drm/i915: fix PCH eDP SSC support
[linux-flexiantxendom0-natty.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50     /* given values */
51     int n;
52     int m1, m2;
53     int p1, p2;
54     /* derived values */
55     int dot;
56     int vco;
57     int m;
58     int p;
59 } intel_clock_t;
60
61 typedef struct {
62     int min, max;
63 } intel_range_t;
64
65 typedef struct {
66     int dot_limit;
67     int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM                  2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74     intel_p2_t      p2;
75     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76                       int, int, intel_clock_t *);
77 };
78
79 #define I8XX_DOT_MIN              25000
80 #define I8XX_DOT_MAX             350000
81 #define I8XX_VCO_MIN             930000
82 #define I8XX_VCO_MAX            1400000
83 #define I8XX_N_MIN                    3
84 #define I8XX_N_MAX                   16
85 #define I8XX_M_MIN                   96
86 #define I8XX_M_MAX                  140
87 #define I8XX_M1_MIN                  18
88 #define I8XX_M1_MAX                  26
89 #define I8XX_M2_MIN                   6
90 #define I8XX_M2_MAX                  16
91 #define I8XX_P_MIN                    4
92 #define I8XX_P_MAX                  128
93 #define I8XX_P1_MIN                   2
94 #define I8XX_P1_MAX                  33
95 #define I8XX_P1_LVDS_MIN              1
96 #define I8XX_P1_LVDS_MAX              6
97 #define I8XX_P2_SLOW                  4
98 #define I8XX_P2_FAST                  2
99 #define I8XX_P2_LVDS_SLOW             14
100 #define I8XX_P2_LVDS_FAST             7
101 #define I8XX_P2_SLOW_LIMIT       165000
102
103 #define I9XX_DOT_MIN              20000
104 #define I9XX_DOT_MAX             400000
105 #define I9XX_VCO_MIN            1400000
106 #define I9XX_VCO_MAX            2800000
107 #define PINEVIEW_VCO_MIN                1700000
108 #define PINEVIEW_VCO_MAX                3500000
109 #define I9XX_N_MIN                    1
110 #define I9XX_N_MAX                    6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN                3
113 #define PINEVIEW_N_MAX                6
114 #define I9XX_M_MIN                   70
115 #define I9XX_M_MAX                  120
116 #define PINEVIEW_M_MIN                2
117 #define PINEVIEW_M_MAX              256
118 #define I9XX_M1_MIN                  10
119 #define I9XX_M1_MAX                  22
120 #define I9XX_M2_MIN                   5
121 #define I9XX_M2_MAX                   9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN               0
124 #define PINEVIEW_M1_MAX               0
125 #define PINEVIEW_M2_MIN               0
126 #define PINEVIEW_M2_MAX               254
127 #define I9XX_P_SDVO_DAC_MIN           5
128 #define I9XX_P_SDVO_DAC_MAX          80
129 #define I9XX_P_LVDS_MIN               7
130 #define I9XX_P_LVDS_MAX              98
131 #define PINEVIEW_P_LVDS_MIN                   7
132 #define PINEVIEW_P_LVDS_MAX                  112
133 #define I9XX_P1_MIN                   1
134 #define I9XX_P1_MAX                   8
135 #define I9XX_P2_SDVO_DAC_SLOW                10
136 #define I9XX_P2_SDVO_DAC_FAST                 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
138 #define I9XX_P2_LVDS_SLOW                    14
139 #define I9XX_P2_LVDS_FAST                     7
140 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
141
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN           25000
144 #define G4X_DOT_SDVO_MAX           270000
145 #define G4X_VCO_MIN                1750000
146 #define G4X_VCO_MAX                3500000
147 #define G4X_N_SDVO_MIN             1
148 #define G4X_N_SDVO_MAX             4
149 #define G4X_M_SDVO_MIN             104
150 #define G4X_M_SDVO_MAX             138
151 #define G4X_M1_SDVO_MIN            17
152 #define G4X_M1_SDVO_MAX            23
153 #define G4X_M2_SDVO_MIN            5
154 #define G4X_M2_SDVO_MAX            11
155 #define G4X_P_SDVO_MIN             10
156 #define G4X_P_SDVO_MAX             30
157 #define G4X_P1_SDVO_MIN            1
158 #define G4X_P1_SDVO_MAX            3
159 #define G4X_P2_SDVO_SLOW           10
160 #define G4X_P2_SDVO_FAST           10
161 #define G4X_P2_SDVO_LIMIT          270000
162
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN           22000
165 #define G4X_DOT_HDMI_DAC_MAX           400000
166 #define G4X_N_HDMI_DAC_MIN             1
167 #define G4X_N_HDMI_DAC_MAX             4
168 #define G4X_M_HDMI_DAC_MIN             104
169 #define G4X_M_HDMI_DAC_MAX             138
170 #define G4X_M1_HDMI_DAC_MIN            16
171 #define G4X_M1_HDMI_DAC_MAX            23
172 #define G4X_M2_HDMI_DAC_MIN            5
173 #define G4X_M2_HDMI_DAC_MAX            11
174 #define G4X_P_HDMI_DAC_MIN             5
175 #define G4X_P_HDMI_DAC_MAX             80
176 #define G4X_P1_HDMI_DAC_MIN            1
177 #define G4X_P1_HDMI_DAC_MAX            8
178 #define G4X_P2_HDMI_DAC_SLOW           10
179 #define G4X_P2_HDMI_DAC_FAST           5
180 #define G4X_P2_HDMI_DAC_LIMIT          165000
181
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
200
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
219
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN           161670
222 #define G4X_DOT_DISPLAY_PORT_MAX           227000
223 #define G4X_N_DISPLAY_PORT_MIN             1
224 #define G4X_N_DISPLAY_PORT_MAX             2
225 #define G4X_M_DISPLAY_PORT_MIN             97
226 #define G4X_M_DISPLAY_PORT_MAX             108
227 #define G4X_M1_DISPLAY_PORT_MIN            0x10
228 #define G4X_M1_DISPLAY_PORT_MAX            0x12
229 #define G4X_M2_DISPLAY_PORT_MIN            0x05
230 #define G4X_M2_DISPLAY_PORT_MAX            0x06
231 #define G4X_P_DISPLAY_PORT_MIN             10
232 #define G4X_P_DISPLAY_PORT_MAX             20
233 #define G4X_P1_DISPLAY_PORT_MIN            1
234 #define G4X_P1_DISPLAY_PORT_MAX            2
235 #define G4X_P2_DISPLAY_PORT_SLOW           10
236 #define G4X_P2_DISPLAY_PORT_FAST           10
237 #define G4X_P2_DISPLAY_PORT_LIMIT          0
238
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241    N/M1/M2, so here the range value for them is (actual_value-2).
242  */
243 #define IRONLAKE_DOT_MIN         25000
244 #define IRONLAKE_DOT_MAX         350000
245 #define IRONLAKE_VCO_MIN         1760000
246 #define IRONLAKE_VCO_MAX         3510000
247 #define IRONLAKE_M1_MIN          12
248 #define IRONLAKE_M1_MAX          22
249 #define IRONLAKE_M2_MIN          5
250 #define IRONLAKE_M2_MAX          9
251 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
252
253 /* We have parameter ranges for different type of outputs. */
254
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN      1
257 #define IRONLAKE_DAC_N_MAX      5
258 #define IRONLAKE_DAC_M_MIN      79
259 #define IRONLAKE_DAC_M_MAX      127
260 #define IRONLAKE_DAC_P_MIN      5
261 #define IRONLAKE_DAC_P_MAX      80
262 #define IRONLAKE_DAC_P1_MIN     1
263 #define IRONLAKE_DAC_P1_MAX     8
264 #define IRONLAKE_DAC_P2_SLOW    10
265 #define IRONLAKE_DAC_P2_FAST    5
266
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN   1
269 #define IRONLAKE_LVDS_S_N_MAX   3
270 #define IRONLAKE_LVDS_S_M_MIN   79
271 #define IRONLAKE_LVDS_S_M_MAX   118
272 #define IRONLAKE_LVDS_S_P_MIN   28
273 #define IRONLAKE_LVDS_S_P_MAX   112
274 #define IRONLAKE_LVDS_S_P1_MIN  2
275 #define IRONLAKE_LVDS_S_P1_MAX  8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
278
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN   1
281 #define IRONLAKE_LVDS_D_N_MAX   3
282 #define IRONLAKE_LVDS_D_M_MIN   79
283 #define IRONLAKE_LVDS_D_M_MAX   127
284 #define IRONLAKE_LVDS_D_P_MIN   14
285 #define IRONLAKE_LVDS_D_P_MAX   56
286 #define IRONLAKE_LVDS_D_P1_MIN  2
287 #define IRONLAKE_LVDS_D_P1_MAX  8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
290
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
302
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
314
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN               1
317 #define IRONLAKE_DP_N_MAX               2
318 #define IRONLAKE_DP_M_MIN               81
319 #define IRONLAKE_DP_M_MAX               90
320 #define IRONLAKE_DP_P_MIN               10
321 #define IRONLAKE_DP_P_MAX               20
322 #define IRONLAKE_DP_P2_FAST             10
323 #define IRONLAKE_DP_P2_SLOW             10
324 #define IRONLAKE_DP_P2_LIMIT            0
325 #define IRONLAKE_DP_P1_MIN              1
326 #define IRONLAKE_DP_P1_MAX              2
327
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
330
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333                     int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336                         int target, int refclk, intel_clock_t *best_clock);
337
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340                       int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343                            int target, int refclk, intel_clock_t *best_clock);
344
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
347 {
348         struct drm_i915_private *dev_priv = dev->dev_private;
349         return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
350 }
351
352 static const intel_limit_t intel_limits_i8xx_dvo = {
353         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
354         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
355         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
356         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
357         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
358         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
359         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
360         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
361         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
362                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
363         .find_pll = intel_find_best_PLL,
364 };
365
366 static const intel_limit_t intel_limits_i8xx_lvds = {
367         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
368         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
369         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
370         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
371         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
372         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
373         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
374         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
375         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
376                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
377         .find_pll = intel_find_best_PLL,
378 };
379         
380 static const intel_limit_t intel_limits_i9xx_sdvo = {
381         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
382         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
383         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
384         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
385         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
386         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
387         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
388         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
389         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
390                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
391         .find_pll = intel_find_best_PLL,
392 };
393
394 static const intel_limit_t intel_limits_i9xx_lvds = {
395         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
396         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
397         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
398         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
399         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
400         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
401         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
402         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
403         /* The single-channel range is 25-112Mhz, and dual-channel
404          * is 80-224Mhz.  Prefer single channel as much as possible.
405          */
406         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
407                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
408         .find_pll = intel_find_best_PLL,
409 };
410
411     /* below parameter and function is for G4X Chipset Family*/
412 static const intel_limit_t intel_limits_g4x_sdvo = {
413         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
414         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
415         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
416         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
417         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
418         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
419         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
420         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
421         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
422                  .p2_slow = G4X_P2_SDVO_SLOW,
423                  .p2_fast = G4X_P2_SDVO_FAST
424         },
425         .find_pll = intel_g4x_find_best_PLL,
426 };
427
428 static const intel_limit_t intel_limits_g4x_hdmi = {
429         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
430         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
431         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
432         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
433         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
434         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
435         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
436         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
437         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
438                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
439                  .p2_fast = G4X_P2_HDMI_DAC_FAST
440         },
441         .find_pll = intel_g4x_find_best_PLL,
442 };
443
444 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
445         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
446                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
447         .vco = { .min = G4X_VCO_MIN,
448                  .max = G4X_VCO_MAX },
449         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
450                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
451         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
452                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
453         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
454                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
455         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
456                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
457         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
458                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
459         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
460                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
461         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
462                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
463                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
464         },
465         .find_pll = intel_g4x_find_best_PLL,
466 };
467
468 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
469         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
470                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
471         .vco = { .min = G4X_VCO_MIN,
472                  .max = G4X_VCO_MAX },
473         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
474                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
475         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
476                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
477         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
478                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
479         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
480                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
481         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
482                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
483         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
484                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
485         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
486                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
487                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
488         },
489         .find_pll = intel_g4x_find_best_PLL,
490 };
491
492 static const intel_limit_t intel_limits_g4x_display_port = {
493         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
494                  .max = G4X_DOT_DISPLAY_PORT_MAX },
495         .vco = { .min = G4X_VCO_MIN,
496                  .max = G4X_VCO_MAX},
497         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
498                  .max = G4X_N_DISPLAY_PORT_MAX },
499         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
500                  .max = G4X_M_DISPLAY_PORT_MAX },
501         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
502                  .max = G4X_M1_DISPLAY_PORT_MAX },
503         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
504                  .max = G4X_M2_DISPLAY_PORT_MAX },
505         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
506                  .max = G4X_P_DISPLAY_PORT_MAX },
507         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
508                  .max = G4X_P1_DISPLAY_PORT_MAX},
509         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
510                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
511                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
512         .find_pll = intel_find_pll_g4x_dp,
513 };
514
515 static const intel_limit_t intel_limits_pineview_sdvo = {
516         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
517         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
518         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
519         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
520         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
521         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
522         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
523         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
524         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
525                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
526         .find_pll = intel_find_best_PLL,
527 };
528
529 static const intel_limit_t intel_limits_pineview_lvds = {
530         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
531         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
532         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
533         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
534         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
535         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
536         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
537         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
538         /* Pineview only supports single-channel mode. */
539         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
540                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
541         .find_pll = intel_find_best_PLL,
542 };
543
544 static const intel_limit_t intel_limits_ironlake_dac = {
545         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
546         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
547         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
548         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
549         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
550         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
551         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
552         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
553         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
554                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
555                  .p2_fast = IRONLAKE_DAC_P2_FAST },
556         .find_pll = intel_g4x_find_best_PLL,
557 };
558
559 static const intel_limit_t intel_limits_ironlake_single_lvds = {
560         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
561         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
562         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
563         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
564         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
565         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
566         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
567         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
568         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
569                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
570                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
571         .find_pll = intel_g4x_find_best_PLL,
572 };
573
574 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
575         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
576         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
577         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
578         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
579         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
580         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
581         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
582         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
583         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
584                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
585                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
586         .find_pll = intel_g4x_find_best_PLL,
587 };
588
589 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
590         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
591         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
592         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
593         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
594         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
595         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
596         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
597         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
598         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
599                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
600                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
601         .find_pll = intel_g4x_find_best_PLL,
602 };
603
604 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
605         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
606         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
607         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
608         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
609         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
610         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
611         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
612         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
613         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
614                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
615                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
616         .find_pll = intel_g4x_find_best_PLL,
617 };
618
619 static const intel_limit_t intel_limits_ironlake_display_port = {
620         .dot = { .min = IRONLAKE_DOT_MIN,
621                  .max = IRONLAKE_DOT_MAX },
622         .vco = { .min = IRONLAKE_VCO_MIN,
623                  .max = IRONLAKE_VCO_MAX},
624         .n   = { .min = IRONLAKE_DP_N_MIN,
625                  .max = IRONLAKE_DP_N_MAX },
626         .m   = { .min = IRONLAKE_DP_M_MIN,
627                  .max = IRONLAKE_DP_M_MAX },
628         .m1  = { .min = IRONLAKE_M1_MIN,
629                  .max = IRONLAKE_M1_MAX },
630         .m2  = { .min = IRONLAKE_M2_MIN,
631                  .max = IRONLAKE_M2_MAX },
632         .p   = { .min = IRONLAKE_DP_P_MIN,
633                  .max = IRONLAKE_DP_P_MAX },
634         .p1  = { .min = IRONLAKE_DP_P1_MIN,
635                  .max = IRONLAKE_DP_P1_MAX},
636         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
637                  .p2_slow = IRONLAKE_DP_P2_SLOW,
638                  .p2_fast = IRONLAKE_DP_P2_FAST },
639         .find_pll = intel_find_pll_ironlake_dp,
640 };
641
642 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
643 {
644         struct drm_device *dev = crtc->dev;
645         struct drm_i915_private *dev_priv = dev->dev_private;
646         const intel_limit_t *limit;
647         int refclk = 120;
648
649         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
650                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
651                         refclk = 100;
652
653                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
654                     LVDS_CLKB_POWER_UP) {
655                         /* LVDS dual channel */
656                         if (refclk == 100)
657                                 limit = &intel_limits_ironlake_dual_lvds_100m;
658                         else
659                                 limit = &intel_limits_ironlake_dual_lvds;
660                 } else {
661                         if (refclk == 100)
662                                 limit = &intel_limits_ironlake_single_lvds_100m;
663                         else
664                                 limit = &intel_limits_ironlake_single_lvds;
665                 }
666         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
667                         HAS_eDP)
668                 limit = &intel_limits_ironlake_display_port;
669         else
670                 limit = &intel_limits_ironlake_dac;
671
672         return limit;
673 }
674
675 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
676 {
677         struct drm_device *dev = crtc->dev;
678         struct drm_i915_private *dev_priv = dev->dev_private;
679         const intel_limit_t *limit;
680
681         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
682                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
683                     LVDS_CLKB_POWER_UP)
684                         /* LVDS with dual channel */
685                         limit = &intel_limits_g4x_dual_channel_lvds;
686                 else
687                         /* LVDS with dual channel */
688                         limit = &intel_limits_g4x_single_channel_lvds;
689         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
690                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
691                 limit = &intel_limits_g4x_hdmi;
692         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
693                 limit = &intel_limits_g4x_sdvo;
694         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
695                 limit = &intel_limits_g4x_display_port;
696         } else /* The option is for other outputs */
697                 limit = &intel_limits_i9xx_sdvo;
698
699         return limit;
700 }
701
702 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
703 {
704         struct drm_device *dev = crtc->dev;
705         const intel_limit_t *limit;
706
707         if (HAS_PCH_SPLIT(dev))
708                 limit = intel_ironlake_limit(crtc);
709         else if (IS_G4X(dev)) {
710                 limit = intel_g4x_limit(crtc);
711         } else if (IS_PINEVIEW(dev)) {
712                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
713                         limit = &intel_limits_pineview_lvds;
714                 else
715                         limit = &intel_limits_pineview_sdvo;
716         } else if (!IS_GEN2(dev)) {
717                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
718                         limit = &intel_limits_i9xx_lvds;
719                 else
720                         limit = &intel_limits_i9xx_sdvo;
721         } else {
722                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
723                         limit = &intel_limits_i8xx_lvds;
724                 else
725                         limit = &intel_limits_i8xx_dvo;
726         }
727         return limit;
728 }
729
730 /* m1 is reserved as 0 in Pineview, n is a ring counter */
731 static void pineview_clock(int refclk, intel_clock_t *clock)
732 {
733         clock->m = clock->m2 + 2;
734         clock->p = clock->p1 * clock->p2;
735         clock->vco = refclk * clock->m / clock->n;
736         clock->dot = clock->vco / clock->p;
737 }
738
739 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
740 {
741         if (IS_PINEVIEW(dev)) {
742                 pineview_clock(refclk, clock);
743                 return;
744         }
745         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
746         clock->p = clock->p1 * clock->p2;
747         clock->vco = refclk * clock->m / (clock->n + 2);
748         clock->dot = clock->vco / clock->p;
749 }
750
751 /**
752  * Returns whether any output on the specified pipe is of the specified type
753  */
754 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
755 {
756         struct drm_device *dev = crtc->dev;
757         struct drm_mode_config *mode_config = &dev->mode_config;
758         struct intel_encoder *encoder;
759
760         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
761                 if (encoder->base.crtc == crtc && encoder->type == type)
762                         return true;
763
764         return false;
765 }
766
767 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
768 /**
769  * Returns whether the given set of divisors are valid for a given refclk with
770  * the given connectors.
771  */
772
773 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
774 {
775         const intel_limit_t *limit = intel_limit (crtc);
776         struct drm_device *dev = crtc->dev;
777
778         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
779                 INTELPllInvalid ("p1 out of range\n");
780         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
781                 INTELPllInvalid ("p out of range\n");
782         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
783                 INTELPllInvalid ("m2 out of range\n");
784         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
785                 INTELPllInvalid ("m1 out of range\n");
786         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
787                 INTELPllInvalid ("m1 <= m2\n");
788         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
789                 INTELPllInvalid ("m out of range\n");
790         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
791                 INTELPllInvalid ("n out of range\n");
792         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
793                 INTELPllInvalid ("vco out of range\n");
794         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
795          * connector, etc., rather than just a single range.
796          */
797         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
798                 INTELPllInvalid ("dot out of range\n");
799
800         return true;
801 }
802
803 static bool
804 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
805                     int target, int refclk, intel_clock_t *best_clock)
806
807 {
808         struct drm_device *dev = crtc->dev;
809         struct drm_i915_private *dev_priv = dev->dev_private;
810         intel_clock_t clock;
811         int err = target;
812
813         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
814             (I915_READ(LVDS)) != 0) {
815                 /*
816                  * For LVDS, if the panel is on, just rely on its current
817                  * settings for dual-channel.  We haven't figured out how to
818                  * reliably set up different single/dual channel state, if we
819                  * even can.
820                  */
821                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
822                     LVDS_CLKB_POWER_UP)
823                         clock.p2 = limit->p2.p2_fast;
824                 else
825                         clock.p2 = limit->p2.p2_slow;
826         } else {
827                 if (target < limit->p2.dot_limit)
828                         clock.p2 = limit->p2.p2_slow;
829                 else
830                         clock.p2 = limit->p2.p2_fast;
831         }
832
833         memset (best_clock, 0, sizeof (*best_clock));
834
835         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
836              clock.m1++) {
837                 for (clock.m2 = limit->m2.min;
838                      clock.m2 <= limit->m2.max; clock.m2++) {
839                         /* m1 is always 0 in Pineview */
840                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
841                                 break;
842                         for (clock.n = limit->n.min;
843                              clock.n <= limit->n.max; clock.n++) {
844                                 for (clock.p1 = limit->p1.min;
845                                         clock.p1 <= limit->p1.max; clock.p1++) {
846                                         int this_err;
847
848                                         intel_clock(dev, refclk, &clock);
849
850                                         if (!intel_PLL_is_valid(crtc, &clock))
851                                                 continue;
852
853                                         this_err = abs(clock.dot - target);
854                                         if (this_err < err) {
855                                                 *best_clock = clock;
856                                                 err = this_err;
857                                         }
858                                 }
859                         }
860                 }
861         }
862
863         return (err != target);
864 }
865
866 static bool
867 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
868                         int target, int refclk, intel_clock_t *best_clock)
869 {
870         struct drm_device *dev = crtc->dev;
871         struct drm_i915_private *dev_priv = dev->dev_private;
872         intel_clock_t clock;
873         int max_n;
874         bool found;
875         /* approximately equals target * 0.00585 */
876         int err_most = (target >> 8) + (target >> 9);
877         found = false;
878
879         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
880                 int lvds_reg;
881
882                 if (HAS_PCH_SPLIT(dev))
883                         lvds_reg = PCH_LVDS;
884                 else
885                         lvds_reg = LVDS;
886                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
887                     LVDS_CLKB_POWER_UP)
888                         clock.p2 = limit->p2.p2_fast;
889                 else
890                         clock.p2 = limit->p2.p2_slow;
891         } else {
892                 if (target < limit->p2.dot_limit)
893                         clock.p2 = limit->p2.p2_slow;
894                 else
895                         clock.p2 = limit->p2.p2_fast;
896         }
897
898         memset(best_clock, 0, sizeof(*best_clock));
899         max_n = limit->n.max;
900         /* based on hardware requirement, prefer smaller n to precision */
901         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
902                 /* based on hardware requirement, prefere larger m1,m2 */
903                 for (clock.m1 = limit->m1.max;
904                      clock.m1 >= limit->m1.min; clock.m1--) {
905                         for (clock.m2 = limit->m2.max;
906                              clock.m2 >= limit->m2.min; clock.m2--) {
907                                 for (clock.p1 = limit->p1.max;
908                                      clock.p1 >= limit->p1.min; clock.p1--) {
909                                         int this_err;
910
911                                         intel_clock(dev, refclk, &clock);
912                                         if (!intel_PLL_is_valid(crtc, &clock))
913                                                 continue;
914                                         this_err = abs(clock.dot - target) ;
915                                         if (this_err < err_most) {
916                                                 *best_clock = clock;
917                                                 err_most = this_err;
918                                                 max_n = clock.n;
919                                                 found = true;
920                                         }
921                                 }
922                         }
923                 }
924         }
925         return found;
926 }
927
928 static bool
929 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
930                            int target, int refclk, intel_clock_t *best_clock)
931 {
932         struct drm_device *dev = crtc->dev;
933         intel_clock_t clock;
934
935         if (target < 200000) {
936                 clock.n = 1;
937                 clock.p1 = 2;
938                 clock.p2 = 10;
939                 clock.m1 = 12;
940                 clock.m2 = 9;
941         } else {
942                 clock.n = 2;
943                 clock.p1 = 1;
944                 clock.p2 = 10;
945                 clock.m1 = 14;
946                 clock.m2 = 8;
947         }
948         intel_clock(dev, refclk, &clock);
949         memcpy(best_clock, &clock, sizeof(intel_clock_t));
950         return true;
951 }
952
953 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
954 static bool
955 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
956                       int target, int refclk, intel_clock_t *best_clock)
957 {
958         intel_clock_t clock;
959         if (target < 200000) {
960                 clock.p1 = 2;
961                 clock.p2 = 10;
962                 clock.n = 2;
963                 clock.m1 = 23;
964                 clock.m2 = 8;
965         } else {
966                 clock.p1 = 1;
967                 clock.p2 = 10;
968                 clock.n = 1;
969                 clock.m1 = 14;
970                 clock.m2 = 2;
971         }
972         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
973         clock.p = (clock.p1 * clock.p2);
974         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
975         clock.vco = 0;
976         memcpy(best_clock, &clock, sizeof(intel_clock_t));
977         return true;
978 }
979
980 /**
981  * intel_wait_for_vblank - wait for vblank on a given pipe
982  * @dev: drm device
983  * @pipe: pipe to wait for
984  *
985  * Wait for vblank to occur on a given pipe.  Needed for various bits of
986  * mode setting code.
987  */
988 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
989 {
990         struct drm_i915_private *dev_priv = dev->dev_private;
991         int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
992
993         /* Clear existing vblank status. Note this will clear any other
994          * sticky status fields as well.
995          *
996          * This races with i915_driver_irq_handler() with the result
997          * that either function could miss a vblank event.  Here it is not
998          * fatal, as we will either wait upon the next vblank interrupt or
999          * timeout.  Generally speaking intel_wait_for_vblank() is only
1000          * called during modeset at which time the GPU should be idle and
1001          * should *not* be performing page flips and thus not waiting on
1002          * vblanks...
1003          * Currently, the result of us stealing a vblank from the irq
1004          * handler is that a single frame will be skipped during swapbuffers.
1005          */
1006         I915_WRITE(pipestat_reg,
1007                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1008
1009         /* Wait for vblank interrupt bit to set */
1010         if (wait_for(I915_READ(pipestat_reg) &
1011                      PIPE_VBLANK_INTERRUPT_STATUS,
1012                      50))
1013                 DRM_DEBUG_KMS("vblank wait timed out\n");
1014 }
1015
1016 /*
1017  * intel_wait_for_pipe_off - wait for pipe to turn off
1018  * @dev: drm device
1019  * @pipe: pipe to wait for
1020  *
1021  * After disabling a pipe, we can't wait for vblank in the usual way,
1022  * spinning on the vblank interrupt status bit, since we won't actually
1023  * see an interrupt when the pipe is disabled.
1024  *
1025  * On Gen4 and above:
1026  *   wait for the pipe register state bit to turn off
1027  *
1028  * Otherwise:
1029  *   wait for the display line value to settle (it usually
1030  *   ends up stopping at the start of the next frame).
1031  *
1032  */
1033 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1034 {
1035         struct drm_i915_private *dev_priv = dev->dev_private;
1036
1037         if (INTEL_INFO(dev)->gen >= 4) {
1038                 int reg = PIPECONF(pipe);
1039
1040                 /* Wait for the Pipe State to go off */
1041                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1042                              100))
1043                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1044         } else {
1045                 u32 last_line;
1046                 int reg = PIPEDSL(pipe);
1047                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1048
1049                 /* Wait for the display line to settle */
1050                 do {
1051                         last_line = I915_READ(reg) & DSL_LINEMASK;
1052                         mdelay(5);
1053                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1054                          time_after(timeout, jiffies));
1055                 if (time_after(jiffies, timeout))
1056                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1057         }
1058 }
1059
1060 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1061 {
1062         struct drm_device *dev = crtc->dev;
1063         struct drm_i915_private *dev_priv = dev->dev_private;
1064         struct drm_framebuffer *fb = crtc->fb;
1065         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1066         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1067         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1068         int plane, i;
1069         u32 fbc_ctl, fbc_ctl2;
1070
1071         if (fb->pitch == dev_priv->cfb_pitch &&
1072             obj_priv->fence_reg == dev_priv->cfb_fence &&
1073             intel_crtc->plane == dev_priv->cfb_plane &&
1074             I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1075                 return;
1076
1077         i8xx_disable_fbc(dev);
1078
1079         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1080
1081         if (fb->pitch < dev_priv->cfb_pitch)
1082                 dev_priv->cfb_pitch = fb->pitch;
1083
1084         /* FBC_CTL wants 64B units */
1085         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1086         dev_priv->cfb_fence = obj_priv->fence_reg;
1087         dev_priv->cfb_plane = intel_crtc->plane;
1088         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1089
1090         /* Clear old tags */
1091         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1092                 I915_WRITE(FBC_TAG + (i * 4), 0);
1093
1094         /* Set it up... */
1095         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1096         if (obj_priv->tiling_mode != I915_TILING_NONE)
1097                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1098         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1099         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1100
1101         /* enable it... */
1102         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1103         if (IS_I945GM(dev))
1104                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1105         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1106         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1107         if (obj_priv->tiling_mode != I915_TILING_NONE)
1108                 fbc_ctl |= dev_priv->cfb_fence;
1109         I915_WRITE(FBC_CONTROL, fbc_ctl);
1110
1111         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1112                       dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1113 }
1114
1115 void i8xx_disable_fbc(struct drm_device *dev)
1116 {
1117         struct drm_i915_private *dev_priv = dev->dev_private;
1118         u32 fbc_ctl;
1119
1120         /* Disable compression */
1121         fbc_ctl = I915_READ(FBC_CONTROL);
1122         if ((fbc_ctl & FBC_CTL_EN) == 0)
1123                 return;
1124
1125         fbc_ctl &= ~FBC_CTL_EN;
1126         I915_WRITE(FBC_CONTROL, fbc_ctl);
1127
1128         /* Wait for compressing bit to clear */
1129         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1130                 DRM_DEBUG_KMS("FBC idle timed out\n");
1131                 return;
1132         }
1133
1134         DRM_DEBUG_KMS("disabled FBC\n");
1135 }
1136
1137 static bool i8xx_fbc_enabled(struct drm_device *dev)
1138 {
1139         struct drm_i915_private *dev_priv = dev->dev_private;
1140
1141         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1142 }
1143
1144 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1145 {
1146         struct drm_device *dev = crtc->dev;
1147         struct drm_i915_private *dev_priv = dev->dev_private;
1148         struct drm_framebuffer *fb = crtc->fb;
1149         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1150         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1151         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1152         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1153         unsigned long stall_watermark = 200;
1154         u32 dpfc_ctl;
1155
1156         dpfc_ctl = I915_READ(DPFC_CONTROL);
1157         if (dpfc_ctl & DPFC_CTL_EN) {
1158                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1159                     dev_priv->cfb_fence == obj_priv->fence_reg &&
1160                     dev_priv->cfb_plane == intel_crtc->plane &&
1161                     dev_priv->cfb_y == crtc->y)
1162                         return;
1163
1164                 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1165                 POSTING_READ(DPFC_CONTROL);
1166                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1167         }
1168
1169         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1170         dev_priv->cfb_fence = obj_priv->fence_reg;
1171         dev_priv->cfb_plane = intel_crtc->plane;
1172         dev_priv->cfb_y = crtc->y;
1173
1174         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1175         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1176                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1177                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1178         } else {
1179                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1180         }
1181
1182         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1183                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1184                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1185         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1186
1187         /* enable it... */
1188         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1189
1190         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1191 }
1192
1193 void g4x_disable_fbc(struct drm_device *dev)
1194 {
1195         struct drm_i915_private *dev_priv = dev->dev_private;
1196         u32 dpfc_ctl;
1197
1198         /* Disable compression */
1199         dpfc_ctl = I915_READ(DPFC_CONTROL);
1200         if (dpfc_ctl & DPFC_CTL_EN) {
1201                 dpfc_ctl &= ~DPFC_CTL_EN;
1202                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1203
1204                 DRM_DEBUG_KMS("disabled FBC\n");
1205         }
1206 }
1207
1208 static bool g4x_fbc_enabled(struct drm_device *dev)
1209 {
1210         struct drm_i915_private *dev_priv = dev->dev_private;
1211
1212         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1213 }
1214
1215 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1216 {
1217         struct drm_device *dev = crtc->dev;
1218         struct drm_i915_private *dev_priv = dev->dev_private;
1219         struct drm_framebuffer *fb = crtc->fb;
1220         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1221         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1222         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1223         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1224         unsigned long stall_watermark = 200;
1225         u32 dpfc_ctl;
1226
1227         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1228         if (dpfc_ctl & DPFC_CTL_EN) {
1229                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1230                     dev_priv->cfb_fence == obj_priv->fence_reg &&
1231                     dev_priv->cfb_plane == intel_crtc->plane &&
1232                     dev_priv->cfb_offset == obj_priv->gtt_offset &&
1233                     dev_priv->cfb_y == crtc->y)
1234                         return;
1235
1236                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1237                 POSTING_READ(ILK_DPFC_CONTROL);
1238                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1239         }
1240
1241         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1242         dev_priv->cfb_fence = obj_priv->fence_reg;
1243         dev_priv->cfb_plane = intel_crtc->plane;
1244         dev_priv->cfb_offset = obj_priv->gtt_offset;
1245         dev_priv->cfb_y = crtc->y;
1246
1247         dpfc_ctl &= DPFC_RESERVED;
1248         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1249         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1250                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1251                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1252         } else {
1253                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1254         }
1255
1256         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1257                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1258                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1259         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1260         I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1261         /* enable it... */
1262         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1263
1264         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1265 }
1266
1267 void ironlake_disable_fbc(struct drm_device *dev)
1268 {
1269         struct drm_i915_private *dev_priv = dev->dev_private;
1270         u32 dpfc_ctl;
1271
1272         /* Disable compression */
1273         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1274         if (dpfc_ctl & DPFC_CTL_EN) {
1275                 dpfc_ctl &= ~DPFC_CTL_EN;
1276                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1277
1278                 DRM_DEBUG_KMS("disabled FBC\n");
1279         }
1280 }
1281
1282 static bool ironlake_fbc_enabled(struct drm_device *dev)
1283 {
1284         struct drm_i915_private *dev_priv = dev->dev_private;
1285
1286         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1287 }
1288
1289 bool intel_fbc_enabled(struct drm_device *dev)
1290 {
1291         struct drm_i915_private *dev_priv = dev->dev_private;
1292
1293         if (!dev_priv->display.fbc_enabled)
1294                 return false;
1295
1296         return dev_priv->display.fbc_enabled(dev);
1297 }
1298
1299 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1300 {
1301         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1302
1303         if (!dev_priv->display.enable_fbc)
1304                 return;
1305
1306         dev_priv->display.enable_fbc(crtc, interval);
1307 }
1308
1309 void intel_disable_fbc(struct drm_device *dev)
1310 {
1311         struct drm_i915_private *dev_priv = dev->dev_private;
1312
1313         if (!dev_priv->display.disable_fbc)
1314                 return;
1315
1316         dev_priv->display.disable_fbc(dev);
1317 }
1318
1319 /**
1320  * intel_update_fbc - enable/disable FBC as needed
1321  * @dev: the drm_device
1322  *
1323  * Set up the framebuffer compression hardware at mode set time.  We
1324  * enable it if possible:
1325  *   - plane A only (on pre-965)
1326  *   - no pixel mulitply/line duplication
1327  *   - no alpha buffer discard
1328  *   - no dual wide
1329  *   - framebuffer <= 2048 in width, 1536 in height
1330  *
1331  * We can't assume that any compression will take place (worst case),
1332  * so the compressed buffer has to be the same size as the uncompressed
1333  * one.  It also must reside (along with the line length buffer) in
1334  * stolen memory.
1335  *
1336  * We need to enable/disable FBC on a global basis.
1337  */
1338 static void intel_update_fbc(struct drm_device *dev)
1339 {
1340         struct drm_i915_private *dev_priv = dev->dev_private;
1341         struct drm_crtc *crtc = NULL, *tmp_crtc;
1342         struct intel_crtc *intel_crtc;
1343         struct drm_framebuffer *fb;
1344         struct intel_framebuffer *intel_fb;
1345         struct drm_i915_gem_object *obj_priv;
1346
1347         DRM_DEBUG_KMS("\n");
1348
1349         if (!i915_powersave)
1350                 return;
1351
1352         if (!I915_HAS_FBC(dev))
1353                 return;
1354
1355         /*
1356          * If FBC is already on, we just have to verify that we can
1357          * keep it that way...
1358          * Need to disable if:
1359          *   - more than one pipe is active
1360          *   - changing FBC params (stride, fence, mode)
1361          *   - new fb is too large to fit in compressed buffer
1362          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1363          */
1364         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1365                 if (tmp_crtc->enabled) {
1366                         if (crtc) {
1367                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1368                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1369                                 goto out_disable;
1370                         }
1371                         crtc = tmp_crtc;
1372                 }
1373         }
1374
1375         if (!crtc || crtc->fb == NULL) {
1376                 DRM_DEBUG_KMS("no output, disabling\n");
1377                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1378                 goto out_disable;
1379         }
1380
1381         intel_crtc = to_intel_crtc(crtc);
1382         fb = crtc->fb;
1383         intel_fb = to_intel_framebuffer(fb);
1384         obj_priv = to_intel_bo(intel_fb->obj);
1385
1386         if (intel_fb->obj->size > dev_priv->cfb_size) {
1387                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1388                               "compression\n");
1389                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1390                 goto out_disable;
1391         }
1392         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1393             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1394                 DRM_DEBUG_KMS("mode incompatible with compression, "
1395                               "disabling\n");
1396                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1397                 goto out_disable;
1398         }
1399         if ((crtc->mode.hdisplay > 2048) ||
1400             (crtc->mode.vdisplay > 1536)) {
1401                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1402                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1403                 goto out_disable;
1404         }
1405         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1406                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1407                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1408                 goto out_disable;
1409         }
1410         if (obj_priv->tiling_mode != I915_TILING_X) {
1411                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1412                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1413                 goto out_disable;
1414         }
1415
1416         /* If the kernel debugger is active, always disable compression */
1417         if (in_dbg_master())
1418                 goto out_disable;
1419
1420         intel_enable_fbc(crtc, 500);
1421         return;
1422
1423 out_disable:
1424         /* Multiple disables should be harmless */
1425         if (intel_fbc_enabled(dev)) {
1426                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1427                 intel_disable_fbc(dev);
1428         }
1429 }
1430
1431 int
1432 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1433                            struct drm_gem_object *obj,
1434                            bool pipelined)
1435 {
1436         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1437         u32 alignment;
1438         int ret;
1439
1440         switch (obj_priv->tiling_mode) {
1441         case I915_TILING_NONE:
1442                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1443                         alignment = 128 * 1024;
1444                 else if (INTEL_INFO(dev)->gen >= 4)
1445                         alignment = 4 * 1024;
1446                 else
1447                         alignment = 64 * 1024;
1448                 break;
1449         case I915_TILING_X:
1450                 /* pin() will align the object as required by fence */
1451                 alignment = 0;
1452                 break;
1453         case I915_TILING_Y:
1454                 /* FIXME: Is this true? */
1455                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1456                 return -EINVAL;
1457         default:
1458                 BUG();
1459         }
1460
1461         ret = i915_gem_object_pin(obj, alignment);
1462         if (ret)
1463                 return ret;
1464
1465         ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1466         if (ret)
1467                 goto err_unpin;
1468
1469         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1470          * fence, whereas 965+ only requires a fence if using
1471          * framebuffer compression.  For simplicity, we always install
1472          * a fence as the cost is not that onerous.
1473          */
1474         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1475             obj_priv->tiling_mode != I915_TILING_NONE) {
1476                 ret = i915_gem_object_get_fence_reg(obj, false);
1477                 if (ret)
1478                         goto err_unpin;
1479         }
1480
1481         return 0;
1482
1483 err_unpin:
1484         i915_gem_object_unpin(obj);
1485         return ret;
1486 }
1487
1488 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1489 static int
1490 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1491                            int x, int y, int enter)
1492 {
1493         struct drm_device *dev = crtc->dev;
1494         struct drm_i915_private *dev_priv = dev->dev_private;
1495         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1496         struct intel_framebuffer *intel_fb;
1497         struct drm_i915_gem_object *obj_priv;
1498         struct drm_gem_object *obj;
1499         int plane = intel_crtc->plane;
1500         unsigned long Start, Offset;
1501         u32 dspcntr;
1502         u32 reg;
1503
1504         switch (plane) {
1505         case 0:
1506         case 1:
1507                 break;
1508         default:
1509                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1510                 return -EINVAL;
1511         }
1512
1513         intel_fb = to_intel_framebuffer(fb);
1514         obj = intel_fb->obj;
1515         obj_priv = to_intel_bo(obj);
1516
1517         reg = DSPCNTR(plane);
1518         dspcntr = I915_READ(reg);
1519         /* Mask out pixel format bits in case we change it */
1520         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1521         switch (fb->bits_per_pixel) {
1522         case 8:
1523                 dspcntr |= DISPPLANE_8BPP;
1524                 break;
1525         case 16:
1526                 if (fb->depth == 15)
1527                         dspcntr |= DISPPLANE_15_16BPP;
1528                 else
1529                         dspcntr |= DISPPLANE_16BPP;
1530                 break;
1531         case 24:
1532         case 32:
1533                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1534                 break;
1535         default:
1536                 DRM_ERROR("Unknown color depth\n");
1537                 return -EINVAL;
1538         }
1539         if (INTEL_INFO(dev)->gen >= 4) {
1540                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1541                         dspcntr |= DISPPLANE_TILED;
1542                 else
1543                         dspcntr &= ~DISPPLANE_TILED;
1544         }
1545
1546         if (HAS_PCH_SPLIT(dev))
1547                 /* must disable */
1548                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1549
1550         I915_WRITE(reg, dspcntr);
1551
1552         Start = obj_priv->gtt_offset;
1553         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1554
1555         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1556                       Start, Offset, x, y, fb->pitch);
1557         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1558         if (INTEL_INFO(dev)->gen >= 4) {
1559                 I915_WRITE(DSPSURF(plane), Start);
1560                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1561                 I915_WRITE(DSPADDR(plane), Offset);
1562         } else
1563                 I915_WRITE(DSPADDR(plane), Start + Offset);
1564         POSTING_READ(reg);
1565
1566         intel_update_fbc(dev);
1567         intel_increase_pllclock(crtc);
1568
1569         return 0;
1570 }
1571
1572 static int
1573 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1574                     struct drm_framebuffer *old_fb)
1575 {
1576         struct drm_device *dev = crtc->dev;
1577         struct drm_i915_master_private *master_priv;
1578         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1579         int ret;
1580
1581         /* no fb bound */
1582         if (!crtc->fb) {
1583                 DRM_DEBUG_KMS("No FB bound\n");
1584                 return 0;
1585         }
1586
1587         switch (intel_crtc->plane) {
1588         case 0:
1589         case 1:
1590                 break;
1591         default:
1592                 return -EINVAL;
1593         }
1594
1595         mutex_lock(&dev->struct_mutex);
1596         ret = intel_pin_and_fence_fb_obj(dev,
1597                                          to_intel_framebuffer(crtc->fb)->obj,
1598                                          false);
1599         if (ret != 0) {
1600                 mutex_unlock(&dev->struct_mutex);
1601                 return ret;
1602         }
1603
1604         if (old_fb) {
1605                 struct drm_i915_private *dev_priv = dev->dev_private;
1606                 struct drm_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1607                 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1608
1609                 wait_event(dev_priv->pending_flip_queue,
1610                            atomic_read(&obj_priv->pending_flip) == 0);
1611         }
1612
1613         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y, 0);
1614         if (ret) {
1615                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1616                 mutex_unlock(&dev->struct_mutex);
1617                 return ret;
1618         }
1619
1620         if (old_fb)
1621                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1622
1623         mutex_unlock(&dev->struct_mutex);
1624
1625         if (!dev->primary->master)
1626                 return 0;
1627
1628         master_priv = dev->primary->master->driver_priv;
1629         if (!master_priv->sarea_priv)
1630                 return 0;
1631
1632         if (intel_crtc->pipe) {
1633                 master_priv->sarea_priv->pipeB_x = x;
1634                 master_priv->sarea_priv->pipeB_y = y;
1635         } else {
1636                 master_priv->sarea_priv->pipeA_x = x;
1637                 master_priv->sarea_priv->pipeA_y = y;
1638         }
1639
1640         return 0;
1641 }
1642
1643 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1644 {
1645         struct drm_device *dev = crtc->dev;
1646         struct drm_i915_private *dev_priv = dev->dev_private;
1647         u32 dpa_ctl;
1648
1649         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1650         dpa_ctl = I915_READ(DP_A);
1651         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1652
1653         if (clock < 200000) {
1654                 u32 temp;
1655                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1656                 /* workaround for 160Mhz:
1657                    1) program 0x4600c bits 15:0 = 0x8124
1658                    2) program 0x46010 bit 0 = 1
1659                    3) program 0x46034 bit 24 = 1
1660                    4) program 0x64000 bit 14 = 1
1661                    */
1662                 temp = I915_READ(0x4600c);
1663                 temp &= 0xffff0000;
1664                 I915_WRITE(0x4600c, temp | 0x8124);
1665
1666                 temp = I915_READ(0x46010);
1667                 I915_WRITE(0x46010, temp | 1);
1668
1669                 temp = I915_READ(0x46034);
1670                 I915_WRITE(0x46034, temp | (1 << 24));
1671         } else {
1672                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1673         }
1674         I915_WRITE(DP_A, dpa_ctl);
1675
1676         POSTING_READ(DP_A);
1677         udelay(500);
1678 }
1679
1680 /* The FDI link training functions for ILK/Ibexpeak. */
1681 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1682 {
1683         struct drm_device *dev = crtc->dev;
1684         struct drm_i915_private *dev_priv = dev->dev_private;
1685         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1686         int pipe = intel_crtc->pipe;
1687         u32 reg, temp, tries;
1688
1689         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1690            for train result */
1691         reg = FDI_RX_IMR(pipe);
1692         temp = I915_READ(reg);
1693         temp &= ~FDI_RX_SYMBOL_LOCK;
1694         temp &= ~FDI_RX_BIT_LOCK;
1695         I915_WRITE(reg, temp);
1696         I915_READ(reg);
1697         udelay(150);
1698
1699         /* enable CPU FDI TX and PCH FDI RX */
1700         reg = FDI_TX_CTL(pipe);
1701         temp = I915_READ(reg);
1702         temp &= ~(7 << 19);
1703         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1704         temp &= ~FDI_LINK_TRAIN_NONE;
1705         temp |= FDI_LINK_TRAIN_PATTERN_1;
1706         I915_WRITE(reg, temp | FDI_TX_ENABLE);
1707
1708         reg = FDI_RX_CTL(pipe);
1709         temp = I915_READ(reg);
1710         temp &= ~FDI_LINK_TRAIN_NONE;
1711         temp |= FDI_LINK_TRAIN_PATTERN_1;
1712         I915_WRITE(reg, temp | FDI_RX_ENABLE);
1713
1714         POSTING_READ(reg);
1715         udelay(150);
1716
1717         /* Ironlake workaround, enable clock pointer after FDI enable*/
1718         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_ENABLE);
1719
1720         reg = FDI_RX_IIR(pipe);
1721         for (tries = 0; tries < 5; tries++) {
1722                 temp = I915_READ(reg);
1723                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1724
1725                 if ((temp & FDI_RX_BIT_LOCK)) {
1726                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1727                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1728                         break;
1729                 }
1730         }
1731         if (tries == 5)
1732                 DRM_ERROR("FDI train 1 fail!\n");
1733
1734         /* Train 2 */
1735         reg = FDI_TX_CTL(pipe);
1736         temp = I915_READ(reg);
1737         temp &= ~FDI_LINK_TRAIN_NONE;
1738         temp |= FDI_LINK_TRAIN_PATTERN_2;
1739         I915_WRITE(reg, temp);
1740
1741         reg = FDI_RX_CTL(pipe);
1742         temp = I915_READ(reg);
1743         temp &= ~FDI_LINK_TRAIN_NONE;
1744         temp |= FDI_LINK_TRAIN_PATTERN_2;
1745         I915_WRITE(reg, temp);
1746
1747         POSTING_READ(reg);
1748         udelay(150);
1749
1750         reg = FDI_RX_IIR(pipe);
1751         for (tries = 0; tries < 5; tries++) {
1752                 temp = I915_READ(reg);
1753                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1754
1755                 if (temp & FDI_RX_SYMBOL_LOCK) {
1756                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1757                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1758                         break;
1759                 }
1760         }
1761         if (tries == 5)
1762                 DRM_ERROR("FDI train 2 fail!\n");
1763
1764         DRM_DEBUG_KMS("FDI train done\n");
1765
1766         /* enable normal train */
1767         reg = FDI_TX_CTL(pipe);
1768         temp = I915_READ(reg);
1769         temp &= ~FDI_LINK_TRAIN_NONE;
1770         temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
1771         I915_WRITE(reg, temp);
1772
1773         reg = FDI_RX_CTL(pipe);
1774         temp = I915_READ(reg);
1775         if (HAS_PCH_CPT(dev)) {
1776                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1777                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1778         } else {
1779                 temp &= ~FDI_LINK_TRAIN_NONE;
1780                 temp |= FDI_LINK_TRAIN_NONE;
1781         }
1782         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1783
1784         /* wait one idle pattern time */
1785         POSTING_READ(reg);
1786         udelay(1000);
1787 }
1788
1789 static const int const snb_b_fdi_train_param [] = {
1790         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1791         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1792         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1793         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1794 };
1795
1796 /* The FDI link training functions for SNB/Cougarpoint. */
1797 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1798 {
1799         struct drm_device *dev = crtc->dev;
1800         struct drm_i915_private *dev_priv = dev->dev_private;
1801         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1802         int pipe = intel_crtc->pipe;
1803         u32 reg, temp, i;
1804
1805         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1806            for train result */
1807         reg = FDI_RX_IMR(pipe);
1808         temp = I915_READ(reg);
1809         temp &= ~FDI_RX_SYMBOL_LOCK;
1810         temp &= ~FDI_RX_BIT_LOCK;
1811         I915_WRITE(reg, temp);
1812
1813         POSTING_READ(reg);
1814         udelay(150);
1815
1816         /* enable CPU FDI TX and PCH FDI RX */
1817         reg = FDI_TX_CTL(pipe);
1818         temp = I915_READ(reg);
1819         temp &= ~(7 << 19);
1820         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1821         temp &= ~FDI_LINK_TRAIN_NONE;
1822         temp |= FDI_LINK_TRAIN_PATTERN_1;
1823         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1824         /* SNB-B */
1825         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1826         I915_WRITE(reg, temp | FDI_TX_ENABLE);
1827
1828         reg = FDI_RX_CTL(pipe);
1829         temp = I915_READ(reg);
1830         if (HAS_PCH_CPT(dev)) {
1831                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1832                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1833         } else {
1834                 temp &= ~FDI_LINK_TRAIN_NONE;
1835                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1836         }
1837         I915_WRITE(reg, temp | FDI_RX_ENABLE);
1838
1839         POSTING_READ(reg);
1840         udelay(150);
1841
1842         for (i = 0; i < 4; i++ ) {
1843                 reg = FDI_TX_CTL(pipe);
1844                 temp = I915_READ(reg);
1845                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1846                 temp |= snb_b_fdi_train_param[i];
1847                 I915_WRITE(reg, temp);
1848
1849                 POSTING_READ(reg);
1850                 udelay(500);
1851
1852                 reg = FDI_RX_IIR(pipe);
1853                 temp = I915_READ(reg);
1854                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1855
1856                 if (temp & FDI_RX_BIT_LOCK) {
1857                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1858                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1859                         break;
1860                 }
1861         }
1862         if (i == 4)
1863                 DRM_ERROR("FDI train 1 fail!\n");
1864
1865         /* Train 2 */
1866         reg = FDI_TX_CTL(pipe);
1867         temp = I915_READ(reg);
1868         temp &= ~FDI_LINK_TRAIN_NONE;
1869         temp |= FDI_LINK_TRAIN_PATTERN_2;
1870         if (IS_GEN6(dev)) {
1871                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1872                 /* SNB-B */
1873                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1874         }
1875         I915_WRITE(reg, temp);
1876
1877         reg = FDI_RX_CTL(pipe);
1878         temp = I915_READ(reg);
1879         if (HAS_PCH_CPT(dev)) {
1880                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1881                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1882         } else {
1883                 temp &= ~FDI_LINK_TRAIN_NONE;
1884                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1885         }
1886         I915_WRITE(reg, temp);
1887
1888         POSTING_READ(reg);
1889         udelay(150);
1890
1891         for (i = 0; i < 4; i++ ) {
1892                 reg = FDI_TX_CTL(pipe);
1893                 temp = I915_READ(reg);
1894                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1895                 temp |= snb_b_fdi_train_param[i];
1896                 I915_WRITE(reg, temp);
1897
1898                 POSTING_READ(reg);
1899                 udelay(500);
1900
1901                 reg = FDI_RX_IIR(pipe);
1902                 temp = I915_READ(reg);
1903                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1904
1905                 if (temp & FDI_RX_SYMBOL_LOCK) {
1906                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1907                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1908                         break;
1909                 }
1910         }
1911         if (i == 4)
1912                 DRM_ERROR("FDI train 2 fail!\n");
1913
1914         DRM_DEBUG_KMS("FDI train done.\n");
1915 }
1916
1917 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1918 {
1919         struct drm_device *dev = crtc->dev;
1920         struct drm_i915_private *dev_priv = dev->dev_private;
1921         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1922         int pipe = intel_crtc->pipe;
1923         u32 reg, temp;
1924
1925         /* Write the TU size bits so error detection works */
1926         I915_WRITE(FDI_RX_TUSIZE1(pipe),
1927                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1928
1929         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1930         reg = FDI_RX_CTL(pipe);
1931         temp = I915_READ(reg);
1932         temp &= ~((0x7 << 19) | (0x7 << 16));
1933         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1934         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1935         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1936
1937         POSTING_READ(reg);
1938         udelay(200);
1939
1940         /* Switch from Rawclk to PCDclk */
1941         temp = I915_READ(reg);
1942         I915_WRITE(reg, temp | FDI_PCDCLK);
1943
1944         POSTING_READ(reg);
1945         udelay(200);
1946
1947         /* Enable CPU FDI TX PLL, always on for Ironlake */
1948         reg = FDI_TX_CTL(pipe);
1949         temp = I915_READ(reg);
1950         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1951                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
1952
1953                 POSTING_READ(reg);
1954                 udelay(100);
1955         }
1956 }
1957
1958 static void intel_flush_display_plane(struct drm_device *dev,
1959                                       int plane)
1960 {
1961         struct drm_i915_private *dev_priv = dev->dev_private;
1962         u32 reg = DSPADDR(plane);
1963         I915_WRITE(reg, I915_READ(reg));
1964 }
1965
1966 /*
1967  * When we disable a pipe, we need to clear any pending scanline wait events
1968  * to avoid hanging the ring, which we assume we are waiting on.
1969  */
1970 static void intel_clear_scanline_wait(struct drm_device *dev)
1971 {
1972         struct drm_i915_private *dev_priv = dev->dev_private;
1973         u32 tmp;
1974
1975         if (IS_GEN2(dev))
1976                 /* Can't break the hang on i8xx */
1977                 return;
1978
1979         tmp = I915_READ(PRB0_CTL);
1980         if (tmp & RING_WAIT) {
1981                 I915_WRITE(PRB0_CTL, tmp);
1982                 POSTING_READ(PRB0_CTL);
1983         }
1984 }
1985
1986 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
1987 {
1988         struct drm_i915_gem_object *obj_priv;
1989         struct drm_i915_private *dev_priv;
1990
1991         if (crtc->fb == NULL)
1992                 return;
1993
1994         obj_priv = to_intel_bo(to_intel_framebuffer(crtc->fb)->obj);
1995         dev_priv = crtc->dev->dev_private;
1996         wait_event(dev_priv->pending_flip_queue,
1997                    atomic_read(&obj_priv->pending_flip) == 0);
1998 }
1999
2000 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2001 {
2002         struct drm_device *dev = crtc->dev;
2003         struct drm_i915_private *dev_priv = dev->dev_private;
2004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2005         int pipe = intel_crtc->pipe;
2006         int plane = intel_crtc->plane;
2007         u32 reg, temp;
2008
2009         if (intel_crtc->active)
2010                 return;
2011
2012         intel_crtc->active = true;
2013         intel_update_watermarks(dev);
2014
2015         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2016                 temp = I915_READ(PCH_LVDS);
2017                 if ((temp & LVDS_PORT_EN) == 0)
2018                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2019         }
2020
2021         ironlake_fdi_enable(crtc);
2022
2023         /* Enable panel fitting for LVDS */
2024         if (dev_priv->pch_pf_size &&
2025             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2026                 /* Force use of hard-coded filter coefficients
2027                  * as some pre-programmed values are broken,
2028                  * e.g. x201.
2029                  */
2030                 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
2031                            PF_ENABLE | PF_FILTER_MED_3x3);
2032                 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
2033                            dev_priv->pch_pf_pos);
2034                 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
2035                            dev_priv->pch_pf_size);
2036         }
2037
2038         /* Enable CPU pipe */
2039         reg = PIPECONF(pipe);
2040         temp = I915_READ(reg);
2041         if ((temp & PIPECONF_ENABLE) == 0) {
2042                 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2043                 POSTING_READ(reg);
2044                 udelay(100);
2045         }
2046
2047         /* configure and enable CPU plane */
2048         reg = DSPCNTR(plane);
2049         temp = I915_READ(reg);
2050         if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2051                 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2052                 intel_flush_display_plane(dev, plane);
2053         }
2054
2055         /* For PCH output, training FDI link */
2056         if (IS_GEN6(dev))
2057                 gen6_fdi_link_train(crtc);
2058         else
2059                 ironlake_fdi_link_train(crtc);
2060
2061         /* enable PCH DPLL */
2062         reg = PCH_DPLL(pipe);
2063         temp = I915_READ(reg);
2064         if ((temp & DPLL_VCO_ENABLE) == 0) {
2065                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2066                 POSTING_READ(reg);
2067                 udelay(200);
2068         }
2069
2070         if (HAS_PCH_CPT(dev)) {
2071                 /* Be sure PCH DPLL SEL is set */
2072                 temp = I915_READ(PCH_DPLL_SEL);
2073                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2074                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2075                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2076                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2077                 I915_WRITE(PCH_DPLL_SEL, temp);
2078         }
2079
2080         /* set transcoder timing */
2081         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2082         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2083         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2084
2085         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2086         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2087         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2088
2089         /* For PCH DP, enable TRANS_DP_CTL */
2090         if (HAS_PCH_CPT(dev) &&
2091             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2092                 reg = TRANS_DP_CTL(pipe);
2093                 temp = I915_READ(reg);
2094                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2095                           TRANS_DP_SYNC_MASK);
2096                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2097                          TRANS_DP_ENH_FRAMING);
2098
2099                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2100                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2101                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2102                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2103
2104                 switch (intel_trans_dp_port_sel(crtc)) {
2105                 case PCH_DP_B:
2106                         temp |= TRANS_DP_PORT_SEL_B;
2107                         break;
2108                 case PCH_DP_C:
2109                         temp |= TRANS_DP_PORT_SEL_C;
2110                         break;
2111                 case PCH_DP_D:
2112                         temp |= TRANS_DP_PORT_SEL_D;
2113                         break;
2114                 default:
2115                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2116                         temp |= TRANS_DP_PORT_SEL_B;
2117                         break;
2118                 }
2119
2120                 I915_WRITE(reg, temp);
2121         }
2122
2123         /* enable PCH transcoder */
2124         reg = TRANSCONF(pipe);
2125         temp = I915_READ(reg);
2126         /*
2127          * make the BPC in transcoder be consistent with
2128          * that in pipeconf reg.
2129          */
2130         temp &= ~PIPE_BPC_MASK;
2131         temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2132         I915_WRITE(reg, temp | TRANS_ENABLE);
2133         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2134                 DRM_ERROR("failed to enable transcoder\n");
2135
2136         intel_crtc_load_lut(crtc);
2137         intel_update_fbc(dev);
2138         intel_crtc_update_cursor(crtc, true);
2139 }
2140
2141 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2142 {
2143         struct drm_device *dev = crtc->dev;
2144         struct drm_i915_private *dev_priv = dev->dev_private;
2145         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2146         int pipe = intel_crtc->pipe;
2147         int plane = intel_crtc->plane;
2148         u32 reg, temp;
2149
2150         if (!intel_crtc->active)
2151                 return;
2152
2153         intel_crtc_wait_for_pending_flips(crtc);
2154         drm_vblank_off(dev, pipe);
2155         intel_crtc_update_cursor(crtc, false);
2156
2157         /* Disable display plane */
2158         reg = DSPCNTR(plane);
2159         temp = I915_READ(reg);
2160         if (temp & DISPLAY_PLANE_ENABLE) {
2161                 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2162                 intel_flush_display_plane(dev, plane);
2163         }
2164
2165         if (dev_priv->cfb_plane == plane &&
2166             dev_priv->display.disable_fbc)
2167                 dev_priv->display.disable_fbc(dev);
2168
2169         /* disable cpu pipe, disable after all planes disabled */
2170         reg = PIPECONF(pipe);
2171         temp = I915_READ(reg);
2172         if (temp & PIPECONF_ENABLE) {
2173                 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2174                 /* wait for cpu pipe off, pipe state */
2175                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 50))
2176                         DRM_ERROR("failed to turn off cpu pipe\n");
2177         }
2178
2179         /* Disable PF */
2180         I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2181         I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2182
2183         /* disable CPU FDI tx and PCH FDI rx */
2184         reg = FDI_TX_CTL(pipe);
2185         temp = I915_READ(reg);
2186         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2187         POSTING_READ(reg);
2188
2189         reg = FDI_RX_CTL(pipe);
2190         temp = I915_READ(reg);
2191         temp &= ~(0x7 << 16);
2192         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2193         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2194
2195         POSTING_READ(reg);
2196         udelay(100);
2197
2198         /* Ironlake workaround, disable clock pointer after downing FDI */
2199         I915_WRITE(FDI_RX_CHICKEN(pipe),
2200                    I915_READ(FDI_RX_CHICKEN(pipe) &
2201                              ~FDI_RX_PHASE_SYNC_POINTER_ENABLE));
2202
2203         /* still set train pattern 1 */
2204         reg = FDI_TX_CTL(pipe);
2205         temp = I915_READ(reg);
2206         temp &= ~FDI_LINK_TRAIN_NONE;
2207         temp |= FDI_LINK_TRAIN_PATTERN_1;
2208         I915_WRITE(reg, temp);
2209
2210         reg = FDI_RX_CTL(pipe);
2211         temp = I915_READ(reg);
2212         if (HAS_PCH_CPT(dev)) {
2213                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2214                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2215         } else {
2216                 temp &= ~FDI_LINK_TRAIN_NONE;
2217                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2218         }
2219         /* BPC in FDI rx is consistent with that in PIPECONF */
2220         temp &= ~(0x07 << 16);
2221         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2222         I915_WRITE(reg, temp);
2223
2224         POSTING_READ(reg);
2225         udelay(100);
2226
2227         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2228                 temp = I915_READ(PCH_LVDS);
2229                 if (temp & LVDS_PORT_EN) {
2230                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2231                         POSTING_READ(PCH_LVDS);
2232                         udelay(100);
2233                 }
2234         }
2235
2236         /* disable PCH transcoder */
2237         reg = TRANSCONF(plane);
2238         temp = I915_READ(reg);
2239         if (temp & TRANS_ENABLE) {
2240                 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2241                 /* wait for PCH transcoder off, transcoder state */
2242                 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2243                         DRM_ERROR("failed to disable transcoder\n");
2244         }
2245
2246         if (HAS_PCH_CPT(dev)) {
2247                 /* disable TRANS_DP_CTL */
2248                 reg = TRANS_DP_CTL(pipe);
2249                 temp = I915_READ(reg);
2250                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2251                 I915_WRITE(reg, temp);
2252
2253                 /* disable DPLL_SEL */
2254                 temp = I915_READ(PCH_DPLL_SEL);
2255                 if (pipe == 0)
2256                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2257                 else
2258                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2259                 I915_WRITE(PCH_DPLL_SEL, temp);
2260         }
2261
2262         /* disable PCH DPLL */
2263         reg = PCH_DPLL(pipe);
2264         temp = I915_READ(reg);
2265         I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2266
2267         /* Switch from PCDclk to Rawclk */
2268         reg = FDI_RX_CTL(pipe);
2269         temp = I915_READ(reg);
2270         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2271
2272         /* Disable CPU FDI TX PLL */
2273         reg = FDI_TX_CTL(pipe);
2274         temp = I915_READ(reg);
2275         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2276
2277         POSTING_READ(reg);
2278         udelay(100);
2279
2280         reg = FDI_RX_CTL(pipe);
2281         temp = I915_READ(reg);
2282         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2283
2284         /* Wait for the clocks to turn off. */
2285         POSTING_READ(reg);
2286         udelay(100);
2287
2288         intel_crtc->active = false;
2289         intel_update_watermarks(dev);
2290         intel_update_fbc(dev);
2291         intel_clear_scanline_wait(dev);
2292 }
2293
2294 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2295 {
2296         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2297         int pipe = intel_crtc->pipe;
2298         int plane = intel_crtc->plane;
2299
2300         /* XXX: When our outputs are all unaware of DPMS modes other than off
2301          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2302          */
2303         switch (mode) {
2304         case DRM_MODE_DPMS_ON:
2305         case DRM_MODE_DPMS_STANDBY:
2306         case DRM_MODE_DPMS_SUSPEND:
2307                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2308                 ironlake_crtc_enable(crtc);
2309                 break;
2310
2311         case DRM_MODE_DPMS_OFF:
2312                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2313                 ironlake_crtc_disable(crtc);
2314                 break;
2315         }
2316 }
2317
2318 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2319 {
2320         if (!enable && intel_crtc->overlay) {
2321                 struct drm_device *dev = intel_crtc->base.dev;
2322
2323                 mutex_lock(&dev->struct_mutex);
2324                 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2325                 mutex_unlock(&dev->struct_mutex);
2326         }
2327
2328         /* Let userspace switch the overlay on again. In most cases userspace
2329          * has to recompute where to put it anyway.
2330          */
2331 }
2332
2333 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2334 {
2335         struct drm_device *dev = crtc->dev;
2336         struct drm_i915_private *dev_priv = dev->dev_private;
2337         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2338         int pipe = intel_crtc->pipe;
2339         int plane = intel_crtc->plane;
2340         u32 reg, temp;
2341
2342         if (intel_crtc->active)
2343                 return;
2344
2345         intel_crtc->active = true;
2346         intel_update_watermarks(dev);
2347
2348         /* Enable the DPLL */
2349         reg = DPLL(pipe);
2350         temp = I915_READ(reg);
2351         if ((temp & DPLL_VCO_ENABLE) == 0) {
2352                 I915_WRITE(reg, temp);
2353
2354                 /* Wait for the clocks to stabilize. */
2355                 POSTING_READ(reg);
2356                 udelay(150);
2357
2358                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2359
2360                 /* Wait for the clocks to stabilize. */
2361                 POSTING_READ(reg);
2362                 udelay(150);
2363
2364                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2365
2366                 /* Wait for the clocks to stabilize. */
2367                 POSTING_READ(reg);
2368                 udelay(150);
2369         }
2370
2371         /* Enable the pipe */
2372         reg = PIPECONF(pipe);
2373         temp = I915_READ(reg);
2374         if ((temp & PIPECONF_ENABLE) == 0)
2375                 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2376
2377         /* Enable the plane */
2378         reg = DSPCNTR(plane);
2379         temp = I915_READ(reg);
2380         if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2381                 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2382                 intel_flush_display_plane(dev, plane);
2383         }
2384
2385         intel_crtc_load_lut(crtc);
2386         intel_update_fbc(dev);
2387
2388         /* Give the overlay scaler a chance to enable if it's on this pipe */
2389         intel_crtc_dpms_overlay(intel_crtc, true);
2390         intel_crtc_update_cursor(crtc, true);
2391 }
2392
2393 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2394 {
2395         struct drm_device *dev = crtc->dev;
2396         struct drm_i915_private *dev_priv = dev->dev_private;
2397         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2398         int pipe = intel_crtc->pipe;
2399         int plane = intel_crtc->plane;
2400         u32 reg, temp;
2401
2402         if (!intel_crtc->active)
2403                 return;
2404
2405         /* Give the overlay scaler a chance to disable if it's on this pipe */
2406         intel_crtc_wait_for_pending_flips(crtc);
2407         drm_vblank_off(dev, pipe);
2408         intel_crtc_dpms_overlay(intel_crtc, false);
2409         intel_crtc_update_cursor(crtc, false);
2410
2411         if (dev_priv->cfb_plane == plane &&
2412             dev_priv->display.disable_fbc)
2413                 dev_priv->display.disable_fbc(dev);
2414
2415         /* Disable display plane */
2416         reg = DSPCNTR(plane);
2417         temp = I915_READ(reg);
2418         if (temp & DISPLAY_PLANE_ENABLE) {
2419                 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2420                 /* Flush the plane changes */
2421                 intel_flush_display_plane(dev, plane);
2422
2423                 /* Wait for vblank for the disable to take effect */
2424                 if (IS_GEN2(dev))
2425                         intel_wait_for_vblank(dev, pipe);
2426         }
2427
2428         /* Don't disable pipe A or pipe A PLLs if needed */
2429         if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2430                 goto done;
2431
2432         /* Next, disable display pipes */
2433         reg = PIPECONF(pipe);
2434         temp = I915_READ(reg);
2435         if (temp & PIPECONF_ENABLE) {
2436                 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2437
2438                 /* Wait for the pipe to turn off */
2439                 POSTING_READ(reg);
2440                 intel_wait_for_pipe_off(dev, pipe);
2441         }
2442
2443         reg = DPLL(pipe);
2444         temp = I915_READ(reg);
2445         if (temp & DPLL_VCO_ENABLE) {
2446                 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2447
2448                 /* Wait for the clocks to turn off. */
2449                 POSTING_READ(reg);
2450                 udelay(150);
2451         }
2452
2453 done:
2454         intel_crtc->active = false;
2455         intel_update_fbc(dev);
2456         intel_update_watermarks(dev);
2457         intel_clear_scanline_wait(dev);
2458 }
2459
2460 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2461 {
2462         /* XXX: When our outputs are all unaware of DPMS modes other than off
2463          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2464          */
2465         switch (mode) {
2466         case DRM_MODE_DPMS_ON:
2467         case DRM_MODE_DPMS_STANDBY:
2468         case DRM_MODE_DPMS_SUSPEND:
2469                 i9xx_crtc_enable(crtc);
2470                 break;
2471         case DRM_MODE_DPMS_OFF:
2472                 i9xx_crtc_disable(crtc);
2473                 break;
2474         }
2475 }
2476
2477 /**
2478  * Sets the power management mode of the pipe and plane.
2479  */
2480 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2481 {
2482         struct drm_device *dev = crtc->dev;
2483         struct drm_i915_private *dev_priv = dev->dev_private;
2484         struct drm_i915_master_private *master_priv;
2485         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2486         int pipe = intel_crtc->pipe;
2487         bool enabled;
2488
2489         if (intel_crtc->dpms_mode == mode)
2490                 return;
2491
2492         intel_crtc->dpms_mode = mode;
2493
2494         dev_priv->display.dpms(crtc, mode);
2495
2496         if (!dev->primary->master)
2497                 return;
2498
2499         master_priv = dev->primary->master->driver_priv;
2500         if (!master_priv->sarea_priv)
2501                 return;
2502
2503         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2504
2505         switch (pipe) {
2506         case 0:
2507                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2508                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2509                 break;
2510         case 1:
2511                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2512                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2513                 break;
2514         default:
2515                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2516                 break;
2517         }
2518 }
2519
2520 static void intel_crtc_disable(struct drm_crtc *crtc)
2521 {
2522         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2523         struct drm_device *dev = crtc->dev;
2524
2525         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2526
2527         if (crtc->fb) {
2528                 mutex_lock(&dev->struct_mutex);
2529                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2530                 mutex_unlock(&dev->struct_mutex);
2531         }
2532 }
2533
2534 /* Prepare for a mode set.
2535  *
2536  * Note we could be a lot smarter here.  We need to figure out which outputs
2537  * will be enabled, which disabled (in short, how the config will changes)
2538  * and perform the minimum necessary steps to accomplish that, e.g. updating
2539  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2540  * panel fitting is in the proper state, etc.
2541  */
2542 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2543 {
2544         i9xx_crtc_disable(crtc);
2545 }
2546
2547 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2548 {
2549         i9xx_crtc_enable(crtc);
2550 }
2551
2552 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2553 {
2554         ironlake_crtc_disable(crtc);
2555 }
2556
2557 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2558 {
2559         ironlake_crtc_enable(crtc);
2560 }
2561
2562 void intel_encoder_prepare (struct drm_encoder *encoder)
2563 {
2564         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2565         /* lvds has its own version of prepare see intel_lvds_prepare */
2566         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2567 }
2568
2569 void intel_encoder_commit (struct drm_encoder *encoder)
2570 {
2571         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2572         /* lvds has its own version of commit see intel_lvds_commit */
2573         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2574 }
2575
2576 void intel_encoder_destroy(struct drm_encoder *encoder)
2577 {
2578         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2579
2580         drm_encoder_cleanup(encoder);
2581         kfree(intel_encoder);
2582 }
2583
2584 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2585                                   struct drm_display_mode *mode,
2586                                   struct drm_display_mode *adjusted_mode)
2587 {
2588         struct drm_device *dev = crtc->dev;
2589
2590         if (HAS_PCH_SPLIT(dev)) {
2591                 /* FDI link clock is fixed at 2.7G */
2592                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2593                         return false;
2594         }
2595
2596         /* XXX some encoders set the crtcinfo, others don't.
2597          * Obviously we need some form of conflict resolution here...
2598          */
2599         if (adjusted_mode->crtc_htotal == 0)
2600                 drm_mode_set_crtcinfo(adjusted_mode, 0);
2601
2602         return true;
2603 }
2604
2605 static int i945_get_display_clock_speed(struct drm_device *dev)
2606 {
2607         return 400000;
2608 }
2609
2610 static int i915_get_display_clock_speed(struct drm_device *dev)
2611 {
2612         return 333000;
2613 }
2614
2615 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2616 {
2617         return 200000;
2618 }
2619
2620 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2621 {
2622         u16 gcfgc = 0;
2623
2624         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2625
2626         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2627                 return 133000;
2628         else {
2629                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2630                 case GC_DISPLAY_CLOCK_333_MHZ:
2631                         return 333000;
2632                 default:
2633                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2634                         return 190000;
2635                 }
2636         }
2637 }
2638
2639 static int i865_get_display_clock_speed(struct drm_device *dev)
2640 {
2641         return 266000;
2642 }
2643
2644 static int i855_get_display_clock_speed(struct drm_device *dev)
2645 {
2646         u16 hpllcc = 0;
2647         /* Assume that the hardware is in the high speed state.  This
2648          * should be the default.
2649          */
2650         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2651         case GC_CLOCK_133_200:
2652         case GC_CLOCK_100_200:
2653                 return 200000;
2654         case GC_CLOCK_166_250:
2655                 return 250000;
2656         case GC_CLOCK_100_133:
2657                 return 133000;
2658         }
2659
2660         /* Shouldn't happen */
2661         return 0;
2662 }
2663
2664 static int i830_get_display_clock_speed(struct drm_device *dev)
2665 {
2666         return 133000;
2667 }
2668
2669 struct fdi_m_n {
2670         u32        tu;
2671         u32        gmch_m;
2672         u32        gmch_n;
2673         u32        link_m;
2674         u32        link_n;
2675 };
2676
2677 static void
2678 fdi_reduce_ratio(u32 *num, u32 *den)
2679 {
2680         while (*num > 0xffffff || *den > 0xffffff) {
2681                 *num >>= 1;
2682                 *den >>= 1;
2683         }
2684 }
2685
2686 #define DATA_N 0x800000
2687 #define LINK_N 0x80000
2688
2689 static void
2690 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2691                      int link_clock, struct fdi_m_n *m_n)
2692 {
2693         u64 temp;
2694
2695         m_n->tu = 64; /* default size */
2696
2697         temp = (u64) DATA_N * pixel_clock;
2698         temp = div_u64(temp, link_clock);
2699         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2700         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2701         m_n->gmch_n = DATA_N;
2702         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2703
2704         temp = (u64) LINK_N * pixel_clock;
2705         m_n->link_m = div_u64(temp, link_clock);
2706         m_n->link_n = LINK_N;
2707         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2708 }
2709
2710
2711 struct intel_watermark_params {
2712         unsigned long fifo_size;
2713         unsigned long max_wm;
2714         unsigned long default_wm;
2715         unsigned long guard_size;
2716         unsigned long cacheline_size;
2717 };
2718
2719 /* Pineview has different values for various configs */
2720 static struct intel_watermark_params pineview_display_wm = {
2721         PINEVIEW_DISPLAY_FIFO,
2722         PINEVIEW_MAX_WM,
2723         PINEVIEW_DFT_WM,
2724         PINEVIEW_GUARD_WM,
2725         PINEVIEW_FIFO_LINE_SIZE
2726 };
2727 static struct intel_watermark_params pineview_display_hplloff_wm = {
2728         PINEVIEW_DISPLAY_FIFO,
2729         PINEVIEW_MAX_WM,
2730         PINEVIEW_DFT_HPLLOFF_WM,
2731         PINEVIEW_GUARD_WM,
2732         PINEVIEW_FIFO_LINE_SIZE
2733 };
2734 static struct intel_watermark_params pineview_cursor_wm = {
2735         PINEVIEW_CURSOR_FIFO,
2736         PINEVIEW_CURSOR_MAX_WM,
2737         PINEVIEW_CURSOR_DFT_WM,
2738         PINEVIEW_CURSOR_GUARD_WM,
2739         PINEVIEW_FIFO_LINE_SIZE,
2740 };
2741 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2742         PINEVIEW_CURSOR_FIFO,
2743         PINEVIEW_CURSOR_MAX_WM,
2744         PINEVIEW_CURSOR_DFT_WM,
2745         PINEVIEW_CURSOR_GUARD_WM,
2746         PINEVIEW_FIFO_LINE_SIZE
2747 };
2748 static struct intel_watermark_params g4x_wm_info = {
2749         G4X_FIFO_SIZE,
2750         G4X_MAX_WM,
2751         G4X_MAX_WM,
2752         2,
2753         G4X_FIFO_LINE_SIZE,
2754 };
2755 static struct intel_watermark_params g4x_cursor_wm_info = {
2756         I965_CURSOR_FIFO,
2757         I965_CURSOR_MAX_WM,
2758         I965_CURSOR_DFT_WM,
2759         2,
2760         G4X_FIFO_LINE_SIZE,
2761 };
2762 static struct intel_watermark_params i965_cursor_wm_info = {
2763         I965_CURSOR_FIFO,
2764         I965_CURSOR_MAX_WM,
2765         I965_CURSOR_DFT_WM,
2766         2,
2767         I915_FIFO_LINE_SIZE,
2768 };
2769 static struct intel_watermark_params i945_wm_info = {
2770         I945_FIFO_SIZE,
2771         I915_MAX_WM,
2772         1,
2773         2,
2774         I915_FIFO_LINE_SIZE
2775 };
2776 static struct intel_watermark_params i915_wm_info = {
2777         I915_FIFO_SIZE,
2778         I915_MAX_WM,
2779         1,
2780         2,
2781         I915_FIFO_LINE_SIZE
2782 };
2783 static struct intel_watermark_params i855_wm_info = {
2784         I855GM_FIFO_SIZE,
2785         I915_MAX_WM,
2786         1,
2787         2,
2788         I830_FIFO_LINE_SIZE
2789 };
2790 static struct intel_watermark_params i830_wm_info = {
2791         I830_FIFO_SIZE,
2792         I915_MAX_WM,
2793         1,
2794         2,
2795         I830_FIFO_LINE_SIZE
2796 };
2797
2798 static struct intel_watermark_params ironlake_display_wm_info = {
2799         ILK_DISPLAY_FIFO,
2800         ILK_DISPLAY_MAXWM,
2801         ILK_DISPLAY_DFTWM,
2802         2,
2803         ILK_FIFO_LINE_SIZE
2804 };
2805
2806 static struct intel_watermark_params ironlake_cursor_wm_info = {
2807         ILK_CURSOR_FIFO,
2808         ILK_CURSOR_MAXWM,
2809         ILK_CURSOR_DFTWM,
2810         2,
2811         ILK_FIFO_LINE_SIZE
2812 };
2813
2814 static struct intel_watermark_params ironlake_display_srwm_info = {
2815         ILK_DISPLAY_SR_FIFO,
2816         ILK_DISPLAY_MAX_SRWM,
2817         ILK_DISPLAY_DFT_SRWM,
2818         2,
2819         ILK_FIFO_LINE_SIZE
2820 };
2821
2822 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2823         ILK_CURSOR_SR_FIFO,
2824         ILK_CURSOR_MAX_SRWM,
2825         ILK_CURSOR_DFT_SRWM,
2826         2,
2827         ILK_FIFO_LINE_SIZE
2828 };
2829
2830 /**
2831  * intel_calculate_wm - calculate watermark level
2832  * @clock_in_khz: pixel clock
2833  * @wm: chip FIFO params
2834  * @pixel_size: display pixel size
2835  * @latency_ns: memory latency for the platform
2836  *
2837  * Calculate the watermark level (the level at which the display plane will
2838  * start fetching from memory again).  Each chip has a different display
2839  * FIFO size and allocation, so the caller needs to figure that out and pass
2840  * in the correct intel_watermark_params structure.
2841  *
2842  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2843  * on the pixel size.  When it reaches the watermark level, it'll start
2844  * fetching FIFO line sized based chunks from memory until the FIFO fills
2845  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2846  * will occur, and a display engine hang could result.
2847  */
2848 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2849                                         struct intel_watermark_params *wm,
2850                                         int pixel_size,
2851                                         unsigned long latency_ns)
2852 {
2853         long entries_required, wm_size;
2854
2855         /*
2856          * Note: we need to make sure we don't overflow for various clock &
2857          * latency values.
2858          * clocks go from a few thousand to several hundred thousand.
2859          * latency is usually a few thousand
2860          */
2861         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2862                 1000;
2863         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2864
2865         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2866
2867         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2868
2869         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2870
2871         /* Don't promote wm_size to unsigned... */
2872         if (wm_size > (long)wm->max_wm)
2873                 wm_size = wm->max_wm;
2874         if (wm_size <= 0)
2875                 wm_size = wm->default_wm;
2876         return wm_size;
2877 }
2878
2879 struct cxsr_latency {
2880         int is_desktop;
2881         int is_ddr3;
2882         unsigned long fsb_freq;
2883         unsigned long mem_freq;
2884         unsigned long display_sr;
2885         unsigned long display_hpll_disable;
2886         unsigned long cursor_sr;
2887         unsigned long cursor_hpll_disable;
2888 };
2889
2890 static const struct cxsr_latency cxsr_latency_table[] = {
2891         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2892         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2893         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2894         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
2895         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
2896
2897         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2898         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2899         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2900         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
2901         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
2902
2903         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2904         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2905         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2906         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
2907         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
2908
2909         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2910         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2911         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2912         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
2913         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
2914
2915         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2916         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2917         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2918         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
2919         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
2920
2921         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2922         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2923         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2924         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
2925         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
2926 };
2927
2928 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2929                                                          int is_ddr3,
2930                                                          int fsb,
2931                                                          int mem)
2932 {
2933         const struct cxsr_latency *latency;
2934         int i;
2935
2936         if (fsb == 0 || mem == 0)
2937                 return NULL;
2938
2939         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2940                 latency = &cxsr_latency_table[i];
2941                 if (is_desktop == latency->is_desktop &&
2942                     is_ddr3 == latency->is_ddr3 &&
2943                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2944                         return latency;
2945         }
2946
2947         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2948
2949         return NULL;
2950 }
2951
2952 static void pineview_disable_cxsr(struct drm_device *dev)
2953 {
2954         struct drm_i915_private *dev_priv = dev->dev_private;
2955
2956         /* deactivate cxsr */
2957         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2958 }
2959
2960 /*
2961  * Latency for FIFO fetches is dependent on several factors:
2962  *   - memory configuration (speed, channels)
2963  *   - chipset
2964  *   - current MCH state
2965  * It can be fairly high in some situations, so here we assume a fairly
2966  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2967  * set this value too high, the FIFO will fetch frequently to stay full)
2968  * and power consumption (set it too low to save power and we might see
2969  * FIFO underruns and display "flicker").
2970  *
2971  * A value of 5us seems to be a good balance; safe for very low end
2972  * platforms but not overly aggressive on lower latency configs.
2973  */
2974 static const int latency_ns = 5000;
2975
2976 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2977 {
2978         struct drm_i915_private *dev_priv = dev->dev_private;
2979         uint32_t dsparb = I915_READ(DSPARB);
2980         int size;
2981
2982         size = dsparb & 0x7f;
2983         if (plane)
2984                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
2985
2986         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2987                       plane ? "B" : "A", size);
2988
2989         return size;
2990 }
2991
2992 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2993 {
2994         struct drm_i915_private *dev_priv = dev->dev_private;
2995         uint32_t dsparb = I915_READ(DSPARB);
2996         int size;
2997
2998         size = dsparb & 0x1ff;
2999         if (plane)
3000                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3001         size >>= 1; /* Convert to cachelines */
3002
3003         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3004                       plane ? "B" : "A", size);
3005
3006         return size;
3007 }
3008
3009 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3010 {
3011         struct drm_i915_private *dev_priv = dev->dev_private;
3012         uint32_t dsparb = I915_READ(DSPARB);
3013         int size;
3014
3015         size = dsparb & 0x7f;
3016         size >>= 2; /* Convert to cachelines */
3017
3018         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3019                       plane ? "B" : "A",
3020                       size);
3021
3022         return size;
3023 }
3024
3025 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3026 {
3027         struct drm_i915_private *dev_priv = dev->dev_private;
3028         uint32_t dsparb = I915_READ(DSPARB);
3029         int size;
3030
3031         size = dsparb & 0x7f;
3032         size >>= 1; /* Convert to cachelines */
3033
3034         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3035                       plane ? "B" : "A", size);
3036
3037         return size;
3038 }
3039
3040 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
3041                                int planeb_clock, int sr_hdisplay, int unused,
3042                                int pixel_size)
3043 {
3044         struct drm_i915_private *dev_priv = dev->dev_private;
3045         const struct cxsr_latency *latency;
3046         u32 reg;
3047         unsigned long wm;
3048         int sr_clock;
3049
3050         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3051                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3052         if (!latency) {
3053                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3054                 pineview_disable_cxsr(dev);
3055                 return;
3056         }
3057
3058         if (!planea_clock || !planeb_clock) {
3059                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3060
3061                 /* Display SR */
3062                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3063                                         pixel_size, latency->display_sr);
3064                 reg = I915_READ(DSPFW1);
3065                 reg &= ~DSPFW_SR_MASK;
3066                 reg |= wm << DSPFW_SR_SHIFT;
3067                 I915_WRITE(DSPFW1, reg);
3068                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3069
3070                 /* cursor SR */
3071                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3072                                         pixel_size, latency->cursor_sr);
3073                 reg = I915_READ(DSPFW3);
3074                 reg &= ~DSPFW_CURSOR_SR_MASK;
3075                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3076                 I915_WRITE(DSPFW3, reg);
3077
3078                 /* Display HPLL off SR */
3079                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3080                                         pixel_size, latency->display_hpll_disable);
3081                 reg = I915_READ(DSPFW3);
3082                 reg &= ~DSPFW_HPLL_SR_MASK;
3083                 reg |= wm & DSPFW_HPLL_SR_MASK;
3084                 I915_WRITE(DSPFW3, reg);
3085
3086                 /* cursor HPLL off SR */
3087                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3088                                         pixel_size, latency->cursor_hpll_disable);
3089                 reg = I915_READ(DSPFW3);
3090                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3091                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3092                 I915_WRITE(DSPFW3, reg);
3093                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3094
3095                 /* activate cxsr */
3096                 I915_WRITE(DSPFW3,
3097                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3098                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3099         } else {
3100                 pineview_disable_cxsr(dev);
3101                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3102         }
3103 }
3104
3105 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
3106                           int planeb_clock, int sr_hdisplay, int sr_htotal,
3107                           int pixel_size)
3108 {
3109         struct drm_i915_private *dev_priv = dev->dev_private;
3110         int total_size, cacheline_size;
3111         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3112         struct intel_watermark_params planea_params, planeb_params;
3113         unsigned long line_time_us;
3114         int sr_clock, sr_entries = 0, entries_required;
3115
3116         /* Create copies of the base settings for each pipe */
3117         planea_params = planeb_params = g4x_wm_info;
3118
3119         /* Grab a couple of global values before we overwrite them */
3120         total_size = planea_params.fifo_size;
3121         cacheline_size = planea_params.cacheline_size;
3122
3123         /*
3124          * Note: we need to make sure we don't overflow for various clock &
3125          * latency values.
3126          * clocks go from a few thousand to several hundred thousand.
3127          * latency is usually a few thousand
3128          */
3129         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3130                 1000;
3131         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3132         planea_wm = entries_required + planea_params.guard_size;
3133
3134         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3135                 1000;
3136         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3137         planeb_wm = entries_required + planeb_params.guard_size;
3138
3139         cursora_wm = cursorb_wm = 16;
3140         cursor_sr = 32;
3141
3142         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3143
3144         /* Calc sr entries for one plane configs */
3145         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3146                 /* self-refresh has much higher latency */
3147                 static const int sr_latency_ns = 12000;
3148
3149                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3150                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3151
3152                 /* Use ns/us then divide to preserve precision */
3153                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3154                         pixel_size * sr_hdisplay;
3155                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3156
3157                 entries_required = (((sr_latency_ns / line_time_us) +
3158                                      1000) / 1000) * pixel_size * 64;
3159                 entries_required = DIV_ROUND_UP(entries_required,
3160                                                 g4x_cursor_wm_info.cacheline_size);
3161                 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3162
3163                 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3164                         cursor_sr = g4x_cursor_wm_info.max_wm;
3165                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3166                               "cursor %d\n", sr_entries, cursor_sr);
3167
3168                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3169         } else {
3170                 /* Turn off self refresh if both pipes are enabled */
3171                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3172                            & ~FW_BLC_SELF_EN);
3173         }
3174
3175         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3176                   planea_wm, planeb_wm, sr_entries);
3177
3178         planea_wm &= 0x3f;
3179         planeb_wm &= 0x3f;
3180
3181         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3182                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3183                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3184         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3185                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3186         /* HPLL off in SR has some issues on G4x... disable it */
3187         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3188                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3189 }
3190
3191 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3192                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3193                            int pixel_size)
3194 {
3195         struct drm_i915_private *dev_priv = dev->dev_private;
3196         unsigned long line_time_us;
3197         int sr_clock, sr_entries, srwm = 1;
3198         int cursor_sr = 16;
3199
3200         /* Calc sr entries for one plane configs */
3201         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3202                 /* self-refresh has much higher latency */
3203                 static const int sr_latency_ns = 12000;
3204
3205                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3206                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3207
3208                 /* Use ns/us then divide to preserve precision */
3209                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3210                         pixel_size * sr_hdisplay;
3211                 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3212                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3213                 srwm = I965_FIFO_SIZE - sr_entries;
3214                 if (srwm < 0)
3215                         srwm = 1;
3216                 srwm &= 0x1ff;
3217
3218                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3219                         pixel_size * 64;
3220                 sr_entries = DIV_ROUND_UP(sr_entries,
3221                                           i965_cursor_wm_info.cacheline_size);
3222                 cursor_sr = i965_cursor_wm_info.fifo_size -
3223                         (sr_entries + i965_cursor_wm_info.guard_size);
3224
3225                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3226                         cursor_sr = i965_cursor_wm_info.max_wm;
3227
3228                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3229                               "cursor %d\n", srwm, cursor_sr);
3230
3231                 if (IS_CRESTLINE(dev))
3232                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3233         } else {
3234                 /* Turn off self refresh if both pipes are enabled */
3235                 if (IS_CRESTLINE(dev))
3236                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3237                                    & ~FW_BLC_SELF_EN);
3238         }
3239
3240         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3241                       srwm);
3242
3243         /* 965 has limitations... */
3244         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3245                    (8 << 0));
3246         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3247         /* update cursor SR watermark */
3248         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3249 }
3250
3251 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3252                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3253                            int pixel_size)
3254 {
3255         struct drm_i915_private *dev_priv = dev->dev_private;
3256         uint32_t fwater_lo;
3257         uint32_t fwater_hi;
3258         int total_size, cacheline_size, cwm, srwm = 1;
3259         int planea_wm, planeb_wm;
3260         struct intel_watermark_params planea_params, planeb_params;
3261         unsigned long line_time_us;
3262         int sr_clock, sr_entries = 0;
3263
3264         /* Create copies of the base settings for each pipe */
3265         if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3266                 planea_params = planeb_params = i945_wm_info;
3267         else if (!IS_GEN2(dev))
3268                 planea_params = planeb_params = i915_wm_info;
3269         else
3270                 planea_params = planeb_params = i855_wm_info;
3271
3272         /* Grab a couple of global values before we overwrite them */
3273         total_size = planea_params.fifo_size;
3274         cacheline_size = planea_params.cacheline_size;
3275
3276         /* Update per-plane FIFO sizes */
3277         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3278         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3279
3280         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3281                                        pixel_size, latency_ns);
3282         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3283                                        pixel_size, latency_ns);
3284         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3285
3286         /*
3287          * Overlay gets an aggressive default since video jitter is bad.
3288          */
3289         cwm = 2;
3290
3291         /* Calc sr entries for one plane configs */
3292         if (HAS_FW_BLC(dev) && sr_hdisplay &&
3293             (!planea_clock || !planeb_clock)) {
3294                 /* self-refresh has much higher latency */
3295                 static const int sr_latency_ns = 6000;
3296
3297                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3298                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3299
3300                 /* Use ns/us then divide to preserve precision */
3301                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3302                         pixel_size * sr_hdisplay;
3303                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3304                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3305                 srwm = total_size - sr_entries;
3306                 if (srwm < 0)
3307                         srwm = 1;
3308
3309                 if (IS_I945G(dev) || IS_I945GM(dev))
3310                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3311                 else if (IS_I915GM(dev)) {
3312                         /* 915M has a smaller SRWM field */
3313                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3314                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3315                 }
3316         } else {
3317                 /* Turn off self refresh if both pipes are enabled */
3318                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3319                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3320                                    & ~FW_BLC_SELF_EN);
3321                 } else if (IS_I915GM(dev)) {
3322                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3323                 }
3324         }
3325
3326         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3327                       planea_wm, planeb_wm, cwm, srwm);
3328
3329         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3330         fwater_hi = (cwm & 0x1f);
3331
3332         /* Set request length to 8 cachelines per fetch */
3333         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3334         fwater_hi = fwater_hi | (1 << 8);
3335
3336         I915_WRITE(FW_BLC, fwater_lo);
3337         I915_WRITE(FW_BLC2, fwater_hi);
3338 }
3339
3340 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3341                            int unused2, int unused3, int pixel_size)
3342 {
3343         struct drm_i915_private *dev_priv = dev->dev_private;
3344         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3345         int planea_wm;
3346
3347         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3348
3349         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3350                                        pixel_size, latency_ns);
3351         fwater_lo |= (3<<8) | planea_wm;
3352
3353         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3354
3355         I915_WRITE(FW_BLC, fwater_lo);
3356 }
3357
3358 #define ILK_LP0_PLANE_LATENCY           700
3359 #define ILK_LP0_CURSOR_LATENCY          1300
3360
3361 static bool ironlake_compute_wm0(struct drm_device *dev,
3362                                  int pipe,
3363                                  int *plane_wm,
3364                                  int *cursor_wm)
3365 {
3366         struct drm_crtc *crtc;
3367         int htotal, hdisplay, clock, pixel_size = 0;
3368         int line_time_us, line_count, entries;
3369
3370         crtc = intel_get_crtc_for_pipe(dev, pipe);
3371         if (crtc->fb == NULL || !crtc->enabled)
3372                 return false;
3373
3374         htotal = crtc->mode.htotal;
3375         hdisplay = crtc->mode.hdisplay;
3376         clock = crtc->mode.clock;
3377         pixel_size = crtc->fb->bits_per_pixel / 8;
3378
3379         /* Use the small buffer method to calculate plane watermark */
3380         entries = ((clock * pixel_size / 1000) * ILK_LP0_PLANE_LATENCY) / 1000;
3381         entries = DIV_ROUND_UP(entries,
3382                                ironlake_display_wm_info.cacheline_size);
3383         *plane_wm = entries + ironlake_display_wm_info.guard_size;
3384         if (*plane_wm > (int)ironlake_display_wm_info.max_wm)
3385                 *plane_wm = ironlake_display_wm_info.max_wm;
3386
3387         /* Use the large buffer method to calculate cursor watermark */
3388         line_time_us = ((htotal * 1000) / clock);
3389         line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3390         entries = line_count * 64 * pixel_size;
3391         entries = DIV_ROUND_UP(entries,
3392                                ironlake_cursor_wm_info.cacheline_size);
3393         *cursor_wm = entries + ironlake_cursor_wm_info.guard_size;
3394         if (*cursor_wm > ironlake_cursor_wm_info.max_wm)
3395                 *cursor_wm = ironlake_cursor_wm_info.max_wm;
3396
3397         return true;
3398 }
3399
3400 static void ironlake_update_wm(struct drm_device *dev,
3401                                int planea_clock, int planeb_clock,
3402                                int sr_hdisplay, int sr_htotal,
3403                                int pixel_size)
3404 {
3405         struct drm_i915_private *dev_priv = dev->dev_private;
3406         int plane_wm, cursor_wm, enabled;
3407         int tmp;
3408
3409         enabled = 0;
3410         if (ironlake_compute_wm0(dev, 0, &plane_wm, &cursor_wm)) {
3411                 I915_WRITE(WM0_PIPEA_ILK,
3412                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3413                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3414                               " plane %d, " "cursor: %d\n",
3415                               plane_wm, cursor_wm);
3416                 enabled++;
3417         }
3418
3419         if (ironlake_compute_wm0(dev, 1, &plane_wm, &cursor_wm)) {
3420                 I915_WRITE(WM0_PIPEB_ILK,
3421                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3422                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3423                               " plane %d, cursor: %d\n",
3424                               plane_wm, cursor_wm);
3425                 enabled++;
3426         }
3427
3428         /*
3429          * Calculate and update the self-refresh watermark only when one
3430          * display plane is used.
3431          */
3432         tmp = 0;
3433         if (enabled == 1 && /* XXX disabled due to buggy implmentation? */ 0) {
3434                 unsigned long line_time_us;
3435                 int small, large, plane_fbc;
3436                 int sr_clock, entries;
3437                 int line_count, line_size;
3438                 /* Read the self-refresh latency. The unit is 0.5us */
3439                 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3440
3441                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3442                 line_time_us = (sr_htotal * 1000) / sr_clock;
3443
3444                 /* Use ns/us then divide to preserve precision */
3445                 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3446                         / 1000;
3447                 line_size = sr_hdisplay * pixel_size;
3448
3449                 /* Use the minimum of the small and large buffer method for primary */
3450                 small = ((sr_clock * pixel_size / 1000) * (ilk_sr_latency * 500)) / 1000;
3451                 large = line_count * line_size;
3452
3453                 entries = DIV_ROUND_UP(min(small, large),
3454                                        ironlake_display_srwm_info.cacheline_size);
3455
3456                 plane_fbc = entries * 64;
3457                 plane_fbc = DIV_ROUND_UP(plane_fbc, line_size);
3458
3459                 plane_wm = entries + ironlake_display_srwm_info.guard_size;
3460                 if (plane_wm > (int)ironlake_display_srwm_info.max_wm)
3461                         plane_wm = ironlake_display_srwm_info.max_wm;
3462
3463                 /* calculate the self-refresh watermark for display cursor */
3464                 entries = line_count * pixel_size * 64;
3465                 entries = DIV_ROUND_UP(entries,
3466                                        ironlake_cursor_srwm_info.cacheline_size);
3467
3468                 cursor_wm = entries + ironlake_cursor_srwm_info.guard_size;
3469                 if (cursor_wm > (int)ironlake_cursor_srwm_info.max_wm)
3470                         cursor_wm = ironlake_cursor_srwm_info.max_wm;
3471
3472                 /* configure watermark and enable self-refresh */
3473                 tmp = (WM1_LP_SR_EN |
3474                        (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3475                        (plane_fbc << WM1_LP_FBC_SHIFT) |
3476                        (plane_wm << WM1_LP_SR_SHIFT) |
3477                        cursor_wm);
3478                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
3479                               " cursor %d\n", plane_wm, plane_fbc, cursor_wm);
3480         }
3481         I915_WRITE(WM1_LP_ILK, tmp);
3482         /* XXX setup WM2 and WM3 */
3483 }
3484
3485 /**
3486  * intel_update_watermarks - update FIFO watermark values based on current modes
3487  *
3488  * Calculate watermark values for the various WM regs based on current mode
3489  * and plane configuration.
3490  *
3491  * There are several cases to deal with here:
3492  *   - normal (i.e. non-self-refresh)
3493  *   - self-refresh (SR) mode
3494  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3495  *   - lines are small relative to FIFO size (buffer can hold more than 2
3496  *     lines), so need to account for TLB latency
3497  *
3498  *   The normal calculation is:
3499  *     watermark = dotclock * bytes per pixel * latency
3500  *   where latency is platform & configuration dependent (we assume pessimal
3501  *   values here).
3502  *
3503  *   The SR calculation is:
3504  *     watermark = (trunc(latency/line time)+1) * surface width *
3505  *       bytes per pixel
3506  *   where
3507  *     line time = htotal / dotclock
3508  *     surface width = hdisplay for normal plane and 64 for cursor
3509  *   and latency is assumed to be high, as above.
3510  *
3511  * The final value programmed to the register should always be rounded up,
3512  * and include an extra 2 entries to account for clock crossings.
3513  *
3514  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3515  * to set the non-SR watermarks to 8.
3516  */
3517 static void intel_update_watermarks(struct drm_device *dev)
3518 {
3519         struct drm_i915_private *dev_priv = dev->dev_private;
3520         struct drm_crtc *crtc;
3521         int sr_hdisplay = 0;
3522         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3523         int enabled = 0, pixel_size = 0;
3524         int sr_htotal = 0;
3525
3526         if (!dev_priv->display.update_wm)
3527                 return;
3528
3529         /* Get the clock config from both planes */
3530         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3531                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3532                 if (intel_crtc->active) {
3533                         enabled++;
3534                         if (intel_crtc->plane == 0) {
3535                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3536                                               intel_crtc->pipe, crtc->mode.clock);
3537                                 planea_clock = crtc->mode.clock;
3538                         } else {
3539                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3540                                               intel_crtc->pipe, crtc->mode.clock);
3541                                 planeb_clock = crtc->mode.clock;
3542                         }
3543                         sr_hdisplay = crtc->mode.hdisplay;
3544                         sr_clock = crtc->mode.clock;
3545                         sr_htotal = crtc->mode.htotal;
3546                         if (crtc->fb)
3547                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3548                         else
3549                                 pixel_size = 4; /* by default */
3550                 }
3551         }
3552
3553         if (enabled <= 0)
3554                 return;
3555
3556         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3557                                     sr_hdisplay, sr_htotal, pixel_size);
3558 }
3559
3560 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3561                                struct drm_display_mode *mode,
3562                                struct drm_display_mode *adjusted_mode,
3563                                int x, int y,
3564                                struct drm_framebuffer *old_fb)
3565 {
3566         struct drm_device *dev = crtc->dev;
3567         struct drm_i915_private *dev_priv = dev->dev_private;
3568         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3569         int pipe = intel_crtc->pipe;
3570         int plane = intel_crtc->plane;
3571         u32 fp_reg, dpll_reg;
3572         int refclk, num_connectors = 0;
3573         intel_clock_t clock, reduced_clock;
3574         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3575         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3576         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3577         struct intel_encoder *has_edp_encoder = NULL;
3578         struct drm_mode_config *mode_config = &dev->mode_config;
3579         struct intel_encoder *encoder;
3580         const intel_limit_t *limit;
3581         int ret;
3582         struct fdi_m_n m_n = {0};
3583         u32 reg, temp;
3584         int target_clock;
3585
3586         drm_vblank_pre_modeset(dev, pipe);
3587
3588         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3589                 if (encoder->base.crtc != crtc)
3590                         continue;
3591
3592                 switch (encoder->type) {
3593                 case INTEL_OUTPUT_LVDS:
3594                         is_lvds = true;
3595                         break;
3596                 case INTEL_OUTPUT_SDVO:
3597                 case INTEL_OUTPUT_HDMI:
3598                         is_sdvo = true;
3599                         if (encoder->needs_tv_clock)
3600                                 is_tv = true;
3601                         break;
3602                 case INTEL_OUTPUT_DVO:
3603                         is_dvo = true;
3604                         break;
3605                 case INTEL_OUTPUT_TVOUT:
3606                         is_tv = true;
3607                         break;
3608                 case INTEL_OUTPUT_ANALOG:
3609                         is_crt = true;
3610                         break;
3611                 case INTEL_OUTPUT_DISPLAYPORT:
3612                         is_dp = true;
3613                         break;
3614                 case INTEL_OUTPUT_EDP:
3615                         has_edp_encoder = encoder;
3616                         break;
3617                 }
3618
3619                 num_connectors++;
3620         }
3621
3622         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3623                 refclk = dev_priv->lvds_ssc_freq * 1000;
3624                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3625                               refclk / 1000);
3626         } else if (!IS_GEN2(dev)) {
3627                 refclk = 96000;
3628                 if (HAS_PCH_SPLIT(dev))
3629                         refclk = 120000; /* 120Mhz refclk */
3630         } else {
3631                 refclk = 48000;
3632         }
3633
3634         /*
3635          * Returns a set of divisors for the desired target clock with the given
3636          * refclk, or FALSE.  The returned values represent the clock equation:
3637          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3638          */
3639         limit = intel_limit(crtc);
3640         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3641         if (!ok) {
3642                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3643                 drm_vblank_post_modeset(dev, pipe);
3644                 return -EINVAL;
3645         }
3646
3647         /* Ensure that the cursor is valid for the new mode before changing... */
3648         intel_crtc_update_cursor(crtc, true);
3649
3650         if (is_lvds && dev_priv->lvds_downclock_avail) {
3651                 has_reduced_clock = limit->find_pll(limit, crtc,
3652                                                     dev_priv->lvds_downclock,
3653                                                     refclk,
3654                                                     &reduced_clock);
3655                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3656                         /*
3657                          * If the different P is found, it means that we can't
3658                          * switch the display clock by using the FP0/FP1.
3659                          * In such case we will disable the LVDS downclock
3660                          * feature.
3661                          */
3662                         DRM_DEBUG_KMS("Different P is found for "
3663                                       "LVDS clock/downclock\n");
3664                         has_reduced_clock = 0;
3665                 }
3666         }
3667         /* SDVO TV has fixed PLL values depend on its clock range,
3668            this mirrors vbios setting. */
3669         if (is_sdvo && is_tv) {
3670                 if (adjusted_mode->clock >= 100000
3671                     && adjusted_mode->clock < 140500) {
3672                         clock.p1 = 2;
3673                         clock.p2 = 10;
3674                         clock.n = 3;
3675                         clock.m1 = 16;
3676                         clock.m2 = 8;
3677                 } else if (adjusted_mode->clock >= 140500
3678                            && adjusted_mode->clock <= 200000) {
3679                         clock.p1 = 1;
3680                         clock.p2 = 10;
3681                         clock.n = 6;
3682                         clock.m1 = 12;
3683                         clock.m2 = 8;
3684                 }
3685         }
3686
3687         /* FDI link */
3688         if (HAS_PCH_SPLIT(dev)) {
3689                 int lane = 0, link_bw, bpp;
3690                 /* CPU eDP doesn't require FDI link, so just set DP M/N
3691                    according to current link config */
3692                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&encoder->base)) {
3693                         target_clock = mode->clock;
3694                         intel_edp_link_config(has_edp_encoder,
3695                                               &lane, &link_bw);
3696                 } else {
3697                         /* [e]DP over FDI requires target mode clock
3698                            instead of link clock */
3699                         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3700                                 target_clock = mode->clock;
3701                         else
3702                                 target_clock = adjusted_mode->clock;
3703
3704                         /* FDI is a binary signal running at ~2.7GHz, encoding
3705                          * each output octet as 10 bits. The actual frequency
3706                          * is stored as a divider into a 100MHz clock, and the
3707                          * mode pixel clock is stored in units of 1KHz.
3708                          * Hence the bw of each lane in terms of the mode signal
3709                          * is:
3710                          */
3711                         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
3712                 }
3713
3714                 /* determine panel color depth */
3715                 temp = I915_READ(PIPECONF(pipe));
3716                 temp &= ~PIPE_BPC_MASK;
3717                 if (is_lvds) {
3718                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3719                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3720                                 temp |= PIPE_8BPC;
3721                         else
3722                                 temp |= PIPE_6BPC;
3723                 } else if (has_edp_encoder) {
3724                         switch (dev_priv->edp.bpp/3) {
3725                         case 8:
3726                                 temp |= PIPE_8BPC;
3727                                 break;
3728                         case 10:
3729                                 temp |= PIPE_10BPC;
3730                                 break;
3731                         case 6:
3732                                 temp |= PIPE_6BPC;
3733                                 break;
3734                         case 12:
3735                                 temp |= PIPE_12BPC;
3736                                 break;
3737                         }
3738                 } else
3739                         temp |= PIPE_8BPC;
3740                 I915_WRITE(PIPECONF(pipe), temp);
3741
3742                 switch (temp & PIPE_BPC_MASK) {
3743                 case PIPE_8BPC:
3744                         bpp = 24;
3745                         break;
3746                 case PIPE_10BPC:
3747                         bpp = 30;
3748                         break;
3749                 case PIPE_6BPC:
3750                         bpp = 18;
3751                         break;
3752                 case PIPE_12BPC:
3753                         bpp = 36;
3754                         break;
3755                 default:
3756                         DRM_ERROR("unknown pipe bpc value\n");
3757                         bpp = 24;
3758                 }
3759
3760                 if (!lane) {
3761                         /* 
3762                          * Account for spread spectrum to avoid
3763                          * oversubscribing the link. Max center spread
3764                          * is 2.5%; use 5% for safety's sake.
3765                          */
3766                         u32 bps = target_clock * bpp * 21 / 20;
3767                         lane = bps / (link_bw * 8) + 1;
3768                 }
3769
3770                 intel_crtc->fdi_lanes = lane;
3771
3772                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3773         }
3774
3775         /* Ironlake: try to setup display ref clock before DPLL
3776          * enabling. This is only under driver's control after
3777          * PCH B stepping, previous chipset stepping should be
3778          * ignoring this setting.
3779          */
3780         if (HAS_PCH_SPLIT(dev)) {
3781                 temp = I915_READ(PCH_DREF_CONTROL);
3782                 /* Always enable nonspread source */
3783                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3784                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3785                 temp &= ~DREF_SSC_SOURCE_MASK;
3786                 temp |= DREF_SSC_SOURCE_ENABLE;
3787                 I915_WRITE(PCH_DREF_CONTROL, temp);
3788
3789                 POSTING_READ(PCH_DREF_CONTROL);
3790                 udelay(200);
3791
3792                 if (has_edp_encoder) {
3793                         if (dev_priv->lvds_use_ssc) {
3794                                 temp |= DREF_SSC1_ENABLE;
3795                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3796
3797                                 POSTING_READ(PCH_DREF_CONTROL);
3798                                 udelay(200);
3799                         }
3800                         temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3801
3802                         /* Enable CPU source on CPU attached eDP */
3803                         if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3804                                 if (dev_priv->lvds_use_ssc)
3805                                         temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3806                                 else
3807                                         temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3808                         } else {
3809                                 /* Enable SSC on PCH eDP if needed */
3810                                 if (dev_priv->lvds_use_ssc) {
3811                                         DRM_ERROR("enabling SSC on PCH\n");
3812                                         temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
3813                                 }
3814                         }
3815                         I915_WRITE(PCH_DREF_CONTROL, temp);
3816                         POSTING_READ(PCH_DREF_CONTROL);
3817                         udelay(200);
3818                 }
3819         }
3820
3821         if (IS_PINEVIEW(dev)) {
3822                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3823                 if (has_reduced_clock)
3824                         fp2 = (1 << reduced_clock.n) << 16 |
3825                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3826         } else {
3827                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3828                 if (has_reduced_clock)
3829                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3830                                 reduced_clock.m2;
3831         }
3832
3833         dpll = 0;
3834         if (!HAS_PCH_SPLIT(dev))
3835                 dpll = DPLL_VGA_MODE_DIS;
3836
3837         if (!IS_GEN2(dev)) {
3838                 if (is_lvds)
3839                         dpll |= DPLLB_MODE_LVDS;
3840                 else
3841                         dpll |= DPLLB_MODE_DAC_SERIAL;
3842                 if (is_sdvo) {
3843                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3844                         if (pixel_multiplier > 1) {
3845                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3846                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3847                                 else if (HAS_PCH_SPLIT(dev))
3848                                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3849                         }
3850                         dpll |= DPLL_DVO_HIGH_SPEED;
3851                 }
3852                 if (is_dp)
3853                         dpll |= DPLL_DVO_HIGH_SPEED;
3854
3855                 /* compute bitmask from p1 value */
3856                 if (IS_PINEVIEW(dev))
3857                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3858                 else {
3859                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3860                         /* also FPA1 */
3861                         if (HAS_PCH_SPLIT(dev))
3862                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3863                         if (IS_G4X(dev) && has_reduced_clock)
3864                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3865                 }
3866                 switch (clock.p2) {
3867                 case 5:
3868                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3869                         break;
3870                 case 7:
3871                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3872                         break;
3873                 case 10:
3874                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3875                         break;
3876                 case 14:
3877                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3878                         break;
3879                 }
3880                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
3881                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3882         } else {
3883                 if (is_lvds) {
3884                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3885                 } else {
3886                         if (clock.p1 == 2)
3887                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3888                         else
3889                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3890                         if (clock.p2 == 4)
3891                                 dpll |= PLL_P2_DIVIDE_BY_4;
3892                 }
3893         }
3894
3895         if (is_sdvo && is_tv)
3896                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3897         else if (is_tv)
3898                 /* XXX: just matching BIOS for now */
3899                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3900                 dpll |= 3;
3901         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3902                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3903         else
3904                 dpll |= PLL_REF_INPUT_DREFCLK;
3905
3906         /* setup pipeconf */
3907         pipeconf = I915_READ(PIPECONF(pipe));
3908
3909         /* Set up the display plane register */
3910         dspcntr = DISPPLANE_GAMMA_ENABLE;
3911
3912         /* Ironlake's plane is forced to pipe, bit 24 is to
3913            enable color space conversion */
3914         if (!HAS_PCH_SPLIT(dev)) {
3915                 if (pipe == 0)
3916                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3917                 else
3918                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3919         }
3920
3921         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3922                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3923                  * core speed.
3924                  *
3925                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3926                  * pipe == 0 check?
3927                  */
3928                 if (mode->clock >
3929                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3930                         pipeconf |= PIPECONF_DOUBLE_WIDE;
3931                 else
3932                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3933         }
3934
3935         dspcntr |= DISPLAY_PLANE_ENABLE;
3936         pipeconf |= PIPECONF_ENABLE;
3937         dpll |= DPLL_VCO_ENABLE;
3938
3939         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3940         drm_mode_debug_printmodeline(mode);
3941
3942         /* assign to Ironlake registers */
3943         if (HAS_PCH_SPLIT(dev)) {
3944                 fp_reg = PCH_FP0(pipe);
3945                 dpll_reg = PCH_DPLL(pipe);
3946         } else {
3947                 fp_reg = FP0(pipe);
3948                 dpll_reg = DPLL(pipe);
3949         }
3950
3951         /* PCH eDP needs FDI, but CPU eDP does not */
3952         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3953                 I915_WRITE(fp_reg, fp);
3954                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3955
3956                 POSTING_READ(dpll_reg);
3957                 udelay(150);
3958         }
3959
3960         /* enable transcoder DPLL */
3961         if (HAS_PCH_CPT(dev)) {
3962                 temp = I915_READ(PCH_DPLL_SEL);
3963                 if (pipe == 0)
3964                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
3965                 else
3966                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
3967                 I915_WRITE(PCH_DPLL_SEL, temp);
3968
3969                 POSTING_READ(PCH_DPLL_SEL);
3970                 udelay(150);
3971         }
3972
3973         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3974          * This is an exception to the general rule that mode_set doesn't turn
3975          * things on.
3976          */
3977         if (is_lvds) {
3978                 reg = LVDS;
3979                 if (HAS_PCH_SPLIT(dev))
3980                         reg = PCH_LVDS;
3981
3982                 temp = I915_READ(reg);
3983                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3984                 if (pipe == 1) {
3985                         if (HAS_PCH_CPT(dev))
3986                                 temp |= PORT_TRANS_B_SEL_CPT;
3987                         else
3988                                 temp |= LVDS_PIPEB_SELECT;
3989                 } else {
3990                         if (HAS_PCH_CPT(dev))
3991                                 temp &= ~PORT_TRANS_SEL_MASK;
3992                         else
3993                                 temp &= ~LVDS_PIPEB_SELECT;
3994                 }
3995                 /* set the corresponsding LVDS_BORDER bit */
3996                 temp |= dev_priv->lvds_border_bits;
3997                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3998                  * set the DPLLs for dual-channel mode or not.
3999                  */
4000                 if (clock.p2 == 7)
4001                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4002                 else
4003                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4004
4005                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4006                  * appropriately here, but we need to look more thoroughly into how
4007                  * panels behave in the two modes.
4008                  */
4009                 /* set the dithering flag on non-PCH LVDS as needed */
4010                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4011                         if (dev_priv->lvds_dither)
4012                                 temp |= LVDS_ENABLE_DITHER;
4013                         else
4014                                 temp &= ~LVDS_ENABLE_DITHER;
4015                 }
4016                 I915_WRITE(reg, temp);
4017         }
4018
4019         /* set the dithering flag and clear for anything other than a panel. */
4020         if (HAS_PCH_SPLIT(dev)) {
4021                 pipeconf &= ~PIPECONF_DITHER_EN;
4022                 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4023                 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
4024                         pipeconf |= PIPECONF_DITHER_EN;
4025                         pipeconf |= PIPECONF_DITHER_TYPE_ST1;
4026                 }
4027         }
4028
4029         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4030                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4031         } else if (HAS_PCH_SPLIT(dev)) {
4032                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4033                 if (pipe == 0) {
4034                         I915_WRITE(TRANSA_DATA_M1, 0);
4035                         I915_WRITE(TRANSA_DATA_N1, 0);
4036                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
4037                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
4038                 } else {
4039                         I915_WRITE(TRANSB_DATA_M1, 0);
4040                         I915_WRITE(TRANSB_DATA_N1, 0);
4041                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
4042                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
4043                 }
4044         }
4045
4046         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4047                 I915_WRITE(fp_reg, fp);
4048                 I915_WRITE(dpll_reg, dpll);
4049
4050                 /* Wait for the clocks to stabilize. */
4051                 POSTING_READ(dpll_reg);
4052                 udelay(150);
4053
4054                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4055                         temp = 0;
4056                         if (is_sdvo) {
4057                                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4058                                 if (temp > 1)
4059                                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4060                                 else
4061                                         temp = 0;
4062                         }
4063                         I915_WRITE(DPLL_MD(pipe), temp);
4064                 } else {
4065                         /* write it again -- the BIOS does, after all */
4066                         I915_WRITE(dpll_reg, dpll);
4067                 }
4068
4069                 /* Wait for the clocks to stabilize. */
4070                 POSTING_READ(dpll_reg);
4071                 udelay(150);
4072         }
4073
4074         intel_crtc->lowfreq_avail = false;
4075         if (is_lvds && has_reduced_clock && i915_powersave) {
4076                 I915_WRITE(fp_reg + 4, fp2);
4077                 intel_crtc->lowfreq_avail = true;
4078                 if (HAS_PIPE_CXSR(dev)) {
4079                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4080                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4081                 }
4082         } else {
4083                 I915_WRITE(fp_reg + 4, fp);
4084                 if (HAS_PIPE_CXSR(dev)) {
4085                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4086                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4087                 }
4088         }
4089
4090         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4091                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4092                 /* the chip adds 2 halflines automatically */
4093                 adjusted_mode->crtc_vdisplay -= 1;
4094                 adjusted_mode->crtc_vtotal -= 1;
4095                 adjusted_mode->crtc_vblank_start -= 1;
4096                 adjusted_mode->crtc_vblank_end -= 1;
4097                 adjusted_mode->crtc_vsync_end -= 1;
4098                 adjusted_mode->crtc_vsync_start -= 1;
4099         } else
4100                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4101
4102         I915_WRITE(HTOTAL(pipe),
4103                    (adjusted_mode->crtc_hdisplay - 1) |
4104                    ((adjusted_mode->crtc_htotal - 1) << 16));
4105         I915_WRITE(HBLANK(pipe),
4106                    (adjusted_mode->crtc_hblank_start - 1) |
4107                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4108         I915_WRITE(HSYNC(pipe),
4109                    (adjusted_mode->crtc_hsync_start - 1) |
4110                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4111
4112         I915_WRITE(VTOTAL(pipe),
4113                    (adjusted_mode->crtc_vdisplay - 1) |
4114                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4115         I915_WRITE(VBLANK(pipe),
4116                    (adjusted_mode->crtc_vblank_start - 1) |
4117                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4118         I915_WRITE(VSYNC(pipe),
4119                    (adjusted_mode->crtc_vsync_start - 1) |
4120                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4121
4122         /* pipesrc and dspsize control the size that is scaled from,
4123          * which should always be the user's requested size.
4124          */
4125         if (!HAS_PCH_SPLIT(dev)) {
4126                 I915_WRITE(DSPSIZE(plane),
4127                            ((mode->vdisplay - 1) << 16) |
4128                            (mode->hdisplay - 1));
4129                 I915_WRITE(DSPPOS(plane), 0);
4130         }
4131         I915_WRITE(PIPESRC(pipe),
4132                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4133
4134         if (HAS_PCH_SPLIT(dev)) {
4135                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4136                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4137                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4138                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4139
4140                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4141                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4142                 } else {
4143                         /* enable FDI RX PLL too */
4144                         reg = FDI_RX_CTL(pipe);
4145                         temp = I915_READ(reg);
4146                         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4147
4148                         POSTING_READ(reg);
4149                         udelay(200);
4150
4151                         /* enable FDI TX PLL too */
4152                         reg = FDI_TX_CTL(pipe);
4153                         temp = I915_READ(reg);
4154                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4155
4156                         /* enable FDI RX PCDCLK */
4157                         reg = FDI_RX_CTL(pipe);
4158                         temp = I915_READ(reg);
4159                         I915_WRITE(reg, temp | FDI_PCDCLK);
4160
4161                         POSTING_READ(reg);
4162                         udelay(200);
4163                 }
4164         }
4165
4166         I915_WRITE(PIPECONF(pipe), pipeconf);
4167         POSTING_READ(PIPECONF(pipe));
4168
4169         intel_wait_for_vblank(dev, pipe);
4170
4171         if (IS_IRONLAKE(dev)) {
4172                 /* enable address swizzle for tiling buffer */
4173                 temp = I915_READ(DISP_ARB_CTL);
4174                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4175         }
4176
4177         I915_WRITE(DSPCNTR(plane), dspcntr);
4178
4179         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4180
4181         intel_update_watermarks(dev);
4182
4183         drm_vblank_post_modeset(dev, pipe);
4184
4185         return ret;
4186 }
4187
4188 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4189 void intel_crtc_load_lut(struct drm_crtc *crtc)
4190 {
4191         struct drm_device *dev = crtc->dev;
4192         struct drm_i915_private *dev_priv = dev->dev_private;
4193         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4194         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4195         int i;
4196
4197         /* The clocks have to be on to load the palette. */
4198         if (!crtc->enabled)
4199                 return;
4200
4201         /* use legacy palette for Ironlake */
4202         if (HAS_PCH_SPLIT(dev))
4203                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4204                                                    LGC_PALETTE_B;
4205
4206         for (i = 0; i < 256; i++) {
4207                 I915_WRITE(palreg + 4 * i,
4208                            (intel_crtc->lut_r[i] << 16) |
4209                            (intel_crtc->lut_g[i] << 8) |
4210                            intel_crtc->lut_b[i]);
4211         }
4212 }
4213
4214 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4215 {
4216         struct drm_device *dev = crtc->dev;
4217         struct drm_i915_private *dev_priv = dev->dev_private;
4218         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4219         bool visible = base != 0;
4220         u32 cntl;
4221
4222         if (intel_crtc->cursor_visible == visible)
4223                 return;
4224
4225         cntl = I915_READ(CURACNTR);
4226         if (visible) {
4227                 /* On these chipsets we can only modify the base whilst
4228                  * the cursor is disabled.
4229                  */
4230                 I915_WRITE(CURABASE, base);
4231
4232                 cntl &= ~(CURSOR_FORMAT_MASK);
4233                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4234                 cntl |= CURSOR_ENABLE |
4235                         CURSOR_GAMMA_ENABLE |
4236                         CURSOR_FORMAT_ARGB;
4237         } else
4238                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4239         I915_WRITE(CURACNTR, cntl);
4240
4241         intel_crtc->cursor_visible = visible;
4242 }
4243
4244 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4245 {
4246         struct drm_device *dev = crtc->dev;
4247         struct drm_i915_private *dev_priv = dev->dev_private;
4248         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4249         int pipe = intel_crtc->pipe;
4250         bool visible = base != 0;
4251
4252         if (intel_crtc->cursor_visible != visible) {
4253                 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4254                 if (base) {
4255                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4256                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4257                         cntl |= pipe << 28; /* Connect to correct pipe */
4258                 } else {
4259                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4260                         cntl |= CURSOR_MODE_DISABLE;
4261                 }
4262                 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4263
4264                 intel_crtc->cursor_visible = visible;
4265         }
4266         /* and commit changes on next vblank */
4267         I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4268 }
4269
4270 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4271 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4272                                      bool on)
4273 {
4274         struct drm_device *dev = crtc->dev;
4275         struct drm_i915_private *dev_priv = dev->dev_private;
4276         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4277         int pipe = intel_crtc->pipe;
4278         int x = intel_crtc->cursor_x;
4279         int y = intel_crtc->cursor_y;
4280         u32 base, pos;
4281         bool visible;
4282
4283         pos = 0;
4284
4285         if (on && crtc->enabled && crtc->fb) {
4286                 base = intel_crtc->cursor_addr;
4287                 if (x > (int) crtc->fb->width)
4288                         base = 0;
4289
4290                 if (y > (int) crtc->fb->height)
4291                         base = 0;
4292         } else
4293                 base = 0;
4294
4295         if (x < 0) {
4296                 if (x + intel_crtc->cursor_width < 0)
4297                         base = 0;
4298
4299                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4300                 x = -x;
4301         }
4302         pos |= x << CURSOR_X_SHIFT;
4303
4304         if (y < 0) {
4305                 if (y + intel_crtc->cursor_height < 0)
4306                         base = 0;
4307
4308                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4309                 y = -y;
4310         }
4311         pos |= y << CURSOR_Y_SHIFT;
4312
4313         visible = base != 0;
4314         if (!visible && !intel_crtc->cursor_visible)
4315                 return;
4316
4317         I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4318         if (IS_845G(dev) || IS_I865G(dev))
4319                 i845_update_cursor(crtc, base);
4320         else
4321                 i9xx_update_cursor(crtc, base);
4322
4323         if (visible)
4324                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4325 }
4326
4327 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4328                                  struct drm_file *file_priv,
4329                                  uint32_t handle,
4330                                  uint32_t width, uint32_t height)
4331 {
4332         struct drm_device *dev = crtc->dev;
4333         struct drm_i915_private *dev_priv = dev->dev_private;
4334         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4335         struct drm_gem_object *bo;
4336         struct drm_i915_gem_object *obj_priv;
4337         uint32_t addr;
4338         int ret;
4339
4340         DRM_DEBUG_KMS("\n");
4341
4342         /* if we want to turn off the cursor ignore width and height */
4343         if (!handle) {
4344                 DRM_DEBUG_KMS("cursor off\n");
4345                 addr = 0;
4346                 bo = NULL;
4347                 mutex_lock(&dev->struct_mutex);
4348                 goto finish;
4349         }
4350
4351         /* Currently we only support 64x64 cursors */
4352         if (width != 64 || height != 64) {
4353                 DRM_ERROR("we currently only support 64x64 cursors\n");
4354                 return -EINVAL;
4355         }
4356
4357         bo = drm_gem_object_lookup(dev, file_priv, handle);
4358         if (!bo)
4359                 return -ENOENT;
4360
4361         obj_priv = to_intel_bo(bo);
4362
4363         if (bo->size < width * height * 4) {
4364                 DRM_ERROR("buffer is to small\n");
4365                 ret = -ENOMEM;
4366                 goto fail;
4367         }
4368
4369         /* we only need to pin inside GTT if cursor is non-phy */
4370         mutex_lock(&dev->struct_mutex);
4371         if (!dev_priv->info->cursor_needs_physical) {
4372                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4373                 if (ret) {
4374                         DRM_ERROR("failed to pin cursor bo\n");
4375                         goto fail_locked;
4376                 }
4377
4378                 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4379                 if (ret) {
4380                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4381                         goto fail_unpin;
4382                 }
4383
4384                 addr = obj_priv->gtt_offset;
4385         } else {
4386                 int align = IS_I830(dev) ? 16 * 1024 : 256;
4387                 ret = i915_gem_attach_phys_object(dev, bo,
4388                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4389                                                   align);
4390                 if (ret) {
4391                         DRM_ERROR("failed to attach phys object\n");
4392                         goto fail_locked;
4393                 }
4394                 addr = obj_priv->phys_obj->handle->busaddr;
4395         }
4396
4397         if (IS_GEN2(dev))
4398                 I915_WRITE(CURSIZE, (height << 12) | width);
4399
4400  finish:
4401         if (intel_crtc->cursor_bo) {
4402                 if (dev_priv->info->cursor_needs_physical) {
4403                         if (intel_crtc->cursor_bo != bo)
4404                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4405                 } else
4406                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4407                 drm_gem_object_unreference(intel_crtc->cursor_bo);
4408         }
4409
4410         mutex_unlock(&dev->struct_mutex);
4411
4412         intel_crtc->cursor_addr = addr;
4413         intel_crtc->cursor_bo = bo;
4414         intel_crtc->cursor_width = width;
4415         intel_crtc->cursor_height = height;
4416
4417         intel_crtc_update_cursor(crtc, true);
4418
4419         return 0;
4420 fail_unpin:
4421         i915_gem_object_unpin(bo);
4422 fail_locked:
4423         mutex_unlock(&dev->struct_mutex);
4424 fail:
4425         drm_gem_object_unreference_unlocked(bo);
4426         return ret;
4427 }
4428
4429 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4430 {
4431         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4432
4433         intel_crtc->cursor_x = x;
4434         intel_crtc->cursor_y = y;
4435
4436         intel_crtc_update_cursor(crtc, true);
4437
4438         return 0;
4439 }
4440
4441 /** Sets the color ramps on behalf of RandR */
4442 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4443                                  u16 blue, int regno)
4444 {
4445         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4446
4447         intel_crtc->lut_r[regno] = red >> 8;
4448         intel_crtc->lut_g[regno] = green >> 8;
4449         intel_crtc->lut_b[regno] = blue >> 8;
4450 }
4451
4452 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4453                              u16 *blue, int regno)
4454 {
4455         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4456
4457         *red = intel_crtc->lut_r[regno] << 8;
4458         *green = intel_crtc->lut_g[regno] << 8;
4459         *blue = intel_crtc->lut_b[regno] << 8;
4460 }
4461
4462 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4463                                  u16 *blue, uint32_t start, uint32_t size)
4464 {
4465         int end = (start + size > 256) ? 256 : start + size, i;
4466         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4467
4468         for (i = start; i < end; i++) {
4469                 intel_crtc->lut_r[i] = red[i] >> 8;
4470                 intel_crtc->lut_g[i] = green[i] >> 8;
4471                 intel_crtc->lut_b[i] = blue[i] >> 8;
4472         }
4473
4474         intel_crtc_load_lut(crtc);
4475 }
4476
4477 /**
4478  * Get a pipe with a simple mode set on it for doing load-based monitor
4479  * detection.
4480  *
4481  * It will be up to the load-detect code to adjust the pipe as appropriate for
4482  * its requirements.  The pipe will be connected to no other encoders.
4483  *
4484  * Currently this code will only succeed if there is a pipe with no encoders
4485  * configured for it.  In the future, it could choose to temporarily disable
4486  * some outputs to free up a pipe for its use.
4487  *
4488  * \return crtc, or NULL if no pipes are available.
4489  */
4490
4491 /* VESA 640x480x72Hz mode to set on the pipe */
4492 static struct drm_display_mode load_detect_mode = {
4493         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4494                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4495 };
4496
4497 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4498                                             struct drm_connector *connector,
4499                                             struct drm_display_mode *mode,
4500                                             int *dpms_mode)
4501 {
4502         struct intel_crtc *intel_crtc;
4503         struct drm_crtc *possible_crtc;
4504         struct drm_crtc *supported_crtc =NULL;
4505         struct drm_encoder *encoder = &intel_encoder->base;
4506         struct drm_crtc *crtc = NULL;
4507         struct drm_device *dev = encoder->dev;
4508         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4509         struct drm_crtc_helper_funcs *crtc_funcs;
4510         int i = -1;
4511
4512         /*
4513          * Algorithm gets a little messy:
4514          *   - if the connector already has an assigned crtc, use it (but make
4515          *     sure it's on first)
4516          *   - try to find the first unused crtc that can drive this connector,
4517          *     and use that if we find one
4518          *   - if there are no unused crtcs available, try to use the first
4519          *     one we found that supports the connector
4520          */
4521
4522         /* See if we already have a CRTC for this connector */
4523         if (encoder->crtc) {
4524                 crtc = encoder->crtc;
4525                 /* Make sure the crtc and connector are running */
4526                 intel_crtc = to_intel_crtc(crtc);
4527                 *dpms_mode = intel_crtc->dpms_mode;
4528                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4529                         crtc_funcs = crtc->helper_private;
4530                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4531                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4532                 }
4533                 return crtc;
4534         }
4535
4536         /* Find an unused one (if possible) */
4537         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4538                 i++;
4539                 if (!(encoder->possible_crtcs & (1 << i)))
4540                         continue;
4541                 if (!possible_crtc->enabled) {
4542                         crtc = possible_crtc;
4543                         break;
4544                 }
4545                 if (!supported_crtc)
4546                         supported_crtc = possible_crtc;
4547         }
4548
4549         /*
4550          * If we didn't find an unused CRTC, don't use any.
4551          */
4552         if (!crtc) {
4553                 return NULL;
4554         }
4555
4556         encoder->crtc = crtc;
4557         connector->encoder = encoder;
4558         intel_encoder->load_detect_temp = true;
4559
4560         intel_crtc = to_intel_crtc(crtc);
4561         *dpms_mode = intel_crtc->dpms_mode;
4562
4563         if (!crtc->enabled) {
4564                 if (!mode)
4565                         mode = &load_detect_mode;
4566                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4567         } else {
4568                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4569                         crtc_funcs = crtc->helper_private;
4570                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4571                 }
4572
4573                 /* Add this connector to the crtc */
4574                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4575                 encoder_funcs->commit(encoder);
4576         }
4577         /* let the connector get through one full cycle before testing */
4578         intel_wait_for_vblank(dev, intel_crtc->pipe);
4579
4580         return crtc;
4581 }
4582
4583 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4584                                     struct drm_connector *connector, int dpms_mode)
4585 {
4586         struct drm_encoder *encoder = &intel_encoder->base;
4587         struct drm_device *dev = encoder->dev;
4588         struct drm_crtc *crtc = encoder->crtc;
4589         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4590         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4591
4592         if (intel_encoder->load_detect_temp) {
4593                 encoder->crtc = NULL;
4594                 connector->encoder = NULL;
4595                 intel_encoder->load_detect_temp = false;
4596                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4597                 drm_helper_disable_unused_functions(dev);
4598         }
4599
4600         /* Switch crtc and encoder back off if necessary */
4601         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4602                 if (encoder->crtc == crtc)
4603                         encoder_funcs->dpms(encoder, dpms_mode);
4604                 crtc_funcs->dpms(crtc, dpms_mode);
4605         }
4606 }
4607
4608 /* Returns the clock of the currently programmed mode of the given pipe. */
4609 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4610 {
4611         struct drm_i915_private *dev_priv = dev->dev_private;
4612         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4613         int pipe = intel_crtc->pipe;
4614         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4615         u32 fp;
4616         intel_clock_t clock;
4617
4618         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4619                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4620         else
4621                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4622
4623         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4624         if (IS_PINEVIEW(dev)) {
4625                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4626                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4627         } else {
4628                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4629                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4630         }
4631
4632         if (!IS_GEN2(dev)) {
4633                 if (IS_PINEVIEW(dev))
4634                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4635                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4636                 else
4637                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4638                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4639
4640                 switch (dpll & DPLL_MODE_MASK) {
4641                 case DPLLB_MODE_DAC_SERIAL:
4642                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4643                                 5 : 10;
4644                         break;
4645                 case DPLLB_MODE_LVDS:
4646                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4647                                 7 : 14;
4648                         break;
4649                 default:
4650                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4651                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4652                         return 0;
4653                 }
4654
4655                 /* XXX: Handle the 100Mhz refclk */
4656                 intel_clock(dev, 96000, &clock);
4657         } else {
4658                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4659
4660                 if (is_lvds) {
4661                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4662                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4663                         clock.p2 = 14;
4664
4665                         if ((dpll & PLL_REF_INPUT_MASK) ==
4666                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4667                                 /* XXX: might not be 66MHz */
4668                                 intel_clock(dev, 66000, &clock);
4669                         } else
4670                                 intel_clock(dev, 48000, &clock);
4671                 } else {
4672                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4673                                 clock.p1 = 2;
4674                         else {
4675                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4676                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4677                         }
4678                         if (dpll & PLL_P2_DIVIDE_BY_4)
4679                                 clock.p2 = 4;
4680                         else
4681                                 clock.p2 = 2;
4682
4683                         intel_clock(dev, 48000, &clock);
4684                 }
4685         }
4686
4687         /* XXX: It would be nice to validate the clocks, but we can't reuse
4688          * i830PllIsValid() because it relies on the xf86_config connector
4689          * configuration being accurate, which it isn't necessarily.
4690          */
4691
4692         return clock.dot;
4693 }
4694
4695 /** Returns the currently programmed mode of the given pipe. */
4696 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4697                                              struct drm_crtc *crtc)
4698 {
4699         struct drm_i915_private *dev_priv = dev->dev_private;
4700         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4701         int pipe = intel_crtc->pipe;
4702         struct drm_display_mode *mode;
4703         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4704         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4705         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4706         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4707
4708         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4709         if (!mode)
4710                 return NULL;
4711
4712         mode->clock = intel_crtc_clock_get(dev, crtc);
4713         mode->hdisplay = (htot & 0xffff) + 1;
4714         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4715         mode->hsync_start = (hsync & 0xffff) + 1;
4716         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4717         mode->vdisplay = (vtot & 0xffff) + 1;
4718         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4719         mode->vsync_start = (vsync & 0xffff) + 1;
4720         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4721
4722         drm_mode_set_name(mode);
4723         drm_mode_set_crtcinfo(mode, 0);
4724
4725         return mode;
4726 }
4727
4728 #define GPU_IDLE_TIMEOUT 500 /* ms */
4729
4730 /* When this timer fires, we've been idle for awhile */
4731 static void intel_gpu_idle_timer(unsigned long arg)
4732 {
4733         struct drm_device *dev = (struct drm_device *)arg;
4734         drm_i915_private_t *dev_priv = dev->dev_private;
4735
4736         dev_priv->busy = false;
4737
4738         queue_work(dev_priv->wq, &dev_priv->idle_work);
4739 }
4740
4741 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4742
4743 static void intel_crtc_idle_timer(unsigned long arg)
4744 {
4745         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4746         struct drm_crtc *crtc = &intel_crtc->base;
4747         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4748
4749         intel_crtc->busy = false;
4750
4751         queue_work(dev_priv->wq, &dev_priv->idle_work);
4752 }
4753
4754 static void intel_increase_pllclock(struct drm_crtc *crtc)
4755 {
4756         struct drm_device *dev = crtc->dev;
4757         drm_i915_private_t *dev_priv = dev->dev_private;
4758         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4759         int pipe = intel_crtc->pipe;
4760         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4761         int dpll = I915_READ(dpll_reg);
4762
4763         if (HAS_PCH_SPLIT(dev))
4764                 return;
4765
4766         if (!dev_priv->lvds_downclock_avail)
4767                 return;
4768
4769         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4770                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4771
4772                 /* Unlock panel regs */
4773                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4774                            PANEL_UNLOCK_REGS);
4775
4776                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4777                 I915_WRITE(dpll_reg, dpll);
4778                 dpll = I915_READ(dpll_reg);
4779                 intel_wait_for_vblank(dev, pipe);
4780                 dpll = I915_READ(dpll_reg);
4781                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4782                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4783
4784                 /* ...and lock them again */
4785                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4786         }
4787
4788         /* Schedule downclock */
4789         mod_timer(&intel_crtc->idle_timer, jiffies +
4790                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4791 }
4792
4793 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4794 {
4795         struct drm_device *dev = crtc->dev;
4796         drm_i915_private_t *dev_priv = dev->dev_private;
4797         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4798         int pipe = intel_crtc->pipe;
4799         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4800         int dpll = I915_READ(dpll_reg);
4801
4802         if (HAS_PCH_SPLIT(dev))
4803                 return;
4804
4805         if (!dev_priv->lvds_downclock_avail)
4806                 return;
4807
4808         /*
4809          * Since this is called by a timer, we should never get here in
4810          * the manual case.
4811          */
4812         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4813                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4814
4815                 /* Unlock panel regs */
4816                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4817                            PANEL_UNLOCK_REGS);
4818
4819                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4820                 I915_WRITE(dpll_reg, dpll);
4821                 dpll = I915_READ(dpll_reg);
4822                 intel_wait_for_vblank(dev, pipe);
4823                 dpll = I915_READ(dpll_reg);
4824                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4825                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4826
4827                 /* ...and lock them again */
4828                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4829         }
4830
4831 }
4832
4833 /**
4834  * intel_idle_update - adjust clocks for idleness
4835  * @work: work struct
4836  *
4837  * Either the GPU or display (or both) went idle.  Check the busy status
4838  * here and adjust the CRTC and GPU clocks as necessary.
4839  */
4840 static void intel_idle_update(struct work_struct *work)
4841 {
4842         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4843                                                     idle_work);
4844         struct drm_device *dev = dev_priv->dev;
4845         struct drm_crtc *crtc;
4846         struct intel_crtc *intel_crtc;
4847         int enabled = 0;
4848
4849         if (!i915_powersave)
4850                 return;
4851
4852         mutex_lock(&dev->struct_mutex);
4853
4854         i915_update_gfx_val(dev_priv);
4855
4856         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4857                 /* Skip inactive CRTCs */
4858                 if (!crtc->fb)
4859                         continue;
4860
4861                 enabled++;
4862                 intel_crtc = to_intel_crtc(crtc);
4863                 if (!intel_crtc->busy)
4864                         intel_decrease_pllclock(crtc);
4865         }
4866
4867         if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4868                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4869                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4870         }
4871
4872         mutex_unlock(&dev->struct_mutex);
4873 }
4874
4875 /**
4876  * intel_mark_busy - mark the GPU and possibly the display busy
4877  * @dev: drm device
4878  * @obj: object we're operating on
4879  *
4880  * Callers can use this function to indicate that the GPU is busy processing
4881  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4882  * buffer), we'll also mark the display as busy, so we know to increase its
4883  * clock frequency.
4884  */
4885 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4886 {
4887         drm_i915_private_t *dev_priv = dev->dev_private;
4888         struct drm_crtc *crtc = NULL;
4889         struct intel_framebuffer *intel_fb;
4890         struct intel_crtc *intel_crtc;
4891
4892         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4893                 return;
4894
4895         if (!dev_priv->busy) {
4896                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4897                         u32 fw_blc_self;
4898
4899                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4900                         fw_blc_self = I915_READ(FW_BLC_SELF);
4901                         fw_blc_self &= ~FW_BLC_SELF_EN;
4902                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4903                 }
4904                 dev_priv->busy = true;
4905         } else
4906                 mod_timer(&dev_priv->idle_timer, jiffies +
4907                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4908
4909         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4910                 if (!crtc->fb)
4911                         continue;
4912
4913                 intel_crtc = to_intel_crtc(crtc);
4914                 intel_fb = to_intel_framebuffer(crtc->fb);
4915                 if (intel_fb->obj == obj) {
4916                         if (!intel_crtc->busy) {
4917                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4918                                         u32 fw_blc_self;
4919
4920                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4921                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4922                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4923                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4924                                 }
4925                                 /* Non-busy -> busy, upclock */
4926                                 intel_increase_pllclock(crtc);
4927                                 intel_crtc->busy = true;
4928                         } else {
4929                                 /* Busy -> busy, put off timer */
4930                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4931                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4932                         }
4933                 }
4934         }
4935 }
4936
4937 static void intel_crtc_destroy(struct drm_crtc *crtc)
4938 {
4939         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4940         struct drm_device *dev = crtc->dev;
4941         struct intel_unpin_work *work;
4942         unsigned long flags;
4943
4944         spin_lock_irqsave(&dev->event_lock, flags);
4945         work = intel_crtc->unpin_work;
4946         intel_crtc->unpin_work = NULL;
4947         spin_unlock_irqrestore(&dev->event_lock, flags);
4948
4949         if (work) {
4950                 cancel_work_sync(&work->work);
4951                 kfree(work);
4952         }
4953
4954         drm_crtc_cleanup(crtc);
4955
4956         kfree(intel_crtc);
4957 }
4958
4959 static void intel_unpin_work_fn(struct work_struct *__work)
4960 {
4961         struct intel_unpin_work *work =
4962                 container_of(__work, struct intel_unpin_work, work);
4963
4964         mutex_lock(&work->dev->struct_mutex);
4965         i915_gem_object_unpin(work->old_fb_obj);
4966         drm_gem_object_unreference(work->pending_flip_obj);
4967         drm_gem_object_unreference(work->old_fb_obj);
4968         mutex_unlock(&work->dev->struct_mutex);
4969         kfree(work);
4970 }
4971
4972 static void do_intel_finish_page_flip(struct drm_device *dev,
4973                                       struct drm_crtc *crtc)
4974 {
4975         drm_i915_private_t *dev_priv = dev->dev_private;
4976         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4977         struct intel_unpin_work *work;
4978         struct drm_i915_gem_object *obj_priv;
4979         struct drm_pending_vblank_event *e;
4980         struct timeval now;
4981         unsigned long flags;
4982
4983         /* Ignore early vblank irqs */
4984         if (intel_crtc == NULL)
4985                 return;
4986
4987         spin_lock_irqsave(&dev->event_lock, flags);
4988         work = intel_crtc->unpin_work;
4989         if (work == NULL || !work->pending) {
4990                 spin_unlock_irqrestore(&dev->event_lock, flags);
4991                 return;
4992         }
4993
4994         intel_crtc->unpin_work = NULL;
4995         drm_vblank_put(dev, intel_crtc->pipe);
4996
4997         if (work->event) {
4998                 e = work->event;
4999                 do_gettimeofday(&now);
5000                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
5001                 e->event.tv_sec = now.tv_sec;
5002                 e->event.tv_usec = now.tv_usec;
5003                 list_add_tail(&e->base.link,
5004                               &e->base.file_priv->event_list);
5005                 wake_up_interruptible(&e->base.file_priv->event_wait);
5006         }
5007
5008         spin_unlock_irqrestore(&dev->event_lock, flags);
5009
5010         obj_priv = to_intel_bo(work->pending_flip_obj);
5011
5012         /* Initial scanout buffer will have a 0 pending flip count */
5013         atomic_clear_mask(1 << intel_crtc->plane,
5014                           &obj_priv->pending_flip.counter);
5015         if (atomic_read(&obj_priv->pending_flip) == 0)
5016                 wake_up(&dev_priv->pending_flip_queue);
5017         schedule_work(&work->work);
5018
5019         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5020 }
5021
5022 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5023 {
5024         drm_i915_private_t *dev_priv = dev->dev_private;
5025         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5026
5027         do_intel_finish_page_flip(dev, crtc);
5028 }
5029
5030 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5031 {
5032         drm_i915_private_t *dev_priv = dev->dev_private;
5033         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5034
5035         do_intel_finish_page_flip(dev, crtc);
5036 }
5037
5038 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5039 {
5040         drm_i915_private_t *dev_priv = dev->dev_private;
5041         struct intel_crtc *intel_crtc =
5042                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5043         unsigned long flags;
5044
5045         spin_lock_irqsave(&dev->event_lock, flags);
5046         if (intel_crtc->unpin_work) {
5047                 if ((++intel_crtc->unpin_work->pending) > 1)
5048                         DRM_ERROR("Prepared flip multiple times\n");
5049         } else {
5050                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5051         }
5052         spin_unlock_irqrestore(&dev->event_lock, flags);
5053 }
5054
5055 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5056                                 struct drm_framebuffer *fb,
5057                                 struct drm_pending_vblank_event *event)
5058 {
5059         struct drm_device *dev = crtc->dev;
5060         struct drm_i915_private *dev_priv = dev->dev_private;
5061         struct intel_framebuffer *intel_fb;
5062         struct drm_i915_gem_object *obj_priv;
5063         struct drm_gem_object *obj;
5064         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5065         struct intel_unpin_work *work;
5066         unsigned long flags, offset;
5067         int pipe = intel_crtc->pipe;
5068         u32 pf, pipesrc;
5069         int ret;
5070
5071         work = kzalloc(sizeof *work, GFP_KERNEL);
5072         if (work == NULL)
5073                 return -ENOMEM;
5074
5075         work->event = event;
5076         work->dev = crtc->dev;
5077         intel_fb = to_intel_framebuffer(crtc->fb);
5078         work->old_fb_obj = intel_fb->obj;
5079         INIT_WORK(&work->work, intel_unpin_work_fn);
5080
5081         /* We borrow the event spin lock for protecting unpin_work */
5082         spin_lock_irqsave(&dev->event_lock, flags);
5083         if (intel_crtc->unpin_work) {
5084                 spin_unlock_irqrestore(&dev->event_lock, flags);
5085                 kfree(work);
5086
5087                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5088                 return -EBUSY;
5089         }
5090         intel_crtc->unpin_work = work;
5091         spin_unlock_irqrestore(&dev->event_lock, flags);
5092
5093         intel_fb = to_intel_framebuffer(fb);
5094         obj = intel_fb->obj;
5095
5096         mutex_lock(&dev->struct_mutex);
5097         ret = intel_pin_and_fence_fb_obj(dev, obj, true);
5098         if (ret)
5099                 goto cleanup_work;
5100
5101         /* Reference the objects for the scheduled work. */
5102         drm_gem_object_reference(work->old_fb_obj);
5103         drm_gem_object_reference(obj);
5104
5105         crtc->fb = fb;
5106
5107         ret = drm_vblank_get(dev, intel_crtc->pipe);
5108         if (ret)
5109                 goto cleanup_objs;
5110
5111         obj_priv = to_intel_bo(obj);
5112         atomic_add(1 << intel_crtc->plane, &obj_priv->pending_flip);
5113         work->pending_flip_obj = obj;
5114
5115         if (IS_GEN3(dev) || IS_GEN2(dev)) {
5116                 u32 flip_mask;
5117
5118                 /* Can't queue multiple flips, so wait for the previous
5119                  * one to finish before executing the next.
5120                  */
5121                 BEGIN_LP_RING(2);
5122                 if (intel_crtc->plane)
5123                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5124                 else
5125                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5126                 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5127                 OUT_RING(MI_NOOP);
5128                 ADVANCE_LP_RING();
5129         }
5130
5131         work->enable_stall_check = true;
5132
5133         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5134         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5135
5136         BEGIN_LP_RING(4);
5137         switch(INTEL_INFO(dev)->gen) {
5138         case 2:
5139                 OUT_RING(MI_DISPLAY_FLIP |
5140                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5141                 OUT_RING(fb->pitch);
5142                 OUT_RING(obj_priv->gtt_offset + offset);
5143                 OUT_RING(MI_NOOP);
5144                 break;
5145
5146         case 3:
5147                 OUT_RING(MI_DISPLAY_FLIP_I915 |
5148                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5149                 OUT_RING(fb->pitch);
5150                 OUT_RING(obj_priv->gtt_offset + offset);
5151                 OUT_RING(MI_NOOP);
5152                 break;
5153
5154         case 4:
5155         case 5:
5156                 /* i965+ uses the linear or tiled offsets from the
5157                  * Display Registers (which do not change across a page-flip)
5158                  * so we need only reprogram the base address.
5159                  */
5160                 OUT_RING(MI_DISPLAY_FLIP |
5161                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5162                 OUT_RING(fb->pitch);
5163                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
5164
5165                 /* XXX Enabling the panel-fitter across page-flip is so far
5166                  * untested on non-native modes, so ignore it for now.
5167                  * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5168                  */
5169                 pf = 0;
5170                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5171                 OUT_RING(pf | pipesrc);
5172                 break;
5173
5174         case 6:
5175                 OUT_RING(MI_DISPLAY_FLIP |
5176                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5177                 OUT_RING(fb->pitch | obj_priv->tiling_mode);
5178                 OUT_RING(obj_priv->gtt_offset);
5179
5180                 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5181                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5182                 OUT_RING(pf | pipesrc);
5183                 break;
5184         }
5185         ADVANCE_LP_RING();
5186
5187         mutex_unlock(&dev->struct_mutex);
5188
5189         trace_i915_flip_request(intel_crtc->plane, obj);
5190
5191         return 0;
5192
5193 cleanup_objs:
5194         drm_gem_object_unreference(work->old_fb_obj);
5195         drm_gem_object_unreference(obj);
5196 cleanup_work:
5197         mutex_unlock(&dev->struct_mutex);
5198
5199         spin_lock_irqsave(&dev->event_lock, flags);
5200         intel_crtc->unpin_work = NULL;
5201         spin_unlock_irqrestore(&dev->event_lock, flags);
5202
5203         kfree(work);
5204
5205         return ret;
5206 }
5207
5208 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5209         .dpms = intel_crtc_dpms,
5210         .mode_fixup = intel_crtc_mode_fixup,
5211         .mode_set = intel_crtc_mode_set,
5212         .mode_set_base = intel_pipe_set_base,
5213         .mode_set_base_atomic = intel_pipe_set_base_atomic,
5214         .load_lut = intel_crtc_load_lut,
5215         .disable = intel_crtc_disable,
5216 };
5217
5218 static const struct drm_crtc_funcs intel_crtc_funcs = {
5219         .cursor_set = intel_crtc_cursor_set,
5220         .cursor_move = intel_crtc_cursor_move,
5221         .gamma_set = intel_crtc_gamma_set,
5222         .set_config = drm_crtc_helper_set_config,
5223         .destroy = intel_crtc_destroy,
5224         .page_flip = intel_crtc_page_flip,
5225 };
5226
5227
5228 static void intel_crtc_init(struct drm_device *dev, int pipe)
5229 {
5230         drm_i915_private_t *dev_priv = dev->dev_private;
5231         struct intel_crtc *intel_crtc;
5232         int i;
5233
5234         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5235         if (intel_crtc == NULL)
5236                 return;
5237
5238         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5239
5240         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5241         for (i = 0; i < 256; i++) {
5242                 intel_crtc->lut_r[i] = i;
5243                 intel_crtc->lut_g[i] = i;
5244                 intel_crtc->lut_b[i] = i;
5245         }
5246
5247         /* Swap pipes & planes for FBC on pre-965 */
5248         intel_crtc->pipe = pipe;
5249         intel_crtc->plane = pipe;
5250         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5251                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5252                 intel_crtc->plane = !pipe;
5253         }
5254
5255         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5256                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5257         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5258         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5259
5260         intel_crtc->cursor_addr = 0;
5261         intel_crtc->dpms_mode = -1;
5262         intel_crtc->active = true; /* force the pipe off on setup_init_config */
5263
5264         if (HAS_PCH_SPLIT(dev)) {
5265                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
5266                 intel_helper_funcs.commit = ironlake_crtc_commit;
5267         } else {
5268                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
5269                 intel_helper_funcs.commit = i9xx_crtc_commit;
5270         }
5271
5272         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5273
5274         intel_crtc->busy = false;
5275
5276         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5277                     (unsigned long)intel_crtc);
5278 }
5279
5280 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5281                                 struct drm_file *file_priv)
5282 {
5283         drm_i915_private_t *dev_priv = dev->dev_private;
5284         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5285         struct drm_mode_object *drmmode_obj;
5286         struct intel_crtc *crtc;
5287
5288         if (!dev_priv) {
5289                 DRM_ERROR("called with no initialization\n");
5290                 return -EINVAL;
5291         }
5292
5293         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5294                         DRM_MODE_OBJECT_CRTC);
5295
5296         if (!drmmode_obj) {
5297                 DRM_ERROR("no such CRTC id\n");
5298                 return -EINVAL;
5299         }
5300
5301         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5302         pipe_from_crtc_id->pipe = crtc->pipe;
5303
5304         return 0;
5305 }
5306
5307 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5308 {
5309         struct intel_encoder *encoder;
5310         int index_mask = 0;
5311         int entry = 0;
5312
5313         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5314                 if (type_mask & encoder->clone_mask)
5315                         index_mask |= (1 << entry);
5316                 entry++;
5317         }
5318
5319         return index_mask;
5320 }
5321
5322 static void intel_setup_outputs(struct drm_device *dev)
5323 {
5324         struct drm_i915_private *dev_priv = dev->dev_private;
5325         struct intel_encoder *encoder;
5326         bool dpd_is_edp = false;
5327
5328         if (IS_MOBILE(dev) && !IS_I830(dev))
5329                 intel_lvds_init(dev);
5330
5331         if (HAS_PCH_SPLIT(dev)) {
5332                 dpd_is_edp = intel_dpd_is_edp(dev);
5333
5334                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5335                         intel_dp_init(dev, DP_A);
5336
5337                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5338                         intel_dp_init(dev, PCH_DP_D);
5339         }
5340
5341         intel_crt_init(dev);
5342
5343         if (HAS_PCH_SPLIT(dev)) {
5344                 int found;
5345
5346                 if (I915_READ(HDMIB) & PORT_DETECTED) {
5347                         /* PCH SDVOB multiplex with HDMIB */
5348                         found = intel_sdvo_init(dev, PCH_SDVOB);
5349                         if (!found)
5350                                 intel_hdmi_init(dev, HDMIB);
5351                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5352                                 intel_dp_init(dev, PCH_DP_B);
5353                 }
5354
5355                 if (I915_READ(HDMIC) & PORT_DETECTED)
5356                         intel_hdmi_init(dev, HDMIC);
5357
5358                 if (I915_READ(HDMID) & PORT_DETECTED)
5359                         intel_hdmi_init(dev, HDMID);
5360
5361                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5362                         intel_dp_init(dev, PCH_DP_C);
5363
5364                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5365                         intel_dp_init(dev, PCH_DP_D);
5366
5367         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5368                 bool found = false;
5369
5370                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5371                         DRM_DEBUG_KMS("probing SDVOB\n");
5372                         found = intel_sdvo_init(dev, SDVOB);
5373                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5374                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5375                                 intel_hdmi_init(dev, SDVOB);
5376                         }
5377
5378                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5379                                 DRM_DEBUG_KMS("probing DP_B\n");
5380                                 intel_dp_init(dev, DP_B);
5381                         }
5382                 }
5383
5384                 /* Before G4X SDVOC doesn't have its own detect register */
5385
5386                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5387                         DRM_DEBUG_KMS("probing SDVOC\n");
5388                         found = intel_sdvo_init(dev, SDVOC);
5389                 }
5390
5391                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5392
5393                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5394                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5395                                 intel_hdmi_init(dev, SDVOC);
5396                         }
5397                         if (SUPPORTS_INTEGRATED_DP(dev)) {
5398                                 DRM_DEBUG_KMS("probing DP_C\n");
5399                                 intel_dp_init(dev, DP_C);
5400                         }
5401                 }
5402
5403                 if (SUPPORTS_INTEGRATED_DP(dev) &&
5404                     (I915_READ(DP_D) & DP_DETECTED)) {
5405                         DRM_DEBUG_KMS("probing DP_D\n");
5406                         intel_dp_init(dev, DP_D);
5407                 }
5408         } else if (IS_GEN2(dev))
5409                 intel_dvo_init(dev);
5410
5411         if (SUPPORTS_TV(dev))
5412                 intel_tv_init(dev);
5413
5414         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5415                 encoder->base.possible_crtcs = encoder->crtc_mask;
5416                 encoder->base.possible_clones =
5417                         intel_encoder_clones(dev, encoder->clone_mask);
5418         }
5419 }
5420
5421 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5422 {
5423         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5424
5425         drm_framebuffer_cleanup(fb);
5426         drm_gem_object_unreference_unlocked(intel_fb->obj);
5427
5428         kfree(intel_fb);
5429 }
5430
5431 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5432                                                 struct drm_file *file_priv,
5433                                                 unsigned int *handle)
5434 {
5435         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5436         struct drm_gem_object *object = intel_fb->obj;
5437
5438         return drm_gem_handle_create(file_priv, object, handle);
5439 }
5440
5441 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5442         .destroy = intel_user_framebuffer_destroy,
5443         .create_handle = intel_user_framebuffer_create_handle,
5444 };
5445
5446 int intel_framebuffer_init(struct drm_device *dev,
5447                            struct intel_framebuffer *intel_fb,
5448                            struct drm_mode_fb_cmd *mode_cmd,
5449                            struct drm_gem_object *obj)
5450 {
5451         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5452         int ret;
5453
5454         if (obj_priv->tiling_mode == I915_TILING_Y)
5455                 return -EINVAL;
5456
5457         if (mode_cmd->pitch & 63)
5458                 return -EINVAL;
5459
5460         switch (mode_cmd->bpp) {
5461         case 8:
5462         case 16:
5463         case 24:
5464         case 32:
5465                 break;
5466         default:
5467                 return -EINVAL;
5468         }
5469
5470         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5471         if (ret) {
5472                 DRM_ERROR("framebuffer init failed %d\n", ret);
5473                 return ret;
5474         }
5475
5476         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5477         intel_fb->obj = obj;
5478         return 0;
5479 }
5480
5481 static struct drm_framebuffer *
5482 intel_user_framebuffer_create(struct drm_device *dev,
5483                               struct drm_file *filp,
5484                               struct drm_mode_fb_cmd *mode_cmd)
5485 {
5486         struct drm_gem_object *obj;
5487         struct intel_framebuffer *intel_fb;
5488         int ret;
5489
5490         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5491         if (!obj)
5492                 return ERR_PTR(-ENOENT);
5493
5494         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5495         if (!intel_fb)
5496                 return ERR_PTR(-ENOMEM);
5497
5498         ret = intel_framebuffer_init(dev, intel_fb,
5499                                      mode_cmd, obj);
5500         if (ret) {
5501                 drm_gem_object_unreference_unlocked(obj);
5502                 kfree(intel_fb);
5503                 return ERR_PTR(ret);
5504         }
5505
5506         return &intel_fb->base;
5507 }
5508
5509 static const struct drm_mode_config_funcs intel_mode_funcs = {
5510         .fb_create = intel_user_framebuffer_create,
5511         .output_poll_changed = intel_fb_output_poll_changed,
5512 };
5513
5514 static struct drm_gem_object *
5515 intel_alloc_context_page(struct drm_device *dev)
5516 {
5517         struct drm_gem_object *ctx;
5518         int ret;
5519
5520         ctx = i915_gem_alloc_object(dev, 4096);
5521         if (!ctx) {
5522                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5523                 return NULL;
5524         }
5525
5526         mutex_lock(&dev->struct_mutex);
5527         ret = i915_gem_object_pin(ctx, 4096);
5528         if (ret) {
5529                 DRM_ERROR("failed to pin power context: %d\n", ret);
5530                 goto err_unref;
5531         }
5532
5533         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5534         if (ret) {
5535                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5536                 goto err_unpin;
5537         }
5538         mutex_unlock(&dev->struct_mutex);
5539
5540         return ctx;
5541
5542 err_unpin:
5543         i915_gem_object_unpin(ctx);
5544 err_unref:
5545         drm_gem_object_unreference(ctx);
5546         mutex_unlock(&dev->struct_mutex);
5547         return NULL;
5548 }
5549
5550 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5551 {
5552         struct drm_i915_private *dev_priv = dev->dev_private;
5553         u16 rgvswctl;
5554
5555         rgvswctl = I915_READ16(MEMSWCTL);
5556         if (rgvswctl & MEMCTL_CMD_STS) {
5557                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5558                 return false; /* still busy with another command */
5559         }
5560
5561         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5562                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5563         I915_WRITE16(MEMSWCTL, rgvswctl);
5564         POSTING_READ16(MEMSWCTL);
5565
5566         rgvswctl |= MEMCTL_CMD_STS;
5567         I915_WRITE16(MEMSWCTL, rgvswctl);
5568
5569         return true;
5570 }
5571
5572 void ironlake_enable_drps(struct drm_device *dev)
5573 {
5574         struct drm_i915_private *dev_priv = dev->dev_private;
5575         u32 rgvmodectl = I915_READ(MEMMODECTL);
5576         u8 fmax, fmin, fstart, vstart;
5577
5578         /* Enable temp reporting */
5579         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5580         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5581
5582         /* 100ms RC evaluation intervals */
5583         I915_WRITE(RCUPEI, 100000);
5584         I915_WRITE(RCDNEI, 100000);
5585
5586         /* Set max/min thresholds to 90ms and 80ms respectively */
5587         I915_WRITE(RCBMAXAVG, 90000);
5588         I915_WRITE(RCBMINAVG, 80000);
5589
5590         I915_WRITE(MEMIHYST, 1);
5591
5592         /* Set up min, max, and cur for interrupt handling */
5593         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5594         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5595         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5596                 MEMMODE_FSTART_SHIFT;
5597         fstart = fmax;
5598
5599         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5600                 PXVFREQ_PX_SHIFT;
5601
5602         dev_priv->fmax = fstart; /* IPS callback will increase this */
5603         dev_priv->fstart = fstart;
5604
5605         dev_priv->max_delay = fmax;
5606         dev_priv->min_delay = fmin;
5607         dev_priv->cur_delay = fstart;
5608
5609         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5610                          fstart);
5611
5612         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5613
5614         /*
5615          * Interrupts will be enabled in ironlake_irq_postinstall
5616          */
5617
5618         I915_WRITE(VIDSTART, vstart);
5619         POSTING_READ(VIDSTART);
5620
5621         rgvmodectl |= MEMMODE_SWMODE_EN;
5622         I915_WRITE(MEMMODECTL, rgvmodectl);
5623
5624         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5625                 DRM_ERROR("stuck trying to change perf mode\n");
5626         msleep(1);
5627
5628         ironlake_set_drps(dev, fstart);
5629
5630         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5631                 I915_READ(0x112e0);
5632         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5633         dev_priv->last_count2 = I915_READ(0x112f4);
5634         getrawmonotonic(&dev_priv->last_time2);
5635 }
5636
5637 void ironlake_disable_drps(struct drm_device *dev)
5638 {
5639         struct drm_i915_private *dev_priv = dev->dev_private;
5640         u16 rgvswctl = I915_READ16(MEMSWCTL);
5641
5642         /* Ack interrupts, disable EFC interrupt */
5643         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5644         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5645         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5646         I915_WRITE(DEIIR, DE_PCU_EVENT);
5647         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5648
5649         /* Go back to the starting frequency */
5650         ironlake_set_drps(dev, dev_priv->fstart);
5651         msleep(1);
5652         rgvswctl |= MEMCTL_CMD_STS;
5653         I915_WRITE(MEMSWCTL, rgvswctl);
5654         msleep(1);
5655
5656 }
5657
5658 static unsigned long intel_pxfreq(u32 vidfreq)
5659 {
5660         unsigned long freq;
5661         int div = (vidfreq & 0x3f0000) >> 16;
5662         int post = (vidfreq & 0x3000) >> 12;
5663         int pre = (vidfreq & 0x7);
5664
5665         if (!pre)
5666                 return 0;
5667
5668         freq = ((div * 133333) / ((1<<post) * pre));
5669
5670         return freq;
5671 }
5672
5673 void intel_init_emon(struct drm_device *dev)
5674 {
5675         struct drm_i915_private *dev_priv = dev->dev_private;
5676         u32 lcfuse;
5677         u8 pxw[16];
5678         int i;
5679
5680         /* Disable to program */
5681         I915_WRITE(ECR, 0);
5682         POSTING_READ(ECR);
5683
5684         /* Program energy weights for various events */
5685         I915_WRITE(SDEW, 0x15040d00);
5686         I915_WRITE(CSIEW0, 0x007f0000);
5687         I915_WRITE(CSIEW1, 0x1e220004);
5688         I915_WRITE(CSIEW2, 0x04000004);
5689
5690         for (i = 0; i < 5; i++)
5691                 I915_WRITE(PEW + (i * 4), 0);
5692         for (i = 0; i < 3; i++)
5693                 I915_WRITE(DEW + (i * 4), 0);
5694
5695         /* Program P-state weights to account for frequency power adjustment */
5696         for (i = 0; i < 16; i++) {
5697                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5698                 unsigned long freq = intel_pxfreq(pxvidfreq);
5699                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5700                         PXVFREQ_PX_SHIFT;
5701                 unsigned long val;
5702
5703                 val = vid * vid;
5704                 val *= (freq / 1000);
5705                 val *= 255;
5706                 val /= (127*127*900);
5707                 if (val > 0xff)
5708                         DRM_ERROR("bad pxval: %ld\n", val);
5709                 pxw[i] = val;
5710         }
5711         /* Render standby states get 0 weight */
5712         pxw[14] = 0;
5713         pxw[15] = 0;
5714
5715         for (i = 0; i < 4; i++) {
5716                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5717                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5718                 I915_WRITE(PXW + (i * 4), val);
5719         }
5720
5721         /* Adjust magic regs to magic values (more experimental results) */
5722         I915_WRITE(OGW0, 0);
5723         I915_WRITE(OGW1, 0);
5724         I915_WRITE(EG0, 0x00007f00);
5725         I915_WRITE(EG1, 0x0000000e);
5726         I915_WRITE(EG2, 0x000e0000);
5727         I915_WRITE(EG3, 0x68000300);
5728         I915_WRITE(EG4, 0x42000000);
5729         I915_WRITE(EG5, 0x00140031);
5730         I915_WRITE(EG6, 0);
5731         I915_WRITE(EG7, 0);
5732
5733         for (i = 0; i < 8; i++)
5734                 I915_WRITE(PXWL + (i * 4), 0);
5735
5736         /* Enable PMON + select events */
5737         I915_WRITE(ECR, 0x80000019);
5738
5739         lcfuse = I915_READ(LCFUSE02);
5740
5741         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5742 }
5743
5744 void intel_init_clock_gating(struct drm_device *dev)
5745 {
5746         struct drm_i915_private *dev_priv = dev->dev_private;
5747
5748         /*
5749          * Disable clock gating reported to work incorrectly according to the
5750          * specs, but enable as much else as we can.
5751          */
5752         if (HAS_PCH_SPLIT(dev)) {
5753                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5754
5755                 if (IS_IRONLAKE(dev)) {
5756                         /* Required for FBC */
5757                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5758                         /* Required for CxSR */
5759                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5760
5761                         I915_WRITE(PCH_3DCGDIS0,
5762                                    MARIUNIT_CLOCK_GATE_DISABLE |
5763                                    SVSMUNIT_CLOCK_GATE_DISABLE);
5764                 }
5765
5766                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5767
5768                 /*
5769                  * According to the spec the following bits should be set in
5770                  * order to enable memory self-refresh
5771                  * The bit 22/21 of 0x42004
5772                  * The bit 5 of 0x42020
5773                  * The bit 15 of 0x45000
5774                  */
5775                 if (IS_IRONLAKE(dev)) {
5776                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5777                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
5778                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5779                         I915_WRITE(ILK_DSPCLK_GATE,
5780                                         (I915_READ(ILK_DSPCLK_GATE) |
5781                                                 ILK_DPARB_CLK_GATE));
5782                         I915_WRITE(DISP_ARB_CTL,
5783                                         (I915_READ(DISP_ARB_CTL) |
5784                                                 DISP_FBC_WM_DIS));
5785                 I915_WRITE(WM3_LP_ILK, 0);
5786                 I915_WRITE(WM2_LP_ILK, 0);
5787                 I915_WRITE(WM1_LP_ILK, 0);
5788                 }
5789                 /*
5790                  * Based on the document from hardware guys the following bits
5791                  * should be set unconditionally in order to enable FBC.
5792                  * The bit 22 of 0x42000
5793                  * The bit 22 of 0x42004
5794                  * The bit 7,8,9 of 0x42020.
5795                  */
5796                 if (IS_IRONLAKE_M(dev)) {
5797                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5798                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5799                                    ILK_FBCQ_DIS);
5800                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5801                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5802                                    ILK_DPARB_GATE);
5803                         I915_WRITE(ILK_DSPCLK_GATE,
5804                                    I915_READ(ILK_DSPCLK_GATE) |
5805                                    ILK_DPFC_DIS1 |
5806                                    ILK_DPFC_DIS2 |
5807                                    ILK_CLK_FBC);
5808                 }
5809                 return;
5810         } else if (IS_G4X(dev)) {
5811                 uint32_t dspclk_gate;
5812                 I915_WRITE(RENCLK_GATE_D1, 0);
5813                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5814                        GS_UNIT_CLOCK_GATE_DISABLE |
5815                        CL_UNIT_CLOCK_GATE_DISABLE);
5816                 I915_WRITE(RAMCLK_GATE_D, 0);
5817                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5818                         OVRUNIT_CLOCK_GATE_DISABLE |
5819                         OVCUNIT_CLOCK_GATE_DISABLE;
5820                 if (IS_GM45(dev))
5821                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5822                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5823         } else if (IS_CRESTLINE(dev)) {
5824                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5825                 I915_WRITE(RENCLK_GATE_D2, 0);
5826                 I915_WRITE(DSPCLK_GATE_D, 0);
5827                 I915_WRITE(RAMCLK_GATE_D, 0);
5828                 I915_WRITE16(DEUC, 0);
5829         } else if (IS_BROADWATER(dev)) {
5830                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5831                        I965_RCC_CLOCK_GATE_DISABLE |
5832                        I965_RCPB_CLOCK_GATE_DISABLE |
5833                        I965_ISC_CLOCK_GATE_DISABLE |
5834                        I965_FBC_CLOCK_GATE_DISABLE);
5835                 I915_WRITE(RENCLK_GATE_D2, 0);
5836         } else if (IS_GEN3(dev)) {
5837                 u32 dstate = I915_READ(D_STATE);
5838
5839                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5840                         DSTATE_DOT_CLOCK_GATING;
5841                 I915_WRITE(D_STATE, dstate);
5842         } else if (IS_I85X(dev) || IS_I865G(dev)) {
5843                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5844         } else if (IS_I830(dev)) {
5845                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5846         }
5847
5848         /*
5849          * GPU can automatically power down the render unit if given a page
5850          * to save state.
5851          */
5852         if (IS_IRONLAKE_M(dev)) {
5853                 if (dev_priv->renderctx == NULL)
5854                         dev_priv->renderctx = intel_alloc_context_page(dev);
5855                 if (dev_priv->renderctx) {
5856                         struct drm_i915_gem_object *obj_priv;
5857                         obj_priv = to_intel_bo(dev_priv->renderctx);
5858                         if (obj_priv) {
5859                                 BEGIN_LP_RING(4);
5860                                 OUT_RING(MI_SET_CONTEXT);
5861                                 OUT_RING(obj_priv->gtt_offset |
5862                                                 MI_MM_SPACE_GTT |
5863                                                 MI_SAVE_EXT_STATE_EN |
5864                                                 MI_RESTORE_EXT_STATE_EN |
5865                                                 MI_RESTORE_INHIBIT);
5866                                 OUT_RING(MI_NOOP);
5867                                 OUT_RING(MI_FLUSH);
5868                                 ADVANCE_LP_RING();
5869                         }
5870                 } else
5871                         DRM_DEBUG_KMS("Failed to allocate render context."
5872                                        "Disable RC6\n");
5873         }
5874
5875         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5876                 struct drm_i915_gem_object *obj_priv = NULL;
5877
5878                 if (dev_priv->pwrctx) {
5879                         obj_priv = to_intel_bo(dev_priv->pwrctx);
5880                 } else {
5881                         struct drm_gem_object *pwrctx;
5882
5883                         pwrctx = intel_alloc_context_page(dev);
5884                         if (pwrctx) {
5885                                 dev_priv->pwrctx = pwrctx;
5886                                 obj_priv = to_intel_bo(pwrctx);
5887                         }
5888                 }
5889
5890                 if (obj_priv) {
5891                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5892                         I915_WRITE(MCHBAR_RENDER_STANDBY,
5893                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5894                 }
5895         }
5896 }
5897
5898 /* Set up chip specific display functions */
5899 static void intel_init_display(struct drm_device *dev)
5900 {
5901         struct drm_i915_private *dev_priv = dev->dev_private;
5902
5903         /* We always want a DPMS function */
5904         if (HAS_PCH_SPLIT(dev))
5905                 dev_priv->display.dpms = ironlake_crtc_dpms;
5906         else
5907                 dev_priv->display.dpms = i9xx_crtc_dpms;
5908
5909         if (I915_HAS_FBC(dev)) {
5910                 if (IS_IRONLAKE_M(dev)) {
5911                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5912                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
5913                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5914                 } else if (IS_GM45(dev)) {
5915                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5916                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5917                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5918                 } else if (IS_CRESTLINE(dev)) {
5919                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5920                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5921                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5922                 }
5923                 /* 855GM needs testing */
5924         }
5925
5926         /* Returns the core display clock speed */
5927         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5928                 dev_priv->display.get_display_clock_speed =
5929                         i945_get_display_clock_speed;
5930         else if (IS_I915G(dev))
5931                 dev_priv->display.get_display_clock_speed =
5932                         i915_get_display_clock_speed;
5933         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5934                 dev_priv->display.get_display_clock_speed =
5935                         i9xx_misc_get_display_clock_speed;
5936         else if (IS_I915GM(dev))
5937                 dev_priv->display.get_display_clock_speed =
5938                         i915gm_get_display_clock_speed;
5939         else if (IS_I865G(dev))
5940                 dev_priv->display.get_display_clock_speed =
5941                         i865_get_display_clock_speed;
5942         else if (IS_I85X(dev))
5943                 dev_priv->display.get_display_clock_speed =
5944                         i855_get_display_clock_speed;
5945         else /* 852, 830 */
5946                 dev_priv->display.get_display_clock_speed =
5947                         i830_get_display_clock_speed;
5948
5949         /* For FIFO watermark updates */
5950         if (HAS_PCH_SPLIT(dev)) {
5951                 if (IS_IRONLAKE(dev)) {
5952                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5953                                 dev_priv->display.update_wm = ironlake_update_wm;
5954                         else {
5955                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5956                                               "Disable CxSR\n");
5957                                 dev_priv->display.update_wm = NULL;
5958                         }
5959                 } else
5960                         dev_priv->display.update_wm = NULL;
5961         } else if (IS_PINEVIEW(dev)) {
5962                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5963                                             dev_priv->is_ddr3,
5964                                             dev_priv->fsb_freq,
5965                                             dev_priv->mem_freq)) {
5966                         DRM_INFO("failed to find known CxSR latency "
5967                                  "(found ddr%s fsb freq %d, mem freq %d), "
5968                                  "disabling CxSR\n",
5969                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
5970                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5971                         /* Disable CxSR and never update its watermark again */
5972                         pineview_disable_cxsr(dev);
5973                         dev_priv->display.update_wm = NULL;
5974                 } else
5975                         dev_priv->display.update_wm = pineview_update_wm;
5976         } else if (IS_G4X(dev))
5977                 dev_priv->display.update_wm = g4x_update_wm;
5978         else if (IS_GEN4(dev))
5979                 dev_priv->display.update_wm = i965_update_wm;
5980         else if (IS_GEN3(dev)) {
5981                 dev_priv->display.update_wm = i9xx_update_wm;
5982                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5983         } else if (IS_I85X(dev)) {
5984                 dev_priv->display.update_wm = i9xx_update_wm;
5985                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5986         } else {
5987                 dev_priv->display.update_wm = i830_update_wm;
5988                 if (IS_845G(dev))
5989                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5990                 else
5991                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5992         }
5993 }
5994
5995 /*
5996  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5997  * resume, or other times.  This quirk makes sure that's the case for
5998  * affected systems.
5999  */
6000 static void quirk_pipea_force (struct drm_device *dev)
6001 {
6002         struct drm_i915_private *dev_priv = dev->dev_private;
6003
6004         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6005         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
6006 }
6007
6008 struct intel_quirk {
6009         int device;
6010         int subsystem_vendor;
6011         int subsystem_device;
6012         void (*hook)(struct drm_device *dev);
6013 };
6014
6015 struct intel_quirk intel_quirks[] = {
6016         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
6017         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
6018         /* HP Mini needs pipe A force quirk (LP: #322104) */
6019         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
6020
6021         /* Thinkpad R31 needs pipe A force quirk */
6022         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6023         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6024         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6025
6026         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6027         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
6028         /* ThinkPad X40 needs pipe A force quirk */
6029
6030         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6031         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6032
6033         /* 855 & before need to leave pipe A & dpll A up */
6034         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6035         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6036 };
6037
6038 static void intel_init_quirks(struct drm_device *dev)
6039 {
6040         struct pci_dev *d = dev->pdev;
6041         int i;
6042
6043         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6044                 struct intel_quirk *q = &intel_quirks[i];
6045
6046                 if (d->device == q->device &&
6047                     (d->subsystem_vendor == q->subsystem_vendor ||
6048                      q->subsystem_vendor == PCI_ANY_ID) &&
6049                     (d->subsystem_device == q->subsystem_device ||
6050                      q->subsystem_device == PCI_ANY_ID))
6051                         q->hook(dev);
6052         }
6053 }
6054
6055 /* Disable the VGA plane that we never use */
6056 static void i915_disable_vga(struct drm_device *dev)
6057 {
6058         struct drm_i915_private *dev_priv = dev->dev_private;
6059         u8 sr1;
6060         u32 vga_reg;
6061
6062         if (HAS_PCH_SPLIT(dev))
6063                 vga_reg = CPU_VGACNTRL;
6064         else
6065                 vga_reg = VGACNTRL;
6066
6067         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6068         outb(1, VGA_SR_INDEX);
6069         sr1 = inb(VGA_SR_DATA);
6070         outb(sr1 | 1<<5, VGA_SR_DATA);
6071         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6072         udelay(300);
6073
6074         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6075         POSTING_READ(vga_reg);
6076 }
6077
6078 void intel_modeset_init(struct drm_device *dev)
6079 {
6080         struct drm_i915_private *dev_priv = dev->dev_private;
6081         int i;
6082
6083         drm_mode_config_init(dev);
6084
6085         dev->mode_config.min_width = 0;
6086         dev->mode_config.min_height = 0;
6087
6088         dev->mode_config.funcs = (void *)&intel_mode_funcs;
6089
6090         intel_init_quirks(dev);
6091
6092         intel_init_display(dev);
6093
6094         if (IS_GEN2(dev)) {
6095                 dev->mode_config.max_width = 2048;
6096                 dev->mode_config.max_height = 2048;
6097         } else if (IS_GEN3(dev)) {
6098                 dev->mode_config.max_width = 4096;
6099                 dev->mode_config.max_height = 4096;
6100         } else {
6101                 dev->mode_config.max_width = 8192;
6102                 dev->mode_config.max_height = 8192;
6103         }
6104
6105         /* set memory base */
6106         if (IS_GEN2(dev))
6107                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6108         else
6109                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6110
6111         if (IS_MOBILE(dev) || !IS_GEN2(dev))
6112                 dev_priv->num_pipe = 2;
6113         else
6114                 dev_priv->num_pipe = 1;
6115         DRM_DEBUG_KMS("%d display pipe%s available.\n",
6116                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6117
6118         for (i = 0; i < dev_priv->num_pipe; i++) {
6119                 intel_crtc_init(dev, i);
6120         }
6121
6122         intel_setup_outputs(dev);
6123
6124         intel_init_clock_gating(dev);
6125
6126         /* Just disable it once at startup */
6127         i915_disable_vga(dev);
6128
6129         if (IS_IRONLAKE_M(dev)) {
6130                 ironlake_enable_drps(dev);
6131                 intel_init_emon(dev);
6132         }
6133
6134         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6135         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6136                     (unsigned long)dev);
6137
6138         intel_setup_overlay(dev);
6139 }
6140
6141 void intel_modeset_cleanup(struct drm_device *dev)
6142 {
6143         struct drm_i915_private *dev_priv = dev->dev_private;
6144         struct drm_crtc *crtc;
6145         struct intel_crtc *intel_crtc;
6146
6147         drm_kms_helper_poll_fini(dev);
6148         mutex_lock(&dev->struct_mutex);
6149
6150         intel_unregister_dsm_handler();
6151
6152
6153         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6154                 /* Skip inactive CRTCs */
6155                 if (!crtc->fb)
6156                         continue;
6157
6158                 intel_crtc = to_intel_crtc(crtc);
6159                 intel_increase_pllclock(crtc);
6160         }
6161
6162         if (dev_priv->display.disable_fbc)
6163                 dev_priv->display.disable_fbc(dev);
6164
6165         if (dev_priv->renderctx) {
6166                 struct drm_i915_gem_object *obj_priv;
6167
6168                 obj_priv = to_intel_bo(dev_priv->renderctx);
6169                 I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
6170                 I915_READ(CCID);
6171                 i915_gem_object_unpin(dev_priv->renderctx);
6172                 drm_gem_object_unreference(dev_priv->renderctx);
6173         }
6174
6175         if (dev_priv->pwrctx) {
6176                 struct drm_i915_gem_object *obj_priv;
6177
6178                 obj_priv = to_intel_bo(dev_priv->pwrctx);
6179                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6180                 I915_READ(PWRCTXA);
6181                 i915_gem_object_unpin(dev_priv->pwrctx);
6182                 drm_gem_object_unreference(dev_priv->pwrctx);
6183         }
6184
6185         if (IS_IRONLAKE_M(dev))
6186                 ironlake_disable_drps(dev);
6187
6188         mutex_unlock(&dev->struct_mutex);
6189
6190         /* Disable the irq before mode object teardown, for the irq might
6191          * enqueue unpin/hotplug work. */
6192         drm_irq_uninstall(dev);
6193         cancel_work_sync(&dev_priv->hotplug_work);
6194
6195         /* Shut off idle work before the crtcs get freed. */
6196         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6197                 intel_crtc = to_intel_crtc(crtc);
6198                 del_timer_sync(&intel_crtc->idle_timer);
6199         }
6200         del_timer_sync(&dev_priv->idle_timer);
6201         cancel_work_sync(&dev_priv->idle_work);
6202
6203         drm_mode_config_cleanup(dev);
6204 }
6205
6206 /*
6207  * Return which encoder is currently attached for connector.
6208  */
6209 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6210 {
6211         return &intel_attached_encoder(connector)->base;
6212 }
6213
6214 void intel_connector_attach_encoder(struct intel_connector *connector,
6215                                     struct intel_encoder *encoder)
6216 {
6217         connector->encoder = encoder;
6218         drm_mode_connector_attach_encoder(&connector->base,
6219                                           &encoder->base);
6220 }
6221
6222 /*
6223  * set vga decode state - true == enable VGA decode
6224  */
6225 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6226 {
6227         struct drm_i915_private *dev_priv = dev->dev_private;
6228         u16 gmch_ctrl;
6229
6230         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6231         if (state)
6232                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6233         else
6234                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6235         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6236         return 0;
6237 }