thresholds_lock);
3865
3866         if (type == _MEM)
3867                 thresholds = &memcg->thresholds;
3868         else if (type == _MEMSWAP)
3869                 thresholds = &memcg->memsw_thresholds;
3870         else
3871                 BUG();
3872
3873         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3874
3875         /* Check if a threshold crossed before adding a new one */
3876         if (thresholds->primary)
3877                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3878
3879         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3880
3881         /* Allocate memory for new array of thresholds */
3882         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3883                         GFP_KERNEL);
3884         if (!new) {
3885                 ret = -ENOMEM;
3886                 goto unlock;
3887         }
3888         new->size = size;
3889
3890         /* Copy thresholds (if any) to new array */
3891         if (thresholds->primary) {
3892                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3893                                 sizeof(struct mem_cgroup_threshold));
3894         }
3895
3896         /* Add new threshold */
3897         new->entries[size - 1].eventfd = eventfd;
3898         new->entries[size - 1].threshold = threshold;
3899
3900         /* Sort thresholds. Registering of new threshold isn't time-critical */
3901         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3902                         compare_thresholds, NULL);
3903
3904         /* Find current threshold */
3905         new->current_threshold = -1;
3906         for (i = 0; i < size; i++) {
3907                 if (new->entries[i].threshold < usage) {
3908                         /*
3909                          * new->current_threshold will not be used until
3910                          * rcu_assign_pointer(), so it's safe to increment
3911                          * it here.
3912                          */
3913                         ++new->current_threshold;
3914                 }
3915         }
3916
3917         /* Free old spare buffer and save old primary buffer as spare */
3918         kfree(thresholds->spare);
3919         thresholds->spare = thresholds->primary;
3920
3921         rcu_assign_pointer(thresholds->primary, new);
3922
3923         /* To be sure that nobody uses thresholds */
3924         synchronize_rcu();
3925
3926 unlock:
3927         mutex_unlock(&memcg->thresholds_lock);
3928
3929         return ret;
3930 }
3931
3932 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3933         struct cftype *cft, struct eventfd_ctx *eventfd)
3934 {
3935         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3936         struct mem_cgroup_thresholds *thresholds;
3937         struct mem_cgroup_threshold_ary *new;
3938         int type = MEMFILE_TYPE(cft->private);
3939         u64 usage;
3940         int i, j, size;
3941
3942         mutex_lock(&memcg->thresholds_lock);
3943         if (type == _MEM)
3944                 thresholds = &memcg->thresholds;
3945         else if (type == _MEMSWAP)
3946                 thresholds = &memcg->memsw_thresholds;
3947         else
3948                 BUG();
3949
3950         /*
3951          * Something went wrong if we trying to unregister a threshold
3952          * if we don't have thresholds
3953          */
3954         BUG_ON(!thresholds);
3955
3956         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3957
3958         /* Check if a threshold crossed before removing */
3959         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3960
3961         /* Calculate new number of threshold */
3962         size = 0;
3963         for (i = 0; i < thresholds->primary->size; i++) {
3964                 if (thresholds->primary->entries[i].eventfd != eventfd)
3965                         size++;
3966         }
3967
3968         new = thresholds->spare;
3969
3970         /* Set thresholds array to NULL if we don't have thresholds */
3971         if (!size) {
3972                 kfree(new);
3973                 new = NULL;
3974                 goto swap_buffers;
3975         }
3976
3977         new->size = size;
3978
3979         /* Copy thresholds and find current threshold */
3980         new->current_threshold = -1;
3981         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3982                 if (thresholds->primary->entries[i].eventfd == eventfd)
3983                         continue;
3984
3985                 new->entries[j] = thresholds->primary->entries[i];
3986                 if (new->entries[j].threshold < usage) {
3987                         /*
3988                          * new->current_threshold will not be used
3989                          * until rcu_assign_pointer(), so it's safe to increment
3990                          * it here.
3991                          */
3992                         ++new->current_threshold;
3993                 }
3994                 j++;
3995         }
3996
3997 swap_buffers:
3998         /* Swap primary and spare array */
3999         thresholds->spare = thresholds->primary;
4000         rcu_assign_pointer(thresholds->primary, new);
4001
4002         /* To be sure that nobody uses thresholds */
4003         synchronize_rcu();
4004
4005         mutex_unlock(&memcg->thresholds_lock);
4006 }
4007
4008 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4009         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4010 {
4011         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4012         struct mem_cgroup_eventfd_list *event;
4013         int type = MEMFILE_TYPE(cft->private);
4014
4015         BUG_ON(type != _OOM_TYPE);
4016         event = kmalloc(sizeof(*event), GFP_KERNEL);
4017         if (!event)
4018                 return -ENOMEM;
4019
4020         mutex_lock(&memcg_oom_mutex);
4021
4022         event->eventfd = eventfd;
4023         list_add(&event->list, &memcg->oom_notify);
4024
4025         /* already in OOM ? */
4026         if (atomic_read(&memcg->oom_lock))
4027                 eventfd_signal(eventfd, 1);
4028         mutex_unlock(&memcg_oom_mutex);
4029
4030         return 0;
4031 }
4032
4033 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4034         struct cftype *cft, struct eventfd_ctx *eventfd)
4035 {
4036         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4037         struct mem_cgroup_eventfd_list *ev, *tmp;
4038         int type = MEMFILE_TYPE(cft->private);
4039
4040         BUG_ON(type != _OOM_TYPE);
4041
4042         mutex_lock(&memcg_oom_mutex);
4043
4044         list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4045                 if (ev->eventfd == eventfd) {
4046                         list_del(&ev->list);
4047                         kfree(ev);
4048                 }
4049         }
4050
4051         mutex_unlock(&memcg_oom_mutex);
4052 }
4053
4054 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4055         struct cftype *cft,  struct cgroup_map_cb *cb)
4056 {
4057         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4058
4059         cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4060
4061         if (atomic_read(&mem->oom_lock))
4062                 cb->fill(cb, "under_oom", 1);
4063         else
4064                 cb->fill(cb, "under_oom", 0);
4065         return 0;
4066 }
4067
4068 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4069         struct cftype *cft, u64 val)
4070 {
4071         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4072         struct mem_cgroup *parent;
4073
4074         /* cannot set to root cgroup and only 0 and 1 are allowed */
4075         if (!cgrp->parent || !((val == 0) || (val == 1)))
4076                 return -EINVAL;
4077
4078         parent = mem_cgroup_from_cont(cgrp->parent);
4079
4080         cgroup_lock();
4081         /* oom-kill-disable is a flag for subhierarchy. */
4082         if ((parent->use_hierarchy) ||
4083             (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4084                 cgroup_unlock();
4085                 return -EINVAL;
4086         }
4087         mem->oom_kill_disable = val;
4088         if (!val)
4089                 memcg_oom_recover(mem);
4090         cgroup_unlock();
4091         return 0;
4092 }
4093
4094 static struct cftype mem_cgroup_files[] = {
4095         {
4096                 .name = "usage_in_bytes",
4097                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4098                 .read_u64 = mem_cgroup_read,
4099                 .register_event = mem_cgroup_usage_register_event,
4100                 .unregister_event = mem_cgroup_usage_unregister_event,
4101         },
4102         {
4103                 .name = "max_usage_in_bytes",
4104                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4105                 .trigger = mem_cgroup_reset,
4106                 .read_u64 = mem_cgroup_read,
4107         },
4108         {
4109                 .name = "limit_in_bytes",
4110                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4111                 .write_string = mem_cgroup_write,
4112                 .read_u64 = mem_cgroup_read,
4113         },
4114         {
4115                 .name = "soft_limit_in_bytes",
4116                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4117                 .write_string = mem_cgroup_write,
4118                 .read_u64 = mem_cgroup_read,
4119         },
4120         {
4121                 .name = "failcnt",
4122                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4123                 .trigger = mem_cgroup_reset,
4124                 .read_u64 = mem_cgroup_read,
4125         },
4126         {
4127                 .name = "stat",
4128                 .read_map = mem_control_stat_show,
4129         },
4130         {
4131                 .name = "force_empty",
4132                 .trigger = mem_cgroup_force_empty_write,
4133         },
4134         {
4135                 .name = "use_hierarchy",
4136                 .write_u64 = mem_cgroup_hierarchy_write,
4137                 .read_u64 = mem_cgroup_hierarchy_read,
4138         },
4139         {
4140                 .name = "swappiness",
4141                 .read_u64 = mem_cgroup_swappiness_read,
4142                 .write_u64 = mem_cgroup_swappiness_write,
4143         },
4144         {
4145                 .name = "move_charge_at_immigrate",
4146                 .read_u64 = mem_cgroup_move_charge_read,
4147                 .write_u64 = mem_cgroup_move_charge_write,
4148         },
4149         {
4150                 .name = "oom_control",
4151                 .read_map = mem_cgroup_oom_control_read,
4152                 .write_u64 = mem_cgroup_oom_control_write,
4153                 .register_event = mem_cgroup_oom_register_event,
4154                 .unregister_event = mem_cgroup_oom_unregister_event,
4155                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4156         },
4157 };
4158
4159 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4160 static struct cftype memsw_cgroup_files[] = {
4161         {
4162                 .name = "memsw.usage_in_bytes",
4163                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4164                 .read_u64 = mem_cgroup_read,
4165                 .register_event = mem_cgroup_usage_register_event,
4166                 .unregister_event = mem_cgroup_usage_unregister_event,
4167         },
4168         {
4169                 .name = "memsw.max_usage_in_bytes",
4170                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4171                 .trigger = mem_cgroup_reset,
4172                 .read_u64 = mem_cgroup_read,
4173         },
4174         {
4175                 .name = "memsw.limit_in_bytes",
4176                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4177                 .write_string = mem_cgroup_write,
4178                 .read_u64 = mem_cgroup_read,
4179         },
4180         {
4181                 .name = "memsw.failcnt",
4182                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4183                 .trigger = mem_cgroup_reset,
4184                 .read_u64 = mem_cgroup_read,
4185         },
4186 };
4187
4188 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4189 {
4190         if (!do_swap_account)
4191                 return 0;
4192         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4193                                 ARRAY_SIZE(memsw_cgroup_files));
4194 };
4195 #else
4196 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4197 {
4198         return 0;
4199 }
4200 #endif
4201
4202 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4203 {
4204         struct mem_cgroup_per_node *pn;
4205         struct mem_cgroup_per_zone *mz;
4206         enum lru_list l;
4207         int zone, tmp = node;
4208         /*
4209          * This routine is called against possible nodes.
4210          * But it's BUG to call kmalloc() against offline node.
4211          *
4212          * TODO: this routine can waste much memory for nodes which will
4213          *       never be onlined. It's better to use memory hotplug callback
4214          *       function.
4215          */
4216         if (!node_state(node, N_NORMAL_MEMORY))
4217                 tmp = -1;
4218         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4219         if (!pn)
4220                 return 1;
4221
4222         mem->info.nodeinfo[node] = pn;
4223         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4224                 mz = &pn->zoneinfo[zone];
4225                 for_each_lru(l)
4226                         INIT_LIST_HEAD(&mz->lists[l]);
4227                 mz->usage_in_excess = 0;
4228                 mz->on_tree = false;
4229                 mz->mem = mem;
4230         }
4231         return 0;
4232 }
4233
4234 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4235 {
4236         kfree(mem->info.nodeinfo[node]);
4237 }
4238
4239 static struct mem_cgroup *mem_cgroup_alloc(void)
4240 {
4241         struct mem_cgroup *mem;
4242         int size = sizeof(struct mem_cgroup);
4243
4244         /* Can be very big if MAX_NUMNODES is very big */
4245         if (size < PAGE_SIZE)
4246                 mem = kzalloc(size, GFP_KERNEL);
4247         else
4248                 mem = vzalloc(size);
4249
4250         if (!mem)
4251                 return NULL;
4252
4253         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4254         if (!mem->stat)
4255                 goto out_free;
4256         spin_lock_init(&mem->pcp_counter_lock);
4257         return mem;
4258
4259 out_free:
4260         if (size < PAGE_SIZE)
4261                 kfree(mem);
4262         else
4263                 vfree(mem);
4264         return NULL;
4265 }
4266
4267 /*
4268  * At destroying mem_cgroup, references from swap_cgroup can remain.
4269  * (scanning all at force_empty is too costly...)
4270  *
4271  * Instead of clearing all references at force_empty, we remember
4272  * the number of reference from swap_cgroup and free mem_cgroup when
4273  * it goes down to 0.
4274  *
4275  * Removal of cgroup itself succeeds regardless of refs from swap.
4276  */
4277
4278 static void __mem_cgroup_free(struct mem_cgroup *mem)
4279 {
4280         int node;
4281
4282         mem_cgroup_remove_from_trees(mem);
4283         free_css_id(&mem_cgroup_subsys, &mem->css);
4284
4285         for_each_node_state(node, N_POSSIBLE)
4286                 free_mem_cgroup_per_zone_info(mem, node);
4287
4288         free_percpu(mem->stat);
4289         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4290                 kfree(mem);
4291         else
4292                 vfree(mem);
4293 }
4294
4295 static void mem_cgroup_get(struct mem_cgroup *mem)
4296 {
4297         atomic_inc(&mem->refcnt);
4298 }
4299
4300 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4301 {
4302         if (atomic_sub_and_test(count, &mem->refcnt)) {
4303                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4304                 __mem_cgroup_free(mem);
4305                 if (parent)
4306                         mem_cgroup_put(parent);
4307         }
4308 }
4309
4310 static void mem_cgroup_put(struct mem_cgroup *mem)
4311 {
4312         __mem_cgroup_put(mem, 1);
4313 }
4314
4315 /*
4316  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4317  */
4318 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4319 {
4320         if (!mem->res.parent)
4321                 return NULL;
4322         return mem_cgroup_from_res_counter(mem->res.parent, res);
4323 }
4324
4325 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4326 static void __init enable_swap_cgroup(void)
4327 {
4328         if (!mem_cgroup_disabled() && really_do_swap_account)
4329                 do_swap_account = 1;
4330 }
4331 #else
4332 static void __init enable_swap_cgroup(void)
4333 {
4334 }
4335 #endif
4336
4337 static int mem_cgroup_soft_limit_tree_init(void)
4338 {
4339         struct mem_cgroup_tree_per_node *rtpn;
4340         struct mem_cgroup_tree_per_zone *rtpz;
4341         int tmp, node, zone;
4342
4343         for_each_node_state(node, N_POSSIBLE) {
4344                 tmp = node;
4345                 if (!node_state(node, N_NORMAL_MEMORY))
4346                         tmp = -1;
4347                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4348                 if (!rtpn)
4349                         return 1;
4350
4351                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4352
4353                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4354                         rtpz = &rtpn->rb_tree_per_zone[zone];
4355                         rtpz->rb_root = RB_ROOT;
4356                         spin_lock_init(&rtpz->lock);
4357                 }
4358         }
4359         return 0;
4360 }
4361
4362 static struct cgroup_subsys_state * __ref
4363 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4364 {
4365         struct mem_cgroup *mem, *parent;
4366         long error = -ENOMEM;
4367         int node;
4368
4369         mem = mem_cgroup_alloc();
4370         if (!mem)
4371                 return ERR_PTR(error);
4372
4373         for_each_node_state(node, N_POSSIBLE)
4374                 if (alloc_mem_cgroup_per_zone_info(mem, node))
4375                         goto free_out;
4376
4377         /* root ? */
4378         if (cont->parent == NULL) {
4379                 int cpu;
4380                 enable_swap_cgroup();
4381                 parent = NULL;
4382                 root_mem_cgroup = mem;
4383                 if (mem_cgroup_soft_limit_tree_init())
4384                         goto free_out;
4385                 for_each_possible_cpu(cpu) {
4386                         struct memcg_stock_pcp *stock =
4387                                                 &per_cpu(memcg_stock, cpu);
4388                         INIT_WORK(&stock->work, drain_local_stock);
4389                 }
4390                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4391         } else {
4392                 parent = mem_cgroup_from_cont(cont->parent);
4393                 mem->use_hierarchy = parent->use_hierarchy;
4394                 mem->oom_kill_disable = parent->oom_kill_disable;
4395         }
4396
4397         if (parent && parent->use_hierarchy) {
4398                 res_counter_init(&mem->res, &parent->res);
4399                 res_counter_init(&mem->memsw, &parent->memsw);
4400                 /*
4401                  * We increment refcnt of the parent to ensure that we can
4402                  * safely access it on res_counter_charge/uncharge.
4403                  * This refcnt will be decremented when freeing this
4404                  * mem_cgroup(see mem_cgroup_put).
4405                  */
4406                 mem_cgroup_get(parent);
4407         } else {
4408                 res_counter_init(&mem->res, NULL);
4409                 res_counter_init(&mem->memsw, NULL);
4410         }
4411         mem->last_scanned_child = 0;
4412         spin_lock_init(&mem->reclaim_param_lock);
4413         INIT_LIST_HEAD(&mem->oom_notify);
4414
4415         if (parent)
4416                 mem->swappiness = get_swappiness(parent);
4417         atomic_set(&mem->refcnt, 1);
4418         mem->move_charge_at_immigrate = 0;
4419         mutex_init(&mem->thresholds_lock);
4420         return &mem->css;
4421 free_out:
4422         __mem_cgroup_free(mem);
4423         root_mem_cgroup = NULL;
4424         return ERR_PTR(error);
4425 }
4426
4427 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4428                                         struct cgroup *cont)
4429 {
4430         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4431
4432         return mem_cgroup_force_empty(mem, false);
4433 }
4434
4435 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4436                                 struct cgroup *cont)
4437 {
4438         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4439
4440         mem_cgroup_put(mem);
4441 }
4442
4443 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4444                                 struct cgroup *cont)
4445 {
4446         int ret;
4447
4448         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4449                                 ARRAY_SIZE(mem_cgroup_files));
4450
4451         if (!ret)
4452                 ret = register_memsw_files(cont, ss);
4453         return ret;
4454 }
4455
4456 #ifdef CONFIG_MMU
4457 /* Handlers for move charge at task migration. */
4458 #define PRECHARGE_COUNT_AT_ONCE 256
4459 static int mem_cgroup_do_precharge(unsigned long count)
4460 {
4461         int ret = 0;
4462         int batch_count = PRECHARGE_COUNT_AT_ONCE;
4463         struct mem_cgroup *mem = mc.to;
4464
4465         if (mem_cgroup_is_root(mem)) {
4466                 mc.precharge += count;
4467                 /* we don't need css_get for root */
4468                 return ret;
4469         }
4470         /* try to charge at once */
4471         if (count > 1) {
4472                 struct res_counter *dummy;
4473                 /*
4474                  * "mem" cannot be under rmdir() because we've already checked
4475                  * by cgroup_lock_live_cgroup() that it is not removed and we
4476                  * are still under the same cgroup_mutex. So we can postpone
4477                  * css_get().
4478                  */
4479                 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4480                         goto one_by_one;
4481                 if (do_swap_account && res_counter_charge(&mem->memsw,
4482                                                 PAGE_SIZE * count, &dummy)) {
4483                         res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4484                         goto one_by_one;
4485                 }
4486                 mc.precharge += count;
4487                 return ret;
4488         }
4489 one_by_one:
4490         /* fall back to one by one charge */
4491         while (count--) {
4492                 if (signal_pending(current)) {
4493                         ret = -EINTR;
4494                         break;
4495                 }
4496                 if (!batch_count--) {
4497                         batch_count = PRECHARGE_COUNT_AT_ONCE;
4498                         cond_resched();
4499                 }
4500                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4501                                               PAGE_SIZE);
4502                 if (ret || !mem)
4503                         /* mem_cgroup_clear_mc() will do uncharge later */
4504                         return -ENOMEM;
4505                 mc.precharge++;
4506         }
4507         return ret;
4508 }
4509
4510 /**
4511  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4512  * @vma: the vma the pte to be checked belongs
4513  * @addr: the address corresponding to the pte to be checked
4514  * @ptent: the pte to be checked
4515  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4516  *
4517  * Returns
4518  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4519  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4520  *     move charge. if @target is not NULL, the page is stored in target->page
4521  *     with extra refcnt got(Callers should handle it).
4522  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4523  *     target for charge migration. if @target is not NULL, the entry is stored
4524  *     in target->ent.
4525  *
4526  * Called with pte lock held.
4527  */
4528 union mc_target {
4529         struct page     *page;
4530         swp_entry_t     ent;
4531 };
4532
4533 enum mc_target_type {
4534         MC_TARGET_NONE, /* not used */
4535         MC_TARGET_PAGE,
4536         MC_TARGET_SWAP,
4537 };
4538
4539 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4540                                                 unsigned long addr, pte_t ptent)
4541 {
4542         struct page *page = vm_normal_page(vma, addr, ptent);
4543
4544         if (!page || !page_mapped(page))
4545                 return NULL;
4546         if (PageAnon(page)) {
4547                 /* we don't move shared anon */
4548                 if (!move_anon() || page_mapcount(page) > 2)
4549                         return NULL;
4550         } else if (!move_file())
4551                 /* we ignore mapcount for file pages */
4552                 return NULL;
4553         if (!get_page_unless_zero(page))
4554                 return NULL;
4555
4556         return page;
4557 }
4558
4559 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4560                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4561 {
4562         int usage_count;
4563         struct page *page = NULL;
4564         swp_entry_t ent = pte_to_swp_entry(ptent);
4565
4566         if (!move_anon() || non_swap_entry(ent))
4567                 return NULL;
4568         usage_count = mem_cgroup_count_swap_user(ent, &page);
4569         if (usage_count > 1) { /* we don't move shared anon */
4570                 if (page)
4571                         put_page(page);
4572                 return NULL;
4573         }
4574         if (do_swap_account)
4575                 entry->val = ent.val;
4576
4577         return page;
4578 }
4579
4580 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4581                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4582 {
4583         struct page *page = NULL;
4584         struct inode *inode;
4585         struct address_space *mapping;
4586         pgoff_t pgoff;
4587
4588         if (!vma->vm_file) /* anonymous vma */
4589                 return NULL;
4590         if (!move_file())
4591                 return NULL;
4592
4593         inode = vma->vm_file->f_path.dentry->d_inode;
4594         mapping = vma->vm_file->f_mapping;
4595         if (pte_none(ptent))
4596                 pgoff = linear_page_index(vma, addr);
4597         else /* pte_file(ptent) is true */
4598                 pgoff = pte_to_pgoff(ptent);
4599
4600         /* page is moved even if it's not RSS of this task(page-faulted). */
4601         if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4602                 page = find_get_page(mapping, pgoff);
4603         } else { /* shmem/tmpfs file. we should take account of swap too. */
4604                 swp_entry_t ent;
4605                 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4606                 if (do_swap_account)
4607                         entry->val = ent.val;
4608         }
4609
4610         return page;
4611 }
4612
4613 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4614                 unsigned long addr, pte_t ptent, union mc_target *target)
4615 {
4616         struct page *page = NULL;
4617         struct page_cgroup *pc;
4618         int ret = 0;
4619         swp_entry_t ent = { .val = 0 };
4620
4621         if (pte_present(ptent))
4622                 page = mc_handle_present_pte(vma, addr, ptent);
4623         else if (is_swap_pte(ptent))
4624                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4625         else if (pte_none(ptent) || pte_file(ptent))
4626                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4627
4628         if (!page && !ent.val)
4629                 return 0;
4630         if (page) {
4631                 pc = lookup_page_cgroup(page);
4632                 /*
4633                  * Do only loose check w/o page_cgroup lock.
4634                  * mem_cgroup_move_account() checks the pc is valid or not under
4635                  * the lock.
4636                  */
4637                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4638                         ret = MC_TARGET_PAGE;
4639                         if (target)
4640                                 target->page = page;
4641                 }
4642                 if (!ret || !target)
4643                         put_page(page);
4644         }
4645         /* There is a swap entry and a page doesn't exist or isn't charged */
4646         if (ent.val && !ret &&
4647                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4648                 ret = MC_TARGET_SWAP;
4649                 if (target)
4650                         target->ent = ent;
4651         }
4652         return ret;
4653 }
4654
4655 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4656                                         unsigned long addr, unsigned long end,
4657                                         struct mm_walk *walk)
4658 {
4659         struct vm_area_struct *vma = walk->private;
4660         pte_t *pte;
4661         spinlock_t *ptl;
4662
4663         VM_BUG_ON(pmd_trans_huge(*pmd));
4664         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4665         for (; addr != end; pte++, addr += PAGE_SIZE)
4666                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4667                         mc.precharge++; /* increment precharge temporarily */
4668         pte_unmap_unlock(pte - 1, ptl);
4669         cond_resched();
4670
4671         return 0;
4672 }
4673
4674 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4675 {
4676         unsigned long precharge;
4677         struct vm_area_struct *vma;
4678
4679         down_read(&mm->mmap_sem);
4680         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4681                 struct mm_walk mem_cgroup_count_precharge_walk = {
4682                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
4683                         .mm = mm,
4684                         .private = vma,
4685                 };
4686                 if (is_vm_hugetlb_page(vma))
4687                         continue;
4688                 walk_page_range(vma->vm_start, vma->vm_end,
4689                                         &mem_cgroup_count_precharge_walk);
4690         }
4691         up_read(&mm->mmap_sem);
4692
4693         precharge = mc.precharge;
4694         mc.precharge = 0;
4695
4696         return precharge;
4697 }
4698
4699 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4700 {
4701         unsigned long precharge = mem_cgroup_count_precharge(mm);
4702
4703         VM_BUG_ON(mc.moving_task);
4704         mc.moving_task = current;
4705         return mem_cgroup_do_precharge(precharge);
4706 }
4707
4708 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4709 static void __mem_cgroup_clear_mc(void)
4710 {
4711         struct mem_cgroup *from = mc.from;
4712         struct mem_cgroup *to = mc.to;
4713
4714         /* we must uncharge all the leftover precharges from mc.to */
4715         if (mc.precharge) {
4716                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4717                 mc.precharge = 0;
4718         }
4719         /*
4720          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4721          * we must uncharge here.
4722          */
4723         if (mc.moved_charge) {
4724                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4725                 mc.moved_charge = 0;
4726         }
4727         /* we must fixup refcnts and charges */
4728         if (mc.moved_swap) {
4729                 /* uncharge swap account from the old cgroup */
4730                 if (!mem_cgroup_is_root(mc.from))
4731                         res_counter_uncharge(&mc.from->memsw,
4732                                                 PAGE_SIZE * mc.moved_swap);
4733                 __mem_cgroup_put(mc.from, mc.moved_swap);
4734
4735                 if (!mem_cgroup_is_root(mc.to)) {
4736                         /*
4737                          * we charged both to->res and to->memsw, so we should
4738                          * uncharge to->res.
4739                          */
4740                         res_counter_uncharge(&mc.to->res,
4741                                                 PAGE_SIZE * mc.moved_swap);
4742                 }
4743                 /* we've already done mem_cgroup_get(mc.to) */
4744                 mc.moved_swap = 0;
4745         }
4746         memcg_oom_recover(from);
4747         memcg_oom_recover(to);
4748         wake_up_all(&mc.waitq);
4749 }
4750
4751 static void mem_cgroup_clear_mc(void)
4752 {
4753         struct mem_cgroup *from = mc.from;
4754
4755         /*
4756          * we must clear moving_task before waking up waiters at the end of
4757          * task migration.
4758          */
4759         mc.moving_task = NULL;
4760         __mem_cgroup_clear_mc();
4761         spin_lock(&mc.lock);
4762         mc.from = NULL;
4763         mc.to = NULL;
4764         spin_unlock(&mc.lock);
4765         mem_cgroup_end_move(from);
4766 }
4767
4768 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4769                                 struct cgroup *cgroup,
4770                                 struct task_struct *p,
4771                                 bool threadgroup)
4772 {
4773         int ret = 0;
4774         struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4775
4776         if (mem->move_charge_at_immigrate) {
4777                 struct mm_struct *mm;
4778                 struct mem_cgroup *from = mem_cgroup_from_task(p);
4779
4780                 VM_BUG_ON(from == mem);
4781
4782                 mm = get_task_mm(p);
4783                 if (!mm)
4784                         return 0;
4785                 /* We move charges only when we move a owner of the mm */
4786                 if (mm->owner == p) {
4787                         VM_BUG_ON(mc.from);
4788                         VM_BUG_ON(mc.to);
4789                         VM_BUG_ON(mc.precharge);
4790                         VM_BUG_ON(mc.moved_charge);
4791                         VM_BUG_ON(mc.moved_swap);
4792                         mem_cgroup_start_move(from);
4793                         spin_lock(&mc.lock);
4794                         mc.from = from;
4795                         mc.to = mem;
4796                         spin_unlock(&mc.lock);
4797                         /* We set mc.moving_task later */
4798
4799                         ret = mem_cgroup_precharge_mc(mm);
4800                         if (ret)
4801                                 mem_cgroup_clear_mc();
4802                 }
4803                 mmput(mm);
4804         }
4805         return ret;
4806 }
4807
4808 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4809                                 struct cgroup *cgroup,
4810                                 struct task_struct *p,
4811                                 bool threadgroup)
4812 {
4813         mem_cgroup_clear_mc();
4814 }
4815
4816 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4817                                 unsigned long addr, unsigned long end,
4818                                 struct mm_walk *walk)
4819 {
4820         int ret = 0;
4821         struct vm_area_struct *vma = walk->private;
4822         pte_t *pte;
4823         spinlock_t *ptl;
4824
4825 retry:
4826         VM_BUG_ON(pmd_trans_huge(*pmd));
4827         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4828         for (; addr != end; addr += PAGE_SIZE) {
4829                 pte_t ptent = *(pte++);
4830                 union mc_target target;
4831                 int type;
4832                 struct page *page;
4833                 struct page_cgroup *pc;
4834                 swp_entry_t ent;
4835
4836                 if (!mc.precharge)
4837                         break;
4838
4839                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4840                 switch (type) {
4841                 case MC_TARGET_PAGE:
4842                         page = target.page;
4843                         if (isolate_lru_page(page))
4844                                 goto put;
4845                         pc = lookup_page_cgroup(page);
4846                         if (!mem_cgroup_move_account(pc,
4847                                                 mc.from, mc.to, false)) {
4848                                 mc.precharge--;
4849                                 /* we uncharge from mc.from later. */
4850                                 mc.moved_charge++;
4851                         }
4852                         putback_lru_page(page);
4853 put:                    /* is_target_pte_for_mc() gets the page */
4854                         put_page(page);
4855                         break;
4856                 case MC_TARGET_SWAP:
4857                         ent = target.ent;
4858                         if (!mem_cgroup_move_swap_account(ent,
4859                                                 mc.from, mc.to, false)) {
4860                                 mc.precharge--;
4861                                 /* we fixup refcnts and charges later. */
4862                                 mc.moved_swap++;
4863                         }
4864                         break;
4865                 default:
4866                         break;
4867                 }
4868         }
4869         pte_unmap_unlock(pte - 1, ptl);
4870         cond_resched();
4871
4872         if (addr != end) {
4873                 /*
4874                  * We have consumed all precharges we got in can_attach().
4875                  * We try charge one by one, but don't do any additional
4876                  * charges to mc.to if we have failed in charge once in attach()
4877                  * phase.
4878                  */
4879                 ret = mem_cgroup_do_precharge(1);
4880                 if (!ret)
4881                         goto retry;
4882         }
4883
4884         return ret;
4885 }
4886
4887 static void mem_cgroup_move_charge(struct mm_struct *mm)
4888 {
4889         struct vm_area_struct *vma;
4890
4891         lru_add_drain_all();
4892 retry:
4893         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4894                 /*
4895                  * Someone who are holding the mmap_sem might be waiting in
4896                  * waitq. So we cancel all extra charges, wake up all waiters,
4897                  * and retry. Because we cancel precharges, we might not be able
4898                  * to move enough charges, but moving charge is a best-effort
4899                  * feature anyway, so it wouldn't be a big problem.
4900                  */
4901                 __mem_cgroup_clear_mc();
4902                 cond_resched();
4903                 goto retry;
4904         }
4905         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4906                 int ret;
4907                 struct mm_walk mem_cgroup_move_charge_walk = {
4908                         .pmd_entry = mem_cgroup_move_charge_pte_range,
4909                         .mm = mm,
4910                         .private = vma,
4911                 };
4912                 if (is_vm_hugetlb_page(vma))
4913                         continue;
4914                 ret = walk_page_range(vma->vm_start, vma->vm_end,
4915                                                 &mem_cgroup_move_charge_walk);
4916                 if (ret)
4917                         /*
4918                          * means we have consumed all precharges and failed in
4919                          * doing additional charge. Just abandon here.
4920                          */
4921                         break;
4922         }
4923         up_read(&mm->mmap_sem);
4924 }
4925
4926 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4927                                 struct cgroup *cont,
4928                                 struct cgroup *old_cont,
4929                                 struct task_struct *p,
4930                                 bool threadgroup)
4931 {
4932         struct mm_struct *mm;
4933
4934         if (!mc.to)
4935                 /* no need to move charge */
4936                 return;
4937
4938         mm = get_task_mm(p);
4939         if (mm) {
4940                 mem_cgroup_move_charge(mm);
4941                 mmput(mm);
4942         }
4943         mem_cgroup_clear_mc();
4944 }
4945 #else   /* !CONFIG_MMU */
4946 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4947                                 struct cgroup *cgroup,
4948                                 struct task_struct *p,
4949                                 bool threadgroup)
4950 {
4951         return 0;
4952 }
4953 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4954                                 struct cgroup *cgroup,
4955                                 struct task_struct *p,
4956                                 bool threadgroup)
4957 {
4958 }
4959 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4960                                 struct cgroup *cont,
4961                                 struct cgroup *old_cont,
4962                                 struct task_struct *p,
4963                                 bool threadgroup)
4964 {
4965 }
4966 #endif
4967
4968 struct cgroup_subsys mem_cgroup_subsys = {
4969         .name = "memory",
4970         .subsys_id = mem_cgroup_subsys_id,
4971         .create = mem_cgroup_create,
4972         .pre_destroy = mem_cgroup_pre_destroy,
4973         .destroy = mem_cgroup_destroy,
4974         .populate = mem_cgroup_populate,
4975         .can_attach = mem_cgroup_can_attach,
4976         .cancel_attach = mem_cgroup_cancel_attach,
4977         .attach = mem_cgroup_move_task,
4978         .early_init = 0,
4979         .use_id = 1,
4980 };
4981
4982 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4983 static int __init enable_swap_account(char *s)
4984 {
4985         /* consider enabled if no parameter or 1 is given */
4986         if (!s || !strcmp(s, "1"))
4987                 really_do_swap_account = 1;
4988         else if (!strcmp(s, "0"))
4989                 really_do_swap_account = 0;
4990         return 1;
4991 }
4992 __setup("swapaccount", enable_swap_account);
4993
4994 static int __init disable_swap_account(char *s)
4995 {
4996         enable_swap_account("0");
4997         return 1;
4998 }
4999 __setup("noswapaccount", disable_swap_account);
5000 #endif