drm/i915: Reset crtc after resume
[linux-flexiantxendom0-natty.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50     /* given values */
51     int n;
52     int m1, m2;
53     int p1, p2;
54     /* derived values */
55     int dot;
56     int vco;
57     int m;
58     int p;
59 } intel_clock_t;
60
61 typedef struct {
62     int min, max;
63 } intel_range_t;
64
65 typedef struct {
66     int dot_limit;
67     int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM                  2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74     intel_p2_t      p2;
75     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76                       int, int, intel_clock_t *);
77 };
78
79 #define I8XX_DOT_MIN              25000
80 #define I8XX_DOT_MAX             350000
81 #define I8XX_VCO_MIN             930000
82 #define I8XX_VCO_MAX            1400000
83 #define I8XX_N_MIN                    3
84 #define I8XX_N_MAX                   16
85 #define I8XX_M_MIN                   96
86 #define I8XX_M_MAX                  140
87 #define I8XX_M1_MIN                  18
88 #define I8XX_M1_MAX                  26
89 #define I8XX_M2_MIN                   6
90 #define I8XX_M2_MAX                  16
91 #define I8XX_P_MIN                    4
92 #define I8XX_P_MAX                  128
93 #define I8XX_P1_MIN                   2
94 #define I8XX_P1_MAX                  33
95 #define I8XX_P1_LVDS_MIN              1
96 #define I8XX_P1_LVDS_MAX              6
97 #define I8XX_P2_SLOW                  4
98 #define I8XX_P2_FAST                  2
99 #define I8XX_P2_LVDS_SLOW             14
100 #define I8XX_P2_LVDS_FAST             7
101 #define I8XX_P2_SLOW_LIMIT       165000
102
103 #define I9XX_DOT_MIN              20000
104 #define I9XX_DOT_MAX             400000
105 #define I9XX_VCO_MIN            1400000
106 #define I9XX_VCO_MAX            2800000
107 #define PINEVIEW_VCO_MIN                1700000
108 #define PINEVIEW_VCO_MAX                3500000
109 #define I9XX_N_MIN                    1
110 #define I9XX_N_MAX                    6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN                3
113 #define PINEVIEW_N_MAX                6
114 #define I9XX_M_MIN                   70
115 #define I9XX_M_MAX                  120
116 #define PINEVIEW_M_MIN                2
117 #define PINEVIEW_M_MAX              256
118 #define I9XX_M1_MIN                  10
119 #define I9XX_M1_MAX                  22
120 #define I9XX_M2_MIN                   5
121 #define I9XX_M2_MAX                   9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN               0
124 #define PINEVIEW_M1_MAX               0
125 #define PINEVIEW_M2_MIN               0
126 #define PINEVIEW_M2_MAX               254
127 #define I9XX_P_SDVO_DAC_MIN           5
128 #define I9XX_P_SDVO_DAC_MAX          80
129 #define I9XX_P_LVDS_MIN               7
130 #define I9XX_P_LVDS_MAX              98
131 #define PINEVIEW_P_LVDS_MIN                   7
132 #define PINEVIEW_P_LVDS_MAX                  112
133 #define I9XX_P1_MIN                   1
134 #define I9XX_P1_MAX                   8
135 #define I9XX_P2_SDVO_DAC_SLOW                10
136 #define I9XX_P2_SDVO_DAC_FAST                 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
138 #define I9XX_P2_LVDS_SLOW                    14
139 #define I9XX_P2_LVDS_FAST                     7
140 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
141
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN           25000
144 #define G4X_DOT_SDVO_MAX           270000
145 #define G4X_VCO_MIN                1750000
146 #define G4X_VCO_MAX                3500000
147 #define G4X_N_SDVO_MIN             1
148 #define G4X_N_SDVO_MAX             4
149 #define G4X_M_SDVO_MIN             104
150 #define G4X_M_SDVO_MAX             138
151 #define G4X_M1_SDVO_MIN            17
152 #define G4X_M1_SDVO_MAX            23
153 #define G4X_M2_SDVO_MIN            5
154 #define G4X_M2_SDVO_MAX            11
155 #define G4X_P_SDVO_MIN             10
156 #define G4X_P_SDVO_MAX             30
157 #define G4X_P1_SDVO_MIN            1
158 #define G4X_P1_SDVO_MAX            3
159 #define G4X_P2_SDVO_SLOW           10
160 #define G4X_P2_SDVO_FAST           10
161 #define G4X_P2_SDVO_LIMIT          270000
162
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN           22000
165 #define G4X_DOT_HDMI_DAC_MAX           400000
166 #define G4X_N_HDMI_DAC_MIN             1
167 #define G4X_N_HDMI_DAC_MAX             4
168 #define G4X_M_HDMI_DAC_MIN             104
169 #define G4X_M_HDMI_DAC_MAX             138
170 #define G4X_M1_HDMI_DAC_MIN            16
171 #define G4X_M1_HDMI_DAC_MAX            23
172 #define G4X_M2_HDMI_DAC_MIN            5
173 #define G4X_M2_HDMI_DAC_MAX            11
174 #define G4X_P_HDMI_DAC_MIN             5
175 #define G4X_P_HDMI_DAC_MAX             80
176 #define G4X_P1_HDMI_DAC_MIN            1
177 #define G4X_P1_HDMI_DAC_MAX            8
178 #define G4X_P2_HDMI_DAC_SLOW           10
179 #define G4X_P2_HDMI_DAC_FAST           5
180 #define G4X_P2_HDMI_DAC_LIMIT          165000
181
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
200
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
219
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN           161670
222 #define G4X_DOT_DISPLAY_PORT_MAX           227000
223 #define G4X_N_DISPLAY_PORT_MIN             1
224 #define G4X_N_DISPLAY_PORT_MAX             2
225 #define G4X_M_DISPLAY_PORT_MIN             97
226 #define G4X_M_DISPLAY_PORT_MAX             108
227 #define G4X_M1_DISPLAY_PORT_MIN            0x10
228 #define G4X_M1_DISPLAY_PORT_MAX            0x12
229 #define G4X_M2_DISPLAY_PORT_MIN            0x05
230 #define G4X_M2_DISPLAY_PORT_MAX            0x06
231 #define G4X_P_DISPLAY_PORT_MIN             10
232 #define G4X_P_DISPLAY_PORT_MAX             20
233 #define G4X_P1_DISPLAY_PORT_MIN            1
234 #define G4X_P1_DISPLAY_PORT_MAX            2
235 #define G4X_P2_DISPLAY_PORT_SLOW           10
236 #define G4X_P2_DISPLAY_PORT_FAST           10
237 #define G4X_P2_DISPLAY_PORT_LIMIT          0
238
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241    N/M1/M2, so here the range value for them is (actual_value-2).
242  */
243 #define IRONLAKE_DOT_MIN         25000
244 #define IRONLAKE_DOT_MAX         350000
245 #define IRONLAKE_VCO_MIN         1760000
246 #define IRONLAKE_VCO_MAX         3510000
247 #define IRONLAKE_M1_MIN          12
248 #define IRONLAKE_M1_MAX          22
249 #define IRONLAKE_M2_MIN          5
250 #define IRONLAKE_M2_MAX          9
251 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
252
253 /* We have parameter ranges for different type of outputs. */
254
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN      1
257 #define IRONLAKE_DAC_N_MAX      5
258 #define IRONLAKE_DAC_M_MIN      79
259 #define IRONLAKE_DAC_M_MAX      127
260 #define IRONLAKE_DAC_P_MIN      5
261 #define IRONLAKE_DAC_P_MAX      80
262 #define IRONLAKE_DAC_P1_MIN     1
263 #define IRONLAKE_DAC_P1_MAX     8
264 #define IRONLAKE_DAC_P2_SLOW    10
265 #define IRONLAKE_DAC_P2_FAST    5
266
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN   1
269 #define IRONLAKE_LVDS_S_N_MAX   3
270 #define IRONLAKE_LVDS_S_M_MIN   79
271 #define IRONLAKE_LVDS_S_M_MAX   118
272 #define IRONLAKE_LVDS_S_P_MIN   28
273 #define IRONLAKE_LVDS_S_P_MAX   112
274 #define IRONLAKE_LVDS_S_P1_MIN  2
275 #define IRONLAKE_LVDS_S_P1_MAX  8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
278
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN   1
281 #define IRONLAKE_LVDS_D_N_MAX   3
282 #define IRONLAKE_LVDS_D_M_MIN   79
283 #define IRONLAKE_LVDS_D_M_MAX   127
284 #define IRONLAKE_LVDS_D_P_MIN   14
285 #define IRONLAKE_LVDS_D_P_MAX   56
286 #define IRONLAKE_LVDS_D_P1_MIN  2
287 #define IRONLAKE_LVDS_D_P1_MAX  8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
290
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
302
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
314
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN               1
317 #define IRONLAKE_DP_N_MAX               2
318 #define IRONLAKE_DP_M_MIN               81
319 #define IRONLAKE_DP_M_MAX               90
320 #define IRONLAKE_DP_P_MIN               10
321 #define IRONLAKE_DP_P_MAX               20
322 #define IRONLAKE_DP_P2_FAST             10
323 #define IRONLAKE_DP_P2_SLOW             10
324 #define IRONLAKE_DP_P2_LIMIT            0
325 #define IRONLAKE_DP_P1_MIN              1
326 #define IRONLAKE_DP_P1_MAX              2
327
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
330
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333                     int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336                         int target, int refclk, intel_clock_t *best_clock);
337
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340                       int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343                            int target, int refclk, intel_clock_t *best_clock);
344
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
347 {
348         if (IS_GEN5(dev)) {
349                 struct drm_i915_private *dev_priv = dev->dev_private;
350                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
351         } else
352                 return 27;
353 }
354
355 static const intel_limit_t intel_limits_i8xx_dvo = {
356         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
357         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
358         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
359         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
360         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
361         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
362         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
363         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
364         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
365                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
366         .find_pll = intel_find_best_PLL,
367 };
368
369 static const intel_limit_t intel_limits_i8xx_lvds = {
370         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
371         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
372         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
373         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
374         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
375         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
376         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
377         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
378         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
379                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
380         .find_pll = intel_find_best_PLL,
381 };
382         
383 static const intel_limit_t intel_limits_i9xx_sdvo = {
384         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
385         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
386         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
387         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
388         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
389         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
390         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
391         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
392         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
393                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
394         .find_pll = intel_find_best_PLL,
395 };
396
397 static const intel_limit_t intel_limits_i9xx_lvds = {
398         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
399         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
400         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
401         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
402         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
403         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
404         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
405         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
406         /* The single-channel range is 25-112Mhz, and dual-channel
407          * is 80-224Mhz.  Prefer single channel as much as possible.
408          */
409         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
410                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
411         .find_pll = intel_find_best_PLL,
412 };
413
414     /* below parameter and function is for G4X Chipset Family*/
415 static const intel_limit_t intel_limits_g4x_sdvo = {
416         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
417         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
418         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
419         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
420         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
421         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
422         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
423         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
424         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
425                  .p2_slow = G4X_P2_SDVO_SLOW,
426                  .p2_fast = G4X_P2_SDVO_FAST
427         },
428         .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_hdmi = {
432         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
433         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
434         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
435         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
436         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
437         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
438         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
439         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
440         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
441                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
442                  .p2_fast = G4X_P2_HDMI_DAC_FAST
443         },
444         .find_pll = intel_g4x_find_best_PLL,
445 };
446
447 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
448         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
449                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
450         .vco = { .min = G4X_VCO_MIN,
451                  .max = G4X_VCO_MAX },
452         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
453                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
454         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
455                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
456         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
457                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
458         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
459                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
460         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
461                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
462         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
463                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
464         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
465                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
466                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
467         },
468         .find_pll = intel_g4x_find_best_PLL,
469 };
470
471 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
472         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
473                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
474         .vco = { .min = G4X_VCO_MIN,
475                  .max = G4X_VCO_MAX },
476         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
477                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
478         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
479                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
480         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
481                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
482         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
483                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
484         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
485                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
486         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
487                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
488         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
489                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
490                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
491         },
492         .find_pll = intel_g4x_find_best_PLL,
493 };
494
495 static const intel_limit_t intel_limits_g4x_display_port = {
496         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
497                  .max = G4X_DOT_DISPLAY_PORT_MAX },
498         .vco = { .min = G4X_VCO_MIN,
499                  .max = G4X_VCO_MAX},
500         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
501                  .max = G4X_N_DISPLAY_PORT_MAX },
502         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
503                  .max = G4X_M_DISPLAY_PORT_MAX },
504         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
505                  .max = G4X_M1_DISPLAY_PORT_MAX },
506         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
507                  .max = G4X_M2_DISPLAY_PORT_MAX },
508         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
509                  .max = G4X_P_DISPLAY_PORT_MAX },
510         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
511                  .max = G4X_P1_DISPLAY_PORT_MAX},
512         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
513                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
514                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
515         .find_pll = intel_find_pll_g4x_dp,
516 };
517
518 static const intel_limit_t intel_limits_pineview_sdvo = {
519         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
520         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
521         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
522         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
523         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
524         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
525         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
526         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
527         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
528                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
529         .find_pll = intel_find_best_PLL,
530 };
531
532 static const intel_limit_t intel_limits_pineview_lvds = {
533         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
534         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
535         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
536         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
537         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
538         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
539         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
540         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
541         /* Pineview only supports single-channel mode. */
542         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
543                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
544         .find_pll = intel_find_best_PLL,
545 };
546
547 static const intel_limit_t intel_limits_ironlake_dac = {
548         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
549         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
550         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
551         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
552         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
553         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
554         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
555         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
556         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
557                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
558                  .p2_fast = IRONLAKE_DAC_P2_FAST },
559         .find_pll = intel_g4x_find_best_PLL,
560 };
561
562 static const intel_limit_t intel_limits_ironlake_single_lvds = {
563         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
564         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
565         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
566         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
567         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
568         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
569         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
570         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
571         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
572                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
573                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
574         .find_pll = intel_g4x_find_best_PLL,
575 };
576
577 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
578         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
579         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
580         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
581         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
582         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
583         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
584         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
585         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
586         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
587                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
588                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
589         .find_pll = intel_g4x_find_best_PLL,
590 };
591
592 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
593         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
594         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
595         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
596         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
597         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
598         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
599         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
600         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
601         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
602                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
603                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
604         .find_pll = intel_g4x_find_best_PLL,
605 };
606
607 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
608         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
609         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
610         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
611         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
612         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
613         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
614         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
615         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
616         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
617                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
618                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
619         .find_pll = intel_g4x_find_best_PLL,
620 };
621
622 static const intel_limit_t intel_limits_ironlake_display_port = {
623         .dot = { .min = IRONLAKE_DOT_MIN,
624                  .max = IRONLAKE_DOT_MAX },
625         .vco = { .min = IRONLAKE_VCO_MIN,
626                  .max = IRONLAKE_VCO_MAX},
627         .n   = { .min = IRONLAKE_DP_N_MIN,
628                  .max = IRONLAKE_DP_N_MAX },
629         .m   = { .min = IRONLAKE_DP_M_MIN,
630                  .max = IRONLAKE_DP_M_MAX },
631         .m1  = { .min = IRONLAKE_M1_MIN,
632                  .max = IRONLAKE_M1_MAX },
633         .m2  = { .min = IRONLAKE_M2_MIN,
634                  .max = IRONLAKE_M2_MAX },
635         .p   = { .min = IRONLAKE_DP_P_MIN,
636                  .max = IRONLAKE_DP_P_MAX },
637         .p1  = { .min = IRONLAKE_DP_P1_MIN,
638                  .max = IRONLAKE_DP_P1_MAX},
639         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
640                  .p2_slow = IRONLAKE_DP_P2_SLOW,
641                  .p2_fast = IRONLAKE_DP_P2_FAST },
642         .find_pll = intel_find_pll_ironlake_dp,
643 };
644
645 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
646                                                 int refclk)
647 {
648         struct drm_device *dev = crtc->dev;
649         struct drm_i915_private *dev_priv = dev->dev_private;
650         const intel_limit_t *limit;
651
652         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
654                     LVDS_CLKB_POWER_UP) {
655                         /* LVDS dual channel */
656                         if (refclk == 100000)
657                                 limit = &intel_limits_ironlake_dual_lvds_100m;
658                         else
659                                 limit = &intel_limits_ironlake_dual_lvds;
660                 } else {
661                         if (refclk == 100000)
662                                 limit = &intel_limits_ironlake_single_lvds_100m;
663                         else
664                                 limit = &intel_limits_ironlake_single_lvds;
665                 }
666         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
667                         HAS_eDP)
668                 limit = &intel_limits_ironlake_display_port;
669         else
670                 limit = &intel_limits_ironlake_dac;
671
672         return limit;
673 }
674
675 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
676 {
677         struct drm_device *dev = crtc->dev;
678         struct drm_i915_private *dev_priv = dev->dev_private;
679         const intel_limit_t *limit;
680
681         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
682                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
683                     LVDS_CLKB_POWER_UP)
684                         /* LVDS with dual channel */
685                         limit = &intel_limits_g4x_dual_channel_lvds;
686                 else
687                         /* LVDS with dual channel */
688                         limit = &intel_limits_g4x_single_channel_lvds;
689         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
690                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
691                 limit = &intel_limits_g4x_hdmi;
692         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
693                 limit = &intel_limits_g4x_sdvo;
694         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
695                 limit = &intel_limits_g4x_display_port;
696         } else /* The option is for other outputs */
697                 limit = &intel_limits_i9xx_sdvo;
698
699         return limit;
700 }
701
702 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
703 {
704         struct drm_device *dev = crtc->dev;
705         const intel_limit_t *limit;
706
707         if (HAS_PCH_SPLIT(dev))
708                 limit = intel_ironlake_limit(crtc, refclk);
709         else if (IS_G4X(dev)) {
710                 limit = intel_g4x_limit(crtc);
711         } else if (IS_PINEVIEW(dev)) {
712                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
713                         limit = &intel_limits_pineview_lvds;
714                 else
715                         limit = &intel_limits_pineview_sdvo;
716         } else if (!IS_GEN2(dev)) {
717                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
718                         limit = &intel_limits_i9xx_lvds;
719                 else
720                         limit = &intel_limits_i9xx_sdvo;
721         } else {
722                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
723                         limit = &intel_limits_i8xx_lvds;
724                 else
725                         limit = &intel_limits_i8xx_dvo;
726         }
727         return limit;
728 }
729
730 /* m1 is reserved as 0 in Pineview, n is a ring counter */
731 static void pineview_clock(int refclk, intel_clock_t *clock)
732 {
733         clock->m = clock->m2 + 2;
734         clock->p = clock->p1 * clock->p2;
735         clock->vco = refclk * clock->m / clock->n;
736         clock->dot = clock->vco / clock->p;
737 }
738
739 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
740 {
741         if (IS_PINEVIEW(dev)) {
742                 pineview_clock(refclk, clock);
743                 return;
744         }
745         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
746         clock->p = clock->p1 * clock->p2;
747         clock->vco = refclk * clock->m / (clock->n + 2);
748         clock->dot = clock->vco / clock->p;
749 }
750
751 /**
752  * Returns whether any output on the specified pipe is of the specified type
753  */
754 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
755 {
756         struct drm_device *dev = crtc->dev;
757         struct drm_mode_config *mode_config = &dev->mode_config;
758         struct intel_encoder *encoder;
759
760         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
761                 if (encoder->base.crtc == crtc && encoder->type == type)
762                         return true;
763
764         return false;
765 }
766
767 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
768 /**
769  * Returns whether the given set of divisors are valid for a given refclk with
770  * the given connectors.
771  */
772
773 static bool intel_PLL_is_valid(struct drm_device *dev,
774                                const intel_limit_t *limit,
775                                const intel_clock_t *clock)
776 {
777         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
778                 INTELPllInvalid ("p1 out of range\n");
779         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
780                 INTELPllInvalid ("p out of range\n");
781         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
782                 INTELPllInvalid ("m2 out of range\n");
783         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
784                 INTELPllInvalid ("m1 out of range\n");
785         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
786                 INTELPllInvalid ("m1 <= m2\n");
787         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
788                 INTELPllInvalid ("m out of range\n");
789         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
790                 INTELPllInvalid ("n out of range\n");
791         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
792                 INTELPllInvalid ("vco out of range\n");
793         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
794          * connector, etc., rather than just a single range.
795          */
796         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
797                 INTELPllInvalid ("dot out of range\n");
798
799         return true;
800 }
801
802 static bool
803 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
804                     int target, int refclk, intel_clock_t *best_clock)
805
806 {
807         struct drm_device *dev = crtc->dev;
808         struct drm_i915_private *dev_priv = dev->dev_private;
809         intel_clock_t clock;
810         int err = target;
811
812         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
813             (I915_READ(LVDS)) != 0) {
814                 /*
815                  * For LVDS, if the panel is on, just rely on its current
816                  * settings for dual-channel.  We haven't figured out how to
817                  * reliably set up different single/dual channel state, if we
818                  * even can.
819                  */
820                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
821                     LVDS_CLKB_POWER_UP)
822                         clock.p2 = limit->p2.p2_fast;
823                 else
824                         clock.p2 = limit->p2.p2_slow;
825         } else {
826                 if (target < limit->p2.dot_limit)
827                         clock.p2 = limit->p2.p2_slow;
828                 else
829                         clock.p2 = limit->p2.p2_fast;
830         }
831
832         memset (best_clock, 0, sizeof (*best_clock));
833
834         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
835              clock.m1++) {
836                 for (clock.m2 = limit->m2.min;
837                      clock.m2 <= limit->m2.max; clock.m2++) {
838                         /* m1 is always 0 in Pineview */
839                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
840                                 break;
841                         for (clock.n = limit->n.min;
842                              clock.n <= limit->n.max; clock.n++) {
843                                 for (clock.p1 = limit->p1.min;
844                                         clock.p1 <= limit->p1.max; clock.p1++) {
845                                         int this_err;
846
847                                         intel_clock(dev, refclk, &clock);
848                                         if (!intel_PLL_is_valid(dev, limit,
849                                                                 &clock))
850                                                 continue;
851
852                                         this_err = abs(clock.dot - target);
853                                         if (this_err < err) {
854                                                 *best_clock = clock;
855                                                 err = this_err;
856                                         }
857                                 }
858                         }
859                 }
860         }
861
862         return (err != target);
863 }
864
865 static bool
866 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
867                         int target, int refclk, intel_clock_t *best_clock)
868 {
869         struct drm_device *dev = crtc->dev;
870         struct drm_i915_private *dev_priv = dev->dev_private;
871         intel_clock_t clock;
872         int max_n;
873         bool found;
874         /* approximately equals target * 0.00585 */
875         int err_most = (target >> 8) + (target >> 9);
876         found = false;
877
878         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
879                 int lvds_reg;
880
881                 if (HAS_PCH_SPLIT(dev))
882                         lvds_reg = PCH_LVDS;
883                 else
884                         lvds_reg = LVDS;
885                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
886                     LVDS_CLKB_POWER_UP)
887                         clock.p2 = limit->p2.p2_fast;
888                 else
889                         clock.p2 = limit->p2.p2_slow;
890         } else {
891                 if (target < limit->p2.dot_limit)
892                         clock.p2 = limit->p2.p2_slow;
893                 else
894                         clock.p2 = limit->p2.p2_fast;
895         }
896
897         memset(best_clock, 0, sizeof(*best_clock));
898         max_n = limit->n.max;
899         /* based on hardware requirement, prefer smaller n to precision */
900         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
901                 /* based on hardware requirement, prefere larger m1,m2 */
902                 for (clock.m1 = limit->m1.max;
903                      clock.m1 >= limit->m1.min; clock.m1--) {
904                         for (clock.m2 = limit->m2.max;
905                              clock.m2 >= limit->m2.min; clock.m2--) {
906                                 for (clock.p1 = limit->p1.max;
907                                      clock.p1 >= limit->p1.min; clock.p1--) {
908                                         int this_err;
909
910                                         intel_clock(dev, refclk, &clock);
911                                         if (!intel_PLL_is_valid(dev, limit,
912                                                                 &clock))
913                                                 continue;
914
915                                         this_err = abs(clock.dot - target);
916                                         if (this_err < err_most) {
917                                                 *best_clock = clock;
918                                                 err_most = this_err;
919                                                 max_n = clock.n;
920                                                 found = true;
921                                         }
922                                 }
923                         }
924                 }
925         }
926         return found;
927 }
928
929 static bool
930 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
931                            int target, int refclk, intel_clock_t *best_clock)
932 {
933         struct drm_device *dev = crtc->dev;
934         intel_clock_t clock;
935
936         if (target < 200000) {
937                 clock.n = 1;
938                 clock.p1 = 2;
939                 clock.p2 = 10;
940                 clock.m1 = 12;
941                 clock.m2 = 9;
942         } else {
943                 clock.n = 2;
944                 clock.p1 = 1;
945                 clock.p2 = 10;
946                 clock.m1 = 14;
947                 clock.m2 = 8;
948         }
949         intel_clock(dev, refclk, &clock);
950         memcpy(best_clock, &clock, sizeof(intel_clock_t));
951         return true;
952 }
953
954 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
955 static bool
956 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
957                       int target, int refclk, intel_clock_t *best_clock)
958 {
959         intel_clock_t clock;
960         if (target < 200000) {
961                 clock.p1 = 2;
962                 clock.p2 = 10;
963                 clock.n = 2;
964                 clock.m1 = 23;
965                 clock.m2 = 8;
966         } else {
967                 clock.p1 = 1;
968                 clock.p2 = 10;
969                 clock.n = 1;
970                 clock.m1 = 14;
971                 clock.m2 = 2;
972         }
973         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
974         clock.p = (clock.p1 * clock.p2);
975         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
976         clock.vco = 0;
977         memcpy(best_clock, &clock, sizeof(intel_clock_t));
978         return true;
979 }
980
981 /**
982  * intel_wait_for_vblank - wait for vblank on a given pipe
983  * @dev: drm device
984  * @pipe: pipe to wait for
985  *
986  * Wait for vblank to occur on a given pipe.  Needed for various bits of
987  * mode setting code.
988  */
989 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
990 {
991         struct drm_i915_private *dev_priv = dev->dev_private;
992         int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
993
994         /* Clear existing vblank status. Note this will clear any other
995          * sticky status fields as well.
996          *
997          * This races with i915_driver_irq_handler() with the result
998          * that either function could miss a vblank event.  Here it is not
999          * fatal, as we will either wait upon the next vblank interrupt or
1000          * timeout.  Generally speaking intel_wait_for_vblank() is only
1001          * called during modeset at which time the GPU should be idle and
1002          * should *not* be performing page flips and thus not waiting on
1003          * vblanks...
1004          * Currently, the result of us stealing a vblank from the irq
1005          * handler is that a single frame will be skipped during swapbuffers.
1006          */
1007         I915_WRITE(pipestat_reg,
1008                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1009
1010         /* Wait for vblank interrupt bit to set */
1011         if (wait_for(I915_READ(pipestat_reg) &
1012                      PIPE_VBLANK_INTERRUPT_STATUS,
1013                      50))
1014                 DRM_DEBUG_KMS("vblank wait timed out\n");
1015 }
1016
1017 /*
1018  * intel_wait_for_pipe_off - wait for pipe to turn off
1019  * @dev: drm device
1020  * @pipe: pipe to wait for
1021  *
1022  * After disabling a pipe, we can't wait for vblank in the usual way,
1023  * spinning on the vblank interrupt status bit, since we won't actually
1024  * see an interrupt when the pipe is disabled.
1025  *
1026  * On Gen4 and above:
1027  *   wait for the pipe register state bit to turn off
1028  *
1029  * Otherwise:
1030  *   wait for the display line value to settle (it usually
1031  *   ends up stopping at the start of the next frame).
1032  *
1033  */
1034 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1035 {
1036         struct drm_i915_private *dev_priv = dev->dev_private;
1037
1038         if (INTEL_INFO(dev)->gen >= 4) {
1039                 int reg = PIPECONF(pipe);
1040
1041                 /* Wait for the Pipe State to go off */
1042                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1043                              100))
1044                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1045         } else {
1046                 u32 last_line;
1047                 int reg = PIPEDSL(pipe);
1048                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1049
1050                 /* Wait for the display line to settle */
1051                 do {
1052                         last_line = I915_READ(reg) & DSL_LINEMASK;
1053                         mdelay(5);
1054                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1055                          time_after(timeout, jiffies));
1056                 if (time_after(jiffies, timeout))
1057                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1058         }
1059 }
1060
1061 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1062 {
1063         struct drm_device *dev = crtc->dev;
1064         struct drm_i915_private *dev_priv = dev->dev_private;
1065         struct drm_framebuffer *fb = crtc->fb;
1066         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1067         struct drm_i915_gem_object *obj = intel_fb->obj;
1068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1069         int plane, i;
1070         u32 fbc_ctl, fbc_ctl2;
1071
1072         if (fb->pitch == dev_priv->cfb_pitch &&
1073             obj->fence_reg == dev_priv->cfb_fence &&
1074             intel_crtc->plane == dev_priv->cfb_plane &&
1075             I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1076                 return;
1077
1078         i8xx_disable_fbc(dev);
1079
1080         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1081
1082         if (fb->pitch < dev_priv->cfb_pitch)
1083                 dev_priv->cfb_pitch = fb->pitch;
1084
1085         /* FBC_CTL wants 64B units */
1086         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1087         dev_priv->cfb_fence = obj->fence_reg;
1088         dev_priv->cfb_plane = intel_crtc->plane;
1089         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1090
1091         /* Clear old tags */
1092         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1093                 I915_WRITE(FBC_TAG + (i * 4), 0);
1094
1095         /* Set it up... */
1096         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1097         if (obj->tiling_mode != I915_TILING_NONE)
1098                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1099         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1100         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1101
1102         /* enable it... */
1103         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1104         if (IS_I945GM(dev))
1105                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1106         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1107         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1108         if (obj->tiling_mode != I915_TILING_NONE)
1109                 fbc_ctl |= dev_priv->cfb_fence;
1110         I915_WRITE(FBC_CONTROL, fbc_ctl);
1111
1112         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1113                       dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1114 }
1115
1116 void i8xx_disable_fbc(struct drm_device *dev)
1117 {
1118         struct drm_i915_private *dev_priv = dev->dev_private;
1119         u32 fbc_ctl;
1120
1121         /* Disable compression */
1122         fbc_ctl = I915_READ(FBC_CONTROL);
1123         if ((fbc_ctl & FBC_CTL_EN) == 0)
1124                 return;
1125
1126         fbc_ctl &= ~FBC_CTL_EN;
1127         I915_WRITE(FBC_CONTROL, fbc_ctl);
1128
1129         /* Wait for compressing bit to clear */
1130         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1131                 DRM_DEBUG_KMS("FBC idle timed out\n");
1132                 return;
1133         }
1134
1135         DRM_DEBUG_KMS("disabled FBC\n");
1136 }
1137
1138 static bool i8xx_fbc_enabled(struct drm_device *dev)
1139 {
1140         struct drm_i915_private *dev_priv = dev->dev_private;
1141
1142         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1143 }
1144
1145 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1146 {
1147         struct drm_device *dev = crtc->dev;
1148         struct drm_i915_private *dev_priv = dev->dev_private;
1149         struct drm_framebuffer *fb = crtc->fb;
1150         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1151         struct drm_i915_gem_object *obj = intel_fb->obj;
1152         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1153         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1154         unsigned long stall_watermark = 200;
1155         u32 dpfc_ctl;
1156
1157         dpfc_ctl = I915_READ(DPFC_CONTROL);
1158         if (dpfc_ctl & DPFC_CTL_EN) {
1159                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1160                     dev_priv->cfb_fence == obj->fence_reg &&
1161                     dev_priv->cfb_plane == intel_crtc->plane &&
1162                     dev_priv->cfb_y == crtc->y)
1163                         return;
1164
1165                 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1166                 POSTING_READ(DPFC_CONTROL);
1167                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1168         }
1169
1170         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1171         dev_priv->cfb_fence = obj->fence_reg;
1172         dev_priv->cfb_plane = intel_crtc->plane;
1173         dev_priv->cfb_y = crtc->y;
1174
1175         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1176         if (obj->tiling_mode != I915_TILING_NONE) {
1177                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1178                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1179         } else {
1180                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1181         }
1182
1183         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1184                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1185                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1186         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1187
1188         /* enable it... */
1189         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1190
1191         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1192 }
1193
1194 void g4x_disable_fbc(struct drm_device *dev)
1195 {
1196         struct drm_i915_private *dev_priv = dev->dev_private;
1197         u32 dpfc_ctl;
1198
1199         /* Disable compression */
1200         dpfc_ctl = I915_READ(DPFC_CONTROL);
1201         if (dpfc_ctl & DPFC_CTL_EN) {
1202                 dpfc_ctl &= ~DPFC_CTL_EN;
1203                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1204
1205                 DRM_DEBUG_KMS("disabled FBC\n");
1206         }
1207 }
1208
1209 static bool g4x_fbc_enabled(struct drm_device *dev)
1210 {
1211         struct drm_i915_private *dev_priv = dev->dev_private;
1212
1213         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1214 }
1215
1216 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1217 {
1218         struct drm_i915_private *dev_priv = dev->dev_private;
1219         u32 blt_ecoskpd;
1220
1221         /* Make sure blitter notifies FBC of writes */
1222         __gen6_force_wake_get(dev_priv);
1223         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1224         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1225                 GEN6_BLITTER_LOCK_SHIFT;
1226         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1227         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1228         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1229         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1230                          GEN6_BLITTER_LOCK_SHIFT);
1231         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1232         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1233         __gen6_force_wake_put(dev_priv);
1234 }
1235
1236 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1237 {
1238         struct drm_device *dev = crtc->dev;
1239         struct drm_i915_private *dev_priv = dev->dev_private;
1240         struct drm_framebuffer *fb = crtc->fb;
1241         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1242         struct drm_i915_gem_object *obj = intel_fb->obj;
1243         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1244         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1245         unsigned long stall_watermark = 200;
1246         u32 dpfc_ctl;
1247
1248         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1249         if (dpfc_ctl & DPFC_CTL_EN) {
1250                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1251                     dev_priv->cfb_fence == obj->fence_reg &&
1252                     dev_priv->cfb_plane == intel_crtc->plane &&
1253                     dev_priv->cfb_offset == obj->gtt_offset &&
1254                     dev_priv->cfb_y == crtc->y)
1255                         return;
1256
1257                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1258                 POSTING_READ(ILK_DPFC_CONTROL);
1259                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1260         }
1261
1262         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1263         dev_priv->cfb_fence = obj->fence_reg;
1264         dev_priv->cfb_plane = intel_crtc->plane;
1265         dev_priv->cfb_offset = obj->gtt_offset;
1266         dev_priv->cfb_y = crtc->y;
1267
1268         dpfc_ctl &= DPFC_RESERVED;
1269         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1270         if (obj->tiling_mode != I915_TILING_NONE) {
1271                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1272                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1273         } else {
1274                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1275         }
1276
1277         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1278                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1279                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1280         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1281         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1282         /* enable it... */
1283         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1284
1285         if (IS_GEN6(dev)) {
1286                 I915_WRITE(SNB_DPFC_CTL_SA,
1287                            SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
1288                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1289                 sandybridge_blit_fbc_update(dev);
1290         }
1291
1292         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1293 }
1294
1295 void ironlake_disable_fbc(struct drm_device *dev)
1296 {
1297         struct drm_i915_private *dev_priv = dev->dev_private;
1298         u32 dpfc_ctl;
1299
1300         /* Disable compression */
1301         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1302         if (dpfc_ctl & DPFC_CTL_EN) {
1303                 dpfc_ctl &= ~DPFC_CTL_EN;
1304                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1305
1306                 DRM_DEBUG_KMS("disabled FBC\n");
1307         }
1308 }
1309
1310 static bool ironlake_fbc_enabled(struct drm_device *dev)
1311 {
1312         struct drm_i915_private *dev_priv = dev->dev_private;
1313
1314         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1315 }
1316
1317 bool intel_fbc_enabled(struct drm_device *dev)
1318 {
1319         struct drm_i915_private *dev_priv = dev->dev_private;
1320
1321         if (!dev_priv->display.fbc_enabled)
1322                 return false;
1323
1324         return dev_priv->display.fbc_enabled(dev);
1325 }
1326
1327 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1328 {
1329         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1330
1331         if (!dev_priv->display.enable_fbc)
1332                 return;
1333
1334         dev_priv->display.enable_fbc(crtc, interval);
1335 }
1336
1337 void intel_disable_fbc(struct drm_device *dev)
1338 {
1339         struct drm_i915_private *dev_priv = dev->dev_private;
1340
1341         if (!dev_priv->display.disable_fbc)
1342                 return;
1343
1344         dev_priv->display.disable_fbc(dev);
1345 }
1346
1347 /**
1348  * intel_update_fbc - enable/disable FBC as needed
1349  * @dev: the drm_device
1350  *
1351  * Set up the framebuffer compression hardware at mode set time.  We
1352  * enable it if possible:
1353  *   - plane A only (on pre-965)
1354  *   - no pixel mulitply/line duplication
1355  *   - no alpha buffer discard
1356  *   - no dual wide
1357  *   - framebuffer <= 2048 in width, 1536 in height
1358  *
1359  * We can't assume that any compression will take place (worst case),
1360  * so the compressed buffer has to be the same size as the uncompressed
1361  * one.  It also must reside (along with the line length buffer) in
1362  * stolen memory.
1363  *
1364  * We need to enable/disable FBC on a global basis.
1365  */
1366 static void intel_update_fbc(struct drm_device *dev)
1367 {
1368         struct drm_i915_private *dev_priv = dev->dev_private;
1369         struct drm_crtc *crtc = NULL, *tmp_crtc;
1370         struct intel_crtc *intel_crtc;
1371         struct drm_framebuffer *fb;
1372         struct intel_framebuffer *intel_fb;
1373         struct drm_i915_gem_object *obj;
1374
1375         DRM_DEBUG_KMS("\n");
1376
1377         if (!i915_powersave)
1378                 return;
1379
1380         if (!I915_HAS_FBC(dev))
1381                 return;
1382
1383         /*
1384          * If FBC is already on, we just have to verify that we can
1385          * keep it that way...
1386          * Need to disable if:
1387          *   - more than one pipe is active
1388          *   - changing FBC params (stride, fence, mode)
1389          *   - new fb is too large to fit in compressed buffer
1390          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1391          */
1392         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1393                 if (tmp_crtc->enabled) {
1394                         if (crtc) {
1395                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1396                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1397                                 goto out_disable;
1398                         }
1399                         crtc = tmp_crtc;
1400                 }
1401         }
1402
1403         if (!crtc || crtc->fb == NULL) {
1404                 DRM_DEBUG_KMS("no output, disabling\n");
1405                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1406                 goto out_disable;
1407         }
1408
1409         intel_crtc = to_intel_crtc(crtc);
1410         fb = crtc->fb;
1411         intel_fb = to_intel_framebuffer(fb);
1412         obj = intel_fb->obj;
1413
1414         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1415                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1416                               "compression\n");
1417                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1418                 goto out_disable;
1419         }
1420         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1421             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1422                 DRM_DEBUG_KMS("mode incompatible with compression, "
1423                               "disabling\n");
1424                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1425                 goto out_disable;
1426         }
1427         if ((crtc->mode.hdisplay > 2048) ||
1428             (crtc->mode.vdisplay > 1536)) {
1429                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1430                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1431                 goto out_disable;
1432         }
1433         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1434                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1435                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1436                 goto out_disable;
1437         }
1438         if (obj->tiling_mode != I915_TILING_X) {
1439                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1440                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1441                 goto out_disable;
1442         }
1443
1444         /* If the kernel debugger is active, always disable compression */
1445         if (in_dbg_master())
1446                 goto out_disable;
1447
1448         intel_enable_fbc(crtc, 500);
1449         return;
1450
1451 out_disable:
1452         /* Multiple disables should be harmless */
1453         if (intel_fbc_enabled(dev)) {
1454                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1455                 intel_disable_fbc(dev);
1456         }
1457 }
1458
1459 int
1460 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1461                            struct drm_i915_gem_object *obj,
1462                            struct intel_ring_buffer *pipelined)
1463 {
1464         u32 alignment;
1465         int ret;
1466
1467         switch (obj->tiling_mode) {
1468         case I915_TILING_NONE:
1469                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1470                         alignment = 128 * 1024;
1471                 else if (INTEL_INFO(dev)->gen >= 4)
1472                         alignment = 4 * 1024;
1473                 else
1474                         alignment = 64 * 1024;
1475                 break;
1476         case I915_TILING_X:
1477                 /* pin() will align the object as required by fence */
1478                 alignment = 0;
1479                 break;
1480         case I915_TILING_Y:
1481                 /* FIXME: Is this true? */
1482                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1483                 return -EINVAL;
1484         default:
1485                 BUG();
1486         }
1487
1488         ret = i915_gem_object_pin(obj, alignment, true);
1489         if (ret)
1490                 return ret;
1491
1492         ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1493         if (ret)
1494                 goto err_unpin;
1495
1496         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1497          * fence, whereas 965+ only requires a fence if using
1498          * framebuffer compression.  For simplicity, we always install
1499          * a fence as the cost is not that onerous.
1500          */
1501         if (obj->tiling_mode != I915_TILING_NONE) {
1502                 ret = i915_gem_object_get_fence(obj, pipelined, false);
1503                 if (ret)
1504                         goto err_unpin;
1505         }
1506
1507         return 0;
1508
1509 err_unpin:
1510         i915_gem_object_unpin(obj);
1511         return ret;
1512 }
1513
1514 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1515 static int
1516 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1517                            int x, int y, enum mode_set_atomic state)
1518 {
1519         struct drm_device *dev = crtc->dev;
1520         struct drm_i915_private *dev_priv = dev->dev_private;
1521         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1522         struct intel_framebuffer *intel_fb;
1523         struct drm_i915_gem_object *obj;
1524         int plane = intel_crtc->plane;
1525         unsigned long Start, Offset;
1526         u32 dspcntr;
1527         u32 reg;
1528
1529         switch (plane) {
1530         case 0:
1531         case 1:
1532                 break;
1533         default:
1534                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1535                 return -EINVAL;
1536         }
1537
1538         intel_fb = to_intel_framebuffer(fb);
1539         obj = intel_fb->obj;
1540
1541         reg = DSPCNTR(plane);
1542         dspcntr = I915_READ(reg);
1543         /* Mask out pixel format bits in case we change it */
1544         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1545         switch (fb->bits_per_pixel) {
1546         case 8:
1547                 dspcntr |= DISPPLANE_8BPP;
1548                 break;
1549         case 16:
1550                 if (fb->depth == 15)
1551                         dspcntr |= DISPPLANE_15_16BPP;
1552                 else
1553                         dspcntr |= DISPPLANE_16BPP;
1554                 break;
1555         case 24:
1556         case 32:
1557                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1558                 break;
1559         default:
1560                 DRM_ERROR("Unknown color depth\n");
1561                 return -EINVAL;
1562         }
1563         if (INTEL_INFO(dev)->gen >= 4) {
1564                 if (obj->tiling_mode != I915_TILING_NONE)
1565                         dspcntr |= DISPPLANE_TILED;
1566                 else
1567                         dspcntr &= ~DISPPLANE_TILED;
1568         }
1569
1570         if (HAS_PCH_SPLIT(dev))
1571                 /* must disable */
1572                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1573
1574         I915_WRITE(reg, dspcntr);
1575
1576         Start = obj->gtt_offset;
1577         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1578
1579         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1580                       Start, Offset, x, y, fb->pitch);
1581         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1582         if (INTEL_INFO(dev)->gen >= 4) {
1583                 I915_WRITE(DSPSURF(plane), Start);
1584                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1585                 I915_WRITE(DSPADDR(plane), Offset);
1586         } else
1587                 I915_WRITE(DSPADDR(plane), Start + Offset);
1588         POSTING_READ(reg);
1589
1590         intel_update_fbc(dev);
1591         intel_increase_pllclock(crtc);
1592
1593         return 0;
1594 }
1595
1596 static int
1597 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1598                     struct drm_framebuffer *old_fb)
1599 {
1600         struct drm_device *dev = crtc->dev;
1601         struct drm_i915_master_private *master_priv;
1602         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1603         int ret;
1604
1605         /* no fb bound */
1606         if (!crtc->fb) {
1607                 DRM_DEBUG_KMS("No FB bound\n");
1608                 return 0;
1609         }
1610
1611         switch (intel_crtc->plane) {
1612         case 0:
1613         case 1:
1614                 break;
1615         default:
1616                 return -EINVAL;
1617         }
1618
1619         mutex_lock(&dev->struct_mutex);
1620         ret = intel_pin_and_fence_fb_obj(dev,
1621                                          to_intel_framebuffer(crtc->fb)->obj,
1622                                          NULL);
1623         if (ret != 0) {
1624                 mutex_unlock(&dev->struct_mutex);
1625                 return ret;
1626         }
1627
1628         if (old_fb) {
1629                 struct drm_i915_private *dev_priv = dev->dev_private;
1630                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1631
1632                 wait_event(dev_priv->pending_flip_queue,
1633                            atomic_read(&obj->pending_flip) == 0);
1634
1635                 /* Big Hammer, we also need to ensure that any pending
1636                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1637                  * current scanout is retired before unpinning the old
1638                  * framebuffer.
1639                  */
1640                 ret = i915_gem_object_flush_gpu(obj, false);
1641                 if (ret) {
1642                         i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1643                         mutex_unlock(&dev->struct_mutex);
1644                         return ret;
1645                 }
1646         }
1647
1648         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1649                                          LEAVE_ATOMIC_MODE_SET);
1650         if (ret) {
1651                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1652                 mutex_unlock(&dev->struct_mutex);
1653                 return ret;
1654         }
1655
1656         if (old_fb) {
1657                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1658                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1659         }
1660
1661         mutex_unlock(&dev->struct_mutex);
1662
1663         if (!dev->primary->master)
1664                 return 0;
1665
1666         master_priv = dev->primary->master->driver_priv;
1667         if (!master_priv->sarea_priv)
1668                 return 0;
1669
1670         if (intel_crtc->pipe) {
1671                 master_priv->sarea_priv->pipeB_x = x;
1672                 master_priv->sarea_priv->pipeB_y = y;
1673         } else {
1674                 master_priv->sarea_priv->pipeA_x = x;
1675                 master_priv->sarea_priv->pipeA_y = y;
1676         }
1677
1678         return 0;
1679 }
1680
1681 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1682 {
1683         struct drm_device *dev = crtc->dev;
1684         struct drm_i915_private *dev_priv = dev->dev_private;
1685         u32 dpa_ctl;
1686
1687         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1688         dpa_ctl = I915_READ(DP_A);
1689         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1690
1691         if (clock < 200000) {
1692                 u32 temp;
1693                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1694                 /* workaround for 160Mhz:
1695                    1) program 0x4600c bits 15:0 = 0x8124
1696                    2) program 0x46010 bit 0 = 1
1697                    3) program 0x46034 bit 24 = 1
1698                    4) program 0x64000 bit 14 = 1
1699                    */
1700                 temp = I915_READ(0x4600c);
1701                 temp &= 0xffff0000;
1702                 I915_WRITE(0x4600c, temp | 0x8124);
1703
1704                 temp = I915_READ(0x46010);
1705                 I915_WRITE(0x46010, temp | 1);
1706
1707                 temp = I915_READ(0x46034);
1708                 I915_WRITE(0x46034, temp | (1 << 24));
1709         } else {
1710                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1711         }
1712         I915_WRITE(DP_A, dpa_ctl);
1713
1714         POSTING_READ(DP_A);
1715         udelay(500);
1716 }
1717
1718 static void intel_fdi_normal_train(struct drm_crtc *crtc)
1719 {
1720         struct drm_device *dev = crtc->dev;
1721         struct drm_i915_private *dev_priv = dev->dev_private;
1722         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1723         int pipe = intel_crtc->pipe;
1724         u32 reg, temp;
1725
1726         /* enable normal train */
1727         reg = FDI_TX_CTL(pipe);
1728         temp = I915_READ(reg);
1729         temp &= ~FDI_LINK_TRAIN_NONE;
1730         temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
1731         I915_WRITE(reg, temp);
1732
1733         reg = FDI_RX_CTL(pipe);
1734         temp = I915_READ(reg);
1735         if (HAS_PCH_CPT(dev)) {
1736                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1737                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1738         } else {
1739                 temp &= ~FDI_LINK_TRAIN_NONE;
1740                 temp |= FDI_LINK_TRAIN_NONE;
1741         }
1742         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1743
1744         /* wait one idle pattern time */
1745         POSTING_READ(reg);
1746         udelay(1000);
1747 }
1748
1749 /* The FDI link training functions for ILK/Ibexpeak. */
1750 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1751 {
1752         struct drm_device *dev = crtc->dev;
1753         struct drm_i915_private *dev_priv = dev->dev_private;
1754         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1755         int pipe = intel_crtc->pipe;
1756         u32 reg, temp, tries;
1757
1758         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1759            for train result */
1760         reg = FDI_RX_IMR(pipe);
1761         temp = I915_READ(reg);
1762         temp &= ~FDI_RX_SYMBOL_LOCK;
1763         temp &= ~FDI_RX_BIT_LOCK;
1764         I915_WRITE(reg, temp);
1765         I915_READ(reg);
1766         udelay(150);
1767
1768         /* enable CPU FDI TX and PCH FDI RX */
1769         reg = FDI_TX_CTL(pipe);
1770         temp = I915_READ(reg);
1771         temp &= ~(7 << 19);
1772         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1773         temp &= ~FDI_LINK_TRAIN_NONE;
1774         temp |= FDI_LINK_TRAIN_PATTERN_1;
1775         I915_WRITE(reg, temp | FDI_TX_ENABLE);
1776
1777         reg = FDI_RX_CTL(pipe);
1778         temp = I915_READ(reg);
1779         temp &= ~FDI_LINK_TRAIN_NONE;
1780         temp |= FDI_LINK_TRAIN_PATTERN_1;
1781         I915_WRITE(reg, temp | FDI_RX_ENABLE);
1782
1783         POSTING_READ(reg);
1784         udelay(150);
1785
1786         /* Ironlake workaround, enable clock pointer after FDI enable*/
1787         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_ENABLE);
1788
1789         reg = FDI_RX_IIR(pipe);
1790         for (tries = 0; tries < 5; tries++) {
1791                 temp = I915_READ(reg);
1792                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1793
1794                 if ((temp & FDI_RX_BIT_LOCK)) {
1795                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1796                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1797                         break;
1798                 }
1799         }
1800         if (tries == 5)
1801                 DRM_ERROR("FDI train 1 fail!\n");
1802
1803         /* Train 2 */
1804         reg = FDI_TX_CTL(pipe);
1805         temp = I915_READ(reg);
1806         temp &= ~FDI_LINK_TRAIN_NONE;
1807         temp |= FDI_LINK_TRAIN_PATTERN_2;
1808         I915_WRITE(reg, temp);
1809
1810         reg = FDI_RX_CTL(pipe);
1811         temp = I915_READ(reg);
1812         temp &= ~FDI_LINK_TRAIN_NONE;
1813         temp |= FDI_LINK_TRAIN_PATTERN_2;
1814         I915_WRITE(reg, temp);
1815
1816         POSTING_READ(reg);
1817         udelay(150);
1818
1819         reg = FDI_RX_IIR(pipe);
1820         for (tries = 0; tries < 5; tries++) {
1821                 temp = I915_READ(reg);
1822                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1823
1824                 if (temp & FDI_RX_SYMBOL_LOCK) {
1825                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1826                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1827                         break;
1828                 }
1829         }
1830         if (tries == 5)
1831                 DRM_ERROR("FDI train 2 fail!\n");
1832
1833         DRM_DEBUG_KMS("FDI train done\n");
1834
1835 }
1836
1837 static const int const snb_b_fdi_train_param [] = {
1838         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1839         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1840         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1841         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1842 };
1843
1844 /* The FDI link training functions for SNB/Cougarpoint. */
1845 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1846 {
1847         struct drm_device *dev = crtc->dev;
1848         struct drm_i915_private *dev_priv = dev->dev_private;
1849         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1850         int pipe = intel_crtc->pipe;
1851         u32 reg, temp, i;
1852
1853         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1854            for train result */
1855         reg = FDI_RX_IMR(pipe);
1856         temp = I915_READ(reg);
1857         temp &= ~FDI_RX_SYMBOL_LOCK;
1858         temp &= ~FDI_RX_BIT_LOCK;
1859         I915_WRITE(reg, temp);
1860
1861         POSTING_READ(reg);
1862         udelay(150);
1863
1864         /* enable CPU FDI TX and PCH FDI RX */
1865         reg = FDI_TX_CTL(pipe);
1866         temp = I915_READ(reg);
1867         temp &= ~(7 << 19);
1868         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1869         temp &= ~FDI_LINK_TRAIN_NONE;
1870         temp |= FDI_LINK_TRAIN_PATTERN_1;
1871         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1872         /* SNB-B */
1873         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1874         I915_WRITE(reg, temp | FDI_TX_ENABLE);
1875
1876         reg = FDI_RX_CTL(pipe);
1877         temp = I915_READ(reg);
1878         if (HAS_PCH_CPT(dev)) {
1879                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1880                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1881         } else {
1882                 temp &= ~FDI_LINK_TRAIN_NONE;
1883                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1884         }
1885         I915_WRITE(reg, temp | FDI_RX_ENABLE);
1886
1887         POSTING_READ(reg);
1888         udelay(150);
1889
1890         for (i = 0; i < 4; i++ ) {
1891                 reg = FDI_TX_CTL(pipe);
1892                 temp = I915_READ(reg);
1893                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1894                 temp |= snb_b_fdi_train_param[i];
1895                 I915_WRITE(reg, temp);
1896
1897                 POSTING_READ(reg);
1898                 udelay(500);
1899
1900                 reg = FDI_RX_IIR(pipe);
1901                 temp = I915_READ(reg);
1902                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1903
1904                 if (temp & FDI_RX_BIT_LOCK) {
1905                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1906                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1907                         break;
1908                 }
1909         }
1910         if (i == 4)
1911                 DRM_ERROR("FDI train 1 fail!\n");
1912
1913         /* Train 2 */
1914         reg = FDI_TX_CTL(pipe);
1915         temp = I915_READ(reg);
1916         temp &= ~FDI_LINK_TRAIN_NONE;
1917         temp |= FDI_LINK_TRAIN_PATTERN_2;
1918         if (IS_GEN6(dev)) {
1919                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1920                 /* SNB-B */
1921                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1922         }
1923         I915_WRITE(reg, temp);
1924
1925         reg = FDI_RX_CTL(pipe);
1926         temp = I915_READ(reg);
1927         if (HAS_PCH_CPT(dev)) {
1928                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1929                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1930         } else {
1931                 temp &= ~FDI_LINK_TRAIN_NONE;
1932                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1933         }
1934         I915_WRITE(reg, temp);
1935
1936         POSTING_READ(reg);
1937         udelay(150);
1938
1939         for (i = 0; i < 4; i++ ) {
1940                 reg = FDI_TX_CTL(pipe);
1941                 temp = I915_READ(reg);
1942                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1943                 temp |= snb_b_fdi_train_param[i];
1944                 I915_WRITE(reg, temp);
1945
1946                 POSTING_READ(reg);
1947                 udelay(500);
1948
1949                 reg = FDI_RX_IIR(pipe);
1950                 temp = I915_READ(reg);
1951                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1952
1953                 if (temp & FDI_RX_SYMBOL_LOCK) {
1954                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1955                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1956                         break;
1957                 }
1958         }
1959         if (i == 4)
1960                 DRM_ERROR("FDI train 2 fail!\n");
1961
1962         DRM_DEBUG_KMS("FDI train done.\n");
1963 }
1964
1965 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1966 {
1967         struct drm_device *dev = crtc->dev;
1968         struct drm_i915_private *dev_priv = dev->dev_private;
1969         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1970         int pipe = intel_crtc->pipe;
1971         u32 reg, temp;
1972
1973         /* Write the TU size bits so error detection works */
1974         I915_WRITE(FDI_RX_TUSIZE1(pipe),
1975                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1976
1977         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1978         reg = FDI_RX_CTL(pipe);
1979         temp = I915_READ(reg);
1980         temp &= ~((0x7 << 19) | (0x7 << 16));
1981         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1982         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1983         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1984
1985         POSTING_READ(reg);
1986         udelay(200);
1987
1988         /* Switch from Rawclk to PCDclk */
1989         temp = I915_READ(reg);
1990         I915_WRITE(reg, temp | FDI_PCDCLK);
1991
1992         POSTING_READ(reg);
1993         udelay(200);
1994
1995         /* Enable CPU FDI TX PLL, always on for Ironlake */
1996         reg = FDI_TX_CTL(pipe);
1997         temp = I915_READ(reg);
1998         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1999                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2000
2001                 POSTING_READ(reg);
2002                 udelay(100);
2003         }
2004 }
2005
2006 static void intel_flush_display_plane(struct drm_device *dev,
2007                                       int plane)
2008 {
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         u32 reg = DSPADDR(plane);
2011         I915_WRITE(reg, I915_READ(reg));
2012 }
2013
2014 /*
2015  * When we disable a pipe, we need to clear any pending scanline wait events
2016  * to avoid hanging the ring, which we assume we are waiting on.
2017  */
2018 static void intel_clear_scanline_wait(struct drm_device *dev)
2019 {
2020         struct drm_i915_private *dev_priv = dev->dev_private;
2021         struct intel_ring_buffer *ring;
2022         u32 tmp;
2023
2024         if (IS_GEN2(dev))
2025                 /* Can't break the hang on i8xx */
2026                 return;
2027
2028         ring = LP_RING(dev_priv);
2029         tmp = I915_READ_CTL(ring);
2030         if (tmp & RING_WAIT)
2031                 I915_WRITE_CTL(ring, tmp);
2032 }
2033
2034 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2035 {
2036         struct drm_i915_gem_object *obj;
2037         struct drm_i915_private *dev_priv;
2038
2039         if (crtc->fb == NULL)
2040                 return;
2041
2042         obj = to_intel_framebuffer(crtc->fb)->obj;
2043         dev_priv = crtc->dev->dev_private;
2044         wait_event(dev_priv->pending_flip_queue,
2045                    atomic_read(&obj->pending_flip) == 0);
2046 }
2047
2048 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2049 {
2050         struct drm_device *dev = crtc->dev;
2051         struct drm_i915_private *dev_priv = dev->dev_private;
2052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2053         int pipe = intel_crtc->pipe;
2054         int plane = intel_crtc->plane;
2055         u32 reg, temp;
2056
2057         if (intel_crtc->active)
2058                 return;
2059
2060         intel_crtc->active = true;
2061         intel_update_watermarks(dev);
2062
2063         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2064                 temp = I915_READ(PCH_LVDS);
2065                 if ((temp & LVDS_PORT_EN) == 0)
2066                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2067         }
2068
2069         ironlake_fdi_enable(crtc);
2070
2071         /* Enable panel fitting for LVDS */
2072         if (dev_priv->pch_pf_size &&
2073             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2074                 /* Force use of hard-coded filter coefficients
2075                  * as some pre-programmed values are broken,
2076                  * e.g. x201.
2077                  */
2078                 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
2079                            PF_ENABLE | PF_FILTER_MED_3x3);
2080                 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
2081                            dev_priv->pch_pf_pos);
2082                 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
2083                            dev_priv->pch_pf_size);
2084         }
2085
2086         /* Enable CPU pipe */
2087         reg = PIPECONF(pipe);
2088         temp = I915_READ(reg);
2089         if ((temp & PIPECONF_ENABLE) == 0) {
2090                 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2091                 POSTING_READ(reg);
2092                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2093         }
2094
2095         /* configure and enable CPU plane */
2096         reg = DSPCNTR(plane);
2097         temp = I915_READ(reg);
2098         if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2099                 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2100                 intel_flush_display_plane(dev, plane);
2101         }
2102
2103         /* For PCH output, training FDI link */
2104         if (IS_GEN6(dev))
2105                 gen6_fdi_link_train(crtc);
2106         else
2107                 ironlake_fdi_link_train(crtc);
2108
2109         /* enable PCH DPLL */
2110         reg = PCH_DPLL(pipe);
2111         temp = I915_READ(reg);
2112         if ((temp & DPLL_VCO_ENABLE) == 0) {
2113                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2114                 POSTING_READ(reg);
2115                 udelay(200);
2116         }
2117
2118         if (HAS_PCH_CPT(dev)) {
2119                 /* Be sure PCH DPLL SEL is set */
2120                 temp = I915_READ(PCH_DPLL_SEL);
2121                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2122                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2123                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2124                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2125                 I915_WRITE(PCH_DPLL_SEL, temp);
2126         }
2127
2128         /* set transcoder timing */
2129         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2130         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2131         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2132
2133         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2134         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2135         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2136
2137         intel_fdi_normal_train(crtc);
2138
2139         /* For PCH DP, enable TRANS_DP_CTL */
2140         if (HAS_PCH_CPT(dev) &&
2141             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2142                 reg = TRANS_DP_CTL(pipe);
2143                 temp = I915_READ(reg);
2144                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2145                           TRANS_DP_SYNC_MASK |
2146                           TRANS_DP_BPC_MASK);
2147                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2148                          TRANS_DP_ENH_FRAMING);
2149                 temp |= TRANS_DP_8BPC;
2150
2151                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2152                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2153                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2154                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2155
2156                 switch (intel_trans_dp_port_sel(crtc)) {
2157                 case PCH_DP_B:
2158                         temp |= TRANS_DP_PORT_SEL_B;
2159                         break;
2160                 case PCH_DP_C:
2161                         temp |= TRANS_DP_PORT_SEL_C;
2162                         break;
2163                 case PCH_DP_D:
2164                         temp |= TRANS_DP_PORT_SEL_D;
2165                         break;
2166                 default:
2167                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2168                         temp |= TRANS_DP_PORT_SEL_B;
2169                         break;
2170                 }
2171
2172                 I915_WRITE(reg, temp);
2173         }
2174
2175         /* enable PCH transcoder */
2176         reg = TRANSCONF(pipe);
2177         temp = I915_READ(reg);
2178         /*
2179          * make the BPC in transcoder be consistent with
2180          * that in pipeconf reg.
2181          */
2182         temp &= ~PIPE_BPC_MASK;
2183         temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2184         I915_WRITE(reg, temp | TRANS_ENABLE);
2185         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2186                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
2187
2188         intel_crtc_load_lut(crtc);
2189         intel_update_fbc(dev);
2190         intel_crtc_update_cursor(crtc, true);
2191 }
2192
2193 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2194 {
2195         struct drm_device *dev = crtc->dev;
2196         struct drm_i915_private *dev_priv = dev->dev_private;
2197         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2198         int pipe = intel_crtc->pipe;
2199         int plane = intel_crtc->plane;
2200         u32 reg, temp;
2201
2202         if (!intel_crtc->active)
2203                 return;
2204
2205         intel_crtc_wait_for_pending_flips(crtc);
2206         drm_vblank_off(dev, pipe);
2207         intel_crtc_update_cursor(crtc, false);
2208
2209         /* Disable display plane */
2210         reg = DSPCNTR(plane);
2211         temp = I915_READ(reg);
2212         if (temp & DISPLAY_PLANE_ENABLE) {
2213                 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2214                 intel_flush_display_plane(dev, plane);
2215         }
2216
2217         if (dev_priv->cfb_plane == plane &&
2218             dev_priv->display.disable_fbc)
2219                 dev_priv->display.disable_fbc(dev);
2220
2221         /* disable cpu pipe, disable after all planes disabled */
2222         reg = PIPECONF(pipe);
2223         temp = I915_READ(reg);
2224         if (temp & PIPECONF_ENABLE) {
2225                 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2226                 POSTING_READ(reg);
2227                 /* wait for cpu pipe off, pipe state */
2228                 intel_wait_for_pipe_off(dev, intel_crtc->pipe);
2229         }
2230
2231         /* Disable PF */
2232         I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2233         I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2234
2235         /* disable CPU FDI tx and PCH FDI rx */
2236         reg = FDI_TX_CTL(pipe);
2237         temp = I915_READ(reg);
2238         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2239         POSTING_READ(reg);
2240
2241         reg = FDI_RX_CTL(pipe);
2242         temp = I915_READ(reg);
2243         temp &= ~(0x7 << 16);
2244         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2245         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2246
2247         POSTING_READ(reg);
2248         udelay(100);
2249
2250         /* Ironlake workaround, disable clock pointer after downing FDI */
2251         if (HAS_PCH_IBX(dev))
2252                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2253                            I915_READ(FDI_RX_CHICKEN(pipe) &
2254                                      ~FDI_RX_PHASE_SYNC_POINTER_ENABLE));
2255
2256         /* still set train pattern 1 */
2257         reg = FDI_TX_CTL(pipe);
2258         temp = I915_READ(reg);
2259         temp &= ~FDI_LINK_TRAIN_NONE;
2260         temp |= FDI_LINK_TRAIN_PATTERN_1;
2261         I915_WRITE(reg, temp);
2262
2263         reg = FDI_RX_CTL(pipe);
2264         temp = I915_READ(reg);
2265         if (HAS_PCH_CPT(dev)) {
2266                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2267                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2268         } else {
2269                 temp &= ~FDI_LINK_TRAIN_NONE;
2270                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2271         }
2272         /* BPC in FDI rx is consistent with that in PIPECONF */
2273         temp &= ~(0x07 << 16);
2274         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2275         I915_WRITE(reg, temp);
2276
2277         POSTING_READ(reg);
2278         udelay(100);
2279
2280         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2281                 temp = I915_READ(PCH_LVDS);
2282                 if (temp & LVDS_PORT_EN) {
2283                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2284                         POSTING_READ(PCH_LVDS);
2285                         udelay(100);
2286                 }
2287         }
2288
2289         /* disable PCH transcoder */
2290         reg = TRANSCONF(plane);
2291         temp = I915_READ(reg);
2292         if (temp & TRANS_ENABLE) {
2293                 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2294                 /* wait for PCH transcoder off, transcoder state */
2295                 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2296                         DRM_ERROR("failed to disable transcoder\n");
2297         }
2298
2299         if (HAS_PCH_CPT(dev)) {
2300                 /* disable TRANS_DP_CTL */
2301                 reg = TRANS_DP_CTL(pipe);
2302                 temp = I915_READ(reg);
2303                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2304                 I915_WRITE(reg, temp);
2305
2306                 /* disable DPLL_SEL */
2307                 temp = I915_READ(PCH_DPLL_SEL);
2308                 if (pipe == 0)
2309                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2310                 else
2311                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2312                 I915_WRITE(PCH_DPLL_SEL, temp);
2313         }
2314
2315         /* disable PCH DPLL */
2316         reg = PCH_DPLL(pipe);
2317         temp = I915_READ(reg);
2318         I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2319
2320         /* Switch from PCDclk to Rawclk */
2321         reg = FDI_RX_CTL(pipe);
2322         temp = I915_READ(reg);
2323         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2324
2325         /* Disable CPU FDI TX PLL */
2326         reg = FDI_TX_CTL(pipe);
2327         temp = I915_READ(reg);
2328         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2329
2330         POSTING_READ(reg);
2331         udelay(100);
2332
2333         reg = FDI_RX_CTL(pipe);
2334         temp = I915_READ(reg);
2335         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2336
2337         /* Wait for the clocks to turn off. */
2338         POSTING_READ(reg);
2339         udelay(100);
2340
2341         intel_crtc->active = false;
2342         intel_update_watermarks(dev);
2343         intel_update_fbc(dev);
2344         intel_clear_scanline_wait(dev);
2345 }
2346
2347 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2348 {
2349         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2350         int pipe = intel_crtc->pipe;
2351         int plane = intel_crtc->plane;
2352
2353         /* XXX: When our outputs are all unaware of DPMS modes other than off
2354          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2355          */
2356         switch (mode) {
2357         case DRM_MODE_DPMS_ON:
2358         case DRM_MODE_DPMS_STANDBY:
2359         case DRM_MODE_DPMS_SUSPEND:
2360                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2361                 ironlake_crtc_enable(crtc);
2362                 break;
2363
2364         case DRM_MODE_DPMS_OFF:
2365                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2366                 ironlake_crtc_disable(crtc);
2367                 break;
2368         }
2369 }
2370
2371 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2372 {
2373         if (!enable && intel_crtc->overlay) {
2374                 struct drm_device *dev = intel_crtc->base.dev;
2375
2376                 mutex_lock(&dev->struct_mutex);
2377                 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2378                 mutex_unlock(&dev->struct_mutex);
2379         }
2380
2381         /* Let userspace switch the overlay on again. In most cases userspace
2382          * has to recompute where to put it anyway.
2383          */
2384 }
2385
2386 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2387 {
2388         struct drm_device *dev = crtc->dev;
2389         struct drm_i915_private *dev_priv = dev->dev_private;
2390         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2391         int pipe = intel_crtc->pipe;
2392         int plane = intel_crtc->plane;
2393         u32 reg, temp;
2394
2395         if (intel_crtc->active)
2396                 return;
2397
2398         intel_crtc->active = true;
2399         intel_update_watermarks(dev);
2400
2401         /* Enable the DPLL */
2402         reg = DPLL(pipe);
2403         temp = I915_READ(reg);
2404         if ((temp & DPLL_VCO_ENABLE) == 0) {
2405                 I915_WRITE(reg, temp);
2406
2407                 /* Wait for the clocks to stabilize. */
2408                 POSTING_READ(reg);
2409                 udelay(150);
2410
2411                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2412
2413                 /* Wait for the clocks to stabilize. */
2414                 POSTING_READ(reg);
2415                 udelay(150);
2416
2417                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2418
2419                 /* Wait for the clocks to stabilize. */
2420                 POSTING_READ(reg);
2421                 udelay(150);
2422         }
2423
2424         /* Enable the pipe */
2425         reg = PIPECONF(pipe);
2426         temp = I915_READ(reg);
2427         if ((temp & PIPECONF_ENABLE) == 0)
2428                 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2429
2430         /* Enable the plane */
2431         reg = DSPCNTR(plane);
2432         temp = I915_READ(reg);
2433         if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2434                 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2435                 intel_flush_display_plane(dev, plane);
2436         }
2437
2438         intel_crtc_load_lut(crtc);
2439         intel_update_fbc(dev);
2440
2441         /* Give the overlay scaler a chance to enable if it's on this pipe */
2442         intel_crtc_dpms_overlay(intel_crtc, true);
2443         intel_crtc_update_cursor(crtc, true);
2444 }
2445
2446 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2447 {
2448         struct drm_device *dev = crtc->dev;
2449         struct drm_i915_private *dev_priv = dev->dev_private;
2450         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2451         int pipe = intel_crtc->pipe;
2452         int plane = intel_crtc->plane;
2453         u32 reg, temp;
2454
2455         if (!intel_crtc->active)
2456                 return;
2457
2458         /* Give the overlay scaler a chance to disable if it's on this pipe */
2459         intel_crtc_wait_for_pending_flips(crtc);
2460         drm_vblank_off(dev, pipe);
2461         intel_crtc_dpms_overlay(intel_crtc, false);
2462         intel_crtc_update_cursor(crtc, false);
2463
2464         if (dev_priv->cfb_plane == plane &&
2465             dev_priv->display.disable_fbc)
2466                 dev_priv->display.disable_fbc(dev);
2467
2468         /* Disable display plane */
2469         reg = DSPCNTR(plane);
2470         temp = I915_READ(reg);
2471         if (temp & DISPLAY_PLANE_ENABLE) {
2472                 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2473                 /* Flush the plane changes */
2474                 intel_flush_display_plane(dev, plane);
2475
2476                 /* Wait for vblank for the disable to take effect */
2477                 if (IS_GEN2(dev))
2478                         intel_wait_for_vblank(dev, pipe);
2479         }
2480
2481         /* Don't disable pipe A or pipe A PLLs if needed */
2482         if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2483                 goto done;
2484
2485         /* Next, disable display pipes */
2486         reg = PIPECONF(pipe);
2487         temp = I915_READ(reg);
2488         if (temp & PIPECONF_ENABLE) {
2489                 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2490
2491                 /* Wait for the pipe to turn off */
2492                 POSTING_READ(reg);
2493                 intel_wait_for_pipe_off(dev, pipe);
2494         }
2495
2496         reg = DPLL(pipe);
2497         temp = I915_READ(reg);
2498         if (temp & DPLL_VCO_ENABLE) {
2499                 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2500
2501                 /* Wait for the clocks to turn off. */
2502                 POSTING_READ(reg);
2503                 udelay(150);
2504         }
2505
2506 done:
2507         intel_crtc->active = false;
2508         intel_update_fbc(dev);
2509         intel_update_watermarks(dev);
2510         intel_clear_scanline_wait(dev);
2511 }
2512
2513 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2514 {
2515         /* XXX: When our outputs are all unaware of DPMS modes other than off
2516          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2517          */
2518         switch (mode) {
2519         case DRM_MODE_DPMS_ON:
2520         case DRM_MODE_DPMS_STANDBY:
2521         case DRM_MODE_DPMS_SUSPEND:
2522                 i9xx_crtc_enable(crtc);
2523                 break;
2524         case DRM_MODE_DPMS_OFF:
2525                 i9xx_crtc_disable(crtc);
2526                 break;
2527         }
2528 }
2529
2530 /**
2531  * Sets the power management mode of the pipe and plane.
2532  */
2533 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2534 {
2535         struct drm_device *dev = crtc->dev;
2536         struct drm_i915_private *dev_priv = dev->dev_private;
2537         struct drm_i915_master_private *master_priv;
2538         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2539         int pipe = intel_crtc->pipe;
2540         bool enabled;
2541
2542         if (intel_crtc->dpms_mode == mode)
2543                 return;
2544
2545         intel_crtc->dpms_mode = mode;
2546
2547         dev_priv->display.dpms(crtc, mode);
2548
2549         if (!dev->primary->master)
2550                 return;
2551
2552         master_priv = dev->primary->master->driver_priv;
2553         if (!master_priv->sarea_priv)
2554                 return;
2555
2556         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2557
2558         switch (pipe) {
2559         case 0:
2560                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2561                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2562                 break;
2563         case 1:
2564                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2565                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2566                 break;
2567         default:
2568                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2569                 break;
2570         }
2571 }
2572
2573 static void intel_crtc_disable(struct drm_crtc *crtc)
2574 {
2575         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2576         struct drm_device *dev = crtc->dev;
2577
2578         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2579
2580         if (crtc->fb) {
2581                 mutex_lock(&dev->struct_mutex);
2582                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2583                 mutex_unlock(&dev->struct_mutex);
2584         }
2585 }
2586
2587 /* Prepare for a mode set.
2588  *
2589  * Note we could be a lot smarter here.  We need to figure out which outputs
2590  * will be enabled, which disabled (in short, how the config will changes)
2591  * and perform the minimum necessary steps to accomplish that, e.g. updating
2592  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2593  * panel fitting is in the proper state, etc.
2594  */
2595 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2596 {
2597         i9xx_crtc_disable(crtc);
2598 }
2599
2600 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2601 {
2602         i9xx_crtc_enable(crtc);
2603 }
2604
2605 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2606 {
2607         ironlake_crtc_disable(crtc);
2608 }
2609
2610 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2611 {
2612         ironlake_crtc_enable(crtc);
2613 }
2614
2615 void intel_encoder_prepare (struct drm_encoder *encoder)
2616 {
2617         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2618         /* lvds has its own version of prepare see intel_lvds_prepare */
2619         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2620 }
2621
2622 void intel_encoder_commit (struct drm_encoder *encoder)
2623 {
2624         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2625         /* lvds has its own version of commit see intel_lvds_commit */
2626         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2627 }
2628
2629 void intel_encoder_destroy(struct drm_encoder *encoder)
2630 {
2631         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2632
2633         drm_encoder_cleanup(encoder);
2634         kfree(intel_encoder);
2635 }
2636
2637 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2638                                   struct drm_display_mode *mode,
2639                                   struct drm_display_mode *adjusted_mode)
2640 {
2641         struct drm_device *dev = crtc->dev;
2642
2643         if (HAS_PCH_SPLIT(dev)) {
2644                 /* FDI link clock is fixed at 2.7G */
2645                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2646                         return false;
2647         }
2648
2649         /* XXX some encoders set the crtcinfo, others don't.
2650          * Obviously we need some form of conflict resolution here...
2651          */
2652         if (adjusted_mode->crtc_htotal == 0)
2653                 drm_mode_set_crtcinfo(adjusted_mode, 0);
2654
2655         return true;
2656 }
2657
2658 static int i945_get_display_clock_speed(struct drm_device *dev)
2659 {
2660         return 400000;
2661 }
2662
2663 static int i915_get_display_clock_speed(struct drm_device *dev)
2664 {
2665         return 333000;
2666 }
2667
2668 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2669 {
2670         return 200000;
2671 }
2672
2673 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2674 {
2675         u16 gcfgc = 0;
2676
2677         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2678
2679         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2680                 return 133000;
2681         else {
2682                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2683                 case GC_DISPLAY_CLOCK_333_MHZ:
2684                         return 333000;
2685                 default:
2686                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2687                         return 190000;
2688                 }
2689         }
2690 }
2691
2692 static int i865_get_display_clock_speed(struct drm_device *dev)
2693 {
2694         return 266000;
2695 }
2696
2697 static int i855_get_display_clock_speed(struct drm_device *dev)
2698 {
2699         u16 hpllcc = 0;
2700         /* Assume that the hardware is in the high speed state.  This
2701          * should be the default.
2702          */
2703         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2704         case GC_CLOCK_133_200:
2705         case GC_CLOCK_100_200:
2706                 return 200000;
2707         case GC_CLOCK_166_250:
2708                 return 250000;
2709         case GC_CLOCK_100_133:
2710                 return 133000;
2711         }
2712
2713         /* Shouldn't happen */
2714         return 0;
2715 }
2716
2717 static int i830_get_display_clock_speed(struct drm_device *dev)
2718 {
2719         return 133000;
2720 }
2721
2722 struct fdi_m_n {
2723         u32        tu;
2724         u32        gmch_m;
2725         u32        gmch_n;
2726         u32        link_m;
2727         u32        link_n;
2728 };
2729
2730 static void
2731 fdi_reduce_ratio(u32 *num, u32 *den)
2732 {
2733         while (*num > 0xffffff || *den > 0xffffff) {
2734                 *num >>= 1;
2735                 *den >>= 1;
2736         }
2737 }
2738
2739 static void
2740 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2741                      int link_clock, struct fdi_m_n *m_n)
2742 {
2743         m_n->tu = 64; /* default size */
2744
2745         /* BUG_ON(pixel_clock > INT_MAX / 36); */
2746         m_n->gmch_m = bits_per_pixel * pixel_clock;
2747         m_n->gmch_n = link_clock * nlanes * 8;
2748         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2749
2750         m_n->link_m = pixel_clock;
2751         m_n->link_n = link_clock;
2752         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2753 }
2754
2755
2756 struct intel_watermark_params {
2757         unsigned long fifo_size;
2758         unsigned long max_wm;
2759         unsigned long default_wm;
2760         unsigned long guard_size;
2761         unsigned long cacheline_size;
2762 };
2763
2764 /* Pineview has different values for various configs */
2765 static struct intel_watermark_params pineview_display_wm = {
2766         PINEVIEW_DISPLAY_FIFO,
2767         PINEVIEW_MAX_WM,
2768         PINEVIEW_DFT_WM,
2769         PINEVIEW_GUARD_WM,
2770         PINEVIEW_FIFO_LINE_SIZE
2771 };
2772 static struct intel_watermark_params pineview_display_hplloff_wm = {
2773         PINEVIEW_DISPLAY_FIFO,
2774         PINEVIEW_MAX_WM,
2775         PINEVIEW_DFT_HPLLOFF_WM,
2776         PINEVIEW_GUARD_WM,
2777         PINEVIEW_FIFO_LINE_SIZE
2778 };
2779 static struct intel_watermark_params pineview_cursor_wm = {
2780         PINEVIEW_CURSOR_FIFO,
2781         PINEVIEW_CURSOR_MAX_WM,
2782         PINEVIEW_CURSOR_DFT_WM,
2783         PINEVIEW_CURSOR_GUARD_WM,
2784         PINEVIEW_FIFO_LINE_SIZE,
2785 };
2786 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2787         PINEVIEW_CURSOR_FIFO,
2788         PINEVIEW_CURSOR_MAX_WM,
2789         PINEVIEW_CURSOR_DFT_WM,
2790         PINEVIEW_CURSOR_GUARD_WM,
2791         PINEVIEW_FIFO_LINE_SIZE
2792 };
2793 static struct intel_watermark_params g4x_wm_info = {
2794         G4X_FIFO_SIZE,
2795         G4X_MAX_WM,
2796         G4X_MAX_WM,
2797         2,
2798         G4X_FIFO_LINE_SIZE,
2799 };
2800 static struct intel_watermark_params g4x_cursor_wm_info = {
2801         I965_CURSOR_FIFO,
2802         I965_CURSOR_MAX_WM,
2803         I965_CURSOR_DFT_WM,
2804         2,
2805         G4X_FIFO_LINE_SIZE,
2806 };
2807 static struct intel_watermark_params i965_cursor_wm_info = {
2808         I965_CURSOR_FIFO,
2809         I965_CURSOR_MAX_WM,
2810         I965_CURSOR_DFT_WM,
2811         2,
2812         I915_FIFO_LINE_SIZE,
2813 };
2814 static struct intel_watermark_params i945_wm_info = {
2815         I945_FIFO_SIZE,
2816         I915_MAX_WM,
2817         1,
2818         2,
2819         I915_FIFO_LINE_SIZE
2820 };
2821 static struct intel_watermark_params i915_wm_info = {
2822         I915_FIFO_SIZE,
2823         I915_MAX_WM,
2824         1,
2825         2,
2826         I915_FIFO_LINE_SIZE
2827 };
2828 static struct intel_watermark_params i855_wm_info = {
2829         I855GM_FIFO_SIZE,
2830         I915_MAX_WM,
2831         1,
2832         2,
2833         I830_FIFO_LINE_SIZE
2834 };
2835 static struct intel_watermark_params i830_wm_info = {
2836         I830_FIFO_SIZE,
2837         I915_MAX_WM,
2838         1,
2839         2,
2840         I830_FIFO_LINE_SIZE
2841 };
2842
2843 static struct intel_watermark_params ironlake_display_wm_info = {
2844         ILK_DISPLAY_FIFO,
2845         ILK_DISPLAY_MAXWM,
2846         ILK_DISPLAY_DFTWM,
2847         2,
2848         ILK_FIFO_LINE_SIZE
2849 };
2850
2851 static struct intel_watermark_params ironlake_cursor_wm_info = {
2852         ILK_CURSOR_FIFO,
2853         ILK_CURSOR_MAXWM,
2854         ILK_CURSOR_DFTWM,
2855         2,
2856         ILK_FIFO_LINE_SIZE
2857 };
2858
2859 static struct intel_watermark_params ironlake_display_srwm_info = {
2860         ILK_DISPLAY_SR_FIFO,
2861         ILK_DISPLAY_MAX_SRWM,
2862         ILK_DISPLAY_DFT_SRWM,
2863         2,
2864         ILK_FIFO_LINE_SIZE
2865 };
2866
2867 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2868         ILK_CURSOR_SR_FIFO,
2869         ILK_CURSOR_MAX_SRWM,
2870         ILK_CURSOR_DFT_SRWM,
2871         2,
2872         ILK_FIFO_LINE_SIZE
2873 };
2874
2875 static struct intel_watermark_params sandybridge_display_wm_info = {
2876         SNB_DISPLAY_FIFO,
2877         SNB_DISPLAY_MAXWM,
2878         SNB_DISPLAY_DFTWM,
2879         2,
2880         SNB_FIFO_LINE_SIZE
2881 };
2882
2883 static struct intel_watermark_params sandybridge_cursor_wm_info = {
2884         SNB_CURSOR_FIFO,
2885         SNB_CURSOR_MAXWM,
2886         SNB_CURSOR_DFTWM,
2887         2,
2888         SNB_FIFO_LINE_SIZE
2889 };
2890
2891 static struct intel_watermark_params sandybridge_display_srwm_info = {
2892         SNB_DISPLAY_SR_FIFO,
2893         SNB_DISPLAY_MAX_SRWM,
2894         SNB_DISPLAY_DFT_SRWM,
2895         2,
2896         SNB_FIFO_LINE_SIZE
2897 };
2898
2899 static struct intel_watermark_params sandybridge_cursor_srwm_info = {
2900         SNB_CURSOR_SR_FIFO,
2901         SNB_CURSOR_MAX_SRWM,
2902         SNB_CURSOR_DFT_SRWM,
2903         2,
2904         SNB_FIFO_LINE_SIZE
2905 };
2906
2907
2908 /**
2909  * intel_calculate_wm - calculate watermark level
2910  * @clock_in_khz: pixel clock
2911  * @wm: chip FIFO params
2912  * @pixel_size: display pixel size
2913  * @latency_ns: memory latency for the platform
2914  *
2915  * Calculate the watermark level (the level at which the display plane will
2916  * start fetching from memory again).  Each chip has a different display
2917  * FIFO size and allocation, so the caller needs to figure that out and pass
2918  * in the correct intel_watermark_params structure.
2919  *
2920  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2921  * on the pixel size.  When it reaches the watermark level, it'll start
2922  * fetching FIFO line sized based chunks from memory until the FIFO fills
2923  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2924  * will occur, and a display engine hang could result.
2925  */
2926 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2927                                         struct intel_watermark_params *wm,
2928                                         int pixel_size,
2929                                         unsigned long latency_ns)
2930 {
2931         long entries_required, wm_size;
2932
2933         /*
2934          * Note: we need to make sure we don't overflow for various clock &
2935          * latency values.
2936          * clocks go from a few thousand to several hundred thousand.
2937          * latency is usually a few thousand
2938          */
2939         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2940                 1000;
2941         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2942
2943         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2944
2945         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2946
2947         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2948
2949         /* Don't promote wm_size to unsigned... */
2950         if (wm_size > (long)wm->max_wm)
2951                 wm_size = wm->max_wm;
2952         if (wm_size <= 0)
2953                 wm_size = wm->default_wm;
2954         return wm_size;
2955 }
2956
2957 struct cxsr_latency {
2958         int is_desktop;
2959         int is_ddr3;
2960         unsigned long fsb_freq;
2961         unsigned long mem_freq;
2962         unsigned long display_sr;
2963         unsigned long display_hpll_disable;
2964         unsigned long cursor_sr;
2965         unsigned long cursor_hpll_disable;
2966 };
2967
2968 static const struct cxsr_latency cxsr_latency_table[] = {
2969         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2970         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2971         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2972         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
2973         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
2974
2975         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2976         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2977         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2978         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
2979         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
2980
2981         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2982         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2983         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2984         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
2985         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
2986
2987         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2988         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2989         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2990         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
2991         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
2992
2993         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2994         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2995         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2996         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
2997         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
2998
2999         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3000         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3001         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3002         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3003         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3004 };
3005
3006 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3007                                                          int is_ddr3,
3008                                                          int fsb,
3009                                                          int mem)
3010 {
3011         const struct cxsr_latency *latency;
3012         int i;
3013
3014         if (fsb == 0 || mem == 0)
3015                 return NULL;
3016
3017         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3018                 latency = &cxsr_latency_table[i];
3019                 if (is_desktop == latency->is_desktop &&
3020                     is_ddr3 == latency->is_ddr3 &&
3021                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3022                         return latency;
3023         }
3024
3025         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3026
3027         return NULL;
3028 }
3029
3030 static void pineview_disable_cxsr(struct drm_device *dev)
3031 {
3032         struct drm_i915_private *dev_priv = dev->dev_private;
3033
3034         /* deactivate cxsr */
3035         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3036 }
3037
3038 /*
3039  * Latency for FIFO fetches is dependent on several factors:
3040  *   - memory configuration (speed, channels)
3041  *   - chipset
3042  *   - current MCH state
3043  * It can be fairly high in some situations, so here we assume a fairly
3044  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3045  * set this value too high, the FIFO will fetch frequently to stay full)
3046  * and power consumption (set it too low to save power and we might see
3047  * FIFO underruns and display "flicker").
3048  *
3049  * A value of 5us seems to be a good balance; safe for very low end
3050  * platforms but not overly aggressive on lower latency configs.
3051  */
3052 static const int latency_ns = 5000;
3053
3054 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3055 {
3056         struct drm_i915_private *dev_priv = dev->dev_private;
3057         uint32_t dsparb = I915_READ(DSPARB);
3058         int size;
3059
3060         size = dsparb & 0x7f;
3061         if (plane)
3062                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3063
3064         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3065                       plane ? "B" : "A", size);
3066
3067         return size;
3068 }
3069
3070 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3071 {
3072         struct drm_i915_private *dev_priv = dev->dev_private;
3073         uint32_t dsparb = I915_READ(DSPARB);
3074         int size;
3075
3076         size = dsparb & 0x1ff;
3077         if (plane)
3078                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3079         size >>= 1; /* Convert to cachelines */
3080
3081         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3082                       plane ? "B" : "A", size);
3083
3084         return size;
3085 }
3086
3087 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3088 {
3089         struct drm_i915_private *dev_priv = dev->dev_private;
3090         uint32_t dsparb = I915_READ(DSPARB);
3091         int size;
3092
3093         size = dsparb & 0x7f;
3094         size >>= 2; /* Convert to cachelines */
3095
3096         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3097                       plane ? "B" : "A",
3098                       size);
3099
3100         return size;
3101 }
3102
3103 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3104 {
3105         struct drm_i915_private *dev_priv = dev->dev_private;
3106         uint32_t dsparb = I915_READ(DSPARB);
3107         int size;
3108
3109         size = dsparb & 0x7f;
3110         size >>= 1; /* Convert to cachelines */
3111
3112         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3113                       plane ? "B" : "A", size);
3114
3115         return size;
3116 }
3117
3118 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
3119                                int planeb_clock, int sr_hdisplay, int unused,
3120                                int pixel_size)
3121 {
3122         struct drm_i915_private *dev_priv = dev->dev_private;
3123         const struct cxsr_latency *latency;
3124         u32 reg;
3125         unsigned long wm;
3126         int sr_clock;
3127
3128         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3129                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3130         if (!latency) {
3131                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3132                 pineview_disable_cxsr(dev);
3133                 return;
3134         }
3135
3136         if (!planea_clock || !planeb_clock) {
3137                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3138
3139                 /* Display SR */
3140                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3141                                         pixel_size, latency->display_sr);
3142                 reg = I915_READ(DSPFW1);
3143                 reg &= ~DSPFW_SR_MASK;
3144                 reg |= wm << DSPFW_SR_SHIFT;
3145                 I915_WRITE(DSPFW1, reg);
3146                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3147
3148                 /* cursor SR */
3149                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3150                                         pixel_size, latency->cursor_sr);
3151                 reg = I915_READ(DSPFW3);
3152                 reg &= ~DSPFW_CURSOR_SR_MASK;
3153                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3154                 I915_WRITE(DSPFW3, reg);
3155
3156                 /* Display HPLL off SR */
3157                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3158                                         pixel_size, latency->display_hpll_disable);
3159                 reg = I915_READ(DSPFW3);
3160                 reg &= ~DSPFW_HPLL_SR_MASK;
3161                 reg |= wm & DSPFW_HPLL_SR_MASK;
3162                 I915_WRITE(DSPFW3, reg);
3163
3164                 /* cursor HPLL off SR */
3165                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3166                                         pixel_size, latency->cursor_hpll_disable);
3167                 reg = I915_READ(DSPFW3);
3168                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3169                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3170                 I915_WRITE(DSPFW3, reg);
3171                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3172
3173                 /* activate cxsr */
3174                 I915_WRITE(DSPFW3,
3175                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3176                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3177         } else {
3178                 pineview_disable_cxsr(dev);
3179                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3180         }
3181 }
3182
3183 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
3184                           int planeb_clock, int sr_hdisplay, int sr_htotal,
3185                           int pixel_size)
3186 {
3187         struct drm_i915_private *dev_priv = dev->dev_private;
3188         int total_size, cacheline_size;
3189         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3190         struct intel_watermark_params planea_params, planeb_params;
3191         unsigned long line_time_us;
3192         int sr_clock, sr_entries = 0, entries_required;
3193
3194         /* Create copies of the base settings for each pipe */
3195         planea_params = planeb_params = g4x_wm_info;
3196
3197         /* Grab a couple of global values before we overwrite them */
3198         total_size = planea_params.fifo_size;
3199         cacheline_size = planea_params.cacheline_size;
3200
3201         /*
3202          * Note: we need to make sure we don't overflow for various clock &
3203          * latency values.
3204          * clocks go from a few thousand to several hundred thousand.
3205          * latency is usually a few thousand
3206          */
3207         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3208                 1000;
3209         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3210         planea_wm = entries_required + planea_params.guard_size;
3211
3212         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3213                 1000;
3214         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3215         planeb_wm = entries_required + planeb_params.guard_size;
3216
3217         cursora_wm = cursorb_wm = 16;
3218         cursor_sr = 32;
3219
3220         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3221
3222         /* Calc sr entries for one plane configs */
3223         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3224                 /* self-refresh has much higher latency */
3225                 static const int sr_latency_ns = 12000;
3226
3227                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3228                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3229
3230                 /* Use ns/us then divide to preserve precision */
3231                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3232                         pixel_size * sr_hdisplay;
3233                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3234
3235                 entries_required = (((sr_latency_ns / line_time_us) +
3236                                      1000) / 1000) * pixel_size * 64;
3237                 entries_required = DIV_ROUND_UP(entries_required,
3238                                                 g4x_cursor_wm_info.cacheline_size);
3239                 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3240
3241                 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3242                         cursor_sr = g4x_cursor_wm_info.max_wm;
3243                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3244                               "cursor %d\n", sr_entries, cursor_sr);
3245
3246                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3247         } else {
3248                 /* Turn off self refresh if both pipes are enabled */
3249                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3250                            & ~FW_BLC_SELF_EN);
3251         }
3252
3253         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3254                   planea_wm, planeb_wm, sr_entries);
3255
3256         planea_wm &= 0x3f;
3257         planeb_wm &= 0x3f;
3258
3259         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3260                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3261                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3262         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3263                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3264         /* HPLL off in SR has some issues on G4x... disable it */
3265         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3266                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3267 }
3268
3269 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3270                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3271                            int pixel_size)
3272 {
3273         struct drm_i915_private *dev_priv = dev->dev_private;
3274         unsigned long line_time_us;
3275         int sr_clock, sr_entries, srwm = 1;
3276         int cursor_sr = 16;
3277
3278         /* Calc sr entries for one plane configs */
3279         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3280                 /* self-refresh has much higher latency */
3281                 static const int sr_latency_ns = 12000;
3282
3283                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3284                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3285
3286                 /* Use ns/us then divide to preserve precision */
3287                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3288                         pixel_size * sr_hdisplay;
3289                 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3290                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3291                 srwm = I965_FIFO_SIZE - sr_entries;
3292                 if (srwm < 0)
3293                         srwm = 1;
3294                 srwm &= 0x1ff;
3295
3296                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3297                         pixel_size * 64;
3298                 sr_entries = DIV_ROUND_UP(sr_entries,
3299                                           i965_cursor_wm_info.cacheline_size);
3300                 cursor_sr = i965_cursor_wm_info.fifo_size -
3301                         (sr_entries + i965_cursor_wm_info.guard_size);
3302
3303                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3304                         cursor_sr = i965_cursor_wm_info.max_wm;
3305
3306                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3307                               "cursor %d\n", srwm, cursor_sr);
3308
3309                 if (IS_CRESTLINE(dev))
3310                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3311         } else {
3312                 /* Turn off self refresh if both pipes are enabled */
3313                 if (IS_CRESTLINE(dev))
3314                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3315                                    & ~FW_BLC_SELF_EN);
3316         }
3317
3318         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3319                       srwm);
3320
3321         /* 965 has limitations... */
3322         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3323                    (8 << 0));
3324         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3325         /* update cursor SR watermark */
3326         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3327 }
3328
3329 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3330                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3331                            int pixel_size)
3332 {
3333         struct drm_i915_private *dev_priv = dev->dev_private;
3334         uint32_t fwater_lo;
3335         uint32_t fwater_hi;
3336         int total_size, cacheline_size, cwm, srwm = 1;
3337         int planea_wm, planeb_wm;
3338         struct intel_watermark_params planea_params, planeb_params;
3339         unsigned long line_time_us;
3340         int sr_clock, sr_entries = 0;
3341
3342         /* Create copies of the base settings for each pipe */
3343         if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3344                 planea_params = planeb_params = i945_wm_info;
3345         else if (!IS_GEN2(dev))
3346                 planea_params = planeb_params = i915_wm_info;
3347         else
3348                 planea_params = planeb_params = i855_wm_info;
3349
3350         /* Grab a couple of global values before we overwrite them */
3351         total_size = planea_params.fifo_size;
3352         cacheline_size = planea_params.cacheline_size;
3353
3354         /* Update per-plane FIFO sizes */
3355         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3356         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3357
3358         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3359                                        pixel_size, latency_ns);
3360         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3361                                        pixel_size, latency_ns);
3362         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3363
3364         /*
3365          * Overlay gets an aggressive default since video jitter is bad.
3366          */
3367         cwm = 2;
3368
3369         /* Calc sr entries for one plane configs */
3370         if (HAS_FW_BLC(dev) && sr_hdisplay &&
3371             (!planea_clock || !planeb_clock)) {
3372                 /* self-refresh has much higher latency */
3373                 static const int sr_latency_ns = 6000;
3374
3375                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3376                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3377
3378                 /* Use ns/us then divide to preserve precision */
3379                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3380                         pixel_size * sr_hdisplay;
3381                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3382                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3383                 srwm = total_size - sr_entries;
3384                 if (srwm < 0)
3385                         srwm = 1;
3386
3387                 if (IS_I945G(dev) || IS_I945GM(dev))
3388                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3389                 else if (IS_I915GM(dev)) {
3390                         /* 915M has a smaller SRWM field */
3391                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3392                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3393                 }
3394         } else {
3395                 /* Turn off self refresh if both pipes are enabled */
3396                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3397                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3398                                    & ~FW_BLC_SELF_EN);
3399                 } else if (IS_I915GM(dev)) {
3400                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3401                 }
3402         }
3403
3404         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3405                       planea_wm, planeb_wm, cwm, srwm);
3406
3407         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3408         fwater_hi = (cwm & 0x1f);
3409
3410         /* Set request length to 8 cachelines per fetch */
3411         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3412         fwater_hi = fwater_hi | (1 << 8);
3413
3414         I915_WRITE(FW_BLC, fwater_lo);
3415         I915_WRITE(FW_BLC2, fwater_hi);
3416 }
3417
3418 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3419                            int unused2, int unused3, int pixel_size)
3420 {
3421         struct drm_i915_private *dev_priv = dev->dev_private;
3422         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3423         int planea_wm;
3424
3425         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3426
3427         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3428                                        pixel_size, latency_ns);
3429         fwater_lo |= (3<<8) | planea_wm;
3430
3431         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3432
3433         I915_WRITE(FW_BLC, fwater_lo);
3434 }
3435
3436 #define ILK_LP0_PLANE_LATENCY           700
3437 #define ILK_LP0_CURSOR_LATENCY          1300
3438
3439 static bool ironlake_compute_wm0(struct drm_device *dev,
3440                                  int pipe,
3441                                  const struct intel_watermark_params *display,
3442                                  int display_latency_ns,
3443                                  const struct intel_watermark_params *cursor,
3444                                  int cursor_latency_ns,
3445                                  int *plane_wm,
3446                                  int *cursor_wm)
3447 {
3448         struct drm_crtc *crtc;
3449         int htotal, hdisplay, clock, pixel_size;
3450         int line_time_us, line_count;
3451         int entries, tlb_miss;
3452
3453         crtc = intel_get_crtc_for_pipe(dev, pipe);
3454         if (crtc->fb == NULL || !crtc->enabled)
3455                 return false;
3456
3457         htotal = crtc->mode.htotal;
3458         hdisplay = crtc->mode.hdisplay;
3459         clock = crtc->mode.clock;
3460         pixel_size = crtc->fb->bits_per_pixel / 8;
3461
3462         /* Use the small buffer method to calculate plane watermark */
3463         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3464         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3465         if (tlb_miss > 0)
3466                 entries += tlb_miss;
3467         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3468         *plane_wm = entries + display->guard_size;
3469         if (*plane_wm > (int)display->max_wm)
3470                 *plane_wm = display->max_wm;
3471
3472         /* Use the large buffer method to calculate cursor watermark */
3473         line_time_us = ((htotal * 1000) / clock);
3474         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3475         entries = line_count * 64 * pixel_size;
3476         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3477         if (tlb_miss > 0)
3478                 entries += tlb_miss;
3479         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3480         *cursor_wm = entries + cursor->guard_size;
3481         if (*cursor_wm > (int)cursor->max_wm)
3482                 *cursor_wm = (int)cursor->max_wm;
3483
3484         return true;
3485 }
3486
3487 /*
3488  * Check the wm result.
3489  *
3490  * If any calculated watermark values is larger than the maximum value that
3491  * can be programmed into the associated watermark register, that watermark
3492  * must be disabled.
3493  */
3494 static bool ironlake_check_srwm(struct drm_device *dev, int level,
3495                                 int fbc_wm, int display_wm, int cursor_wm,
3496                                 const struct intel_watermark_params *display,
3497                                 const struct intel_watermark_params *cursor)
3498 {
3499         struct drm_i915_private *dev_priv = dev->dev_private;
3500
3501         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
3502                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
3503
3504         if (fbc_wm > SNB_FBC_MAX_SRWM) {
3505                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
3506                               fbc_wm, SNB_FBC_MAX_SRWM, level);
3507
3508                 /* fbc has it's own way to disable FBC WM */
3509                 I915_WRITE(DISP_ARB_CTL,
3510                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
3511                 return false;
3512         }
3513
3514         if (display_wm > display->max_wm) {
3515                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
3516                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
3517                 return false;
3518         }
3519
3520         if (cursor_wm > cursor->max_wm) {
3521                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
3522                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
3523                 return false;
3524         }
3525
3526         if (!(fbc_wm || display_wm || cursor_wm)) {
3527                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
3528                 return false;
3529         }
3530
3531         return true;
3532 }
3533
3534 /*
3535  * Compute watermark values of WM[1-3],
3536  */
3537 static bool ironlake_compute_srwm(struct drm_device *dev, int level,
3538                                   int hdisplay, int htotal,
3539                                   int pixel_size, int clock, int latency_ns,
3540                                   const struct intel_watermark_params *display,
3541                                   const struct intel_watermark_params *cursor,
3542                                   int *fbc_wm, int *display_wm, int *cursor_wm)
3543 {
3544
3545         unsigned long line_time_us;
3546         int line_count, line_size;
3547         int small, large;
3548         int entries;
3549
3550         if (!latency_ns) {
3551                 *fbc_wm = *display_wm = *cursor_wm = 0;
3552                 return false;
3553         }
3554
3555         line_time_us = (htotal * 1000) / clock;
3556         line_count = (latency_ns / line_time_us + 1000) / 1000;
3557         line_size = hdisplay * pixel_size;
3558
3559         /* Use the minimum of the small and large buffer method for primary */
3560         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3561         large = line_count * line_size;
3562
3563         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3564         *display_wm = entries + display->guard_size;
3565
3566         /*
3567          * Spec says:
3568          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
3569          */
3570         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
3571
3572         /* calculate the self-refresh watermark for display cursor */
3573         entries = line_count * pixel_size * 64;
3574         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3575         *cursor_wm = entries + cursor->guard_size;
3576
3577         return ironlake_check_srwm(dev, level,
3578                                    *fbc_wm, *display_wm, *cursor_wm,
3579                                    display, cursor);
3580 }
3581
3582 static void ironlake_update_wm(struct drm_device *dev,
3583                                int planea_clock, int planeb_clock,
3584                                int hdisplay, int htotal,
3585                                int pixel_size)
3586 {
3587         struct drm_i915_private *dev_priv = dev->dev_private;
3588         int fbc_wm, plane_wm, cursor_wm, enabled;
3589         int clock;
3590
3591         enabled = 0;
3592         if (ironlake_compute_wm0(dev, 0,
3593                                  &ironlake_display_wm_info,
3594                                  ILK_LP0_PLANE_LATENCY,
3595                                  &ironlake_cursor_wm_info,
3596                                  ILK_LP0_CURSOR_LATENCY,
3597                                  &plane_wm, &cursor_wm)) {
3598                 I915_WRITE(WM0_PIPEA_ILK,
3599                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3600                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3601                               " plane %d, " "cursor: %d\n",
3602                               plane_wm, cursor_wm);
3603                 enabled++;
3604         }
3605
3606         if (ironlake_compute_wm0(dev, 1,
3607                                  &ironlake_display_wm_info,
3608                                  ILK_LP0_PLANE_LATENCY,
3609                                  &ironlake_cursor_wm_info,
3610                                  ILK_LP0_CURSOR_LATENCY,
3611                                  &plane_wm, &cursor_wm)) {
3612                 I915_WRITE(WM0_PIPEB_ILK,
3613                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3614                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3615                               " plane %d, cursor: %d\n",
3616                               plane_wm, cursor_wm);
3617                 enabled++;
3618         }
3619
3620         /*
3621          * Calculate and update the self-refresh watermark only when one
3622          * display plane is used.
3623          */
3624         I915_WRITE(WM3_LP_ILK, 0);
3625         I915_WRITE(WM2_LP_ILK, 0);
3626         I915_WRITE(WM1_LP_ILK, 0);
3627
3628         if (enabled != 1)
3629                 return;
3630
3631         clock = planea_clock ? planea_clock : planeb_clock;
3632
3633         /* WM1 */
3634         if (!ironlake_compute_srwm(dev, 1, hdisplay, htotal, pixel_size,
3635                                    clock, ILK_READ_WM1_LATENCY() * 500,
3636                                    &ironlake_display_srwm_info,
3637                                    &ironlake_cursor_srwm_info,
3638                                    &fbc_wm, &plane_wm, &cursor_wm))
3639                 return;
3640
3641         I915_WRITE(WM1_LP_ILK,
3642                    WM1_LP_SR_EN |
3643                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
3644                    (fbc_wm << WM1_LP_FBC_SHIFT) |
3645                    (plane_wm << WM1_LP_SR_SHIFT) |
3646                    cursor_wm);
3647
3648         /* WM2 */
3649         if (!ironlake_compute_srwm(dev, 2, hdisplay, htotal, pixel_size,
3650                                    clock, ILK_READ_WM2_LATENCY() * 500,
3651                                    &ironlake_display_srwm_info,
3652                                    &ironlake_cursor_srwm_info,
3653                                    &fbc_wm, &plane_wm, &cursor_wm))
3654                 return;
3655
3656         I915_WRITE(WM2_LP_ILK,
3657                    WM2_LP_EN |
3658                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
3659                    (fbc_wm << WM1_LP_FBC_SHIFT) |
3660                    (plane_wm << WM1_LP_SR_SHIFT) |
3661                    cursor_wm);
3662
3663         /*
3664          * WM3 is unsupported on ILK, probably because we don't have latency
3665          * data for that power state
3666          */
3667 }
3668
3669 static void sandybridge_update_wm(struct drm_device *dev,
3670                                int planea_clock, int planeb_clock,
3671                                int hdisplay, int htotal,
3672                                int pixel_size)
3673 {
3674         struct drm_i915_private *dev_priv = dev->dev_private;
3675         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
3676         int fbc_wm, plane_wm, cursor_wm, enabled;
3677         int clock;
3678
3679         enabled = 0;
3680         if (ironlake_compute_wm0(dev, 0,
3681                                  &sandybridge_display_wm_info, latency,
3682                                  &sandybridge_cursor_wm_info, latency,
3683                                  &plane_wm, &cursor_wm)) {
3684                 I915_WRITE(WM0_PIPEA_ILK,
3685                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3686                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3687                               " plane %d, " "cursor: %d\n",
3688                               plane_wm, cursor_wm);
3689                 enabled++;
3690         }
3691
3692         if (ironlake_compute_wm0(dev, 1,
3693                                  &sandybridge_display_wm_info, latency,
3694                                  &sandybridge_cursor_wm_info, latency,
3695                                  &plane_wm, &cursor_wm)) {
3696                 I915_WRITE(WM0_PIPEB_ILK,
3697                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3698                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3699                               " plane %d, cursor: %d\n",
3700                               plane_wm, cursor_wm);
3701                 enabled++;
3702         }
3703
3704         /*
3705          * Calculate and update the self-refresh watermark only when one
3706          * display plane is used.
3707          *
3708          * SNB support 3 levels of watermark.
3709          *
3710          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
3711          * and disabled in the descending order
3712          *
3713          */
3714         I915_WRITE(WM3_LP_ILK, 0);
3715         I915_WRITE(WM2_LP_ILK, 0);
3716         I915_WRITE(WM1_LP_ILK, 0);
3717
3718         if (enabled != 1)
3719                 return;
3720
3721         clock = planea_clock ? planea_clock : planeb_clock;
3722
3723         /* WM1 */
3724         if (!ironlake_compute_srwm(dev, 1, hdisplay, htotal, pixel_size,
3725                                    clock, SNB_READ_WM1_LATENCY() * 500,
3726                                    &sandybridge_display_srwm_info,
3727                                    &sandybridge_cursor_srwm_info,
3728                                    &fbc_wm, &plane_wm, &cursor_wm))
3729                 return;
3730
3731         I915_WRITE(WM1_LP_ILK,
3732                    WM1_LP_SR_EN |
3733                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
3734                    (fbc_wm << WM1_LP_FBC_SHIFT) |
3735                    (plane_wm << WM1_LP_SR_SHIFT) |
3736                    cursor_wm);
3737
3738         /* WM2 */
3739         if (!ironlake_compute_srwm(dev, 2,
3740                                    hdisplay, htotal, pixel_size,
3741                                    clock, SNB_READ_WM2_LATENCY() * 500,
3742                                    &sandybridge_display_srwm_info,
3743                                    &sandybridge_cursor_srwm_info,
3744                                    &fbc_wm, &plane_wm, &cursor_wm))
3745                 return;
3746
3747         I915_WRITE(WM2_LP_ILK,
3748                    WM2_LP_EN |
3749                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
3750                    (fbc_wm << WM1_LP_FBC_SHIFT) |
3751                    (plane_wm << WM1_LP_SR_SHIFT) |
3752                    cursor_wm);
3753
3754         /* WM3 */
3755         if (!ironlake_compute_srwm(dev, 3,
3756                                    hdisplay, htotal, pixel_size,
3757                                    clock, SNB_READ_WM3_LATENCY() * 500,
3758                                    &sandybridge_display_srwm_info,
3759                                    &sandybridge_cursor_srwm_info,
3760                                    &fbc_wm, &plane_wm, &cursor_wm))
3761                 return;
3762
3763         I915_WRITE(WM3_LP_ILK,
3764                    WM3_LP_EN |
3765                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
3766                    (fbc_wm << WM1_LP_FBC_SHIFT) |
3767                    (plane_wm << WM1_LP_SR_SHIFT) |
3768                    cursor_wm);
3769 }
3770
3771 /**
3772  * intel_update_watermarks - update FIFO watermark values based on current modes
3773  *
3774  * Calculate watermark values for the various WM regs based on current mode
3775  * and plane configuration.
3776  *
3777  * There are several cases to deal with here:
3778  *   - normal (i.e. non-self-refresh)
3779  *   - self-refresh (SR) mode
3780  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3781  *   - lines are small relative to FIFO size (buffer can hold more than 2
3782  *     lines), so need to account for TLB latency
3783  *
3784  *   The normal calculation is:
3785  *     watermark = dotclock * bytes per pixel * latency
3786  *   where latency is platform & configuration dependent (we assume pessimal
3787  *   values here).
3788  *
3789  *   The SR calculation is:
3790  *     watermark = (trunc(latency/line time)+1) * surface width *
3791  *       bytes per pixel
3792  *   where
3793  *     line time = htotal / dotclock
3794  *     surface width = hdisplay for normal plane and 64 for cursor
3795  *   and latency is assumed to be high, as above.
3796  *
3797  * The final value programmed to the register should always be rounded up,
3798  * and include an extra 2 entries to account for clock crossings.
3799  *
3800  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3801  * to set the non-SR watermarks to 8.
3802  */
3803 static void intel_update_watermarks(struct drm_device *dev)
3804 {
3805         struct drm_i915_private *dev_priv = dev->dev_private;
3806         struct drm_crtc *crtc;
3807         int sr_hdisplay = 0;
3808         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3809         int enabled = 0, pixel_size = 0;
3810         int sr_htotal = 0;
3811
3812         if (!dev_priv->display.update_wm)
3813                 return;
3814
3815         /* Get the clock config from both planes */
3816         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3817                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3818                 if (intel_crtc->active) {
3819                         enabled++;
3820                         if (intel_crtc->plane == 0) {
3821                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3822                                               intel_crtc->pipe, crtc->mode.clock);
3823                                 planea_clock = crtc->mode.clock;
3824                         } else {
3825                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3826                                               intel_crtc->pipe, crtc->mode.clock);
3827                                 planeb_clock = crtc->mode.clock;
3828                         }
3829                         sr_hdisplay = crtc->mode.hdisplay;
3830                         sr_clock = crtc->mode.clock;
3831                         sr_htotal = crtc->mode.htotal;
3832                         if (crtc->fb)
3833                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3834                         else
3835                                 pixel_size = 4; /* by default */
3836                 }
3837         }
3838
3839         if (enabled <= 0)
3840                 return;
3841
3842         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3843                                     sr_hdisplay, sr_htotal, pixel_size);
3844 }
3845
3846 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3847 {
3848         return dev_priv->lvds_use_ssc && i915_panel_use_ssc;
3849 }
3850
3851 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3852                                struct drm_display_mode *mode,
3853                                struct drm_display_mode *adjusted_mode,
3854                                int x, int y,
3855                                struct drm_framebuffer *old_fb)
3856 {
3857         struct drm_device *dev = crtc->dev;
3858         struct drm_i915_private *dev_priv = dev->dev_private;
3859         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3860         int pipe = intel_crtc->pipe;
3861         int plane = intel_crtc->plane;
3862         u32 fp_reg, dpll_reg;
3863         int refclk, num_connectors = 0;
3864         intel_clock_t clock, reduced_clock;
3865         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3866         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3867         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3868         struct intel_encoder *has_edp_encoder = NULL;
3869         struct drm_mode_config *mode_config = &dev->mode_config;
3870         struct intel_encoder *encoder;
3871         const intel_limit_t *limit;
3872         int ret;
3873         struct fdi_m_n m_n = {0};
3874         u32 reg, temp;
3875         int target_clock;
3876
3877         drm_vblank_pre_modeset(dev, pipe);
3878
3879         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3880                 if (encoder->base.crtc != crtc)
3881                         continue;
3882
3883                 switch (encoder->type) {
3884                 case INTEL_OUTPUT_LVDS:
3885                         is_lvds = true;
3886                         break;
3887                 case INTEL_OUTPUT_SDVO:
3888                 case INTEL_OUTPUT_HDMI:
3889                         is_sdvo = true;
3890                         if (encoder->needs_tv_clock)
3891                                 is_tv = true;
3892                         break;
3893                 case INTEL_OUTPUT_DVO:
3894                         is_dvo = true;
3895                         break;
3896                 case INTEL_OUTPUT_TVOUT:
3897                         is_tv = true;
3898                         break;
3899                 case INTEL_OUTPUT_ANALOG:
3900                         is_crt = true;
3901                         break;
3902                 case INTEL_OUTPUT_DISPLAYPORT:
3903                         is_dp = true;
3904                         break;
3905                 case INTEL_OUTPUT_EDP:
3906                         has_edp_encoder = encoder;
3907                         break;
3908                 }
3909
3910                 num_connectors++;
3911         }
3912
3913         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3914                 refclk = dev_priv->lvds_ssc_freq * 1000;
3915                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3916                               refclk / 1000);
3917         } else if (!IS_GEN2(dev)) {
3918                 refclk = 96000;
3919                 if (HAS_PCH_SPLIT(dev) &&
3920                     (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)))
3921                         refclk = 120000; /* 120Mhz refclk */
3922         } else {
3923                 refclk = 48000;
3924         }
3925
3926         /*
3927          * Returns a set of divisors for the desired target clock with the given
3928          * refclk, or FALSE.  The returned values represent the clock equation:
3929          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3930          */
3931         limit = intel_limit(crtc, refclk);
3932         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3933         if (!ok) {
3934                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3935                 drm_vblank_post_modeset(dev, pipe);
3936                 return -EINVAL;
3937         }
3938
3939         /* Ensure that the cursor is valid for the new mode before changing... */
3940         intel_crtc_update_cursor(crtc, true);
3941
3942         if (is_lvds && dev_priv->lvds_downclock_avail) {
3943                 has_reduced_clock = limit->find_pll(limit, crtc,
3944                                                     dev_priv->lvds_downclock,
3945                                                     refclk,
3946                                                     &reduced_clock);
3947                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3948                         /*
3949                          * If the different P is found, it means that we can't
3950                          * switch the display clock by using the FP0/FP1.
3951                          * In such case we will disable the LVDS downclock
3952                          * feature.
3953                          */
3954                         DRM_DEBUG_KMS("Different P is found for "
3955                                       "LVDS clock/downclock\n");
3956                         has_reduced_clock = 0;
3957                 }
3958         }
3959         /* SDVO TV has fixed PLL values depend on its clock range,
3960            this mirrors vbios setting. */
3961         if (is_sdvo && is_tv) {
3962                 if (adjusted_mode->clock >= 100000
3963                     && adjusted_mode->clock < 140500) {
3964                         clock.p1 = 2;
3965                         clock.p2 = 10;
3966                         clock.n = 3;
3967                         clock.m1 = 16;
3968                         clock.m2 = 8;
3969                 } else if (adjusted_mode->clock >= 140500
3970                            && adjusted_mode->clock <= 200000) {
3971                         clock.p1 = 1;
3972                         clock.p2 = 10;
3973                         clock.n = 6;
3974                         clock.m1 = 12;
3975                         clock.m2 = 8;
3976                 }
3977         }
3978
3979         /* FDI link */
3980         if (HAS_PCH_SPLIT(dev)) {
3981                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3982                 int lane = 0, link_bw, bpp;
3983                 /* CPU eDP doesn't require FDI link, so just set DP M/N
3984                    according to current link config */
3985                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3986                         target_clock = mode->clock;
3987                         intel_edp_link_config(has_edp_encoder,
3988                                               &lane, &link_bw);
3989                 } else {
3990                         /* [e]DP over FDI requires target mode clock
3991                            instead of link clock */
3992                         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3993                                 target_clock = mode->clock;
3994                         else
3995                                 target_clock = adjusted_mode->clock;
3996
3997                         /* FDI is a binary signal running at ~2.7GHz, encoding
3998                          * each output octet as 10 bits. The actual frequency
3999                          * is stored as a divider into a 100MHz clock, and the
4000                          * mode pixel clock is stored in units of 1KHz.
4001                          * Hence the bw of each lane in terms of the mode signal
4002                          * is:
4003                          */
4004                         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4005                 }
4006
4007                 /* determine panel color depth */
4008                 temp = I915_READ(PIPECONF(pipe));
4009                 temp &= ~PIPE_BPC_MASK;
4010                 if (is_lvds) {
4011                         /* the BPC will be 6 if it is 18-bit LVDS panel */
4012                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
4013                                 temp |= PIPE_8BPC;
4014                         else
4015                                 temp |= PIPE_6BPC;
4016                 } else if (has_edp_encoder) {
4017                         switch (dev_priv->edp.bpp/3) {
4018                         case 8:
4019                                 temp |= PIPE_8BPC;
4020                                 break;
4021                         case 10:
4022                                 temp |= PIPE_10BPC;
4023                                 break;
4024                         case 6:
4025                                 temp |= PIPE_6BPC;
4026                                 break;
4027                         case 12:
4028                                 temp |= PIPE_12BPC;
4029                                 break;
4030                         }
4031                 } else
4032                         temp |= PIPE_8BPC;
4033                 I915_WRITE(PIPECONF(pipe), temp);
4034
4035                 switch (temp & PIPE_BPC_MASK) {
4036                 case PIPE_8BPC:
4037                         bpp = 24;
4038                         break;
4039                 case PIPE_10BPC:
4040                         bpp = 30;
4041                         break;
4042                 case PIPE_6BPC:
4043                         bpp = 18;
4044                         break;
4045                 case PIPE_12BPC:
4046                         bpp = 36;
4047                         break;
4048                 default:
4049                         DRM_ERROR("unknown pipe bpc value\n");
4050                         bpp = 24;
4051                 }
4052
4053                 if (!lane) {
4054                         /* 
4055                          * Account for spread spectrum to avoid
4056                          * oversubscribing the link. Max center spread
4057                          * is 2.5%; use 5% for safety's sake.
4058                          */
4059                         u32 bps = target_clock * bpp * 21 / 20;
4060                         lane = bps / (link_bw * 8) + 1;
4061                 }
4062
4063                 intel_crtc->fdi_lanes = lane;
4064
4065                 if (pixel_multiplier > 1)
4066                         link_bw *= pixel_multiplier;
4067                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
4068         }
4069
4070         /* Ironlake: try to setup display ref clock before DPLL
4071          * enabling. This is only under driver's control after
4072          * PCH B stepping, previous chipset stepping should be
4073          * ignoring this setting.
4074          */
4075         if (HAS_PCH_SPLIT(dev)) {
4076                 temp = I915_READ(PCH_DREF_CONTROL);
4077                 /* Always enable nonspread source */
4078                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4079                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4080                 temp &= ~DREF_SSC_SOURCE_MASK;
4081                 temp |= DREF_SSC_SOURCE_ENABLE;
4082                 I915_WRITE(PCH_DREF_CONTROL, temp);
4083
4084                 POSTING_READ(PCH_DREF_CONTROL);
4085                 udelay(200);
4086
4087                 if (has_edp_encoder) {
4088                         if (intel_panel_use_ssc(dev_priv)) {
4089                                 temp |= DREF_SSC1_ENABLE;
4090                                 I915_WRITE(PCH_DREF_CONTROL, temp);
4091
4092                                 POSTING_READ(PCH_DREF_CONTROL);
4093                                 udelay(200);
4094                         }
4095                         temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4096
4097                         /* Enable CPU source on CPU attached eDP */
4098                         if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4099                                 if (intel_panel_use_ssc(dev_priv))
4100                                         temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4101                                 else
4102                                         temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4103                         } else {
4104                                 /* Enable SSC on PCH eDP if needed */
4105                                 if (intel_panel_use_ssc(dev_priv)) {
4106                                         DRM_ERROR("enabling SSC on PCH\n");
4107                                         temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
4108                                 }
4109                         }
4110                         I915_WRITE(PCH_DREF_CONTROL, temp);
4111                         POSTING_READ(PCH_DREF_CONTROL);
4112                         udelay(200);
4113                 }
4114         }
4115
4116         if (IS_PINEVIEW(dev)) {
4117                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4118                 if (has_reduced_clock)
4119                         fp2 = (1 << reduced_clock.n) << 16 |
4120                                 reduced_clock.m1 << 8 | reduced_clock.m2;
4121         } else {
4122                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4123                 if (has_reduced_clock)
4124                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4125                                 reduced_clock.m2;
4126         }
4127
4128         /* Enable autotuning of the PLL clock (if permissible) */
4129         if (HAS_PCH_SPLIT(dev)) {
4130                 int factor = 21;
4131
4132                 if (is_lvds) {
4133                         if ((intel_panel_use_ssc(dev_priv) &&
4134                              dev_priv->lvds_ssc_freq == 100) ||
4135                             (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4136                                 factor = 25;
4137                 } else if (is_sdvo && is_tv)
4138                         factor = 20;
4139
4140                 if (clock.m1 < factor * clock.n)
4141                         fp |= FP_CB_TUNE;
4142         }
4143
4144         dpll = 0;
4145         if (!HAS_PCH_SPLIT(dev))
4146                 dpll = DPLL_VGA_MODE_DIS;
4147
4148         if (!IS_GEN2(dev)) {
4149                 if (is_lvds)
4150                         dpll |= DPLLB_MODE_LVDS;
4151                 else
4152                         dpll |= DPLLB_MODE_DAC_SERIAL;
4153                 if (is_sdvo) {
4154                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4155                         if (pixel_multiplier > 1) {
4156                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4157                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4158                                 else if (HAS_PCH_SPLIT(dev))
4159                                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4160                         }
4161                         dpll |= DPLL_DVO_HIGH_SPEED;
4162                 }
4163                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4164                         dpll |= DPLL_DVO_HIGH_SPEED;
4165
4166                 /* compute bitmask from p1 value */
4167                 if (IS_PINEVIEW(dev))
4168                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4169                 else {
4170                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4171                         /* also FPA1 */
4172                         if (HAS_PCH_SPLIT(dev))
4173                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4174                         if (IS_G4X(dev) && has_reduced_clock)
4175                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4176                 }
4177                 switch (clock.p2) {
4178                 case 5:
4179                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4180                         break;
4181                 case 7:
4182                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4183                         break;
4184                 case 10:
4185                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4186                         break;
4187                 case 14:
4188                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4189                         break;
4190                 }
4191                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
4192                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4193         } else {
4194                 if (is_lvds) {
4195                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4196                 } else {
4197                         if (clock.p1 == 2)
4198                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
4199                         else
4200                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4201                         if (clock.p2 == 4)
4202                                 dpll |= PLL_P2_DIVIDE_BY_4;
4203                 }
4204         }
4205
4206         if (is_sdvo && is_tv)
4207                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4208         else if (is_tv)
4209                 /* XXX: just matching BIOS for now */
4210                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4211                 dpll |= 3;
4212         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4213                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4214         else
4215                 dpll |= PLL_REF_INPUT_DREFCLK;
4216
4217         /* setup pipeconf */
4218         pipeconf = I915_READ(PIPECONF(pipe));
4219
4220         /* Set up the display plane register */
4221         dspcntr = DISPPLANE_GAMMA_ENABLE;
4222
4223         /* Ironlake's plane is forced to pipe, bit 24 is to
4224            enable color space conversion */
4225         if (!HAS_PCH_SPLIT(dev)) {
4226                 if (pipe == 0)
4227                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4228                 else
4229                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4230         }
4231
4232         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4233                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4234                  * core speed.
4235                  *
4236                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4237                  * pipe == 0 check?
4238                  */
4239                 if (mode->clock >
4240                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4241                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4242                 else
4243                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4244         }
4245
4246         dspcntr |= DISPLAY_PLANE_ENABLE;
4247         pipeconf |= PIPECONF_ENABLE;
4248         dpll |= DPLL_VCO_ENABLE;
4249
4250         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4251         drm_mode_debug_printmodeline(mode);
4252
4253         /* assign to Ironlake registers */
4254         if (HAS_PCH_SPLIT(dev)) {
4255                 fp_reg = PCH_FP0(pipe);
4256                 dpll_reg = PCH_DPLL(pipe);
4257         } else {
4258                 fp_reg = FP0(pipe);
4259                 dpll_reg = DPLL(pipe);
4260         }
4261
4262         /* PCH eDP needs FDI, but CPU eDP does not */
4263         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4264                 I915_WRITE(fp_reg, fp);
4265                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
4266
4267                 POSTING_READ(dpll_reg);
4268                 udelay(150);
4269         }
4270
4271         /* enable transcoder DPLL */
4272         if (HAS_PCH_CPT(dev)) {
4273                 temp = I915_READ(PCH_DPLL_SEL);
4274                 if (pipe == 0)
4275                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
4276                 else
4277                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
4278                 I915_WRITE(PCH_DPLL_SEL, temp);
4279
4280                 POSTING_READ(PCH_DPLL_SEL);
4281                 udelay(150);
4282         }
4283
4284         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4285          * This is an exception to the general rule that mode_set doesn't turn
4286          * things on.
4287          */
4288         if (is_lvds) {
4289                 reg = LVDS;
4290                 if (HAS_PCH_SPLIT(dev))
4291                         reg = PCH_LVDS;
4292
4293                 temp = I915_READ(reg);
4294                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4295                 if (pipe == 1) {
4296                         if (HAS_PCH_CPT(dev))
4297                                 temp |= PORT_TRANS_B_SEL_CPT;
4298                         else
4299                                 temp |= LVDS_PIPEB_SELECT;
4300                 } else {
4301                         if (HAS_PCH_CPT(dev))
4302                                 temp &= ~PORT_TRANS_SEL_MASK;
4303                         else
4304                                 temp &= ~LVDS_PIPEB_SELECT;
4305                 }
4306                 /* set the corresponsding LVDS_BORDER bit */
4307                 temp |= dev_priv->lvds_border_bits;
4308                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4309                  * set the DPLLs for dual-channel mode or not.
4310                  */
4311                 if (clock.p2 == 7)
4312                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4313                 else
4314                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4315
4316                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4317                  * appropriately here, but we need to look more thoroughly into how
4318                  * panels behave in the two modes.
4319                  */
4320                 /* set the dithering flag on non-PCH LVDS as needed */
4321                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4322                         if (dev_priv->lvds_dither)
4323                                 temp |= LVDS_ENABLE_DITHER;
4324                         else
4325                                 temp &= ~LVDS_ENABLE_DITHER;
4326                 }
4327                 I915_WRITE(reg, temp);
4328         }
4329
4330         /* set the dithering flag and clear for anything other than a panel. */
4331         if (HAS_PCH_SPLIT(dev)) {
4332                 pipeconf &= ~PIPECONF_DITHER_EN;
4333                 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4334                 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
4335                         pipeconf |= PIPECONF_DITHER_EN;
4336                         pipeconf |= PIPECONF_DITHER_TYPE_ST1;
4337                 }
4338         }
4339
4340         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4341                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4342         } else if (HAS_PCH_SPLIT(dev)) {
4343                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4344                 if (pipe == 0) {
4345                         I915_WRITE(TRANSA_DATA_M1, 0);
4346                         I915_WRITE(TRANSA_DATA_N1, 0);
4347                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
4348                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
4349                 } else {
4350                         I915_WRITE(TRANSB_DATA_M1, 0);
4351                         I915_WRITE(TRANSB_DATA_N1, 0);
4352                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
4353                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
4354                 }
4355         }
4356
4357         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4358                 I915_WRITE(dpll_reg, dpll);
4359
4360                 /* Wait for the clocks to stabilize. */
4361                 POSTING_READ(dpll_reg);
4362                 udelay(150);
4363
4364                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4365                         temp = 0;
4366                         if (is_sdvo) {
4367                                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4368                                 if (temp > 1)
4369                                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4370                                 else
4371                                         temp = 0;
4372                         }
4373                         I915_WRITE(DPLL_MD(pipe), temp);
4374                 } else {
4375                         /* The pixel multiplier can only be updated once the
4376                          * DPLL is enabled and the clocks are stable.
4377                          *
4378                          * So write it again.
4379                          */
4380                         I915_WRITE(dpll_reg, dpll);
4381                 }
4382         }
4383
4384         intel_crtc->lowfreq_avail = false;
4385         if (is_lvds && has_reduced_clock && i915_powersave) {
4386                 I915_WRITE(fp_reg + 4, fp2);
4387                 intel_crtc->lowfreq_avail = true;
4388                 if (HAS_PIPE_CXSR(dev)) {
4389                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4390                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4391                 }
4392         } else {
4393                 I915_WRITE(fp_reg + 4, fp);
4394                 if (HAS_PIPE_CXSR(dev)) {
4395                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4396                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4397                 }
4398         }
4399
4400         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4401                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4402                 /* the chip adds 2 halflines automatically */
4403                 adjusted_mode->crtc_vdisplay -= 1;
4404                 adjusted_mode->crtc_vtotal -= 1;
4405                 adjusted_mode->crtc_vblank_start -= 1;
4406                 adjusted_mode->crtc_vblank_end -= 1;
4407                 adjusted_mode->crtc_vsync_end -= 1;
4408                 adjusted_mode->crtc_vsync_start -= 1;
4409         } else
4410                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4411
4412         I915_WRITE(HTOTAL(pipe),
4413                    (adjusted_mode->crtc_hdisplay - 1) |
4414                    ((adjusted_mode->crtc_htotal - 1) << 16));
4415         I915_WRITE(HBLANK(pipe),
4416                    (adjusted_mode->crtc_hblank_start - 1) |
4417                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4418         I915_WRITE(HSYNC(pipe),
4419                    (adjusted_mode->crtc_hsync_start - 1) |
4420                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4421
4422         I915_WRITE(VTOTAL(pipe),
4423                    (adjusted_mode->crtc_vdisplay - 1) |
4424                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4425         I915_WRITE(VBLANK(pipe),
4426                    (adjusted_mode->crtc_vblank_start - 1) |
4427                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4428         I915_WRITE(VSYNC(pipe),
4429                    (adjusted_mode->crtc_vsync_start - 1) |
4430                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4431
4432         /* pipesrc and dspsize control the size that is scaled from,
4433          * which should always be the user's requested size.
4434          */
4435         if (!HAS_PCH_SPLIT(dev)) {
4436                 I915_WRITE(DSPSIZE(plane),
4437                            ((mode->vdisplay - 1) << 16) |
4438                            (mode->hdisplay - 1));
4439                 I915_WRITE(DSPPOS(plane), 0);
4440         }
4441         I915_WRITE(PIPESRC(pipe),
4442                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4443
4444         if (HAS_PCH_SPLIT(dev)) {
4445                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4446                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4447                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4448                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4449
4450                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4451                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4452                 }
4453         }
4454
4455         I915_WRITE(PIPECONF(pipe), pipeconf);
4456         POSTING_READ(PIPECONF(pipe));
4457
4458         intel_wait_for_vblank(dev, pipe);
4459
4460         if (IS_GEN5(dev)) {
4461                 /* enable address swizzle for tiling buffer */
4462                 temp = I915_READ(DISP_ARB_CTL);
4463                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4464         }
4465
4466         I915_WRITE(DSPCNTR(plane), dspcntr);
4467
4468         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4469
4470         intel_update_watermarks(dev);
4471
4472         drm_vblank_post_modeset(dev, pipe);
4473
4474         return ret;
4475 }
4476
4477 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4478 void intel_crtc_load_lut(struct drm_crtc *crtc)
4479 {
4480         struct drm_device *dev = crtc->dev;
4481         struct drm_i915_private *dev_priv = dev->dev_private;
4482         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4483         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4484         int i;
4485
4486         /* The clocks have to be on to load the palette. */
4487         if (!crtc->enabled)
4488                 return;
4489
4490         /* use legacy palette for Ironlake */
4491         if (HAS_PCH_SPLIT(dev))
4492                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4493                                                    LGC_PALETTE_B;
4494
4495         for (i = 0; i < 256; i++) {
4496                 I915_WRITE(palreg + 4 * i,
4497                            (intel_crtc->lut_r[i] << 16) |
4498                            (intel_crtc->lut_g[i] << 8) |
4499                            intel_crtc->lut_b[i]);
4500         }
4501 }
4502
4503 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4504 {
4505         struct drm_device *dev = crtc->dev;
4506         struct drm_i915_private *dev_priv = dev->dev_private;
4507         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4508         bool visible = base != 0;
4509         u32 cntl;
4510
4511         if (intel_crtc->cursor_visible == visible)
4512                 return;
4513
4514         cntl = I915_READ(CURACNTR);
4515         if (visible) {
4516                 /* On these chipsets we can only modify the base whilst
4517                  * the cursor is disabled.
4518                  */
4519                 I915_WRITE(CURABASE, base);
4520
4521                 cntl &= ~(CURSOR_FORMAT_MASK);
4522                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4523                 cntl |= CURSOR_ENABLE |
4524                         CURSOR_GAMMA_ENABLE |
4525                         CURSOR_FORMAT_ARGB;
4526         } else
4527                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4528         I915_WRITE(CURACNTR, cntl);
4529
4530         intel_crtc->cursor_visible = visible;
4531 }
4532
4533 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4534 {
4535         struct drm_device *dev = crtc->dev;
4536         struct drm_i915_private *dev_priv = dev->dev_private;
4537         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4538         int pipe = intel_crtc->pipe;
4539         bool visible = base != 0;
4540
4541         if (intel_crtc->cursor_visible != visible) {
4542                 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4543                 if (base) {
4544                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4545                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4546                         cntl |= pipe << 28; /* Connect to correct pipe */
4547                 } else {
4548                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4549                         cntl |= CURSOR_MODE_DISABLE;
4550                 }
4551                 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4552
4553                 intel_crtc->cursor_visible = visible;
4554         }
4555         /* and commit changes on next vblank */
4556         I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4557 }
4558
4559 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4560 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4561                                      bool on)
4562 {
4563         struct drm_device *dev = crtc->dev;
4564         struct drm_i915_private *dev_priv = dev->dev_private;
4565         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4566         int pipe = intel_crtc->pipe;
4567         int x = intel_crtc->cursor_x;
4568         int y = intel_crtc->cursor_y;
4569         u32 base, pos;
4570         bool visible;
4571
4572         pos = 0;
4573
4574         if (on && crtc->enabled && crtc->fb) {
4575                 base = intel_crtc->cursor_addr;
4576                 if (x > (int) crtc->fb->width)
4577                         base = 0;
4578
4579                 if (y > (int) crtc->fb->height)
4580                         base = 0;
4581         } else
4582                 base = 0;
4583
4584         if (x < 0) {
4585                 if (x + intel_crtc->cursor_width < 0)
4586                         base = 0;
4587
4588                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4589                 x = -x;
4590         }
4591         pos |= x << CURSOR_X_SHIFT;
4592
4593         if (y < 0) {
4594                 if (y + intel_crtc->cursor_height < 0)
4595                         base = 0;
4596
4597                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4598                 y = -y;
4599         }
4600         pos |= y << CURSOR_Y_SHIFT;
4601
4602         visible = base != 0;
4603         if (!visible && !intel_crtc->cursor_visible)
4604                 return;
4605
4606         I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4607         if (IS_845G(dev) || IS_I865G(dev))
4608                 i845_update_cursor(crtc, base);
4609         else
4610                 i9xx_update_cursor(crtc, base);
4611
4612         if (visible)
4613                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4614 }
4615
4616 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4617                                  struct drm_file *file,
4618                                  uint32_t handle,
4619                                  uint32_t width, uint32_t height)
4620 {
4621         struct drm_device *dev = crtc->dev;
4622         struct drm_i915_private *dev_priv = dev->dev_private;
4623         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4624         struct drm_i915_gem_object *obj;
4625         uint32_t addr;
4626         int ret;
4627
4628         DRM_DEBUG_KMS("\n");
4629
4630         /* if we want to turn off the cursor ignore width and height */
4631         if (!handle) {
4632                 DRM_DEBUG_KMS("cursor off\n");
4633                 addr = 0;
4634                 obj = NULL;
4635                 mutex_lock(&dev->struct_mutex);
4636                 goto finish;
4637         }
4638
4639         /* Currently we only support 64x64 cursors */
4640         if (width != 64 || height != 64) {
4641                 DRM_ERROR("we currently only support 64x64 cursors\n");
4642                 return -EINVAL;
4643         }
4644
4645         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
4646         if (!obj)
4647                 return -ENOENT;
4648
4649         if (obj->base.size < width * height * 4) {
4650                 DRM_ERROR("buffer is to small\n");
4651                 ret = -ENOMEM;
4652                 goto fail;
4653         }
4654
4655         /* we only need to pin inside GTT if cursor is non-phy */
4656         mutex_lock(&dev->struct_mutex);
4657         if (!dev_priv->info->cursor_needs_physical) {
4658                 if (obj->tiling_mode) {
4659                         DRM_ERROR("cursor cannot be tiled\n");
4660                         ret = -EINVAL;
4661                         goto fail_locked;
4662                 }
4663
4664                 ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
4665                 if (ret) {
4666                         DRM_ERROR("failed to pin cursor bo\n");
4667                         goto fail_locked;
4668                 }
4669
4670                 ret = i915_gem_object_set_to_gtt_domain(obj, 0);
4671                 if (ret) {
4672                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4673                         goto fail_unpin;
4674                 }
4675
4676                 ret = i915_gem_object_put_fence(obj);
4677                 if (ret) {
4678                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4679                         goto fail_unpin;
4680                 }
4681
4682                 addr = obj->gtt_offset;
4683         } else {
4684                 int align = IS_I830(dev) ? 16 * 1024 : 256;
4685                 ret = i915_gem_attach_phys_object(dev, obj,
4686                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4687                                                   align);
4688                 if (ret) {
4689                         DRM_ERROR("failed to attach phys object\n");
4690                         goto fail_locked;
4691                 }
4692                 addr = obj->phys_obj->handle->busaddr;
4693         }
4694
4695         if (IS_GEN2(dev))
4696                 I915_WRITE(CURSIZE, (height << 12) | width);
4697
4698  finish:
4699         if (intel_crtc->cursor_bo) {
4700                 if (dev_priv->info->cursor_needs_physical) {
4701                         if (intel_crtc->cursor_bo != obj)
4702                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4703                 } else
4704                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4705                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
4706         }
4707
4708         mutex_unlock(&dev->struct_mutex);
4709
4710         intel_crtc->cursor_addr = addr;
4711         intel_crtc->cursor_bo = obj;
4712         intel_crtc->cursor_width = width;
4713         intel_crtc->cursor_height = height;
4714
4715         intel_crtc_update_cursor(crtc, true);
4716
4717         return 0;
4718 fail_unpin:
4719         i915_gem_object_unpin(obj);
4720 fail_locked:
4721         mutex_unlock(&dev->struct_mutex);
4722 fail:
4723         drm_gem_object_unreference_unlocked(&obj->base);
4724         return ret;
4725 }
4726
4727 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4728 {
4729         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4730
4731         intel_crtc->cursor_x = x;
4732         intel_crtc->cursor_y = y;
4733
4734         intel_crtc_update_cursor(crtc, true);
4735
4736         return 0;
4737 }
4738
4739 /** Sets the color ramps on behalf of RandR */
4740 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4741                                  u16 blue, int regno)
4742 {
4743         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4744
4745         intel_crtc->lut_r[regno] = red >> 8;
4746         intel_crtc->lut_g[regno] = green >> 8;
4747         intel_crtc->lut_b[regno] = blue >> 8;
4748 }
4749
4750 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4751                              u16 *blue, int regno)
4752 {
4753         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4754
4755         *red = intel_crtc->lut_r[regno] << 8;
4756         *green = intel_crtc->lut_g[regno] << 8;
4757         *blue = intel_crtc->lut_b[regno] << 8;
4758 }
4759
4760 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4761                                  u16 *blue, uint32_t start, uint32_t size)
4762 {
4763         int end = (start + size > 256) ? 256 : start + size, i;
4764         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4765
4766         for (i = start; i < end; i++) {
4767                 intel_crtc->lut_r[i] = red[i] >> 8;
4768                 intel_crtc->lut_g[i] = green[i] >> 8;
4769                 intel_crtc->lut_b[i] = blue[i] >> 8;
4770         }
4771
4772         intel_crtc_load_lut(crtc);
4773 }
4774
4775 /**
4776  * Get a pipe with a simple mode set on it for doing load-based monitor
4777  * detection.
4778  *
4779  * It will be up to the load-detect code to adjust the pipe as appropriate for
4780  * its requirements.  The pipe will be connected to no other encoders.
4781  *
4782  * Currently this code will only succeed if there is a pipe with no encoders
4783  * configured for it.  In the future, it could choose to temporarily disable
4784  * some outputs to free up a pipe for its use.
4785  *
4786  * \return crtc, or NULL if no pipes are available.
4787  */
4788
4789 /* VESA 640x480x72Hz mode to set on the pipe */
4790 static struct drm_display_mode load_detect_mode = {
4791         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4792                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4793 };
4794
4795 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4796                                             struct drm_connector *connector,
4797                                             struct drm_display_mode *mode,
4798                                             int *dpms_mode)
4799 {
4800         struct intel_crtc *intel_crtc;
4801         struct drm_crtc *possible_crtc;
4802         struct drm_crtc *supported_crtc =NULL;
4803         struct drm_encoder *encoder = &intel_encoder->base;
4804         struct drm_crtc *crtc = NULL;
4805         struct drm_device *dev = encoder->dev;
4806         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4807         struct drm_crtc_helper_funcs *crtc_funcs;
4808         int i = -1;
4809
4810         /*
4811          * Algorithm gets a little messy:
4812          *   - if the connector already has an assigned crtc, use it (but make
4813          *     sure it's on first)
4814          *   - try to find the first unused crtc that can drive this connector,
4815          *     and use that if we find one
4816          *   - if there are no unused crtcs available, try to use the first
4817          *     one we found that supports the connector
4818          */
4819
4820         /* See if we already have a CRTC for this connector */
4821         if (encoder->crtc) {
4822                 crtc = encoder->crtc;
4823                 /* Make sure the crtc and connector are running */
4824                 intel_crtc = to_intel_crtc(crtc);
4825                 *dpms_mode = intel_crtc->dpms_mode;
4826                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4827                         crtc_funcs = crtc->helper_private;
4828                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4829                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4830                 }
4831                 return crtc;
4832         }
4833
4834         /* Find an unused one (if possible) */
4835         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4836                 i++;
4837                 if (!(encoder->possible_crtcs & (1 << i)))
4838                         continue;
4839                 if (!possible_crtc->enabled) {
4840                         crtc = possible_crtc;
4841                         break;
4842                 }
4843                 if (!supported_crtc)
4844                         supported_crtc = possible_crtc;
4845         }
4846
4847         /*
4848          * If we didn't find an unused CRTC, don't use any.
4849          */
4850         if (!crtc) {
4851                 return NULL;
4852         }
4853
4854         encoder->crtc = crtc;
4855         connector->encoder = encoder;
4856         intel_encoder->load_detect_temp = true;
4857
4858         intel_crtc = to_intel_crtc(crtc);
4859         *dpms_mode = intel_crtc->dpms_mode;
4860
4861         if (!crtc->enabled) {
4862                 if (!mode)
4863                         mode = &load_detect_mode;
4864                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4865         } else {
4866                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4867                         crtc_funcs = crtc->helper_private;
4868                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4869                 }
4870
4871                 /* Add this connector to the crtc */
4872                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4873                 encoder_funcs->commit(encoder);
4874         }
4875         /* let the connector get through one full cycle before testing */
4876         intel_wait_for_vblank(dev, intel_crtc->pipe);
4877
4878         return crtc;
4879 }
4880
4881 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4882                                     struct drm_connector *connector, int dpms_mode)
4883 {
4884         struct drm_encoder *encoder = &intel_encoder->base;
4885         struct drm_device *dev = encoder->dev;
4886         struct drm_crtc *crtc = encoder->crtc;
4887         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4888         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4889
4890         if (intel_encoder->load_detect_temp) {
4891                 encoder->crtc = NULL;
4892                 connector->encoder = NULL;
4893                 intel_encoder->load_detect_temp = false;
4894                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4895                 drm_helper_disable_unused_functions(dev);
4896         }
4897
4898         /* Switch crtc and encoder back off if necessary */
4899         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4900                 if (encoder->crtc == crtc)
4901                         encoder_funcs->dpms(encoder, dpms_mode);
4902                 crtc_funcs->dpms(crtc, dpms_mode);
4903         }
4904 }
4905
4906 /* Returns the clock of the currently programmed mode of the given pipe. */
4907 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4908 {
4909         struct drm_i915_private *dev_priv = dev->dev_private;
4910         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4911         int pipe = intel_crtc->pipe;
4912         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4913         u32 fp;
4914         intel_clock_t clock;
4915
4916         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4917                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4918         else
4919                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4920
4921         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4922         if (IS_PINEVIEW(dev)) {
4923                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4924                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4925         } else {
4926                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4927                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4928         }
4929
4930         if (!IS_GEN2(dev)) {
4931                 if (IS_PINEVIEW(dev))
4932                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4933                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4934                 else
4935                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4936                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4937
4938                 switch (dpll & DPLL_MODE_MASK) {
4939                 case DPLLB_MODE_DAC_SERIAL:
4940                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4941                                 5 : 10;
4942                         break;
4943                 case DPLLB_MODE_LVDS:
4944                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4945                                 7 : 14;
4946                         break;
4947                 default:
4948                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4949                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4950                         return 0;
4951                 }
4952
4953                 /* XXX: Handle the 100Mhz refclk */
4954                 intel_clock(dev, 96000, &clock);
4955         } else {
4956                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4957
4958                 if (is_lvds) {
4959                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4960                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4961                         clock.p2 = 14;
4962
4963                         if ((dpll & PLL_REF_INPUT_MASK) ==
4964                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4965                                 /* XXX: might not be 66MHz */
4966                                 intel_clock(dev, 66000, &clock);
4967                         } else
4968                                 intel_clock(dev, 48000, &clock);
4969                 } else {
4970                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4971                                 clock.p1 = 2;
4972                         else {
4973                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4974                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4975                         }
4976                         if (dpll & PLL_P2_DIVIDE_BY_4)
4977                                 clock.p2 = 4;
4978                         else
4979                                 clock.p2 = 2;
4980
4981                         intel_clock(dev, 48000, &clock);
4982                 }
4983         }
4984
4985         /* XXX: It would be nice to validate the clocks, but we can't reuse
4986          * i830PllIsValid() because it relies on the xf86_config connector
4987          * configuration being accurate, which it isn't necessarily.
4988          */
4989
4990         return clock.dot;
4991 }
4992
4993 /** Returns the currently programmed mode of the given pipe. */
4994 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4995                                              struct drm_crtc *crtc)
4996 {
4997         struct drm_i915_private *dev_priv = dev->dev_private;
4998         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4999         int pipe = intel_crtc->pipe;
5000         struct drm_display_mode *mode;
5001         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
5002         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
5003         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
5004         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
5005
5006         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5007         if (!mode)
5008                 return NULL;
5009
5010         mode->clock = intel_crtc_clock_get(dev, crtc);
5011         mode->hdisplay = (htot & 0xffff) + 1;
5012         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5013         mode->hsync_start = (hsync & 0xffff) + 1;
5014         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5015         mode->vdisplay = (vtot & 0xffff) + 1;
5016         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5017         mode->vsync_start = (vsync & 0xffff) + 1;
5018         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5019
5020         drm_mode_set_name(mode);
5021         drm_mode_set_crtcinfo(mode, 0);
5022
5023         return mode;
5024 }
5025
5026 #define GPU_IDLE_TIMEOUT 500 /* ms */
5027
5028 /* When this timer fires, we've been idle for awhile */
5029 static void intel_gpu_idle_timer(unsigned long arg)
5030 {
5031         struct drm_device *dev = (struct drm_device *)arg;
5032         drm_i915_private_t *dev_priv = dev->dev_private;
5033
5034         if (!list_empty(&dev_priv->mm.active_list)) {
5035                 /* Still processing requests, so just re-arm the timer. */
5036                 mod_timer(&dev_priv->idle_timer, jiffies +
5037                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5038                 return;
5039         }
5040
5041         dev_priv->busy = false;
5042         queue_work(dev_priv->wq, &dev_priv->idle_work);
5043 }
5044
5045 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5046
5047 static void intel_crtc_idle_timer(unsigned long arg)
5048 {
5049         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5050         struct drm_crtc *crtc = &intel_crtc->base;
5051         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5052         struct intel_framebuffer *intel_fb;
5053
5054         intel_fb = to_intel_framebuffer(crtc->fb);
5055         if (intel_fb && intel_fb->obj->active) {
5056                 /* The framebuffer is still being accessed by the GPU. */
5057                 mod_timer(&intel_crtc->idle_timer, jiffies +
5058                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5059                 return;
5060         }
5061
5062         intel_crtc->busy = false;
5063         queue_work(dev_priv->wq, &dev_priv->idle_work);
5064 }
5065
5066 static void intel_increase_pllclock(struct drm_crtc *crtc)
5067 {
5068         struct drm_device *dev = crtc->dev;
5069         drm_i915_private_t *dev_priv = dev->dev_private;
5070         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5071         int pipe = intel_crtc->pipe;
5072         int dpll_reg = DPLL(pipe);
5073         int dpll;
5074
5075         if (HAS_PCH_SPLIT(dev))
5076                 return;
5077
5078         if (!dev_priv->lvds_downclock_avail)
5079                 return;
5080
5081         dpll = I915_READ(dpll_reg);
5082         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5083                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5084
5085                 /* Unlock panel regs */
5086                 I915_WRITE(PP_CONTROL,
5087                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
5088
5089                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5090                 I915_WRITE(dpll_reg, dpll);
5091                 POSTING_READ(dpll_reg);
5092                 intel_wait_for_vblank(dev, pipe);
5093
5094                 dpll = I915_READ(dpll_reg);
5095                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5096                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5097
5098                 /* ...and lock them again */
5099                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5100         }
5101
5102         /* Schedule downclock */
5103         mod_timer(&intel_crtc->idle_timer, jiffies +
5104                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5105 }
5106
5107 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5108 {
5109         struct drm_device *dev = crtc->dev;
5110         drm_i915_private_t *dev_priv = dev->dev_private;
5111         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5112         int pipe = intel_crtc->pipe;
5113         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
5114         int dpll = I915_READ(dpll_reg);
5115
5116         if (HAS_PCH_SPLIT(dev))
5117                 return;
5118
5119         if (!dev_priv->lvds_downclock_avail)
5120                 return;
5121
5122         /*
5123          * Since this is called by a timer, we should never get here in
5124          * the manual case.
5125          */
5126         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5127                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5128
5129                 /* Unlock panel regs */
5130                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
5131                            PANEL_UNLOCK_REGS);
5132
5133                 dpll |= DISPLAY_RATE_SELECT_FPA1;
5134                 I915_WRITE(dpll_reg, dpll);
5135                 dpll = I915_READ(dpll_reg);
5136                 intel_wait_for_vblank(dev, pipe);
5137                 dpll = I915_READ(dpll_reg);
5138                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5139                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5140
5141                 /* ...and lock them again */
5142                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5143         }
5144
5145 }
5146
5147 /**
5148  * intel_idle_update - adjust clocks for idleness
5149  * @work: work struct
5150  *
5151  * Either the GPU or display (or both) went idle.  Check the busy status
5152  * here and adjust the CRTC and GPU clocks as necessary.
5153  */
5154 static void intel_idle_update(struct work_struct *work)
5155 {
5156         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5157                                                     idle_work);
5158         struct drm_device *dev = dev_priv->dev;
5159         struct drm_crtc *crtc;
5160         struct intel_crtc *intel_crtc;
5161         int enabled = 0;
5162
5163         if (!i915_powersave)
5164                 return;
5165
5166         mutex_lock(&dev->struct_mutex);
5167
5168         i915_update_gfx_val(dev_priv);
5169
5170         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5171                 /* Skip inactive CRTCs */
5172                 if (!crtc->fb)
5173                         continue;
5174
5175                 enabled++;
5176                 intel_crtc = to_intel_crtc(crtc);
5177                 if (!intel_crtc->busy)
5178                         intel_decrease_pllclock(crtc);
5179         }
5180
5181         if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
5182                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
5183                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
5184         }
5185
5186         mutex_unlock(&dev->struct_mutex);
5187 }
5188
5189 /**
5190  * intel_mark_busy - mark the GPU and possibly the display busy
5191  * @dev: drm device
5192  * @obj: object we're operating on
5193  *
5194  * Callers can use this function to indicate that the GPU is busy processing
5195  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
5196  * buffer), we'll also mark the display as busy, so we know to increase its
5197  * clock frequency.
5198  */
5199 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
5200 {
5201         drm_i915_private_t *dev_priv = dev->dev_private;
5202         struct drm_crtc *crtc = NULL;
5203         struct intel_framebuffer *intel_fb;
5204         struct intel_crtc *intel_crtc;
5205
5206         if (!drm_core_check_feature(dev, DRIVER_MODESET))
5207                 return;
5208
5209         if (!dev_priv->busy) {
5210                 if (IS_I945G(dev) || IS_I945GM(dev)) {
5211                         u32 fw_blc_self;
5212
5213                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
5214                         fw_blc_self = I915_READ(FW_BLC_SELF);
5215                         fw_blc_self &= ~FW_BLC_SELF_EN;
5216                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
5217                 }
5218                 dev_priv->busy = true;
5219         } else
5220                 mod_timer(&dev_priv->idle_timer, jiffies +
5221                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5222
5223         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5224                 if (!crtc->fb)
5225                         continue;
5226
5227                 intel_crtc = to_intel_crtc(crtc);
5228                 intel_fb = to_intel_framebuffer(crtc->fb);
5229                 if (intel_fb->obj == obj) {
5230                         if (!intel_crtc->busy) {
5231                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
5232                                         u32 fw_blc_self;
5233
5234                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
5235                                         fw_blc_self = I915_READ(FW_BLC_SELF);
5236                                         fw_blc_self &= ~FW_BLC_SELF_EN;
5237                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
5238                                 }
5239                                 /* Non-busy -> busy, upclock */
5240                                 intel_increase_pllclock(crtc);
5241                                 intel_crtc->busy = true;
5242                         } else {
5243                                 /* Busy -> busy, put off timer */
5244                                 mod_timer(&intel_crtc->idle_timer, jiffies +
5245                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5246                         }
5247                 }
5248         }
5249 }
5250
5251 static void intel_crtc_destroy(struct drm_crtc *crtc)
5252 {
5253         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5254         struct drm_device *dev = crtc->dev;
5255         struct intel_unpin_work *work;
5256         unsigned long flags;
5257
5258         spin_lock_irqsave(&dev->event_lock, flags);
5259         work = intel_crtc->unpin_work;
5260         intel_crtc->unpin_work = NULL;
5261         spin_unlock_irqrestore(&dev->event_lock, flags);
5262
5263         if (work) {
5264                 cancel_work_sync(&work->work);
5265                 kfree(work);
5266         }
5267
5268         drm_crtc_cleanup(crtc);
5269
5270         kfree(intel_crtc);
5271 }
5272
5273 static void intel_unpin_work_fn(struct work_struct *__work)
5274 {
5275         struct intel_unpin_work *work =
5276                 container_of(__work, struct intel_unpin_work, work);
5277
5278         mutex_lock(&work->dev->struct_mutex);
5279         i915_gem_object_unpin(work->old_fb_obj);
5280         drm_gem_object_unreference(&work->pending_flip_obj->base);
5281         drm_gem_object_unreference(&work->old_fb_obj->base);
5282
5283         mutex_unlock(&work->dev->struct_mutex);
5284         kfree(work);
5285 }
5286
5287 static void do_intel_finish_page_flip(struct drm_device *dev,
5288                                       struct drm_crtc *crtc)
5289 {
5290         drm_i915_private_t *dev_priv = dev->dev_private;
5291         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5292         struct intel_unpin_work *work;
5293         struct drm_i915_gem_object *obj;
5294         struct drm_pending_vblank_event *e;
5295         struct timeval tnow, tvbl;
5296         unsigned long flags;
5297
5298         /* Ignore early vblank irqs */
5299         if (intel_crtc == NULL)
5300                 return;
5301
5302         do_gettimeofday(&tnow);
5303
5304         spin_lock_irqsave(&dev->event_lock, flags);
5305         work = intel_crtc->unpin_work;
5306         if (work == NULL || !work->pending) {
5307                 spin_unlock_irqrestore(&dev->event_lock, flags);
5308                 return;
5309         }
5310
5311         intel_crtc->unpin_work = NULL;
5312
5313         if (work->event) {
5314                 e = work->event;
5315                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
5316
5317                 /* Called before vblank count and timestamps have
5318                  * been updated for the vblank interval of flip
5319                  * completion? Need to increment vblank count and
5320                  * add one videorefresh duration to returned timestamp
5321                  * to account for this. We assume this happened if we
5322                  * get called over 0.9 frame durations after the last
5323                  * timestamped vblank.
5324                  *
5325                  * This calculation can not be used with vrefresh rates
5326                  * below 5Hz (10Hz to be on the safe side) without
5327                  * promoting to 64 integers.
5328                  */
5329                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
5330                     9 * crtc->framedur_ns) {
5331                         e->event.sequence++;
5332                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
5333                                              crtc->framedur_ns);
5334                 }
5335
5336                 e->event.tv_sec = tvbl.tv_sec;
5337                 e->event.tv_usec = tvbl.tv_usec;
5338
5339                 list_add_tail(&e->base.link,
5340                               &e->base.file_priv->event_list);
5341                 wake_up_interruptible(&e->base.file_priv->event_wait);
5342         }
5343
5344         drm_vblank_put(dev, intel_crtc->pipe);
5345
5346         spin_unlock_irqrestore(&dev->event_lock, flags);
5347
5348         obj = work->old_fb_obj;
5349
5350         atomic_clear_mask(1 << intel_crtc->plane,
5351                           &obj->pending_flip.counter);
5352         if (atomic_read(&obj->pending_flip) == 0)
5353                 wake_up(&dev_priv->pending_flip_queue);
5354
5355         schedule_work(&work->work);
5356
5357         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5358 }
5359
5360 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5361 {
5362         drm_i915_private_t *dev_priv = dev->dev_private;
5363         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5364
5365         do_intel_finish_page_flip(dev, crtc);
5366 }
5367
5368 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5369 {
5370         drm_i915_private_t *dev_priv = dev->dev_private;
5371         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5372
5373         do_intel_finish_page_flip(dev, crtc);
5374 }
5375
5376 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5377 {
5378         drm_i915_private_t *dev_priv = dev->dev_private;
5379         struct intel_crtc *intel_crtc =
5380                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5381         unsigned long flags;
5382
5383         spin_lock_irqsave(&dev->event_lock, flags);
5384         if (intel_crtc->unpin_work) {
5385                 if ((++intel_crtc->unpin_work->pending) > 1)
5386                         DRM_ERROR("Prepared flip multiple times\n");
5387         } else {
5388                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5389         }
5390         spin_unlock_irqrestore(&dev->event_lock, flags);
5391 }
5392
5393 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5394                                 struct drm_framebuffer *fb,
5395                                 struct drm_pending_vblank_event *event)
5396 {
5397         struct drm_device *dev = crtc->dev;
5398         struct drm_i915_private *dev_priv = dev->dev_private;
5399         struct intel_framebuffer *intel_fb;
5400         struct drm_i915_gem_object *obj;
5401         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5402         struct intel_unpin_work *work;
5403         unsigned long flags, offset;
5404         int pipe = intel_crtc->pipe;
5405         u32 pf, pipesrc;
5406         int ret;
5407
5408         work = kzalloc(sizeof *work, GFP_KERNEL);
5409         if (work == NULL)
5410                 return -ENOMEM;
5411
5412         work->event = event;
5413         work->dev = crtc->dev;
5414         intel_fb = to_intel_framebuffer(crtc->fb);
5415         work->old_fb_obj = intel_fb->obj;
5416         INIT_WORK(&work->work, intel_unpin_work_fn);
5417
5418         /* We borrow the event spin lock for protecting unpin_work */
5419         spin_lock_irqsave(&dev->event_lock, flags);
5420         if (intel_crtc->unpin_work) {
5421                 spin_unlock_irqrestore(&dev->event_lock, flags);
5422                 kfree(work);
5423
5424                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5425                 return -EBUSY;
5426         }
5427         intel_crtc->unpin_work = work;
5428         spin_unlock_irqrestore(&dev->event_lock, flags);
5429
5430         intel_fb = to_intel_framebuffer(fb);
5431         obj = intel_fb->obj;
5432
5433         mutex_lock(&dev->struct_mutex);
5434         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5435         if (ret)
5436                 goto cleanup_work;
5437
5438         /* Reference the objects for the scheduled work. */
5439         drm_gem_object_reference(&work->old_fb_obj->base);
5440         drm_gem_object_reference(&obj->base);
5441
5442         crtc->fb = fb;
5443
5444         ret = drm_vblank_get(dev, intel_crtc->pipe);
5445         if (ret)
5446                 goto cleanup_objs;
5447
5448         if (IS_GEN3(dev) || IS_GEN2(dev)) {
5449                 u32 flip_mask;
5450
5451                 /* Can't queue multiple flips, so wait for the previous
5452                  * one to finish before executing the next.
5453                  */
5454                 ret = BEGIN_LP_RING(2);
5455                 if (ret)
5456                         goto cleanup_objs;
5457
5458                 if (intel_crtc->plane)
5459                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5460                 else
5461                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5462                 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5463                 OUT_RING(MI_NOOP);
5464                 ADVANCE_LP_RING();
5465         }
5466
5467         work->pending_flip_obj = obj;
5468
5469         work->enable_stall_check = true;
5470
5471         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5472         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5473
5474         ret = BEGIN_LP_RING(4);
5475         if (ret)
5476                 goto cleanup_objs;
5477
5478         /* Block clients from rendering to the new back buffer until
5479          * the flip occurs and the object is no longer visible.
5480          */
5481         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
5482
5483         switch (INTEL_INFO(dev)->gen) {
5484         case 2:
5485                 OUT_RING(MI_DISPLAY_FLIP |
5486                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5487                 OUT_RING(fb->pitch);
5488                 OUT_RING(obj->gtt_offset + offset);
5489                 OUT_RING(MI_NOOP);
5490                 break;
5491
5492         case 3:
5493                 OUT_RING(MI_DISPLAY_FLIP_I915 |
5494                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5495                 OUT_RING(fb->pitch);
5496                 OUT_RING(obj->gtt_offset + offset);
5497                 OUT_RING(MI_NOOP);
5498                 break;
5499
5500         case 4:
5501         case 5:
5502                 /* i965+ uses the linear or tiled offsets from the
5503                  * Display Registers (which do not change across a page-flip)
5504                  * so we need only reprogram the base address.
5505                  */
5506                 OUT_RING(MI_DISPLAY_FLIP |
5507                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5508                 OUT_RING(fb->pitch);
5509                 OUT_RING(obj->gtt_offset | obj->tiling_mode);
5510
5511                 /* XXX Enabling the panel-fitter across page-flip is so far
5512                  * untested on non-native modes, so ignore it for now.
5513                  * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5514                  */
5515                 pf = 0;
5516                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5517                 OUT_RING(pf | pipesrc);
5518                 break;
5519
5520         case 6:
5521                 OUT_RING(MI_DISPLAY_FLIP |
5522                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5523                 OUT_RING(fb->pitch | obj->tiling_mode);
5524                 OUT_RING(obj->gtt_offset);
5525
5526                 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5527                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5528                 OUT_RING(pf | pipesrc);
5529                 break;
5530         }
5531         ADVANCE_LP_RING();
5532
5533         mutex_unlock(&dev->struct_mutex);
5534
5535         trace_i915_flip_request(intel_crtc->plane, obj);
5536
5537         return 0;
5538
5539 cleanup_objs:
5540         drm_gem_object_unreference(&work->old_fb_obj->base);
5541         drm_gem_object_unreference(&obj->base);
5542 cleanup_work:
5543         mutex_unlock(&dev->struct_mutex);
5544
5545         spin_lock_irqsave(&dev->event_lock, flags);
5546         intel_crtc->unpin_work = NULL;
5547         spin_unlock_irqrestore(&dev->event_lock, flags);
5548
5549         kfree(work);
5550
5551         return ret;
5552 }
5553
5554 static void intel_crtc_reset(struct drm_crtc *crtc)
5555 {
5556         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5557
5558         /* Reset flags back to the 'unknown' status so that they
5559          * will be correctly set on the initial modeset.
5560          */
5561         intel_crtc->cursor_addr = 0;
5562         intel_crtc->dpms_mode = -1;
5563         intel_crtc->active = true; /* force the pipe off on setup_init_config */
5564 }
5565
5566 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5567         .dpms = intel_crtc_dpms,
5568         .mode_fixup = intel_crtc_mode_fixup,
5569         .mode_set = intel_crtc_mode_set,
5570         .mode_set_base = intel_pipe_set_base,
5571         .mode_set_base_atomic = intel_pipe_set_base_atomic,
5572         .load_lut = intel_crtc_load_lut,
5573         .disable = intel_crtc_disable,
5574 };
5575
5576 static const struct drm_crtc_funcs intel_crtc_funcs = {
5577         .reset = intel_crtc_reset,
5578         .cursor_set = intel_crtc_cursor_set,
5579         .cursor_move = intel_crtc_cursor_move,
5580         .gamma_set = intel_crtc_gamma_set,
5581         .set_config = drm_crtc_helper_set_config,
5582         .destroy = intel_crtc_destroy,
5583         .page_flip = intel_crtc_page_flip,
5584 };
5585
5586 static void intel_sanitize_modesetting(struct drm_device *dev,
5587                                        int pipe, int plane)
5588 {
5589         struct drm_i915_private *dev_priv = dev->dev_private;
5590         u32 reg, val;
5591
5592         if (HAS_PCH_SPLIT(dev))
5593                 return;
5594
5595         /* Who knows what state these registers were left in by the BIOS or
5596          * grub?
5597          *
5598          * If we leave the registers in a conflicting state (e.g. with the
5599          * display plane reading from the other pipe than the one we intend
5600          * to use) then when we attempt to teardown the active mode, we will
5601          * not disable the pipes and planes in the correct order -- leaving
5602          * a plane reading from a disabled pipe and possibly leading to
5603          * undefined behaviour.
5604          */
5605
5606         reg = DSPCNTR(plane);
5607         val = I915_READ(reg);
5608
5609         if ((val & DISPLAY_PLANE_ENABLE) == 0)
5610                 return;
5611         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
5612                 return;
5613
5614         /* This display plane is active and attached to the other CPU pipe. */
5615         pipe = !pipe;
5616
5617         /* Disable the plane and wait for it to stop reading from the pipe. */
5618         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
5619         intel_flush_display_plane(dev, plane);
5620
5621         if (IS_GEN2(dev))
5622                 intel_wait_for_vblank(dev, pipe);
5623
5624         if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
5625                 return;
5626
5627         /* Switch off the pipe. */
5628         reg = PIPECONF(pipe);
5629         val = I915_READ(reg);
5630         if (val & PIPECONF_ENABLE) {
5631                 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
5632                 intel_wait_for_pipe_off(dev, pipe);
5633         }
5634 }
5635
5636 static void intel_crtc_init(struct drm_device *dev, int pipe)
5637 {
5638         drm_i915_private_t *dev_priv = dev->dev_private;
5639         struct intel_crtc *intel_crtc;
5640         int i;
5641
5642         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5643         if (intel_crtc == NULL)
5644                 return;
5645
5646         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5647
5648         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5649         for (i = 0; i < 256; i++) {
5650                 intel_crtc->lut_r[i] = i;
5651                 intel_crtc->lut_g[i] = i;
5652                 intel_crtc->lut_b[i] = i;
5653         }
5654
5655         /* Swap pipes & planes for FBC on pre-965 */
5656         intel_crtc->pipe = pipe;
5657         intel_crtc->plane = pipe;
5658         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5659                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5660                 intel_crtc->plane = !pipe;
5661         }
5662
5663         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5664                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5665         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5666         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5667
5668         intel_crtc_reset(&intel_crtc->base);
5669
5670         if (HAS_PCH_SPLIT(dev)) {
5671                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
5672                 intel_helper_funcs.commit = ironlake_crtc_commit;
5673         } else {
5674                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
5675                 intel_helper_funcs.commit = i9xx_crtc_commit;
5676         }
5677
5678         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5679
5680         intel_crtc->busy = false;
5681
5682         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5683                     (unsigned long)intel_crtc);
5684
5685         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
5686 }
5687
5688 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5689                                 struct drm_file *file)
5690 {
5691         drm_i915_private_t *dev_priv = dev->dev_private;
5692         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5693         struct drm_mode_object *drmmode_obj;
5694         struct intel_crtc *crtc;
5695
5696         if (!dev_priv) {
5697                 DRM_ERROR("called with no initialization\n");
5698                 return -EINVAL;
5699         }
5700
5701         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5702                         DRM_MODE_OBJECT_CRTC);
5703
5704         if (!drmmode_obj) {
5705                 DRM_ERROR("no such CRTC id\n");
5706                 return -EINVAL;
5707         }
5708
5709         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5710         pipe_from_crtc_id->pipe = crtc->pipe;
5711
5712         return 0;
5713 }
5714
5715 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5716 {
5717         struct intel_encoder *encoder;
5718         int index_mask = 0;
5719         int entry = 0;
5720
5721         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5722                 if (type_mask & encoder->clone_mask)
5723                         index_mask |= (1 << entry);
5724                 entry++;
5725         }
5726
5727         return index_mask;
5728 }
5729
5730 static bool has_edp_a(struct drm_device *dev)
5731 {
5732         struct drm_i915_private *dev_priv = dev->dev_private;
5733
5734         if (!IS_MOBILE(dev))
5735                 return false;
5736
5737         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
5738                 return false;
5739
5740         if (IS_GEN5(dev) &&
5741             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
5742                 return false;
5743
5744         return true;
5745 }
5746
5747 static void intel_setup_outputs(struct drm_device *dev)
5748 {
5749         struct drm_i915_private *dev_priv = dev->dev_private;
5750         struct intel_encoder *encoder;
5751         bool dpd_is_edp = false;
5752         bool has_lvds = false;
5753
5754         if (IS_MOBILE(dev) && !IS_I830(dev))
5755                 has_lvds = intel_lvds_init(dev);
5756         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
5757                 /* disable the panel fitter on everything but LVDS */
5758                 I915_WRITE(PFIT_CONTROL, 0);
5759         }
5760
5761         if (HAS_PCH_SPLIT(dev)) {
5762                 dpd_is_edp = intel_dpd_is_edp(dev);
5763
5764                 if (has_edp_a(dev))
5765                         intel_dp_init(dev, DP_A);
5766
5767                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5768                         intel_dp_init(dev, PCH_DP_D);
5769         }
5770
5771         intel_crt_init(dev);
5772
5773         if (HAS_PCH_SPLIT(dev)) {
5774                 int found;
5775
5776                 if (I915_READ(HDMIB) & PORT_DETECTED) {
5777                         /* PCH SDVOB multiplex with HDMIB */
5778                         found = intel_sdvo_init(dev, PCH_SDVOB);
5779                         if (!found)
5780                                 intel_hdmi_init(dev, HDMIB);
5781                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5782                                 intel_dp_init(dev, PCH_DP_B);
5783                 }
5784
5785                 if (I915_READ(HDMIC) & PORT_DETECTED)
5786                         intel_hdmi_init(dev, HDMIC);
5787
5788                 if (I915_READ(HDMID) & PORT_DETECTED)
5789                         intel_hdmi_init(dev, HDMID);
5790
5791                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5792                         intel_dp_init(dev, PCH_DP_C);
5793
5794                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5795                         intel_dp_init(dev, PCH_DP_D);
5796
5797         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5798                 bool found = false;
5799
5800                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5801                         DRM_DEBUG_KMS("probing SDVOB\n");
5802                         found = intel_sdvo_init(dev, SDVOB);
5803                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5804                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5805                                 intel_hdmi_init(dev, SDVOB);
5806                         }
5807
5808                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5809                                 DRM_DEBUG_KMS("probing DP_B\n");
5810                                 intel_dp_init(dev, DP_B);
5811                         }
5812                 }
5813
5814                 /* Before G4X SDVOC doesn't have its own detect register */
5815
5816                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5817                         DRM_DEBUG_KMS("probing SDVOC\n");
5818                         found = intel_sdvo_init(dev, SDVOC);
5819                 }
5820
5821                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5822
5823                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5824                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5825                                 intel_hdmi_init(dev, SDVOC);
5826                         }
5827                         if (SUPPORTS_INTEGRATED_DP(dev)) {
5828                                 DRM_DEBUG_KMS("probing DP_C\n");
5829                                 intel_dp_init(dev, DP_C);
5830                         }
5831                 }
5832
5833                 if (SUPPORTS_INTEGRATED_DP(dev) &&
5834                     (I915_READ(DP_D) & DP_DETECTED)) {
5835                         DRM_DEBUG_KMS("probing DP_D\n");
5836                         intel_dp_init(dev, DP_D);
5837                 }
5838         } else if (IS_GEN2(dev))
5839                 intel_dvo_init(dev);
5840
5841         if (SUPPORTS_TV(dev))
5842                 intel_tv_init(dev);
5843
5844         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5845                 encoder->base.possible_crtcs = encoder->crtc_mask;
5846                 encoder->base.possible_clones =
5847                         intel_encoder_clones(dev, encoder->clone_mask);
5848         }
5849
5850         intel_panel_setup_backlight(dev);
5851 }
5852
5853 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5854 {
5855         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5856
5857         drm_framebuffer_cleanup(fb);
5858         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
5859
5860         kfree(intel_fb);
5861 }
5862
5863 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5864                                                 struct drm_file *file,
5865                                                 unsigned int *handle)
5866 {
5867         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5868         struct drm_i915_gem_object *obj = intel_fb->obj;
5869
5870         return drm_gem_handle_create(file, &obj->base, handle);
5871 }
5872
5873 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5874         .destroy = intel_user_framebuffer_destroy,
5875         .create_handle = intel_user_framebuffer_create_handle,
5876 };
5877
5878 int intel_framebuffer_init(struct drm_device *dev,
5879                            struct intel_framebuffer *intel_fb,
5880                            struct drm_mode_fb_cmd *mode_cmd,
5881                            struct drm_i915_gem_object *obj)
5882 {
5883         int ret;
5884
5885         if (obj->tiling_mode == I915_TILING_Y)
5886                 return -EINVAL;
5887
5888         if (mode_cmd->pitch & 63)
5889                 return -EINVAL;
5890
5891         switch (mode_cmd->bpp) {
5892         case 8:
5893         case 16:
5894         case 24:
5895         case 32:
5896                 break;
5897         default:
5898                 return -EINVAL;
5899         }
5900
5901         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5902         if (ret) {
5903                 DRM_ERROR("framebuffer init failed %d\n", ret);
5904                 return ret;
5905         }
5906
5907         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5908         intel_fb->obj = obj;
5909         return 0;
5910 }
5911
5912 static struct drm_framebuffer *
5913 intel_user_framebuffer_create(struct drm_device *dev,
5914                               struct drm_file *filp,
5915                               struct drm_mode_fb_cmd *mode_cmd)
5916 {
5917         struct drm_i915_gem_object *obj;
5918         struct intel_framebuffer *intel_fb;
5919         int ret;
5920
5921         obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
5922         if (!obj)
5923                 return ERR_PTR(-ENOENT);
5924
5925         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5926         if (!intel_fb)
5927                 return ERR_PTR(-ENOMEM);
5928
5929         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5930         if (ret) {
5931                 drm_gem_object_unreference_unlocked(&obj->base);
5932                 kfree(intel_fb);
5933                 return ERR_PTR(ret);
5934         }
5935
5936         return &intel_fb->base;
5937 }
5938
5939 static const struct drm_mode_config_funcs intel_mode_funcs = {
5940         .fb_create = intel_user_framebuffer_create,
5941         .output_poll_changed = intel_fb_output_poll_changed,
5942 };
5943
5944 static struct drm_i915_gem_object *
5945 intel_alloc_context_page(struct drm_device *dev)
5946 {
5947         struct drm_i915_gem_object *ctx;
5948         int ret;
5949
5950         ctx = i915_gem_alloc_object(dev, 4096);
5951         if (!ctx) {
5952                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5953                 return NULL;
5954         }
5955
5956         mutex_lock(&dev->struct_mutex);
5957         ret = i915_gem_object_pin(ctx, 4096, true);
5958         if (ret) {
5959                 DRM_ERROR("failed to pin power context: %d\n", ret);
5960                 goto err_unref;
5961         }
5962
5963         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5964         if (ret) {
5965                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5966                 goto err_unpin;
5967         }
5968         mutex_unlock(&dev->struct_mutex);
5969
5970         return ctx;
5971
5972 err_unpin:
5973         i915_gem_object_unpin(ctx);
5974 err_unref:
5975         drm_gem_object_unreference(&ctx->base);
5976         mutex_unlock(&dev->struct_mutex);
5977         return NULL;
5978 }
5979
5980 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5981 {
5982         struct drm_i915_private *dev_priv = dev->dev_private;
5983         u16 rgvswctl;
5984
5985         rgvswctl = I915_READ16(MEMSWCTL);
5986         if (rgvswctl & MEMCTL_CMD_STS) {
5987                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5988                 return false; /* still busy with another command */
5989         }
5990
5991         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5992                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5993         I915_WRITE16(MEMSWCTL, rgvswctl);
5994         POSTING_READ16(MEMSWCTL);
5995
5996         rgvswctl |= MEMCTL_CMD_STS;
5997         I915_WRITE16(MEMSWCTL, rgvswctl);
5998
5999         return true;
6000 }
6001
6002 void ironlake_enable_drps(struct drm_device *dev)
6003 {
6004         struct drm_i915_private *dev_priv = dev->dev_private;
6005         u32 rgvmodectl = I915_READ(MEMMODECTL);
6006         u8 fmax, fmin, fstart, vstart;
6007
6008         /* Enable temp reporting */
6009         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6010         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6011
6012         /* 100ms RC evaluation intervals */
6013         I915_WRITE(RCUPEI, 100000);
6014         I915_WRITE(RCDNEI, 100000);
6015
6016         /* Set max/min thresholds to 90ms and 80ms respectively */
6017         I915_WRITE(RCBMAXAVG, 90000);
6018         I915_WRITE(RCBMINAVG, 80000);
6019
6020         I915_WRITE(MEMIHYST, 1);
6021
6022         /* Set up min, max, and cur for interrupt handling */
6023         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6024         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6025         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6026                 MEMMODE_FSTART_SHIFT;
6027
6028         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
6029                 PXVFREQ_PX_SHIFT;
6030
6031         dev_priv->fmax = fmax; /* IPS callback will increase this */
6032         dev_priv->fstart = fstart;
6033
6034         dev_priv->max_delay = fstart;
6035         dev_priv->min_delay = fmin;
6036         dev_priv->cur_delay = fstart;
6037
6038         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6039                          fmax, fmin, fstart);
6040
6041         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6042
6043         /*
6044          * Interrupts will be enabled in ironlake_irq_postinstall
6045          */
6046
6047         I915_WRITE(VIDSTART, vstart);
6048         POSTING_READ(VIDSTART);
6049
6050         rgvmodectl |= MEMMODE_SWMODE_EN;
6051         I915_WRITE(MEMMODECTL, rgvmodectl);
6052
6053         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6054                 DRM_ERROR("stuck trying to change perf mode\n");
6055         msleep(1);
6056
6057         ironlake_set_drps(dev, fstart);
6058
6059         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
6060                 I915_READ(0x112e0);
6061         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
6062         dev_priv->last_count2 = I915_READ(0x112f4);
6063         getrawmonotonic(&dev_priv->last_time2);
6064 }
6065
6066 void ironlake_disable_drps(struct drm_device *dev)
6067 {
6068         struct drm_i915_private *dev_priv = dev->dev_private;
6069         u16 rgvswctl = I915_READ16(MEMSWCTL);
6070
6071         /* Ack interrupts, disable EFC interrupt */
6072         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6073         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6074         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6075         I915_WRITE(DEIIR, DE_PCU_EVENT);
6076         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6077
6078         /* Go back to the starting frequency */
6079         ironlake_set_drps(dev, dev_priv->fstart);
6080         msleep(1);
6081         rgvswctl |= MEMCTL_CMD_STS;
6082         I915_WRITE(MEMSWCTL, rgvswctl);
6083         msleep(1);
6084
6085 }
6086
6087 void gen6_set_rps(struct drm_device *dev, u8 val)
6088 {
6089         struct drm_i915_private *dev_priv = dev->dev_private;
6090         u32 swreq;
6091
6092         swreq = (val & 0x3ff) << 25;
6093         I915_WRITE(GEN6_RPNSWREQ, swreq);
6094 }
6095
6096 void gen6_disable_rps(struct drm_device *dev)
6097 {
6098         struct drm_i915_private *dev_priv = dev->dev_private;
6099
6100         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6101         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
6102         I915_WRITE(GEN6_PMIER, 0);
6103         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
6104 }
6105
6106 static unsigned long intel_pxfreq(u32 vidfreq)
6107 {
6108         unsigned long freq;
6109         int div = (vidfreq & 0x3f0000) >> 16;
6110         int post = (vidfreq & 0x3000) >> 12;
6111         int pre = (vidfreq & 0x7);
6112
6113         if (!pre)
6114                 return 0;
6115
6116         freq = ((div * 133333) / ((1<<post) * pre));
6117
6118         return freq;
6119 }
6120
6121 void intel_init_emon(struct drm_device *dev)
6122 {
6123         struct drm_i915_private *dev_priv = dev->dev_private;
6124         u32 lcfuse;
6125         u8 pxw[16];
6126         int i;
6127
6128         /* Disable to program */
6129         I915_WRITE(ECR, 0);
6130         POSTING_READ(ECR);
6131
6132         /* Program energy weights for various events */
6133         I915_WRITE(SDEW, 0x15040d00);
6134         I915_WRITE(CSIEW0, 0x007f0000);
6135         I915_WRITE(CSIEW1, 0x1e220004);
6136         I915_WRITE(CSIEW2, 0x04000004);
6137
6138         for (i = 0; i < 5; i++)
6139                 I915_WRITE(PEW + (i * 4), 0);
6140         for (i = 0; i < 3; i++)
6141                 I915_WRITE(DEW + (i * 4), 0);
6142
6143         /* Program P-state weights to account for frequency power adjustment */
6144         for (i = 0; i < 16; i++) {
6145                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
6146                 unsigned long freq = intel_pxfreq(pxvidfreq);
6147                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6148                         PXVFREQ_PX_SHIFT;
6149                 unsigned long val;
6150
6151                 val = vid * vid;
6152                 val *= (freq / 1000);
6153                 val *= 255;
6154                 val /= (127*127*900);
6155                 if (val > 0xff)
6156                         DRM_ERROR("bad pxval: %ld\n", val);
6157                 pxw[i] = val;
6158         }
6159         /* Render standby states get 0 weight */
6160         pxw[14] = 0;
6161         pxw[15] = 0;
6162
6163         for (i = 0; i < 4; i++) {
6164                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6165                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6166                 I915_WRITE(PXW + (i * 4), val);
6167         }
6168
6169         /* Adjust magic regs to magic values (more experimental results) */
6170         I915_WRITE(OGW0, 0);
6171         I915_WRITE(OGW1, 0);
6172         I915_WRITE(EG0, 0x00007f00);
6173         I915_WRITE(EG1, 0x0000000e);
6174         I915_WRITE(EG2, 0x000e0000);
6175         I915_WRITE(EG3, 0x68000300);
6176         I915_WRITE(EG4, 0x42000000);
6177         I915_WRITE(EG5, 0x00140031);
6178         I915_WRITE(EG6, 0);
6179         I915_WRITE(EG7, 0);
6180
6181         for (i = 0; i < 8; i++)
6182                 I915_WRITE(PXWL + (i * 4), 0);
6183
6184         /* Enable PMON + select events */
6185         I915_WRITE(ECR, 0x80000019);
6186
6187         lcfuse = I915_READ(LCFUSE02);
6188
6189         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
6190 }
6191
6192 void gen6_enable_rps(struct drm_i915_private *dev_priv)
6193 {
6194         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6195         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
6196         u32 pcu_mbox;
6197         int cur_freq, min_freq, max_freq;
6198         int i;
6199
6200         /* Here begins a magic sequence of register writes to enable
6201          * auto-downclocking.
6202          *
6203          * Perhaps there might be some value in exposing these to
6204          * userspace...
6205          */
6206         I915_WRITE(GEN6_RC_STATE, 0);
6207         __gen6_force_wake_get(dev_priv);
6208
6209         /* disable the counters and set deterministic thresholds */
6210         I915_WRITE(GEN6_RC_CONTROL, 0);
6211
6212         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6213         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6214         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6215         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6216         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6217
6218         for (i = 0; i < I915_NUM_RINGS; i++)
6219                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
6220
6221         I915_WRITE(GEN6_RC_SLEEP, 0);
6222         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6223         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6224         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
6225         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6226
6227         I915_WRITE(GEN6_RC_CONTROL,
6228                    GEN6_RC_CTL_RC6p_ENABLE |
6229                    GEN6_RC_CTL_RC6_ENABLE |
6230                    GEN6_RC_CTL_EI_MODE(1) |
6231                    GEN6_RC_CTL_HW_ENABLE);
6232
6233         I915_WRITE(GEN6_RPNSWREQ,
6234                    GEN6_FREQUENCY(10) |
6235                    GEN6_OFFSET(0) |
6236                    GEN6_AGGRESSIVE_TURBO);
6237         I915_WRITE(GEN6_RC_VIDEO_FREQ,
6238                    GEN6_FREQUENCY(12));
6239
6240         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6241         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6242                    18 << 24 |
6243                    6 << 16);
6244         I915_WRITE(GEN6_RP_UP_THRESHOLD, 90000);
6245         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 100000);
6246         I915_WRITE(GEN6_RP_UP_EI, 100000);
6247         I915_WRITE(GEN6_RP_DOWN_EI, 300000);
6248         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6249         I915_WRITE(GEN6_RP_CONTROL,
6250                    GEN6_RP_MEDIA_TURBO |
6251                    GEN6_RP_USE_NORMAL_FREQ |
6252                    GEN6_RP_MEDIA_IS_GFX |
6253                    GEN6_RP_ENABLE |
6254                    GEN6_RP_UP_BUSY_MAX |
6255                    GEN6_RP_DOWN_BUSY_MIN);
6256
6257         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6258                      500))
6259                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
6260
6261         I915_WRITE(GEN6_PCODE_DATA, 0);
6262         I915_WRITE(GEN6_PCODE_MAILBOX,
6263                    GEN6_PCODE_READY |
6264                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
6265         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6266                      500))
6267                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
6268
6269         min_freq = (rp_state_cap & 0xff0000) >> 16;
6270         max_freq = rp_state_cap & 0xff;
6271         cur_freq = (gt_perf_status & 0xff00) >> 8;
6272
6273         /* Check for overclock support */
6274         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6275                      500))
6276                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
6277         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
6278         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
6279         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6280                      500))
6281                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
6282         if (pcu_mbox & (1<<31)) { /* OC supported */
6283                 max_freq = pcu_mbox & 0xff;
6284                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 100);
6285         }
6286
6287         /* In units of 100MHz */
6288         dev_priv->max_delay = max_freq;
6289         dev_priv->min_delay = min_freq;
6290         dev_priv->cur_delay = cur_freq;
6291
6292         /* requires MSI enabled */
6293         I915_WRITE(GEN6_PMIER,
6294                    GEN6_PM_MBOX_EVENT |
6295                    GEN6_PM_THERMAL_EVENT |
6296                    GEN6_PM_RP_DOWN_TIMEOUT |
6297                    GEN6_PM_RP_UP_THRESHOLD |
6298                    GEN6_PM_RP_DOWN_THRESHOLD |
6299                    GEN6_PM_RP_UP_EI_EXPIRED |
6300                    GEN6_PM_RP_DOWN_EI_EXPIRED);
6301         I915_WRITE(GEN6_PMIMR, 0);
6302         /* enable all PM interrupts */
6303         I915_WRITE(GEN6_PMINTRMSK, 0);
6304
6305         __gen6_force_wake_put(dev_priv);
6306 }
6307
6308 void intel_enable_clock_gating(struct drm_device *dev)
6309 {
6310         struct drm_i915_private *dev_priv = dev->dev_private;
6311
6312         /*
6313          * Disable clock gating reported to work incorrectly according to the
6314          * specs, but enable as much else as we can.
6315          */
6316         if (HAS_PCH_SPLIT(dev)) {
6317                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
6318
6319                 if (IS_GEN5(dev)) {
6320                         /* Required for FBC */
6321                         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
6322                                 DPFCRUNIT_CLOCK_GATE_DISABLE |
6323                                 DPFDUNIT_CLOCK_GATE_DISABLE;
6324                         /* Required for CxSR */
6325                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
6326
6327                         I915_WRITE(PCH_3DCGDIS0,
6328                                    MARIUNIT_CLOCK_GATE_DISABLE |
6329                                    SVSMUNIT_CLOCK_GATE_DISABLE);
6330                         I915_WRITE(PCH_3DCGDIS1,
6331                                    VFMUNIT_CLOCK_GATE_DISABLE);
6332                 }
6333
6334                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
6335
6336                 /*
6337                  * On Ibex Peak and Cougar Point, we need to disable clock
6338                  * gating for the panel power sequencer or it will fail to
6339                  * start up when no ports are active.
6340                  */
6341                 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6342
6343                 /*
6344                  * According to the spec the following bits should be set in
6345                  * order to enable memory self-refresh
6346                  * The bit 22/21 of 0x42004
6347                  * The bit 5 of 0x42020
6348                  * The bit 15 of 0x45000
6349                  */
6350                 if (IS_GEN5(dev)) {
6351                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6352                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
6353                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6354                         I915_WRITE(ILK_DSPCLK_GATE,
6355                                         (I915_READ(ILK_DSPCLK_GATE) |
6356                                                 ILK_DPARB_CLK_GATE));
6357                         I915_WRITE(DISP_ARB_CTL,
6358                                         (I915_READ(DISP_ARB_CTL) |
6359                                                 DISP_FBC_WM_DIS));
6360                         I915_WRITE(WM3_LP_ILK, 0);
6361                         I915_WRITE(WM2_LP_ILK, 0);
6362                         I915_WRITE(WM1_LP_ILK, 0);
6363                 }
6364                 /*
6365                  * Based on the document from hardware guys the following bits
6366                  * should be set unconditionally in order to enable FBC.
6367                  * The bit 22 of 0x42000
6368                  * The bit 22 of 0x42004
6369                  * The bit 7,8,9 of 0x42020.
6370                  */
6371                 if (IS_IRONLAKE_M(dev)) {
6372                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6373                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6374                                    ILK_FBCQ_DIS);
6375                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6376                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6377                                    ILK_DPARB_GATE);
6378                         I915_WRITE(ILK_DSPCLK_GATE,
6379                                    I915_READ(ILK_DSPCLK_GATE) |
6380                                    ILK_DPFC_DIS1 |
6381                                    ILK_DPFC_DIS2 |
6382                                    ILK_CLK_FBC);
6383                 }
6384
6385                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6386                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6387                            ILK_ELPIN_409_SELECT);
6388
6389                 if (IS_GEN5(dev)) {
6390                         I915_WRITE(_3D_CHICKEN2,
6391                                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6392                                    _3D_CHICKEN2_WM_READ_PIPELINED);
6393                 }
6394
6395                 if (IS_GEN6(dev)) {
6396                         I915_WRITE(WM3_LP_ILK, 0);
6397                         I915_WRITE(WM2_LP_ILK, 0);
6398                         I915_WRITE(WM1_LP_ILK, 0);
6399
6400                         /*
6401                          * According to the spec the following bits should be
6402                          * set in order to enable memory self-refresh and fbc:
6403                          * The bit21 and bit22 of 0x42000
6404                          * The bit21 and bit22 of 0x42004
6405                          * The bit5 and bit7 of 0x42020
6406                          * The bit14 of 0x70180
6407                          * The bit14 of 0x71180
6408                          */
6409                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6410                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6411                                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6412                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6413                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6414                                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6415                         I915_WRITE(ILK_DSPCLK_GATE,
6416                                    I915_READ(ILK_DSPCLK_GATE) |
6417                                    ILK_DPARB_CLK_GATE  |
6418                                    ILK_DPFD_CLK_GATE);
6419
6420                         I915_WRITE(DSPACNTR,
6421                                    I915_READ(DSPACNTR) |
6422                                    DISPPLANE_TRICKLE_FEED_DISABLE);
6423                         I915_WRITE(DSPBCNTR,
6424                                    I915_READ(DSPBCNTR) |
6425                                    DISPPLANE_TRICKLE_FEED_DISABLE);
6426                 }
6427         } else if (IS_G4X(dev)) {
6428                 uint32_t dspclk_gate;
6429                 I915_WRITE(RENCLK_GATE_D1, 0);
6430                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6431                        GS_UNIT_CLOCK_GATE_DISABLE |
6432                        CL_UNIT_CLOCK_GATE_DISABLE);
6433                 I915_WRITE(RAMCLK_GATE_D, 0);
6434                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6435                         OVRUNIT_CLOCK_GATE_DISABLE |
6436                         OVCUNIT_CLOCK_GATE_DISABLE;
6437                 if (IS_GM45(dev))
6438                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6439                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6440         } else if (IS_CRESTLINE(dev)) {
6441                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6442                 I915_WRITE(RENCLK_GATE_D2, 0);
6443                 I915_WRITE(DSPCLK_GATE_D, 0);
6444                 I915_WRITE(RAMCLK_GATE_D, 0);
6445                 I915_WRITE16(DEUC, 0);
6446         } else if (IS_BROADWATER(dev)) {
6447                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6448                        I965_RCC_CLOCK_GATE_DISABLE |
6449                        I965_RCPB_CLOCK_GATE_DISABLE |
6450                        I965_ISC_CLOCK_GATE_DISABLE |
6451                        I965_FBC_CLOCK_GATE_DISABLE);
6452                 I915_WRITE(RENCLK_GATE_D2, 0);
6453         } else if (IS_GEN3(dev)) {
6454                 u32 dstate = I915_READ(D_STATE);
6455
6456                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6457                         DSTATE_DOT_CLOCK_GATING;
6458                 I915_WRITE(D_STATE, dstate);
6459         } else if (IS_I85X(dev) || IS_I865G(dev)) {
6460                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6461         } else if (IS_I830(dev)) {
6462                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6463         }
6464 }
6465
6466 void intel_disable_clock_gating(struct drm_device *dev)
6467 {
6468         struct drm_i915_private *dev_priv = dev->dev_private;
6469
6470         if (dev_priv->renderctx) {
6471                 struct drm_i915_gem_object *obj = dev_priv->renderctx;
6472
6473                 I915_WRITE(CCID, 0);
6474                 POSTING_READ(CCID);
6475
6476                 i915_gem_object_unpin(obj);
6477                 drm_gem_object_unreference(&obj->base);
6478                 dev_priv->renderctx = NULL;
6479         }
6480
6481         if (dev_priv->pwrctx) {
6482                 struct drm_i915_gem_object *obj = dev_priv->pwrctx;
6483
6484                 I915_WRITE(PWRCTXA, 0);
6485                 POSTING_READ(PWRCTXA);
6486
6487                 i915_gem_object_unpin(obj);
6488                 drm_gem_object_unreference(&obj->base);
6489                 dev_priv->pwrctx = NULL;
6490         }
6491 }
6492
6493 static void ironlake_disable_rc6(struct drm_device *dev)
6494 {
6495         struct drm_i915_private *dev_priv = dev->dev_private;
6496
6497         /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
6498         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
6499         wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
6500                  10);
6501         POSTING_READ(CCID);
6502         I915_WRITE(PWRCTXA, 0);
6503         POSTING_READ(PWRCTXA);
6504         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
6505         POSTING_READ(RSTDBYCTL);
6506         i915_gem_object_unpin(dev_priv->renderctx);
6507         drm_gem_object_unreference(&dev_priv->renderctx->base);
6508         dev_priv->renderctx = NULL;
6509         i915_gem_object_unpin(dev_priv->pwrctx);
6510         drm_gem_object_unreference(&dev_priv->pwrctx->base);
6511         dev_priv->pwrctx = NULL;
6512 }
6513
6514 void ironlake_enable_rc6(struct drm_device *dev)
6515 {
6516         struct drm_i915_private *dev_priv = dev->dev_private;
6517         int ret;
6518
6519         /*
6520          * GPU can automatically power down the render unit if given a page
6521          * to save state.
6522          */
6523         ret = BEGIN_LP_RING(6);
6524         if (ret) {
6525                 ironlake_disable_rc6(dev);
6526                 return;
6527         }
6528         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
6529         OUT_RING(MI_SET_CONTEXT);
6530         OUT_RING(dev_priv->renderctx->gtt_offset |
6531                  MI_MM_SPACE_GTT |
6532                  MI_SAVE_EXT_STATE_EN |
6533                  MI_RESTORE_EXT_STATE_EN |
6534                  MI_RESTORE_INHIBIT);
6535         OUT_RING(MI_SUSPEND_FLUSH);
6536         OUT_RING(MI_NOOP);
6537         OUT_RING(MI_FLUSH);
6538         ADVANCE_LP_RING();
6539
6540         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
6541         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
6542 }
6543
6544 /* Set up chip specific display functions */
6545 static void intel_init_display(struct drm_device *dev)
6546 {
6547         struct drm_i915_private *dev_priv = dev->dev_private;
6548
6549         /* We always want a DPMS function */
6550         if (HAS_PCH_SPLIT(dev))
6551                 dev_priv->display.dpms = ironlake_crtc_dpms;
6552         else
6553                 dev_priv->display.dpms = i9xx_crtc_dpms;
6554
6555         if (I915_HAS_FBC(dev)) {
6556                 if (HAS_PCH_SPLIT(dev)) {
6557                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6558                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
6559                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6560                 } else if (IS_GM45(dev)) {
6561                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6562                         dev_priv->display.enable_fbc = g4x_enable_fbc;
6563                         dev_priv->display.disable_fbc = g4x_disable_fbc;
6564                 } else if (IS_CRESTLINE(dev)) {
6565                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6566                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
6567                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
6568                 }
6569                 /* 855GM needs testing */
6570         }
6571
6572         /* Returns the core display clock speed */
6573         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
6574                 dev_priv->display.get_display_clock_speed =
6575                         i945_get_display_clock_speed;
6576         else if (IS_I915G(dev))
6577                 dev_priv->display.get_display_clock_speed =
6578                         i915_get_display_clock_speed;
6579         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
6580                 dev_priv->display.get_display_clock_speed =
6581                         i9xx_misc_get_display_clock_speed;
6582         else if (IS_I915GM(dev))
6583                 dev_priv->display.get_display_clock_speed =
6584                         i915gm_get_display_clock_speed;
6585         else if (IS_I865G(dev))
6586                 dev_priv->display.get_display_clock_speed =
6587                         i865_get_display_clock_speed;
6588         else if (IS_I85X(dev))
6589                 dev_priv->display.get_display_clock_speed =
6590                         i855_get_display_clock_speed;
6591         else /* 852, 830 */
6592                 dev_priv->display.get_display_clock_speed =
6593                         i830_get_display_clock_speed;
6594
6595         /* For FIFO watermark updates */
6596         if (HAS_PCH_SPLIT(dev)) {
6597                 if (IS_GEN5(dev)) {
6598                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
6599                                 dev_priv->display.update_wm = ironlake_update_wm;
6600                         else {
6601                                 DRM_DEBUG_KMS("Failed to get proper latency. "
6602                                               "Disable CxSR\n");
6603                                 dev_priv->display.update_wm = NULL;
6604                         }
6605                 } else if (IS_GEN6(dev)) {
6606                         if (SNB_READ_WM0_LATENCY()) {
6607                                 dev_priv->display.update_wm = sandybridge_update_wm;
6608                         } else {
6609                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
6610                                               "Disable CxSR\n");
6611                                 dev_priv->display.update_wm = NULL;
6612                         }
6613                 } else
6614                         dev_priv->display.update_wm = NULL;
6615         } else if (IS_PINEVIEW(dev)) {
6616                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6617                                             dev_priv->is_ddr3,
6618                                             dev_priv->fsb_freq,
6619                                             dev_priv->mem_freq)) {
6620                         DRM_INFO("failed to find known CxSR latency "
6621                                  "(found ddr%s fsb freq %d, mem freq %d), "
6622                                  "disabling CxSR\n",
6623                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
6624                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6625                         /* Disable CxSR and never update its watermark again */
6626                         pineview_disable_cxsr(dev);
6627                         dev_priv->display.update_wm = NULL;
6628                 } else
6629                         dev_priv->display.update_wm = pineview_update_wm;
6630         } else if (IS_G4X(dev))
6631                 dev_priv->display.update_wm = g4x_update_wm;
6632         else if (IS_GEN4(dev))
6633                 dev_priv->display.update_wm = i965_update_wm;
6634         else if (IS_GEN3(dev)) {
6635                 dev_priv->display.update_wm = i9xx_update_wm;
6636                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6637         } else if (IS_I85X(dev)) {
6638                 dev_priv->display.update_wm = i9xx_update_wm;
6639                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6640         } else {
6641                 dev_priv->display.update_wm = i830_update_wm;
6642                 if (IS_845G(dev))
6643                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6644                 else
6645                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6646         }
6647 }
6648
6649 /*
6650  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6651  * resume, or other times.  This quirk makes sure that's the case for
6652  * affected systems.
6653  */
6654 static void quirk_pipea_force (struct drm_device *dev)
6655 {
6656         struct drm_i915_private *dev_priv = dev->dev_private;
6657
6658         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6659         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
6660 }
6661
6662 struct intel_quirk {
6663         int device;
6664         int subsystem_vendor;
6665         int subsystem_device;
6666         void (*hook)(struct drm_device *dev);
6667 };
6668
6669 struct intel_quirk intel_quirks[] = {
6670         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
6671         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
6672         /* HP Mini needs pipe A force quirk (LP: #322104) */
6673         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
6674
6675         /* Thinkpad R31 needs pipe A force quirk */
6676         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6677         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6678         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6679
6680         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6681         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
6682         /* ThinkPad X40 needs pipe A force quirk */
6683
6684         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6685         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6686
6687         /* 855 & before need to leave pipe A & dpll A up */
6688         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6689         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6690 };
6691
6692 static void intel_init_quirks(struct drm_device *dev)
6693 {
6694         struct pci_dev *d = dev->pdev;
6695         int i;
6696
6697         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6698                 struct intel_quirk *q = &intel_quirks[i];
6699
6700                 if (d->device == q->device &&
6701                     (d->subsystem_vendor == q->subsystem_vendor ||
6702                      q->subsystem_vendor == PCI_ANY_ID) &&
6703                     (d->subsystem_device == q->subsystem_device ||
6704                      q->subsystem_device == PCI_ANY_ID))
6705                         q->hook(dev);
6706         }
6707 }
6708
6709 /* Disable the VGA plane that we never use */
6710 static void i915_disable_vga(struct drm_device *dev)
6711 {
6712         struct drm_i915_private *dev_priv = dev->dev_private;
6713         u8 sr1;
6714         u32 vga_reg;
6715
6716         if (HAS_PCH_SPLIT(dev))
6717                 vga_reg = CPU_VGACNTRL;
6718         else
6719                 vga_reg = VGACNTRL;
6720
6721         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6722         outb(1, VGA_SR_INDEX);
6723         sr1 = inb(VGA_SR_DATA);
6724         outb(sr1 | 1<<5, VGA_SR_DATA);
6725         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6726         udelay(300);
6727
6728         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6729         POSTING_READ(vga_reg);
6730 }
6731
6732 void intel_modeset_init(struct drm_device *dev)
6733 {
6734         struct drm_i915_private *dev_priv = dev->dev_private;
6735         int i;
6736
6737         drm_mode_config_init(dev);
6738
6739         dev->mode_config.min_width = 0;
6740         dev->mode_config.min_height = 0;
6741
6742         dev->mode_config.funcs = (void *)&intel_mode_funcs;
6743
6744         intel_init_quirks(dev);
6745
6746         intel_init_display(dev);
6747
6748         if (IS_GEN2(dev)) {
6749                 dev->mode_config.max_width = 2048;
6750                 dev->mode_config.max_height = 2048;
6751         } else if (IS_GEN3(dev)) {
6752                 dev->mode_config.max_width = 4096;
6753                 dev->mode_config.max_height = 4096;
6754         } else {
6755                 dev->mode_config.max_width = 8192;
6756                 dev->mode_config.max_height = 8192;
6757         }
6758         dev->mode_config.fb_base = dev->agp->base;
6759
6760         if (IS_MOBILE(dev) || !IS_GEN2(dev))
6761                 dev_priv->num_pipe = 2;
6762         else
6763                 dev_priv->num_pipe = 1;
6764         DRM_DEBUG_KMS("%d display pipe%s available.\n",
6765                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6766
6767         for (i = 0; i < dev_priv->num_pipe; i++) {
6768                 intel_crtc_init(dev, i);
6769         }
6770
6771         intel_setup_outputs(dev);
6772
6773         intel_enable_clock_gating(dev);
6774
6775         /* Just disable it once at startup */
6776         i915_disable_vga(dev);
6777
6778         if (IS_IRONLAKE_M(dev)) {
6779                 ironlake_enable_drps(dev);
6780                 intel_init_emon(dev);
6781         }
6782
6783         if (IS_GEN6(dev))
6784                 gen6_enable_rps(dev_priv);
6785
6786         if (IS_IRONLAKE_M(dev)) {
6787                 dev_priv->renderctx = intel_alloc_context_page(dev);
6788                 if (!dev_priv->renderctx)
6789                         goto skip_rc6;
6790                 dev_priv->pwrctx = intel_alloc_context_page(dev);
6791                 if (!dev_priv->pwrctx) {
6792                         i915_gem_object_unpin(dev_priv->renderctx);
6793                         drm_gem_object_unreference(&dev_priv->renderctx->base);
6794                         dev_priv->renderctx = NULL;
6795                         goto skip_rc6;
6796                 }
6797                 ironlake_enable_rc6(dev);
6798         }
6799
6800 skip_rc6:
6801         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6802         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6803                     (unsigned long)dev);
6804
6805         intel_setup_overlay(dev);
6806 }
6807
6808 void intel_modeset_cleanup(struct drm_device *dev)
6809 {
6810         struct drm_i915_private *dev_priv = dev->dev_private;
6811         struct drm_crtc *crtc;
6812         struct intel_crtc *intel_crtc;
6813
6814         drm_kms_helper_poll_fini(dev);
6815         mutex_lock(&dev->struct_mutex);
6816
6817         intel_unregister_dsm_handler();
6818
6819
6820         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6821                 /* Skip inactive CRTCs */
6822                 if (!crtc->fb)
6823                         continue;
6824
6825                 intel_crtc = to_intel_crtc(crtc);
6826                 intel_increase_pllclock(crtc);
6827         }
6828
6829         if (dev_priv->display.disable_fbc)
6830                 dev_priv->display.disable_fbc(dev);
6831
6832         if (IS_IRONLAKE_M(dev))
6833                 ironlake_disable_drps(dev);
6834         if (IS_GEN6(dev))
6835                 gen6_disable_rps(dev);
6836
6837         if (IS_IRONLAKE_M(dev))
6838                 ironlake_disable_rc6(dev);
6839
6840         mutex_unlock(&dev->struct_mutex);
6841
6842         /* Disable the irq before mode object teardown, for the irq might
6843          * enqueue unpin/hotplug work. */
6844         drm_irq_uninstall(dev);
6845         cancel_work_sync(&dev_priv->hotplug_work);
6846
6847         /* Shut off idle work before the crtcs get freed. */
6848         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6849                 intel_crtc = to_intel_crtc(crtc);
6850                 del_timer_sync(&intel_crtc->idle_timer);
6851         }
6852         del_timer_sync(&dev_priv->idle_timer);
6853         cancel_work_sync(&dev_priv->idle_work);
6854
6855         drm_mode_config_cleanup(dev);
6856 }
6857
6858 /*
6859  * Return which encoder is currently attached for connector.
6860  */
6861 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6862 {
6863         return &intel_attached_encoder(connector)->base;
6864 }
6865
6866 void intel_connector_attach_encoder(struct intel_connector *connector,
6867                                     struct intel_encoder *encoder)
6868 {
6869         connector->encoder = encoder;
6870         drm_mode_connector_attach_encoder(&connector->base,
6871                                           &encoder->base);
6872 }
6873
6874 /*
6875  * set vga decode state - true == enable VGA decode
6876  */
6877 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6878 {
6879         struct drm_i915_private *dev_priv = dev->dev_private;
6880         u16 gmch_ctrl;
6881
6882         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6883         if (state)
6884                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6885         else
6886                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6887         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6888         return 0;
6889 }
6890
6891 #ifdef CONFIG_DEBUG_FS
6892 #include <linux/seq_file.h>
6893
6894 struct intel_display_error_state {
6895         struct intel_cursor_error_state {
6896                 u32 control;
6897                 u32 position;
6898                 u32 base;
6899                 u32 size;
6900         } cursor[2];
6901
6902         struct intel_pipe_error_state {
6903                 u32 conf;
6904                 u32 source;
6905
6906                 u32 htotal;
6907                 u32 hblank;
6908                 u32 hsync;
6909                 u32 vtotal;
6910                 u32 vblank;
6911                 u32 vsync;
6912         } pipe[2];
6913
6914         struct intel_plane_error_state {
6915                 u32 control;
6916                 u32 stride;
6917                 u32 size;
6918                 u32 pos;
6919                 u32 addr;
6920                 u32 surface;
6921                 u32 tile_offset;
6922         } plane[2];
6923 };
6924
6925 struct intel_display_error_state *
6926 intel_display_capture_error_state(struct drm_device *dev)
6927 {
6928         drm_i915_private_t *dev_priv = dev->dev_private;
6929         struct intel_display_error_state *error;
6930         int i;
6931
6932         error = kmalloc(sizeof(*error), GFP_ATOMIC);
6933         if (error == NULL)
6934                 return NULL;
6935
6936         for (i = 0; i < 2; i++) {
6937                 error->cursor[i].control = I915_READ(CURCNTR(i));
6938                 error->cursor[i].position = I915_READ(CURPOS(i));
6939                 error->cursor[i].base = I915_READ(CURBASE(i));
6940
6941                 error->plane[i].control = I915_READ(DSPCNTR(i));
6942                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
6943                 error->plane[i].size = I915_READ(DSPSIZE(i));
6944                 error->plane[i].pos= I915_READ(DSPPOS(i));
6945                 error->plane[i].addr = I915_READ(DSPADDR(i));
6946                 if (INTEL_INFO(dev)->gen >= 4) {
6947                         error->plane[i].surface = I915_READ(DSPSURF(i));
6948                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
6949                 }
6950
6951                 error->pipe[i].conf = I915_READ(PIPECONF(i));
6952                 error->pipe[i].source = I915_READ(PIPESRC(i));
6953                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
6954                 error->pipe[i].hblank = I915_READ(HBLANK(i));
6955                 error->pipe[i].hsync = I915_READ(HSYNC(i));
6956                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
6957                 error->pipe[i].vblank = I915_READ(VBLANK(i));
6958                 error->pipe[i].vsync = I915_READ(VSYNC(i));
6959         }
6960
6961         return error;
6962 }
6963
6964 void
6965 intel_display_print_error_state(struct seq_file *m,
6966                                 struct drm_device *dev,
6967                                 struct intel_display_error_state *error)
6968 {
6969         int i;
6970
6971         for (i = 0; i < 2; i++) {
6972                 seq_printf(m, "Pipe [%d]:\n", i);
6973                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
6974                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
6975                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
6976                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
6977                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
6978                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
6979                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
6980                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
6981
6982                 seq_printf(m, "Plane [%d]:\n", i);
6983                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
6984                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
6985                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
6986                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
6987                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
6988                 if (INTEL_INFO(dev)->gen >= 4) {
6989                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
6990                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
6991                 }
6992
6993                 seq_printf(m, "Cursor [%d]:\n", i);
6994                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
6995                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
6996                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
6997         }
6998 }
6999 #endif