perf: Provide a separate task context for swevents
[linux-flexiantxendom0-natty.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 static atomic_t nr_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47  * perf event paranoia level:
48  *  -1 - not paranoid at all
49  *   0 - disallow raw tracepoint access for unpriv
50  *   1 - disallow cpu events for unpriv
51  *   2 - disallow kernel profiling for unpriv
52  */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58  * max perf event sample rate
59  */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void)        { }
65
66 void perf_pmu_disable(struct pmu *pmu)
67 {
68         int *count = this_cpu_ptr(pmu->pmu_disable_count);
69         if (!(*count)++)
70                 pmu->pmu_disable(pmu);
71 }
72
73 void perf_pmu_enable(struct pmu *pmu)
74 {
75         int *count = this_cpu_ptr(pmu->pmu_disable_count);
76         if (!--(*count))
77                 pmu->pmu_enable(pmu);
78 }
79
80 static void perf_pmu_rotate_start(struct pmu *pmu)
81 {
82         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
83
84         if (hrtimer_active(&cpuctx->timer))
85                 return;
86
87         __hrtimer_start_range_ns(&cpuctx->timer,
88                         ns_to_ktime(cpuctx->timer_interval), 0,
89                         HRTIMER_MODE_REL_PINNED, 0);
90 }
91
92 static void perf_pmu_rotate_stop(struct pmu *pmu)
93 {
94         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95
96         hrtimer_cancel(&cpuctx->timer);
97 }
98
99 static void get_ctx(struct perf_event_context *ctx)
100 {
101         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
102 }
103
104 static void free_ctx(struct rcu_head *head)
105 {
106         struct perf_event_context *ctx;
107
108         ctx = container_of(head, struct perf_event_context, rcu_head);
109         kfree(ctx);
110 }
111
112 static void put_ctx(struct perf_event_context *ctx)
113 {
114         if (atomic_dec_and_test(&ctx->refcount)) {
115                 if (ctx->parent_ctx)
116                         put_ctx(ctx->parent_ctx);
117                 if (ctx->task)
118                         put_task_struct(ctx->task);
119                 call_rcu(&ctx->rcu_head, free_ctx);
120         }
121 }
122
123 static void unclone_ctx(struct perf_event_context *ctx)
124 {
125         if (ctx->parent_ctx) {
126                 put_ctx(ctx->parent_ctx);
127                 ctx->parent_ctx = NULL;
128         }
129 }
130
131 /*
132  * If we inherit events we want to return the parent event id
133  * to userspace.
134  */
135 static u64 primary_event_id(struct perf_event *event)
136 {
137         u64 id = event->id;
138
139         if (event->parent)
140                 id = event->parent->id;
141
142         return id;
143 }
144
145 /*
146  * Get the perf_event_context for a task and lock it.
147  * This has to cope with with the fact that until it is locked,
148  * the context could get moved to another task.
149  */
150 static struct perf_event_context *
151 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
152 {
153         struct perf_event_context *ctx;
154
155         rcu_read_lock();
156 retry:
157         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
158         if (ctx) {
159                 /*
160                  * If this context is a clone of another, it might
161                  * get swapped for another underneath us by
162                  * perf_event_task_sched_out, though the
163                  * rcu_read_lock() protects us from any context
164                  * getting freed.  Lock the context and check if it
165                  * got swapped before we could get the lock, and retry
166                  * if so.  If we locked the right context, then it
167                  * can't get swapped on us any more.
168                  */
169                 raw_spin_lock_irqsave(&ctx->lock, *flags);
170                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
171                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
172                         goto retry;
173                 }
174
175                 if (!atomic_inc_not_zero(&ctx->refcount)) {
176                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177                         ctx = NULL;
178                 }
179         }
180         rcu_read_unlock();
181         return ctx;
182 }
183
184 /*
185  * Get the context for a task and increment its pin_count so it
186  * can't get swapped to another task.  This also increments its
187  * reference count so that the context can't get freed.
188  */
189 static struct perf_event_context *
190 perf_pin_task_context(struct task_struct *task, int ctxn)
191 {
192         struct perf_event_context *ctx;
193         unsigned long flags;
194
195         ctx = perf_lock_task_context(task, ctxn, &flags);
196         if (ctx) {
197                 ++ctx->pin_count;
198                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
199         }
200         return ctx;
201 }
202
203 static void perf_unpin_context(struct perf_event_context *ctx)
204 {
205         unsigned long flags;
206
207         raw_spin_lock_irqsave(&ctx->lock, flags);
208         --ctx->pin_count;
209         raw_spin_unlock_irqrestore(&ctx->lock, flags);
210         put_ctx(ctx);
211 }
212
213 static inline u64 perf_clock(void)
214 {
215         return local_clock();
216 }
217
218 /*
219  * Update the record of the current time in a context.
220  */
221 static void update_context_time(struct perf_event_context *ctx)
222 {
223         u64 now = perf_clock();
224
225         ctx->time += now - ctx->timestamp;
226         ctx->timestamp = now;
227 }
228
229 /*
230  * Update the total_time_enabled and total_time_running fields for a event.
231  */
232 static void update_event_times(struct perf_event *event)
233 {
234         struct perf_event_context *ctx = event->ctx;
235         u64 run_end;
236
237         if (event->state < PERF_EVENT_STATE_INACTIVE ||
238             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
239                 return;
240
241         if (ctx->is_active)
242                 run_end = ctx->time;
243         else
244                 run_end = event->tstamp_stopped;
245
246         event->total_time_enabled = run_end - event->tstamp_enabled;
247
248         if (event->state == PERF_EVENT_STATE_INACTIVE)
249                 run_end = event->tstamp_stopped;
250         else
251                 run_end = ctx->time;
252
253         event->total_time_running = run_end - event->tstamp_running;
254 }
255
256 /*
257  * Update total_time_enabled and total_time_running for all events in a group.
258  */
259 static void update_group_times(struct perf_event *leader)
260 {
261         struct perf_event *event;
262
263         update_event_times(leader);
264         list_for_each_entry(event, &leader->sibling_list, group_entry)
265                 update_event_times(event);
266 }
267
268 static struct list_head *
269 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
270 {
271         if (event->attr.pinned)
272                 return &ctx->pinned_groups;
273         else
274                 return &ctx->flexible_groups;
275 }
276
277 /*
278  * Add a event from the lists for its context.
279  * Must be called with ctx->mutex and ctx->lock held.
280  */
281 static void
282 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
283 {
284         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
285         event->attach_state |= PERF_ATTACH_CONTEXT;
286
287         /*
288          * If we're a stand alone event or group leader, we go to the context
289          * list, group events are kept attached to the group so that
290          * perf_group_detach can, at all times, locate all siblings.
291          */
292         if (event->group_leader == event) {
293                 struct list_head *list;
294
295                 if (is_software_event(event))
296                         event->group_flags |= PERF_GROUP_SOFTWARE;
297
298                 list = ctx_group_list(event, ctx);
299                 list_add_tail(&event->group_entry, list);
300         }
301
302         list_add_rcu(&event->event_entry, &ctx->event_list);
303         if (!ctx->nr_events)
304                 perf_pmu_rotate_start(ctx->pmu);
305         ctx->nr_events++;
306         if (event->attr.inherit_stat)
307                 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312         struct perf_event *group_leader = event->group_leader;
313
314         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315         event->attach_state |= PERF_ATTACH_GROUP;
316
317         if (group_leader == event)
318                 return;
319
320         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321                         !is_software_event(event))
322                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324         list_add_tail(&event->group_entry, &group_leader->sibling_list);
325         group_leader->nr_siblings++;
326 }
327
328 /*
329  * Remove a event from the lists for its context.
330  * Must be called with ctx->mutex and ctx->lock held.
331  */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335         /*
336          * We can have double detach due to exit/hot-unplug + close.
337          */
338         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339                 return;
340
341         event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343         ctx->nr_events--;
344         if (event->attr.inherit_stat)
345                 ctx->nr_stat--;
346
347         list_del_rcu(&event->event_entry);
348
349         if (event->group_leader == event)
350                 list_del_init(&event->group_entry);
351
352         update_group_times(event);
353
354         /*
355          * If event was in error state, then keep it
356          * that way, otherwise bogus counts will be
357          * returned on read(). The only way to get out
358          * of error state is by explicit re-enabling
359          * of the event
360          */
361         if (event->state > PERF_EVENT_STATE_OFF)
362                 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367         struct perf_event *sibling, *tmp;
368         struct list_head *list = NULL;
369
370         /*
371          * We can have double detach due to exit/hot-unplug + close.
372          */
373         if (!(event->attach_state & PERF_ATTACH_GROUP))
374                 return;
375
376         event->attach_state &= ~PERF_ATTACH_GROUP;
377
378         /*
379          * If this is a sibling, remove it from its group.
380          */
381         if (event->group_leader != event) {
382                 list_del_init(&event->group_entry);
383                 event->group_leader->nr_siblings--;
384                 return;
385         }
386
387         if (!list_empty(&event->group_entry))
388                 list = &event->group_entry;
389
390         /*
391          * If this was a group event with sibling events then
392          * upgrade the siblings to singleton events by adding them
393          * to whatever list we are on.
394          */
395         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396                 if (list)
397                         list_move_tail(&sibling->group_entry, list);
398                 sibling->group_leader = sibling;
399
400                 /* Inherit group flags from the previous leader */
401                 sibling->group_flags = event->group_flags;
402         }
403 }
404
405 static inline int
406 event_filter_match(struct perf_event *event)
407 {
408         return event->cpu == -1 || event->cpu == smp_processor_id();
409 }
410
411 static void
412 event_sched_out(struct perf_event *event,
413                   struct perf_cpu_context *cpuctx,
414                   struct perf_event_context *ctx)
415 {
416         u64 delta;
417         /*
418          * An event which could not be activated because of
419          * filter mismatch still needs to have its timings
420          * maintained, otherwise bogus information is return
421          * via read() for time_enabled, time_running:
422          */
423         if (event->state == PERF_EVENT_STATE_INACTIVE
424             && !event_filter_match(event)) {
425                 delta = ctx->time - event->tstamp_stopped;
426                 event->tstamp_running += delta;
427                 event->tstamp_stopped = ctx->time;
428         }
429
430         if (event->state != PERF_EVENT_STATE_ACTIVE)
431                 return;
432
433         event->state = PERF_EVENT_STATE_INACTIVE;
434         if (event->pending_disable) {
435                 event->pending_disable = 0;
436                 event->state = PERF_EVENT_STATE_OFF;
437         }
438         event->tstamp_stopped = ctx->time;
439         event->pmu->del(event, 0);
440         event->oncpu = -1;
441
442         if (!is_software_event(event))
443                 cpuctx->active_oncpu--;
444         ctx->nr_active--;
445         if (event->attr.exclusive || !cpuctx->active_oncpu)
446                 cpuctx->exclusive = 0;
447 }
448
449 static void
450 group_sched_out(struct perf_event *group_event,
451                 struct perf_cpu_context *cpuctx,
452                 struct perf_event_context *ctx)
453 {
454         struct perf_event *event;
455         int state = group_event->state;
456
457         event_sched_out(group_event, cpuctx, ctx);
458
459         /*
460          * Schedule out siblings (if any):
461          */
462         list_for_each_entry(event, &group_event->sibling_list, group_entry)
463                 event_sched_out(event, cpuctx, ctx);
464
465         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466                 cpuctx->exclusive = 0;
467 }
468
469 static inline struct perf_cpu_context *
470 __get_cpu_context(struct perf_event_context *ctx)
471 {
472         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
473 }
474
475 /*
476  * Cross CPU call to remove a performance event
477  *
478  * We disable the event on the hardware level first. After that we
479  * remove it from the context list.
480  */
481 static void __perf_event_remove_from_context(void *info)
482 {
483         struct perf_event *event = info;
484         struct perf_event_context *ctx = event->ctx;
485         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
486
487         /*
488          * If this is a task context, we need to check whether it is
489          * the current task context of this cpu. If not it has been
490          * scheduled out before the smp call arrived.
491          */
492         if (ctx->task && cpuctx->task_ctx != ctx)
493                 return;
494
495         raw_spin_lock(&ctx->lock);
496
497         event_sched_out(event, cpuctx, ctx);
498
499         list_del_event(event, ctx);
500
501         raw_spin_unlock(&ctx->lock);
502 }
503
504
505 /*
506  * Remove the event from a task's (or a CPU's) list of events.
507  *
508  * Must be called with ctx->mutex held.
509  *
510  * CPU events are removed with a smp call. For task events we only
511  * call when the task is on a CPU.
512  *
513  * If event->ctx is a cloned context, callers must make sure that
514  * every task struct that event->ctx->task could possibly point to
515  * remains valid.  This is OK when called from perf_release since
516  * that only calls us on the top-level context, which can't be a clone.
517  * When called from perf_event_exit_task, it's OK because the
518  * context has been detached from its task.
519  */
520 static void perf_event_remove_from_context(struct perf_event *event)
521 {
522         struct perf_event_context *ctx = event->ctx;
523         struct task_struct *task = ctx->task;
524
525         if (!task) {
526                 /*
527                  * Per cpu events are removed via an smp call and
528                  * the removal is always successful.
529                  */
530                 smp_call_function_single(event->cpu,
531                                          __perf_event_remove_from_context,
532                                          event, 1);
533                 return;
534         }
535
536 retry:
537         task_oncpu_function_call(task, __perf_event_remove_from_context,
538                                  event);
539
540         raw_spin_lock_irq(&ctx->lock);
541         /*
542          * If the context is active we need to retry the smp call.
543          */
544         if (ctx->nr_active && !list_empty(&event->group_entry)) {
545                 raw_spin_unlock_irq(&ctx->lock);
546                 goto retry;
547         }
548
549         /*
550          * The lock prevents that this context is scheduled in so we
551          * can remove the event safely, if the call above did not
552          * succeed.
553          */
554         if (!list_empty(&event->group_entry))
555                 list_del_event(event, ctx);
556         raw_spin_unlock_irq(&ctx->lock);
557 }
558
559 /*
560  * Cross CPU call to disable a performance event
561  */
562 static void __perf_event_disable(void *info)
563 {
564         struct perf_event *event = info;
565         struct perf_event_context *ctx = event->ctx;
566         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
567
568         /*
569          * If this is a per-task event, need to check whether this
570          * event's task is the current task on this cpu.
571          */
572         if (ctx->task && cpuctx->task_ctx != ctx)
573                 return;
574
575         raw_spin_lock(&ctx->lock);
576
577         /*
578          * If the event is on, turn it off.
579          * If it is in error state, leave it in error state.
580          */
581         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
582                 update_context_time(ctx);
583                 update_group_times(event);
584                 if (event == event->group_leader)
585                         group_sched_out(event, cpuctx, ctx);
586                 else
587                         event_sched_out(event, cpuctx, ctx);
588                 event->state = PERF_EVENT_STATE_OFF;
589         }
590
591         raw_spin_unlock(&ctx->lock);
592 }
593
594 /*
595  * Disable a event.
596  *
597  * If event->ctx is a cloned context, callers must make sure that
598  * every task struct that event->ctx->task could possibly point to
599  * remains valid.  This condition is satisifed when called through
600  * perf_event_for_each_child or perf_event_for_each because they
601  * hold the top-level event's child_mutex, so any descendant that
602  * goes to exit will block in sync_child_event.
603  * When called from perf_pending_event it's OK because event->ctx
604  * is the current context on this CPU and preemption is disabled,
605  * hence we can't get into perf_event_task_sched_out for this context.
606  */
607 void perf_event_disable(struct perf_event *event)
608 {
609         struct perf_event_context *ctx = event->ctx;
610         struct task_struct *task = ctx->task;
611
612         if (!task) {
613                 /*
614                  * Disable the event on the cpu that it's on
615                  */
616                 smp_call_function_single(event->cpu, __perf_event_disable,
617                                          event, 1);
618                 return;
619         }
620
621 retry:
622         task_oncpu_function_call(task, __perf_event_disable, event);
623
624         raw_spin_lock_irq(&ctx->lock);
625         /*
626          * If the event is still active, we need to retry the cross-call.
627          */
628         if (event->state == PERF_EVENT_STATE_ACTIVE) {
629                 raw_spin_unlock_irq(&ctx->lock);
630                 goto retry;
631         }
632
633         /*
634          * Since we have the lock this context can't be scheduled
635          * in, so we can change the state safely.
636          */
637         if (event->state == PERF_EVENT_STATE_INACTIVE) {
638                 update_group_times(event);
639                 event->state = PERF_EVENT_STATE_OFF;
640         }
641
642         raw_spin_unlock_irq(&ctx->lock);
643 }
644
645 static int
646 event_sched_in(struct perf_event *event,
647                  struct perf_cpu_context *cpuctx,
648                  struct perf_event_context *ctx)
649 {
650         if (event->state <= PERF_EVENT_STATE_OFF)
651                 return 0;
652
653         event->state = PERF_EVENT_STATE_ACTIVE;
654         event->oncpu = smp_processor_id();
655         /*
656          * The new state must be visible before we turn it on in the hardware:
657          */
658         smp_wmb();
659
660         if (event->pmu->add(event, PERF_EF_START)) {
661                 event->state = PERF_EVENT_STATE_INACTIVE;
662                 event->oncpu = -1;
663                 return -EAGAIN;
664         }
665
666         event->tstamp_running += ctx->time - event->tstamp_stopped;
667
668         if (!is_software_event(event))
669                 cpuctx->active_oncpu++;
670         ctx->nr_active++;
671
672         if (event->attr.exclusive)
673                 cpuctx->exclusive = 1;
674
675         return 0;
676 }
677
678 static int
679 group_sched_in(struct perf_event *group_event,
680                struct perf_cpu_context *cpuctx,
681                struct perf_event_context *ctx)
682 {
683         struct perf_event *event, *partial_group = NULL;
684         struct pmu *pmu = group_event->pmu;
685
686         if (group_event->state == PERF_EVENT_STATE_OFF)
687                 return 0;
688
689         pmu->start_txn(pmu);
690
691         if (event_sched_in(group_event, cpuctx, ctx)) {
692                 pmu->cancel_txn(pmu);
693                 return -EAGAIN;
694         }
695
696         /*
697          * Schedule in siblings as one group (if any):
698          */
699         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
700                 if (event_sched_in(event, cpuctx, ctx)) {
701                         partial_group = event;
702                         goto group_error;
703                 }
704         }
705
706         if (!pmu->commit_txn(pmu))
707                 return 0;
708
709 group_error:
710         /*
711          * Groups can be scheduled in as one unit only, so undo any
712          * partial group before returning:
713          */
714         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
715                 if (event == partial_group)
716                         break;
717                 event_sched_out(event, cpuctx, ctx);
718         }
719         event_sched_out(group_event, cpuctx, ctx);
720
721         pmu->cancel_txn(pmu);
722
723         return -EAGAIN;
724 }
725
726 /*
727  * Work out whether we can put this event group on the CPU now.
728  */
729 static int group_can_go_on(struct perf_event *event,
730                            struct perf_cpu_context *cpuctx,
731                            int can_add_hw)
732 {
733         /*
734          * Groups consisting entirely of software events can always go on.
735          */
736         if (event->group_flags & PERF_GROUP_SOFTWARE)
737                 return 1;
738         /*
739          * If an exclusive group is already on, no other hardware
740          * events can go on.
741          */
742         if (cpuctx->exclusive)
743                 return 0;
744         /*
745          * If this group is exclusive and there are already
746          * events on the CPU, it can't go on.
747          */
748         if (event->attr.exclusive && cpuctx->active_oncpu)
749                 return 0;
750         /*
751          * Otherwise, try to add it if all previous groups were able
752          * to go on.
753          */
754         return can_add_hw;
755 }
756
757 static void add_event_to_ctx(struct perf_event *event,
758                                struct perf_event_context *ctx)
759 {
760         list_add_event(event, ctx);
761         perf_group_attach(event);
762         event->tstamp_enabled = ctx->time;
763         event->tstamp_running = ctx->time;
764         event->tstamp_stopped = ctx->time;
765 }
766
767 /*
768  * Cross CPU call to install and enable a performance event
769  *
770  * Must be called with ctx->mutex held
771  */
772 static void __perf_install_in_context(void *info)
773 {
774         struct perf_event *event = info;
775         struct perf_event_context *ctx = event->ctx;
776         struct perf_event *leader = event->group_leader;
777         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
778         int err;
779
780         /*
781          * If this is a task context, we need to check whether it is
782          * the current task context of this cpu. If not it has been
783          * scheduled out before the smp call arrived.
784          * Or possibly this is the right context but it isn't
785          * on this cpu because it had no events.
786          */
787         if (ctx->task && cpuctx->task_ctx != ctx) {
788                 if (cpuctx->task_ctx || ctx->task != current)
789                         return;
790                 cpuctx->task_ctx = ctx;
791         }
792
793         raw_spin_lock(&ctx->lock);
794         ctx->is_active = 1;
795         update_context_time(ctx);
796
797         add_event_to_ctx(event, ctx);
798
799         if (event->cpu != -1 && event->cpu != smp_processor_id())
800                 goto unlock;
801
802         /*
803          * Don't put the event on if it is disabled or if
804          * it is in a group and the group isn't on.
805          */
806         if (event->state != PERF_EVENT_STATE_INACTIVE ||
807             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
808                 goto unlock;
809
810         /*
811          * An exclusive event can't go on if there are already active
812          * hardware events, and no hardware event can go on if there
813          * is already an exclusive event on.
814          */
815         if (!group_can_go_on(event, cpuctx, 1))
816                 err = -EEXIST;
817         else
818                 err = event_sched_in(event, cpuctx, ctx);
819
820         if (err) {
821                 /*
822                  * This event couldn't go on.  If it is in a group
823                  * then we have to pull the whole group off.
824                  * If the event group is pinned then put it in error state.
825                  */
826                 if (leader != event)
827                         group_sched_out(leader, cpuctx, ctx);
828                 if (leader->attr.pinned) {
829                         update_group_times(leader);
830                         leader->state = PERF_EVENT_STATE_ERROR;
831                 }
832         }
833
834 unlock:
835         raw_spin_unlock(&ctx->lock);
836 }
837
838 /*
839  * Attach a performance event to a context
840  *
841  * First we add the event to the list with the hardware enable bit
842  * in event->hw_config cleared.
843  *
844  * If the event is attached to a task which is on a CPU we use a smp
845  * call to enable it in the task context. The task might have been
846  * scheduled away, but we check this in the smp call again.
847  *
848  * Must be called with ctx->mutex held.
849  */
850 static void
851 perf_install_in_context(struct perf_event_context *ctx,
852                         struct perf_event *event,
853                         int cpu)
854 {
855         struct task_struct *task = ctx->task;
856
857         event->ctx = ctx;
858
859         if (!task) {
860                 /*
861                  * Per cpu events are installed via an smp call and
862                  * the install is always successful.
863                  */
864                 smp_call_function_single(cpu, __perf_install_in_context,
865                                          event, 1);
866                 return;
867         }
868
869 retry:
870         task_oncpu_function_call(task, __perf_install_in_context,
871                                  event);
872
873         raw_spin_lock_irq(&ctx->lock);
874         /*
875          * we need to retry the smp call.
876          */
877         if (ctx->is_active && list_empty(&event->group_entry)) {
878                 raw_spin_unlock_irq(&ctx->lock);
879                 goto retry;
880         }
881
882         /*
883          * The lock prevents that this context is scheduled in so we
884          * can add the event safely, if it the call above did not
885          * succeed.
886          */
887         if (list_empty(&event->group_entry))
888                 add_event_to_ctx(event, ctx);
889         raw_spin_unlock_irq(&ctx->lock);
890 }
891
892 /*
893  * Put a event into inactive state and update time fields.
894  * Enabling the leader of a group effectively enables all
895  * the group members that aren't explicitly disabled, so we
896  * have to update their ->tstamp_enabled also.
897  * Note: this works for group members as well as group leaders
898  * since the non-leader members' sibling_lists will be empty.
899  */
900 static void __perf_event_mark_enabled(struct perf_event *event,
901                                         struct perf_event_context *ctx)
902 {
903         struct perf_event *sub;
904
905         event->state = PERF_EVENT_STATE_INACTIVE;
906         event->tstamp_enabled = ctx->time - event->total_time_enabled;
907         list_for_each_entry(sub, &event->sibling_list, group_entry) {
908                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
909                         sub->tstamp_enabled =
910                                 ctx->time - sub->total_time_enabled;
911                 }
912         }
913 }
914
915 /*
916  * Cross CPU call to enable a performance event
917  */
918 static void __perf_event_enable(void *info)
919 {
920         struct perf_event *event = info;
921         struct perf_event_context *ctx = event->ctx;
922         struct perf_event *leader = event->group_leader;
923         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
924         int err;
925
926         /*
927          * If this is a per-task event, need to check whether this
928          * event's task is the current task on this cpu.
929          */
930         if (ctx->task && cpuctx->task_ctx != ctx) {
931                 if (cpuctx->task_ctx || ctx->task != current)
932                         return;
933                 cpuctx->task_ctx = ctx;
934         }
935
936         raw_spin_lock(&ctx->lock);
937         ctx->is_active = 1;
938         update_context_time(ctx);
939
940         if (event->state >= PERF_EVENT_STATE_INACTIVE)
941                 goto unlock;
942         __perf_event_mark_enabled(event, ctx);
943
944         if (event->cpu != -1 && event->cpu != smp_processor_id())
945                 goto unlock;
946
947         /*
948          * If the event is in a group and isn't the group leader,
949          * then don't put it on unless the group is on.
950          */
951         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
952                 goto unlock;
953
954         if (!group_can_go_on(event, cpuctx, 1)) {
955                 err = -EEXIST;
956         } else {
957                 if (event == leader)
958                         err = group_sched_in(event, cpuctx, ctx);
959                 else
960                         err = event_sched_in(event, cpuctx, ctx);
961         }
962
963         if (err) {
964                 /*
965                  * If this event can't go on and it's part of a
966                  * group, then the whole group has to come off.
967                  */
968                 if (leader != event)
969                         group_sched_out(leader, cpuctx, ctx);
970                 if (leader->attr.pinned) {
971                         update_group_times(leader);
972                         leader->state = PERF_EVENT_STATE_ERROR;
973                 }
974         }
975
976 unlock:
977         raw_spin_unlock(&ctx->lock);
978 }
979
980 /*
981  * Enable a event.
982  *
983  * If event->ctx is a cloned context, callers must make sure that
984  * every task struct that event->ctx->task could possibly point to
985  * remains valid.  This condition is satisfied when called through
986  * perf_event_for_each_child or perf_event_for_each as described
987  * for perf_event_disable.
988  */
989 void perf_event_enable(struct perf_event *event)
990 {
991         struct perf_event_context *ctx = event->ctx;
992         struct task_struct *task = ctx->task;
993
994         if (!task) {
995                 /*
996                  * Enable the event on the cpu that it's on
997                  */
998                 smp_call_function_single(event->cpu, __perf_event_enable,
999                                          event, 1);
1000                 return;
1001         }
1002
1003         raw_spin_lock_irq(&ctx->lock);
1004         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1005                 goto out;
1006
1007         /*
1008          * If the event is in error state, clear that first.
1009          * That way, if we see the event in error state below, we
1010          * know that it has gone back into error state, as distinct
1011          * from the task having been scheduled away before the
1012          * cross-call arrived.
1013          */
1014         if (event->state == PERF_EVENT_STATE_ERROR)
1015                 event->state = PERF_EVENT_STATE_OFF;
1016
1017 retry:
1018         raw_spin_unlock_irq(&ctx->lock);
1019         task_oncpu_function_call(task, __perf_event_enable, event);
1020
1021         raw_spin_lock_irq(&ctx->lock);
1022
1023         /*
1024          * If the context is active and the event is still off,
1025          * we need to retry the cross-call.
1026          */
1027         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1028                 goto retry;
1029
1030         /*
1031          * Since we have the lock this context can't be scheduled
1032          * in, so we can change the state safely.
1033          */
1034         if (event->state == PERF_EVENT_STATE_OFF)
1035                 __perf_event_mark_enabled(event, ctx);
1036
1037 out:
1038         raw_spin_unlock_irq(&ctx->lock);
1039 }
1040
1041 static int perf_event_refresh(struct perf_event *event, int refresh)
1042 {
1043         /*
1044          * not supported on inherited events
1045          */
1046         if (event->attr.inherit)
1047                 return -EINVAL;
1048
1049         atomic_add(refresh, &event->event_limit);
1050         perf_event_enable(event);
1051
1052         return 0;
1053 }
1054
1055 enum event_type_t {
1056         EVENT_FLEXIBLE = 0x1,
1057         EVENT_PINNED = 0x2,
1058         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1059 };
1060
1061 static void ctx_sched_out(struct perf_event_context *ctx,
1062                           struct perf_cpu_context *cpuctx,
1063                           enum event_type_t event_type)
1064 {
1065         struct perf_event *event;
1066
1067         raw_spin_lock(&ctx->lock);
1068         ctx->is_active = 0;
1069         if (likely(!ctx->nr_events))
1070                 goto out;
1071         update_context_time(ctx);
1072
1073         if (!ctx->nr_active)
1074                 goto out;
1075
1076         if (event_type & EVENT_PINNED) {
1077                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1078                         group_sched_out(event, cpuctx, ctx);
1079         }
1080
1081         if (event_type & EVENT_FLEXIBLE) {
1082                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1083                         group_sched_out(event, cpuctx, ctx);
1084         }
1085 out:
1086         raw_spin_unlock(&ctx->lock);
1087 }
1088
1089 /*
1090  * Test whether two contexts are equivalent, i.e. whether they
1091  * have both been cloned from the same version of the same context
1092  * and they both have the same number of enabled events.
1093  * If the number of enabled events is the same, then the set
1094  * of enabled events should be the same, because these are both
1095  * inherited contexts, therefore we can't access individual events
1096  * in them directly with an fd; we can only enable/disable all
1097  * events via prctl, or enable/disable all events in a family
1098  * via ioctl, which will have the same effect on both contexts.
1099  */
1100 static int context_equiv(struct perf_event_context *ctx1,
1101                          struct perf_event_context *ctx2)
1102 {
1103         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1104                 && ctx1->parent_gen == ctx2->parent_gen
1105                 && !ctx1->pin_count && !ctx2->pin_count;
1106 }
1107
1108 static void __perf_event_sync_stat(struct perf_event *event,
1109                                      struct perf_event *next_event)
1110 {
1111         u64 value;
1112
1113         if (!event->attr.inherit_stat)
1114                 return;
1115
1116         /*
1117          * Update the event value, we cannot use perf_event_read()
1118          * because we're in the middle of a context switch and have IRQs
1119          * disabled, which upsets smp_call_function_single(), however
1120          * we know the event must be on the current CPU, therefore we
1121          * don't need to use it.
1122          */
1123         switch (event->state) {
1124         case PERF_EVENT_STATE_ACTIVE:
1125                 event->pmu->read(event);
1126                 /* fall-through */
1127
1128         case PERF_EVENT_STATE_INACTIVE:
1129                 update_event_times(event);
1130                 break;
1131
1132         default:
1133                 break;
1134         }
1135
1136         /*
1137          * In order to keep per-task stats reliable we need to flip the event
1138          * values when we flip the contexts.
1139          */
1140         value = local64_read(&next_event->count);
1141         value = local64_xchg(&event->count, value);
1142         local64_set(&next_event->count, value);
1143
1144         swap(event->total_time_enabled, next_event->total_time_enabled);
1145         swap(event->total_time_running, next_event->total_time_running);
1146
1147         /*
1148          * Since we swizzled the values, update the user visible data too.
1149          */
1150         perf_event_update_userpage(event);
1151         perf_event_update_userpage(next_event);
1152 }
1153
1154 #define list_next_entry(pos, member) \
1155         list_entry(pos->member.next, typeof(*pos), member)
1156
1157 static void perf_event_sync_stat(struct perf_event_context *ctx,
1158                                    struct perf_event_context *next_ctx)
1159 {
1160         struct perf_event *event, *next_event;
1161
1162         if (!ctx->nr_stat)
1163                 return;
1164
1165         update_context_time(ctx);
1166
1167         event = list_first_entry(&ctx->event_list,
1168                                    struct perf_event, event_entry);
1169
1170         next_event = list_first_entry(&next_ctx->event_list,
1171                                         struct perf_event, event_entry);
1172
1173         while (&event->event_entry != &ctx->event_list &&
1174                &next_event->event_entry != &next_ctx->event_list) {
1175
1176                 __perf_event_sync_stat(event, next_event);
1177
1178                 event = list_next_entry(event, event_entry);
1179                 next_event = list_next_entry(next_event, event_entry);
1180         }
1181 }
1182
1183 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1184                                   struct task_struct *next)
1185 {
1186         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1187         struct perf_event_context *next_ctx;
1188         struct perf_event_context *parent;
1189         struct perf_cpu_context *cpuctx;
1190         int do_switch = 1;
1191
1192         if (likely(!ctx))
1193                 return;
1194
1195         cpuctx = __get_cpu_context(ctx);
1196         if (!cpuctx->task_ctx)
1197                 return;
1198
1199         rcu_read_lock();
1200         parent = rcu_dereference(ctx->parent_ctx);
1201         next_ctx = next->perf_event_ctxp[ctxn];
1202         if (parent && next_ctx &&
1203             rcu_dereference(next_ctx->parent_ctx) == parent) {
1204                 /*
1205                  * Looks like the two contexts are clones, so we might be
1206                  * able to optimize the context switch.  We lock both
1207                  * contexts and check that they are clones under the
1208                  * lock (including re-checking that neither has been
1209                  * uncloned in the meantime).  It doesn't matter which
1210                  * order we take the locks because no other cpu could
1211                  * be trying to lock both of these tasks.
1212                  */
1213                 raw_spin_lock(&ctx->lock);
1214                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1215                 if (context_equiv(ctx, next_ctx)) {
1216                         /*
1217                          * XXX do we need a memory barrier of sorts
1218                          * wrt to rcu_dereference() of perf_event_ctxp
1219                          */
1220                         task->perf_event_ctxp[ctxn] = next_ctx;
1221                         next->perf_event_ctxp[ctxn] = ctx;
1222                         ctx->task = next;
1223                         next_ctx->task = task;
1224                         do_switch = 0;
1225
1226                         perf_event_sync_stat(ctx, next_ctx);
1227                 }
1228                 raw_spin_unlock(&next_ctx->lock);
1229                 raw_spin_unlock(&ctx->lock);
1230         }
1231         rcu_read_unlock();
1232
1233         if (do_switch) {
1234                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1235                 cpuctx->task_ctx = NULL;
1236         }
1237 }
1238
1239 #define for_each_task_context_nr(ctxn)                                  \
1240         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1241
1242 /*
1243  * Called from scheduler to remove the events of the current task,
1244  * with interrupts disabled.
1245  *
1246  * We stop each event and update the event value in event->count.
1247  *
1248  * This does not protect us against NMI, but disable()
1249  * sets the disabled bit in the control field of event _before_
1250  * accessing the event control register. If a NMI hits, then it will
1251  * not restart the event.
1252  */
1253 void perf_event_task_sched_out(struct task_struct *task,
1254                                struct task_struct *next)
1255 {
1256         int ctxn;
1257
1258         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1259
1260         for_each_task_context_nr(ctxn)
1261                 perf_event_context_sched_out(task, ctxn, next);
1262 }
1263
1264 static void task_ctx_sched_out(struct perf_event_context *ctx,
1265                                enum event_type_t event_type)
1266 {
1267         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1268
1269         if (!cpuctx->task_ctx)
1270                 return;
1271
1272         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1273                 return;
1274
1275         ctx_sched_out(ctx, cpuctx, event_type);
1276         cpuctx->task_ctx = NULL;
1277 }
1278
1279 /*
1280  * Called with IRQs disabled
1281  */
1282 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1283 {
1284         task_ctx_sched_out(ctx, EVENT_ALL);
1285 }
1286
1287 /*
1288  * Called with IRQs disabled
1289  */
1290 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1291                               enum event_type_t event_type)
1292 {
1293         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1294 }
1295
1296 static void
1297 ctx_pinned_sched_in(struct perf_event_context *ctx,
1298                     struct perf_cpu_context *cpuctx)
1299 {
1300         struct perf_event *event;
1301
1302         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1303                 if (event->state <= PERF_EVENT_STATE_OFF)
1304                         continue;
1305                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1306                         continue;
1307
1308                 if (group_can_go_on(event, cpuctx, 1))
1309                         group_sched_in(event, cpuctx, ctx);
1310
1311                 /*
1312                  * If this pinned group hasn't been scheduled,
1313                  * put it in error state.
1314                  */
1315                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1316                         update_group_times(event);
1317                         event->state = PERF_EVENT_STATE_ERROR;
1318                 }
1319         }
1320 }
1321
1322 static void
1323 ctx_flexible_sched_in(struct perf_event_context *ctx,
1324                       struct perf_cpu_context *cpuctx)
1325 {
1326         struct perf_event *event;
1327         int can_add_hw = 1;
1328
1329         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1330                 /* Ignore events in OFF or ERROR state */
1331                 if (event->state <= PERF_EVENT_STATE_OFF)
1332                         continue;
1333                 /*
1334                  * Listen to the 'cpu' scheduling filter constraint
1335                  * of events:
1336                  */
1337                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1338                         continue;
1339
1340                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1341                         if (group_sched_in(event, cpuctx, ctx))
1342                                 can_add_hw = 0;
1343                 }
1344         }
1345 }
1346
1347 static void
1348 ctx_sched_in(struct perf_event_context *ctx,
1349              struct perf_cpu_context *cpuctx,
1350              enum event_type_t event_type)
1351 {
1352         raw_spin_lock(&ctx->lock);
1353         ctx->is_active = 1;
1354         if (likely(!ctx->nr_events))
1355                 goto out;
1356
1357         ctx->timestamp = perf_clock();
1358
1359         /*
1360          * First go through the list and put on any pinned groups
1361          * in order to give them the best chance of going on.
1362          */
1363         if (event_type & EVENT_PINNED)
1364                 ctx_pinned_sched_in(ctx, cpuctx);
1365
1366         /* Then walk through the lower prio flexible groups */
1367         if (event_type & EVENT_FLEXIBLE)
1368                 ctx_flexible_sched_in(ctx, cpuctx);
1369
1370 out:
1371         raw_spin_unlock(&ctx->lock);
1372 }
1373
1374 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1375                              enum event_type_t event_type)
1376 {
1377         struct perf_event_context *ctx = &cpuctx->ctx;
1378
1379         ctx_sched_in(ctx, cpuctx, event_type);
1380 }
1381
1382 static void task_ctx_sched_in(struct perf_event_context *ctx,
1383                               enum event_type_t event_type)
1384 {
1385         struct perf_cpu_context *cpuctx;
1386
1387         cpuctx = __get_cpu_context(ctx);
1388         if (cpuctx->task_ctx == ctx)
1389                 return;
1390
1391         ctx_sched_in(ctx, cpuctx, event_type);
1392         cpuctx->task_ctx = ctx;
1393 }
1394
1395 void perf_event_context_sched_in(struct perf_event_context *ctx)
1396 {
1397         struct perf_cpu_context *cpuctx;
1398
1399         cpuctx = __get_cpu_context(ctx);
1400         if (cpuctx->task_ctx == ctx)
1401                 return;
1402
1403         /*
1404          * We want to keep the following priority order:
1405          * cpu pinned (that don't need to move), task pinned,
1406          * cpu flexible, task flexible.
1407          */
1408         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1409
1410         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1411         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1412         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1413
1414         cpuctx->task_ctx = ctx;
1415
1416         /*
1417          * Since these rotations are per-cpu, we need to ensure the
1418          * cpu-context we got scheduled on is actually rotating.
1419          */
1420         perf_pmu_rotate_start(ctx->pmu);
1421 }
1422
1423 /*
1424  * Called from scheduler to add the events of the current task
1425  * with interrupts disabled.
1426  *
1427  * We restore the event value and then enable it.
1428  *
1429  * This does not protect us against NMI, but enable()
1430  * sets the enabled bit in the control field of event _before_
1431  * accessing the event control register. If a NMI hits, then it will
1432  * keep the event running.
1433  */
1434 void perf_event_task_sched_in(struct task_struct *task)
1435 {
1436         struct perf_event_context *ctx;
1437         int ctxn;
1438
1439         for_each_task_context_nr(ctxn) {
1440                 ctx = task->perf_event_ctxp[ctxn];
1441                 if (likely(!ctx))
1442                         continue;
1443
1444                 perf_event_context_sched_in(ctx);
1445         }
1446 }
1447
1448 #define MAX_INTERRUPTS (~0ULL)
1449
1450 static void perf_log_throttle(struct perf_event *event, int enable);
1451
1452 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1453 {
1454         u64 frequency = event->attr.sample_freq;
1455         u64 sec = NSEC_PER_SEC;
1456         u64 divisor, dividend;
1457
1458         int count_fls, nsec_fls, frequency_fls, sec_fls;
1459
1460         count_fls = fls64(count);
1461         nsec_fls = fls64(nsec);
1462         frequency_fls = fls64(frequency);
1463         sec_fls = 30;
1464
1465         /*
1466          * We got @count in @nsec, with a target of sample_freq HZ
1467          * the target period becomes:
1468          *
1469          *             @count * 10^9
1470          * period = -------------------
1471          *          @nsec * sample_freq
1472          *
1473          */
1474
1475         /*
1476          * Reduce accuracy by one bit such that @a and @b converge
1477          * to a similar magnitude.
1478          */
1479 #define REDUCE_FLS(a, b)                \
1480 do {                                    \
1481         if (a##_fls > b##_fls) {        \
1482                 a >>= 1;                \
1483                 a##_fls--;              \
1484         } else {                        \
1485                 b >>= 1;                \
1486                 b##_fls--;              \
1487         }                               \
1488 } while (0)
1489
1490         /*
1491          * Reduce accuracy until either term fits in a u64, then proceed with
1492          * the other, so that finally we can do a u64/u64 division.
1493          */
1494         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1495                 REDUCE_FLS(nsec, frequency);
1496                 REDUCE_FLS(sec, count);
1497         }
1498
1499         if (count_fls + sec_fls > 64) {
1500                 divisor = nsec * frequency;
1501
1502                 while (count_fls + sec_fls > 64) {
1503                         REDUCE_FLS(count, sec);
1504                         divisor >>= 1;
1505                 }
1506
1507                 dividend = count * sec;
1508         } else {
1509                 dividend = count * sec;
1510
1511                 while (nsec_fls + frequency_fls > 64) {
1512                         REDUCE_FLS(nsec, frequency);
1513                         dividend >>= 1;
1514                 }
1515
1516                 divisor = nsec * frequency;
1517         }
1518
1519         if (!divisor)
1520                 return dividend;
1521
1522         return div64_u64(dividend, divisor);
1523 }
1524
1525 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1526 {
1527         struct hw_perf_event *hwc = &event->hw;
1528         s64 period, sample_period;
1529         s64 delta;
1530
1531         period = perf_calculate_period(event, nsec, count);
1532
1533         delta = (s64)(period - hwc->sample_period);
1534         delta = (delta + 7) / 8; /* low pass filter */
1535
1536         sample_period = hwc->sample_period + delta;
1537
1538         if (!sample_period)
1539                 sample_period = 1;
1540
1541         hwc->sample_period = sample_period;
1542
1543         if (local64_read(&hwc->period_left) > 8*sample_period) {
1544                 event->pmu->stop(event, PERF_EF_UPDATE);
1545                 local64_set(&hwc->period_left, 0);
1546                 event->pmu->start(event, PERF_EF_RELOAD);
1547         }
1548 }
1549
1550 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1551 {
1552         struct perf_event *event;
1553         struct hw_perf_event *hwc;
1554         u64 interrupts, now;
1555         s64 delta;
1556
1557         raw_spin_lock(&ctx->lock);
1558         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1559                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1560                         continue;
1561
1562                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1563                         continue;
1564
1565                 hwc = &event->hw;
1566
1567                 interrupts = hwc->interrupts;
1568                 hwc->interrupts = 0;
1569
1570                 /*
1571                  * unthrottle events on the tick
1572                  */
1573                 if (interrupts == MAX_INTERRUPTS) {
1574                         perf_log_throttle(event, 1);
1575                         event->pmu->start(event, 0);
1576                 }
1577
1578                 if (!event->attr.freq || !event->attr.sample_freq)
1579                         continue;
1580
1581                 event->pmu->read(event);
1582                 now = local64_read(&event->count);
1583                 delta = now - hwc->freq_count_stamp;
1584                 hwc->freq_count_stamp = now;
1585
1586                 if (delta > 0)
1587                         perf_adjust_period(event, period, delta);
1588         }
1589         raw_spin_unlock(&ctx->lock);
1590 }
1591
1592 /*
1593  * Round-robin a context's events:
1594  */
1595 static void rotate_ctx(struct perf_event_context *ctx)
1596 {
1597         raw_spin_lock(&ctx->lock);
1598
1599         /* Rotate the first entry last of non-pinned groups */
1600         list_rotate_left(&ctx->flexible_groups);
1601
1602         raw_spin_unlock(&ctx->lock);
1603 }
1604
1605 /*
1606  * Cannot race with ->pmu_rotate_start() because this is ran from hardirq
1607  * context, and ->pmu_rotate_start() is called with irqs disabled (both are
1608  * cpu affine, so there are no SMP races).
1609  */
1610 static enum hrtimer_restart perf_event_context_tick(struct hrtimer *timer)
1611 {
1612         enum hrtimer_restart restart = HRTIMER_NORESTART;
1613         struct perf_cpu_context *cpuctx;
1614         struct perf_event_context *ctx = NULL;
1615         int rotate = 0;
1616
1617         cpuctx = container_of(timer, struct perf_cpu_context, timer);
1618
1619         if (cpuctx->ctx.nr_events) {
1620                 restart = HRTIMER_RESTART;
1621                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1622                         rotate = 1;
1623         }
1624
1625         ctx = cpuctx->task_ctx;
1626         if (ctx && ctx->nr_events) {
1627                 restart = HRTIMER_RESTART;
1628                 if (ctx->nr_events != ctx->nr_active)
1629                         rotate = 1;
1630         }
1631
1632         perf_ctx_adjust_freq(&cpuctx->ctx, cpuctx->timer_interval);
1633         if (ctx)
1634                 perf_ctx_adjust_freq(ctx, cpuctx->timer_interval);
1635
1636         if (!rotate)
1637                 goto done;
1638
1639         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1640         if (ctx)
1641                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1642
1643         rotate_ctx(&cpuctx->ctx);
1644         if (ctx)
1645                 rotate_ctx(ctx);
1646
1647         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1648         if (ctx)
1649                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1650
1651 done:
1652         hrtimer_forward_now(timer, ns_to_ktime(cpuctx->timer_interval));
1653
1654         return restart;
1655 }
1656
1657 static int event_enable_on_exec(struct perf_event *event,
1658                                 struct perf_event_context *ctx)
1659 {
1660         if (!event->attr.enable_on_exec)
1661                 return 0;
1662
1663         event->attr.enable_on_exec = 0;
1664         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1665                 return 0;
1666
1667         __perf_event_mark_enabled(event, ctx);
1668
1669         return 1;
1670 }
1671
1672 /*
1673  * Enable all of a task's events that have been marked enable-on-exec.
1674  * This expects task == current.
1675  */
1676 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1677 {
1678         struct perf_event *event;
1679         unsigned long flags;
1680         int enabled = 0;
1681         int ret;
1682
1683         local_irq_save(flags);
1684         if (!ctx || !ctx->nr_events)
1685                 goto out;
1686
1687         task_ctx_sched_out(ctx, EVENT_ALL);
1688
1689         raw_spin_lock(&ctx->lock);
1690
1691         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1692                 ret = event_enable_on_exec(event, ctx);
1693                 if (ret)
1694                         enabled = 1;
1695         }
1696
1697         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1698                 ret = event_enable_on_exec(event, ctx);
1699                 if (ret)
1700                         enabled = 1;
1701         }
1702
1703         /*
1704          * Unclone this context if we enabled any event.
1705          */
1706         if (enabled)
1707                 unclone_ctx(ctx);
1708
1709         raw_spin_unlock(&ctx->lock);
1710
1711         perf_event_context_sched_in(ctx);
1712 out:
1713         local_irq_restore(flags);
1714 }
1715
1716 /*
1717  * Cross CPU call to read the hardware event
1718  */
1719 static void __perf_event_read(void *info)
1720 {
1721         struct perf_event *event = info;
1722         struct perf_event_context *ctx = event->ctx;
1723         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1724
1725         /*
1726          * If this is a task context, we need to check whether it is
1727          * the current task context of this cpu.  If not it has been
1728          * scheduled out before the smp call arrived.  In that case
1729          * event->count would have been updated to a recent sample
1730          * when the event was scheduled out.
1731          */
1732         if (ctx->task && cpuctx->task_ctx != ctx)
1733                 return;
1734
1735         raw_spin_lock(&ctx->lock);
1736         update_context_time(ctx);
1737         update_event_times(event);
1738         raw_spin_unlock(&ctx->lock);
1739
1740         event->pmu->read(event);
1741 }
1742
1743 static inline u64 perf_event_count(struct perf_event *event)
1744 {
1745         return local64_read(&event->count) + atomic64_read(&event->child_count);
1746 }
1747
1748 static u64 perf_event_read(struct perf_event *event)
1749 {
1750         /*
1751          * If event is enabled and currently active on a CPU, update the
1752          * value in the event structure:
1753          */
1754         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1755                 smp_call_function_single(event->oncpu,
1756                                          __perf_event_read, event, 1);
1757         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1758                 struct perf_event_context *ctx = event->ctx;
1759                 unsigned long flags;
1760
1761                 raw_spin_lock_irqsave(&ctx->lock, flags);
1762                 update_context_time(ctx);
1763                 update_event_times(event);
1764                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1765         }
1766
1767         return perf_event_count(event);
1768 }
1769
1770 /*
1771  * Callchain support
1772  */
1773
1774 struct callchain_cpus_entries {
1775         struct rcu_head                 rcu_head;
1776         struct perf_callchain_entry     *cpu_entries[0];
1777 };
1778
1779 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1780 static atomic_t nr_callchain_events;
1781 static DEFINE_MUTEX(callchain_mutex);
1782 struct callchain_cpus_entries *callchain_cpus_entries;
1783
1784
1785 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1786                                   struct pt_regs *regs)
1787 {
1788 }
1789
1790 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1791                                 struct pt_regs *regs)
1792 {
1793 }
1794
1795 static void release_callchain_buffers_rcu(struct rcu_head *head)
1796 {
1797         struct callchain_cpus_entries *entries;
1798         int cpu;
1799
1800         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1801
1802         for_each_possible_cpu(cpu)
1803                 kfree(entries->cpu_entries[cpu]);
1804
1805         kfree(entries);
1806 }
1807
1808 static void release_callchain_buffers(void)
1809 {
1810         struct callchain_cpus_entries *entries;
1811
1812         entries = callchain_cpus_entries;
1813         rcu_assign_pointer(callchain_cpus_entries, NULL);
1814         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1815 }
1816
1817 static int alloc_callchain_buffers(void)
1818 {
1819         int cpu;
1820         int size;
1821         struct callchain_cpus_entries *entries;
1822
1823         /*
1824          * We can't use the percpu allocation API for data that can be
1825          * accessed from NMI. Use a temporary manual per cpu allocation
1826          * until that gets sorted out.
1827          */
1828         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1829                 num_possible_cpus();
1830
1831         entries = kzalloc(size, GFP_KERNEL);
1832         if (!entries)
1833                 return -ENOMEM;
1834
1835         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1836
1837         for_each_possible_cpu(cpu) {
1838                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1839                                                          cpu_to_node(cpu));
1840                 if (!entries->cpu_entries[cpu])
1841                         goto fail;
1842         }
1843
1844         rcu_assign_pointer(callchain_cpus_entries, entries);
1845
1846         return 0;
1847
1848 fail:
1849         for_each_possible_cpu(cpu)
1850                 kfree(entries->cpu_entries[cpu]);
1851         kfree(entries);
1852
1853         return -ENOMEM;
1854 }
1855
1856 static int get_callchain_buffers(void)
1857 {
1858         int err = 0;
1859         int count;
1860
1861         mutex_lock(&callchain_mutex);
1862
1863         count = atomic_inc_return(&nr_callchain_events);
1864         if (WARN_ON_ONCE(count < 1)) {
1865                 err = -EINVAL;
1866                 goto exit;
1867         }
1868
1869         if (count > 1) {
1870                 /* If the allocation failed, give up */
1871                 if (!callchain_cpus_entries)
1872                         err = -ENOMEM;
1873                 goto exit;
1874         }
1875
1876         err = alloc_callchain_buffers();
1877         if (err)
1878                 release_callchain_buffers();
1879 exit:
1880         mutex_unlock(&callchain_mutex);
1881
1882         return err;
1883 }
1884
1885 static void put_callchain_buffers(void)
1886 {
1887         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1888                 release_callchain_buffers();
1889                 mutex_unlock(&callchain_mutex);
1890         }
1891 }
1892
1893 static int get_recursion_context(int *recursion)
1894 {
1895         int rctx;
1896
1897         if (in_nmi())
1898                 rctx = 3;
1899         else if (in_irq())
1900                 rctx = 2;
1901         else if (in_softirq())
1902                 rctx = 1;
1903         else
1904                 rctx = 0;
1905
1906         if (recursion[rctx])
1907                 return -1;
1908
1909         recursion[rctx]++;
1910         barrier();
1911
1912         return rctx;
1913 }
1914
1915 static inline void put_recursion_context(int *recursion, int rctx)
1916 {
1917         barrier();
1918         recursion[rctx]--;
1919 }
1920
1921 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1922 {
1923         int cpu;
1924         struct callchain_cpus_entries *entries;
1925
1926         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1927         if (*rctx == -1)
1928                 return NULL;
1929
1930         entries = rcu_dereference(callchain_cpus_entries);
1931         if (!entries)
1932                 return NULL;
1933
1934         cpu = smp_processor_id();
1935
1936         return &entries->cpu_entries[cpu][*rctx];
1937 }
1938
1939 static void
1940 put_callchain_entry(int rctx)
1941 {
1942         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1943 }
1944
1945 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1946 {
1947         int rctx;
1948         struct perf_callchain_entry *entry;
1949
1950
1951         entry = get_callchain_entry(&rctx);
1952         if (rctx == -1)
1953                 return NULL;
1954
1955         if (!entry)
1956                 goto exit_put;
1957
1958         entry->nr = 0;
1959
1960         if (!user_mode(regs)) {
1961                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
1962                 perf_callchain_kernel(entry, regs);
1963                 if (current->mm)
1964                         regs = task_pt_regs(current);
1965                 else
1966                         regs = NULL;
1967         }
1968
1969         if (regs) {
1970                 perf_callchain_store(entry, PERF_CONTEXT_USER);
1971                 perf_callchain_user(entry, regs);
1972         }
1973
1974 exit_put:
1975         put_callchain_entry(rctx);
1976
1977         return entry;
1978 }
1979
1980 /*
1981  * Initialize the perf_event context in a task_struct:
1982  */
1983 static void __perf_event_init_context(struct perf_event_context *ctx)
1984 {
1985         raw_spin_lock_init(&ctx->lock);
1986         mutex_init(&ctx->mutex);
1987         INIT_LIST_HEAD(&ctx->pinned_groups);
1988         INIT_LIST_HEAD(&ctx->flexible_groups);
1989         INIT_LIST_HEAD(&ctx->event_list);
1990         atomic_set(&ctx->refcount, 1);
1991 }
1992
1993 static struct perf_event_context *
1994 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
1995 {
1996         struct perf_event_context *ctx;
1997
1998         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1999         if (!ctx)
2000                 return NULL;
2001
2002         __perf_event_init_context(ctx);
2003         if (task) {
2004                 ctx->task = task;
2005                 get_task_struct(task);
2006         }
2007         ctx->pmu = pmu;
2008
2009         return ctx;
2010 }
2011
2012 static struct perf_event_context *
2013 find_get_context(struct pmu *pmu, pid_t pid, int cpu)
2014 {
2015         struct perf_event_context *ctx;
2016         struct perf_cpu_context *cpuctx;
2017         struct task_struct *task;
2018         unsigned long flags;
2019         int ctxn, err;
2020
2021         if (pid == -1 && cpu != -1) {
2022                 /* Must be root to operate on a CPU event: */
2023                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2024                         return ERR_PTR(-EACCES);
2025
2026                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2027                         return ERR_PTR(-EINVAL);
2028
2029                 /*
2030                  * We could be clever and allow to attach a event to an
2031                  * offline CPU and activate it when the CPU comes up, but
2032                  * that's for later.
2033                  */
2034                 if (!cpu_online(cpu))
2035                         return ERR_PTR(-ENODEV);
2036
2037                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2038                 ctx = &cpuctx->ctx;
2039                 get_ctx(ctx);
2040
2041                 return ctx;
2042         }
2043
2044         rcu_read_lock();
2045         if (!pid)
2046                 task = current;
2047         else
2048                 task = find_task_by_vpid(pid);
2049         if (task)
2050                 get_task_struct(task);
2051         rcu_read_unlock();
2052
2053         if (!task)
2054                 return ERR_PTR(-ESRCH);
2055
2056         /*
2057          * Can't attach events to a dying task.
2058          */
2059         err = -ESRCH;
2060         if (task->flags & PF_EXITING)
2061                 goto errout;
2062
2063         /* Reuse ptrace permission checks for now. */
2064         err = -EACCES;
2065         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2066                 goto errout;
2067
2068         err = -EINVAL;
2069         ctxn = pmu->task_ctx_nr;
2070         if (ctxn < 0)
2071                 goto errout;
2072
2073 retry:
2074         ctx = perf_lock_task_context(task, ctxn, &flags);
2075         if (ctx) {
2076                 unclone_ctx(ctx);
2077                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2078         }
2079
2080         if (!ctx) {
2081                 ctx = alloc_perf_context(pmu, task);
2082                 err = -ENOMEM;
2083                 if (!ctx)
2084                         goto errout;
2085
2086                 get_ctx(ctx);
2087
2088                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2089                         /*
2090                          * We raced with some other task; use
2091                          * the context they set.
2092                          */
2093                         put_task_struct(task);
2094                         kfree(ctx);
2095                         goto retry;
2096                 }
2097         }
2098
2099         put_task_struct(task);
2100         return ctx;
2101
2102 errout:
2103         put_task_struct(task);
2104         return ERR_PTR(err);
2105 }
2106
2107 static void perf_event_free_filter(struct perf_event *event);
2108
2109 static void free_event_rcu(struct rcu_head *head)
2110 {
2111         struct perf_event *event;
2112
2113         event = container_of(head, struct perf_event, rcu_head);
2114         if (event->ns)
2115                 put_pid_ns(event->ns);
2116         perf_event_free_filter(event);
2117         kfree(event);
2118 }
2119
2120 static void perf_pending_sync(struct perf_event *event);
2121 static void perf_buffer_put(struct perf_buffer *buffer);
2122
2123 static void free_event(struct perf_event *event)
2124 {
2125         perf_pending_sync(event);
2126
2127         if (!event->parent) {
2128                 atomic_dec(&nr_events);
2129                 if (event->attr.mmap || event->attr.mmap_data)
2130                         atomic_dec(&nr_mmap_events);
2131                 if (event->attr.comm)
2132                         atomic_dec(&nr_comm_events);
2133                 if (event->attr.task)
2134                         atomic_dec(&nr_task_events);
2135                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2136                         put_callchain_buffers();
2137         }
2138
2139         if (event->buffer) {
2140                 perf_buffer_put(event->buffer);
2141                 event->buffer = NULL;
2142         }
2143
2144         if (event->destroy)
2145                 event->destroy(event);
2146
2147         put_ctx(event->ctx);
2148         call_rcu(&event->rcu_head, free_event_rcu);
2149 }
2150
2151 int perf_event_release_kernel(struct perf_event *event)
2152 {
2153         struct perf_event_context *ctx = event->ctx;
2154
2155         /*
2156          * Remove from the PMU, can't get re-enabled since we got
2157          * here because the last ref went.
2158          */
2159         perf_event_disable(event);
2160
2161         WARN_ON_ONCE(ctx->parent_ctx);
2162         /*
2163          * There are two ways this annotation is useful:
2164          *
2165          *  1) there is a lock recursion from perf_event_exit_task
2166          *     see the comment there.
2167          *
2168          *  2) there is a lock-inversion with mmap_sem through
2169          *     perf_event_read_group(), which takes faults while
2170          *     holding ctx->mutex, however this is called after
2171          *     the last filedesc died, so there is no possibility
2172          *     to trigger the AB-BA case.
2173          */
2174         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2175         raw_spin_lock_irq(&ctx->lock);
2176         perf_group_detach(event);
2177         list_del_event(event, ctx);
2178         raw_spin_unlock_irq(&ctx->lock);
2179         mutex_unlock(&ctx->mutex);
2180
2181         mutex_lock(&event->owner->perf_event_mutex);
2182         list_del_init(&event->owner_entry);
2183         mutex_unlock(&event->owner->perf_event_mutex);
2184         put_task_struct(event->owner);
2185
2186         free_event(event);
2187
2188         return 0;
2189 }
2190 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2191
2192 /*
2193  * Called when the last reference to the file is gone.
2194  */
2195 static int perf_release(struct inode *inode, struct file *file)
2196 {
2197         struct perf_event *event = file->private_data;
2198
2199         file->private_data = NULL;
2200
2201         return perf_event_release_kernel(event);
2202 }
2203
2204 static int perf_event_read_size(struct perf_event *event)
2205 {
2206         int entry = sizeof(u64); /* value */
2207         int size = 0;
2208         int nr = 1;
2209
2210         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2211                 size += sizeof(u64);
2212
2213         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2214                 size += sizeof(u64);
2215
2216         if (event->attr.read_format & PERF_FORMAT_ID)
2217                 entry += sizeof(u64);
2218
2219         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2220                 nr += event->group_leader->nr_siblings;
2221                 size += sizeof(u64);
2222         }
2223
2224         size += entry * nr;
2225
2226         return size;
2227 }
2228
2229 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2230 {
2231         struct perf_event *child;
2232         u64 total = 0;
2233
2234         *enabled = 0;
2235         *running = 0;
2236
2237         mutex_lock(&event->child_mutex);
2238         total += perf_event_read(event);
2239         *enabled += event->total_time_enabled +
2240                         atomic64_read(&event->child_total_time_enabled);
2241         *running += event->total_time_running +
2242                         atomic64_read(&event->child_total_time_running);
2243
2244         list_for_each_entry(child, &event->child_list, child_list) {
2245                 total += perf_event_read(child);
2246                 *enabled += child->total_time_enabled;
2247                 *running += child->total_time_running;
2248         }
2249         mutex_unlock(&event->child_mutex);
2250
2251         return total;
2252 }
2253 EXPORT_SYMBOL_GPL(perf_event_read_value);
2254
2255 static int perf_event_read_group(struct perf_event *event,
2256                                    u64 read_format, char __user *buf)
2257 {
2258         struct perf_event *leader = event->group_leader, *sub;
2259         int n = 0, size = 0, ret = -EFAULT;
2260         struct perf_event_context *ctx = leader->ctx;
2261         u64 values[5];
2262         u64 count, enabled, running;
2263
2264         mutex_lock(&ctx->mutex);
2265         count = perf_event_read_value(leader, &enabled, &running);
2266
2267         values[n++] = 1 + leader->nr_siblings;
2268         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2269                 values[n++] = enabled;
2270         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2271                 values[n++] = running;
2272         values[n++] = count;
2273         if (read_format & PERF_FORMAT_ID)
2274                 values[n++] = primary_event_id(leader);
2275
2276         size = n * sizeof(u64);
2277
2278         if (copy_to_user(buf, values, size))
2279                 goto unlock;
2280
2281         ret = size;
2282
2283         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2284                 n = 0;
2285
2286                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2287                 if (read_format & PERF_FORMAT_ID)
2288                         values[n++] = primary_event_id(sub);
2289
2290                 size = n * sizeof(u64);
2291
2292                 if (copy_to_user(buf + ret, values, size)) {
2293                         ret = -EFAULT;
2294                         goto unlock;
2295                 }
2296
2297                 ret += size;
2298         }
2299 unlock:
2300         mutex_unlock(&ctx->mutex);
2301
2302         return ret;
2303 }
2304
2305 static int perf_event_read_one(struct perf_event *event,
2306                                  u64 read_format, char __user *buf)
2307 {
2308         u64 enabled, running;
2309         u64 values[4];
2310         int n = 0;
2311
2312         values[n++] = perf_event_read_value(event, &enabled, &running);
2313         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2314                 values[n++] = enabled;
2315         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2316                 values[n++] = running;
2317         if (read_format & PERF_FORMAT_ID)
2318                 values[n++] = primary_event_id(event);
2319
2320         if (copy_to_user(buf, values, n * sizeof(u64)))
2321                 return -EFAULT;
2322
2323         return n * sizeof(u64);
2324 }
2325
2326 /*
2327  * Read the performance event - simple non blocking version for now
2328  */
2329 static ssize_t
2330 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2331 {
2332         u64 read_format = event->attr.read_format;
2333         int ret;
2334
2335         /*
2336          * Return end-of-file for a read on a event that is in
2337          * error state (i.e. because it was pinned but it couldn't be
2338          * scheduled on to the CPU at some point).
2339          */
2340         if (event->state == PERF_EVENT_STATE_ERROR)
2341                 return 0;
2342
2343         if (count < perf_event_read_size(event))
2344                 return -ENOSPC;
2345
2346         WARN_ON_ONCE(event->ctx->parent_ctx);
2347         if (read_format & PERF_FORMAT_GROUP)
2348                 ret = perf_event_read_group(event, read_format, buf);
2349         else
2350                 ret = perf_event_read_one(event, read_format, buf);
2351
2352         return ret;
2353 }
2354
2355 static ssize_t
2356 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2357 {
2358         struct perf_event *event = file->private_data;
2359
2360         return perf_read_hw(event, buf, count);
2361 }
2362
2363 static unsigned int perf_poll(struct file *file, poll_table *wait)
2364 {
2365         struct perf_event *event = file->private_data;
2366         struct perf_buffer *buffer;
2367         unsigned int events = POLL_HUP;
2368
2369         rcu_read_lock();
2370         buffer = rcu_dereference(event->buffer);
2371         if (buffer)
2372                 events = atomic_xchg(&buffer->poll, 0);
2373         rcu_read_unlock();
2374
2375         poll_wait(file, &event->waitq, wait);
2376
2377         return events;
2378 }
2379
2380 static void perf_event_reset(struct perf_event *event)
2381 {
2382         (void)perf_event_read(event);
2383         local64_set(&event->count, 0);
2384         perf_event_update_userpage(event);
2385 }
2386
2387 /*
2388  * Holding the top-level event's child_mutex means that any
2389  * descendant process that has inherited this event will block
2390  * in sync_child_event if it goes to exit, thus satisfying the
2391  * task existence requirements of perf_event_enable/disable.
2392  */
2393 static void perf_event_for_each_child(struct perf_event *event,
2394                                         void (*func)(struct perf_event *))
2395 {
2396         struct perf_event *child;
2397
2398         WARN_ON_ONCE(event->ctx->parent_ctx);
2399         mutex_lock(&event->child_mutex);
2400         func(event);
2401         list_for_each_entry(child, &event->child_list, child_list)
2402                 func(child);
2403         mutex_unlock(&event->child_mutex);
2404 }
2405
2406 static void perf_event_for_each(struct perf_event *event,
2407                                   void (*func)(struct perf_event *))
2408 {
2409         struct perf_event_context *ctx = event->ctx;
2410         struct perf_event *sibling;
2411
2412         WARN_ON_ONCE(ctx->parent_ctx);
2413         mutex_lock(&ctx->mutex);
2414         event = event->group_leader;
2415
2416         perf_event_for_each_child(event, func);
2417         func(event);
2418         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2419                 perf_event_for_each_child(event, func);
2420         mutex_unlock(&ctx->mutex);
2421 }
2422
2423 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2424 {
2425         struct perf_event_context *ctx = event->ctx;
2426         unsigned long size;
2427         int ret = 0;
2428         u64 value;
2429
2430         if (!event->attr.sample_period)
2431                 return -EINVAL;
2432
2433         size = copy_from_user(&value, arg, sizeof(value));
2434         if (size != sizeof(value))
2435                 return -EFAULT;
2436
2437         if (!value)
2438                 return -EINVAL;
2439
2440         raw_spin_lock_irq(&ctx->lock);
2441         if (event->attr.freq) {
2442                 if (value > sysctl_perf_event_sample_rate) {
2443                         ret = -EINVAL;
2444                         goto unlock;
2445                 }
2446
2447                 event->attr.sample_freq = value;
2448         } else {
2449                 event->attr.sample_period = value;
2450                 event->hw.sample_period = value;
2451         }
2452 unlock:
2453         raw_spin_unlock_irq(&ctx->lock);
2454
2455         return ret;
2456 }
2457
2458 static const struct file_operations perf_fops;
2459
2460 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2461 {
2462         struct file *file;
2463
2464         file = fget_light(fd, fput_needed);
2465         if (!file)
2466                 return ERR_PTR(-EBADF);
2467
2468         if (file->f_op != &perf_fops) {
2469                 fput_light(file, *fput_needed);
2470                 *fput_needed = 0;
2471                 return ERR_PTR(-EBADF);
2472         }
2473
2474         return file->private_data;
2475 }
2476
2477 static int perf_event_set_output(struct perf_event *event,
2478                                  struct perf_event *output_event);
2479 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2480
2481 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2482 {
2483         struct perf_event *event = file->private_data;
2484         void (*func)(struct perf_event *);
2485         u32 flags = arg;
2486
2487         switch (cmd) {
2488         case PERF_EVENT_IOC_ENABLE:
2489                 func = perf_event_enable;
2490                 break;
2491         case PERF_EVENT_IOC_DISABLE:
2492                 func = perf_event_disable;
2493                 break;
2494         case PERF_EVENT_IOC_RESET:
2495                 func = perf_event_reset;
2496                 break;
2497
2498         case PERF_EVENT_IOC_REFRESH:
2499                 return perf_event_refresh(event, arg);
2500
2501         case PERF_EVENT_IOC_PERIOD:
2502                 return perf_event_period(event, (u64 __user *)arg);
2503
2504         case PERF_EVENT_IOC_SET_OUTPUT:
2505         {
2506                 struct perf_event *output_event = NULL;
2507                 int fput_needed = 0;
2508                 int ret;
2509
2510                 if (arg != -1) {
2511                         output_event = perf_fget_light(arg, &fput_needed);
2512                         if (IS_ERR(output_event))
2513                                 return PTR_ERR(output_event);
2514                 }
2515
2516                 ret = perf_event_set_output(event, output_event);
2517                 if (output_event)
2518                         fput_light(output_event->filp, fput_needed);
2519
2520                 return ret;
2521         }
2522
2523         case PERF_EVENT_IOC_SET_FILTER:
2524                 return perf_event_set_filter(event, (void __user *)arg);
2525
2526         default:
2527                 return -ENOTTY;
2528         }
2529
2530         if (flags & PERF_IOC_FLAG_GROUP)
2531                 perf_event_for_each(event, func);
2532         else
2533                 perf_event_for_each_child(event, func);
2534
2535         return 0;
2536 }
2537
2538 int perf_event_task_enable(void)
2539 {
2540         struct perf_event *event;
2541
2542         mutex_lock(&current->perf_event_mutex);
2543         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2544                 perf_event_for_each_child(event, perf_event_enable);
2545         mutex_unlock(&current->perf_event_mutex);
2546
2547         return 0;
2548 }
2549
2550 int perf_event_task_disable(void)
2551 {
2552         struct perf_event *event;
2553
2554         mutex_lock(&current->perf_event_mutex);
2555         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2556                 perf_event_for_each_child(event, perf_event_disable);
2557         mutex_unlock(&current->perf_event_mutex);
2558
2559         return 0;
2560 }
2561
2562 #ifndef PERF_EVENT_INDEX_OFFSET
2563 # define PERF_EVENT_INDEX_OFFSET 0
2564 #endif
2565
2566 static int perf_event_index(struct perf_event *event)
2567 {
2568         if (event->hw.state & PERF_HES_STOPPED)
2569                 return 0;
2570
2571         if (event->state != PERF_EVENT_STATE_ACTIVE)
2572                 return 0;
2573
2574         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2575 }
2576
2577 /*
2578  * Callers need to ensure there can be no nesting of this function, otherwise
2579  * the seqlock logic goes bad. We can not serialize this because the arch
2580  * code calls this from NMI context.
2581  */
2582 void perf_event_update_userpage(struct perf_event *event)
2583 {
2584         struct perf_event_mmap_page *userpg;
2585         struct perf_buffer *buffer;
2586
2587         rcu_read_lock();
2588         buffer = rcu_dereference(event->buffer);
2589         if (!buffer)
2590                 goto unlock;
2591
2592         userpg = buffer->user_page;
2593
2594         /*
2595          * Disable preemption so as to not let the corresponding user-space
2596          * spin too long if we get preempted.
2597          */
2598         preempt_disable();
2599         ++userpg->lock;
2600         barrier();
2601         userpg->index = perf_event_index(event);
2602         userpg->offset = perf_event_count(event);
2603         if (event->state == PERF_EVENT_STATE_ACTIVE)
2604                 userpg->offset -= local64_read(&event->hw.prev_count);
2605
2606         userpg->time_enabled = event->total_time_enabled +
2607                         atomic64_read(&event->child_total_time_enabled);
2608
2609         userpg->time_running = event->total_time_running +
2610                         atomic64_read(&event->child_total_time_running);
2611
2612         barrier();
2613         ++userpg->lock;
2614         preempt_enable();
2615 unlock:
2616         rcu_read_unlock();
2617 }
2618
2619 static unsigned long perf_data_size(struct perf_buffer *buffer);
2620
2621 static void
2622 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2623 {
2624         long max_size = perf_data_size(buffer);
2625
2626         if (watermark)
2627                 buffer->watermark = min(max_size, watermark);
2628
2629         if (!buffer->watermark)
2630                 buffer->watermark = max_size / 2;
2631
2632         if (flags & PERF_BUFFER_WRITABLE)
2633                 buffer->writable = 1;
2634
2635         atomic_set(&buffer->refcount, 1);
2636 }
2637
2638 #ifndef CONFIG_PERF_USE_VMALLOC
2639
2640 /*
2641  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2642  */
2643
2644 static struct page *
2645 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2646 {
2647         if (pgoff > buffer->nr_pages)
2648                 return NULL;
2649
2650         if (pgoff == 0)
2651                 return virt_to_page(buffer->user_page);
2652
2653         return virt_to_page(buffer->data_pages[pgoff - 1]);
2654 }
2655
2656 static void *perf_mmap_alloc_page(int cpu)
2657 {
2658         struct page *page;
2659         int node;
2660
2661         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2662         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2663         if (!page)
2664                 return NULL;
2665
2666         return page_address(page);
2667 }
2668
2669 static struct perf_buffer *
2670 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2671 {
2672         struct perf_buffer *buffer;
2673         unsigned long size;
2674         int i;
2675
2676         size = sizeof(struct perf_buffer);
2677         size += nr_pages * sizeof(void *);
2678
2679         buffer = kzalloc(size, GFP_KERNEL);
2680         if (!buffer)
2681                 goto fail;
2682
2683         buffer->user_page = perf_mmap_alloc_page(cpu);
2684         if (!buffer->user_page)
2685                 goto fail_user_page;
2686
2687         for (i = 0; i < nr_pages; i++) {
2688                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2689                 if (!buffer->data_pages[i])
2690                         goto fail_data_pages;
2691         }
2692
2693         buffer->nr_pages = nr_pages;
2694
2695         perf_buffer_init(buffer, watermark, flags);
2696
2697         return buffer;
2698
2699 fail_data_pages:
2700         for (i--; i >= 0; i--)
2701                 free_page((unsigned long)buffer->data_pages[i]);
2702
2703         free_page((unsigned long)buffer->user_page);
2704
2705 fail_user_page:
2706         kfree(buffer);
2707
2708 fail:
2709         return NULL;
2710 }
2711
2712 static void perf_mmap_free_page(unsigned long addr)
2713 {
2714         struct page *page = virt_to_page((void *)addr);
2715
2716         page->mapping = NULL;
2717         __free_page(page);
2718 }
2719
2720 static void perf_buffer_free(struct perf_buffer *buffer)
2721 {
2722         int i;
2723
2724         perf_mmap_free_page((unsigned long)buffer->user_page);
2725         for (i = 0; i < buffer->nr_pages; i++)
2726                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2727         kfree(buffer);
2728 }
2729
2730 static inline int page_order(struct perf_buffer *buffer)
2731 {
2732         return 0;
2733 }
2734
2735 #else
2736
2737 /*
2738  * Back perf_mmap() with vmalloc memory.
2739  *
2740  * Required for architectures that have d-cache aliasing issues.
2741  */
2742
2743 static inline int page_order(struct perf_buffer *buffer)
2744 {
2745         return buffer->page_order;
2746 }
2747
2748 static struct page *
2749 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2750 {
2751         if (pgoff > (1UL << page_order(buffer)))
2752                 return NULL;
2753
2754         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2755 }
2756
2757 static void perf_mmap_unmark_page(void *addr)
2758 {
2759         struct page *page = vmalloc_to_page(addr);
2760
2761         page->mapping = NULL;
2762 }
2763
2764 static void perf_buffer_free_work(struct work_struct *work)
2765 {
2766         struct perf_buffer *buffer;
2767         void *base;
2768         int i, nr;
2769
2770         buffer = container_of(work, struct perf_buffer, work);
2771         nr = 1 << page_order(buffer);
2772
2773         base = buffer->user_page;
2774         for (i = 0; i < nr + 1; i++)
2775                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2776
2777         vfree(base);
2778         kfree(buffer);
2779 }
2780
2781 static void perf_buffer_free(struct perf_buffer *buffer)
2782 {
2783         schedule_work(&buffer->work);
2784 }
2785
2786 static struct perf_buffer *
2787 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2788 {
2789         struct perf_buffer *buffer;
2790         unsigned long size;
2791         void *all_buf;
2792
2793         size = sizeof(struct perf_buffer);
2794         size += sizeof(void *);
2795
2796         buffer = kzalloc(size, GFP_KERNEL);
2797         if (!buffer)
2798                 goto fail;
2799
2800         INIT_WORK(&buffer->work, perf_buffer_free_work);
2801
2802         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2803         if (!all_buf)
2804                 goto fail_all_buf;
2805
2806         buffer->user_page = all_buf;
2807         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2808         buffer->page_order = ilog2(nr_pages);
2809         buffer->nr_pages = 1;
2810
2811         perf_buffer_init(buffer, watermark, flags);
2812
2813         return buffer;
2814
2815 fail_all_buf:
2816         kfree(buffer);
2817
2818 fail:
2819         return NULL;
2820 }
2821
2822 #endif
2823
2824 static unsigned long perf_data_size(struct perf_buffer *buffer)
2825 {
2826         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2827 }
2828
2829 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2830 {
2831         struct perf_event *event = vma->vm_file->private_data;
2832         struct perf_buffer *buffer;
2833         int ret = VM_FAULT_SIGBUS;
2834
2835         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2836                 if (vmf->pgoff == 0)
2837                         ret = 0;
2838                 return ret;
2839         }
2840
2841         rcu_read_lock();
2842         buffer = rcu_dereference(event->buffer);
2843         if (!buffer)
2844                 goto unlock;
2845
2846         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2847                 goto unlock;
2848
2849         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2850         if (!vmf->page)
2851                 goto unlock;
2852
2853         get_page(vmf->page);
2854         vmf->page->mapping = vma->vm_file->f_mapping;
2855         vmf->page->index   = vmf->pgoff;
2856
2857         ret = 0;
2858 unlock:
2859         rcu_read_unlock();
2860
2861         return ret;
2862 }
2863
2864 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2865 {
2866         struct perf_buffer *buffer;
2867
2868         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2869         perf_buffer_free(buffer);
2870 }
2871
2872 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2873 {
2874         struct perf_buffer *buffer;
2875
2876         rcu_read_lock();
2877         buffer = rcu_dereference(event->buffer);
2878         if (buffer) {
2879                 if (!atomic_inc_not_zero(&buffer->refcount))
2880                         buffer = NULL;
2881         }
2882         rcu_read_unlock();
2883
2884         return buffer;
2885 }
2886
2887 static void perf_buffer_put(struct perf_buffer *buffer)
2888 {
2889         if (!atomic_dec_and_test(&buffer->refcount))
2890                 return;
2891
2892         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2893 }
2894
2895 static void perf_mmap_open(struct vm_area_struct *vma)
2896 {
2897         struct perf_event *event = vma->vm_file->private_data;
2898
2899         atomic_inc(&event->mmap_count);
2900 }
2901
2902 static void perf_mmap_close(struct vm_area_struct *vma)
2903 {
2904         struct perf_event *event = vma->vm_file->private_data;
2905
2906         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2907                 unsigned long size = perf_data_size(event->buffer);
2908                 struct user_struct *user = event->mmap_user;
2909                 struct perf_buffer *buffer = event->buffer;
2910
2911                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2912                 vma->vm_mm->locked_vm -= event->mmap_locked;
2913                 rcu_assign_pointer(event->buffer, NULL);
2914                 mutex_unlock(&event->mmap_mutex);
2915
2916                 perf_buffer_put(buffer);
2917                 free_uid(user);
2918         }
2919 }
2920
2921 static const struct vm_operations_struct perf_mmap_vmops = {
2922         .open           = perf_mmap_open,
2923         .close          = perf_mmap_close,
2924         .fault          = perf_mmap_fault,
2925         .page_mkwrite   = perf_mmap_fault,
2926 };
2927
2928 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2929 {
2930         struct perf_event *event = file->private_data;
2931         unsigned long user_locked, user_lock_limit;
2932         struct user_struct *user = current_user();
2933         unsigned long locked, lock_limit;
2934         struct perf_buffer *buffer;
2935         unsigned long vma_size;
2936         unsigned long nr_pages;
2937         long user_extra, extra;
2938         int ret = 0, flags = 0;
2939
2940         /*
2941          * Don't allow mmap() of inherited per-task counters. This would
2942          * create a performance issue due to all children writing to the
2943          * same buffer.
2944          */
2945         if (event->cpu == -1 && event->attr.inherit)
2946                 return -EINVAL;
2947
2948         if (!(vma->vm_flags & VM_SHARED))
2949                 return -EINVAL;
2950
2951         vma_size = vma->vm_end - vma->vm_start;
2952         nr_pages = (vma_size / PAGE_SIZE) - 1;
2953
2954         /*
2955          * If we have buffer pages ensure they're a power-of-two number, so we
2956          * can do bitmasks instead of modulo.
2957          */
2958         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2959                 return -EINVAL;
2960
2961         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2962                 return -EINVAL;
2963
2964         if (vma->vm_pgoff != 0)
2965                 return -EINVAL;
2966
2967         WARN_ON_ONCE(event->ctx->parent_ctx);
2968         mutex_lock(&event->mmap_mutex);
2969         if (event->buffer) {
2970                 if (event->buffer->nr_pages == nr_pages)
2971                         atomic_inc(&event->buffer->refcount);
2972                 else
2973                         ret = -EINVAL;
2974                 goto unlock;
2975         }
2976
2977         user_extra = nr_pages + 1;
2978         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2979
2980         /*
2981          * Increase the limit linearly with more CPUs:
2982          */
2983         user_lock_limit *= num_online_cpus();
2984
2985         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2986
2987         extra = 0;
2988         if (user_locked > user_lock_limit)
2989                 extra = user_locked - user_lock_limit;
2990
2991         lock_limit = rlimit(RLIMIT_MEMLOCK);
2992         lock_limit >>= PAGE_SHIFT;
2993         locked = vma->vm_mm->locked_vm + extra;
2994
2995         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2996                 !capable(CAP_IPC_LOCK)) {
2997                 ret = -EPERM;
2998                 goto unlock;
2999         }
3000
3001         WARN_ON(event->buffer);
3002
3003         if (vma->vm_flags & VM_WRITE)
3004                 flags |= PERF_BUFFER_WRITABLE;
3005
3006         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3007                                    event->cpu, flags);
3008         if (!buffer) {
3009                 ret = -ENOMEM;
3010                 goto unlock;
3011         }
3012         rcu_assign_pointer(event->buffer, buffer);
3013
3014         atomic_long_add(user_extra, &user->locked_vm);
3015         event->mmap_locked = extra;
3016         event->mmap_user = get_current_user();
3017         vma->vm_mm->locked_vm += event->mmap_locked;
3018
3019 unlock:
3020         if (!ret)
3021                 atomic_inc(&event->mmap_count);
3022         mutex_unlock(&event->mmap_mutex);
3023
3024         vma->vm_flags |= VM_RESERVED;
3025         vma->vm_ops = &perf_mmap_vmops;
3026
3027         return ret;
3028 }
3029
3030 static int perf_fasync(int fd, struct file *filp, int on)
3031 {
3032         struct inode *inode = filp->f_path.dentry->d_inode;
3033         struct perf_event *event = filp->private_data;
3034         int retval;
3035
3036         mutex_lock(&inode->i_mutex);
3037         retval = fasync_helper(fd, filp, on, &event->fasync);
3038         mutex_unlock(&inode->i_mutex);
3039
3040         if (retval < 0)
3041                 return retval;
3042
3043         return 0;
3044 }
3045
3046 static const struct file_operations perf_fops = {
3047         .llseek                 = no_llseek,
3048         .release                = perf_release,
3049         .read                   = perf_read,
3050         .poll                   = perf_poll,
3051         .unlocked_ioctl         = perf_ioctl,
3052         .compat_ioctl           = perf_ioctl,
3053         .mmap                   = perf_mmap,
3054         .fasync                 = perf_fasync,
3055 };
3056
3057 /*
3058  * Perf event wakeup
3059  *
3060  * If there's data, ensure we set the poll() state and publish everything
3061  * to user-space before waking everybody up.
3062  */
3063
3064 void perf_event_wakeup(struct perf_event *event)
3065 {
3066         wake_up_all(&event->waitq);
3067
3068         if (event->pending_kill) {
3069                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3070                 event->pending_kill = 0;
3071         }
3072 }
3073
3074 /*
3075  * Pending wakeups
3076  *
3077  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
3078  *
3079  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
3080  * single linked list and use cmpxchg() to add entries lockless.
3081  */
3082
3083 static void perf_pending_event(struct perf_pending_entry *entry)
3084 {
3085         struct perf_event *event = container_of(entry,
3086                         struct perf_event, pending);
3087
3088         if (event->pending_disable) {
3089                 event->pending_disable = 0;
3090                 __perf_event_disable(event);
3091         }
3092
3093         if (event->pending_wakeup) {
3094                 event->pending_wakeup = 0;
3095                 perf_event_wakeup(event);
3096         }
3097 }
3098
3099 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3100
3101 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3102         PENDING_TAIL,
3103 };
3104
3105 static void perf_pending_queue(struct perf_pending_entry *entry,
3106                                void (*func)(struct perf_pending_entry *))
3107 {
3108         struct perf_pending_entry **head;
3109
3110         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3111                 return;
3112
3113         entry->func = func;
3114
3115         head = &get_cpu_var(perf_pending_head);
3116
3117         do {
3118                 entry->next = *head;
3119         } while (cmpxchg(head, entry->next, entry) != entry->next);
3120
3121         set_perf_event_pending();
3122
3123         put_cpu_var(perf_pending_head);
3124 }
3125
3126 static int __perf_pending_run(void)
3127 {
3128         struct perf_pending_entry *list;
3129         int nr = 0;
3130
3131         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3132         while (list != PENDING_TAIL) {
3133                 void (*func)(struct perf_pending_entry *);
3134                 struct perf_pending_entry *entry = list;
3135
3136                 list = list->next;
3137
3138                 func = entry->func;
3139                 entry->next = NULL;
3140                 /*
3141                  * Ensure we observe the unqueue before we issue the wakeup,
3142                  * so that we won't be waiting forever.
3143                  * -- see perf_not_pending().
3144                  */
3145                 smp_wmb();
3146
3147                 func(entry);
3148                 nr++;
3149         }
3150
3151         return nr;
3152 }
3153
3154 static inline int perf_not_pending(struct perf_event *event)
3155 {
3156         /*
3157          * If we flush on whatever cpu we run, there is a chance we don't
3158          * need to wait.
3159          */
3160         get_cpu();
3161         __perf_pending_run();
3162         put_cpu();
3163
3164         /*
3165          * Ensure we see the proper queue state before going to sleep
3166          * so that we do not miss the wakeup. -- see perf_pending_handle()
3167          */
3168         smp_rmb();
3169         return event->pending.next == NULL;
3170 }
3171
3172 static void perf_pending_sync(struct perf_event *event)
3173 {
3174         wait_event(event->waitq, perf_not_pending(event));
3175 }
3176
3177 void perf_event_do_pending(void)
3178 {
3179         __perf_pending_run();
3180 }
3181
3182 /*
3183  * We assume there is only KVM supporting the callbacks.
3184  * Later on, we might change it to a list if there is
3185  * another virtualization implementation supporting the callbacks.
3186  */
3187 struct perf_guest_info_callbacks *perf_guest_cbs;
3188
3189 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3190 {
3191         perf_guest_cbs = cbs;
3192         return 0;
3193 }
3194 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3195
3196 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3197 {
3198         perf_guest_cbs = NULL;
3199         return 0;
3200 }
3201 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3202
3203 /*
3204  * Output
3205  */
3206 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3207                               unsigned long offset, unsigned long head)
3208 {
3209         unsigned long mask;
3210
3211         if (!buffer->writable)
3212                 return true;
3213
3214         mask = perf_data_size(buffer) - 1;
3215
3216         offset = (offset - tail) & mask;
3217         head   = (head   - tail) & mask;
3218
3219         if ((int)(head - offset) < 0)
3220                 return false;
3221
3222         return true;
3223 }
3224
3225 static void perf_output_wakeup(struct perf_output_handle *handle)
3226 {
3227         atomic_set(&handle->buffer->poll, POLL_IN);
3228
3229         if (handle->nmi) {
3230                 handle->event->pending_wakeup = 1;
3231                 perf_pending_queue(&handle->event->pending,
3232                                    perf_pending_event);
3233         } else
3234                 perf_event_wakeup(handle->event);
3235 }
3236
3237 /*
3238  * We need to ensure a later event_id doesn't publish a head when a former
3239  * event isn't done writing. However since we need to deal with NMIs we
3240  * cannot fully serialize things.
3241  *
3242  * We only publish the head (and generate a wakeup) when the outer-most
3243  * event completes.
3244  */
3245 static void perf_output_get_handle(struct perf_output_handle *handle)
3246 {
3247         struct perf_buffer *buffer = handle->buffer;
3248
3249         preempt_disable();
3250         local_inc(&buffer->nest);
3251         handle->wakeup = local_read(&buffer->wakeup);
3252 }
3253
3254 static void perf_output_put_handle(struct perf_output_handle *handle)
3255 {
3256         struct perf_buffer *buffer = handle->buffer;
3257         unsigned long head;
3258
3259 again:
3260         head = local_read(&buffer->head);
3261
3262         /*
3263          * IRQ/NMI can happen here, which means we can miss a head update.
3264          */
3265
3266         if (!local_dec_and_test(&buffer->nest))
3267                 goto out;
3268
3269         /*
3270          * Publish the known good head. Rely on the full barrier implied
3271          * by atomic_dec_and_test() order the buffer->head read and this
3272          * write.
3273          */
3274         buffer->user_page->data_head = head;
3275
3276         /*
3277          * Now check if we missed an update, rely on the (compiler)
3278          * barrier in atomic_dec_and_test() to re-read buffer->head.
3279          */
3280         if (unlikely(head != local_read(&buffer->head))) {
3281                 local_inc(&buffer->nest);
3282                 goto again;
3283         }
3284
3285         if (handle->wakeup != local_read(&buffer->wakeup))
3286                 perf_output_wakeup(handle);
3287
3288 out:
3289         preempt_enable();
3290 }
3291
3292 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3293                       const void *buf, unsigned int len)
3294 {
3295         do {
3296                 unsigned long size = min_t(unsigned long, handle->size, len);
3297
3298                 memcpy(handle->addr, buf, size);
3299
3300                 len -= size;
3301                 handle->addr += size;
3302                 buf += size;
3303                 handle->size -= size;
3304                 if (!handle->size) {
3305                         struct perf_buffer *buffer = handle->buffer;
3306
3307                         handle->page++;
3308                         handle->page &= buffer->nr_pages - 1;
3309                         handle->addr = buffer->data_pages[handle->page];
3310                         handle->size = PAGE_SIZE << page_order(buffer);
3311                 }
3312         } while (len);
3313 }
3314
3315 int perf_output_begin(struct perf_output_handle *handle,
3316                       struct perf_event *event, unsigned int size,
3317                       int nmi, int sample)
3318 {
3319         struct perf_buffer *buffer;
3320         unsigned long tail, offset, head;
3321         int have_lost;
3322         struct {
3323                 struct perf_event_header header;
3324                 u64                      id;
3325                 u64                      lost;
3326         } lost_event;
3327
3328         rcu_read_lock();
3329         /*
3330          * For inherited events we send all the output towards the parent.
3331          */
3332         if (event->parent)
3333                 event = event->parent;
3334
3335         buffer = rcu_dereference(event->buffer);
3336         if (!buffer)
3337                 goto out;
3338
3339         handle->buffer  = buffer;
3340         handle->event   = event;
3341         handle->nmi     = nmi;
3342         handle->sample  = sample;
3343
3344         if (!buffer->nr_pages)
3345                 goto out;
3346
3347         have_lost = local_read(&buffer->lost);
3348         if (have_lost)
3349                 size += sizeof(lost_event);
3350
3351         perf_output_get_handle(handle);
3352
3353         do {
3354                 /*
3355                  * Userspace could choose to issue a mb() before updating the
3356                  * tail pointer. So that all reads will be completed before the
3357                  * write is issued.
3358                  */
3359                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3360                 smp_rmb();
3361                 offset = head = local_read(&buffer->head);
3362                 head += size;
3363                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3364                         goto fail;
3365         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3366
3367         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3368                 local_add(buffer->watermark, &buffer->wakeup);
3369
3370         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3371         handle->page &= buffer->nr_pages - 1;
3372         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3373         handle->addr = buffer->data_pages[handle->page];
3374         handle->addr += handle->size;
3375         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3376
3377         if (have_lost) {
3378                 lost_event.header.type = PERF_RECORD_LOST;
3379                 lost_event.header.misc = 0;
3380                 lost_event.header.size = sizeof(lost_event);
3381                 lost_event.id          = event->id;
3382                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3383
3384                 perf_output_put(handle, lost_event);
3385         }
3386
3387         return 0;
3388
3389 fail:
3390         local_inc(&buffer->lost);
3391         perf_output_put_handle(handle);
3392 out:
3393         rcu_read_unlock();
3394
3395         return -ENOSPC;
3396 }
3397
3398 void perf_output_end(struct perf_output_handle *handle)
3399 {
3400         struct perf_event *event = handle->event;
3401         struct perf_buffer *buffer = handle->buffer;
3402
3403         int wakeup_events = event->attr.wakeup_events;
3404
3405         if (handle->sample && wakeup_events) {
3406                 int events = local_inc_return(&buffer->events);
3407                 if (events >= wakeup_events) {
3408                         local_sub(wakeup_events, &buffer->events);
3409                         local_inc(&buffer->wakeup);
3410                 }
3411         }
3412
3413         perf_output_put_handle(handle);
3414         rcu_read_unlock();
3415 }
3416
3417 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3418 {
3419         /*
3420          * only top level events have the pid namespace they were created in
3421          */
3422         if (event->parent)
3423                 event = event->parent;
3424
3425         return task_tgid_nr_ns(p, event->ns);
3426 }
3427
3428 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3429 {
3430         /*
3431          * only top level events have the pid namespace they were created in
3432          */
3433         if (event->parent)
3434                 event = event->parent;
3435
3436         return task_pid_nr_ns(p, event->ns);
3437 }
3438
3439 static void perf_output_read_one(struct perf_output_handle *handle,
3440                                  struct perf_event *event)
3441 {
3442         u64 read_format = event->attr.read_format;
3443         u64 values[4];
3444         int n = 0;
3445
3446         values[n++] = perf_event_count(event);
3447         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3448                 values[n++] = event->total_time_enabled +
3449                         atomic64_read(&event->child_total_time_enabled);
3450         }
3451         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3452                 values[n++] = event->total_time_running +
3453                         atomic64_read(&event->child_total_time_running);
3454         }
3455         if (read_format & PERF_FORMAT_ID)
3456                 values[n++] = primary_event_id(event);
3457
3458         perf_output_copy(handle, values, n * sizeof(u64));
3459 }
3460
3461 /*
3462  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3463  */
3464 static void perf_output_read_group(struct perf_output_handle *handle,
3465                             struct perf_event *event)
3466 {
3467         struct perf_event *leader = event->group_leader, *sub;
3468         u64 read_format = event->attr.read_format;
3469         u64 values[5];
3470         int n = 0;
3471
3472         values[n++] = 1 + leader->nr_siblings;
3473
3474         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3475                 values[n++] = leader->total_time_enabled;
3476
3477         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3478                 values[n++] = leader->total_time_running;
3479
3480         if (leader != event)
3481                 leader->pmu->read(leader);
3482
3483         values[n++] = perf_event_count(leader);
3484         if (read_format & PERF_FORMAT_ID)
3485                 values[n++] = primary_event_id(leader);
3486
3487         perf_output_copy(handle, values, n * sizeof(u64));
3488
3489         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3490                 n = 0;
3491
3492                 if (sub != event)
3493                         sub->pmu->read(sub);
3494
3495                 values[n++] = perf_event_count(sub);
3496                 if (read_format & PERF_FORMAT_ID)
3497                         values[n++] = primary_event_id(sub);
3498
3499                 perf_output_copy(handle, values, n * sizeof(u64));
3500         }
3501 }
3502
3503 static void perf_output_read(struct perf_output_handle *handle,
3504                              struct perf_event *event)
3505 {
3506         if (event->attr.read_format & PERF_FORMAT_GROUP)
3507                 perf_output_read_group(handle, event);
3508         else
3509                 perf_output_read_one(handle, event);
3510 }
3511
3512 void perf_output_sample(struct perf_output_handle *handle,
3513                         struct perf_event_header *header,
3514                         struct perf_sample_data *data,
3515                         struct perf_event *event)
3516 {
3517         u64 sample_type = data->type;
3518
3519         perf_output_put(handle, *header);
3520
3521         if (sample_type & PERF_SAMPLE_IP)
3522                 perf_output_put(handle, data->ip);
3523
3524         if (sample_type & PERF_SAMPLE_TID)
3525                 perf_output_put(handle, data->tid_entry);
3526
3527         if (sample_type & PERF_SAMPLE_TIME)
3528                 perf_output_put(handle, data->time);
3529
3530         if (sample_type & PERF_SAMPLE_ADDR)
3531                 perf_output_put(handle, data->addr);
3532
3533         if (sample_type & PERF_SAMPLE_ID)
3534                 perf_output_put(handle, data->id);
3535
3536         if (sample_type & PERF_SAMPLE_STREAM_ID)
3537                 perf_output_put(handle, data->stream_id);
3538
3539         if (sample_type & PERF_SAMPLE_CPU)
3540                 perf_output_put(handle, data->cpu_entry);
3541
3542         if (sample_type & PERF_SAMPLE_PERIOD)
3543                 perf_output_put(handle, data->period);
3544
3545         if (sample_type & PERF_SAMPLE_READ)
3546                 perf_output_read(handle, event);
3547
3548         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3549                 if (data->callchain) {
3550                         int size = 1;
3551
3552                         if (data->callchain)
3553                                 size += data->callchain->nr;
3554
3555                         size *= sizeof(u64);
3556
3557                         perf_output_copy(handle, data->callchain, size);
3558                 } else {
3559                         u64 nr = 0;
3560                         perf_output_put(handle, nr);
3561                 }
3562         }
3563
3564         if (sample_type & PERF_SAMPLE_RAW) {
3565                 if (data->raw) {
3566                         perf_output_put(handle, data->raw->size);
3567                         perf_output_copy(handle, data->raw->data,
3568                                          data->raw->size);
3569                 } else {
3570                         struct {
3571                                 u32     size;
3572                                 u32     data;
3573                         } raw = {
3574                                 .size = sizeof(u32),
3575                                 .data = 0,
3576                         };
3577                         perf_output_put(handle, raw);
3578                 }
3579         }
3580 }
3581
3582 void perf_prepare_sample(struct perf_event_header *header,
3583                          struct perf_sample_data *data,
3584                          struct perf_event *event,
3585                          struct pt_regs *regs)
3586 {
3587         u64 sample_type = event->attr.sample_type;
3588
3589         data->type = sample_type;
3590
3591         header->type = PERF_RECORD_SAMPLE;
3592         header->size = sizeof(*header);
3593
3594         header->misc = 0;
3595         header->misc |= perf_misc_flags(regs);
3596
3597         if (sample_type & PERF_SAMPLE_IP) {
3598                 data->ip = perf_instruction_pointer(regs);
3599
3600                 header->size += sizeof(data->ip);
3601         }
3602
3603         if (sample_type & PERF_SAMPLE_TID) {
3604                 /* namespace issues */
3605                 data->tid_entry.pid = perf_event_pid(event, current);
3606                 data->tid_entry.tid = perf_event_tid(event, current);
3607
3608                 header->size += sizeof(data->tid_entry);
3609         }
3610
3611         if (sample_type & PERF_SAMPLE_TIME) {
3612                 data->time = perf_clock();
3613
3614                 header->size += sizeof(data->time);
3615         }
3616
3617         if (sample_type & PERF_SAMPLE_ADDR)
3618                 header->size += sizeof(data->addr);
3619
3620         if (sample_type & PERF_SAMPLE_ID) {
3621                 data->id = primary_event_id(event);
3622
3623                 header->size += sizeof(data->id);
3624         }
3625
3626         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3627                 data->stream_id = event->id;
3628
3629                 header->size += sizeof(data->stream_id);
3630         }
3631
3632         if (sample_type & PERF_SAMPLE_CPU) {
3633                 data->cpu_entry.cpu             = raw_smp_processor_id();
3634                 data->cpu_entry.reserved        = 0;
3635
3636                 header->size += sizeof(data->cpu_entry);
3637         }
3638
3639         if (sample_type & PERF_SAMPLE_PERIOD)
3640                 header->size += sizeof(data->period);
3641
3642         if (sample_type & PERF_SAMPLE_READ)
3643                 header->size += perf_event_read_size(event);
3644
3645         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3646                 int size = 1;
3647
3648                 data->callchain = perf_callchain(regs);
3649
3650                 if (data->callchain)
3651                         size += data->callchain->nr;
3652
3653                 header->size += size * sizeof(u64);
3654         }
3655
3656         if (sample_type & PERF_SAMPLE_RAW) {
3657                 int size = sizeof(u32);
3658
3659                 if (data->raw)
3660                         size += data->raw->size;
3661                 else
3662                         size += sizeof(u32);
3663
3664                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3665                 header->size += size;
3666         }
3667 }
3668
3669 static void perf_event_output(struct perf_event *event, int nmi,
3670                                 struct perf_sample_data *data,
3671                                 struct pt_regs *regs)
3672 {
3673         struct perf_output_handle handle;
3674         struct perf_event_header header;
3675
3676         /* protect the callchain buffers */
3677         rcu_read_lock();
3678
3679         perf_prepare_sample(&header, data, event, regs);
3680
3681         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3682                 goto exit;
3683
3684         perf_output_sample(&handle, &header, data, event);
3685
3686         perf_output_end(&handle);
3687
3688 exit:
3689         rcu_read_unlock();
3690 }
3691
3692 /*
3693  * read event_id
3694  */
3695
3696 struct perf_read_event {
3697         struct perf_event_header        header;
3698
3699         u32                             pid;
3700         u32                             tid;
3701 };
3702
3703 static void
3704 perf_event_read_event(struct perf_event *event,
3705                         struct task_struct *task)
3706 {
3707         struct perf_output_handle handle;
3708         struct perf_read_event read_event = {
3709                 .header = {
3710                         .type = PERF_RECORD_READ,
3711                         .misc = 0,
3712                         .size = sizeof(read_event) + perf_event_read_size(event),
3713                 },
3714                 .pid = perf_event_pid(event, task),
3715                 .tid = perf_event_tid(event, task),
3716         };
3717         int ret;
3718
3719         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3720         if (ret)
3721                 return;
3722
3723         perf_output_put(&handle, read_event);
3724         perf_output_read(&handle, event);
3725
3726         perf_output_end(&handle);
3727 }
3728
3729 /*
3730  * task tracking -- fork/exit
3731  *
3732  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3733  */
3734
3735 struct perf_task_event {
3736         struct task_struct              *task;
3737         struct perf_event_context       *task_ctx;
3738
3739         struct {
3740                 struct perf_event_header        header;
3741
3742                 u32                             pid;
3743                 u32                             ppid;
3744                 u32                             tid;
3745                 u32                             ptid;
3746                 u64                             time;
3747         } event_id;
3748 };
3749
3750 static void perf_event_task_output(struct perf_event *event,
3751                                      struct perf_task_event *task_event)
3752 {
3753         struct perf_output_handle handle;
3754         struct task_struct *task = task_event->task;
3755         int size, ret;
3756
3757         size  = task_event->event_id.header.size;
3758         ret = perf_output_begin(&handle, event, size, 0, 0);
3759
3760         if (ret)
3761                 return;
3762
3763         task_event->event_id.pid = perf_event_pid(event, task);
3764         task_event->event_id.ppid = perf_event_pid(event, current);
3765
3766         task_event->event_id.tid = perf_event_tid(event, task);
3767         task_event->event_id.ptid = perf_event_tid(event, current);
3768
3769         perf_output_put(&handle, task_event->event_id);
3770
3771         perf_output_end(&handle);
3772 }
3773
3774 static int perf_event_task_match(struct perf_event *event)
3775 {
3776         if (event->state < PERF_EVENT_STATE_INACTIVE)
3777                 return 0;
3778
3779         if (event->cpu != -1 && event->cpu != smp_processor_id())
3780                 return 0;
3781
3782         if (event->attr.comm || event->attr.mmap ||
3783             event->attr.mmap_data || event->attr.task)
3784                 return 1;
3785
3786         return 0;
3787 }
3788
3789 static void perf_event_task_ctx(struct perf_event_context *ctx,
3790                                   struct perf_task_event *task_event)
3791 {
3792         struct perf_event *event;
3793
3794         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3795                 if (perf_event_task_match(event))
3796                         perf_event_task_output(event, task_event);
3797         }
3798 }
3799
3800 static void perf_event_task_event(struct perf_task_event *task_event)
3801 {
3802         struct perf_cpu_context *cpuctx;
3803         struct perf_event_context *ctx;
3804         struct pmu *pmu;
3805         int ctxn;
3806
3807         rcu_read_lock_sched();
3808         list_for_each_entry_rcu(pmu, &pmus, entry) {
3809                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3810                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3811
3812                 ctx = task_event->task_ctx;
3813                 if (!ctx) {
3814                         ctxn = pmu->task_ctx_nr;
3815                         if (ctxn < 0)
3816                                 continue;
3817                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3818                 }
3819                 if (ctx)
3820                         perf_event_task_ctx(ctx, task_event);
3821         }
3822         rcu_read_unlock_sched();
3823 }
3824
3825 static void perf_event_task(struct task_struct *task,
3826                               struct perf_event_context *task_ctx,
3827                               int new)
3828 {
3829         struct perf_task_event task_event;
3830
3831         if (!atomic_read(&nr_comm_events) &&
3832             !atomic_read(&nr_mmap_events) &&
3833             !atomic_read(&nr_task_events))
3834                 return;
3835
3836         task_event = (struct perf_task_event){
3837                 .task     = task,
3838                 .task_ctx = task_ctx,
3839                 .event_id    = {
3840                         .header = {
3841                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3842                                 .misc = 0,
3843                                 .size = sizeof(task_event.event_id),
3844                         },
3845                         /* .pid  */
3846                         /* .ppid */
3847                         /* .tid  */
3848                         /* .ptid */
3849                         .time = perf_clock(),
3850                 },
3851         };
3852
3853         perf_event_task_event(&task_event);
3854 }
3855
3856 void perf_event_fork(struct task_struct *task)
3857 {
3858         perf_event_task(task, NULL, 1);
3859 }
3860
3861 /*
3862  * comm tracking
3863  */
3864
3865 struct perf_comm_event {
3866         struct task_struct      *task;
3867         char                    *comm;
3868         int                     comm_size;
3869
3870         struct {
3871                 struct perf_event_header        header;
3872
3873                 u32                             pid;
3874                 u32                             tid;
3875         } event_id;
3876 };
3877
3878 static void perf_event_comm_output(struct perf_event *event,
3879                                      struct perf_comm_event *comm_event)
3880 {
3881         struct perf_output_handle handle;
3882         int size = comm_event->event_id.header.size;
3883         int ret = perf_output_begin(&handle, event, size, 0, 0);
3884
3885         if (ret)
3886                 return;
3887
3888         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3889         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3890
3891         perf_output_put(&handle, comm_event->event_id);
3892         perf_output_copy(&handle, comm_event->comm,
3893                                    comm_event->comm_size);
3894         perf_output_end(&handle);
3895 }
3896
3897 static int perf_event_comm_match(struct perf_event *event)
3898 {
3899         if (event->state < PERF_EVENT_STATE_INACTIVE)
3900                 return 0;
3901
3902         if (event->cpu != -1 && event->cpu != smp_processor_id())
3903                 return 0;
3904
3905         if (event->attr.comm)
3906                 return 1;
3907
3908         return 0;
3909 }
3910
3911 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3912                                   struct perf_comm_event *comm_event)
3913 {
3914         struct perf_event *event;
3915
3916         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3917                 if (perf_event_comm_match(event))
3918                         perf_event_comm_output(event, comm_event);
3919         }
3920 }
3921
3922 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3923 {
3924         struct perf_cpu_context *cpuctx;
3925         struct perf_event_context *ctx;
3926         char comm[TASK_COMM_LEN];
3927         unsigned int size;
3928         struct pmu *pmu;
3929         int ctxn;
3930
3931         memset(comm, 0, sizeof(comm));
3932         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3933         size = ALIGN(strlen(comm)+1, sizeof(u64));
3934
3935         comm_event->comm = comm;
3936         comm_event->comm_size = size;
3937
3938         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3939
3940         rcu_read_lock_sched();
3941         list_for_each_entry_rcu(pmu, &pmus, entry) {
3942                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3943                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3944
3945                 ctxn = pmu->task_ctx_nr;
3946                 if (ctxn < 0)
3947                         continue;
3948
3949                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3950                 if (ctx)
3951                         perf_event_comm_ctx(ctx, comm_event);
3952         }
3953         rcu_read_unlock_sched();
3954 }
3955
3956 void perf_event_comm(struct task_struct *task)
3957 {
3958         struct perf_comm_event comm_event;
3959         struct perf_event_context *ctx;
3960         int ctxn;
3961
3962         for_each_task_context_nr(ctxn) {
3963                 ctx = task->perf_event_ctxp[ctxn];
3964                 if (!ctx)
3965                         continue;
3966
3967                 perf_event_enable_on_exec(ctx);
3968         }
3969
3970         if (!atomic_read(&nr_comm_events))
3971                 return;
3972
3973         comm_event = (struct perf_comm_event){
3974                 .task   = task,
3975                 /* .comm      */
3976                 /* .comm_size */
3977                 .event_id  = {
3978                         .header = {
3979                                 .type = PERF_RECORD_COMM,
3980                                 .misc = 0,
3981                                 /* .size */
3982                         },
3983                         /* .pid */
3984                         /* .tid */
3985                 },
3986         };
3987
3988         perf_event_comm_event(&comm_event);
3989 }
3990
3991 /*
3992  * mmap tracking
3993  */
3994
3995 struct perf_mmap_event {
3996         struct vm_area_struct   *vma;
3997
3998         const char              *file_name;
3999         int                     file_size;
4000
4001         struct {
4002                 struct perf_event_header        header;
4003
4004                 u32                             pid;
4005                 u32                             tid;
4006                 u64                             start;
4007                 u64                             len;
4008                 u64                             pgoff;
4009         } event_id;
4010 };
4011
4012 static void perf_event_mmap_output(struct perf_event *event,
4013                                      struct perf_mmap_event *mmap_event)
4014 {
4015         struct perf_output_handle handle;
4016         int size = mmap_event->event_id.header.size;
4017         int ret = perf_output_begin(&handle, event, size, 0, 0);
4018
4019         if (ret)
4020                 return;
4021
4022         mmap_event->event_id.pid = perf_event_pid(event, current);
4023         mmap_event->event_id.tid = perf_event_tid(event, current);
4024
4025         perf_output_put(&handle, mmap_event->event_id);
4026         perf_output_copy(&handle, mmap_event->file_name,
4027                                    mmap_event->file_size);
4028         perf_output_end(&handle);
4029 }
4030
4031 static int perf_event_mmap_match(struct perf_event *event,
4032                                    struct perf_mmap_event *mmap_event,
4033                                    int executable)
4034 {
4035         if (event->state < PERF_EVENT_STATE_INACTIVE)
4036                 return 0;
4037
4038         if (event->cpu != -1 && event->cpu != smp_processor_id())
4039                 return 0;
4040
4041         if ((!executable && event->attr.mmap_data) ||
4042             (executable && event->attr.mmap))
4043                 return 1;
4044
4045         return 0;
4046 }
4047
4048 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4049                                   struct perf_mmap_event *mmap_event,
4050                                   int executable)
4051 {
4052         struct perf_event *event;
4053
4054         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4055                 if (perf_event_mmap_match(event, mmap_event, executable))
4056                         perf_event_mmap_output(event, mmap_event);
4057         }
4058 }
4059
4060 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4061 {
4062         struct perf_cpu_context *cpuctx;
4063         struct perf_event_context *ctx;
4064         struct vm_area_struct *vma = mmap_event->vma;
4065         struct file *file = vma->vm_file;
4066         unsigned int size;
4067         char tmp[16];
4068         char *buf = NULL;
4069         const char *name;
4070         struct pmu *pmu;
4071         int ctxn;
4072
4073         memset(tmp, 0, sizeof(tmp));
4074
4075         if (file) {
4076                 /*
4077                  * d_path works from the end of the buffer backwards, so we
4078                  * need to add enough zero bytes after the string to handle
4079                  * the 64bit alignment we do later.
4080                  */
4081                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4082                 if (!buf) {
4083                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4084                         goto got_name;
4085                 }
4086                 name = d_path(&file->f_path, buf, PATH_MAX);
4087                 if (IS_ERR(name)) {
4088                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4089                         goto got_name;
4090                 }
4091         } else {
4092                 if (arch_vma_name(mmap_event->vma)) {
4093                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4094                                        sizeof(tmp));
4095                         goto got_name;
4096                 }
4097
4098                 if (!vma->vm_mm) {
4099                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4100                         goto got_name;
4101                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4102                                 vma->vm_end >= vma->vm_mm->brk) {
4103                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4104                         goto got_name;
4105                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4106                                 vma->vm_end >= vma->vm_mm->start_stack) {
4107                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4108                         goto got_name;
4109                 }
4110
4111                 name = strncpy(tmp, "//anon", sizeof(tmp));
4112                 goto got_name;
4113         }
4114
4115 got_name:
4116         size = ALIGN(strlen(name)+1, sizeof(u64));
4117
4118         mmap_event->file_name = name;
4119         mmap_event->file_size = size;
4120
4121         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4122
4123         rcu_read_lock_sched();
4124         list_for_each_entry_rcu(pmu, &pmus, entry) {
4125                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
4126                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4127                                         vma->vm_flags & VM_EXEC);
4128
4129                 ctxn = pmu->task_ctx_nr;
4130                 if (ctxn < 0)
4131                         continue;
4132
4133                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4134                 if (ctx) {
4135                         perf_event_mmap_ctx(ctx, mmap_event,
4136                                         vma->vm_flags & VM_EXEC);
4137                 }
4138         }
4139         rcu_read_unlock_sched();
4140
4141         kfree(buf);
4142 }
4143
4144 void perf_event_mmap(struct vm_area_struct *vma)
4145 {
4146         struct perf_mmap_event mmap_event;
4147
4148         if (!atomic_read(&nr_mmap_events))
4149                 return;
4150
4151         mmap_event = (struct perf_mmap_event){
4152                 .vma    = vma,
4153                 /* .file_name */
4154                 /* .file_size */
4155                 .event_id  = {
4156                         .header = {
4157                                 .type = PERF_RECORD_MMAP,
4158                                 .misc = PERF_RECORD_MISC_USER,
4159                                 /* .size */
4160                         },
4161                         /* .pid */
4162                         /* .tid */
4163                         .start  = vma->vm_start,
4164                         .len    = vma->vm_end - vma->vm_start,
4165                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4166                 },
4167         };
4168
4169         perf_event_mmap_event(&mmap_event);
4170 }
4171
4172 /*
4173  * IRQ throttle logging
4174  */
4175
4176 static void perf_log_throttle(struct perf_event *event, int enable)
4177 {
4178         struct perf_output_handle handle;
4179         int ret;
4180
4181         struct {
4182                 struct perf_event_header        header;
4183                 u64                             time;
4184                 u64                             id;
4185                 u64                             stream_id;
4186         } throttle_event = {
4187                 .header = {
4188                         .type = PERF_RECORD_THROTTLE,
4189                         .misc = 0,
4190                         .size = sizeof(throttle_event),
4191                 },
4192                 .time           = perf_clock(),
4193                 .id             = primary_event_id(event),
4194                 .stream_id      = event->id,
4195         };
4196
4197         if (enable)
4198                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4199
4200         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4201         if (ret)
4202                 return;
4203
4204         perf_output_put(&handle, throttle_event);
4205         perf_output_end(&handle);
4206 }
4207
4208 /*
4209  * Generic event overflow handling, sampling.
4210  */
4211
4212 static int __perf_event_overflow(struct perf_event *event, int nmi,
4213                                    int throttle, struct perf_sample_data *data,
4214                                    struct pt_regs *regs)
4215 {
4216         int events = atomic_read(&event->event_limit);
4217         struct hw_perf_event *hwc = &event->hw;
4218         int ret = 0;
4219
4220         if (!throttle) {
4221                 hwc->interrupts++;
4222         } else {
4223                 if (hwc->interrupts != MAX_INTERRUPTS) {
4224                         hwc->interrupts++;
4225                         if (HZ * hwc->interrupts >
4226                                         (u64)sysctl_perf_event_sample_rate) {
4227                                 hwc->interrupts = MAX_INTERRUPTS;
4228                                 perf_log_throttle(event, 0);
4229                                 ret = 1;
4230                         }
4231                 } else {
4232                         /*
4233                          * Keep re-disabling events even though on the previous
4234                          * pass we disabled it - just in case we raced with a
4235                          * sched-in and the event got enabled again:
4236                          */
4237                         ret = 1;
4238                 }
4239         }
4240
4241         if (event->attr.freq) {
4242                 u64 now = perf_clock();
4243                 s64 delta = now - hwc->freq_time_stamp;
4244
4245                 hwc->freq_time_stamp = now;
4246
4247                 if (delta > 0 && delta < 2*TICK_NSEC)
4248                         perf_adjust_period(event, delta, hwc->last_period);
4249         }
4250
4251         /*
4252          * XXX event_limit might not quite work as expected on inherited
4253          * events
4254          */
4255
4256         event->pending_kill = POLL_IN;
4257         if (events && atomic_dec_and_test(&event->event_limit)) {
4258                 ret = 1;
4259                 event->pending_kill = POLL_HUP;
4260                 if (nmi) {
4261                         event->pending_disable = 1;
4262                         perf_pending_queue(&event->pending,
4263                                            perf_pending_event);
4264                 } else
4265                         perf_event_disable(event);
4266         }
4267
4268         if (event->overflow_handler)
4269                 event->overflow_handler(event, nmi, data, regs);
4270         else
4271                 perf_event_output(event, nmi, data, regs);
4272
4273         return ret;
4274 }
4275
4276 int perf_event_overflow(struct perf_event *event, int nmi,
4277                           struct perf_sample_data *data,
4278                           struct pt_regs *regs)
4279 {
4280         return __perf_event_overflow(event, nmi, 1, data, regs);
4281 }
4282
4283 /*
4284  * Generic software event infrastructure
4285  */
4286
4287 struct swevent_htable {
4288         struct swevent_hlist            *swevent_hlist;
4289         struct mutex                    hlist_mutex;
4290         int                             hlist_refcount;
4291
4292         /* Recursion avoidance in each contexts */
4293         int                             recursion[PERF_NR_CONTEXTS];
4294 };
4295
4296 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4297
4298 /*
4299  * We directly increment event->count and keep a second value in
4300  * event->hw.period_left to count intervals. This period event
4301  * is kept in the range [-sample_period, 0] so that we can use the
4302  * sign as trigger.
4303  */
4304
4305 static u64 perf_swevent_set_period(struct perf_event *event)
4306 {
4307         struct hw_perf_event *hwc = &event->hw;
4308         u64 period = hwc->last_period;
4309         u64 nr, offset;
4310         s64 old, val;
4311
4312         hwc->last_period = hwc->sample_period;
4313
4314 again:
4315         old = val = local64_read(&hwc->period_left);
4316         if (val < 0)
4317                 return 0;
4318
4319         nr = div64_u64(period + val, period);
4320         offset = nr * period;
4321         val -= offset;
4322         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4323                 goto again;
4324
4325         return nr;
4326 }
4327
4328 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4329                                     int nmi, struct perf_sample_data *data,
4330                                     struct pt_regs *regs)
4331 {
4332         struct hw_perf_event *hwc = &event->hw;
4333         int throttle = 0;
4334
4335         data->period = event->hw.last_period;
4336         if (!overflow)
4337                 overflow = perf_swevent_set_period(event);
4338
4339         if (hwc->interrupts == MAX_INTERRUPTS)
4340                 return;
4341
4342         for (; overflow; overflow--) {
4343                 if (__perf_event_overflow(event, nmi, throttle,
4344                                             data, regs)) {
4345                         /*
4346                          * We inhibit the overflow from happening when
4347                          * hwc->interrupts == MAX_INTERRUPTS.
4348                          */
4349                         break;
4350                 }
4351                 throttle = 1;
4352         }
4353 }
4354
4355 static void perf_swevent_event(struct perf_event *event, u64 nr,
4356                                int nmi, struct perf_sample_data *data,
4357                                struct pt_regs *regs)
4358 {
4359         struct hw_perf_event *hwc = &event->hw;
4360
4361         local64_add(nr, &event->count);
4362
4363         if (!regs)
4364                 return;
4365
4366         if (!hwc->sample_period)
4367                 return;
4368
4369         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4370                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4371
4372         if (local64_add_negative(nr, &hwc->period_left))
4373                 return;
4374
4375         perf_swevent_overflow(event, 0, nmi, data, regs);
4376 }
4377
4378 static int perf_exclude_event(struct perf_event *event,
4379                               struct pt_regs *regs)
4380 {
4381         if (event->hw.state & PERF_HES_STOPPED)
4382                 return 0;
4383
4384         if (regs) {
4385                 if (event->attr.exclude_user && user_mode(regs))
4386                         return 1;
4387
4388                 if (event->attr.exclude_kernel && !user_mode(regs))
4389                         return 1;
4390         }
4391
4392         return 0;
4393 }
4394
4395 static int perf_swevent_match(struct perf_event *event,
4396                                 enum perf_type_id type,
4397                                 u32 event_id,
4398                                 struct perf_sample_data *data,
4399                                 struct pt_regs *regs)
4400 {
4401         if (event->attr.type != type)
4402                 return 0;
4403
4404         if (event->attr.config != event_id)
4405                 return 0;
4406
4407         if (perf_exclude_event(event, regs))
4408                 return 0;
4409
4410         return 1;
4411 }
4412
4413 static inline u64 swevent_hash(u64 type, u32 event_id)
4414 {
4415         u64 val = event_id | (type << 32);
4416
4417         return hash_64(val, SWEVENT_HLIST_BITS);
4418 }
4419
4420 static inline struct hlist_head *
4421 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4422 {
4423         u64 hash = swevent_hash(type, event_id);
4424
4425         return &hlist->heads[hash];
4426 }
4427
4428 /* For the read side: events when they trigger */
4429 static inline struct hlist_head *
4430 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4431 {
4432         struct swevent_hlist *hlist;
4433
4434         hlist = rcu_dereference(swhash->swevent_hlist);
4435         if (!hlist)
4436                 return NULL;
4437
4438         return __find_swevent_head(hlist, type, event_id);
4439 }
4440
4441 /* For the event head insertion and removal in the hlist */
4442 static inline struct hlist_head *
4443 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4444 {
4445         struct swevent_hlist *hlist;
4446         u32 event_id = event->attr.config;
4447         u64 type = event->attr.type;
4448
4449         /*
4450          * Event scheduling is always serialized against hlist allocation
4451          * and release. Which makes the protected version suitable here.
4452          * The context lock guarantees that.
4453          */
4454         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4455                                           lockdep_is_held(&event->ctx->lock));
4456         if (!hlist)
4457                 return NULL;
4458
4459         return __find_swevent_head(hlist, type, event_id);
4460 }
4461
4462 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4463                                     u64 nr, int nmi,
4464                                     struct perf_sample_data *data,
4465                                     struct pt_regs *regs)
4466 {
4467         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4468         struct perf_event *event;
4469         struct hlist_node *node;
4470         struct hlist_head *head;
4471
4472         rcu_read_lock();
4473         head = find_swevent_head_rcu(swhash, type, event_id);
4474         if (!head)
4475                 goto end;
4476
4477         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4478                 if (perf_swevent_match(event, type, event_id, data, regs))
4479                         perf_swevent_event(event, nr, nmi, data, regs);
4480         }
4481 end:
4482         rcu_read_unlock();
4483 }
4484
4485 int perf_swevent_get_recursion_context(void)
4486 {
4487         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4488
4489         return get_recursion_context(swhash->recursion);
4490 }
4491 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4492
4493 void inline perf_swevent_put_recursion_context(int rctx)
4494 {
4495         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4496
4497         put_recursion_context(swhash->recursion, rctx);
4498 }
4499
4500 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4501                             struct pt_regs *regs, u64 addr)
4502 {
4503         struct perf_sample_data data;
4504         int rctx;
4505
4506         preempt_disable_notrace();
4507         rctx = perf_swevent_get_recursion_context();
4508         if (rctx < 0)
4509                 return;
4510
4511         perf_sample_data_init(&data, addr);
4512
4513         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4514
4515         perf_swevent_put_recursion_context(rctx);
4516         preempt_enable_notrace();
4517 }
4518
4519 static void perf_swevent_read(struct perf_event *event)
4520 {
4521 }
4522
4523 static int perf_swevent_add(struct perf_event *event, int flags)
4524 {
4525         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4526         struct hw_perf_event *hwc = &event->hw;
4527         struct hlist_head *head;
4528
4529         if (hwc->sample_period) {
4530                 hwc->last_period = hwc->sample_period;
4531                 perf_swevent_set_period(event);
4532         }
4533
4534         hwc->state = !(flags & PERF_EF_START);
4535
4536         head = find_swevent_head(swhash, event);
4537         if (WARN_ON_ONCE(!head))
4538                 return -EINVAL;
4539
4540         hlist_add_head_rcu(&event->hlist_entry, head);
4541
4542         return 0;
4543 }
4544
4545 static void perf_swevent_del(struct perf_event *event, int flags)
4546 {
4547         hlist_del_rcu(&event->hlist_entry);
4548 }
4549
4550 static void perf_swevent_start(struct perf_event *event, int flags)
4551 {
4552         event->hw.state = 0;
4553 }
4554
4555 static void perf_swevent_stop(struct perf_event *event, int flags)
4556 {
4557         event->hw.state = PERF_HES_STOPPED;
4558 }
4559
4560 /* Deref the hlist from the update side */
4561 static inline struct swevent_hlist *
4562 swevent_hlist_deref(struct swevent_htable *swhash)
4563 {
4564         return rcu_dereference_protected(swhash->swevent_hlist,
4565                                          lockdep_is_held(&swhash->hlist_mutex));
4566 }
4567
4568 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4569 {
4570         struct swevent_hlist *hlist;
4571
4572         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4573         kfree(hlist);
4574 }
4575
4576 static void swevent_hlist_release(struct swevent_htable *swhash)
4577 {
4578         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4579
4580         if (!hlist)
4581                 return;
4582
4583         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4584         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4585 }
4586
4587 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4588 {
4589         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4590
4591         mutex_lock(&swhash->hlist_mutex);
4592
4593         if (!--swhash->hlist_refcount)
4594                 swevent_hlist_release(swhash);
4595
4596         mutex_unlock(&swhash->hlist_mutex);
4597 }
4598
4599 static void swevent_hlist_put(struct perf_event *event)
4600 {
4601         int cpu;
4602
4603         if (event->cpu != -1) {
4604                 swevent_hlist_put_cpu(event, event->cpu);
4605                 return;
4606         }
4607
4608         for_each_possible_cpu(cpu)
4609                 swevent_hlist_put_cpu(event, cpu);
4610 }
4611
4612 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4613 {
4614         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4615         int err = 0;
4616
4617         mutex_lock(&swhash->hlist_mutex);
4618
4619         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4620                 struct swevent_hlist *hlist;
4621
4622                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4623                 if (!hlist) {
4624                         err = -ENOMEM;
4625                         goto exit;
4626                 }
4627                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4628         }
4629         swhash->hlist_refcount++;
4630 exit:
4631         mutex_unlock(&swhash->hlist_mutex);
4632
4633         return err;
4634 }
4635
4636 static int swevent_hlist_get(struct perf_event *event)
4637 {
4638         int err;
4639         int cpu, failed_cpu;
4640
4641         if (event->cpu != -1)
4642                 return swevent_hlist_get_cpu(event, event->cpu);
4643
4644         get_online_cpus();
4645         for_each_possible_cpu(cpu) {
4646                 err = swevent_hlist_get_cpu(event, cpu);
4647                 if (err) {
4648                         failed_cpu = cpu;
4649                         goto fail;
4650                 }
4651         }
4652         put_online_cpus();
4653
4654         return 0;
4655 fail:
4656         for_each_possible_cpu(cpu) {
4657                 if (cpu == failed_cpu)
4658                         break;
4659                 swevent_hlist_put_cpu(event, cpu);
4660         }
4661
4662         put_online_cpus();
4663         return err;
4664 }
4665
4666 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4667
4668 static void sw_perf_event_destroy(struct perf_event *event)
4669 {
4670         u64 event_id = event->attr.config;
4671
4672         WARN_ON(event->parent);
4673
4674         atomic_dec(&perf_swevent_enabled[event_id]);
4675         swevent_hlist_put(event);
4676 }
4677
4678 static int perf_swevent_init(struct perf_event *event)
4679 {
4680         int event_id = event->attr.config;
4681
4682         if (event->attr.type != PERF_TYPE_SOFTWARE)
4683                 return -ENOENT;
4684
4685         switch (event_id) {
4686         case PERF_COUNT_SW_CPU_CLOCK:
4687         case PERF_COUNT_SW_TASK_CLOCK:
4688                 return -ENOENT;
4689
4690         default:
4691                 break;
4692         }
4693
4694         if (event_id > PERF_COUNT_SW_MAX)
4695                 return -ENOENT;
4696
4697         if (!event->parent) {
4698                 int err;
4699
4700                 err = swevent_hlist_get(event);
4701                 if (err)
4702                         return err;
4703
4704                 atomic_inc(&perf_swevent_enabled[event_id]);
4705                 event->destroy = sw_perf_event_destroy;
4706         }
4707
4708         return 0;
4709 }
4710
4711 static struct pmu perf_swevent = {
4712         .task_ctx_nr    = perf_sw_context,
4713
4714         .event_init     = perf_swevent_init,
4715         .add            = perf_swevent_add,
4716         .del            = perf_swevent_del,
4717         .start          = perf_swevent_start,
4718         .stop           = perf_swevent_stop,
4719         .read           = perf_swevent_read,
4720 };
4721
4722 #ifdef CONFIG_EVENT_TRACING
4723
4724 static int perf_tp_filter_match(struct perf_event *event,
4725                                 struct perf_sample_data *data)
4726 {
4727         void *record = data->raw->data;
4728
4729         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4730                 return 1;
4731         return 0;
4732 }
4733
4734 static int perf_tp_event_match(struct perf_event *event,
4735                                 struct perf_sample_data *data,
4736                                 struct pt_regs *regs)
4737 {
4738         /*
4739          * All tracepoints are from kernel-space.
4740          */
4741         if (event->attr.exclude_kernel)
4742                 return 0;
4743
4744         if (!perf_tp_filter_match(event, data))
4745                 return 0;
4746
4747         return 1;
4748 }
4749
4750 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4751                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4752 {
4753         struct perf_sample_data data;
4754         struct perf_event *event;
4755         struct hlist_node *node;
4756
4757         struct perf_raw_record raw = {
4758                 .size = entry_size,
4759                 .data = record,
4760         };
4761
4762         perf_sample_data_init(&data, addr);
4763         data.raw = &raw;
4764
4765         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4766                 if (perf_tp_event_match(event, &data, regs))
4767                         perf_swevent_event(event, count, 1, &data, regs);
4768         }
4769
4770         perf_swevent_put_recursion_context(rctx);
4771 }
4772 EXPORT_SYMBOL_GPL(perf_tp_event);
4773
4774 static void tp_perf_event_destroy(struct perf_event *event)
4775 {
4776         perf_trace_destroy(event);
4777 }
4778
4779 static int perf_tp_event_init(struct perf_event *event)
4780 {
4781         int err;
4782
4783         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4784                 return -ENOENT;
4785
4786         /*
4787          * Raw tracepoint data is a severe data leak, only allow root to
4788          * have these.
4789          */
4790         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4791                         perf_paranoid_tracepoint_raw() &&
4792                         !capable(CAP_SYS_ADMIN))
4793                 return -EPERM;
4794
4795         err = perf_trace_init(event);
4796         if (err)
4797                 return err;
4798
4799         event->destroy = tp_perf_event_destroy;
4800
4801         return 0;
4802 }
4803
4804 static struct pmu perf_tracepoint = {
4805         .task_ctx_nr    = perf_sw_context,
4806
4807         .event_init     = perf_tp_event_init,
4808         .add            = perf_trace_add,
4809         .del            = perf_trace_del,
4810         .start          = perf_swevent_start,
4811         .stop           = perf_swevent_stop,
4812         .read           = perf_swevent_read,
4813 };
4814
4815 static inline void perf_tp_register(void)
4816 {
4817         perf_pmu_register(&perf_tracepoint);
4818 }
4819
4820 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4821 {
4822         char *filter_str;
4823         int ret;
4824
4825         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4826                 return -EINVAL;
4827
4828         filter_str = strndup_user(arg, PAGE_SIZE);
4829         if (IS_ERR(filter_str))
4830                 return PTR_ERR(filter_str);
4831
4832         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4833
4834         kfree(filter_str);
4835         return ret;
4836 }
4837
4838 static void perf_event_free_filter(struct perf_event *event)
4839 {
4840         ftrace_profile_free_filter(event);
4841 }
4842
4843 #else
4844
4845 static inline void perf_tp_register(void)
4846 {
4847 }
4848
4849 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4850 {
4851         return -ENOENT;
4852 }
4853
4854 static void perf_event_free_filter(struct perf_event *event)
4855 {
4856 }
4857
4858 #endif /* CONFIG_EVENT_TRACING */
4859
4860 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4861 void perf_bp_event(struct perf_event *bp, void *data)
4862 {
4863         struct perf_sample_data sample;
4864         struct pt_regs *regs = data;
4865
4866         perf_sample_data_init(&sample, bp->attr.bp_addr);
4867
4868         if (!bp->hw.state && !perf_exclude_event(bp, regs))
4869                 perf_swevent_event(bp, 1, 1, &sample, regs);
4870 }
4871 #endif
4872
4873 /*
4874  * hrtimer based swevent callback
4875  */
4876
4877 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4878 {
4879         enum hrtimer_restart ret = HRTIMER_RESTART;
4880         struct perf_sample_data data;
4881         struct pt_regs *regs;
4882         struct perf_event *event;
4883         u64 period;
4884
4885         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4886         event->pmu->read(event);
4887
4888         perf_sample_data_init(&data, 0);
4889         data.period = event->hw.last_period;
4890         regs = get_irq_regs();
4891
4892         if (regs && !perf_exclude_event(event, regs)) {
4893                 if (!(event->attr.exclude_idle && current->pid == 0))
4894                         if (perf_event_overflow(event, 0, &data, regs))
4895                                 ret = HRTIMER_NORESTART;
4896         }
4897
4898         period = max_t(u64, 10000, event->hw.sample_period);
4899         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4900
4901         return ret;
4902 }
4903
4904 static void perf_swevent_start_hrtimer(struct perf_event *event)
4905 {
4906         struct hw_perf_event *hwc = &event->hw;
4907
4908         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4909         hwc->hrtimer.function = perf_swevent_hrtimer;
4910         if (hwc->sample_period) {
4911                 s64 period = local64_read(&hwc->period_left);
4912
4913                 if (period) {
4914                         if (period < 0)
4915                                 period = 10000;
4916
4917                         local64_set(&hwc->period_left, 0);
4918                 } else {
4919                         period = max_t(u64, 10000, hwc->sample_period);
4920                 }
4921                 __hrtimer_start_range_ns(&hwc->hrtimer,
4922                                 ns_to_ktime(period), 0,
4923                                 HRTIMER_MODE_REL_PINNED, 0);
4924         }
4925 }
4926
4927 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4928 {
4929         struct hw_perf_event *hwc = &event->hw;
4930
4931         if (hwc->sample_period) {
4932                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4933                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4934
4935                 hrtimer_cancel(&hwc->hrtimer);
4936         }
4937 }
4938
4939 /*
4940  * Software event: cpu wall time clock
4941  */
4942
4943 static void cpu_clock_event_update(struct perf_event *event)
4944 {
4945         s64 prev;
4946         u64 now;
4947
4948         now = local_clock();
4949         prev = local64_xchg(&event->hw.prev_count, now);
4950         local64_add(now - prev, &event->count);
4951 }
4952
4953 static void cpu_clock_event_start(struct perf_event *event, int flags)
4954 {
4955         local64_set(&event->hw.prev_count, local_clock());
4956         perf_swevent_start_hrtimer(event);
4957 }
4958
4959 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4960 {
4961         perf_swevent_cancel_hrtimer(event);
4962         cpu_clock_event_update(event);
4963 }
4964
4965 static int cpu_clock_event_add(struct perf_event *event, int flags)
4966 {
4967         if (flags & PERF_EF_START)
4968                 cpu_clock_event_start(event, flags);
4969
4970         return 0;
4971 }
4972
4973 static void cpu_clock_event_del(struct perf_event *event, int flags)
4974 {
4975         cpu_clock_event_stop(event, flags);
4976 }
4977
4978 static void cpu_clock_event_read(struct perf_event *event)
4979 {
4980         cpu_clock_event_update(event);
4981 }
4982
4983 static int cpu_clock_event_init(struct perf_event *event)
4984 {
4985         if (event->attr.type != PERF_TYPE_SOFTWARE)
4986                 return -ENOENT;
4987
4988         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4989                 return -ENOENT;
4990
4991         return 0;
4992 }
4993
4994 static struct pmu perf_cpu_clock = {
4995         .task_ctx_nr    = perf_sw_context,
4996
4997         .event_init     = cpu_clock_event_init,
4998         .add            = cpu_clock_event_add,
4999         .del            = cpu_clock_event_del,
5000         .start          = cpu_clock_event_start,
5001         .stop           = cpu_clock_event_stop,
5002         .read           = cpu_clock_event_read,
5003 };
5004
5005 /*
5006  * Software event: task time clock
5007  */
5008
5009 static void task_clock_event_update(struct perf_event *event, u64 now)
5010 {
5011         u64 prev;
5012         s64 delta;
5013
5014         prev = local64_xchg(&event->hw.prev_count, now);
5015         delta = now - prev;
5016         local64_add(delta, &event->count);
5017 }
5018
5019 static void task_clock_event_start(struct perf_event *event, int flags)
5020 {
5021         local64_set(&event->hw.prev_count, event->ctx->time);
5022         perf_swevent_start_hrtimer(event);
5023 }
5024
5025 static void task_clock_event_stop(struct perf_event *event, int flags)
5026 {
5027         perf_swevent_cancel_hrtimer(event);
5028         task_clock_event_update(event, event->ctx->time);
5029 }
5030
5031 static int task_clock_event_add(struct perf_event *event, int flags)
5032 {
5033         if (flags & PERF_EF_START)
5034                 task_clock_event_start(event, flags);
5035
5036         return 0;
5037 }
5038
5039 static void task_clock_event_del(struct perf_event *event, int flags)
5040 {
5041         task_clock_event_stop(event, PERF_EF_UPDATE);
5042 }
5043
5044 static void task_clock_event_read(struct perf_event *event)
5045 {
5046         u64 time;
5047
5048         if (!in_nmi()) {
5049                 update_context_time(event->ctx);
5050                 time = event->ctx->time;
5051         } else {
5052                 u64 now = perf_clock();
5053                 u64 delta = now - event->ctx->timestamp;
5054                 time = event->ctx->time + delta;
5055         }
5056
5057         task_clock_event_update(event, time);
5058 }
5059
5060 static int task_clock_event_init(struct perf_event *event)
5061 {
5062         if (event->attr.type != PERF_TYPE_SOFTWARE)
5063                 return -ENOENT;
5064
5065         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5066                 return -ENOENT;
5067
5068         return 0;
5069 }
5070
5071 static struct pmu perf_task_clock = {
5072         .task_ctx_nr    = perf_sw_context,
5073
5074         .event_init     = task_clock_event_init,
5075         .add            = task_clock_event_add,
5076         .del            = task_clock_event_del,
5077         .start          = task_clock_event_start,
5078         .stop           = task_clock_event_stop,
5079         .read           = task_clock_event_read,
5080 };
5081
5082 static void perf_pmu_nop_void(struct pmu *pmu)
5083 {
5084 }
5085
5086 static int perf_pmu_nop_int(struct pmu *pmu)
5087 {
5088         return 0;
5089 }
5090
5091 static void perf_pmu_start_txn(struct pmu *pmu)
5092 {
5093         perf_pmu_disable(pmu);
5094 }
5095
5096 static int perf_pmu_commit_txn(struct pmu *pmu)
5097 {
5098         perf_pmu_enable(pmu);
5099         return 0;
5100 }
5101
5102 static void perf_pmu_cancel_txn(struct pmu *pmu)
5103 {
5104         perf_pmu_enable(pmu);
5105 }
5106
5107 /*
5108  * Ensures all contexts with the same task_ctx_nr have the same
5109  * pmu_cpu_context too.
5110  */
5111 static void *find_pmu_context(int ctxn)
5112 {
5113         struct pmu *pmu;
5114
5115         if (ctxn < 0)
5116                 return NULL;
5117
5118         list_for_each_entry(pmu, &pmus, entry) {
5119                 if (pmu->task_ctx_nr == ctxn)
5120                         return pmu->pmu_cpu_context;
5121         }
5122
5123         return NULL;
5124 }
5125
5126 static void free_pmu_context(void * __percpu cpu_context)
5127 {
5128         struct pmu *pmu;
5129
5130         mutex_lock(&pmus_lock);
5131         /*
5132          * Like a real lame refcount.
5133          */
5134         list_for_each_entry(pmu, &pmus, entry) {
5135                 if (pmu->pmu_cpu_context == cpu_context)
5136                         goto out;
5137         }
5138
5139         free_percpu(cpu_context);
5140 out:
5141         mutex_unlock(&pmus_lock);
5142 }
5143
5144 int perf_pmu_register(struct pmu *pmu)
5145 {
5146         int cpu, ret;
5147
5148         mutex_lock(&pmus_lock);
5149         ret = -ENOMEM;
5150         pmu->pmu_disable_count = alloc_percpu(int);
5151         if (!pmu->pmu_disable_count)
5152                 goto unlock;
5153
5154         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5155         if (pmu->pmu_cpu_context)
5156                 goto got_cpu_context;
5157
5158         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5159         if (!pmu->pmu_cpu_context)
5160                 goto free_pdc;
5161
5162         for_each_possible_cpu(cpu) {
5163                 struct perf_cpu_context *cpuctx;
5164
5165                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5166                 __perf_event_init_context(&cpuctx->ctx);
5167                 cpuctx->ctx.pmu = pmu;
5168                 cpuctx->timer_interval = TICK_NSEC;
5169                 hrtimer_init(&cpuctx->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5170                 cpuctx->timer.function = perf_event_context_tick;
5171         }
5172
5173 got_cpu_context:
5174         if (!pmu->start_txn) {
5175                 if (pmu->pmu_enable) {
5176                         /*
5177                          * If we have pmu_enable/pmu_disable calls, install
5178                          * transaction stubs that use that to try and batch
5179                          * hardware accesses.
5180                          */
5181                         pmu->start_txn  = perf_pmu_start_txn;
5182                         pmu->commit_txn = perf_pmu_commit_txn;
5183                         pmu->cancel_txn = perf_pmu_cancel_txn;
5184                 } else {
5185                         pmu->start_txn  = perf_pmu_nop_void;
5186                         pmu->commit_txn = perf_pmu_nop_int;
5187                         pmu->cancel_txn = perf_pmu_nop_void;
5188                 }
5189         }
5190
5191         if (!pmu->pmu_enable) {
5192                 pmu->pmu_enable  = perf_pmu_nop_void;
5193                 pmu->pmu_disable = perf_pmu_nop_void;
5194         }
5195
5196         list_add_rcu(&pmu->entry, &pmus);
5197         ret = 0;
5198 unlock:
5199         mutex_unlock(&pmus_lock);
5200
5201         return ret;
5202
5203 free_pdc:
5204         free_percpu(pmu->pmu_disable_count);
5205         goto unlock;
5206 }
5207
5208 void perf_pmu_unregister(struct pmu *pmu)
5209 {
5210         mutex_lock(&pmus_lock);
5211         list_del_rcu(&pmu->entry);
5212         mutex_unlock(&pmus_lock);
5213
5214         /*
5215          * We use the pmu list either under SRCU or preempt_disable,
5216          * synchronize_srcu() implies synchronize_sched() so we're good.
5217          */
5218         synchronize_srcu(&pmus_srcu);
5219
5220         free_percpu(pmu->pmu_disable_count);
5221         free_pmu_context(pmu->pmu_cpu_context);
5222 }
5223
5224 struct pmu *perf_init_event(struct perf_event *event)
5225 {
5226         struct pmu *pmu = NULL;
5227         int idx;
5228
5229         idx = srcu_read_lock(&pmus_srcu);
5230         list_for_each_entry_rcu(pmu, &pmus, entry) {
5231                 int ret = pmu->event_init(event);
5232                 if (!ret)
5233                         break;
5234                 if (ret != -ENOENT) {
5235                         pmu = ERR_PTR(ret);
5236                         break;
5237                 }
5238         }
5239         srcu_read_unlock(&pmus_srcu, idx);
5240
5241         return pmu;
5242 }
5243
5244 /*
5245  * Allocate and initialize a event structure
5246  */
5247 static struct perf_event *
5248 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5249                    struct perf_event *group_leader,
5250                    struct perf_event *parent_event,
5251                    perf_overflow_handler_t overflow_handler)
5252 {
5253         struct pmu *pmu;
5254         struct perf_event *event;
5255         struct hw_perf_event *hwc;
5256         long err;
5257
5258         event = kzalloc(sizeof(*event), GFP_KERNEL);
5259         if (!event)
5260                 return ERR_PTR(-ENOMEM);
5261
5262         /*
5263          * Single events are their own group leaders, with an
5264          * empty sibling list:
5265          */
5266         if (!group_leader)
5267                 group_leader = event;
5268
5269         mutex_init(&event->child_mutex);
5270         INIT_LIST_HEAD(&event->child_list);
5271
5272         INIT_LIST_HEAD(&event->group_entry);
5273         INIT_LIST_HEAD(&event->event_entry);
5274         INIT_LIST_HEAD(&event->sibling_list);
5275         init_waitqueue_head(&event->waitq);
5276
5277         mutex_init(&event->mmap_mutex);
5278
5279         event->cpu              = cpu;
5280         event->attr             = *attr;
5281         event->group_leader     = group_leader;
5282         event->pmu              = NULL;
5283         event->oncpu            = -1;
5284
5285         event->parent           = parent_event;
5286
5287         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5288         event->id               = atomic64_inc_return(&perf_event_id);
5289
5290         event->state            = PERF_EVENT_STATE_INACTIVE;
5291
5292         if (!overflow_handler && parent_event)
5293                 overflow_handler = parent_event->overflow_handler;
5294         
5295         event->overflow_handler = overflow_handler;
5296
5297         if (attr->disabled)
5298                 event->state = PERF_EVENT_STATE_OFF;
5299
5300         pmu = NULL;
5301
5302         hwc = &event->hw;
5303         hwc->sample_period = attr->sample_period;
5304         if (attr->freq && attr->sample_freq)
5305                 hwc->sample_period = 1;
5306         hwc->last_period = hwc->sample_period;
5307
5308         local64_set(&hwc->period_left, hwc->sample_period);
5309
5310         /*
5311          * we currently do not support PERF_FORMAT_GROUP on inherited events
5312          */
5313         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5314                 goto done;
5315
5316         pmu = perf_init_event(event);
5317
5318 done:
5319         err = 0;
5320         if (!pmu)
5321                 err = -EINVAL;
5322         else if (IS_ERR(pmu))
5323                 err = PTR_ERR(pmu);
5324
5325         if (err) {
5326                 if (event->ns)
5327                         put_pid_ns(event->ns);
5328                 kfree(event);
5329                 return ERR_PTR(err);
5330         }
5331
5332         event->pmu = pmu;
5333
5334         if (!event->parent) {
5335                 atomic_inc(&nr_events);
5336                 if (event->attr.mmap || event->attr.mmap_data)
5337                         atomic_inc(&nr_mmap_events);
5338                 if (event->attr.comm)
5339                         atomic_inc(&nr_comm_events);
5340                 if (event->attr.task)
5341                         atomic_inc(&nr_task_events);
5342                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5343                         err = get_callchain_buffers();
5344                         if (err) {
5345                                 free_event(event);
5346                                 return ERR_PTR(err);
5347                         }
5348                 }
5349         }
5350
5351         return event;
5352 }
5353
5354 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5355                           struct perf_event_attr *attr)
5356 {
5357         u32 size;
5358         int ret;
5359
5360         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5361                 return -EFAULT;
5362
5363         /*
5364          * zero the full structure, so that a short copy will be nice.
5365          */
5366         memset(attr, 0, sizeof(*attr));
5367
5368         ret = get_user(size, &uattr->size);
5369         if (ret)
5370                 return ret;
5371
5372         if (size > PAGE_SIZE)   /* silly large */
5373                 goto err_size;
5374
5375         if (!size)              /* abi compat */
5376                 size = PERF_ATTR_SIZE_VER0;
5377
5378         if (size < PERF_ATTR_SIZE_VER0)
5379                 goto err_size;
5380
5381         /*
5382          * If we're handed a bigger struct than we know of,
5383          * ensure all the unknown bits are 0 - i.e. new
5384          * user-space does not rely on any kernel feature
5385          * extensions we dont know about yet.
5386          */
5387         if (size > sizeof(*attr)) {
5388                 unsigned char __user *addr;
5389                 unsigned char __user *end;
5390                 unsigned char val;
5391
5392                 addr = (void __user *)uattr + sizeof(*attr);
5393                 end  = (void __user *)uattr + size;
5394
5395                 for (; addr < end; addr++) {
5396                         ret = get_user(val, addr);
5397                         if (ret)
5398                                 return ret;
5399                         if (val)
5400                                 goto err_size;
5401                 }
5402                 size = sizeof(*attr);
5403         }
5404
5405         ret = copy_from_user(attr, uattr, size);
5406         if (ret)
5407                 return -EFAULT;
5408
5409         /*
5410          * If the type exists, the corresponding creation will verify
5411          * the attr->config.
5412          */
5413         if (attr->type >= PERF_TYPE_MAX)
5414                 return -EINVAL;
5415
5416         if (attr->__reserved_1)
5417                 return -EINVAL;
5418
5419         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5420                 return -EINVAL;
5421
5422         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5423                 return -EINVAL;
5424
5425 out:
5426         return ret;
5427
5428 err_size:
5429         put_user(sizeof(*attr), &uattr->size);
5430         ret = -E2BIG;
5431         goto out;
5432 }
5433
5434 static int
5435 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5436 {
5437         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5438         int ret = -EINVAL;
5439
5440         if (!output_event)
5441                 goto set;
5442
5443         /* don't allow circular references */
5444         if (event == output_event)
5445                 goto out;
5446
5447         /*
5448          * Don't allow cross-cpu buffers
5449          */
5450         if (output_event->cpu != event->cpu)
5451                 goto out;
5452
5453         /*
5454          * If its not a per-cpu buffer, it must be the same task.
5455          */
5456         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5457                 goto out;
5458
5459 set:
5460         mutex_lock(&event->mmap_mutex);
5461         /* Can't redirect output if we've got an active mmap() */
5462         if (atomic_read(&event->mmap_count))
5463                 goto unlock;
5464
5465         if (output_event) {
5466                 /* get the buffer we want to redirect to */
5467                 buffer = perf_buffer_get(output_event);
5468                 if (!buffer)
5469                         goto unlock;
5470         }
5471
5472         old_buffer = event->buffer;
5473         rcu_assign_pointer(event->buffer, buffer);
5474         ret = 0;
5475 unlock:
5476         mutex_unlock(&event->mmap_mutex);
5477
5478         if (old_buffer)
5479                 perf_buffer_put(old_buffer);
5480 out:
5481         return ret;
5482 }
5483
5484 /**
5485  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5486  *
5487  * @attr_uptr:  event_id type attributes for monitoring/sampling
5488  * @pid:                target pid
5489  * @cpu:                target cpu
5490  * @group_fd:           group leader event fd
5491  */
5492 SYSCALL_DEFINE5(perf_event_open,
5493                 struct perf_event_attr __user *, attr_uptr,
5494                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5495 {
5496         struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5497         struct perf_event_attr attr;
5498         struct perf_event_context *ctx;
5499         struct file *event_file = NULL;
5500         struct file *group_file = NULL;
5501         struct pmu *pmu;
5502         int event_fd;
5503         int fput_needed = 0;
5504         int err;
5505
5506         /* for future expandability... */
5507         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5508                 return -EINVAL;
5509
5510         err = perf_copy_attr(attr_uptr, &attr);
5511         if (err)
5512                 return err;
5513
5514         if (!attr.exclude_kernel) {
5515                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5516                         return -EACCES;
5517         }
5518
5519         if (attr.freq) {
5520                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5521                         return -EINVAL;
5522         }
5523
5524         event_fd = get_unused_fd_flags(O_RDWR);
5525         if (event_fd < 0)
5526                 return event_fd;
5527
5528         event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
5529         if (IS_ERR(event)) {
5530                 err = PTR_ERR(event);
5531                 goto err_fd;
5532         }
5533
5534         if (group_fd != -1) {
5535                 group_leader = perf_fget_light(group_fd, &fput_needed);
5536                 if (IS_ERR(group_leader)) {
5537                         err = PTR_ERR(group_leader);
5538                         goto err_alloc;
5539                 }
5540                 group_file = group_leader->filp;
5541                 if (flags & PERF_FLAG_FD_OUTPUT)
5542                         output_event = group_leader;
5543                 if (flags & PERF_FLAG_FD_NO_GROUP)
5544                         group_leader = NULL;
5545         }
5546
5547         /*
5548          * Special case software events and allow them to be part of
5549          * any hardware group.
5550          */
5551         pmu = event->pmu;
5552         if ((pmu->task_ctx_nr == perf_sw_context) && group_leader)
5553                 pmu = group_leader->pmu;
5554
5555         /*
5556          * Get the target context (task or percpu):
5557          */
5558         ctx = find_get_context(pmu, pid, cpu);
5559         if (IS_ERR(ctx)) {
5560                 err = PTR_ERR(ctx);
5561                 goto err_group_fd;
5562         }
5563
5564         /*
5565          * Look up the group leader (we will attach this event to it):
5566          */
5567         if (group_leader) {
5568                 err = -EINVAL;
5569
5570                 /*
5571                  * Do not allow a recursive hierarchy (this new sibling
5572                  * becoming part of another group-sibling):
5573                  */
5574                 if (group_leader->group_leader != group_leader)
5575                         goto err_context;
5576                 /*
5577                  * Do not allow to attach to a group in a different
5578                  * task or CPU context:
5579                  */
5580                 if (group_leader->ctx != ctx)
5581                         goto err_context;
5582                 /*
5583                  * Only a group leader can be exclusive or pinned
5584                  */
5585                 if (attr.exclusive || attr.pinned)
5586                         goto err_context;
5587         }
5588
5589         if (output_event) {
5590                 err = perf_event_set_output(event, output_event);
5591                 if (err)
5592                         goto err_context;
5593         }
5594
5595         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5596         if (IS_ERR(event_file)) {
5597                 err = PTR_ERR(event_file);
5598                 goto err_context;
5599         }
5600
5601         event->filp = event_file;
5602         WARN_ON_ONCE(ctx->parent_ctx);
5603         mutex_lock(&ctx->mutex);
5604         perf_install_in_context(ctx, event, cpu);
5605         ++ctx->generation;
5606         mutex_unlock(&ctx->mutex);
5607
5608         event->owner = current;
5609         get_task_struct(current);
5610         mutex_lock(&current->perf_event_mutex);
5611         list_add_tail(&event->owner_entry, &current->perf_event_list);
5612         mutex_unlock(&current->perf_event_mutex);
5613
5614         /*
5615          * Drop the reference on the group_event after placing the
5616          * new event on the sibling_list. This ensures destruction
5617          * of the group leader will find the pointer to itself in
5618          * perf_group_detach().
5619          */
5620         fput_light(group_file, fput_needed);
5621         fd_install(event_fd, event_file);
5622         return event_fd;
5623
5624 err_context:
5625         put_ctx(ctx);
5626 err_group_fd:
5627         fput_light(group_file, fput_needed);
5628 err_alloc:
5629         free_event(event);
5630 err_fd:
5631         put_unused_fd(event_fd);
5632         return err;
5633 }
5634
5635 /**
5636  * perf_event_create_kernel_counter
5637  *
5638  * @attr: attributes of the counter to create
5639  * @cpu: cpu in which the counter is bound
5640  * @pid: task to profile
5641  */
5642 struct perf_event *
5643 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5644                                  pid_t pid,
5645                                  perf_overflow_handler_t overflow_handler)
5646 {
5647         struct perf_event_context *ctx;
5648         struct perf_event *event;
5649         int err;
5650
5651         /*
5652          * Get the target context (task or percpu):
5653          */
5654
5655         event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
5656         if (IS_ERR(event)) {
5657                 err = PTR_ERR(event);
5658                 goto err;
5659         }
5660
5661         ctx = find_get_context(event->pmu, pid, cpu);
5662         if (IS_ERR(ctx)) {
5663                 err = PTR_ERR(ctx);
5664                 goto err_free;
5665         }
5666
5667         event->filp = NULL;
5668         WARN_ON_ONCE(ctx->parent_ctx);
5669         mutex_lock(&ctx->mutex);
5670         perf_install_in_context(ctx, event, cpu);
5671         ++ctx->generation;
5672         mutex_unlock(&ctx->mutex);
5673
5674         event->owner = current;
5675         get_task_struct(current);
5676         mutex_lock(&current->perf_event_mutex);
5677         list_add_tail(&event->owner_entry, &current->perf_event_list);
5678         mutex_unlock(&current->perf_event_mutex);
5679
5680         return event;
5681
5682 err_free:
5683         free_event(event);
5684 err:
5685         return ERR_PTR(err);
5686 }
5687 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5688
5689 static void sync_child_event(struct perf_event *child_event,
5690                                struct task_struct *child)
5691 {
5692         struct perf_event *parent_event = child_event->parent;
5693         u64 child_val;
5694
5695         if (child_event->attr.inherit_stat)
5696                 perf_event_read_event(child_event, child);
5697
5698         child_val = perf_event_count(child_event);
5699
5700         /*
5701          * Add back the child's count to the parent's count:
5702          */
5703         atomic64_add(child_val, &parent_event->child_count);
5704         atomic64_add(child_event->total_time_enabled,
5705                      &parent_event->child_total_time_enabled);
5706         atomic64_add(child_event->total_time_running,
5707                      &parent_event->child_total_time_running);
5708
5709         /*
5710          * Remove this event from the parent's list
5711          */
5712         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5713         mutex_lock(&parent_event->child_mutex);
5714         list_del_init(&child_event->child_list);
5715         mutex_unlock(&parent_event->child_mutex);
5716
5717         /*
5718          * Release the parent event, if this was the last
5719          * reference to it.
5720          */
5721         fput(parent_event->filp);
5722 }
5723
5724 static void
5725 __perf_event_exit_task(struct perf_event *child_event,
5726                          struct perf_event_context *child_ctx,
5727                          struct task_struct *child)
5728 {
5729         struct perf_event *parent_event;
5730
5731         perf_event_remove_from_context(child_event);
5732
5733         parent_event = child_event->parent;
5734         /*
5735          * It can happen that parent exits first, and has events
5736          * that are still around due to the child reference. These
5737          * events need to be zapped - but otherwise linger.
5738          */
5739         if (parent_event) {
5740                 sync_child_event(child_event, child);
5741                 free_event(child_event);
5742         }
5743 }
5744
5745 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5746 {
5747         struct perf_event *child_event, *tmp;
5748         struct perf_event_context *child_ctx;
5749         unsigned long flags;
5750
5751         if (likely(!child->perf_event_ctxp[ctxn])) {
5752                 perf_event_task(child, NULL, 0);
5753                 return;
5754         }
5755
5756         local_irq_save(flags);
5757         /*
5758          * We can't reschedule here because interrupts are disabled,
5759          * and either child is current or it is a task that can't be
5760          * scheduled, so we are now safe from rescheduling changing
5761          * our context.
5762          */
5763         child_ctx = child->perf_event_ctxp[ctxn];
5764         __perf_event_task_sched_out(child_ctx);
5765
5766         /*
5767          * Take the context lock here so that if find_get_context is
5768          * reading child->perf_event_ctxp, we wait until it has
5769          * incremented the context's refcount before we do put_ctx below.
5770          */
5771         raw_spin_lock(&child_ctx->lock);
5772         child->perf_event_ctxp[ctxn] = NULL;
5773         /*
5774          * If this context is a clone; unclone it so it can't get
5775          * swapped to another process while we're removing all
5776          * the events from it.
5777          */
5778         unclone_ctx(child_ctx);
5779         update_context_time(child_ctx);
5780         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5781
5782         /*
5783          * Report the task dead after unscheduling the events so that we
5784          * won't get any samples after PERF_RECORD_EXIT. We can however still
5785          * get a few PERF_RECORD_READ events.
5786          */
5787         perf_event_task(child, child_ctx, 0);
5788
5789         /*
5790          * We can recurse on the same lock type through:
5791          *
5792          *   __perf_event_exit_task()
5793          *     sync_child_event()
5794          *       fput(parent_event->filp)
5795          *         perf_release()
5796          *           mutex_lock(&ctx->mutex)
5797          *
5798          * But since its the parent context it won't be the same instance.
5799          */
5800         mutex_lock(&child_ctx->mutex);
5801
5802 again:
5803         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5804                                  group_entry)
5805                 __perf_event_exit_task(child_event, child_ctx, child);
5806
5807         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5808                                  group_entry)
5809                 __perf_event_exit_task(child_event, child_ctx, child);
5810
5811         /*
5812          * If the last event was a group event, it will have appended all
5813          * its siblings to the list, but we obtained 'tmp' before that which
5814          * will still point to the list head terminating the iteration.
5815          */
5816         if (!list_empty(&child_ctx->pinned_groups) ||
5817             !list_empty(&child_ctx->flexible_groups))
5818                 goto again;
5819
5820         mutex_unlock(&child_ctx->mutex);
5821
5822         put_ctx(child_ctx);
5823 }
5824
5825 /*
5826  * When a child task exits, feed back event values to parent events.
5827  */
5828 void perf_event_exit_task(struct task_struct *child)
5829 {
5830         int ctxn;
5831
5832         for_each_task_context_nr(ctxn)
5833                 perf_event_exit_task_context(child, ctxn);
5834 }
5835
5836 static void perf_free_event(struct perf_event *event,
5837                             struct perf_event_context *ctx)
5838 {
5839         struct perf_event *parent = event->parent;
5840
5841         if (WARN_ON_ONCE(!parent))
5842                 return;
5843
5844         mutex_lock(&parent->child_mutex);
5845         list_del_init(&event->child_list);
5846         mutex_unlock(&parent->child_mutex);
5847
5848         fput(parent->filp);
5849
5850         perf_group_detach(event);
5851         list_del_event(event, ctx);
5852         free_event(event);
5853 }
5854
5855 /*
5856  * free an unexposed, unused context as created by inheritance by
5857  * perf_event_init_task below, used by fork() in case of fail.
5858  */
5859 void perf_event_free_task(struct task_struct *task)
5860 {
5861         struct perf_event_context *ctx;
5862         struct perf_event *event, *tmp;
5863         int ctxn;
5864
5865         for_each_task_context_nr(ctxn) {
5866                 ctx = task->perf_event_ctxp[ctxn];
5867                 if (!ctx)
5868                         continue;
5869
5870                 mutex_lock(&ctx->mutex);
5871 again:
5872                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5873                                 group_entry)
5874                         perf_free_event(event, ctx);
5875
5876                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5877                                 group_entry)
5878                         perf_free_event(event, ctx);
5879
5880                 if (!list_empty(&ctx->pinned_groups) ||
5881                                 !list_empty(&ctx->flexible_groups))
5882                         goto again;
5883
5884                 mutex_unlock(&ctx->mutex);
5885
5886                 put_ctx(ctx);
5887         }
5888 }
5889
5890 /*
5891  * inherit a event from parent task to child task:
5892  */
5893 static struct perf_event *
5894 inherit_event(struct perf_event *parent_event,
5895               struct task_struct *parent,
5896               struct perf_event_context *parent_ctx,
5897               struct task_struct *child,
5898               struct perf_event *group_leader,
5899               struct perf_event_context *child_ctx)
5900 {
5901         struct perf_event *child_event;
5902
5903         /*
5904          * Instead of creating recursive hierarchies of events,
5905          * we link inherited events back to the original parent,
5906          * which has a filp for sure, which we use as the reference
5907          * count:
5908          */
5909         if (parent_event->parent)
5910                 parent_event = parent_event->parent;
5911
5912         child_event = perf_event_alloc(&parent_event->attr,
5913                                            parent_event->cpu,
5914                                            group_leader, parent_event,
5915                                            NULL);
5916         if (IS_ERR(child_event))
5917                 return child_event;
5918         get_ctx(child_ctx);
5919
5920         /*
5921          * Make the child state follow the state of the parent event,
5922          * not its attr.disabled bit.  We hold the parent's mutex,
5923          * so we won't race with perf_event_{en, dis}able_family.
5924          */
5925         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5926                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5927         else
5928                 child_event->state = PERF_EVENT_STATE_OFF;
5929
5930         if (parent_event->attr.freq) {
5931                 u64 sample_period = parent_event->hw.sample_period;
5932                 struct hw_perf_event *hwc = &child_event->hw;
5933
5934                 hwc->sample_period = sample_period;
5935                 hwc->last_period   = sample_period;
5936
5937                 local64_set(&hwc->period_left, sample_period);
5938         }
5939
5940         child_event->ctx = child_ctx;
5941         child_event->overflow_handler = parent_event->overflow_handler;
5942
5943         /*
5944          * Link it up in the child's context:
5945          */
5946         add_event_to_ctx(child_event, child_ctx);
5947
5948         /*
5949          * Get a reference to the parent filp - we will fput it
5950          * when the child event exits. This is safe to do because
5951          * we are in the parent and we know that the filp still
5952          * exists and has a nonzero count:
5953          */
5954         atomic_long_inc(&parent_event->filp->f_count);
5955
5956         /*
5957          * Link this into the parent event's child list
5958          */
5959         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5960         mutex_lock(&parent_event->child_mutex);
5961         list_add_tail(&child_event->child_list, &parent_event->child_list);
5962         mutex_unlock(&parent_event->child_mutex);
5963
5964         return child_event;
5965 }
5966
5967 static int inherit_group(struct perf_event *parent_event,
5968               struct task_struct *parent,
5969               struct perf_event_context *parent_ctx,
5970               struct task_struct *child,
5971               struct perf_event_context *child_ctx)
5972 {
5973         struct perf_event *leader;
5974         struct perf_event *sub;
5975         struct perf_event *child_ctr;
5976
5977         leader = inherit_event(parent_event, parent, parent_ctx,
5978                                  child, NULL, child_ctx);
5979         if (IS_ERR(leader))
5980                 return PTR_ERR(leader);
5981         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5982                 child_ctr = inherit_event(sub, parent, parent_ctx,
5983                                             child, leader, child_ctx);
5984                 if (IS_ERR(child_ctr))
5985                         return PTR_ERR(child_ctr);
5986         }
5987         return 0;
5988 }
5989
5990 static int
5991 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5992                    struct perf_event_context *parent_ctx,
5993                    struct task_struct *child, int ctxn,
5994                    int *inherited_all)
5995 {
5996         int ret;
5997         struct perf_event_context *child_ctx;
5998
5999         if (!event->attr.inherit) {
6000                 *inherited_all = 0;
6001                 return 0;
6002         }
6003
6004         child_ctx = child->perf_event_ctxp[ctxn];
6005         if (!child_ctx) {
6006                 /*
6007                  * This is executed from the parent task context, so
6008                  * inherit events that have been marked for cloning.
6009                  * First allocate and initialize a context for the
6010                  * child.
6011                  */
6012
6013                 child_ctx = alloc_perf_context(event->pmu, child);
6014                 if (!child_ctx)
6015                         return -ENOMEM;
6016
6017                 child->perf_event_ctxp[ctxn] = child_ctx;
6018         }
6019
6020         ret = inherit_group(event, parent, parent_ctx,
6021                             child, child_ctx);
6022
6023         if (ret)
6024                 *inherited_all = 0;
6025
6026         return ret;
6027 }
6028
6029 /*
6030  * Initialize the perf_event context in task_struct
6031  */
6032 int perf_event_init_context(struct task_struct *child, int ctxn)
6033 {
6034         struct perf_event_context *child_ctx, *parent_ctx;
6035         struct perf_event_context *cloned_ctx;
6036         struct perf_event *event;
6037         struct task_struct *parent = current;
6038         int inherited_all = 1;
6039         int ret = 0;
6040
6041         child->perf_event_ctxp[ctxn] = NULL;
6042
6043         mutex_init(&child->perf_event_mutex);
6044         INIT_LIST_HEAD(&child->perf_event_list);
6045
6046         if (likely(!parent->perf_event_ctxp[ctxn]))
6047                 return 0;
6048
6049         /*
6050          * If the parent's context is a clone, pin it so it won't get
6051          * swapped under us.
6052          */
6053         parent_ctx = perf_pin_task_context(parent, ctxn);
6054
6055         /*
6056          * No need to check if parent_ctx != NULL here; since we saw
6057          * it non-NULL earlier, the only reason for it to become NULL
6058          * is if we exit, and since we're currently in the middle of
6059          * a fork we can't be exiting at the same time.
6060          */
6061
6062         /*
6063          * Lock the parent list. No need to lock the child - not PID
6064          * hashed yet and not running, so nobody can access it.
6065          */
6066         mutex_lock(&parent_ctx->mutex);
6067
6068         /*
6069          * We dont have to disable NMIs - we are only looking at
6070          * the list, not manipulating it:
6071          */
6072         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6073                 ret = inherit_task_group(event, parent, parent_ctx,
6074                                          child, ctxn, &inherited_all);
6075                 if (ret)
6076                         break;
6077         }
6078
6079         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6080                 ret = inherit_task_group(event, parent, parent_ctx,
6081                                          child, ctxn, &inherited_all);
6082                 if (ret)
6083                         break;
6084         }
6085
6086         child_ctx = child->perf_event_ctxp[ctxn];
6087
6088         if (child_ctx && inherited_all) {
6089                 /*
6090                  * Mark the child context as a clone of the parent
6091                  * context, or of whatever the parent is a clone of.
6092                  * Note that if the parent is a clone, it could get
6093                  * uncloned at any point, but that doesn't matter
6094                  * because the list of events and the generation
6095                  * count can't have changed since we took the mutex.
6096                  */
6097                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6098                 if (cloned_ctx) {
6099                         child_ctx->parent_ctx = cloned_ctx;
6100                         child_ctx->parent_gen = parent_ctx->parent_gen;
6101                 } else {
6102                         child_ctx->parent_ctx = parent_ctx;
6103                         child_ctx->parent_gen = parent_ctx->generation;
6104                 }
6105                 get_ctx(child_ctx->parent_ctx);
6106         }
6107
6108         mutex_unlock(&parent_ctx->mutex);
6109
6110         perf_unpin_context(parent_ctx);
6111
6112         return ret;
6113 }
6114
6115 /*
6116  * Initialize the perf_event context in task_struct
6117  */
6118 int perf_event_init_task(struct task_struct *child)
6119 {
6120         int ctxn, ret;
6121
6122         for_each_task_context_nr(ctxn) {
6123                 ret = perf_event_init_context(child, ctxn);
6124                 if (ret)
6125                         return ret;
6126         }
6127
6128         return 0;
6129 }
6130
6131 static void __init perf_event_init_all_cpus(void)
6132 {
6133         struct swevent_htable *swhash;
6134         int cpu;
6135
6136         for_each_possible_cpu(cpu) {
6137                 swhash = &per_cpu(swevent_htable, cpu);
6138                 mutex_init(&swhash->hlist_mutex);
6139         }
6140 }
6141
6142 static void __cpuinit perf_event_init_cpu(int cpu)
6143 {
6144         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6145
6146         mutex_lock(&swhash->hlist_mutex);
6147         if (swhash->hlist_refcount > 0) {
6148                 struct swevent_hlist *hlist;
6149
6150                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6151                 WARN_ON(!hlist);
6152                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6153         }
6154         mutex_unlock(&swhash->hlist_mutex);
6155 }
6156
6157 #ifdef CONFIG_HOTPLUG_CPU
6158 static void __perf_event_exit_context(void *__info)
6159 {
6160         struct perf_event_context *ctx = __info;
6161         struct perf_event *event, *tmp;
6162
6163         perf_pmu_rotate_stop(ctx->pmu);
6164
6165         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6166                 __perf_event_remove_from_context(event);
6167         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6168                 __perf_event_remove_from_context(event);
6169 }
6170
6171 static void perf_event_exit_cpu_context(int cpu)
6172 {
6173         struct perf_event_context *ctx;
6174         struct pmu *pmu;
6175         int idx;
6176
6177         idx = srcu_read_lock(&pmus_srcu);
6178         list_for_each_entry_rcu(pmu, &pmus, entry) {
6179                 ctx = &this_cpu_ptr(pmu->pmu_cpu_context)->ctx;
6180
6181                 mutex_lock(&ctx->mutex);
6182                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6183                 mutex_unlock(&ctx->mutex);
6184         }
6185         srcu_read_unlock(&pmus_srcu, idx);
6186
6187 }
6188
6189 static void perf_event_exit_cpu(int cpu)
6190 {
6191         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6192
6193         mutex_lock(&swhash->hlist_mutex);
6194         swevent_hlist_release(swhash);
6195         mutex_unlock(&swhash->hlist_mutex);
6196
6197         perf_event_exit_cpu_context(cpu);
6198 }
6199 #else
6200 static inline void perf_event_exit_cpu(int cpu) { }
6201 #endif
6202
6203 static int __cpuinit
6204 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6205 {
6206         unsigned int cpu = (long)hcpu;
6207
6208         switch (action & ~CPU_TASKS_FROZEN) {
6209
6210         case CPU_UP_PREPARE:
6211         case CPU_DOWN_FAILED:
6212                 perf_event_init_cpu(cpu);
6213                 break;
6214
6215         case CPU_UP_CANCELED:
6216         case CPU_DOWN_PREPARE:
6217                 perf_event_exit_cpu(cpu);
6218                 break;
6219
6220         default:
6221                 break;
6222         }
6223
6224         return NOTIFY_OK;
6225 }
6226
6227 void __init perf_event_init(void)
6228 {
6229         perf_event_init_all_cpus();
6230         init_srcu_struct(&pmus_srcu);
6231         perf_pmu_register(&perf_swevent);
6232         perf_pmu_register(&perf_cpu_clock);
6233         perf_pmu_register(&perf_task_clock);
6234         perf_tp_register();
6235         perf_cpu_notifier(perf_cpu_notify);
6236 }