perf: Fix group moving
[linux-flexiantxendom0-natty.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 static atomic_t nr_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47  * perf event paranoia level:
48  *  -1 - not paranoid at all
49  *   0 - disallow raw tracepoint access for unpriv
50  *   1 - disallow cpu events for unpriv
51  *   2 - disallow kernel profiling for unpriv
52  */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58  * max perf event sample rate
59  */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void)        { }
65
66 extern __weak const char *perf_pmu_name(void)
67 {
68         return "pmu";
69 }
70
71 void perf_pmu_disable(struct pmu *pmu)
72 {
73         int *count = this_cpu_ptr(pmu->pmu_disable_count);
74         if (!(*count)++)
75                 pmu->pmu_disable(pmu);
76 }
77
78 void perf_pmu_enable(struct pmu *pmu)
79 {
80         int *count = this_cpu_ptr(pmu->pmu_disable_count);
81         if (!--(*count))
82                 pmu->pmu_enable(pmu);
83 }
84
85 static DEFINE_PER_CPU(struct list_head, rotation_list);
86
87 /*
88  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89  * because they're strictly cpu affine and rotate_start is called with IRQs
90  * disabled, while rotate_context is called from IRQ context.
91  */
92 static void perf_pmu_rotate_start(struct pmu *pmu)
93 {
94         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95         struct list_head *head = &__get_cpu_var(rotation_list);
96
97         WARN_ON(!irqs_disabled());
98
99         if (list_empty(&cpuctx->rotation_list))
100                 list_add(&cpuctx->rotation_list, head);
101 }
102
103 static void get_ctx(struct perf_event_context *ctx)
104 {
105         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110         struct perf_event_context *ctx;
111
112         ctx = container_of(head, struct perf_event_context, rcu_head);
113         kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_event_context *ctx)
117 {
118         if (atomic_dec_and_test(&ctx->refcount)) {
119                 if (ctx->parent_ctx)
120                         put_ctx(ctx->parent_ctx);
121                 if (ctx->task)
122                         put_task_struct(ctx->task);
123                 call_rcu(&ctx->rcu_head, free_ctx);
124         }
125 }
126
127 static void unclone_ctx(struct perf_event_context *ctx)
128 {
129         if (ctx->parent_ctx) {
130                 put_ctx(ctx->parent_ctx);
131                 ctx->parent_ctx = NULL;
132         }
133 }
134
135 /*
136  * If we inherit events we want to return the parent event id
137  * to userspace.
138  */
139 static u64 primary_event_id(struct perf_event *event)
140 {
141         u64 id = event->id;
142
143         if (event->parent)
144                 id = event->parent->id;
145
146         return id;
147 }
148
149 /*
150  * Get the perf_event_context for a task and lock it.
151  * This has to cope with with the fact that until it is locked,
152  * the context could get moved to another task.
153  */
154 static struct perf_event_context *
155 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
156 {
157         struct perf_event_context *ctx;
158
159         rcu_read_lock();
160 retry:
161         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
162         if (ctx) {
163                 /*
164                  * If this context is a clone of another, it might
165                  * get swapped for another underneath us by
166                  * perf_event_task_sched_out, though the
167                  * rcu_read_lock() protects us from any context
168                  * getting freed.  Lock the context and check if it
169                  * got swapped before we could get the lock, and retry
170                  * if so.  If we locked the right context, then it
171                  * can't get swapped on us any more.
172                  */
173                 raw_spin_lock_irqsave(&ctx->lock, *flags);
174                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176                         goto retry;
177                 }
178
179                 if (!atomic_inc_not_zero(&ctx->refcount)) {
180                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181                         ctx = NULL;
182                 }
183         }
184         rcu_read_unlock();
185         return ctx;
186 }
187
188 /*
189  * Get the context for a task and increment its pin_count so it
190  * can't get swapped to another task.  This also increments its
191  * reference count so that the context can't get freed.
192  */
193 static struct perf_event_context *
194 perf_pin_task_context(struct task_struct *task, int ctxn)
195 {
196         struct perf_event_context *ctx;
197         unsigned long flags;
198
199         ctx = perf_lock_task_context(task, ctxn, &flags);
200         if (ctx) {
201                 ++ctx->pin_count;
202                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
203         }
204         return ctx;
205 }
206
207 static void perf_unpin_context(struct perf_event_context *ctx)
208 {
209         unsigned long flags;
210
211         raw_spin_lock_irqsave(&ctx->lock, flags);
212         --ctx->pin_count;
213         raw_spin_unlock_irqrestore(&ctx->lock, flags);
214         put_ctx(ctx);
215 }
216
217 static inline u64 perf_clock(void)
218 {
219         return local_clock();
220 }
221
222 /*
223  * Update the record of the current time in a context.
224  */
225 static void update_context_time(struct perf_event_context *ctx)
226 {
227         u64 now = perf_clock();
228
229         ctx->time += now - ctx->timestamp;
230         ctx->timestamp = now;
231 }
232
233 /*
234  * Update the total_time_enabled and total_time_running fields for a event.
235  */
236 static void update_event_times(struct perf_event *event)
237 {
238         struct perf_event_context *ctx = event->ctx;
239         u64 run_end;
240
241         if (event->state < PERF_EVENT_STATE_INACTIVE ||
242             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
243                 return;
244
245         if (ctx->is_active)
246                 run_end = ctx->time;
247         else
248                 run_end = event->tstamp_stopped;
249
250         event->total_time_enabled = run_end - event->tstamp_enabled;
251
252         if (event->state == PERF_EVENT_STATE_INACTIVE)
253                 run_end = event->tstamp_stopped;
254         else
255                 run_end = ctx->time;
256
257         event->total_time_running = run_end - event->tstamp_running;
258 }
259
260 /*
261  * Update total_time_enabled and total_time_running for all events in a group.
262  */
263 static void update_group_times(struct perf_event *leader)
264 {
265         struct perf_event *event;
266
267         update_event_times(leader);
268         list_for_each_entry(event, &leader->sibling_list, group_entry)
269                 update_event_times(event);
270 }
271
272 static struct list_head *
273 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
274 {
275         if (event->attr.pinned)
276                 return &ctx->pinned_groups;
277         else
278                 return &ctx->flexible_groups;
279 }
280
281 /*
282  * Add a event from the lists for its context.
283  * Must be called with ctx->mutex and ctx->lock held.
284  */
285 static void
286 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
287 {
288         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
289         event->attach_state |= PERF_ATTACH_CONTEXT;
290
291         /*
292          * If we're a stand alone event or group leader, we go to the context
293          * list, group events are kept attached to the group so that
294          * perf_group_detach can, at all times, locate all siblings.
295          */
296         if (event->group_leader == event) {
297                 struct list_head *list;
298
299                 if (is_software_event(event))
300                         event->group_flags |= PERF_GROUP_SOFTWARE;
301
302                 list = ctx_group_list(event, ctx);
303                 list_add_tail(&event->group_entry, list);
304         }
305
306         list_add_rcu(&event->event_entry, &ctx->event_list);
307         if (!ctx->nr_events)
308                 perf_pmu_rotate_start(ctx->pmu);
309         ctx->nr_events++;
310         if (event->attr.inherit_stat)
311                 ctx->nr_stat++;
312 }
313
314 static void perf_group_attach(struct perf_event *event)
315 {
316         struct perf_event *group_leader = event->group_leader;
317
318         /*
319          * We can have double attach due to group movement in perf_event_open.
320          */
321         if (event->attach_state & PERF_ATTACH_GROUP)
322                 return;
323
324         event->attach_state |= PERF_ATTACH_GROUP;
325
326         if (group_leader == event)
327                 return;
328
329         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
330                         !is_software_event(event))
331                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
332
333         list_add_tail(&event->group_entry, &group_leader->sibling_list);
334         group_leader->nr_siblings++;
335 }
336
337 /*
338  * Remove a event from the lists for its context.
339  * Must be called with ctx->mutex and ctx->lock held.
340  */
341 static void
342 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
343 {
344         /*
345          * We can have double detach due to exit/hot-unplug + close.
346          */
347         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
348                 return;
349
350         event->attach_state &= ~PERF_ATTACH_CONTEXT;
351
352         ctx->nr_events--;
353         if (event->attr.inherit_stat)
354                 ctx->nr_stat--;
355
356         list_del_rcu(&event->event_entry);
357
358         if (event->group_leader == event)
359                 list_del_init(&event->group_entry);
360
361         update_group_times(event);
362
363         /*
364          * If event was in error state, then keep it
365          * that way, otherwise bogus counts will be
366          * returned on read(). The only way to get out
367          * of error state is by explicit re-enabling
368          * of the event
369          */
370         if (event->state > PERF_EVENT_STATE_OFF)
371                 event->state = PERF_EVENT_STATE_OFF;
372 }
373
374 static void perf_group_detach(struct perf_event *event)
375 {
376         struct perf_event *sibling, *tmp;
377         struct list_head *list = NULL;
378
379         /*
380          * We can have double detach due to exit/hot-unplug + close.
381          */
382         if (!(event->attach_state & PERF_ATTACH_GROUP))
383                 return;
384
385         event->attach_state &= ~PERF_ATTACH_GROUP;
386
387         /*
388          * If this is a sibling, remove it from its group.
389          */
390         if (event->group_leader != event) {
391                 list_del_init(&event->group_entry);
392                 event->group_leader->nr_siblings--;
393                 return;
394         }
395
396         if (!list_empty(&event->group_entry))
397                 list = &event->group_entry;
398
399         /*
400          * If this was a group event with sibling events then
401          * upgrade the siblings to singleton events by adding them
402          * to whatever list we are on.
403          */
404         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
405                 if (list)
406                         list_move_tail(&sibling->group_entry, list);
407                 sibling->group_leader = sibling;
408
409                 /* Inherit group flags from the previous leader */
410                 sibling->group_flags = event->group_flags;
411         }
412 }
413
414 static inline int
415 event_filter_match(struct perf_event *event)
416 {
417         return event->cpu == -1 || event->cpu == smp_processor_id();
418 }
419
420 static int
421 __event_sched_out(struct perf_event *event,
422                   struct perf_cpu_context *cpuctx,
423                   struct perf_event_context *ctx)
424 {
425         u64 delta;
426         /*
427          * An event which could not be activated because of
428          * filter mismatch still needs to have its timings
429          * maintained, otherwise bogus information is return
430          * via read() for time_enabled, time_running:
431          */
432         if (event->state == PERF_EVENT_STATE_INACTIVE
433             && !event_filter_match(event)) {
434                 delta = ctx->time - event->tstamp_stopped;
435                 event->tstamp_running += delta;
436                 event->tstamp_stopped = ctx->time;
437         }
438
439         if (event->state != PERF_EVENT_STATE_ACTIVE)
440                 return 0;
441
442         event->state = PERF_EVENT_STATE_INACTIVE;
443         if (event->pending_disable) {
444                 event->pending_disable = 0;
445                 event->state = PERF_EVENT_STATE_OFF;
446         }
447         event->pmu->del(event, 0);
448         event->oncpu = -1;
449
450         if (!is_software_event(event))
451                 cpuctx->active_oncpu--;
452         ctx->nr_active--;
453         if (event->attr.exclusive || !cpuctx->active_oncpu)
454                 cpuctx->exclusive = 0;
455         return 1;
456 }
457
458 static void
459 event_sched_out(struct perf_event *event,
460                   struct perf_cpu_context *cpuctx,
461                   struct perf_event_context *ctx)
462 {
463         int ret;
464
465         ret = __event_sched_out(event, cpuctx, ctx);
466         if (ret)
467                 event->tstamp_stopped = ctx->time;
468 }
469
470 static void
471 group_sched_out(struct perf_event *group_event,
472                 struct perf_cpu_context *cpuctx,
473                 struct perf_event_context *ctx)
474 {
475         struct perf_event *event;
476         int state = group_event->state;
477
478         event_sched_out(group_event, cpuctx, ctx);
479
480         /*
481          * Schedule out siblings (if any):
482          */
483         list_for_each_entry(event, &group_event->sibling_list, group_entry)
484                 event_sched_out(event, cpuctx, ctx);
485
486         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
487                 cpuctx->exclusive = 0;
488 }
489
490 static inline struct perf_cpu_context *
491 __get_cpu_context(struct perf_event_context *ctx)
492 {
493         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
494 }
495
496 /*
497  * Cross CPU call to remove a performance event
498  *
499  * We disable the event on the hardware level first. After that we
500  * remove it from the context list.
501  */
502 static void __perf_event_remove_from_context(void *info)
503 {
504         struct perf_event *event = info;
505         struct perf_event_context *ctx = event->ctx;
506         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
507
508         /*
509          * If this is a task context, we need to check whether it is
510          * the current task context of this cpu. If not it has been
511          * scheduled out before the smp call arrived.
512          */
513         if (ctx->task && cpuctx->task_ctx != ctx)
514                 return;
515
516         raw_spin_lock(&ctx->lock);
517
518         event_sched_out(event, cpuctx, ctx);
519
520         list_del_event(event, ctx);
521
522         raw_spin_unlock(&ctx->lock);
523 }
524
525
526 /*
527  * Remove the event from a task's (or a CPU's) list of events.
528  *
529  * Must be called with ctx->mutex held.
530  *
531  * CPU events are removed with a smp call. For task events we only
532  * call when the task is on a CPU.
533  *
534  * If event->ctx is a cloned context, callers must make sure that
535  * every task struct that event->ctx->task could possibly point to
536  * remains valid.  This is OK when called from perf_release since
537  * that only calls us on the top-level context, which can't be a clone.
538  * When called from perf_event_exit_task, it's OK because the
539  * context has been detached from its task.
540  */
541 static void perf_event_remove_from_context(struct perf_event *event)
542 {
543         struct perf_event_context *ctx = event->ctx;
544         struct task_struct *task = ctx->task;
545
546         if (!task) {
547                 /*
548                  * Per cpu events are removed via an smp call and
549                  * the removal is always successful.
550                  */
551                 smp_call_function_single(event->cpu,
552                                          __perf_event_remove_from_context,
553                                          event, 1);
554                 return;
555         }
556
557 retry:
558         task_oncpu_function_call(task, __perf_event_remove_from_context,
559                                  event);
560
561         raw_spin_lock_irq(&ctx->lock);
562         /*
563          * If the context is active we need to retry the smp call.
564          */
565         if (ctx->nr_active && !list_empty(&event->group_entry)) {
566                 raw_spin_unlock_irq(&ctx->lock);
567                 goto retry;
568         }
569
570         /*
571          * The lock prevents that this context is scheduled in so we
572          * can remove the event safely, if the call above did not
573          * succeed.
574          */
575         if (!list_empty(&event->group_entry))
576                 list_del_event(event, ctx);
577         raw_spin_unlock_irq(&ctx->lock);
578 }
579
580 /*
581  * Cross CPU call to disable a performance event
582  */
583 static void __perf_event_disable(void *info)
584 {
585         struct perf_event *event = info;
586         struct perf_event_context *ctx = event->ctx;
587         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
588
589         /*
590          * If this is a per-task event, need to check whether this
591          * event's task is the current task on this cpu.
592          */
593         if (ctx->task && cpuctx->task_ctx != ctx)
594                 return;
595
596         raw_spin_lock(&ctx->lock);
597
598         /*
599          * If the event is on, turn it off.
600          * If it is in error state, leave it in error state.
601          */
602         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
603                 update_context_time(ctx);
604                 update_group_times(event);
605                 if (event == event->group_leader)
606                         group_sched_out(event, cpuctx, ctx);
607                 else
608                         event_sched_out(event, cpuctx, ctx);
609                 event->state = PERF_EVENT_STATE_OFF;
610         }
611
612         raw_spin_unlock(&ctx->lock);
613 }
614
615 /*
616  * Disable a event.
617  *
618  * If event->ctx is a cloned context, callers must make sure that
619  * every task struct that event->ctx->task could possibly point to
620  * remains valid.  This condition is satisifed when called through
621  * perf_event_for_each_child or perf_event_for_each because they
622  * hold the top-level event's child_mutex, so any descendant that
623  * goes to exit will block in sync_child_event.
624  * When called from perf_pending_event it's OK because event->ctx
625  * is the current context on this CPU and preemption is disabled,
626  * hence we can't get into perf_event_task_sched_out for this context.
627  */
628 void perf_event_disable(struct perf_event *event)
629 {
630         struct perf_event_context *ctx = event->ctx;
631         struct task_struct *task = ctx->task;
632
633         if (!task) {
634                 /*
635                  * Disable the event on the cpu that it's on
636                  */
637                 smp_call_function_single(event->cpu, __perf_event_disable,
638                                          event, 1);
639                 return;
640         }
641
642 retry:
643         task_oncpu_function_call(task, __perf_event_disable, event);
644
645         raw_spin_lock_irq(&ctx->lock);
646         /*
647          * If the event is still active, we need to retry the cross-call.
648          */
649         if (event->state == PERF_EVENT_STATE_ACTIVE) {
650                 raw_spin_unlock_irq(&ctx->lock);
651                 goto retry;
652         }
653
654         /*
655          * Since we have the lock this context can't be scheduled
656          * in, so we can change the state safely.
657          */
658         if (event->state == PERF_EVENT_STATE_INACTIVE) {
659                 update_group_times(event);
660                 event->state = PERF_EVENT_STATE_OFF;
661         }
662
663         raw_spin_unlock_irq(&ctx->lock);
664 }
665
666 static int
667 __event_sched_in(struct perf_event *event,
668                  struct perf_cpu_context *cpuctx,
669                  struct perf_event_context *ctx)
670 {
671         if (event->state <= PERF_EVENT_STATE_OFF)
672                 return 0;
673
674         event->state = PERF_EVENT_STATE_ACTIVE;
675         event->oncpu = smp_processor_id();
676         /*
677          * The new state must be visible before we turn it on in the hardware:
678          */
679         smp_wmb();
680
681         if (event->pmu->add(event, PERF_EF_START)) {
682                 event->state = PERF_EVENT_STATE_INACTIVE;
683                 event->oncpu = -1;
684                 return -EAGAIN;
685         }
686
687         if (!is_software_event(event))
688                 cpuctx->active_oncpu++;
689         ctx->nr_active++;
690
691         if (event->attr.exclusive)
692                 cpuctx->exclusive = 1;
693
694         return 0;
695 }
696
697 static inline int
698 event_sched_in(struct perf_event *event,
699                  struct perf_cpu_context *cpuctx,
700                  struct perf_event_context *ctx)
701 {
702         int ret = __event_sched_in(event, cpuctx, ctx);
703         if (ret)
704                 return ret;
705         event->tstamp_running += ctx->time - event->tstamp_stopped;
706         return 0;
707 }
708
709 static void
710 group_commit_event_sched_in(struct perf_event *group_event,
711                struct perf_cpu_context *cpuctx,
712                struct perf_event_context *ctx)
713 {
714         struct perf_event *event;
715         u64 now = ctx->time;
716
717         group_event->tstamp_running += now - group_event->tstamp_stopped;
718         /*
719          * Schedule in siblings as one group (if any):
720          */
721         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
722                 event->tstamp_running += now - event->tstamp_stopped;
723         }
724 }
725
726 static int
727 group_sched_in(struct perf_event *group_event,
728                struct perf_cpu_context *cpuctx,
729                struct perf_event_context *ctx)
730 {
731         struct perf_event *event, *partial_group = NULL;
732         struct pmu *pmu = group_event->pmu;
733
734         if (group_event->state == PERF_EVENT_STATE_OFF)
735                 return 0;
736
737         pmu->start_txn(pmu);
738
739         /*
740          * use __event_sched_in() to delay updating tstamp_running
741          * until the transaction is committed. In case of failure
742          * we will keep an unmodified tstamp_running which is a
743          * requirement to get correct timing information
744          */
745         if (__event_sched_in(group_event, cpuctx, ctx)) {
746                 pmu->cancel_txn(pmu);
747                 return -EAGAIN;
748         }
749
750         /*
751          * Schedule in siblings as one group (if any):
752          */
753         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
754                 if (__event_sched_in(event, cpuctx, ctx)) {
755                         partial_group = event;
756                         goto group_error;
757                 }
758         }
759
760         if (!pmu->commit_txn(pmu)) {
761                 /* commit tstamp_running */
762                 group_commit_event_sched_in(group_event, cpuctx, ctx);
763                 return 0;
764         }
765 group_error:
766         /*
767          * Groups can be scheduled in as one unit only, so undo any
768          * partial group before returning:
769          *
770          * use __event_sched_out() to avoid updating tstamp_stopped
771          * because the event never actually ran
772          */
773         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
774                 if (event == partial_group)
775                         break;
776                 __event_sched_out(event, cpuctx, ctx);
777         }
778         __event_sched_out(group_event, cpuctx, ctx);
779
780         pmu->cancel_txn(pmu);
781
782         return -EAGAIN;
783 }
784
785 /*
786  * Work out whether we can put this event group on the CPU now.
787  */
788 static int group_can_go_on(struct perf_event *event,
789                            struct perf_cpu_context *cpuctx,
790                            int can_add_hw)
791 {
792         /*
793          * Groups consisting entirely of software events can always go on.
794          */
795         if (event->group_flags & PERF_GROUP_SOFTWARE)
796                 return 1;
797         /*
798          * If an exclusive group is already on, no other hardware
799          * events can go on.
800          */
801         if (cpuctx->exclusive)
802                 return 0;
803         /*
804          * If this group is exclusive and there are already
805          * events on the CPU, it can't go on.
806          */
807         if (event->attr.exclusive && cpuctx->active_oncpu)
808                 return 0;
809         /*
810          * Otherwise, try to add it if all previous groups were able
811          * to go on.
812          */
813         return can_add_hw;
814 }
815
816 static void add_event_to_ctx(struct perf_event *event,
817                                struct perf_event_context *ctx)
818 {
819         list_add_event(event, ctx);
820         perf_group_attach(event);
821         event->tstamp_enabled = ctx->time;
822         event->tstamp_running = ctx->time;
823         event->tstamp_stopped = ctx->time;
824 }
825
826 /*
827  * Cross CPU call to install and enable a performance event
828  *
829  * Must be called with ctx->mutex held
830  */
831 static void __perf_install_in_context(void *info)
832 {
833         struct perf_event *event = info;
834         struct perf_event_context *ctx = event->ctx;
835         struct perf_event *leader = event->group_leader;
836         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
837         int err;
838
839         /*
840          * If this is a task context, we need to check whether it is
841          * the current task context of this cpu. If not it has been
842          * scheduled out before the smp call arrived.
843          * Or possibly this is the right context but it isn't
844          * on this cpu because it had no events.
845          */
846         if (ctx->task && cpuctx->task_ctx != ctx) {
847                 if (cpuctx->task_ctx || ctx->task != current)
848                         return;
849                 cpuctx->task_ctx = ctx;
850         }
851
852         raw_spin_lock(&ctx->lock);
853         ctx->is_active = 1;
854         update_context_time(ctx);
855
856         add_event_to_ctx(event, ctx);
857
858         if (event->cpu != -1 && event->cpu != smp_processor_id())
859                 goto unlock;
860
861         /*
862          * Don't put the event on if it is disabled or if
863          * it is in a group and the group isn't on.
864          */
865         if (event->state != PERF_EVENT_STATE_INACTIVE ||
866             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
867                 goto unlock;
868
869         /*
870          * An exclusive event can't go on if there are already active
871          * hardware events, and no hardware event can go on if there
872          * is already an exclusive event on.
873          */
874         if (!group_can_go_on(event, cpuctx, 1))
875                 err = -EEXIST;
876         else
877                 err = event_sched_in(event, cpuctx, ctx);
878
879         if (err) {
880                 /*
881                  * This event couldn't go on.  If it is in a group
882                  * then we have to pull the whole group off.
883                  * If the event group is pinned then put it in error state.
884                  */
885                 if (leader != event)
886                         group_sched_out(leader, cpuctx, ctx);
887                 if (leader->attr.pinned) {
888                         update_group_times(leader);
889                         leader->state = PERF_EVENT_STATE_ERROR;
890                 }
891         }
892
893 unlock:
894         raw_spin_unlock(&ctx->lock);
895 }
896
897 /*
898  * Attach a performance event to a context
899  *
900  * First we add the event to the list with the hardware enable bit
901  * in event->hw_config cleared.
902  *
903  * If the event is attached to a task which is on a CPU we use a smp
904  * call to enable it in the task context. The task might have been
905  * scheduled away, but we check this in the smp call again.
906  *
907  * Must be called with ctx->mutex held.
908  */
909 static void
910 perf_install_in_context(struct perf_event_context *ctx,
911                         struct perf_event *event,
912                         int cpu)
913 {
914         struct task_struct *task = ctx->task;
915
916         event->ctx = ctx;
917
918         if (!task) {
919                 /*
920                  * Per cpu events are installed via an smp call and
921                  * the install is always successful.
922                  */
923                 smp_call_function_single(cpu, __perf_install_in_context,
924                                          event, 1);
925                 return;
926         }
927
928 retry:
929         task_oncpu_function_call(task, __perf_install_in_context,
930                                  event);
931
932         raw_spin_lock_irq(&ctx->lock);
933         /*
934          * we need to retry the smp call.
935          */
936         if (ctx->is_active && list_empty(&event->group_entry)) {
937                 raw_spin_unlock_irq(&ctx->lock);
938                 goto retry;
939         }
940
941         /*
942          * The lock prevents that this context is scheduled in so we
943          * can add the event safely, if it the call above did not
944          * succeed.
945          */
946         if (list_empty(&event->group_entry))
947                 add_event_to_ctx(event, ctx);
948         raw_spin_unlock_irq(&ctx->lock);
949 }
950
951 /*
952  * Put a event into inactive state and update time fields.
953  * Enabling the leader of a group effectively enables all
954  * the group members that aren't explicitly disabled, so we
955  * have to update their ->tstamp_enabled also.
956  * Note: this works for group members as well as group leaders
957  * since the non-leader members' sibling_lists will be empty.
958  */
959 static void __perf_event_mark_enabled(struct perf_event *event,
960                                         struct perf_event_context *ctx)
961 {
962         struct perf_event *sub;
963
964         event->state = PERF_EVENT_STATE_INACTIVE;
965         event->tstamp_enabled = ctx->time - event->total_time_enabled;
966         list_for_each_entry(sub, &event->sibling_list, group_entry) {
967                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
968                         sub->tstamp_enabled =
969                                 ctx->time - sub->total_time_enabled;
970                 }
971         }
972 }
973
974 /*
975  * Cross CPU call to enable a performance event
976  */
977 static void __perf_event_enable(void *info)
978 {
979         struct perf_event *event = info;
980         struct perf_event_context *ctx = event->ctx;
981         struct perf_event *leader = event->group_leader;
982         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
983         int err;
984
985         /*
986          * If this is a per-task event, need to check whether this
987          * event's task is the current task on this cpu.
988          */
989         if (ctx->task && cpuctx->task_ctx != ctx) {
990                 if (cpuctx->task_ctx || ctx->task != current)
991                         return;
992                 cpuctx->task_ctx = ctx;
993         }
994
995         raw_spin_lock(&ctx->lock);
996         ctx->is_active = 1;
997         update_context_time(ctx);
998
999         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1000                 goto unlock;
1001         __perf_event_mark_enabled(event, ctx);
1002
1003         if (event->cpu != -1 && event->cpu != smp_processor_id())
1004                 goto unlock;
1005
1006         /*
1007          * If the event is in a group and isn't the group leader,
1008          * then don't put it on unless the group is on.
1009          */
1010         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1011                 goto unlock;
1012
1013         if (!group_can_go_on(event, cpuctx, 1)) {
1014                 err = -EEXIST;
1015         } else {
1016                 if (event == leader)
1017                         err = group_sched_in(event, cpuctx, ctx);
1018                 else
1019                         err = event_sched_in(event, cpuctx, ctx);
1020         }
1021
1022         if (err) {
1023                 /*
1024                  * If this event can't go on and it's part of a
1025                  * group, then the whole group has to come off.
1026                  */
1027                 if (leader != event)
1028                         group_sched_out(leader, cpuctx, ctx);
1029                 if (leader->attr.pinned) {
1030                         update_group_times(leader);
1031                         leader->state = PERF_EVENT_STATE_ERROR;
1032                 }
1033         }
1034
1035 unlock:
1036         raw_spin_unlock(&ctx->lock);
1037 }
1038
1039 /*
1040  * Enable a event.
1041  *
1042  * If event->ctx is a cloned context, callers must make sure that
1043  * every task struct that event->ctx->task could possibly point to
1044  * remains valid.  This condition is satisfied when called through
1045  * perf_event_for_each_child or perf_event_for_each as described
1046  * for perf_event_disable.
1047  */
1048 void perf_event_enable(struct perf_event *event)
1049 {
1050         struct perf_event_context *ctx = event->ctx;
1051         struct task_struct *task = ctx->task;
1052
1053         if (!task) {
1054                 /*
1055                  * Enable the event on the cpu that it's on
1056                  */
1057                 smp_call_function_single(event->cpu, __perf_event_enable,
1058                                          event, 1);
1059                 return;
1060         }
1061
1062         raw_spin_lock_irq(&ctx->lock);
1063         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1064                 goto out;
1065
1066         /*
1067          * If the event is in error state, clear that first.
1068          * That way, if we see the event in error state below, we
1069          * know that it has gone back into error state, as distinct
1070          * from the task having been scheduled away before the
1071          * cross-call arrived.
1072          */
1073         if (event->state == PERF_EVENT_STATE_ERROR)
1074                 event->state = PERF_EVENT_STATE_OFF;
1075
1076 retry:
1077         raw_spin_unlock_irq(&ctx->lock);
1078         task_oncpu_function_call(task, __perf_event_enable, event);
1079
1080         raw_spin_lock_irq(&ctx->lock);
1081
1082         /*
1083          * If the context is active and the event is still off,
1084          * we need to retry the cross-call.
1085          */
1086         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1087                 goto retry;
1088
1089         /*
1090          * Since we have the lock this context can't be scheduled
1091          * in, so we can change the state safely.
1092          */
1093         if (event->state == PERF_EVENT_STATE_OFF)
1094                 __perf_event_mark_enabled(event, ctx);
1095
1096 out:
1097         raw_spin_unlock_irq(&ctx->lock);
1098 }
1099
1100 static int perf_event_refresh(struct perf_event *event, int refresh)
1101 {
1102         /*
1103          * not supported on inherited events
1104          */
1105         if (event->attr.inherit)
1106                 return -EINVAL;
1107
1108         atomic_add(refresh, &event->event_limit);
1109         perf_event_enable(event);
1110
1111         return 0;
1112 }
1113
1114 enum event_type_t {
1115         EVENT_FLEXIBLE = 0x1,
1116         EVENT_PINNED = 0x2,
1117         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1118 };
1119
1120 static void ctx_sched_out(struct perf_event_context *ctx,
1121                           struct perf_cpu_context *cpuctx,
1122                           enum event_type_t event_type)
1123 {
1124         struct perf_event *event;
1125
1126         raw_spin_lock(&ctx->lock);
1127         perf_pmu_disable(ctx->pmu);
1128         ctx->is_active = 0;
1129         if (likely(!ctx->nr_events))
1130                 goto out;
1131         update_context_time(ctx);
1132
1133         if (!ctx->nr_active)
1134                 goto out;
1135
1136         if (event_type & EVENT_PINNED) {
1137                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1138                         group_sched_out(event, cpuctx, ctx);
1139         }
1140
1141         if (event_type & EVENT_FLEXIBLE) {
1142                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1143                         group_sched_out(event, cpuctx, ctx);
1144         }
1145 out:
1146         perf_pmu_enable(ctx->pmu);
1147         raw_spin_unlock(&ctx->lock);
1148 }
1149
1150 /*
1151  * Test whether two contexts are equivalent, i.e. whether they
1152  * have both been cloned from the same version of the same context
1153  * and they both have the same number of enabled events.
1154  * If the number of enabled events is the same, then the set
1155  * of enabled events should be the same, because these are both
1156  * inherited contexts, therefore we can't access individual events
1157  * in them directly with an fd; we can only enable/disable all
1158  * events via prctl, or enable/disable all events in a family
1159  * via ioctl, which will have the same effect on both contexts.
1160  */
1161 static int context_equiv(struct perf_event_context *ctx1,
1162                          struct perf_event_context *ctx2)
1163 {
1164         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1165                 && ctx1->parent_gen == ctx2->parent_gen
1166                 && !ctx1->pin_count && !ctx2->pin_count;
1167 }
1168
1169 static void __perf_event_sync_stat(struct perf_event *event,
1170                                      struct perf_event *next_event)
1171 {
1172         u64 value;
1173
1174         if (!event->attr.inherit_stat)
1175                 return;
1176
1177         /*
1178          * Update the event value, we cannot use perf_event_read()
1179          * because we're in the middle of a context switch and have IRQs
1180          * disabled, which upsets smp_call_function_single(), however
1181          * we know the event must be on the current CPU, therefore we
1182          * don't need to use it.
1183          */
1184         switch (event->state) {
1185         case PERF_EVENT_STATE_ACTIVE:
1186                 event->pmu->read(event);
1187                 /* fall-through */
1188
1189         case PERF_EVENT_STATE_INACTIVE:
1190                 update_event_times(event);
1191                 break;
1192
1193         default:
1194                 break;
1195         }
1196
1197         /*
1198          * In order to keep per-task stats reliable we need to flip the event
1199          * values when we flip the contexts.
1200          */
1201         value = local64_read(&next_event->count);
1202         value = local64_xchg(&event->count, value);
1203         local64_set(&next_event->count, value);
1204
1205         swap(event->total_time_enabled, next_event->total_time_enabled);
1206         swap(event->total_time_running, next_event->total_time_running);
1207
1208         /*
1209          * Since we swizzled the values, update the user visible data too.
1210          */
1211         perf_event_update_userpage(event);
1212         perf_event_update_userpage(next_event);
1213 }
1214
1215 #define list_next_entry(pos, member) \
1216         list_entry(pos->member.next, typeof(*pos), member)
1217
1218 static void perf_event_sync_stat(struct perf_event_context *ctx,
1219                                    struct perf_event_context *next_ctx)
1220 {
1221         struct perf_event *event, *next_event;
1222
1223         if (!ctx->nr_stat)
1224                 return;
1225
1226         update_context_time(ctx);
1227
1228         event = list_first_entry(&ctx->event_list,
1229                                    struct perf_event, event_entry);
1230
1231         next_event = list_first_entry(&next_ctx->event_list,
1232                                         struct perf_event, event_entry);
1233
1234         while (&event->event_entry != &ctx->event_list &&
1235                &next_event->event_entry != &next_ctx->event_list) {
1236
1237                 __perf_event_sync_stat(event, next_event);
1238
1239                 event = list_next_entry(event, event_entry);
1240                 next_event = list_next_entry(next_event, event_entry);
1241         }
1242 }
1243
1244 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1245                                   struct task_struct *next)
1246 {
1247         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1248         struct perf_event_context *next_ctx;
1249         struct perf_event_context *parent;
1250         struct perf_cpu_context *cpuctx;
1251         int do_switch = 1;
1252
1253         if (likely(!ctx))
1254                 return;
1255
1256         cpuctx = __get_cpu_context(ctx);
1257         if (!cpuctx->task_ctx)
1258                 return;
1259
1260         rcu_read_lock();
1261         parent = rcu_dereference(ctx->parent_ctx);
1262         next_ctx = next->perf_event_ctxp[ctxn];
1263         if (parent && next_ctx &&
1264             rcu_dereference(next_ctx->parent_ctx) == parent) {
1265                 /*
1266                  * Looks like the two contexts are clones, so we might be
1267                  * able to optimize the context switch.  We lock both
1268                  * contexts and check that they are clones under the
1269                  * lock (including re-checking that neither has been
1270                  * uncloned in the meantime).  It doesn't matter which
1271                  * order we take the locks because no other cpu could
1272                  * be trying to lock both of these tasks.
1273                  */
1274                 raw_spin_lock(&ctx->lock);
1275                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1276                 if (context_equiv(ctx, next_ctx)) {
1277                         /*
1278                          * XXX do we need a memory barrier of sorts
1279                          * wrt to rcu_dereference() of perf_event_ctxp
1280                          */
1281                         task->perf_event_ctxp[ctxn] = next_ctx;
1282                         next->perf_event_ctxp[ctxn] = ctx;
1283                         ctx->task = next;
1284                         next_ctx->task = task;
1285                         do_switch = 0;
1286
1287                         perf_event_sync_stat(ctx, next_ctx);
1288                 }
1289                 raw_spin_unlock(&next_ctx->lock);
1290                 raw_spin_unlock(&ctx->lock);
1291         }
1292         rcu_read_unlock();
1293
1294         if (do_switch) {
1295                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1296                 cpuctx->task_ctx = NULL;
1297         }
1298 }
1299
1300 #define for_each_task_context_nr(ctxn)                                  \
1301         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1302
1303 /*
1304  * Called from scheduler to remove the events of the current task,
1305  * with interrupts disabled.
1306  *
1307  * We stop each event and update the event value in event->count.
1308  *
1309  * This does not protect us against NMI, but disable()
1310  * sets the disabled bit in the control field of event _before_
1311  * accessing the event control register. If a NMI hits, then it will
1312  * not restart the event.
1313  */
1314 void perf_event_task_sched_out(struct task_struct *task,
1315                                struct task_struct *next)
1316 {
1317         int ctxn;
1318
1319         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1320
1321         for_each_task_context_nr(ctxn)
1322                 perf_event_context_sched_out(task, ctxn, next);
1323 }
1324
1325 static void task_ctx_sched_out(struct perf_event_context *ctx,
1326                                enum event_type_t event_type)
1327 {
1328         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1329
1330         if (!cpuctx->task_ctx)
1331                 return;
1332
1333         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1334                 return;
1335
1336         ctx_sched_out(ctx, cpuctx, event_type);
1337         cpuctx->task_ctx = NULL;
1338 }
1339
1340 /*
1341  * Called with IRQs disabled
1342  */
1343 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1344 {
1345         task_ctx_sched_out(ctx, EVENT_ALL);
1346 }
1347
1348 /*
1349  * Called with IRQs disabled
1350  */
1351 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1352                               enum event_type_t event_type)
1353 {
1354         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1355 }
1356
1357 static void
1358 ctx_pinned_sched_in(struct perf_event_context *ctx,
1359                     struct perf_cpu_context *cpuctx)
1360 {
1361         struct perf_event *event;
1362
1363         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1364                 if (event->state <= PERF_EVENT_STATE_OFF)
1365                         continue;
1366                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1367                         continue;
1368
1369                 if (group_can_go_on(event, cpuctx, 1))
1370                         group_sched_in(event, cpuctx, ctx);
1371
1372                 /*
1373                  * If this pinned group hasn't been scheduled,
1374                  * put it in error state.
1375                  */
1376                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1377                         update_group_times(event);
1378                         event->state = PERF_EVENT_STATE_ERROR;
1379                 }
1380         }
1381 }
1382
1383 static void
1384 ctx_flexible_sched_in(struct perf_event_context *ctx,
1385                       struct perf_cpu_context *cpuctx)
1386 {
1387         struct perf_event *event;
1388         int can_add_hw = 1;
1389
1390         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1391                 /* Ignore events in OFF or ERROR state */
1392                 if (event->state <= PERF_EVENT_STATE_OFF)
1393                         continue;
1394                 /*
1395                  * Listen to the 'cpu' scheduling filter constraint
1396                  * of events:
1397                  */
1398                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1399                         continue;
1400
1401                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1402                         if (group_sched_in(event, cpuctx, ctx))
1403                                 can_add_hw = 0;
1404                 }
1405         }
1406 }
1407
1408 static void
1409 ctx_sched_in(struct perf_event_context *ctx,
1410              struct perf_cpu_context *cpuctx,
1411              enum event_type_t event_type)
1412 {
1413         raw_spin_lock(&ctx->lock);
1414         ctx->is_active = 1;
1415         if (likely(!ctx->nr_events))
1416                 goto out;
1417
1418         ctx->timestamp = perf_clock();
1419
1420         /*
1421          * First go through the list and put on any pinned groups
1422          * in order to give them the best chance of going on.
1423          */
1424         if (event_type & EVENT_PINNED)
1425                 ctx_pinned_sched_in(ctx, cpuctx);
1426
1427         /* Then walk through the lower prio flexible groups */
1428         if (event_type & EVENT_FLEXIBLE)
1429                 ctx_flexible_sched_in(ctx, cpuctx);
1430
1431 out:
1432         raw_spin_unlock(&ctx->lock);
1433 }
1434
1435 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1436                              enum event_type_t event_type)
1437 {
1438         struct perf_event_context *ctx = &cpuctx->ctx;
1439
1440         ctx_sched_in(ctx, cpuctx, event_type);
1441 }
1442
1443 static void task_ctx_sched_in(struct perf_event_context *ctx,
1444                               enum event_type_t event_type)
1445 {
1446         struct perf_cpu_context *cpuctx;
1447
1448         cpuctx = __get_cpu_context(ctx);
1449         if (cpuctx->task_ctx == ctx)
1450                 return;
1451
1452         ctx_sched_in(ctx, cpuctx, event_type);
1453         cpuctx->task_ctx = ctx;
1454 }
1455
1456 void perf_event_context_sched_in(struct perf_event_context *ctx)
1457 {
1458         struct perf_cpu_context *cpuctx;
1459
1460         cpuctx = __get_cpu_context(ctx);
1461         if (cpuctx->task_ctx == ctx)
1462                 return;
1463
1464         perf_pmu_disable(ctx->pmu);
1465         /*
1466          * We want to keep the following priority order:
1467          * cpu pinned (that don't need to move), task pinned,
1468          * cpu flexible, task flexible.
1469          */
1470         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1471
1472         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1473         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1474         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1475
1476         cpuctx->task_ctx = ctx;
1477
1478         /*
1479          * Since these rotations are per-cpu, we need to ensure the
1480          * cpu-context we got scheduled on is actually rotating.
1481          */
1482         perf_pmu_rotate_start(ctx->pmu);
1483         perf_pmu_enable(ctx->pmu);
1484 }
1485
1486 /*
1487  * Called from scheduler to add the events of the current task
1488  * with interrupts disabled.
1489  *
1490  * We restore the event value and then enable it.
1491  *
1492  * This does not protect us against NMI, but enable()
1493  * sets the enabled bit in the control field of event _before_
1494  * accessing the event control register. If a NMI hits, then it will
1495  * keep the event running.
1496  */
1497 void perf_event_task_sched_in(struct task_struct *task)
1498 {
1499         struct perf_event_context *ctx;
1500         int ctxn;
1501
1502         for_each_task_context_nr(ctxn) {
1503                 ctx = task->perf_event_ctxp[ctxn];
1504                 if (likely(!ctx))
1505                         continue;
1506
1507                 perf_event_context_sched_in(ctx);
1508         }
1509 }
1510
1511 #define MAX_INTERRUPTS (~0ULL)
1512
1513 static void perf_log_throttle(struct perf_event *event, int enable);
1514
1515 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1516 {
1517         u64 frequency = event->attr.sample_freq;
1518         u64 sec = NSEC_PER_SEC;
1519         u64 divisor, dividend;
1520
1521         int count_fls, nsec_fls, frequency_fls, sec_fls;
1522
1523         count_fls = fls64(count);
1524         nsec_fls = fls64(nsec);
1525         frequency_fls = fls64(frequency);
1526         sec_fls = 30;
1527
1528         /*
1529          * We got @count in @nsec, with a target of sample_freq HZ
1530          * the target period becomes:
1531          *
1532          *             @count * 10^9
1533          * period = -------------------
1534          *          @nsec * sample_freq
1535          *
1536          */
1537
1538         /*
1539          * Reduce accuracy by one bit such that @a and @b converge
1540          * to a similar magnitude.
1541          */
1542 #define REDUCE_FLS(a, b)                \
1543 do {                                    \
1544         if (a##_fls > b##_fls) {        \
1545                 a >>= 1;                \
1546                 a##_fls--;              \
1547         } else {                        \
1548                 b >>= 1;                \
1549                 b##_fls--;              \
1550         }                               \
1551 } while (0)
1552
1553         /*
1554          * Reduce accuracy until either term fits in a u64, then proceed with
1555          * the other, so that finally we can do a u64/u64 division.
1556          */
1557         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1558                 REDUCE_FLS(nsec, frequency);
1559                 REDUCE_FLS(sec, count);
1560         }
1561
1562         if (count_fls + sec_fls > 64) {
1563                 divisor = nsec * frequency;
1564
1565                 while (count_fls + sec_fls > 64) {
1566                         REDUCE_FLS(count, sec);
1567                         divisor >>= 1;
1568                 }
1569
1570                 dividend = count * sec;
1571         } else {
1572                 dividend = count * sec;
1573
1574                 while (nsec_fls + frequency_fls > 64) {
1575                         REDUCE_FLS(nsec, frequency);
1576                         dividend >>= 1;
1577                 }
1578
1579                 divisor = nsec * frequency;
1580         }
1581
1582         if (!divisor)
1583                 return dividend;
1584
1585         return div64_u64(dividend, divisor);
1586 }
1587
1588 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1589 {
1590         struct hw_perf_event *hwc = &event->hw;
1591         s64 period, sample_period;
1592         s64 delta;
1593
1594         period = perf_calculate_period(event, nsec, count);
1595
1596         delta = (s64)(period - hwc->sample_period);
1597         delta = (delta + 7) / 8; /* low pass filter */
1598
1599         sample_period = hwc->sample_period + delta;
1600
1601         if (!sample_period)
1602                 sample_period = 1;
1603
1604         hwc->sample_period = sample_period;
1605
1606         if (local64_read(&hwc->period_left) > 8*sample_period) {
1607                 event->pmu->stop(event, PERF_EF_UPDATE);
1608                 local64_set(&hwc->period_left, 0);
1609                 event->pmu->start(event, PERF_EF_RELOAD);
1610         }
1611 }
1612
1613 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1614 {
1615         struct perf_event *event;
1616         struct hw_perf_event *hwc;
1617         u64 interrupts, now;
1618         s64 delta;
1619
1620         raw_spin_lock(&ctx->lock);
1621         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1622                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1623                         continue;
1624
1625                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1626                         continue;
1627
1628                 hwc = &event->hw;
1629
1630                 interrupts = hwc->interrupts;
1631                 hwc->interrupts = 0;
1632
1633                 /*
1634                  * unthrottle events on the tick
1635                  */
1636                 if (interrupts == MAX_INTERRUPTS) {
1637                         perf_log_throttle(event, 1);
1638                         event->pmu->start(event, 0);
1639                 }
1640
1641                 if (!event->attr.freq || !event->attr.sample_freq)
1642                         continue;
1643
1644                 event->pmu->read(event);
1645                 now = local64_read(&event->count);
1646                 delta = now - hwc->freq_count_stamp;
1647                 hwc->freq_count_stamp = now;
1648
1649                 if (delta > 0)
1650                         perf_adjust_period(event, period, delta);
1651         }
1652         raw_spin_unlock(&ctx->lock);
1653 }
1654
1655 /*
1656  * Round-robin a context's events:
1657  */
1658 static void rotate_ctx(struct perf_event_context *ctx)
1659 {
1660         raw_spin_lock(&ctx->lock);
1661
1662         /* Rotate the first entry last of non-pinned groups */
1663         list_rotate_left(&ctx->flexible_groups);
1664
1665         raw_spin_unlock(&ctx->lock);
1666 }
1667
1668 /*
1669  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1670  * because they're strictly cpu affine and rotate_start is called with IRQs
1671  * disabled, while rotate_context is called from IRQ context.
1672  */
1673 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1674 {
1675         u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1676         struct perf_event_context *ctx = NULL;
1677         int rotate = 0, remove = 1;
1678
1679         if (cpuctx->ctx.nr_events) {
1680                 remove = 0;
1681                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1682                         rotate = 1;
1683         }
1684
1685         ctx = cpuctx->task_ctx;
1686         if (ctx && ctx->nr_events) {
1687                 remove = 0;
1688                 if (ctx->nr_events != ctx->nr_active)
1689                         rotate = 1;
1690         }
1691
1692         perf_pmu_disable(cpuctx->ctx.pmu);
1693         perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1694         if (ctx)
1695                 perf_ctx_adjust_freq(ctx, interval);
1696
1697         if (!rotate)
1698                 goto done;
1699
1700         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1701         if (ctx)
1702                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1703
1704         rotate_ctx(&cpuctx->ctx);
1705         if (ctx)
1706                 rotate_ctx(ctx);
1707
1708         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1709         if (ctx)
1710                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1711
1712 done:
1713         if (remove)
1714                 list_del_init(&cpuctx->rotation_list);
1715
1716         perf_pmu_enable(cpuctx->ctx.pmu);
1717 }
1718
1719 void perf_event_task_tick(void)
1720 {
1721         struct list_head *head = &__get_cpu_var(rotation_list);
1722         struct perf_cpu_context *cpuctx, *tmp;
1723
1724         WARN_ON(!irqs_disabled());
1725
1726         list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1727                 if (cpuctx->jiffies_interval == 1 ||
1728                                 !(jiffies % cpuctx->jiffies_interval))
1729                         perf_rotate_context(cpuctx);
1730         }
1731 }
1732
1733 static int event_enable_on_exec(struct perf_event *event,
1734                                 struct perf_event_context *ctx)
1735 {
1736         if (!event->attr.enable_on_exec)
1737                 return 0;
1738
1739         event->attr.enable_on_exec = 0;
1740         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1741                 return 0;
1742
1743         __perf_event_mark_enabled(event, ctx);
1744
1745         return 1;
1746 }
1747
1748 /*
1749  * Enable all of a task's events that have been marked enable-on-exec.
1750  * This expects task == current.
1751  */
1752 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1753 {
1754         struct perf_event *event;
1755         unsigned long flags;
1756         int enabled = 0;
1757         int ret;
1758
1759         local_irq_save(flags);
1760         if (!ctx || !ctx->nr_events)
1761                 goto out;
1762
1763         task_ctx_sched_out(ctx, EVENT_ALL);
1764
1765         raw_spin_lock(&ctx->lock);
1766
1767         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1768                 ret = event_enable_on_exec(event, ctx);
1769                 if (ret)
1770                         enabled = 1;
1771         }
1772
1773         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1774                 ret = event_enable_on_exec(event, ctx);
1775                 if (ret)
1776                         enabled = 1;
1777         }
1778
1779         /*
1780          * Unclone this context if we enabled any event.
1781          */
1782         if (enabled)
1783                 unclone_ctx(ctx);
1784
1785         raw_spin_unlock(&ctx->lock);
1786
1787         perf_event_context_sched_in(ctx);
1788 out:
1789         local_irq_restore(flags);
1790 }
1791
1792 /*
1793  * Cross CPU call to read the hardware event
1794  */
1795 static void __perf_event_read(void *info)
1796 {
1797         struct perf_event *event = info;
1798         struct perf_event_context *ctx = event->ctx;
1799         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1800
1801         /*
1802          * If this is a task context, we need to check whether it is
1803          * the current task context of this cpu.  If not it has been
1804          * scheduled out before the smp call arrived.  In that case
1805          * event->count would have been updated to a recent sample
1806          * when the event was scheduled out.
1807          */
1808         if (ctx->task && cpuctx->task_ctx != ctx)
1809                 return;
1810
1811         raw_spin_lock(&ctx->lock);
1812         update_context_time(ctx);
1813         update_event_times(event);
1814         raw_spin_unlock(&ctx->lock);
1815
1816         event->pmu->read(event);
1817 }
1818
1819 static inline u64 perf_event_count(struct perf_event *event)
1820 {
1821         return local64_read(&event->count) + atomic64_read(&event->child_count);
1822 }
1823
1824 static u64 perf_event_read(struct perf_event *event)
1825 {
1826         /*
1827          * If event is enabled and currently active on a CPU, update the
1828          * value in the event structure:
1829          */
1830         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1831                 smp_call_function_single(event->oncpu,
1832                                          __perf_event_read, event, 1);
1833         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1834                 struct perf_event_context *ctx = event->ctx;
1835                 unsigned long flags;
1836
1837                 raw_spin_lock_irqsave(&ctx->lock, flags);
1838                 /*
1839                  * may read while context is not active
1840                  * (e.g., thread is blocked), in that case
1841                  * we cannot update context time
1842                  */
1843                 if (ctx->is_active)
1844                         update_context_time(ctx);
1845                 update_event_times(event);
1846                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1847         }
1848
1849         return perf_event_count(event);
1850 }
1851
1852 /*
1853  * Callchain support
1854  */
1855
1856 struct callchain_cpus_entries {
1857         struct rcu_head                 rcu_head;
1858         struct perf_callchain_entry     *cpu_entries[0];
1859 };
1860
1861 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1862 static atomic_t nr_callchain_events;
1863 static DEFINE_MUTEX(callchain_mutex);
1864 struct callchain_cpus_entries *callchain_cpus_entries;
1865
1866
1867 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1868                                   struct pt_regs *regs)
1869 {
1870 }
1871
1872 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1873                                 struct pt_regs *regs)
1874 {
1875 }
1876
1877 static void release_callchain_buffers_rcu(struct rcu_head *head)
1878 {
1879         struct callchain_cpus_entries *entries;
1880         int cpu;
1881
1882         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1883
1884         for_each_possible_cpu(cpu)
1885                 kfree(entries->cpu_entries[cpu]);
1886
1887         kfree(entries);
1888 }
1889
1890 static void release_callchain_buffers(void)
1891 {
1892         struct callchain_cpus_entries *entries;
1893
1894         entries = callchain_cpus_entries;
1895         rcu_assign_pointer(callchain_cpus_entries, NULL);
1896         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1897 }
1898
1899 static int alloc_callchain_buffers(void)
1900 {
1901         int cpu;
1902         int size;
1903         struct callchain_cpus_entries *entries;
1904
1905         /*
1906          * We can't use the percpu allocation API for data that can be
1907          * accessed from NMI. Use a temporary manual per cpu allocation
1908          * until that gets sorted out.
1909          */
1910         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1911                 num_possible_cpus();
1912
1913         entries = kzalloc(size, GFP_KERNEL);
1914         if (!entries)
1915                 return -ENOMEM;
1916
1917         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1918
1919         for_each_possible_cpu(cpu) {
1920                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1921                                                          cpu_to_node(cpu));
1922                 if (!entries->cpu_entries[cpu])
1923                         goto fail;
1924         }
1925
1926         rcu_assign_pointer(callchain_cpus_entries, entries);
1927
1928         return 0;
1929
1930 fail:
1931         for_each_possible_cpu(cpu)
1932                 kfree(entries->cpu_entries[cpu]);
1933         kfree(entries);
1934
1935         return -ENOMEM;
1936 }
1937
1938 static int get_callchain_buffers(void)
1939 {
1940         int err = 0;
1941         int count;
1942
1943         mutex_lock(&callchain_mutex);
1944
1945         count = atomic_inc_return(&nr_callchain_events);
1946         if (WARN_ON_ONCE(count < 1)) {
1947                 err = -EINVAL;
1948                 goto exit;
1949         }
1950
1951         if (count > 1) {
1952                 /* If the allocation failed, give up */
1953                 if (!callchain_cpus_entries)
1954                         err = -ENOMEM;
1955                 goto exit;
1956         }
1957
1958         err = alloc_callchain_buffers();
1959         if (err)
1960                 release_callchain_buffers();
1961 exit:
1962         mutex_unlock(&callchain_mutex);
1963
1964         return err;
1965 }
1966
1967 static void put_callchain_buffers(void)
1968 {
1969         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1970                 release_callchain_buffers();
1971                 mutex_unlock(&callchain_mutex);
1972         }
1973 }
1974
1975 static int get_recursion_context(int *recursion)
1976 {
1977         int rctx;
1978
1979         if (in_nmi())
1980                 rctx = 3;
1981         else if (in_irq())
1982                 rctx = 2;
1983         else if (in_softirq())
1984                 rctx = 1;
1985         else
1986                 rctx = 0;
1987
1988         if (recursion[rctx])
1989                 return -1;
1990
1991         recursion[rctx]++;
1992         barrier();
1993
1994         return rctx;
1995 }
1996
1997 static inline void put_recursion_context(int *recursion, int rctx)
1998 {
1999         barrier();
2000         recursion[rctx]--;
2001 }
2002
2003 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2004 {
2005         int cpu;
2006         struct callchain_cpus_entries *entries;
2007
2008         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2009         if (*rctx == -1)
2010                 return NULL;
2011
2012         entries = rcu_dereference(callchain_cpus_entries);
2013         if (!entries)
2014                 return NULL;
2015
2016         cpu = smp_processor_id();
2017
2018         return &entries->cpu_entries[cpu][*rctx];
2019 }
2020
2021 static void
2022 put_callchain_entry(int rctx)
2023 {
2024         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2025 }
2026
2027 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2028 {
2029         int rctx;
2030         struct perf_callchain_entry *entry;
2031
2032
2033         entry = get_callchain_entry(&rctx);
2034         if (rctx == -1)
2035                 return NULL;
2036
2037         if (!entry)
2038                 goto exit_put;
2039
2040         entry->nr = 0;
2041
2042         if (!user_mode(regs)) {
2043                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2044                 perf_callchain_kernel(entry, regs);
2045                 if (current->mm)
2046                         regs = task_pt_regs(current);
2047                 else
2048                         regs = NULL;
2049         }
2050
2051         if (regs) {
2052                 perf_callchain_store(entry, PERF_CONTEXT_USER);
2053                 perf_callchain_user(entry, regs);
2054         }
2055
2056 exit_put:
2057         put_callchain_entry(rctx);
2058
2059         return entry;
2060 }
2061
2062 /*
2063  * Initialize the perf_event context in a task_struct:
2064  */
2065 static void __perf_event_init_context(struct perf_event_context *ctx)
2066 {
2067         raw_spin_lock_init(&ctx->lock);
2068         mutex_init(&ctx->mutex);
2069         INIT_LIST_HEAD(&ctx->pinned_groups);
2070         INIT_LIST_HEAD(&ctx->flexible_groups);
2071         INIT_LIST_HEAD(&ctx->event_list);
2072         atomic_set(&ctx->refcount, 1);
2073 }
2074
2075 static struct perf_event_context *
2076 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2077 {
2078         struct perf_event_context *ctx;
2079
2080         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2081         if (!ctx)
2082                 return NULL;
2083
2084         __perf_event_init_context(ctx);
2085         if (task) {
2086                 ctx->task = task;
2087                 get_task_struct(task);
2088         }
2089         ctx->pmu = pmu;
2090
2091         return ctx;
2092 }
2093
2094 static struct task_struct *
2095 find_lively_task_by_vpid(pid_t vpid)
2096 {
2097         struct task_struct *task;
2098         int err;
2099
2100         rcu_read_lock();
2101         if (!vpid)
2102                 task = current;
2103         else
2104                 task = find_task_by_vpid(vpid);
2105         if (task)
2106                 get_task_struct(task);
2107         rcu_read_unlock();
2108
2109         if (!task)
2110                 return ERR_PTR(-ESRCH);
2111
2112         /*
2113          * Can't attach events to a dying task.
2114          */
2115         err = -ESRCH;
2116         if (task->flags & PF_EXITING)
2117                 goto errout;
2118
2119         /* Reuse ptrace permission checks for now. */
2120         err = -EACCES;
2121         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2122                 goto errout;
2123
2124         return task;
2125 errout:
2126         put_task_struct(task);
2127         return ERR_PTR(err);
2128
2129 }
2130
2131 static struct perf_event_context *
2132 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2133 {
2134         struct perf_event_context *ctx;
2135         struct perf_cpu_context *cpuctx;
2136         unsigned long flags;
2137         int ctxn, err;
2138
2139         if (!task && cpu != -1) {
2140                 /* Must be root to operate on a CPU event: */
2141                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2142                         return ERR_PTR(-EACCES);
2143
2144                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2145                         return ERR_PTR(-EINVAL);
2146
2147                 /*
2148                  * We could be clever and allow to attach a event to an
2149                  * offline CPU and activate it when the CPU comes up, but
2150                  * that's for later.
2151                  */
2152                 if (!cpu_online(cpu))
2153                         return ERR_PTR(-ENODEV);
2154
2155                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2156                 ctx = &cpuctx->ctx;
2157                 get_ctx(ctx);
2158
2159                 return ctx;
2160         }
2161
2162         err = -EINVAL;
2163         ctxn = pmu->task_ctx_nr;
2164         if (ctxn < 0)
2165                 goto errout;
2166
2167 retry:
2168         ctx = perf_lock_task_context(task, ctxn, &flags);
2169         if (ctx) {
2170                 unclone_ctx(ctx);
2171                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2172         }
2173
2174         if (!ctx) {
2175                 ctx = alloc_perf_context(pmu, task);
2176                 err = -ENOMEM;
2177                 if (!ctx)
2178                         goto errout;
2179
2180                 get_ctx(ctx);
2181
2182                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2183                         /*
2184                          * We raced with some other task; use
2185                          * the context they set.
2186                          */
2187                         put_task_struct(task);
2188                         kfree(ctx);
2189                         goto retry;
2190                 }
2191         }
2192
2193         put_task_struct(task);
2194         return ctx;
2195
2196 errout:
2197         put_task_struct(task);
2198         return ERR_PTR(err);
2199 }
2200
2201 static void perf_event_free_filter(struct perf_event *event);
2202
2203 static void free_event_rcu(struct rcu_head *head)
2204 {
2205         struct perf_event *event;
2206
2207         event = container_of(head, struct perf_event, rcu_head);
2208         if (event->ns)
2209                 put_pid_ns(event->ns);
2210         perf_event_free_filter(event);
2211         kfree(event);
2212 }
2213
2214 static void perf_buffer_put(struct perf_buffer *buffer);
2215
2216 static void free_event(struct perf_event *event)
2217 {
2218         irq_work_sync(&event->pending);
2219
2220         if (!event->parent) {
2221                 atomic_dec(&nr_events);
2222                 if (event->attr.mmap || event->attr.mmap_data)
2223                         atomic_dec(&nr_mmap_events);
2224                 if (event->attr.comm)
2225                         atomic_dec(&nr_comm_events);
2226                 if (event->attr.task)
2227                         atomic_dec(&nr_task_events);
2228                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2229                         put_callchain_buffers();
2230         }
2231
2232         if (event->buffer) {
2233                 perf_buffer_put(event->buffer);
2234                 event->buffer = NULL;
2235         }
2236
2237         if (event->destroy)
2238                 event->destroy(event);
2239
2240         if (event->ctx)
2241                 put_ctx(event->ctx);
2242
2243         call_rcu(&event->rcu_head, free_event_rcu);
2244 }
2245
2246 int perf_event_release_kernel(struct perf_event *event)
2247 {
2248         struct perf_event_context *ctx = event->ctx;
2249
2250         /*
2251          * Remove from the PMU, can't get re-enabled since we got
2252          * here because the last ref went.
2253          */
2254         perf_event_disable(event);
2255
2256         WARN_ON_ONCE(ctx->parent_ctx);
2257         /*
2258          * There are two ways this annotation is useful:
2259          *
2260          *  1) there is a lock recursion from perf_event_exit_task
2261          *     see the comment there.
2262          *
2263          *  2) there is a lock-inversion with mmap_sem through
2264          *     perf_event_read_group(), which takes faults while
2265          *     holding ctx->mutex, however this is called after
2266          *     the last filedesc died, so there is no possibility
2267          *     to trigger the AB-BA case.
2268          */
2269         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2270         raw_spin_lock_irq(&ctx->lock);
2271         perf_group_detach(event);
2272         list_del_event(event, ctx);
2273         raw_spin_unlock_irq(&ctx->lock);
2274         mutex_unlock(&ctx->mutex);
2275
2276         mutex_lock(&event->owner->perf_event_mutex);
2277         list_del_init(&event->owner_entry);
2278         mutex_unlock(&event->owner->perf_event_mutex);
2279         put_task_struct(event->owner);
2280
2281         free_event(event);
2282
2283         return 0;
2284 }
2285 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2286
2287 /*
2288  * Called when the last reference to the file is gone.
2289  */
2290 static int perf_release(struct inode *inode, struct file *file)
2291 {
2292         struct perf_event *event = file->private_data;
2293
2294         file->private_data = NULL;
2295
2296         return perf_event_release_kernel(event);
2297 }
2298
2299 static int perf_event_read_size(struct perf_event *event)
2300 {
2301         int entry = sizeof(u64); /* value */
2302         int size = 0;
2303         int nr = 1;
2304
2305         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2306                 size += sizeof(u64);
2307
2308         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2309                 size += sizeof(u64);
2310
2311         if (event->attr.read_format & PERF_FORMAT_ID)
2312                 entry += sizeof(u64);
2313
2314         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2315                 nr += event->group_leader->nr_siblings;
2316                 size += sizeof(u64);
2317         }
2318
2319         size += entry * nr;
2320
2321         return size;
2322 }
2323
2324 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2325 {
2326         struct perf_event *child;
2327         u64 total = 0;
2328
2329         *enabled = 0;
2330         *running = 0;
2331
2332         mutex_lock(&event->child_mutex);
2333         total += perf_event_read(event);
2334         *enabled += event->total_time_enabled +
2335                         atomic64_read(&event->child_total_time_enabled);
2336         *running += event->total_time_running +
2337                         atomic64_read(&event->child_total_time_running);
2338
2339         list_for_each_entry(child, &event->child_list, child_list) {
2340                 total += perf_event_read(child);
2341                 *enabled += child->total_time_enabled;
2342                 *running += child->total_time_running;
2343         }
2344         mutex_unlock(&event->child_mutex);
2345
2346         return total;
2347 }
2348 EXPORT_SYMBOL_GPL(perf_event_read_value);
2349
2350 static int perf_event_read_group(struct perf_event *event,
2351                                    u64 read_format, char __user *buf)
2352 {
2353         struct perf_event *leader = event->group_leader, *sub;
2354         int n = 0, size = 0, ret = -EFAULT;
2355         struct perf_event_context *ctx = leader->ctx;
2356         u64 values[5];
2357         u64 count, enabled, running;
2358
2359         mutex_lock(&ctx->mutex);
2360         count = perf_event_read_value(leader, &enabled, &running);
2361
2362         values[n++] = 1 + leader->nr_siblings;
2363         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2364                 values[n++] = enabled;
2365         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2366                 values[n++] = running;
2367         values[n++] = count;
2368         if (read_format & PERF_FORMAT_ID)
2369                 values[n++] = primary_event_id(leader);
2370
2371         size = n * sizeof(u64);
2372
2373         if (copy_to_user(buf, values, size))
2374                 goto unlock;
2375
2376         ret = size;
2377
2378         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2379                 n = 0;
2380
2381                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2382                 if (read_format & PERF_FORMAT_ID)
2383                         values[n++] = primary_event_id(sub);
2384
2385                 size = n * sizeof(u64);
2386
2387                 if (copy_to_user(buf + ret, values, size)) {
2388                         ret = -EFAULT;
2389                         goto unlock;
2390                 }
2391
2392                 ret += size;
2393         }
2394 unlock:
2395         mutex_unlock(&ctx->mutex);
2396
2397         return ret;
2398 }
2399
2400 static int perf_event_read_one(struct perf_event *event,
2401                                  u64 read_format, char __user *buf)
2402 {
2403         u64 enabled, running;
2404         u64 values[4];
2405         int n = 0;
2406
2407         values[n++] = perf_event_read_value(event, &enabled, &running);
2408         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2409                 values[n++] = enabled;
2410         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2411                 values[n++] = running;
2412         if (read_format & PERF_FORMAT_ID)
2413                 values[n++] = primary_event_id(event);
2414
2415         if (copy_to_user(buf, values, n * sizeof(u64)))
2416                 return -EFAULT;
2417
2418         return n * sizeof(u64);
2419 }
2420
2421 /*
2422  * Read the performance event - simple non blocking version for now
2423  */
2424 static ssize_t
2425 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2426 {
2427         u64 read_format = event->attr.read_format;
2428         int ret;
2429
2430         /*
2431          * Return end-of-file for a read on a event that is in
2432          * error state (i.e. because it was pinned but it couldn't be
2433          * scheduled on to the CPU at some point).
2434          */
2435         if (event->state == PERF_EVENT_STATE_ERROR)
2436                 return 0;
2437
2438         if (count < perf_event_read_size(event))
2439                 return -ENOSPC;
2440
2441         WARN_ON_ONCE(event->ctx->parent_ctx);
2442         if (read_format & PERF_FORMAT_GROUP)
2443                 ret = perf_event_read_group(event, read_format, buf);
2444         else
2445                 ret = perf_event_read_one(event, read_format, buf);
2446
2447         return ret;
2448 }
2449
2450 static ssize_t
2451 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2452 {
2453         struct perf_event *event = file->private_data;
2454
2455         return perf_read_hw(event, buf, count);
2456 }
2457
2458 static unsigned int perf_poll(struct file *file, poll_table *wait)
2459 {
2460         struct perf_event *event = file->private_data;
2461         struct perf_buffer *buffer;
2462         unsigned int events = POLL_HUP;
2463
2464         rcu_read_lock();
2465         buffer = rcu_dereference(event->buffer);
2466         if (buffer)
2467                 events = atomic_xchg(&buffer->poll, 0);
2468         rcu_read_unlock();
2469
2470         poll_wait(file, &event->waitq, wait);
2471
2472         return events;
2473 }
2474
2475 static void perf_event_reset(struct perf_event *event)
2476 {
2477         (void)perf_event_read(event);
2478         local64_set(&event->count, 0);
2479         perf_event_update_userpage(event);
2480 }
2481
2482 /*
2483  * Holding the top-level event's child_mutex means that any
2484  * descendant process that has inherited this event will block
2485  * in sync_child_event if it goes to exit, thus satisfying the
2486  * task existence requirements of perf_event_enable/disable.
2487  */
2488 static void perf_event_for_each_child(struct perf_event *event,
2489                                         void (*func)(struct perf_event *))
2490 {
2491         struct perf_event *child;
2492
2493         WARN_ON_ONCE(event->ctx->parent_ctx);
2494         mutex_lock(&event->child_mutex);
2495         func(event);
2496         list_for_each_entry(child, &event->child_list, child_list)
2497                 func(child);
2498         mutex_unlock(&event->child_mutex);
2499 }
2500
2501 static void perf_event_for_each(struct perf_event *event,
2502                                   void (*func)(struct perf_event *))
2503 {
2504         struct perf_event_context *ctx = event->ctx;
2505         struct perf_event *sibling;
2506
2507         WARN_ON_ONCE(ctx->parent_ctx);
2508         mutex_lock(&ctx->mutex);
2509         event = event->group_leader;
2510
2511         perf_event_for_each_child(event, func);
2512         func(event);
2513         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2514                 perf_event_for_each_child(event, func);
2515         mutex_unlock(&ctx->mutex);
2516 }
2517
2518 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2519 {
2520         struct perf_event_context *ctx = event->ctx;
2521         unsigned long size;
2522         int ret = 0;
2523         u64 value;
2524
2525         if (!event->attr.sample_period)
2526                 return -EINVAL;
2527
2528         size = copy_from_user(&value, arg, sizeof(value));
2529         if (size != sizeof(value))
2530                 return -EFAULT;
2531
2532         if (!value)
2533                 return -EINVAL;
2534
2535         raw_spin_lock_irq(&ctx->lock);
2536         if (event->attr.freq) {
2537                 if (value > sysctl_perf_event_sample_rate) {
2538                         ret = -EINVAL;
2539                         goto unlock;
2540                 }
2541
2542                 event->attr.sample_freq = value;
2543         } else {
2544                 event->attr.sample_period = value;
2545                 event->hw.sample_period = value;
2546         }
2547 unlock:
2548         raw_spin_unlock_irq(&ctx->lock);
2549
2550         return ret;
2551 }
2552
2553 static const struct file_operations perf_fops;
2554
2555 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2556 {
2557         struct file *file;
2558
2559         file = fget_light(fd, fput_needed);
2560         if (!file)
2561                 return ERR_PTR(-EBADF);
2562
2563         if (file->f_op != &perf_fops) {
2564                 fput_light(file, *fput_needed);
2565                 *fput_needed = 0;
2566                 return ERR_PTR(-EBADF);
2567         }
2568
2569         return file->private_data;
2570 }
2571
2572 static int perf_event_set_output(struct perf_event *event,
2573                                  struct perf_event *output_event);
2574 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2575
2576 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2577 {
2578         struct perf_event *event = file->private_data;
2579         void (*func)(struct perf_event *);
2580         u32 flags = arg;
2581
2582         switch (cmd) {
2583         case PERF_EVENT_IOC_ENABLE:
2584                 func = perf_event_enable;
2585                 break;
2586         case PERF_EVENT_IOC_DISABLE:
2587                 func = perf_event_disable;
2588                 break;
2589         case PERF_EVENT_IOC_RESET:
2590                 func = perf_event_reset;
2591                 break;
2592
2593         case PERF_EVENT_IOC_REFRESH:
2594                 return perf_event_refresh(event, arg);
2595
2596         case PERF_EVENT_IOC_PERIOD:
2597                 return perf_event_period(event, (u64 __user *)arg);
2598
2599         case PERF_EVENT_IOC_SET_OUTPUT:
2600         {
2601                 struct perf_event *output_event = NULL;
2602                 int fput_needed = 0;
2603                 int ret;
2604
2605                 if (arg != -1) {
2606                         output_event = perf_fget_light(arg, &fput_needed);
2607                         if (IS_ERR(output_event))
2608                                 return PTR_ERR(output_event);
2609                 }
2610
2611                 ret = perf_event_set_output(event, output_event);
2612                 if (output_event)
2613                         fput_light(output_event->filp, fput_needed);
2614
2615                 return ret;
2616         }
2617
2618         case PERF_EVENT_IOC_SET_FILTER:
2619                 return perf_event_set_filter(event, (void __user *)arg);
2620
2621         default:
2622                 return -ENOTTY;
2623         }
2624
2625         if (flags & PERF_IOC_FLAG_GROUP)
2626                 perf_event_for_each(event, func);
2627         else
2628                 perf_event_for_each_child(event, func);
2629
2630         return 0;
2631 }
2632
2633 int perf_event_task_enable(void)
2634 {
2635         struct perf_event *event;
2636
2637         mutex_lock(&current->perf_event_mutex);
2638         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2639                 perf_event_for_each_child(event, perf_event_enable);
2640         mutex_unlock(&current->perf_event_mutex);
2641
2642         return 0;
2643 }
2644
2645 int perf_event_task_disable(void)
2646 {
2647         struct perf_event *event;
2648
2649         mutex_lock(&current->perf_event_mutex);
2650         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2651                 perf_event_for_each_child(event, perf_event_disable);
2652         mutex_unlock(&current->perf_event_mutex);
2653
2654         return 0;
2655 }
2656
2657 #ifndef PERF_EVENT_INDEX_OFFSET
2658 # define PERF_EVENT_INDEX_OFFSET 0
2659 #endif
2660
2661 static int perf_event_index(struct perf_event *event)
2662 {
2663         if (event->hw.state & PERF_HES_STOPPED)
2664                 return 0;
2665
2666         if (event->state != PERF_EVENT_STATE_ACTIVE)
2667                 return 0;
2668
2669         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2670 }
2671
2672 /*
2673  * Callers need to ensure there can be no nesting of this function, otherwise
2674  * the seqlock logic goes bad. We can not serialize this because the arch
2675  * code calls this from NMI context.
2676  */
2677 void perf_event_update_userpage(struct perf_event *event)
2678 {
2679         struct perf_event_mmap_page *userpg;
2680         struct perf_buffer *buffer;
2681
2682         rcu_read_lock();
2683         buffer = rcu_dereference(event->buffer);
2684         if (!buffer)
2685                 goto unlock;
2686
2687         userpg = buffer->user_page;
2688
2689         /*
2690          * Disable preemption so as to not let the corresponding user-space
2691          * spin too long if we get preempted.
2692          */
2693         preempt_disable();
2694         ++userpg->lock;
2695         barrier();
2696         userpg->index = perf_event_index(event);
2697         userpg->offset = perf_event_count(event);
2698         if (event->state == PERF_EVENT_STATE_ACTIVE)
2699                 userpg->offset -= local64_read(&event->hw.prev_count);
2700
2701         userpg->time_enabled = event->total_time_enabled +
2702                         atomic64_read(&event->child_total_time_enabled);
2703
2704         userpg->time_running = event->total_time_running +
2705                         atomic64_read(&event->child_total_time_running);
2706
2707         barrier();
2708         ++userpg->lock;
2709         preempt_enable();
2710 unlock:
2711         rcu_read_unlock();
2712 }
2713
2714 static unsigned long perf_data_size(struct perf_buffer *buffer);
2715
2716 static void
2717 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2718 {
2719         long max_size = perf_data_size(buffer);
2720
2721         if (watermark)
2722                 buffer->watermark = min(max_size, watermark);
2723
2724         if (!buffer->watermark)
2725                 buffer->watermark = max_size / 2;
2726
2727         if (flags & PERF_BUFFER_WRITABLE)
2728                 buffer->writable = 1;
2729
2730         atomic_set(&buffer->refcount, 1);
2731 }
2732
2733 #ifndef CONFIG_PERF_USE_VMALLOC
2734
2735 /*
2736  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2737  */
2738
2739 static struct page *
2740 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2741 {
2742         if (pgoff > buffer->nr_pages)
2743                 return NULL;
2744
2745         if (pgoff == 0)
2746                 return virt_to_page(buffer->user_page);
2747
2748         return virt_to_page(buffer->data_pages[pgoff - 1]);
2749 }
2750
2751 static void *perf_mmap_alloc_page(int cpu)
2752 {
2753         struct page *page;
2754         int node;
2755
2756         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2757         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2758         if (!page)
2759                 return NULL;
2760
2761         return page_address(page);
2762 }
2763
2764 static struct perf_buffer *
2765 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2766 {
2767         struct perf_buffer *buffer;
2768         unsigned long size;
2769         int i;
2770
2771         size = sizeof(struct perf_buffer);
2772         size += nr_pages * sizeof(void *);
2773
2774         buffer = kzalloc(size, GFP_KERNEL);
2775         if (!buffer)
2776                 goto fail;
2777
2778         buffer->user_page = perf_mmap_alloc_page(cpu);
2779         if (!buffer->user_page)
2780                 goto fail_user_page;
2781
2782         for (i = 0; i < nr_pages; i++) {
2783                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2784                 if (!buffer->data_pages[i])
2785                         goto fail_data_pages;
2786         }
2787
2788         buffer->nr_pages = nr_pages;
2789
2790         perf_buffer_init(buffer, watermark, flags);
2791
2792         return buffer;
2793
2794 fail_data_pages:
2795         for (i--; i >= 0; i--)
2796                 free_page((unsigned long)buffer->data_pages[i]);
2797
2798         free_page((unsigned long)buffer->user_page);
2799
2800 fail_user_page:
2801         kfree(buffer);
2802
2803 fail:
2804         return NULL;
2805 }
2806
2807 static void perf_mmap_free_page(unsigned long addr)
2808 {
2809         struct page *page = virt_to_page((void *)addr);
2810
2811         page->mapping = NULL;
2812         __free_page(page);
2813 }
2814
2815 static void perf_buffer_free(struct perf_buffer *buffer)
2816 {
2817         int i;
2818
2819         perf_mmap_free_page((unsigned long)buffer->user_page);
2820         for (i = 0; i < buffer->nr_pages; i++)
2821                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2822         kfree(buffer);
2823 }
2824
2825 static inline int page_order(struct perf_buffer *buffer)
2826 {
2827         return 0;
2828 }
2829
2830 #else
2831
2832 /*
2833  * Back perf_mmap() with vmalloc memory.
2834  *
2835  * Required for architectures that have d-cache aliasing issues.
2836  */
2837
2838 static inline int page_order(struct perf_buffer *buffer)
2839 {
2840         return buffer->page_order;
2841 }
2842
2843 static struct page *
2844 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2845 {
2846         if (pgoff > (1UL << page_order(buffer)))
2847                 return NULL;
2848
2849         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2850 }
2851
2852 static void perf_mmap_unmark_page(void *addr)
2853 {
2854         struct page *page = vmalloc_to_page(addr);
2855
2856         page->mapping = NULL;
2857 }
2858
2859 static void perf_buffer_free_work(struct work_struct *work)
2860 {
2861         struct perf_buffer *buffer;
2862         void *base;
2863         int i, nr;
2864
2865         buffer = container_of(work, struct perf_buffer, work);
2866         nr = 1 << page_order(buffer);
2867
2868         base = buffer->user_page;
2869         for (i = 0; i < nr + 1; i++)
2870                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2871
2872         vfree(base);
2873         kfree(buffer);
2874 }
2875
2876 static void perf_buffer_free(struct perf_buffer *buffer)
2877 {
2878         schedule_work(&buffer->work);
2879 }
2880
2881 static struct perf_buffer *
2882 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2883 {
2884         struct perf_buffer *buffer;
2885         unsigned long size;
2886         void *all_buf;
2887
2888         size = sizeof(struct perf_buffer);
2889         size += sizeof(void *);
2890
2891         buffer = kzalloc(size, GFP_KERNEL);
2892         if (!buffer)
2893                 goto fail;
2894
2895         INIT_WORK(&buffer->work, perf_buffer_free_work);
2896
2897         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2898         if (!all_buf)
2899                 goto fail_all_buf;
2900
2901         buffer->user_page = all_buf;
2902         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2903         buffer->page_order = ilog2(nr_pages);
2904         buffer->nr_pages = 1;
2905
2906         perf_buffer_init(buffer, watermark, flags);
2907
2908         return buffer;
2909
2910 fail_all_buf:
2911         kfree(buffer);
2912
2913 fail:
2914         return NULL;
2915 }
2916
2917 #endif
2918
2919 static unsigned long perf_data_size(struct perf_buffer *buffer)
2920 {
2921         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2922 }
2923
2924 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2925 {
2926         struct perf_event *event = vma->vm_file->private_data;
2927         struct perf_buffer *buffer;
2928         int ret = VM_FAULT_SIGBUS;
2929
2930         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2931                 if (vmf->pgoff == 0)
2932                         ret = 0;
2933                 return ret;
2934         }
2935
2936         rcu_read_lock();
2937         buffer = rcu_dereference(event->buffer);
2938         if (!buffer)
2939                 goto unlock;
2940
2941         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2942                 goto unlock;
2943
2944         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2945         if (!vmf->page)
2946                 goto unlock;
2947
2948         get_page(vmf->page);
2949         vmf->page->mapping = vma->vm_file->f_mapping;
2950         vmf->page->index   = vmf->pgoff;
2951
2952         ret = 0;
2953 unlock:
2954         rcu_read_unlock();
2955
2956         return ret;
2957 }
2958
2959 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2960 {
2961         struct perf_buffer *buffer;
2962
2963         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2964         perf_buffer_free(buffer);
2965 }
2966
2967 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2968 {
2969         struct perf_buffer *buffer;
2970
2971         rcu_read_lock();
2972         buffer = rcu_dereference(event->buffer);
2973         if (buffer) {
2974                 if (!atomic_inc_not_zero(&buffer->refcount))
2975                         buffer = NULL;
2976         }
2977         rcu_read_unlock();
2978
2979         return buffer;
2980 }
2981
2982 static void perf_buffer_put(struct perf_buffer *buffer)
2983 {
2984         if (!atomic_dec_and_test(&buffer->refcount))
2985                 return;
2986
2987         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2988 }
2989
2990 static void perf_mmap_open(struct vm_area_struct *vma)
2991 {
2992         struct perf_event *event = vma->vm_file->private_data;
2993
2994         atomic_inc(&event->mmap_count);
2995 }
2996
2997 static void perf_mmap_close(struct vm_area_struct *vma)
2998 {
2999         struct perf_event *event = vma->vm_file->private_data;
3000
3001         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3002                 unsigned long size = perf_data_size(event->buffer);
3003                 struct user_struct *user = event->mmap_user;
3004                 struct perf_buffer *buffer = event->buffer;
3005
3006                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3007                 vma->vm_mm->locked_vm -= event->mmap_locked;
3008                 rcu_assign_pointer(event->buffer, NULL);
3009                 mutex_unlock(&event->mmap_mutex);
3010
3011                 perf_buffer_put(buffer);
3012                 free_uid(user);
3013         }
3014 }
3015
3016 static const struct vm_operations_struct perf_mmap_vmops = {
3017         .open           = perf_mmap_open,
3018         .close          = perf_mmap_close,
3019         .fault          = perf_mmap_fault,
3020         .page_mkwrite   = perf_mmap_fault,
3021 };
3022
3023 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3024 {
3025         struct perf_event *event = file->private_data;
3026         unsigned long user_locked, user_lock_limit;
3027         struct user_struct *user = current_user();
3028         unsigned long locked, lock_limit;
3029         struct perf_buffer *buffer;
3030         unsigned long vma_size;
3031         unsigned long nr_pages;
3032         long user_extra, extra;
3033         int ret = 0, flags = 0;
3034
3035         /*
3036          * Don't allow mmap() of inherited per-task counters. This would
3037          * create a performance issue due to all children writing to the
3038          * same buffer.
3039          */
3040         if (event->cpu == -1 && event->attr.inherit)
3041                 return -EINVAL;
3042
3043         if (!(vma->vm_flags & VM_SHARED))
3044                 return -EINVAL;
3045
3046         vma_size = vma->vm_end - vma->vm_start;
3047         nr_pages = (vma_size / PAGE_SIZE) - 1;
3048
3049         /*
3050          * If we have buffer pages ensure they're a power-of-two number, so we
3051          * can do bitmasks instead of modulo.
3052          */
3053         if (nr_pages != 0 && !is_power_of_2(nr_pages))
3054                 return -EINVAL;
3055
3056         if (vma_size != PAGE_SIZE * (1 + nr_pages))
3057                 return -EINVAL;
3058
3059         if (vma->vm_pgoff != 0)
3060                 return -EINVAL;
3061
3062         WARN_ON_ONCE(event->ctx->parent_ctx);
3063         mutex_lock(&event->mmap_mutex);
3064         if (event->buffer) {
3065                 if (event->buffer->nr_pages == nr_pages)
3066                         atomic_inc(&event->buffer->refcount);
3067                 else
3068                         ret = -EINVAL;
3069                 goto unlock;
3070         }
3071
3072         user_extra = nr_pages + 1;
3073         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3074
3075         /*
3076          * Increase the limit linearly with more CPUs:
3077          */
3078         user_lock_limit *= num_online_cpus();
3079
3080         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3081
3082         extra = 0;
3083         if (user_locked > user_lock_limit)
3084                 extra = user_locked - user_lock_limit;
3085
3086         lock_limit = rlimit(RLIMIT_MEMLOCK);
3087         lock_limit >>= PAGE_SHIFT;
3088         locked = vma->vm_mm->locked_vm + extra;
3089
3090         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3091                 !capable(CAP_IPC_LOCK)) {
3092                 ret = -EPERM;
3093                 goto unlock;
3094         }
3095
3096         WARN_ON(event->buffer);
3097
3098         if (vma->vm_flags & VM_WRITE)
3099                 flags |= PERF_BUFFER_WRITABLE;
3100
3101         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3102                                    event->cpu, flags);
3103         if (!buffer) {
3104                 ret = -ENOMEM;
3105                 goto unlock;
3106         }
3107         rcu_assign_pointer(event->buffer, buffer);
3108
3109         atomic_long_add(user_extra, &user->locked_vm);
3110         event->mmap_locked = extra;
3111         event->mmap_user = get_current_user();
3112         vma->vm_mm->locked_vm += event->mmap_locked;
3113
3114 unlock:
3115         if (!ret)
3116                 atomic_inc(&event->mmap_count);
3117         mutex_unlock(&event->mmap_mutex);
3118
3119         vma->vm_flags |= VM_RESERVED;
3120         vma->vm_ops = &perf_mmap_vmops;
3121
3122         return ret;
3123 }
3124
3125 static int perf_fasync(int fd, struct file *filp, int on)
3126 {
3127         struct inode *inode = filp->f_path.dentry->d_inode;
3128         struct perf_event *event = filp->private_data;
3129         int retval;
3130
3131         mutex_lock(&inode->i_mutex);
3132         retval = fasync_helper(fd, filp, on, &event->fasync);
3133         mutex_unlock(&inode->i_mutex);
3134
3135         if (retval < 0)
3136                 return retval;
3137
3138         return 0;
3139 }
3140
3141 static const struct file_operations perf_fops = {
3142         .llseek                 = no_llseek,
3143         .release                = perf_release,
3144         .read                   = perf_read,
3145         .poll                   = perf_poll,
3146         .unlocked_ioctl         = perf_ioctl,
3147         .compat_ioctl           = perf_ioctl,
3148         .mmap                   = perf_mmap,
3149         .fasync                 = perf_fasync,
3150 };
3151
3152 /*
3153  * Perf event wakeup
3154  *
3155  * If there's data, ensure we set the poll() state and publish everything
3156  * to user-space before waking everybody up.
3157  */
3158
3159 void perf_event_wakeup(struct perf_event *event)
3160 {
3161         wake_up_all(&event->waitq);
3162
3163         if (event->pending_kill) {
3164                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3165                 event->pending_kill = 0;
3166         }
3167 }
3168
3169 static void perf_pending_event(struct irq_work *entry)
3170 {
3171         struct perf_event *event = container_of(entry,
3172                         struct perf_event, pending);
3173
3174         if (event->pending_disable) {
3175                 event->pending_disable = 0;
3176                 __perf_event_disable(event);
3177         }
3178
3179         if (event->pending_wakeup) {
3180                 event->pending_wakeup = 0;
3181                 perf_event_wakeup(event);
3182         }
3183 }
3184
3185 /*
3186  * We assume there is only KVM supporting the callbacks.
3187  * Later on, we might change it to a list if there is
3188  * another virtualization implementation supporting the callbacks.
3189  */
3190 struct perf_guest_info_callbacks *perf_guest_cbs;
3191
3192 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3193 {
3194         perf_guest_cbs = cbs;
3195         return 0;
3196 }
3197 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3198
3199 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3200 {
3201         perf_guest_cbs = NULL;
3202         return 0;
3203 }
3204 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3205
3206 /*
3207  * Output
3208  */
3209 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3210                               unsigned long offset, unsigned long head)
3211 {
3212         unsigned long mask;
3213
3214         if (!buffer->writable)
3215                 return true;
3216
3217         mask = perf_data_size(buffer) - 1;
3218
3219         offset = (offset - tail) & mask;
3220         head   = (head   - tail) & mask;
3221
3222         if ((int)(head - offset) < 0)
3223                 return false;
3224
3225         return true;
3226 }
3227
3228 static void perf_output_wakeup(struct perf_output_handle *handle)
3229 {
3230         atomic_set(&handle->buffer->poll, POLL_IN);
3231
3232         if (handle->nmi) {
3233                 handle->event->pending_wakeup = 1;
3234                 irq_work_queue(&handle->event->pending);
3235         } else
3236                 perf_event_wakeup(handle->event);
3237 }
3238
3239 /*
3240  * We need to ensure a later event_id doesn't publish a head when a former
3241  * event isn't done writing. However since we need to deal with NMIs we
3242  * cannot fully serialize things.
3243  *
3244  * We only publish the head (and generate a wakeup) when the outer-most
3245  * event completes.
3246  */
3247 static void perf_output_get_handle(struct perf_output_handle *handle)
3248 {
3249         struct perf_buffer *buffer = handle->buffer;
3250
3251         preempt_disable();
3252         local_inc(&buffer->nest);
3253         handle->wakeup = local_read(&buffer->wakeup);
3254 }
3255
3256 static void perf_output_put_handle(struct perf_output_handle *handle)
3257 {
3258         struct perf_buffer *buffer = handle->buffer;
3259         unsigned long head;
3260
3261 again:
3262         head = local_read(&buffer->head);
3263
3264         /*
3265          * IRQ/NMI can happen here, which means we can miss a head update.
3266          */
3267
3268         if (!local_dec_and_test(&buffer->nest))
3269                 goto out;
3270
3271         /*
3272          * Publish the known good head. Rely on the full barrier implied
3273          * by atomic_dec_and_test() order the buffer->head read and this
3274          * write.
3275          */
3276         buffer->user_page->data_head = head;
3277
3278         /*
3279          * Now check if we missed an update, rely on the (compiler)
3280          * barrier in atomic_dec_and_test() to re-read buffer->head.
3281          */
3282         if (unlikely(head != local_read(&buffer->head))) {
3283                 local_inc(&buffer->nest);
3284                 goto again;
3285         }
3286
3287         if (handle->wakeup != local_read(&buffer->wakeup))
3288                 perf_output_wakeup(handle);
3289
3290 out:
3291         preempt_enable();
3292 }
3293
3294 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3295                       const void *buf, unsigned int len)
3296 {
3297         do {
3298                 unsigned long size = min_t(unsigned long, handle->size, len);
3299
3300                 memcpy(handle->addr, buf, size);
3301
3302                 len -= size;
3303                 handle->addr += size;
3304                 buf += size;
3305                 handle->size -= size;
3306                 if (!handle->size) {
3307                         struct perf_buffer *buffer = handle->buffer;
3308
3309                         handle->page++;
3310                         handle->page &= buffer->nr_pages - 1;
3311                         handle->addr = buffer->data_pages[handle->page];
3312                         handle->size = PAGE_SIZE << page_order(buffer);
3313                 }
3314         } while (len);
3315 }
3316
3317 int perf_output_begin(struct perf_output_handle *handle,
3318                       struct perf_event *event, unsigned int size,
3319                       int nmi, int sample)
3320 {
3321         struct perf_buffer *buffer;
3322         unsigned long tail, offset, head;
3323         int have_lost;
3324         struct {
3325                 struct perf_event_header header;
3326                 u64                      id;
3327                 u64                      lost;
3328         } lost_event;
3329
3330         rcu_read_lock();
3331         /*
3332          * For inherited events we send all the output towards the parent.
3333          */
3334         if (event->parent)
3335                 event = event->parent;
3336
3337         buffer = rcu_dereference(event->buffer);
3338         if (!buffer)
3339                 goto out;
3340
3341         handle->buffer  = buffer;
3342         handle->event   = event;
3343         handle->nmi     = nmi;
3344         handle->sample  = sample;
3345
3346         if (!buffer->nr_pages)
3347                 goto out;
3348
3349         have_lost = local_read(&buffer->lost);
3350         if (have_lost)
3351                 size += sizeof(lost_event);
3352
3353         perf_output_get_handle(handle);
3354
3355         do {
3356                 /*
3357                  * Userspace could choose to issue a mb() before updating the
3358                  * tail pointer. So that all reads will be completed before the
3359                  * write is issued.
3360                  */
3361                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3362                 smp_rmb();
3363                 offset = head = local_read(&buffer->head);
3364                 head += size;
3365                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3366                         goto fail;
3367         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3368
3369         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3370                 local_add(buffer->watermark, &buffer->wakeup);
3371
3372         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3373         handle->page &= buffer->nr_pages - 1;
3374         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3375         handle->addr = buffer->data_pages[handle->page];
3376         handle->addr += handle->size;
3377         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3378
3379         if (have_lost) {
3380                 lost_event.header.type = PERF_RECORD_LOST;
3381                 lost_event.header.misc = 0;
3382                 lost_event.header.size = sizeof(lost_event);
3383                 lost_event.id          = event->id;
3384                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3385
3386                 perf_output_put(handle, lost_event);
3387         }
3388
3389         return 0;
3390
3391 fail:
3392         local_inc(&buffer->lost);
3393         perf_output_put_handle(handle);
3394 out:
3395         rcu_read_unlock();
3396
3397         return -ENOSPC;
3398 }
3399
3400 void perf_output_end(struct perf_output_handle *handle)
3401 {
3402         struct perf_event *event = handle->event;
3403         struct perf_buffer *buffer = handle->buffer;
3404
3405         int wakeup_events = event->attr.wakeup_events;
3406
3407         if (handle->sample && wakeup_events) {
3408                 int events = local_inc_return(&buffer->events);
3409                 if (events >= wakeup_events) {
3410                         local_sub(wakeup_events, &buffer->events);
3411                         local_inc(&buffer->wakeup);
3412                 }
3413         }
3414
3415         perf_output_put_handle(handle);
3416         rcu_read_unlock();
3417 }
3418
3419 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3420 {
3421         /*
3422          * only top level events have the pid namespace they were created in
3423          */
3424         if (event->parent)
3425                 event = event->parent;
3426
3427         return task_tgid_nr_ns(p, event->ns);
3428 }
3429
3430 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3431 {
3432         /*
3433          * only top level events have the pid namespace they were created in
3434          */
3435         if (event->parent)
3436                 event = event->parent;
3437
3438         return task_pid_nr_ns(p, event->ns);
3439 }
3440
3441 static void perf_output_read_one(struct perf_output_handle *handle,
3442                                  struct perf_event *event)
3443 {
3444         u64 read_format = event->attr.read_format;
3445         u64 values[4];
3446         int n = 0;
3447
3448         values[n++] = perf_event_count(event);
3449         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3450                 values[n++] = event->total_time_enabled +
3451                         atomic64_read(&event->child_total_time_enabled);
3452         }
3453         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3454                 values[n++] = event->total_time_running +
3455                         atomic64_read(&event->child_total_time_running);
3456         }
3457         if (read_format & PERF_FORMAT_ID)
3458                 values[n++] = primary_event_id(event);
3459
3460         perf_output_copy(handle, values, n * sizeof(u64));
3461 }
3462
3463 /*
3464  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3465  */
3466 static void perf_output_read_group(struct perf_output_handle *handle,
3467                             struct perf_event *event)
3468 {
3469         struct perf_event *leader = event->group_leader, *sub;
3470         u64 read_format = event->attr.read_format;
3471         u64 values[5];
3472         int n = 0;
3473
3474         values[n++] = 1 + leader->nr_siblings;
3475
3476         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3477                 values[n++] = leader->total_time_enabled;
3478
3479         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3480                 values[n++] = leader->total_time_running;
3481
3482         if (leader != event)
3483                 leader->pmu->read(leader);
3484
3485         values[n++] = perf_event_count(leader);
3486         if (read_format & PERF_FORMAT_ID)
3487                 values[n++] = primary_event_id(leader);
3488
3489         perf_output_copy(handle, values, n * sizeof(u64));
3490
3491         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3492                 n = 0;
3493
3494                 if (sub != event)
3495                         sub->pmu->read(sub);
3496
3497                 values[n++] = perf_event_count(sub);
3498                 if (read_format & PERF_FORMAT_ID)
3499                         values[n++] = primary_event_id(sub);
3500
3501                 perf_output_copy(handle, values, n * sizeof(u64));
3502         }
3503 }
3504
3505 static void perf_output_read(struct perf_output_handle *handle,
3506                              struct perf_event *event)
3507 {
3508         if (event->attr.read_format & PERF_FORMAT_GROUP)
3509                 perf_output_read_group(handle, event);
3510         else
3511                 perf_output_read_one(handle, event);
3512 }
3513
3514 void perf_output_sample(struct perf_output_handle *handle,
3515                         struct perf_event_header *header,
3516                         struct perf_sample_data *data,
3517                         struct perf_event *event)
3518 {
3519         u64 sample_type = data->type;
3520
3521         perf_output_put(handle, *header);
3522
3523         if (sample_type & PERF_SAMPLE_IP)
3524                 perf_output_put(handle, data->ip);
3525
3526         if (sample_type & PERF_SAMPLE_TID)
3527                 perf_output_put(handle, data->tid_entry);
3528
3529         if (sample_type & PERF_SAMPLE_TIME)
3530                 perf_output_put(handle, data->time);
3531
3532         if (sample_type & PERF_SAMPLE_ADDR)
3533                 perf_output_put(handle, data->addr);
3534
3535         if (sample_type & PERF_SAMPLE_ID)
3536                 perf_output_put(handle, data->id);
3537
3538         if (sample_type & PERF_SAMPLE_STREAM_ID)
3539                 perf_output_put(handle, data->stream_id);
3540
3541         if (sample_type & PERF_SAMPLE_CPU)
3542                 perf_output_put(handle, data->cpu_entry);
3543
3544         if (sample_type & PERF_SAMPLE_PERIOD)
3545                 perf_output_put(handle, data->period);
3546
3547         if (sample_type & PERF_SAMPLE_READ)
3548                 perf_output_read(handle, event);
3549
3550         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3551                 if (data->callchain) {
3552                         int size = 1;
3553
3554                         if (data->callchain)
3555                                 size += data->callchain->nr;
3556
3557                         size *= sizeof(u64);
3558
3559                         perf_output_copy(handle, data->callchain, size);
3560                 } else {
3561                         u64 nr = 0;
3562                         perf_output_put(handle, nr);
3563                 }
3564         }
3565
3566         if (sample_type & PERF_SAMPLE_RAW) {
3567                 if (data->raw) {
3568                         perf_output_put(handle, data->raw->size);
3569                         perf_output_copy(handle, data->raw->data,
3570                                          data->raw->size);
3571                 } else {
3572                         struct {
3573                                 u32     size;
3574                                 u32     data;
3575                         } raw = {
3576                                 .size = sizeof(u32),
3577                                 .data = 0,
3578                         };
3579                         perf_output_put(handle, raw);
3580                 }
3581         }
3582 }
3583
3584 void perf_prepare_sample(struct perf_event_header *header,
3585                          struct perf_sample_data *data,
3586                          struct perf_event *event,
3587                          struct pt_regs *regs)
3588 {
3589         u64 sample_type = event->attr.sample_type;
3590
3591         data->type = sample_type;
3592
3593         header->type = PERF_RECORD_SAMPLE;
3594         header->size = sizeof(*header);
3595
3596         header->misc = 0;
3597         header->misc |= perf_misc_flags(regs);
3598
3599         if (sample_type & PERF_SAMPLE_IP) {
3600                 data->ip = perf_instruction_pointer(regs);
3601
3602                 header->size += sizeof(data->ip);
3603         }
3604
3605         if (sample_type & PERF_SAMPLE_TID) {
3606                 /* namespace issues */
3607                 data->tid_entry.pid = perf_event_pid(event, current);
3608                 data->tid_entry.tid = perf_event_tid(event, current);
3609
3610                 header->size += sizeof(data->tid_entry);
3611         }
3612
3613         if (sample_type & PERF_SAMPLE_TIME) {
3614                 data->time = perf_clock();
3615
3616                 header->size += sizeof(data->time);
3617         }
3618
3619         if (sample_type & PERF_SAMPLE_ADDR)
3620                 header->size += sizeof(data->addr);
3621
3622         if (sample_type & PERF_SAMPLE_ID) {
3623                 data->id = primary_event_id(event);
3624
3625                 header->size += sizeof(data->id);
3626         }
3627
3628         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3629                 data->stream_id = event->id;
3630
3631                 header->size += sizeof(data->stream_id);
3632         }
3633
3634         if (sample_type & PERF_SAMPLE_CPU) {
3635                 data->cpu_entry.cpu             = raw_smp_processor_id();
3636                 data->cpu_entry.reserved        = 0;
3637
3638                 header->size += sizeof(data->cpu_entry);
3639         }
3640
3641         if (sample_type & PERF_SAMPLE_PERIOD)
3642                 header->size += sizeof(data->period);
3643
3644         if (sample_type & PERF_SAMPLE_READ)
3645                 header->size += perf_event_read_size(event);
3646
3647         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3648                 int size = 1;
3649
3650                 data->callchain = perf_callchain(regs);
3651
3652                 if (data->callchain)
3653                         size += data->callchain->nr;
3654
3655                 header->size += size * sizeof(u64);
3656         }
3657
3658         if (sample_type & PERF_SAMPLE_RAW) {
3659                 int size = sizeof(u32);
3660
3661                 if (data->raw)
3662                         size += data->raw->size;
3663                 else
3664                         size += sizeof(u32);
3665
3666                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3667                 header->size += size;
3668         }
3669 }
3670
3671 static void perf_event_output(struct perf_event *event, int nmi,
3672                                 struct perf_sample_data *data,
3673                                 struct pt_regs *regs)
3674 {
3675         struct perf_output_handle handle;
3676         struct perf_event_header header;
3677
3678         /* protect the callchain buffers */
3679         rcu_read_lock();
3680
3681         perf_prepare_sample(&header, data, event, regs);
3682
3683         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3684                 goto exit;
3685
3686         perf_output_sample(&handle, &header, data, event);
3687
3688         perf_output_end(&handle);
3689
3690 exit:
3691         rcu_read_unlock();
3692 }
3693
3694 /*
3695  * read event_id
3696  */
3697
3698 struct perf_read_event {
3699         struct perf_event_header        header;
3700
3701         u32                             pid;
3702         u32                             tid;
3703 };
3704
3705 static void
3706 perf_event_read_event(struct perf_event *event,
3707                         struct task_struct *task)
3708 {
3709         struct perf_output_handle handle;
3710         struct perf_read_event read_event = {
3711                 .header = {
3712                         .type = PERF_RECORD_READ,
3713                         .misc = 0,
3714                         .size = sizeof(read_event) + perf_event_read_size(event),
3715                 },
3716                 .pid = perf_event_pid(event, task),
3717                 .tid = perf_event_tid(event, task),
3718         };
3719         int ret;
3720
3721         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3722         if (ret)
3723                 return;
3724
3725         perf_output_put(&handle, read_event);
3726         perf_output_read(&handle, event);
3727
3728         perf_output_end(&handle);
3729 }
3730
3731 /*
3732  * task tracking -- fork/exit
3733  *
3734  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3735  */
3736
3737 struct perf_task_event {
3738         struct task_struct              *task;
3739         struct perf_event_context       *task_ctx;
3740
3741         struct {
3742                 struct perf_event_header        header;
3743
3744                 u32                             pid;
3745                 u32                             ppid;
3746                 u32                             tid;
3747                 u32                             ptid;
3748                 u64                             time;
3749         } event_id;
3750 };
3751
3752 static void perf_event_task_output(struct perf_event *event,
3753                                      struct perf_task_event *task_event)
3754 {
3755         struct perf_output_handle handle;
3756         struct task_struct *task = task_event->task;
3757         int size, ret;
3758
3759         size  = task_event->event_id.header.size;
3760         ret = perf_output_begin(&handle, event, size, 0, 0);
3761
3762         if (ret)
3763                 return;
3764
3765         task_event->event_id.pid = perf_event_pid(event, task);
3766         task_event->event_id.ppid = perf_event_pid(event, current);
3767
3768         task_event->event_id.tid = perf_event_tid(event, task);
3769         task_event->event_id.ptid = perf_event_tid(event, current);
3770
3771         perf_output_put(&handle, task_event->event_id);
3772
3773         perf_output_end(&handle);
3774 }
3775
3776 static int perf_event_task_match(struct perf_event *event)
3777 {
3778         if (event->state < PERF_EVENT_STATE_INACTIVE)
3779                 return 0;
3780
3781         if (event->cpu != -1 && event->cpu != smp_processor_id())
3782                 return 0;
3783
3784         if (event->attr.comm || event->attr.mmap ||
3785             event->attr.mmap_data || event->attr.task)
3786                 return 1;
3787
3788         return 0;
3789 }
3790
3791 static void perf_event_task_ctx(struct perf_event_context *ctx,
3792                                   struct perf_task_event *task_event)
3793 {
3794         struct perf_event *event;
3795
3796         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3797                 if (perf_event_task_match(event))
3798                         perf_event_task_output(event, task_event);
3799         }
3800 }
3801
3802 static void perf_event_task_event(struct perf_task_event *task_event)
3803 {
3804         struct perf_cpu_context *cpuctx;
3805         struct perf_event_context *ctx;
3806         struct pmu *pmu;
3807         int ctxn;
3808
3809         rcu_read_lock();
3810         list_for_each_entry_rcu(pmu, &pmus, entry) {
3811                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3812                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3813
3814                 ctx = task_event->task_ctx;
3815                 if (!ctx) {
3816                         ctxn = pmu->task_ctx_nr;
3817                         if (ctxn < 0)
3818                                 goto next;
3819                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3820                 }
3821                 if (ctx)
3822                         perf_event_task_ctx(ctx, task_event);
3823 next:
3824                 put_cpu_ptr(pmu->pmu_cpu_context);
3825         }
3826         rcu_read_unlock();
3827 }
3828
3829 static void perf_event_task(struct task_struct *task,
3830                               struct perf_event_context *task_ctx,
3831                               int new)
3832 {
3833         struct perf_task_event task_event;
3834
3835         if (!atomic_read(&nr_comm_events) &&
3836             !atomic_read(&nr_mmap_events) &&
3837             !atomic_read(&nr_task_events))
3838                 return;
3839
3840         task_event = (struct perf_task_event){
3841                 .task     = task,
3842                 .task_ctx = task_ctx,
3843                 .event_id    = {
3844                         .header = {
3845                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3846                                 .misc = 0,
3847                                 .size = sizeof(task_event.event_id),
3848                         },
3849                         /* .pid  */
3850                         /* .ppid */
3851                         /* .tid  */
3852                         /* .ptid */
3853                         .time = perf_clock(),
3854                 },
3855         };
3856
3857         perf_event_task_event(&task_event);
3858 }
3859
3860 void perf_event_fork(struct task_struct *task)
3861 {
3862         perf_event_task(task, NULL, 1);
3863 }
3864
3865 /*
3866  * comm tracking
3867  */
3868
3869 struct perf_comm_event {
3870         struct task_struct      *task;
3871         char                    *comm;
3872         int                     comm_size;
3873
3874         struct {
3875                 struct perf_event_header        header;
3876
3877                 u32                             pid;
3878                 u32                             tid;
3879         } event_id;
3880 };
3881
3882 static void perf_event_comm_output(struct perf_event *event,
3883                                      struct perf_comm_event *comm_event)
3884 {
3885         struct perf_output_handle handle;
3886         int size = comm_event->event_id.header.size;
3887         int ret = perf_output_begin(&handle, event, size, 0, 0);
3888
3889         if (ret)
3890                 return;
3891
3892         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3893         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3894
3895         perf_output_put(&handle, comm_event->event_id);
3896         perf_output_copy(&handle, comm_event->comm,
3897                                    comm_event->comm_size);
3898         perf_output_end(&handle);
3899 }
3900
3901 static int perf_event_comm_match(struct perf_event *event)
3902 {
3903         if (event->state < PERF_EVENT_STATE_INACTIVE)
3904                 return 0;
3905
3906         if (event->cpu != -1 && event->cpu != smp_processor_id())
3907                 return 0;
3908
3909         if (event->attr.comm)
3910                 return 1;
3911
3912         return 0;
3913 }
3914
3915 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3916                                   struct perf_comm_event *comm_event)
3917 {
3918         struct perf_event *event;
3919
3920         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3921                 if (perf_event_comm_match(event))
3922                         perf_event_comm_output(event, comm_event);
3923         }
3924 }
3925
3926 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3927 {
3928         struct perf_cpu_context *cpuctx;
3929         struct perf_event_context *ctx;
3930         char comm[TASK_COMM_LEN];
3931         unsigned int size;
3932         struct pmu *pmu;
3933         int ctxn;
3934
3935         memset(comm, 0, sizeof(comm));
3936         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3937         size = ALIGN(strlen(comm)+1, sizeof(u64));
3938
3939         comm_event->comm = comm;
3940         comm_event->comm_size = size;
3941
3942         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3943
3944         rcu_read_lock();
3945         list_for_each_entry_rcu(pmu, &pmus, entry) {
3946                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3947                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3948
3949                 ctxn = pmu->task_ctx_nr;
3950                 if (ctxn < 0)
3951                         goto next;
3952
3953                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3954                 if (ctx)
3955                         perf_event_comm_ctx(ctx, comm_event);
3956 next:
3957                 put_cpu_ptr(pmu->pmu_cpu_context);
3958         }
3959         rcu_read_unlock();
3960 }
3961
3962 void perf_event_comm(struct task_struct *task)
3963 {
3964         struct perf_comm_event comm_event;
3965         struct perf_event_context *ctx;
3966         int ctxn;
3967
3968         for_each_task_context_nr(ctxn) {
3969                 ctx = task->perf_event_ctxp[ctxn];
3970                 if (!ctx)
3971                         continue;
3972
3973                 perf_event_enable_on_exec(ctx);
3974         }
3975
3976         if (!atomic_read(&nr_comm_events))
3977                 return;
3978
3979         comm_event = (struct perf_comm_event){
3980                 .task   = task,
3981                 /* .comm      */
3982                 /* .comm_size */
3983                 .event_id  = {
3984                         .header = {
3985                                 .type = PERF_RECORD_COMM,
3986                                 .misc = 0,
3987                                 /* .size */
3988                         },
3989                         /* .pid */
3990                         /* .tid */
3991                 },
3992         };
3993
3994         perf_event_comm_event(&comm_event);
3995 }
3996
3997 /*
3998  * mmap tracking
3999  */
4000
4001 struct perf_mmap_event {
4002         struct vm_area_struct   *vma;
4003
4004         const char              *file_name;
4005         int                     file_size;
4006
4007         struct {
4008                 struct perf_event_header        header;
4009
4010                 u32                             pid;
4011                 u32                             tid;
4012                 u64                             start;
4013                 u64                             len;
4014                 u64                             pgoff;
4015         } event_id;
4016 };
4017
4018 static void perf_event_mmap_output(struct perf_event *event,
4019                                      struct perf_mmap_event *mmap_event)
4020 {
4021         struct perf_output_handle handle;
4022         int size = mmap_event->event_id.header.size;
4023         int ret = perf_output_begin(&handle, event, size, 0, 0);
4024
4025         if (ret)
4026                 return;
4027
4028         mmap_event->event_id.pid = perf_event_pid(event, current);
4029         mmap_event->event_id.tid = perf_event_tid(event, current);
4030
4031         perf_output_put(&handle, mmap_event->event_id);
4032         perf_output_copy(&handle, mmap_event->file_name,
4033                                    mmap_event->file_size);
4034         perf_output_end(&handle);
4035 }
4036
4037 static int perf_event_mmap_match(struct perf_event *event,
4038                                    struct perf_mmap_event *mmap_event,
4039                                    int executable)
4040 {
4041         if (event->state < PERF_EVENT_STATE_INACTIVE)
4042                 return 0;
4043
4044         if (event->cpu != -1 && event->cpu != smp_processor_id())
4045                 return 0;
4046
4047         if ((!executable && event->attr.mmap_data) ||
4048             (executable && event->attr.mmap))
4049                 return 1;
4050
4051         return 0;
4052 }
4053
4054 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4055                                   struct perf_mmap_event *mmap_event,
4056                                   int executable)
4057 {
4058         struct perf_event *event;
4059
4060         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4061                 if (perf_event_mmap_match(event, mmap_event, executable))
4062                         perf_event_mmap_output(event, mmap_event);
4063         }
4064 }
4065
4066 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4067 {
4068         struct perf_cpu_context *cpuctx;
4069         struct perf_event_context *ctx;
4070         struct vm_area_struct *vma = mmap_event->vma;
4071         struct file *file = vma->vm_file;
4072         unsigned int size;
4073         char tmp[16];
4074         char *buf = NULL;
4075         const char *name;
4076         struct pmu *pmu;
4077         int ctxn;
4078
4079         memset(tmp, 0, sizeof(tmp));
4080
4081         if (file) {
4082                 /*
4083                  * d_path works from the end of the buffer backwards, so we
4084                  * need to add enough zero bytes after the string to handle
4085                  * the 64bit alignment we do later.
4086                  */
4087                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4088                 if (!buf) {
4089                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4090                         goto got_name;
4091                 }
4092                 name = d_path(&file->f_path, buf, PATH_MAX);
4093                 if (IS_ERR(name)) {
4094                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4095                         goto got_name;
4096                 }
4097         } else {
4098                 if (arch_vma_name(mmap_event->vma)) {
4099                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4100                                        sizeof(tmp));
4101                         goto got_name;
4102                 }
4103
4104                 if (!vma->vm_mm) {
4105                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4106                         goto got_name;
4107                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4108                                 vma->vm_end >= vma->vm_mm->brk) {
4109                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4110                         goto got_name;
4111                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4112                                 vma->vm_end >= vma->vm_mm->start_stack) {
4113                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4114                         goto got_name;
4115                 }
4116
4117                 name = strncpy(tmp, "//anon", sizeof(tmp));
4118                 goto got_name;
4119         }
4120
4121 got_name:
4122         size = ALIGN(strlen(name)+1, sizeof(u64));
4123
4124         mmap_event->file_name = name;
4125         mmap_event->file_size = size;
4126
4127         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4128
4129         rcu_read_lock();
4130         list_for_each_entry_rcu(pmu, &pmus, entry) {
4131                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4132                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4133                                         vma->vm_flags & VM_EXEC);
4134
4135                 ctxn = pmu->task_ctx_nr;
4136                 if (ctxn < 0)
4137                         goto next;
4138
4139                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4140                 if (ctx) {
4141                         perf_event_mmap_ctx(ctx, mmap_event,
4142                                         vma->vm_flags & VM_EXEC);
4143                 }
4144 next:
4145                 put_cpu_ptr(pmu->pmu_cpu_context);
4146         }
4147         rcu_read_unlock();
4148
4149         kfree(buf);
4150 }
4151
4152 void perf_event_mmap(struct vm_area_struct *vma)
4153 {
4154         struct perf_mmap_event mmap_event;
4155
4156         if (!atomic_read(&nr_mmap_events))
4157                 return;
4158
4159         mmap_event = (struct perf_mmap_event){
4160                 .vma    = vma,
4161                 /* .file_name */
4162                 /* .file_size */
4163                 .event_id  = {
4164                         .header = {
4165                                 .type = PERF_RECORD_MMAP,
4166                                 .misc = PERF_RECORD_MISC_USER,
4167                                 /* .size */
4168                         },
4169                         /* .pid */
4170                         /* .tid */
4171                         .start  = vma->vm_start,
4172                         .len    = vma->vm_end - vma->vm_start,
4173                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4174                 },
4175         };
4176
4177         perf_event_mmap_event(&mmap_event);
4178 }
4179
4180 /*
4181  * IRQ throttle logging
4182  */
4183
4184 static void perf_log_throttle(struct perf_event *event, int enable)
4185 {
4186         struct perf_output_handle handle;
4187         int ret;
4188
4189         struct {
4190                 struct perf_event_header        header;
4191                 u64                             time;
4192                 u64                             id;
4193                 u64                             stream_id;
4194         } throttle_event = {
4195                 .header = {
4196                         .type = PERF_RECORD_THROTTLE,
4197                         .misc = 0,
4198                         .size = sizeof(throttle_event),
4199                 },
4200                 .time           = perf_clock(),
4201                 .id             = primary_event_id(event),
4202                 .stream_id      = event->id,
4203         };
4204
4205         if (enable)
4206                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4207
4208         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4209         if (ret)
4210                 return;
4211
4212         perf_output_put(&handle, throttle_event);
4213         perf_output_end(&handle);
4214 }
4215
4216 /*
4217  * Generic event overflow handling, sampling.
4218  */
4219
4220 static int __perf_event_overflow(struct perf_event *event, int nmi,
4221                                    int throttle, struct perf_sample_data *data,
4222                                    struct pt_regs *regs)
4223 {
4224         int events = atomic_read(&event->event_limit);
4225         struct hw_perf_event *hwc = &event->hw;
4226         int ret = 0;
4227
4228         if (!throttle) {
4229                 hwc->interrupts++;
4230         } else {
4231                 if (hwc->interrupts != MAX_INTERRUPTS) {
4232                         hwc->interrupts++;
4233                         if (HZ * hwc->interrupts >
4234                                         (u64)sysctl_perf_event_sample_rate) {
4235                                 hwc->interrupts = MAX_INTERRUPTS;
4236                                 perf_log_throttle(event, 0);
4237                                 ret = 1;
4238                         }
4239                 } else {
4240                         /*
4241                          * Keep re-disabling events even though on the previous
4242                          * pass we disabled it - just in case we raced with a
4243                          * sched-in and the event got enabled again:
4244                          */
4245                         ret = 1;
4246                 }
4247         }
4248
4249         if (event->attr.freq) {
4250                 u64 now = perf_clock();
4251                 s64 delta = now - hwc->freq_time_stamp;
4252
4253                 hwc->freq_time_stamp = now;
4254
4255                 if (delta > 0 && delta < 2*TICK_NSEC)
4256                         perf_adjust_period(event, delta, hwc->last_period);
4257         }
4258
4259         /*
4260          * XXX event_limit might not quite work as expected on inherited
4261          * events
4262          */
4263
4264         event->pending_kill = POLL_IN;
4265         if (events && atomic_dec_and_test(&event->event_limit)) {
4266                 ret = 1;
4267                 event->pending_kill = POLL_HUP;
4268                 if (nmi) {
4269                         event->pending_disable = 1;
4270                         irq_work_queue(&event->pending);
4271                 } else
4272                         perf_event_disable(event);
4273         }
4274
4275         if (event->overflow_handler)
4276                 event->overflow_handler(event, nmi, data, regs);
4277         else
4278                 perf_event_output(event, nmi, data, regs);
4279
4280         return ret;
4281 }
4282
4283 int perf_event_overflow(struct perf_event *event, int nmi,
4284                           struct perf_sample_data *data,
4285                           struct pt_regs *regs)
4286 {
4287         return __perf_event_overflow(event, nmi, 1, data, regs);
4288 }
4289
4290 /*
4291  * Generic software event infrastructure
4292  */
4293
4294 struct swevent_htable {
4295         struct swevent_hlist            *swevent_hlist;
4296         struct mutex                    hlist_mutex;
4297         int                             hlist_refcount;
4298
4299         /* Recursion avoidance in each contexts */
4300         int                             recursion[PERF_NR_CONTEXTS];
4301 };
4302
4303 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4304
4305 /*
4306  * We directly increment event->count and keep a second value in
4307  * event->hw.period_left to count intervals. This period event
4308  * is kept in the range [-sample_period, 0] so that we can use the
4309  * sign as trigger.
4310  */
4311
4312 static u64 perf_swevent_set_period(struct perf_event *event)
4313 {
4314         struct hw_perf_event *hwc = &event->hw;
4315         u64 period = hwc->last_period;
4316         u64 nr, offset;
4317         s64 old, val;
4318
4319         hwc->last_period = hwc->sample_period;
4320
4321 again:
4322         old = val = local64_read(&hwc->period_left);
4323         if (val < 0)
4324                 return 0;
4325
4326         nr = div64_u64(period + val, period);
4327         offset = nr * period;
4328         val -= offset;
4329         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4330                 goto again;
4331
4332         return nr;
4333 }
4334
4335 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4336                                     int nmi, struct perf_sample_data *data,
4337                                     struct pt_regs *regs)
4338 {
4339         struct hw_perf_event *hwc = &event->hw;
4340         int throttle = 0;
4341
4342         data->period = event->hw.last_period;
4343         if (!overflow)
4344                 overflow = perf_swevent_set_period(event);
4345
4346         if (hwc->interrupts == MAX_INTERRUPTS)
4347                 return;
4348
4349         for (; overflow; overflow--) {
4350                 if (__perf_event_overflow(event, nmi, throttle,
4351                                             data, regs)) {
4352                         /*
4353                          * We inhibit the overflow from happening when
4354                          * hwc->interrupts == MAX_INTERRUPTS.
4355                          */
4356                         break;
4357                 }
4358                 throttle = 1;
4359         }
4360 }
4361
4362 static void perf_swevent_event(struct perf_event *event, u64 nr,
4363                                int nmi, struct perf_sample_data *data,
4364                                struct pt_regs *regs)
4365 {
4366         struct hw_perf_event *hwc = &event->hw;
4367
4368         local64_add(nr, &event->count);
4369
4370         if (!regs)
4371                 return;
4372
4373         if (!hwc->sample_period)
4374                 return;
4375
4376         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4377                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4378
4379         if (local64_add_negative(nr, &hwc->period_left))
4380                 return;
4381
4382         perf_swevent_overflow(event, 0, nmi, data, regs);
4383 }
4384
4385 static int perf_exclude_event(struct perf_event *event,
4386                               struct pt_regs *regs)
4387 {
4388         if (event->hw.state & PERF_HES_STOPPED)
4389                 return 0;
4390
4391         if (regs) {
4392                 if (event->attr.exclude_user && user_mode(regs))
4393                         return 1;
4394
4395                 if (event->attr.exclude_kernel && !user_mode(regs))
4396                         return 1;
4397         }
4398
4399         return 0;
4400 }
4401
4402 static int perf_swevent_match(struct perf_event *event,
4403                                 enum perf_type_id type,
4404                                 u32 event_id,
4405                                 struct perf_sample_data *data,
4406                                 struct pt_regs *regs)
4407 {
4408         if (event->attr.type != type)
4409                 return 0;
4410
4411         if (event->attr.config != event_id)
4412                 return 0;
4413
4414         if (perf_exclude_event(event, regs))
4415                 return 0;
4416
4417         return 1;
4418 }
4419
4420 static inline u64 swevent_hash(u64 type, u32 event_id)
4421 {
4422         u64 val = event_id | (type << 32);
4423
4424         return hash_64(val, SWEVENT_HLIST_BITS);
4425 }
4426
4427 static inline struct hlist_head *
4428 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4429 {
4430         u64 hash = swevent_hash(type, event_id);
4431
4432         return &hlist->heads[hash];
4433 }
4434
4435 /* For the read side: events when they trigger */
4436 static inline struct hlist_head *
4437 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4438 {
4439         struct swevent_hlist *hlist;
4440
4441         hlist = rcu_dereference(swhash->swevent_hlist);
4442         if (!hlist)
4443                 return NULL;
4444
4445         return __find_swevent_head(hlist, type, event_id);
4446 }
4447
4448 /* For the event head insertion and removal in the hlist */
4449 static inline struct hlist_head *
4450 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4451 {
4452         struct swevent_hlist *hlist;
4453         u32 event_id = event->attr.config;
4454         u64 type = event->attr.type;
4455
4456         /*
4457          * Event scheduling is always serialized against hlist allocation
4458          * and release. Which makes the protected version suitable here.
4459          * The context lock guarantees that.
4460          */
4461         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4462                                           lockdep_is_held(&event->ctx->lock));
4463         if (!hlist)
4464                 return NULL;
4465
4466         return __find_swevent_head(hlist, type, event_id);
4467 }
4468
4469 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4470                                     u64 nr, int nmi,
4471                                     struct perf_sample_data *data,
4472                                     struct pt_regs *regs)
4473 {
4474         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4475         struct perf_event *event;
4476         struct hlist_node *node;
4477         struct hlist_head *head;
4478
4479         rcu_read_lock();
4480         head = find_swevent_head_rcu(swhash, type, event_id);
4481         if (!head)
4482                 goto end;
4483
4484         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4485                 if (perf_swevent_match(event, type, event_id, data, regs))
4486                         perf_swevent_event(event, nr, nmi, data, regs);
4487         }
4488 end:
4489         rcu_read_unlock();
4490 }
4491
4492 int perf_swevent_get_recursion_context(void)
4493 {
4494         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4495
4496         return get_recursion_context(swhash->recursion);
4497 }
4498 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4499
4500 void inline perf_swevent_put_recursion_context(int rctx)
4501 {
4502         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4503
4504         put_recursion_context(swhash->recursion, rctx);
4505 }
4506
4507 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4508                             struct pt_regs *regs, u64 addr)
4509 {
4510         struct perf_sample_data data;
4511         int rctx;
4512
4513         preempt_disable_notrace();
4514         rctx = perf_swevent_get_recursion_context();
4515         if (rctx < 0)
4516                 return;
4517
4518         perf_sample_data_init(&data, addr);
4519
4520         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4521
4522         perf_swevent_put_recursion_context(rctx);
4523         preempt_enable_notrace();
4524 }
4525
4526 static void perf_swevent_read(struct perf_event *event)
4527 {
4528 }
4529
4530 static int perf_swevent_add(struct perf_event *event, int flags)
4531 {
4532         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4533         struct hw_perf_event *hwc = &event->hw;
4534         struct hlist_head *head;
4535
4536         if (hwc->sample_period) {
4537                 hwc->last_period = hwc->sample_period;
4538                 perf_swevent_set_period(event);
4539         }
4540
4541         hwc->state = !(flags & PERF_EF_START);
4542
4543         head = find_swevent_head(swhash, event);
4544         if (WARN_ON_ONCE(!head))
4545                 return -EINVAL;
4546
4547         hlist_add_head_rcu(&event->hlist_entry, head);
4548
4549         return 0;
4550 }
4551
4552 static void perf_swevent_del(struct perf_event *event, int flags)
4553 {
4554         hlist_del_rcu(&event->hlist_entry);
4555 }
4556
4557 static void perf_swevent_start(struct perf_event *event, int flags)
4558 {
4559         event->hw.state = 0;
4560 }
4561
4562 static void perf_swevent_stop(struct perf_event *event, int flags)
4563 {
4564         event->hw.state = PERF_HES_STOPPED;
4565 }
4566
4567 /* Deref the hlist from the update side */
4568 static inline struct swevent_hlist *
4569 swevent_hlist_deref(struct swevent_htable *swhash)
4570 {
4571         return rcu_dereference_protected(swhash->swevent_hlist,
4572                                          lockdep_is_held(&swhash->hlist_mutex));
4573 }
4574
4575 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4576 {
4577         struct swevent_hlist *hlist;
4578
4579         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4580         kfree(hlist);
4581 }
4582
4583 static void swevent_hlist_release(struct swevent_htable *swhash)
4584 {
4585         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4586
4587         if (!hlist)
4588                 return;
4589
4590         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4591         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4592 }
4593
4594 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4595 {
4596         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4597
4598         mutex_lock(&swhash->hlist_mutex);
4599
4600         if (!--swhash->hlist_refcount)
4601                 swevent_hlist_release(swhash);
4602
4603         mutex_unlock(&swhash->hlist_mutex);
4604 }
4605
4606 static void swevent_hlist_put(struct perf_event *event)
4607 {
4608         int cpu;
4609
4610         if (event->cpu != -1) {
4611                 swevent_hlist_put_cpu(event, event->cpu);
4612                 return;
4613         }
4614
4615         for_each_possible_cpu(cpu)
4616                 swevent_hlist_put_cpu(event, cpu);
4617 }
4618
4619 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4620 {
4621         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4622         int err = 0;
4623
4624         mutex_lock(&swhash->hlist_mutex);
4625
4626         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4627                 struct swevent_hlist *hlist;
4628
4629                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4630                 if (!hlist) {
4631                         err = -ENOMEM;
4632                         goto exit;
4633                 }
4634                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4635         }
4636         swhash->hlist_refcount++;
4637 exit:
4638         mutex_unlock(&swhash->hlist_mutex);
4639
4640         return err;
4641 }
4642
4643 static int swevent_hlist_get(struct perf_event *event)
4644 {
4645         int err;
4646         int cpu, failed_cpu;
4647
4648         if (event->cpu != -1)
4649                 return swevent_hlist_get_cpu(event, event->cpu);
4650
4651         get_online_cpus();
4652         for_each_possible_cpu(cpu) {
4653                 err = swevent_hlist_get_cpu(event, cpu);
4654                 if (err) {
4655                         failed_cpu = cpu;
4656                         goto fail;
4657                 }
4658         }
4659         put_online_cpus();
4660
4661         return 0;
4662 fail:
4663         for_each_possible_cpu(cpu) {
4664                 if (cpu == failed_cpu)
4665                         break;
4666                 swevent_hlist_put_cpu(event, cpu);
4667         }
4668
4669         put_online_cpus();
4670         return err;
4671 }
4672
4673 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4674
4675 static void sw_perf_event_destroy(struct perf_event *event)
4676 {
4677         u64 event_id = event->attr.config;
4678
4679         WARN_ON(event->parent);
4680
4681         atomic_dec(&perf_swevent_enabled[event_id]);
4682         swevent_hlist_put(event);
4683 }
4684
4685 static int perf_swevent_init(struct perf_event *event)
4686 {
4687         int event_id = event->attr.config;
4688
4689         if (event->attr.type != PERF_TYPE_SOFTWARE)
4690                 return -ENOENT;
4691
4692         switch (event_id) {
4693         case PERF_COUNT_SW_CPU_CLOCK:
4694         case PERF_COUNT_SW_TASK_CLOCK:
4695                 return -ENOENT;
4696
4697         default:
4698                 break;
4699         }
4700
4701         if (event_id > PERF_COUNT_SW_MAX)
4702                 return -ENOENT;
4703
4704         if (!event->parent) {
4705                 int err;
4706
4707                 err = swevent_hlist_get(event);
4708                 if (err)
4709                         return err;
4710
4711                 atomic_inc(&perf_swevent_enabled[event_id]);
4712                 event->destroy = sw_perf_event_destroy;
4713         }
4714
4715         return 0;
4716 }
4717
4718 static struct pmu perf_swevent = {
4719         .task_ctx_nr    = perf_sw_context,
4720
4721         .event_init     = perf_swevent_init,
4722         .add            = perf_swevent_add,
4723         .del            = perf_swevent_del,
4724         .start          = perf_swevent_start,
4725         .stop           = perf_swevent_stop,
4726         .read           = perf_swevent_read,
4727 };
4728
4729 #ifdef CONFIG_EVENT_TRACING
4730
4731 static int perf_tp_filter_match(struct perf_event *event,
4732                                 struct perf_sample_data *data)
4733 {
4734         void *record = data->raw->data;
4735
4736         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4737                 return 1;
4738         return 0;
4739 }
4740
4741 static int perf_tp_event_match(struct perf_event *event,
4742                                 struct perf_sample_data *data,
4743                                 struct pt_regs *regs)
4744 {
4745         /*
4746          * All tracepoints are from kernel-space.
4747          */
4748         if (event->attr.exclude_kernel)
4749                 return 0;
4750
4751         if (!perf_tp_filter_match(event, data))
4752                 return 0;
4753
4754         return 1;
4755 }
4756
4757 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4758                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4759 {
4760         struct perf_sample_data data;
4761         struct perf_event *event;
4762         struct hlist_node *node;
4763
4764         struct perf_raw_record raw = {
4765                 .size = entry_size,
4766                 .data = record,
4767         };
4768
4769         perf_sample_data_init(&data, addr);
4770         data.raw = &raw;
4771
4772         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4773                 if (perf_tp_event_match(event, &data, regs))
4774                         perf_swevent_event(event, count, 1, &data, regs);
4775         }
4776
4777         perf_swevent_put_recursion_context(rctx);
4778 }
4779 EXPORT_SYMBOL_GPL(perf_tp_event);
4780
4781 static void tp_perf_event_destroy(struct perf_event *event)
4782 {
4783         perf_trace_destroy(event);
4784 }
4785
4786 static int perf_tp_event_init(struct perf_event *event)
4787 {
4788         int err;
4789
4790         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4791                 return -ENOENT;
4792
4793         /*
4794          * Raw tracepoint data is a severe data leak, only allow root to
4795          * have these.
4796          */
4797         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4798                         perf_paranoid_tracepoint_raw() &&
4799                         !capable(CAP_SYS_ADMIN))
4800                 return -EPERM;
4801
4802         err = perf_trace_init(event);
4803         if (err)
4804                 return err;
4805
4806         event->destroy = tp_perf_event_destroy;
4807
4808         return 0;
4809 }
4810
4811 static struct pmu perf_tracepoint = {
4812         .task_ctx_nr    = perf_sw_context,
4813
4814         .event_init     = perf_tp_event_init,
4815         .add            = perf_trace_add,
4816         .del            = perf_trace_del,
4817         .start          = perf_swevent_start,
4818         .stop           = perf_swevent_stop,
4819         .read           = perf_swevent_read,
4820 };
4821
4822 static inline void perf_tp_register(void)
4823 {
4824         perf_pmu_register(&perf_tracepoint);
4825 }
4826
4827 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4828 {
4829         char *filter_str;
4830         int ret;
4831
4832         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4833                 return -EINVAL;
4834
4835         filter_str = strndup_user(arg, PAGE_SIZE);
4836         if (IS_ERR(filter_str))
4837                 return PTR_ERR(filter_str);
4838
4839         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4840
4841         kfree(filter_str);
4842         return ret;
4843 }
4844
4845 static void perf_event_free_filter(struct perf_event *event)
4846 {
4847         ftrace_profile_free_filter(event);
4848 }
4849
4850 #else
4851
4852 static inline void perf_tp_register(void)
4853 {
4854 }
4855
4856 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4857 {
4858         return -ENOENT;
4859 }
4860
4861 static void perf_event_free_filter(struct perf_event *event)
4862 {
4863 }
4864
4865 #endif /* CONFIG_EVENT_TRACING */
4866
4867 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4868 void perf_bp_event(struct perf_event *bp, void *data)
4869 {
4870         struct perf_sample_data sample;
4871         struct pt_regs *regs = data;
4872
4873         perf_sample_data_init(&sample, bp->attr.bp_addr);
4874
4875         if (!bp->hw.state && !perf_exclude_event(bp, regs))
4876                 perf_swevent_event(bp, 1, 1, &sample, regs);
4877 }
4878 #endif
4879
4880 /*
4881  * hrtimer based swevent callback
4882  */
4883
4884 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4885 {
4886         enum hrtimer_restart ret = HRTIMER_RESTART;
4887         struct perf_sample_data data;
4888         struct pt_regs *regs;
4889         struct perf_event *event;
4890         u64 period;
4891
4892         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4893         event->pmu->read(event);
4894
4895         perf_sample_data_init(&data, 0);
4896         data.period = event->hw.last_period;
4897         regs = get_irq_regs();
4898
4899         if (regs && !perf_exclude_event(event, regs)) {
4900                 if (!(event->attr.exclude_idle && current->pid == 0))
4901                         if (perf_event_overflow(event, 0, &data, regs))
4902                                 ret = HRTIMER_NORESTART;
4903         }
4904
4905         period = max_t(u64, 10000, event->hw.sample_period);
4906         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4907
4908         return ret;
4909 }
4910
4911 static void perf_swevent_start_hrtimer(struct perf_event *event)
4912 {
4913         struct hw_perf_event *hwc = &event->hw;
4914
4915         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4916         hwc->hrtimer.function = perf_swevent_hrtimer;
4917         if (hwc->sample_period) {
4918                 s64 period = local64_read(&hwc->period_left);
4919
4920                 if (period) {
4921                         if (period < 0)
4922                                 period = 10000;
4923
4924                         local64_set(&hwc->period_left, 0);
4925                 } else {
4926                         period = max_t(u64, 10000, hwc->sample_period);
4927                 }
4928                 __hrtimer_start_range_ns(&hwc->hrtimer,
4929                                 ns_to_ktime(period), 0,
4930                                 HRTIMER_MODE_REL_PINNED, 0);
4931         }
4932 }
4933
4934 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4935 {
4936         struct hw_perf_event *hwc = &event->hw;
4937
4938         if (hwc->sample_period) {
4939                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4940                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4941
4942                 hrtimer_cancel(&hwc->hrtimer);
4943         }
4944 }
4945
4946 /*
4947  * Software event: cpu wall time clock
4948  */
4949
4950 static void cpu_clock_event_update(struct perf_event *event)
4951 {
4952         s64 prev;
4953         u64 now;
4954
4955         now = local_clock();
4956         prev = local64_xchg(&event->hw.prev_count, now);
4957         local64_add(now - prev, &event->count);
4958 }
4959
4960 static void cpu_clock_event_start(struct perf_event *event, int flags)
4961 {
4962         local64_set(&event->hw.prev_count, local_clock());
4963         perf_swevent_start_hrtimer(event);
4964 }
4965
4966 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4967 {
4968         perf_swevent_cancel_hrtimer(event);
4969         cpu_clock_event_update(event);
4970 }
4971
4972 static int cpu_clock_event_add(struct perf_event *event, int flags)
4973 {
4974         if (flags & PERF_EF_START)
4975                 cpu_clock_event_start(event, flags);
4976
4977         return 0;
4978 }
4979
4980 static void cpu_clock_event_del(struct perf_event *event, int flags)
4981 {
4982         cpu_clock_event_stop(event, flags);
4983 }
4984
4985 static void cpu_clock_event_read(struct perf_event *event)
4986 {
4987         cpu_clock_event_update(event);
4988 }
4989
4990 static int cpu_clock_event_init(struct perf_event *event)
4991 {
4992         if (event->attr.type != PERF_TYPE_SOFTWARE)
4993                 return -ENOENT;
4994
4995         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4996                 return -ENOENT;
4997
4998         return 0;
4999 }
5000
5001 static struct pmu perf_cpu_clock = {
5002         .task_ctx_nr    = perf_sw_context,
5003
5004         .event_init     = cpu_clock_event_init,
5005         .add            = cpu_clock_event_add,
5006         .del            = cpu_clock_event_del,
5007         .start          = cpu_clock_event_start,
5008         .stop           = cpu_clock_event_stop,
5009         .read           = cpu_clock_event_read,
5010 };
5011
5012 /*
5013  * Software event: task time clock
5014  */
5015
5016 static void task_clock_event_update(struct perf_event *event, u64 now)
5017 {
5018         u64 prev;
5019         s64 delta;
5020
5021         prev = local64_xchg(&event->hw.prev_count, now);
5022         delta = now - prev;
5023         local64_add(delta, &event->count);
5024 }
5025
5026 static void task_clock_event_start(struct perf_event *event, int flags)
5027 {
5028         local64_set(&event->hw.prev_count, event->ctx->time);
5029         perf_swevent_start_hrtimer(event);
5030 }
5031
5032 static void task_clock_event_stop(struct perf_event *event, int flags)
5033 {
5034         perf_swevent_cancel_hrtimer(event);
5035         task_clock_event_update(event, event->ctx->time);
5036 }
5037
5038 static int task_clock_event_add(struct perf_event *event, int flags)
5039 {
5040         if (flags & PERF_EF_START)
5041                 task_clock_event_start(event, flags);
5042
5043         return 0;
5044 }
5045
5046 static void task_clock_event_del(struct perf_event *event, int flags)
5047 {
5048         task_clock_event_stop(event, PERF_EF_UPDATE);
5049 }
5050
5051 static void task_clock_event_read(struct perf_event *event)
5052 {
5053         u64 time;
5054
5055         if (!in_nmi()) {
5056                 update_context_time(event->ctx);
5057                 time = event->ctx->time;
5058         } else {
5059                 u64 now = perf_clock();
5060                 u64 delta = now - event->ctx->timestamp;
5061                 time = event->ctx->time + delta;
5062         }
5063
5064         task_clock_event_update(event, time);
5065 }
5066
5067 static int task_clock_event_init(struct perf_event *event)
5068 {
5069         if (event->attr.type != PERF_TYPE_SOFTWARE)
5070                 return -ENOENT;
5071
5072         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5073                 return -ENOENT;
5074
5075         return 0;
5076 }
5077
5078 static struct pmu perf_task_clock = {
5079         .task_ctx_nr    = perf_sw_context,
5080
5081         .event_init     = task_clock_event_init,
5082         .add            = task_clock_event_add,
5083         .del            = task_clock_event_del,
5084         .start          = task_clock_event_start,
5085         .stop           = task_clock_event_stop,
5086         .read           = task_clock_event_read,
5087 };
5088
5089 static void perf_pmu_nop_void(struct pmu *pmu)
5090 {
5091 }
5092
5093 static int perf_pmu_nop_int(struct pmu *pmu)
5094 {
5095         return 0;
5096 }
5097
5098 static void perf_pmu_start_txn(struct pmu *pmu)
5099 {
5100         perf_pmu_disable(pmu);
5101 }
5102
5103 static int perf_pmu_commit_txn(struct pmu *pmu)
5104 {
5105         perf_pmu_enable(pmu);
5106         return 0;
5107 }
5108
5109 static void perf_pmu_cancel_txn(struct pmu *pmu)
5110 {
5111         perf_pmu_enable(pmu);
5112 }
5113
5114 /*
5115  * Ensures all contexts with the same task_ctx_nr have the same
5116  * pmu_cpu_context too.
5117  */
5118 static void *find_pmu_context(int ctxn)
5119 {
5120         struct pmu *pmu;
5121
5122         if (ctxn < 0)
5123                 return NULL;
5124
5125         list_for_each_entry(pmu, &pmus, entry) {
5126                 if (pmu->task_ctx_nr == ctxn)
5127                         return pmu->pmu_cpu_context;
5128         }
5129
5130         return NULL;
5131 }
5132
5133 static void free_pmu_context(void * __percpu cpu_context)
5134 {
5135         struct pmu *pmu;
5136
5137         mutex_lock(&pmus_lock);
5138         /*
5139          * Like a real lame refcount.
5140          */
5141         list_for_each_entry(pmu, &pmus, entry) {
5142                 if (pmu->pmu_cpu_context == cpu_context)
5143                         goto out;
5144         }
5145
5146         free_percpu(cpu_context);
5147 out:
5148         mutex_unlock(&pmus_lock);
5149 }
5150
5151 int perf_pmu_register(struct pmu *pmu)
5152 {
5153         int cpu, ret;
5154
5155         mutex_lock(&pmus_lock);
5156         ret = -ENOMEM;
5157         pmu->pmu_disable_count = alloc_percpu(int);
5158         if (!pmu->pmu_disable_count)
5159                 goto unlock;
5160
5161         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5162         if (pmu->pmu_cpu_context)
5163                 goto got_cpu_context;
5164
5165         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5166         if (!pmu->pmu_cpu_context)
5167                 goto free_pdc;
5168
5169         for_each_possible_cpu(cpu) {
5170                 struct perf_cpu_context *cpuctx;
5171
5172                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5173                 __perf_event_init_context(&cpuctx->ctx);
5174                 cpuctx->ctx.type = cpu_context;
5175                 cpuctx->ctx.pmu = pmu;
5176                 cpuctx->jiffies_interval = 1;
5177                 INIT_LIST_HEAD(&cpuctx->rotation_list);
5178         }
5179
5180 got_cpu_context:
5181         if (!pmu->start_txn) {
5182                 if (pmu->pmu_enable) {
5183                         /*
5184                          * If we have pmu_enable/pmu_disable calls, install
5185                          * transaction stubs that use that to try and batch
5186                          * hardware accesses.
5187                          */
5188                         pmu->start_txn  = perf_pmu_start_txn;
5189                         pmu->commit_txn = perf_pmu_commit_txn;
5190                         pmu->cancel_txn = perf_pmu_cancel_txn;
5191                 } else {
5192                         pmu->start_txn  = perf_pmu_nop_void;
5193                         pmu->commit_txn = perf_pmu_nop_int;
5194                         pmu->cancel_txn = perf_pmu_nop_void;
5195                 }
5196         }
5197
5198         if (!pmu->pmu_enable) {
5199                 pmu->pmu_enable  = perf_pmu_nop_void;
5200                 pmu->pmu_disable = perf_pmu_nop_void;
5201         }
5202
5203         list_add_rcu(&pmu->entry, &pmus);
5204         ret = 0;
5205 unlock:
5206         mutex_unlock(&pmus_lock);
5207
5208         return ret;
5209
5210 free_pdc:
5211         free_percpu(pmu->pmu_disable_count);
5212         goto unlock;
5213 }
5214
5215 void perf_pmu_unregister(struct pmu *pmu)
5216 {
5217         mutex_lock(&pmus_lock);
5218         list_del_rcu(&pmu->entry);
5219         mutex_unlock(&pmus_lock);
5220
5221         /*
5222          * We dereference the pmu list under both SRCU and regular RCU, so
5223          * synchronize against both of those.
5224          */
5225         synchronize_srcu(&pmus_srcu);
5226         synchronize_rcu();
5227
5228         free_percpu(pmu->pmu_disable_count);
5229         free_pmu_context(pmu->pmu_cpu_context);
5230 }
5231
5232 struct pmu *perf_init_event(struct perf_event *event)
5233 {
5234         struct pmu *pmu = NULL;
5235         int idx;
5236
5237         idx = srcu_read_lock(&pmus_srcu);
5238         list_for_each_entry_rcu(pmu, &pmus, entry) {
5239                 int ret = pmu->event_init(event);
5240                 if (!ret)
5241                         goto unlock;
5242
5243                 if (ret != -ENOENT) {
5244                         pmu = ERR_PTR(ret);
5245                         goto unlock;
5246                 }
5247         }
5248         pmu = ERR_PTR(-ENOENT);
5249 unlock:
5250         srcu_read_unlock(&pmus_srcu, idx);
5251
5252         return pmu;
5253 }
5254
5255 /*
5256  * Allocate and initialize a event structure
5257  */
5258 static struct perf_event *
5259 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5260                    struct perf_event *group_leader,
5261                    struct perf_event *parent_event,
5262                    perf_overflow_handler_t overflow_handler)
5263 {
5264         struct pmu *pmu;
5265         struct perf_event *event;
5266         struct hw_perf_event *hwc;
5267         long err;
5268
5269         event = kzalloc(sizeof(*event), GFP_KERNEL);
5270         if (!event)
5271                 return ERR_PTR(-ENOMEM);
5272
5273         /*
5274          * Single events are their own group leaders, with an
5275          * empty sibling list:
5276          */
5277         if (!group_leader)
5278                 group_leader = event;
5279
5280         mutex_init(&event->child_mutex);
5281         INIT_LIST_HEAD(&event->child_list);
5282
5283         INIT_LIST_HEAD(&event->group_entry);
5284         INIT_LIST_HEAD(&event->event_entry);
5285         INIT_LIST_HEAD(&event->sibling_list);
5286         init_waitqueue_head(&event->waitq);
5287         init_irq_work(&event->pending, perf_pending_event);
5288
5289         mutex_init(&event->mmap_mutex);
5290
5291         event->cpu              = cpu;
5292         event->attr             = *attr;
5293         event->group_leader     = group_leader;
5294         event->pmu              = NULL;
5295         event->oncpu            = -1;
5296
5297         event->parent           = parent_event;
5298
5299         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5300         event->id               = atomic64_inc_return(&perf_event_id);
5301
5302         event->state            = PERF_EVENT_STATE_INACTIVE;
5303
5304         if (!overflow_handler && parent_event)
5305                 overflow_handler = parent_event->overflow_handler;
5306         
5307         event->overflow_handler = overflow_handler;
5308
5309         if (attr->disabled)
5310                 event->state = PERF_EVENT_STATE_OFF;
5311
5312         pmu = NULL;
5313
5314         hwc = &event->hw;
5315         hwc->sample_period = attr->sample_period;
5316         if (attr->freq && attr->sample_freq)
5317                 hwc->sample_period = 1;
5318         hwc->last_period = hwc->sample_period;
5319
5320         local64_set(&hwc->period_left, hwc->sample_period);
5321
5322         /*
5323          * we currently do not support PERF_FORMAT_GROUP on inherited events
5324          */
5325         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5326                 goto done;
5327
5328         pmu = perf_init_event(event);
5329
5330 done:
5331         err = 0;
5332         if (!pmu)
5333                 err = -EINVAL;
5334         else if (IS_ERR(pmu))
5335                 err = PTR_ERR(pmu);
5336
5337         if (err) {
5338                 if (event->ns)
5339                         put_pid_ns(event->ns);
5340                 kfree(event);
5341                 return ERR_PTR(err);
5342         }
5343
5344         event->pmu = pmu;
5345
5346         if (!event->parent) {
5347                 atomic_inc(&nr_events);
5348                 if (event->attr.mmap || event->attr.mmap_data)
5349                         atomic_inc(&nr_mmap_events);
5350                 if (event->attr.comm)
5351                         atomic_inc(&nr_comm_events);
5352                 if (event->attr.task)
5353                         atomic_inc(&nr_task_events);
5354                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5355                         err = get_callchain_buffers();
5356                         if (err) {
5357                                 free_event(event);
5358                                 return ERR_PTR(err);
5359                         }
5360                 }
5361         }
5362
5363         return event;
5364 }
5365
5366 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5367                           struct perf_event_attr *attr)
5368 {
5369         u32 size;
5370         int ret;
5371
5372         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5373                 return -EFAULT;
5374
5375         /*
5376          * zero the full structure, so that a short copy will be nice.
5377          */
5378         memset(attr, 0, sizeof(*attr));
5379
5380         ret = get_user(size, &uattr->size);
5381         if (ret)
5382                 return ret;
5383
5384         if (size > PAGE_SIZE)   /* silly large */
5385                 goto err_size;
5386
5387         if (!size)              /* abi compat */
5388                 size = PERF_ATTR_SIZE_VER0;
5389
5390         if (size < PERF_ATTR_SIZE_VER0)
5391                 goto err_size;
5392
5393         /*
5394          * If we're handed a bigger struct than we know of,
5395          * ensure all the unknown bits are 0 - i.e. new
5396          * user-space does not rely on any kernel feature
5397          * extensions we dont know about yet.
5398          */
5399         if (size > sizeof(*attr)) {
5400                 unsigned char __user *addr;
5401                 unsigned char __user *end;
5402                 unsigned char val;
5403
5404                 addr = (void __user *)uattr + sizeof(*attr);
5405                 end  = (void __user *)uattr + size;
5406
5407                 for (; addr < end; addr++) {
5408                         ret = get_user(val, addr);
5409                         if (ret)
5410                                 return ret;
5411                         if (val)
5412                                 goto err_size;
5413                 }
5414                 size = sizeof(*attr);
5415         }
5416
5417         ret = copy_from_user(attr, uattr, size);
5418         if (ret)
5419                 return -EFAULT;
5420
5421         /*
5422          * If the type exists, the corresponding creation will verify
5423          * the attr->config.
5424          */
5425         if (attr->type >= PERF_TYPE_MAX)
5426                 return -EINVAL;
5427
5428         if (attr->__reserved_1)
5429                 return -EINVAL;
5430
5431         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5432                 return -EINVAL;
5433
5434         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5435                 return -EINVAL;
5436
5437 out:
5438         return ret;
5439
5440 err_size:
5441         put_user(sizeof(*attr), &uattr->size);
5442         ret = -E2BIG;
5443         goto out;
5444 }
5445
5446 static int
5447 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5448 {
5449         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5450         int ret = -EINVAL;
5451
5452         if (!output_event)
5453                 goto set;
5454
5455         /* don't allow circular references */
5456         if (event == output_event)
5457                 goto out;
5458
5459         /*
5460          * Don't allow cross-cpu buffers
5461          */
5462         if (output_event->cpu != event->cpu)
5463                 goto out;
5464
5465         /*
5466          * If its not a per-cpu buffer, it must be the same task.
5467          */
5468         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5469                 goto out;
5470
5471 set:
5472         mutex_lock(&event->mmap_mutex);
5473         /* Can't redirect output if we've got an active mmap() */
5474         if (atomic_read(&event->mmap_count))
5475                 goto unlock;
5476
5477         if (output_event) {
5478                 /* get the buffer we want to redirect to */
5479                 buffer = perf_buffer_get(output_event);
5480                 if (!buffer)
5481                         goto unlock;
5482         }
5483
5484         old_buffer = event->buffer;
5485         rcu_assign_pointer(event->buffer, buffer);
5486         ret = 0;
5487 unlock:
5488         mutex_unlock(&event->mmap_mutex);
5489
5490         if (old_buffer)
5491                 perf_buffer_put(old_buffer);
5492 out:
5493         return ret;
5494 }
5495
5496 /**
5497  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5498  *
5499  * @attr_uptr:  event_id type attributes for monitoring/sampling
5500  * @pid:                target pid
5501  * @cpu:                target cpu
5502  * @group_fd:           group leader event fd
5503  */
5504 SYSCALL_DEFINE5(perf_event_open,
5505                 struct perf_event_attr __user *, attr_uptr,
5506                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5507 {
5508         struct perf_event *group_leader = NULL, *output_event = NULL;
5509         struct perf_event *event, *sibling;
5510         struct perf_event_attr attr;
5511         struct perf_event_context *ctx;
5512         struct file *event_file = NULL;
5513         struct file *group_file = NULL;
5514         struct task_struct *task = NULL;
5515         struct pmu *pmu;
5516         int event_fd;
5517         int move_group = 0;
5518         int fput_needed = 0;
5519         int err;
5520
5521         /* for future expandability... */
5522         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5523                 return -EINVAL;
5524
5525         err = perf_copy_attr(attr_uptr, &attr);
5526         if (err)
5527                 return err;
5528
5529         if (!attr.exclude_kernel) {
5530                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5531                         return -EACCES;
5532         }
5533
5534         if (attr.freq) {
5535                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5536                         return -EINVAL;
5537         }
5538
5539         event_fd = get_unused_fd_flags(O_RDWR);
5540         if (event_fd < 0)
5541                 return event_fd;
5542
5543         if (group_fd != -1) {
5544                 group_leader = perf_fget_light(group_fd, &fput_needed);
5545                 if (IS_ERR(group_leader)) {
5546                         err = PTR_ERR(group_leader);
5547                         goto err_fd;
5548                 }
5549                 group_file = group_leader->filp;
5550                 if (flags & PERF_FLAG_FD_OUTPUT)
5551                         output_event = group_leader;
5552                 if (flags & PERF_FLAG_FD_NO_GROUP)
5553                         group_leader = NULL;
5554         }
5555
5556         event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
5557         if (IS_ERR(event)) {
5558                 err = PTR_ERR(event);
5559                 goto err_fd;
5560         }
5561
5562         /*
5563          * Special case software events and allow them to be part of
5564          * any hardware group.
5565          */
5566         pmu = event->pmu;
5567
5568         if (group_leader &&
5569             (is_software_event(event) != is_software_event(group_leader))) {
5570                 if (is_software_event(event)) {
5571                         /*
5572                          * If event and group_leader are not both a software
5573                          * event, and event is, then group leader is not.
5574                          *
5575                          * Allow the addition of software events to !software
5576                          * groups, this is safe because software events never
5577                          * fail to schedule.
5578                          */
5579                         pmu = group_leader->pmu;
5580                 } else if (is_software_event(group_leader) &&
5581                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5582                         /*
5583                          * In case the group is a pure software group, and we
5584                          * try to add a hardware event, move the whole group to
5585                          * the hardware context.
5586                          */
5587                         move_group = 1;
5588                 }
5589         }
5590
5591         if (pid != -1) {
5592                 task = find_lively_task_by_vpid(pid);
5593                 if (IS_ERR(task)) {
5594                         err = PTR_ERR(task);
5595                         goto err_group_fd;
5596                 }
5597         }
5598
5599         /*
5600          * Get the target context (task or percpu):
5601          */
5602         ctx = find_get_context(pmu, task, cpu);
5603         if (IS_ERR(ctx)) {
5604                 err = PTR_ERR(ctx);
5605                 goto err_group_fd;
5606         }
5607
5608         /*
5609          * Look up the group leader (we will attach this event to it):
5610          */
5611         if (group_leader) {
5612                 err = -EINVAL;
5613
5614                 /*
5615                  * Do not allow a recursive hierarchy (this new sibling
5616                  * becoming part of another group-sibling):
5617                  */
5618                 if (group_leader->group_leader != group_leader)
5619                         goto err_context;
5620                 /*
5621                  * Do not allow to attach to a group in a different
5622                  * task or CPU context:
5623                  */
5624                 if (move_group) {
5625                         if (group_leader->ctx->type != ctx->type)
5626                                 goto err_context;
5627                 } else {
5628                         if (group_leader->ctx != ctx)
5629                                 goto err_context;
5630                 }
5631
5632                 /*
5633                  * Only a group leader can be exclusive or pinned
5634                  */
5635                 if (attr.exclusive || attr.pinned)
5636                         goto err_context;
5637         }
5638
5639         if (output_event) {
5640                 err = perf_event_set_output(event, output_event);
5641                 if (err)
5642                         goto err_context;
5643         }
5644
5645         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5646         if (IS_ERR(event_file)) {
5647                 err = PTR_ERR(event_file);
5648                 goto err_context;
5649         }
5650
5651         if (move_group) {
5652                 struct perf_event_context *gctx = group_leader->ctx;
5653
5654                 mutex_lock(&gctx->mutex);
5655                 perf_event_remove_from_context(group_leader);
5656                 list_for_each_entry(sibling, &group_leader->sibling_list,
5657                                     group_entry) {
5658                         perf_event_remove_from_context(sibling);
5659                         put_ctx(gctx);
5660                 }
5661                 mutex_unlock(&gctx->mutex);
5662                 put_ctx(gctx);
5663         }
5664
5665         event->filp = event_file;
5666         WARN_ON_ONCE(ctx->parent_ctx);
5667         mutex_lock(&ctx->mutex);
5668
5669         if (move_group) {
5670                 perf_install_in_context(ctx, group_leader, cpu);
5671                 get_ctx(ctx);
5672                 list_for_each_entry(sibling, &group_leader->sibling_list,
5673                                     group_entry) {
5674                         perf_install_in_context(ctx, sibling, cpu);
5675                         get_ctx(ctx);
5676                 }
5677         }
5678
5679         perf_install_in_context(ctx, event, cpu);
5680         ++ctx->generation;
5681         mutex_unlock(&ctx->mutex);
5682
5683         event->owner = current;
5684         get_task_struct(current);
5685         mutex_lock(&current->perf_event_mutex);
5686         list_add_tail(&event->owner_entry, &current->perf_event_list);
5687         mutex_unlock(&current->perf_event_mutex);
5688
5689         /*
5690          * Drop the reference on the group_event after placing the
5691          * new event on the sibling_list. This ensures destruction
5692          * of the group leader will find the pointer to itself in
5693          * perf_group_detach().
5694          */
5695         fput_light(group_file, fput_needed);
5696         fd_install(event_fd, event_file);
5697         return event_fd;
5698
5699 err_context:
5700         put_ctx(ctx);
5701 err_group_fd:
5702         fput_light(group_file, fput_needed);
5703         free_event(event);
5704 err_fd:
5705         put_unused_fd(event_fd);
5706         return err;
5707 }
5708
5709 /**
5710  * perf_event_create_kernel_counter
5711  *
5712  * @attr: attributes of the counter to create
5713  * @cpu: cpu in which the counter is bound
5714  * @task: task to profile (NULL for percpu)
5715  */
5716 struct perf_event *
5717 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5718                                  struct task_struct *task,
5719                                  perf_overflow_handler_t overflow_handler)
5720 {
5721         struct perf_event_context *ctx;
5722         struct perf_event *event;
5723         int err;
5724
5725         /*
5726          * Get the target context (task or percpu):
5727          */
5728
5729         event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
5730         if (IS_ERR(event)) {
5731                 err = PTR_ERR(event);
5732                 goto err;
5733         }
5734
5735         ctx = find_get_context(event->pmu, task, cpu);
5736         if (IS_ERR(ctx)) {
5737                 err = PTR_ERR(ctx);
5738                 goto err_free;
5739         }
5740
5741         event->filp = NULL;
5742         WARN_ON_ONCE(ctx->parent_ctx);
5743         mutex_lock(&ctx->mutex);
5744         perf_install_in_context(ctx, event, cpu);
5745         ++ctx->generation;
5746         mutex_unlock(&ctx->mutex);
5747
5748         event->owner = current;
5749         get_task_struct(current);
5750         mutex_lock(&current->perf_event_mutex);
5751         list_add_tail(&event->owner_entry, &current->perf_event_list);
5752         mutex_unlock(&current->perf_event_mutex);
5753
5754         return event;
5755
5756 err_free:
5757         free_event(event);
5758 err:
5759         return ERR_PTR(err);
5760 }
5761 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5762
5763 static void sync_child_event(struct perf_event *child_event,
5764                                struct task_struct *child)
5765 {
5766         struct perf_event *parent_event = child_event->parent;
5767         u64 child_val;
5768
5769         if (child_event->attr.inherit_stat)
5770                 perf_event_read_event(child_event, child);
5771
5772         child_val = perf_event_count(child_event);
5773
5774         /*
5775          * Add back the child's count to the parent's count:
5776          */
5777         atomic64_add(child_val, &parent_event->child_count);
5778         atomic64_add(child_event->total_time_enabled,
5779                      &parent_event->child_total_time_enabled);
5780         atomic64_add(child_event->total_time_running,
5781                      &parent_event->child_total_time_running);
5782
5783         /*
5784          * Remove this event from the parent's list
5785          */
5786         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5787         mutex_lock(&parent_event->child_mutex);
5788         list_del_init(&child_event->child_list);
5789         mutex_unlock(&parent_event->child_mutex);
5790
5791         /*
5792          * Release the parent event, if this was the last
5793          * reference to it.
5794          */
5795         fput(parent_event->filp);
5796 }
5797
5798 static void
5799 __perf_event_exit_task(struct perf_event *child_event,
5800                          struct perf_event_context *child_ctx,
5801                          struct task_struct *child)
5802 {
5803         struct perf_event *parent_event;
5804
5805         perf_event_remove_from_context(child_event);
5806
5807         parent_event = child_event->parent;
5808         /*
5809          * It can happen that parent exits first, and has events
5810          * that are still around due to the child reference. These
5811          * events need to be zapped - but otherwise linger.
5812          */
5813         if (parent_event) {
5814                 sync_child_event(child_event, child);
5815                 free_event(child_event);
5816         }
5817 }
5818
5819 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5820 {
5821         struct perf_event *child_event, *tmp;
5822         struct perf_event_context *child_ctx;
5823         unsigned long flags;
5824
5825         if (likely(!child->perf_event_ctxp[ctxn])) {
5826                 perf_event_task(child, NULL, 0);
5827                 return;
5828         }
5829
5830         local_irq_save(flags);
5831         /*
5832          * We can't reschedule here because interrupts are disabled,
5833          * and either child is current or it is a task that can't be
5834          * scheduled, so we are now safe from rescheduling changing
5835          * our context.
5836          */
5837         child_ctx = child->perf_event_ctxp[ctxn];
5838         __perf_event_task_sched_out(child_ctx);
5839
5840         /*
5841          * Take the context lock here so that if find_get_context is
5842          * reading child->perf_event_ctxp, we wait until it has
5843          * incremented the context's refcount before we do put_ctx below.
5844          */
5845         raw_spin_lock(&child_ctx->lock);
5846         child->perf_event_ctxp[ctxn] = NULL;
5847         /*
5848          * If this context is a clone; unclone it so it can't get
5849          * swapped to another process while we're removing all
5850          * the events from it.
5851          */
5852         unclone_ctx(child_ctx);
5853         update_context_time(child_ctx);
5854         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5855
5856         /*
5857          * Report the task dead after unscheduling the events so that we
5858          * won't get any samples after PERF_RECORD_EXIT. We can however still
5859          * get a few PERF_RECORD_READ events.
5860          */
5861         perf_event_task(child, child_ctx, 0);
5862
5863         /*
5864          * We can recurse on the same lock type through:
5865          *
5866          *   __perf_event_exit_task()
5867          *     sync_child_event()
5868          *       fput(parent_event->filp)
5869          *         perf_release()
5870          *           mutex_lock(&ctx->mutex)
5871          *
5872          * But since its the parent context it won't be the same instance.
5873          */
5874         mutex_lock(&child_ctx->mutex);
5875
5876 again:
5877         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5878                                  group_entry)
5879                 __perf_event_exit_task(child_event, child_ctx, child);
5880
5881         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5882                                  group_entry)
5883                 __perf_event_exit_task(child_event, child_ctx, child);
5884
5885         /*
5886          * If the last event was a group event, it will have appended all
5887          * its siblings to the list, but we obtained 'tmp' before that which
5888          * will still point to the list head terminating the iteration.
5889          */
5890         if (!list_empty(&child_ctx->pinned_groups) ||
5891             !list_empty(&child_ctx->flexible_groups))
5892                 goto again;
5893
5894         mutex_unlock(&child_ctx->mutex);
5895
5896         put_ctx(child_ctx);
5897 }
5898
5899 /*
5900  * When a child task exits, feed back event values to parent events.
5901  */
5902 void perf_event_exit_task(struct task_struct *child)
5903 {
5904         int ctxn;
5905
5906         for_each_task_context_nr(ctxn)
5907                 perf_event_exit_task_context(child, ctxn);
5908 }
5909
5910 static void perf_free_event(struct perf_event *event,
5911                             struct perf_event_context *ctx)
5912 {
5913         struct perf_event *parent = event->parent;
5914
5915         if (WARN_ON_ONCE(!parent))
5916                 return;
5917
5918         mutex_lock(&parent->child_mutex);
5919         list_del_init(&event->child_list);
5920         mutex_unlock(&parent->child_mutex);
5921
5922         fput(parent->filp);
5923
5924         perf_group_detach(event);
5925         list_del_event(event, ctx);
5926         free_event(event);
5927 }
5928
5929 /*
5930  * free an unexposed, unused context as created by inheritance by
5931  * perf_event_init_task below, used by fork() in case of fail.
5932  */
5933 void perf_event_free_task(struct task_struct *task)
5934 {
5935         struct perf_event_context *ctx;
5936         struct perf_event *event, *tmp;
5937         int ctxn;
5938
5939         for_each_task_context_nr(ctxn) {
5940                 ctx = task->perf_event_ctxp[ctxn];
5941                 if (!ctx)
5942                         continue;
5943
5944                 mutex_lock(&ctx->mutex);
5945 again:
5946                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5947                                 group_entry)
5948                         perf_free_event(event, ctx);
5949
5950                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5951                                 group_entry)
5952                         perf_free_event(event, ctx);
5953
5954                 if (!list_empty(&ctx->pinned_groups) ||
5955                                 !list_empty(&ctx->flexible_groups))
5956                         goto again;
5957
5958                 mutex_unlock(&ctx->mutex);
5959
5960                 put_ctx(ctx);
5961         }
5962 }
5963
5964 void perf_event_delayed_put(struct task_struct *task)
5965 {
5966         int ctxn;
5967
5968         for_each_task_context_nr(ctxn)
5969                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5970 }
5971
5972 /*
5973  * inherit a event from parent task to child task:
5974  */
5975 static struct perf_event *
5976 inherit_event(struct perf_event *parent_event,
5977               struct task_struct *parent,
5978               struct perf_event_context *parent_ctx,
5979               struct task_struct *child,
5980               struct perf_event *group_leader,
5981               struct perf_event_context *child_ctx)
5982 {
5983         struct perf_event *child_event;
5984         unsigned long flags;
5985
5986         /*
5987          * Instead of creating recursive hierarchies of events,
5988          * we link inherited events back to the original parent,
5989          * which has a filp for sure, which we use as the reference
5990          * count:
5991          */
5992         if (parent_event->parent)
5993                 parent_event = parent_event->parent;
5994
5995         child_event = perf_event_alloc(&parent_event->attr,
5996                                            parent_event->cpu,
5997                                            group_leader, parent_event,
5998                                            NULL);
5999         if (IS_ERR(child_event))
6000                 return child_event;
6001         get_ctx(child_ctx);
6002
6003         /*
6004          * Make the child state follow the state of the parent event,
6005          * not its attr.disabled bit.  We hold the parent's mutex,
6006          * so we won't race with perf_event_{en, dis}able_family.
6007          */
6008         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6009                 child_event->state = PERF_EVENT_STATE_INACTIVE;
6010         else
6011                 child_event->state = PERF_EVENT_STATE_OFF;
6012
6013         if (parent_event->attr.freq) {
6014                 u64 sample_period = parent_event->hw.sample_period;
6015                 struct hw_perf_event *hwc = &child_event->hw;
6016
6017                 hwc->sample_period = sample_period;
6018                 hwc->last_period   = sample_period;
6019
6020                 local64_set(&hwc->period_left, sample_period);
6021         }
6022
6023         child_event->ctx = child_ctx;
6024         child_event->overflow_handler = parent_event->overflow_handler;
6025
6026         /*
6027          * Link it up in the child's context:
6028          */
6029         raw_spin_lock_irqsave(&child_ctx->lock, flags);
6030         add_event_to_ctx(child_event, child_ctx);
6031         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6032
6033         /*
6034          * Get a reference to the parent filp - we will fput it
6035          * when the child event exits. This is safe to do because
6036          * we are in the parent and we know that the filp still
6037          * exists and has a nonzero count:
6038          */
6039         atomic_long_inc(&parent_event->filp->f_count);
6040
6041         /*
6042          * Link this into the parent event's child list
6043          */
6044         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6045         mutex_lock(&parent_event->child_mutex);
6046         list_add_tail(&child_event->child_list, &parent_event->child_list);
6047         mutex_unlock(&parent_event->child_mutex);
6048
6049         return child_event;
6050 }
6051
6052 static int inherit_group(struct perf_event *parent_event,
6053               struct task_struct *parent,
6054               struct perf_event_context *parent_ctx,
6055               struct task_struct *child,
6056               struct perf_event_context *child_ctx)
6057 {
6058         struct perf_event *leader;
6059         struct perf_event *sub;
6060         struct perf_event *child_ctr;
6061
6062         leader = inherit_event(parent_event, parent, parent_ctx,
6063                                  child, NULL, child_ctx);
6064         if (IS_ERR(leader))
6065                 return PTR_ERR(leader);
6066         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6067                 child_ctr = inherit_event(sub, parent, parent_ctx,
6068                                             child, leader, child_ctx);
6069                 if (IS_ERR(child_ctr))
6070                         return PTR_ERR(child_ctr);
6071         }
6072         return 0;
6073 }
6074
6075 static int
6076 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6077                    struct perf_event_context *parent_ctx,
6078                    struct task_struct *child, int ctxn,
6079                    int *inherited_all)
6080 {
6081         int ret;
6082         struct perf_event_context *child_ctx;
6083
6084         if (!event->attr.inherit) {
6085                 *inherited_all = 0;
6086                 return 0;
6087         }
6088
6089         child_ctx = child->perf_event_ctxp[ctxn];
6090         if (!child_ctx) {
6091                 /*
6092                  * This is executed from the parent task context, so
6093                  * inherit events that have been marked for cloning.
6094                  * First allocate and initialize a context for the
6095                  * child.
6096                  */
6097
6098                 child_ctx = alloc_perf_context(event->pmu, child);
6099                 if (!child_ctx)
6100                         return -ENOMEM;
6101
6102                 child->perf_event_ctxp[ctxn] = child_ctx;
6103         }
6104
6105         ret = inherit_group(event, parent, parent_ctx,
6106                             child, child_ctx);
6107
6108         if (ret)
6109                 *inherited_all = 0;
6110
6111         return ret;
6112 }
6113
6114 /*
6115  * Initialize the perf_event context in task_struct
6116  */
6117 int perf_event_init_context(struct task_struct *child, int ctxn)
6118 {
6119         struct perf_event_context *child_ctx, *parent_ctx;
6120         struct perf_event_context *cloned_ctx;
6121         struct perf_event *event;
6122         struct task_struct *parent = current;
6123         int inherited_all = 1;
6124         int ret = 0;
6125
6126         child->perf_event_ctxp[ctxn] = NULL;
6127
6128         mutex_init(&child->perf_event_mutex);
6129         INIT_LIST_HEAD(&child->perf_event_list);
6130
6131         if (likely(!parent->perf_event_ctxp[ctxn]))
6132                 return 0;
6133
6134         /*
6135          * If the parent's context is a clone, pin it so it won't get
6136          * swapped under us.
6137          */
6138         parent_ctx = perf_pin_task_context(parent, ctxn);
6139
6140         /*
6141          * No need to check if parent_ctx != NULL here; since we saw
6142          * it non-NULL earlier, the only reason for it to become NULL
6143          * is if we exit, and since we're currently in the middle of
6144          * a fork we can't be exiting at the same time.
6145          */
6146
6147         /*
6148          * Lock the parent list. No need to lock the child - not PID
6149          * hashed yet and not running, so nobody can access it.
6150          */
6151         mutex_lock(&parent_ctx->mutex);
6152
6153         /*
6154          * We dont have to disable NMIs - we are only looking at
6155          * the list, not manipulating it:
6156          */
6157         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6158                 ret = inherit_task_group(event, parent, parent_ctx,
6159                                          child, ctxn, &inherited_all);
6160                 if (ret)
6161                         break;
6162         }
6163
6164         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6165                 ret = inherit_task_group(event, parent, parent_ctx,
6166                                          child, ctxn, &inherited_all);
6167                 if (ret)
6168                         break;
6169         }
6170
6171         child_ctx = child->perf_event_ctxp[ctxn];
6172
6173         if (child_ctx && inherited_all) {
6174                 /*
6175                  * Mark the child context as a clone of the parent
6176                  * context, or of whatever the parent is a clone of.
6177                  * Note that if the parent is a clone, it could get
6178                  * uncloned at any point, but that doesn't matter
6179                  * because the list of events and the generation
6180                  * count can't have changed since we took the mutex.
6181                  */
6182                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6183                 if (cloned_ctx) {
6184                         child_ctx->parent_ctx = cloned_ctx;
6185                         child_ctx->parent_gen = parent_ctx->parent_gen;
6186                 } else {
6187                         child_ctx->parent_ctx = parent_ctx;
6188                         child_ctx->parent_gen = parent_ctx->generation;
6189                 }
6190                 get_ctx(child_ctx->parent_ctx);
6191         }
6192
6193         mutex_unlock(&parent_ctx->mutex);
6194
6195         perf_unpin_context(parent_ctx);
6196
6197         return ret;
6198 }
6199
6200 /*
6201  * Initialize the perf_event context in task_struct
6202  */
6203 int perf_event_init_task(struct task_struct *child)
6204 {
6205         int ctxn, ret;
6206
6207         for_each_task_context_nr(ctxn) {
6208                 ret = perf_event_init_context(child, ctxn);
6209                 if (ret)
6210                         return ret;
6211         }
6212
6213         return 0;
6214 }
6215
6216 static void __init perf_event_init_all_cpus(void)
6217 {
6218         struct swevent_htable *swhash;
6219         int cpu;
6220
6221         for_each_possible_cpu(cpu) {
6222                 swhash = &per_cpu(swevent_htable, cpu);
6223                 mutex_init(&swhash->hlist_mutex);
6224                 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6225         }
6226 }
6227
6228 static void __cpuinit perf_event_init_cpu(int cpu)
6229 {
6230         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6231
6232         mutex_lock(&swhash->hlist_mutex);
6233         if (swhash->hlist_refcount > 0) {
6234                 struct swevent_hlist *hlist;
6235
6236                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6237                 WARN_ON(!hlist);
6238                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6239         }
6240         mutex_unlock(&swhash->hlist_mutex);
6241 }
6242
6243 #ifdef CONFIG_HOTPLUG_CPU
6244 static void perf_pmu_rotate_stop(struct pmu *pmu)
6245 {
6246         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6247
6248         WARN_ON(!irqs_disabled());
6249
6250         list_del_init(&cpuctx->rotation_list);
6251 }
6252
6253 static void __perf_event_exit_context(void *__info)
6254 {
6255         struct perf_event_context *ctx = __info;
6256         struct perf_event *event, *tmp;
6257
6258         perf_pmu_rotate_stop(ctx->pmu);
6259
6260         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6261                 __perf_event_remove_from_context(event);
6262         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6263                 __perf_event_remove_from_context(event);
6264 }
6265
6266 static void perf_event_exit_cpu_context(int cpu)
6267 {
6268         struct perf_event_context *ctx;
6269         struct pmu *pmu;
6270         int idx;
6271
6272         idx = srcu_read_lock(&pmus_srcu);
6273         list_for_each_entry_rcu(pmu, &pmus, entry) {
6274                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6275
6276                 mutex_lock(&ctx->mutex);
6277                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6278                 mutex_unlock(&ctx->mutex);
6279         }
6280         srcu_read_unlock(&pmus_srcu, idx);
6281 }
6282
6283 static void perf_event_exit_cpu(int cpu)
6284 {
6285         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6286
6287         mutex_lock(&swhash->hlist_mutex);
6288         swevent_hlist_release(swhash);
6289         mutex_unlock(&swhash->hlist_mutex);
6290
6291         perf_event_exit_cpu_context(cpu);
6292 }
6293 #else
6294 static inline void perf_event_exit_cpu(int cpu) { }
6295 #endif
6296
6297 static int __cpuinit
6298 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6299 {
6300         unsigned int cpu = (long)hcpu;
6301
6302         switch (action & ~CPU_TASKS_FROZEN) {
6303
6304         case CPU_UP_PREPARE:
6305         case CPU_DOWN_FAILED:
6306                 perf_event_init_cpu(cpu);
6307                 break;
6308
6309         case CPU_UP_CANCELED:
6310         case CPU_DOWN_PREPARE:
6311                 perf_event_exit_cpu(cpu);
6312                 break;
6313
6314         default:
6315                 break;
6316         }
6317
6318         return NOTIFY_OK;
6319 }
6320
6321 void __init perf_event_init(void)
6322 {
6323         perf_event_init_all_cpus();
6324         init_srcu_struct(&pmus_srcu);
6325         perf_pmu_register(&perf_swevent);
6326         perf_pmu_register(&perf_cpu_clock);
6327         perf_pmu_register(&perf_task_clock);
6328         perf_tp_register();
6329         perf_cpu_notifier(perf_cpu_notify);
6330 }