include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[linux-flexiantxendom0-natty.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
84
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
87
88
89 #ifdef CONFIG_TCP_MD5SIG
90 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
91                                                    __be32 addr);
92 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
93                                __be32 daddr, __be32 saddr, struct tcphdr *th);
94 #else
95 static inline
96 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
97 {
98         return NULL;
99 }
100 #endif
101
102 struct inet_hashinfo tcp_hashinfo;
103
104 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
105 {
106         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
107                                           ip_hdr(skb)->saddr,
108                                           tcp_hdr(skb)->dest,
109                                           tcp_hdr(skb)->source);
110 }
111
112 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
113 {
114         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115         struct tcp_sock *tp = tcp_sk(sk);
116
117         /* With PAWS, it is safe from the viewpoint
118            of data integrity. Even without PAWS it is safe provided sequence
119            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
120
121            Actually, the idea is close to VJ's one, only timestamp cache is
122            held not per host, but per port pair and TW bucket is used as state
123            holder.
124
125            If TW bucket has been already destroyed we fall back to VJ's scheme
126            and use initial timestamp retrieved from peer table.
127          */
128         if (tcptw->tw_ts_recent_stamp &&
129             (twp == NULL || (sysctl_tcp_tw_reuse &&
130                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
131                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
132                 if (tp->write_seq == 0)
133                         tp->write_seq = 1;
134                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
135                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
136                 sock_hold(sktw);
137                 return 1;
138         }
139
140         return 0;
141 }
142
143 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
144
145 /* This will initiate an outgoing connection. */
146 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
147 {
148         struct inet_sock *inet = inet_sk(sk);
149         struct tcp_sock *tp = tcp_sk(sk);
150         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
151         struct rtable *rt;
152         __be32 daddr, nexthop;
153         int tmp;
154         int err;
155
156         if (addr_len < sizeof(struct sockaddr_in))
157                 return -EINVAL;
158
159         if (usin->sin_family != AF_INET)
160                 return -EAFNOSUPPORT;
161
162         nexthop = daddr = usin->sin_addr.s_addr;
163         if (inet->opt && inet->opt->srr) {
164                 if (!daddr)
165                         return -EINVAL;
166                 nexthop = inet->opt->faddr;
167         }
168
169         tmp = ip_route_connect(&rt, nexthop, inet->inet_saddr,
170                                RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
171                                IPPROTO_TCP,
172                                inet->inet_sport, usin->sin_port, sk, 1);
173         if (tmp < 0) {
174                 if (tmp == -ENETUNREACH)
175                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
176                 return tmp;
177         }
178
179         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
180                 ip_rt_put(rt);
181                 return -ENETUNREACH;
182         }
183
184         if (!inet->opt || !inet->opt->srr)
185                 daddr = rt->rt_dst;
186
187         if (!inet->inet_saddr)
188                 inet->inet_saddr = rt->rt_src;
189         inet->inet_rcv_saddr = inet->inet_saddr;
190
191         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
192                 /* Reset inherited state */
193                 tp->rx_opt.ts_recent       = 0;
194                 tp->rx_opt.ts_recent_stamp = 0;
195                 tp->write_seq              = 0;
196         }
197
198         if (tcp_death_row.sysctl_tw_recycle &&
199             !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
200                 struct inet_peer *peer = rt_get_peer(rt);
201                 /*
202                  * VJ's idea. We save last timestamp seen from
203                  * the destination in peer table, when entering state
204                  * TIME-WAIT * and initialize rx_opt.ts_recent from it,
205                  * when trying new connection.
206                  */
207                 if (peer != NULL &&
208                     (u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
209                         tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
210                         tp->rx_opt.ts_recent = peer->tcp_ts;
211                 }
212         }
213
214         inet->inet_dport = usin->sin_port;
215         inet->inet_daddr = daddr;
216
217         inet_csk(sk)->icsk_ext_hdr_len = 0;
218         if (inet->opt)
219                 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
220
221         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
222
223         /* Socket identity is still unknown (sport may be zero).
224          * However we set state to SYN-SENT and not releasing socket
225          * lock select source port, enter ourselves into the hash tables and
226          * complete initialization after this.
227          */
228         tcp_set_state(sk, TCP_SYN_SENT);
229         err = inet_hash_connect(&tcp_death_row, sk);
230         if (err)
231                 goto failure;
232
233         err = ip_route_newports(&rt, IPPROTO_TCP,
234                                 inet->inet_sport, inet->inet_dport, sk);
235         if (err)
236                 goto failure;
237
238         /* OK, now commit destination to socket.  */
239         sk->sk_gso_type = SKB_GSO_TCPV4;
240         sk_setup_caps(sk, &rt->u.dst);
241
242         if (!tp->write_seq)
243                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
244                                                            inet->inet_daddr,
245                                                            inet->inet_sport,
246                                                            usin->sin_port);
247
248         inet->inet_id = tp->write_seq ^ jiffies;
249
250         err = tcp_connect(sk);
251         rt = NULL;
252         if (err)
253                 goto failure;
254
255         return 0;
256
257 failure:
258         /*
259          * This unhashes the socket and releases the local port,
260          * if necessary.
261          */
262         tcp_set_state(sk, TCP_CLOSE);
263         ip_rt_put(rt);
264         sk->sk_route_caps = 0;
265         inet->inet_dport = 0;
266         return err;
267 }
268
269 /*
270  * This routine does path mtu discovery as defined in RFC1191.
271  */
272 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
273 {
274         struct dst_entry *dst;
275         struct inet_sock *inet = inet_sk(sk);
276
277         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278          * send out by Linux are always <576bytes so they should go through
279          * unfragmented).
280          */
281         if (sk->sk_state == TCP_LISTEN)
282                 return;
283
284         /* We don't check in the destentry if pmtu discovery is forbidden
285          * on this route. We just assume that no packet_to_big packets
286          * are send back when pmtu discovery is not active.
287          * There is a small race when the user changes this flag in the
288          * route, but I think that's acceptable.
289          */
290         if ((dst = __sk_dst_check(sk, 0)) == NULL)
291                 return;
292
293         dst->ops->update_pmtu(dst, mtu);
294
295         /* Something is about to be wrong... Remember soft error
296          * for the case, if this connection will not able to recover.
297          */
298         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
299                 sk->sk_err_soft = EMSGSIZE;
300
301         mtu = dst_mtu(dst);
302
303         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
304             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
305                 tcp_sync_mss(sk, mtu);
306
307                 /* Resend the TCP packet because it's
308                  * clear that the old packet has been
309                  * dropped. This is the new "fast" path mtu
310                  * discovery.
311                  */
312                 tcp_simple_retransmit(sk);
313         } /* else let the usual retransmit timer handle it */
314 }
315
316 /*
317  * This routine is called by the ICMP module when it gets some
318  * sort of error condition.  If err < 0 then the socket should
319  * be closed and the error returned to the user.  If err > 0
320  * it's just the icmp type << 8 | icmp code.  After adjustment
321  * header points to the first 8 bytes of the tcp header.  We need
322  * to find the appropriate port.
323  *
324  * The locking strategy used here is very "optimistic". When
325  * someone else accesses the socket the ICMP is just dropped
326  * and for some paths there is no check at all.
327  * A more general error queue to queue errors for later handling
328  * is probably better.
329  *
330  */
331
332 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
333 {
334         struct iphdr *iph = (struct iphdr *)icmp_skb->data;
335         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
336         struct inet_connection_sock *icsk;
337         struct tcp_sock *tp;
338         struct inet_sock *inet;
339         const int type = icmp_hdr(icmp_skb)->type;
340         const int code = icmp_hdr(icmp_skb)->code;
341         struct sock *sk;
342         struct sk_buff *skb;
343         __u32 seq;
344         __u32 remaining;
345         int err;
346         struct net *net = dev_net(icmp_skb->dev);
347
348         if (icmp_skb->len < (iph->ihl << 2) + 8) {
349                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
350                 return;
351         }
352
353         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
354                         iph->saddr, th->source, inet_iif(icmp_skb));
355         if (!sk) {
356                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
357                 return;
358         }
359         if (sk->sk_state == TCP_TIME_WAIT) {
360                 inet_twsk_put(inet_twsk(sk));
361                 return;
362         }
363
364         bh_lock_sock(sk);
365         /* If too many ICMPs get dropped on busy
366          * servers this needs to be solved differently.
367          */
368         if (sock_owned_by_user(sk))
369                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
370
371         if (sk->sk_state == TCP_CLOSE)
372                 goto out;
373
374         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
375                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
376                 goto out;
377         }
378
379         icsk = inet_csk(sk);
380         tp = tcp_sk(sk);
381         seq = ntohl(th->seq);
382         if (sk->sk_state != TCP_LISTEN &&
383             !between(seq, tp->snd_una, tp->snd_nxt)) {
384                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
385                 goto out;
386         }
387
388         switch (type) {
389         case ICMP_SOURCE_QUENCH:
390                 /* Just silently ignore these. */
391                 goto out;
392         case ICMP_PARAMETERPROB:
393                 err = EPROTO;
394                 break;
395         case ICMP_DEST_UNREACH:
396                 if (code > NR_ICMP_UNREACH)
397                         goto out;
398
399                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
400                         if (!sock_owned_by_user(sk))
401                                 do_pmtu_discovery(sk, iph, info);
402                         goto out;
403                 }
404
405                 err = icmp_err_convert[code].errno;
406                 /* check if icmp_skb allows revert of backoff
407                  * (see draft-zimmermann-tcp-lcd) */
408                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
409                         break;
410                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
411                     !icsk->icsk_backoff)
412                         break;
413
414                 icsk->icsk_backoff--;
415                 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
416                                          icsk->icsk_backoff;
417                 tcp_bound_rto(sk);
418
419                 skb = tcp_write_queue_head(sk);
420                 BUG_ON(!skb);
421
422                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
423                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
424
425                 if (remaining) {
426                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
427                                                   remaining, TCP_RTO_MAX);
428                 } else if (sock_owned_by_user(sk)) {
429                         /* RTO revert clocked out retransmission,
430                          * but socket is locked. Will defer. */
431                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
432                                                   HZ/20, TCP_RTO_MAX);
433                 } else {
434                         /* RTO revert clocked out retransmission.
435                          * Will retransmit now */
436                         tcp_retransmit_timer(sk);
437                 }
438
439                 break;
440         case ICMP_TIME_EXCEEDED:
441                 err = EHOSTUNREACH;
442                 break;
443         default:
444                 goto out;
445         }
446
447         switch (sk->sk_state) {
448                 struct request_sock *req, **prev;
449         case TCP_LISTEN:
450                 if (sock_owned_by_user(sk))
451                         goto out;
452
453                 req = inet_csk_search_req(sk, &prev, th->dest,
454                                           iph->daddr, iph->saddr);
455                 if (!req)
456                         goto out;
457
458                 /* ICMPs are not backlogged, hence we cannot get
459                    an established socket here.
460                  */
461                 WARN_ON(req->sk);
462
463                 if (seq != tcp_rsk(req)->snt_isn) {
464                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
465                         goto out;
466                 }
467
468                 /*
469                  * Still in SYN_RECV, just remove it silently.
470                  * There is no good way to pass the error to the newly
471                  * created socket, and POSIX does not want network
472                  * errors returned from accept().
473                  */
474                 inet_csk_reqsk_queue_drop(sk, req, prev);
475                 goto out;
476
477         case TCP_SYN_SENT:
478         case TCP_SYN_RECV:  /* Cannot happen.
479                                It can f.e. if SYNs crossed.
480                              */
481                 if (!sock_owned_by_user(sk)) {
482                         sk->sk_err = err;
483
484                         sk->sk_error_report(sk);
485
486                         tcp_done(sk);
487                 } else {
488                         sk->sk_err_soft = err;
489                 }
490                 goto out;
491         }
492
493         /* If we've already connected we will keep trying
494          * until we time out, or the user gives up.
495          *
496          * rfc1122 4.2.3.9 allows to consider as hard errors
497          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
498          * but it is obsoleted by pmtu discovery).
499          *
500          * Note, that in modern internet, where routing is unreliable
501          * and in each dark corner broken firewalls sit, sending random
502          * errors ordered by their masters even this two messages finally lose
503          * their original sense (even Linux sends invalid PORT_UNREACHs)
504          *
505          * Now we are in compliance with RFCs.
506          *                                                      --ANK (980905)
507          */
508
509         inet = inet_sk(sk);
510         if (!sock_owned_by_user(sk) && inet->recverr) {
511                 sk->sk_err = err;
512                 sk->sk_error_report(sk);
513         } else  { /* Only an error on timeout */
514                 sk->sk_err_soft = err;
515         }
516
517 out:
518         bh_unlock_sock(sk);
519         sock_put(sk);
520 }
521
522 /* This routine computes an IPv4 TCP checksum. */
523 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
524 {
525         struct inet_sock *inet = inet_sk(sk);
526         struct tcphdr *th = tcp_hdr(skb);
527
528         if (skb->ip_summed == CHECKSUM_PARTIAL) {
529                 th->check = ~tcp_v4_check(len, inet->inet_saddr,
530                                           inet->inet_daddr, 0);
531                 skb->csum_start = skb_transport_header(skb) - skb->head;
532                 skb->csum_offset = offsetof(struct tcphdr, check);
533         } else {
534                 th->check = tcp_v4_check(len, inet->inet_saddr,
535                                          inet->inet_daddr,
536                                          csum_partial(th,
537                                                       th->doff << 2,
538                                                       skb->csum));
539         }
540 }
541
542 int tcp_v4_gso_send_check(struct sk_buff *skb)
543 {
544         const struct iphdr *iph;
545         struct tcphdr *th;
546
547         if (!pskb_may_pull(skb, sizeof(*th)))
548                 return -EINVAL;
549
550         iph = ip_hdr(skb);
551         th = tcp_hdr(skb);
552
553         th->check = 0;
554         th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
555         skb->csum_start = skb_transport_header(skb) - skb->head;
556         skb->csum_offset = offsetof(struct tcphdr, check);
557         skb->ip_summed = CHECKSUM_PARTIAL;
558         return 0;
559 }
560
561 /*
562  *      This routine will send an RST to the other tcp.
563  *
564  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
565  *                    for reset.
566  *      Answer: if a packet caused RST, it is not for a socket
567  *              existing in our system, if it is matched to a socket,
568  *              it is just duplicate segment or bug in other side's TCP.
569  *              So that we build reply only basing on parameters
570  *              arrived with segment.
571  *      Exception: precedence violation. We do not implement it in any case.
572  */
573
574 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
575 {
576         struct tcphdr *th = tcp_hdr(skb);
577         struct {
578                 struct tcphdr th;
579 #ifdef CONFIG_TCP_MD5SIG
580                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
581 #endif
582         } rep;
583         struct ip_reply_arg arg;
584 #ifdef CONFIG_TCP_MD5SIG
585         struct tcp_md5sig_key *key;
586 #endif
587         struct net *net;
588
589         /* Never send a reset in response to a reset. */
590         if (th->rst)
591                 return;
592
593         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
594                 return;
595
596         /* Swap the send and the receive. */
597         memset(&rep, 0, sizeof(rep));
598         rep.th.dest   = th->source;
599         rep.th.source = th->dest;
600         rep.th.doff   = sizeof(struct tcphdr) / 4;
601         rep.th.rst    = 1;
602
603         if (th->ack) {
604                 rep.th.seq = th->ack_seq;
605         } else {
606                 rep.th.ack = 1;
607                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
608                                        skb->len - (th->doff << 2));
609         }
610
611         memset(&arg, 0, sizeof(arg));
612         arg.iov[0].iov_base = (unsigned char *)&rep;
613         arg.iov[0].iov_len  = sizeof(rep.th);
614
615 #ifdef CONFIG_TCP_MD5SIG
616         key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
617         if (key) {
618                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
619                                    (TCPOPT_NOP << 16) |
620                                    (TCPOPT_MD5SIG << 8) |
621                                    TCPOLEN_MD5SIG);
622                 /* Update length and the length the header thinks exists */
623                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
624                 rep.th.doff = arg.iov[0].iov_len / 4;
625
626                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
627                                      key, ip_hdr(skb)->saddr,
628                                      ip_hdr(skb)->daddr, &rep.th);
629         }
630 #endif
631         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
632                                       ip_hdr(skb)->saddr, /* XXX */
633                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
634         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
635         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
636
637         net = dev_net(skb_dst(skb)->dev);
638         ip_send_reply(net->ipv4.tcp_sock, skb,
639                       &arg, arg.iov[0].iov_len);
640
641         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
642         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
643 }
644
645 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
646    outside socket context is ugly, certainly. What can I do?
647  */
648
649 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
650                             u32 win, u32 ts, int oif,
651                             struct tcp_md5sig_key *key,
652                             int reply_flags)
653 {
654         struct tcphdr *th = tcp_hdr(skb);
655         struct {
656                 struct tcphdr th;
657                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
658 #ifdef CONFIG_TCP_MD5SIG
659                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
660 #endif
661                         ];
662         } rep;
663         struct ip_reply_arg arg;
664         struct net *net = dev_net(skb_dst(skb)->dev);
665
666         memset(&rep.th, 0, sizeof(struct tcphdr));
667         memset(&arg, 0, sizeof(arg));
668
669         arg.iov[0].iov_base = (unsigned char *)&rep;
670         arg.iov[0].iov_len  = sizeof(rep.th);
671         if (ts) {
672                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
673                                    (TCPOPT_TIMESTAMP << 8) |
674                                    TCPOLEN_TIMESTAMP);
675                 rep.opt[1] = htonl(tcp_time_stamp);
676                 rep.opt[2] = htonl(ts);
677                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
678         }
679
680         /* Swap the send and the receive. */
681         rep.th.dest    = th->source;
682         rep.th.source  = th->dest;
683         rep.th.doff    = arg.iov[0].iov_len / 4;
684         rep.th.seq     = htonl(seq);
685         rep.th.ack_seq = htonl(ack);
686         rep.th.ack     = 1;
687         rep.th.window  = htons(win);
688
689 #ifdef CONFIG_TCP_MD5SIG
690         if (key) {
691                 int offset = (ts) ? 3 : 0;
692
693                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
694                                           (TCPOPT_NOP << 16) |
695                                           (TCPOPT_MD5SIG << 8) |
696                                           TCPOLEN_MD5SIG);
697                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
698                 rep.th.doff = arg.iov[0].iov_len/4;
699
700                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
701                                     key, ip_hdr(skb)->saddr,
702                                     ip_hdr(skb)->daddr, &rep.th);
703         }
704 #endif
705         arg.flags = reply_flags;
706         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
707                                       ip_hdr(skb)->saddr, /* XXX */
708                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
709         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
710         if (oif)
711                 arg.bound_dev_if = oif;
712
713         ip_send_reply(net->ipv4.tcp_sock, skb,
714                       &arg, arg.iov[0].iov_len);
715
716         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
717 }
718
719 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
720 {
721         struct inet_timewait_sock *tw = inet_twsk(sk);
722         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
723
724         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
725                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
726                         tcptw->tw_ts_recent,
727                         tw->tw_bound_dev_if,
728                         tcp_twsk_md5_key(tcptw),
729                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
730                         );
731
732         inet_twsk_put(tw);
733 }
734
735 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
736                                   struct request_sock *req)
737 {
738         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
739                         tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
740                         req->ts_recent,
741                         0,
742                         tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
743                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
744 }
745
746 /*
747  *      Send a SYN-ACK after having received a SYN.
748  *      This still operates on a request_sock only, not on a big
749  *      socket.
750  */
751 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
752                               struct request_sock *req,
753                               struct request_values *rvp)
754 {
755         const struct inet_request_sock *ireq = inet_rsk(req);
756         int err = -1;
757         struct sk_buff * skb;
758
759         /* First, grab a route. */
760         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
761                 return -1;
762
763         skb = tcp_make_synack(sk, dst, req, rvp);
764
765         if (skb) {
766                 struct tcphdr *th = tcp_hdr(skb);
767
768                 th->check = tcp_v4_check(skb->len,
769                                          ireq->loc_addr,
770                                          ireq->rmt_addr,
771                                          csum_partial(th, skb->len,
772                                                       skb->csum));
773
774                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
775                                             ireq->rmt_addr,
776                                             ireq->opt);
777                 err = net_xmit_eval(err);
778         }
779
780         dst_release(dst);
781         return err;
782 }
783
784 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
785                               struct request_values *rvp)
786 {
787         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
788         return tcp_v4_send_synack(sk, NULL, req, rvp);
789 }
790
791 /*
792  *      IPv4 request_sock destructor.
793  */
794 static void tcp_v4_reqsk_destructor(struct request_sock *req)
795 {
796         kfree(inet_rsk(req)->opt);
797 }
798
799 #ifdef CONFIG_SYN_COOKIES
800 static void syn_flood_warning(struct sk_buff *skb)
801 {
802         static unsigned long warntime;
803
804         if (time_after(jiffies, (warntime + HZ * 60))) {
805                 warntime = jiffies;
806                 printk(KERN_INFO
807                        "possible SYN flooding on port %d. Sending cookies.\n",
808                        ntohs(tcp_hdr(skb)->dest));
809         }
810 }
811 #endif
812
813 /*
814  * Save and compile IPv4 options into the request_sock if needed.
815  */
816 static struct ip_options *tcp_v4_save_options(struct sock *sk,
817                                               struct sk_buff *skb)
818 {
819         struct ip_options *opt = &(IPCB(skb)->opt);
820         struct ip_options *dopt = NULL;
821
822         if (opt && opt->optlen) {
823                 int opt_size = optlength(opt);
824                 dopt = kmalloc(opt_size, GFP_ATOMIC);
825                 if (dopt) {
826                         if (ip_options_echo(dopt, skb)) {
827                                 kfree(dopt);
828                                 dopt = NULL;
829                         }
830                 }
831         }
832         return dopt;
833 }
834
835 #ifdef CONFIG_TCP_MD5SIG
836 /*
837  * RFC2385 MD5 checksumming requires a mapping of
838  * IP address->MD5 Key.
839  * We need to maintain these in the sk structure.
840  */
841
842 /* Find the Key structure for an address.  */
843 static struct tcp_md5sig_key *
844                         tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
845 {
846         struct tcp_sock *tp = tcp_sk(sk);
847         int i;
848
849         if (!tp->md5sig_info || !tp->md5sig_info->entries4)
850                 return NULL;
851         for (i = 0; i < tp->md5sig_info->entries4; i++) {
852                 if (tp->md5sig_info->keys4[i].addr == addr)
853                         return &tp->md5sig_info->keys4[i].base;
854         }
855         return NULL;
856 }
857
858 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
859                                          struct sock *addr_sk)
860 {
861         return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
862 }
863
864 EXPORT_SYMBOL(tcp_v4_md5_lookup);
865
866 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
867                                                       struct request_sock *req)
868 {
869         return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
870 }
871
872 /* This can be called on a newly created socket, from other files */
873 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
874                       u8 *newkey, u8 newkeylen)
875 {
876         /* Add Key to the list */
877         struct tcp_md5sig_key *key;
878         struct tcp_sock *tp = tcp_sk(sk);
879         struct tcp4_md5sig_key *keys;
880
881         key = tcp_v4_md5_do_lookup(sk, addr);
882         if (key) {
883                 /* Pre-existing entry - just update that one. */
884                 kfree(key->key);
885                 key->key = newkey;
886                 key->keylen = newkeylen;
887         } else {
888                 struct tcp_md5sig_info *md5sig;
889
890                 if (!tp->md5sig_info) {
891                         tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
892                                                   GFP_ATOMIC);
893                         if (!tp->md5sig_info) {
894                                 kfree(newkey);
895                                 return -ENOMEM;
896                         }
897                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
898                 }
899                 if (tcp_alloc_md5sig_pool(sk) == NULL) {
900                         kfree(newkey);
901                         return -ENOMEM;
902                 }
903                 md5sig = tp->md5sig_info;
904
905                 if (md5sig->alloced4 == md5sig->entries4) {
906                         keys = kmalloc((sizeof(*keys) *
907                                         (md5sig->entries4 + 1)), GFP_ATOMIC);
908                         if (!keys) {
909                                 kfree(newkey);
910                                 tcp_free_md5sig_pool();
911                                 return -ENOMEM;
912                         }
913
914                         if (md5sig->entries4)
915                                 memcpy(keys, md5sig->keys4,
916                                        sizeof(*keys) * md5sig->entries4);
917
918                         /* Free old key list, and reference new one */
919                         kfree(md5sig->keys4);
920                         md5sig->keys4 = keys;
921                         md5sig->alloced4++;
922                 }
923                 md5sig->entries4++;
924                 md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
925                 md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
926                 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
927         }
928         return 0;
929 }
930
931 EXPORT_SYMBOL(tcp_v4_md5_do_add);
932
933 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
934                                u8 *newkey, u8 newkeylen)
935 {
936         return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
937                                  newkey, newkeylen);
938 }
939
940 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
941 {
942         struct tcp_sock *tp = tcp_sk(sk);
943         int i;
944
945         for (i = 0; i < tp->md5sig_info->entries4; i++) {
946                 if (tp->md5sig_info->keys4[i].addr == addr) {
947                         /* Free the key */
948                         kfree(tp->md5sig_info->keys4[i].base.key);
949                         tp->md5sig_info->entries4--;
950
951                         if (tp->md5sig_info->entries4 == 0) {
952                                 kfree(tp->md5sig_info->keys4);
953                                 tp->md5sig_info->keys4 = NULL;
954                                 tp->md5sig_info->alloced4 = 0;
955                         } else if (tp->md5sig_info->entries4 != i) {
956                                 /* Need to do some manipulation */
957                                 memmove(&tp->md5sig_info->keys4[i],
958                                         &tp->md5sig_info->keys4[i+1],
959                                         (tp->md5sig_info->entries4 - i) *
960                                          sizeof(struct tcp4_md5sig_key));
961                         }
962                         tcp_free_md5sig_pool();
963                         return 0;
964                 }
965         }
966         return -ENOENT;
967 }
968
969 EXPORT_SYMBOL(tcp_v4_md5_do_del);
970
971 static void tcp_v4_clear_md5_list(struct sock *sk)
972 {
973         struct tcp_sock *tp = tcp_sk(sk);
974
975         /* Free each key, then the set of key keys,
976          * the crypto element, and then decrement our
977          * hold on the last resort crypto.
978          */
979         if (tp->md5sig_info->entries4) {
980                 int i;
981                 for (i = 0; i < tp->md5sig_info->entries4; i++)
982                         kfree(tp->md5sig_info->keys4[i].base.key);
983                 tp->md5sig_info->entries4 = 0;
984                 tcp_free_md5sig_pool();
985         }
986         if (tp->md5sig_info->keys4) {
987                 kfree(tp->md5sig_info->keys4);
988                 tp->md5sig_info->keys4 = NULL;
989                 tp->md5sig_info->alloced4  = 0;
990         }
991 }
992
993 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
994                                  int optlen)
995 {
996         struct tcp_md5sig cmd;
997         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
998         u8 *newkey;
999
1000         if (optlen < sizeof(cmd))
1001                 return -EINVAL;
1002
1003         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1004                 return -EFAULT;
1005
1006         if (sin->sin_family != AF_INET)
1007                 return -EINVAL;
1008
1009         if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1010                 if (!tcp_sk(sk)->md5sig_info)
1011                         return -ENOENT;
1012                 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1013         }
1014
1015         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1016                 return -EINVAL;
1017
1018         if (!tcp_sk(sk)->md5sig_info) {
1019                 struct tcp_sock *tp = tcp_sk(sk);
1020                 struct tcp_md5sig_info *p;
1021
1022                 p = kzalloc(sizeof(*p), sk->sk_allocation);
1023                 if (!p)
1024                         return -EINVAL;
1025
1026                 tp->md5sig_info = p;
1027                 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1028         }
1029
1030         newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1031         if (!newkey)
1032                 return -ENOMEM;
1033         return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1034                                  newkey, cmd.tcpm_keylen);
1035 }
1036
1037 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1038                                         __be32 daddr, __be32 saddr, int nbytes)
1039 {
1040         struct tcp4_pseudohdr *bp;
1041         struct scatterlist sg;
1042
1043         bp = &hp->md5_blk.ip4;
1044
1045         /*
1046          * 1. the TCP pseudo-header (in the order: source IP address,
1047          * destination IP address, zero-padded protocol number, and
1048          * segment length)
1049          */
1050         bp->saddr = saddr;
1051         bp->daddr = daddr;
1052         bp->pad = 0;
1053         bp->protocol = IPPROTO_TCP;
1054         bp->len = cpu_to_be16(nbytes);
1055
1056         sg_init_one(&sg, bp, sizeof(*bp));
1057         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1058 }
1059
1060 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1061                                __be32 daddr, __be32 saddr, struct tcphdr *th)
1062 {
1063         struct tcp_md5sig_pool *hp;
1064         struct hash_desc *desc;
1065
1066         hp = tcp_get_md5sig_pool();
1067         if (!hp)
1068                 goto clear_hash_noput;
1069         desc = &hp->md5_desc;
1070
1071         if (crypto_hash_init(desc))
1072                 goto clear_hash;
1073         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1074                 goto clear_hash;
1075         if (tcp_md5_hash_header(hp, th))
1076                 goto clear_hash;
1077         if (tcp_md5_hash_key(hp, key))
1078                 goto clear_hash;
1079         if (crypto_hash_final(desc, md5_hash))
1080                 goto clear_hash;
1081
1082         tcp_put_md5sig_pool();
1083         return 0;
1084
1085 clear_hash:
1086         tcp_put_md5sig_pool();
1087 clear_hash_noput:
1088         memset(md5_hash, 0, 16);
1089         return 1;
1090 }
1091
1092 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1093                         struct sock *sk, struct request_sock *req,
1094                         struct sk_buff *skb)
1095 {
1096         struct tcp_md5sig_pool *hp;
1097         struct hash_desc *desc;
1098         struct tcphdr *th = tcp_hdr(skb);
1099         __be32 saddr, daddr;
1100
1101         if (sk) {
1102                 saddr = inet_sk(sk)->inet_saddr;
1103                 daddr = inet_sk(sk)->inet_daddr;
1104         } else if (req) {
1105                 saddr = inet_rsk(req)->loc_addr;
1106                 daddr = inet_rsk(req)->rmt_addr;
1107         } else {
1108                 const struct iphdr *iph = ip_hdr(skb);
1109                 saddr = iph->saddr;
1110                 daddr = iph->daddr;
1111         }
1112
1113         hp = tcp_get_md5sig_pool();
1114         if (!hp)
1115                 goto clear_hash_noput;
1116         desc = &hp->md5_desc;
1117
1118         if (crypto_hash_init(desc))
1119                 goto clear_hash;
1120
1121         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1122                 goto clear_hash;
1123         if (tcp_md5_hash_header(hp, th))
1124                 goto clear_hash;
1125         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1126                 goto clear_hash;
1127         if (tcp_md5_hash_key(hp, key))
1128                 goto clear_hash;
1129         if (crypto_hash_final(desc, md5_hash))
1130                 goto clear_hash;
1131
1132         tcp_put_md5sig_pool();
1133         return 0;
1134
1135 clear_hash:
1136         tcp_put_md5sig_pool();
1137 clear_hash_noput:
1138         memset(md5_hash, 0, 16);
1139         return 1;
1140 }
1141
1142 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1143
1144 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1145 {
1146         /*
1147          * This gets called for each TCP segment that arrives
1148          * so we want to be efficient.
1149          * We have 3 drop cases:
1150          * o No MD5 hash and one expected.
1151          * o MD5 hash and we're not expecting one.
1152          * o MD5 hash and its wrong.
1153          */
1154         __u8 *hash_location = NULL;
1155         struct tcp_md5sig_key *hash_expected;
1156         const struct iphdr *iph = ip_hdr(skb);
1157         struct tcphdr *th = tcp_hdr(skb);
1158         int genhash;
1159         unsigned char newhash[16];
1160
1161         hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1162         hash_location = tcp_parse_md5sig_option(th);
1163
1164         /* We've parsed the options - do we have a hash? */
1165         if (!hash_expected && !hash_location)
1166                 return 0;
1167
1168         if (hash_expected && !hash_location) {
1169                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1170                 return 1;
1171         }
1172
1173         if (!hash_expected && hash_location) {
1174                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1175                 return 1;
1176         }
1177
1178         /* Okay, so this is hash_expected and hash_location -
1179          * so we need to calculate the checksum.
1180          */
1181         genhash = tcp_v4_md5_hash_skb(newhash,
1182                                       hash_expected,
1183                                       NULL, NULL, skb);
1184
1185         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1186                 if (net_ratelimit()) {
1187                         printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1188                                &iph->saddr, ntohs(th->source),
1189                                &iph->daddr, ntohs(th->dest),
1190                                genhash ? " tcp_v4_calc_md5_hash failed" : "");
1191                 }
1192                 return 1;
1193         }
1194         return 0;
1195 }
1196
1197 #endif
1198
1199 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1200         .family         =       PF_INET,
1201         .obj_size       =       sizeof(struct tcp_request_sock),
1202         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1203         .send_ack       =       tcp_v4_reqsk_send_ack,
1204         .destructor     =       tcp_v4_reqsk_destructor,
1205         .send_reset     =       tcp_v4_send_reset,
1206         .syn_ack_timeout =      tcp_syn_ack_timeout,
1207 };
1208
1209 #ifdef CONFIG_TCP_MD5SIG
1210 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1211         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1212         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1213 };
1214 #endif
1215
1216 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1217         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
1218         .twsk_unique    = tcp_twsk_unique,
1219         .twsk_destructor= tcp_twsk_destructor,
1220 };
1221
1222 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1223 {
1224         struct tcp_extend_values tmp_ext;
1225         struct tcp_options_received tmp_opt;
1226         u8 *hash_location;
1227         struct request_sock *req;
1228         struct inet_request_sock *ireq;
1229         struct tcp_sock *tp = tcp_sk(sk);
1230         struct dst_entry *dst = NULL;
1231         __be32 saddr = ip_hdr(skb)->saddr;
1232         __be32 daddr = ip_hdr(skb)->daddr;
1233         __u32 isn = TCP_SKB_CB(skb)->when;
1234 #ifdef CONFIG_SYN_COOKIES
1235         int want_cookie = 0;
1236 #else
1237 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1238 #endif
1239
1240         /* Never answer to SYNs send to broadcast or multicast */
1241         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1242                 goto drop;
1243
1244         /* TW buckets are converted to open requests without
1245          * limitations, they conserve resources and peer is
1246          * evidently real one.
1247          */
1248         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1249 #ifdef CONFIG_SYN_COOKIES
1250                 if (sysctl_tcp_syncookies) {
1251                         want_cookie = 1;
1252                 } else
1253 #endif
1254                 goto drop;
1255         }
1256
1257         /* Accept backlog is full. If we have already queued enough
1258          * of warm entries in syn queue, drop request. It is better than
1259          * clogging syn queue with openreqs with exponentially increasing
1260          * timeout.
1261          */
1262         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1263                 goto drop;
1264
1265         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1266         if (!req)
1267                 goto drop;
1268
1269 #ifdef CONFIG_TCP_MD5SIG
1270         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1271 #endif
1272
1273         tcp_clear_options(&tmp_opt);
1274         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1275         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1276         tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1277
1278         if (tmp_opt.cookie_plus > 0 &&
1279             tmp_opt.saw_tstamp &&
1280             !tp->rx_opt.cookie_out_never &&
1281             (sysctl_tcp_cookie_size > 0 ||
1282              (tp->cookie_values != NULL &&
1283               tp->cookie_values->cookie_desired > 0))) {
1284                 u8 *c;
1285                 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1286                 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1287
1288                 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1289                         goto drop_and_release;
1290
1291                 /* Secret recipe starts with IP addresses */
1292                 *mess++ ^= daddr;
1293                 *mess++ ^= saddr;
1294
1295                 /* plus variable length Initiator Cookie */
1296                 c = (u8 *)mess;
1297                 while (l-- > 0)
1298                         *c++ ^= *hash_location++;
1299
1300 #ifdef CONFIG_SYN_COOKIES
1301                 want_cookie = 0;        /* not our kind of cookie */
1302 #endif
1303                 tmp_ext.cookie_out_never = 0; /* false */
1304                 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1305         } else if (!tp->rx_opt.cookie_in_always) {
1306                 /* redundant indications, but ensure initialization. */
1307                 tmp_ext.cookie_out_never = 1; /* true */
1308                 tmp_ext.cookie_plus = 0;
1309         } else {
1310                 goto drop_and_release;
1311         }
1312         tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1313
1314         if (want_cookie && !tmp_opt.saw_tstamp)
1315                 tcp_clear_options(&tmp_opt);
1316
1317         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1318         tcp_openreq_init(req, &tmp_opt, skb);
1319
1320         ireq = inet_rsk(req);
1321         ireq->loc_addr = daddr;
1322         ireq->rmt_addr = saddr;
1323         ireq->no_srccheck = inet_sk(sk)->transparent;
1324         ireq->opt = tcp_v4_save_options(sk, skb);
1325
1326         if (security_inet_conn_request(sk, skb, req))
1327                 goto drop_and_free;
1328
1329         if (!want_cookie)
1330                 TCP_ECN_create_request(req, tcp_hdr(skb));
1331
1332         if (want_cookie) {
1333 #ifdef CONFIG_SYN_COOKIES
1334                 syn_flood_warning(skb);
1335                 req->cookie_ts = tmp_opt.tstamp_ok;
1336 #endif
1337                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1338         } else if (!isn) {
1339                 struct inet_peer *peer = NULL;
1340
1341                 /* VJ's idea. We save last timestamp seen
1342                  * from the destination in peer table, when entering
1343                  * state TIME-WAIT, and check against it before
1344                  * accepting new connection request.
1345                  *
1346                  * If "isn" is not zero, this request hit alive
1347                  * timewait bucket, so that all the necessary checks
1348                  * are made in the function processing timewait state.
1349                  */
1350                 if (tmp_opt.saw_tstamp &&
1351                     tcp_death_row.sysctl_tw_recycle &&
1352                     (dst = inet_csk_route_req(sk, req)) != NULL &&
1353                     (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1354                     peer->v4daddr == saddr) {
1355                         if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1356                             (s32)(peer->tcp_ts - req->ts_recent) >
1357                                                         TCP_PAWS_WINDOW) {
1358                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1359                                 goto drop_and_release;
1360                         }
1361                 }
1362                 /* Kill the following clause, if you dislike this way. */
1363                 else if (!sysctl_tcp_syncookies &&
1364                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1365                           (sysctl_max_syn_backlog >> 2)) &&
1366                          (!peer || !peer->tcp_ts_stamp) &&
1367                          (!dst || !dst_metric(dst, RTAX_RTT))) {
1368                         /* Without syncookies last quarter of
1369                          * backlog is filled with destinations,
1370                          * proven to be alive.
1371                          * It means that we continue to communicate
1372                          * to destinations, already remembered
1373                          * to the moment of synflood.
1374                          */
1375                         LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1376                                        &saddr, ntohs(tcp_hdr(skb)->source));
1377                         goto drop_and_release;
1378                 }
1379
1380                 isn = tcp_v4_init_sequence(skb);
1381         }
1382         tcp_rsk(req)->snt_isn = isn;
1383
1384         if (tcp_v4_send_synack(sk, dst, req,
1385                                (struct request_values *)&tmp_ext) ||
1386             want_cookie)
1387                 goto drop_and_free;
1388
1389         inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1390         return 0;
1391
1392 drop_and_release:
1393         dst_release(dst);
1394 drop_and_free:
1395         reqsk_free(req);
1396 drop:
1397         return 0;
1398 }
1399
1400
1401 /*
1402  * The three way handshake has completed - we got a valid synack -
1403  * now create the new socket.
1404  */
1405 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1406                                   struct request_sock *req,
1407                                   struct dst_entry *dst)
1408 {
1409         struct inet_request_sock *ireq;
1410         struct inet_sock *newinet;
1411         struct tcp_sock *newtp;
1412         struct sock *newsk;
1413 #ifdef CONFIG_TCP_MD5SIG
1414         struct tcp_md5sig_key *key;
1415 #endif
1416
1417         if (sk_acceptq_is_full(sk))
1418                 goto exit_overflow;
1419
1420         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1421                 goto exit;
1422
1423         newsk = tcp_create_openreq_child(sk, req, skb);
1424         if (!newsk)
1425                 goto exit;
1426
1427         newsk->sk_gso_type = SKB_GSO_TCPV4;
1428         sk_setup_caps(newsk, dst);
1429
1430         newtp                 = tcp_sk(newsk);
1431         newinet               = inet_sk(newsk);
1432         ireq                  = inet_rsk(req);
1433         newinet->inet_daddr   = ireq->rmt_addr;
1434         newinet->inet_rcv_saddr = ireq->loc_addr;
1435         newinet->inet_saddr           = ireq->loc_addr;
1436         newinet->opt          = ireq->opt;
1437         ireq->opt             = NULL;
1438         newinet->mc_index     = inet_iif(skb);
1439         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1440         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1441         if (newinet->opt)
1442                 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1443         newinet->inet_id = newtp->write_seq ^ jiffies;
1444
1445         tcp_mtup_init(newsk);
1446         tcp_sync_mss(newsk, dst_mtu(dst));
1447         newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1448         if (tcp_sk(sk)->rx_opt.user_mss &&
1449             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1450                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1451
1452         tcp_initialize_rcv_mss(newsk);
1453
1454 #ifdef CONFIG_TCP_MD5SIG
1455         /* Copy over the MD5 key from the original socket */
1456         key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1457         if (key != NULL) {
1458                 /*
1459                  * We're using one, so create a matching key
1460                  * on the newsk structure. If we fail to get
1461                  * memory, then we end up not copying the key
1462                  * across. Shucks.
1463                  */
1464                 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1465                 if (newkey != NULL)
1466                         tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1467                                           newkey, key->keylen);
1468                 newsk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1469         }
1470 #endif
1471
1472         __inet_hash_nolisten(newsk, NULL);
1473         __inet_inherit_port(sk, newsk);
1474
1475         return newsk;
1476
1477 exit_overflow:
1478         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1479 exit:
1480         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1481         dst_release(dst);
1482         return NULL;
1483 }
1484
1485 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1486 {
1487         struct tcphdr *th = tcp_hdr(skb);
1488         const struct iphdr *iph = ip_hdr(skb);
1489         struct sock *nsk;
1490         struct request_sock **prev;
1491         /* Find possible connection requests. */
1492         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1493                                                        iph->saddr, iph->daddr);
1494         if (req)
1495                 return tcp_check_req(sk, skb, req, prev);
1496
1497         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1498                         th->source, iph->daddr, th->dest, inet_iif(skb));
1499
1500         if (nsk) {
1501                 if (nsk->sk_state != TCP_TIME_WAIT) {
1502                         bh_lock_sock(nsk);
1503                         return nsk;
1504                 }
1505                 inet_twsk_put(inet_twsk(nsk));
1506                 return NULL;
1507         }
1508
1509 #ifdef CONFIG_SYN_COOKIES
1510         if (!th->rst && !th->syn && th->ack)
1511                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1512 #endif
1513         return sk;
1514 }
1515
1516 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1517 {
1518         const struct iphdr *iph = ip_hdr(skb);
1519
1520         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1521                 if (!tcp_v4_check(skb->len, iph->saddr,
1522                                   iph->daddr, skb->csum)) {
1523                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1524                         return 0;
1525                 }
1526         }
1527
1528         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1529                                        skb->len, IPPROTO_TCP, 0);
1530
1531         if (skb->len <= 76) {
1532                 return __skb_checksum_complete(skb);
1533         }
1534         return 0;
1535 }
1536
1537
1538 /* The socket must have it's spinlock held when we get
1539  * here.
1540  *
1541  * We have a potential double-lock case here, so even when
1542  * doing backlog processing we use the BH locking scheme.
1543  * This is because we cannot sleep with the original spinlock
1544  * held.
1545  */
1546 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1547 {
1548         struct sock *rsk;
1549 #ifdef CONFIG_TCP_MD5SIG
1550         /*
1551          * We really want to reject the packet as early as possible
1552          * if:
1553          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1554          *  o There is an MD5 option and we're not expecting one
1555          */
1556         if (tcp_v4_inbound_md5_hash(sk, skb))
1557                 goto discard;
1558 #endif
1559
1560         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1561                 TCP_CHECK_TIMER(sk);
1562                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1563                         rsk = sk;
1564                         goto reset;
1565                 }
1566                 TCP_CHECK_TIMER(sk);
1567                 return 0;
1568         }
1569
1570         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1571                 goto csum_err;
1572
1573         if (sk->sk_state == TCP_LISTEN) {
1574                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1575                 if (!nsk)
1576                         goto discard;
1577
1578                 if (nsk != sk) {
1579                         if (tcp_child_process(sk, nsk, skb)) {
1580                                 rsk = nsk;
1581                                 goto reset;
1582                         }
1583                         return 0;
1584                 }
1585         }
1586
1587         TCP_CHECK_TIMER(sk);
1588         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1589                 rsk = sk;
1590                 goto reset;
1591         }
1592         TCP_CHECK_TIMER(sk);
1593         return 0;
1594
1595 reset:
1596         tcp_v4_send_reset(rsk, skb);
1597 discard:
1598         kfree_skb(skb);
1599         /* Be careful here. If this function gets more complicated and
1600          * gcc suffers from register pressure on the x86, sk (in %ebx)
1601          * might be destroyed here. This current version compiles correctly,
1602          * but you have been warned.
1603          */
1604         return 0;
1605
1606 csum_err:
1607         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1608         goto discard;
1609 }
1610
1611 /*
1612  *      From tcp_input.c
1613  */
1614
1615 int tcp_v4_rcv(struct sk_buff *skb)
1616 {
1617         const struct iphdr *iph;
1618         struct tcphdr *th;
1619         struct sock *sk;
1620         int ret;
1621         struct net *net = dev_net(skb->dev);
1622
1623         if (skb->pkt_type != PACKET_HOST)
1624                 goto discard_it;
1625
1626         /* Count it even if it's bad */
1627         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1628
1629         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1630                 goto discard_it;
1631
1632         th = tcp_hdr(skb);
1633
1634         if (th->doff < sizeof(struct tcphdr) / 4)
1635                 goto bad_packet;
1636         if (!pskb_may_pull(skb, th->doff * 4))
1637                 goto discard_it;
1638
1639         /* An explanation is required here, I think.
1640          * Packet length and doff are validated by header prediction,
1641          * provided case of th->doff==0 is eliminated.
1642          * So, we defer the checks. */
1643         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1644                 goto bad_packet;
1645
1646         th = tcp_hdr(skb);
1647         iph = ip_hdr(skb);
1648         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1649         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1650                                     skb->len - th->doff * 4);
1651         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1652         TCP_SKB_CB(skb)->when    = 0;
1653         TCP_SKB_CB(skb)->flags   = iph->tos;
1654         TCP_SKB_CB(skb)->sacked  = 0;
1655
1656         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1657         if (!sk)
1658                 goto no_tcp_socket;
1659
1660 process:
1661         if (sk->sk_state == TCP_TIME_WAIT)
1662                 goto do_time_wait;
1663
1664         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1665                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1666                 goto discard_and_relse;
1667         }
1668
1669         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1670                 goto discard_and_relse;
1671         nf_reset(skb);
1672
1673         if (sk_filter(sk, skb))
1674                 goto discard_and_relse;
1675
1676         skb->dev = NULL;
1677
1678         bh_lock_sock_nested(sk);
1679         ret = 0;
1680         if (!sock_owned_by_user(sk)) {
1681 #ifdef CONFIG_NET_DMA
1682                 struct tcp_sock *tp = tcp_sk(sk);
1683                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1684                         tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1685                 if (tp->ucopy.dma_chan)
1686                         ret = tcp_v4_do_rcv(sk, skb);
1687                 else
1688 #endif
1689                 {
1690                         if (!tcp_prequeue(sk, skb))
1691                                 ret = tcp_v4_do_rcv(sk, skb);
1692                 }
1693         } else if (unlikely(sk_add_backlog(sk, skb))) {
1694                 bh_unlock_sock(sk);
1695                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1696                 goto discard_and_relse;
1697         }
1698         bh_unlock_sock(sk);
1699
1700         sock_put(sk);
1701
1702         return ret;
1703
1704 no_tcp_socket:
1705         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1706                 goto discard_it;
1707
1708         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1709 bad_packet:
1710                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1711         } else {
1712                 tcp_v4_send_reset(NULL, skb);
1713         }
1714
1715 discard_it:
1716         /* Discard frame. */
1717         kfree_skb(skb);
1718         return 0;
1719
1720 discard_and_relse:
1721         sock_put(sk);
1722         goto discard_it;
1723
1724 do_time_wait:
1725         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1726                 inet_twsk_put(inet_twsk(sk));
1727                 goto discard_it;
1728         }
1729
1730         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1731                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1732                 inet_twsk_put(inet_twsk(sk));
1733                 goto discard_it;
1734         }
1735         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1736         case TCP_TW_SYN: {
1737                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1738                                                         &tcp_hashinfo,
1739                                                         iph->daddr, th->dest,
1740                                                         inet_iif(skb));
1741                 if (sk2) {
1742                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1743                         inet_twsk_put(inet_twsk(sk));
1744                         sk = sk2;
1745                         goto process;
1746                 }
1747                 /* Fall through to ACK */
1748         }
1749         case TCP_TW_ACK:
1750                 tcp_v4_timewait_ack(sk, skb);
1751                 break;
1752         case TCP_TW_RST:
1753                 goto no_tcp_socket;
1754         case TCP_TW_SUCCESS:;
1755         }
1756         goto discard_it;
1757 }
1758
1759 /* VJ's idea. Save last timestamp seen from this destination
1760  * and hold it at least for normal timewait interval to use for duplicate
1761  * segment detection in subsequent connections, before they enter synchronized
1762  * state.
1763  */
1764
1765 int tcp_v4_remember_stamp(struct sock *sk)
1766 {
1767         struct inet_sock *inet = inet_sk(sk);
1768         struct tcp_sock *tp = tcp_sk(sk);
1769         struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1770         struct inet_peer *peer = NULL;
1771         int release_it = 0;
1772
1773         if (!rt || rt->rt_dst != inet->inet_daddr) {
1774                 peer = inet_getpeer(inet->inet_daddr, 1);
1775                 release_it = 1;
1776         } else {
1777                 if (!rt->peer)
1778                         rt_bind_peer(rt, 1);
1779                 peer = rt->peer;
1780         }
1781
1782         if (peer) {
1783                 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1784                     ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1785                      peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
1786                         peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
1787                         peer->tcp_ts = tp->rx_opt.ts_recent;
1788                 }
1789                 if (release_it)
1790                         inet_putpeer(peer);
1791                 return 1;
1792         }
1793
1794         return 0;
1795 }
1796
1797 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1798 {
1799         struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1800
1801         if (peer) {
1802                 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1803
1804                 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1805                     ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1806                      peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
1807                         peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
1808                         peer->tcp_ts       = tcptw->tw_ts_recent;
1809                 }
1810                 inet_putpeer(peer);
1811                 return 1;
1812         }
1813
1814         return 0;
1815 }
1816
1817 const struct inet_connection_sock_af_ops ipv4_specific = {
1818         .queue_xmit        = ip_queue_xmit,
1819         .send_check        = tcp_v4_send_check,
1820         .rebuild_header    = inet_sk_rebuild_header,
1821         .conn_request      = tcp_v4_conn_request,
1822         .syn_recv_sock     = tcp_v4_syn_recv_sock,
1823         .remember_stamp    = tcp_v4_remember_stamp,
1824         .net_header_len    = sizeof(struct iphdr),
1825         .setsockopt        = ip_setsockopt,
1826         .getsockopt        = ip_getsockopt,
1827         .addr2sockaddr     = inet_csk_addr2sockaddr,
1828         .sockaddr_len      = sizeof(struct sockaddr_in),
1829         .bind_conflict     = inet_csk_bind_conflict,
1830 #ifdef CONFIG_COMPAT
1831         .compat_setsockopt = compat_ip_setsockopt,
1832         .compat_getsockopt = compat_ip_getsockopt,
1833 #endif
1834 };
1835
1836 #ifdef CONFIG_TCP_MD5SIG
1837 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1838         .md5_lookup             = tcp_v4_md5_lookup,
1839         .calc_md5_hash          = tcp_v4_md5_hash_skb,
1840         .md5_add                = tcp_v4_md5_add_func,
1841         .md5_parse              = tcp_v4_parse_md5_keys,
1842 };
1843 #endif
1844
1845 /* NOTE: A lot of things set to zero explicitly by call to
1846  *       sk_alloc() so need not be done here.
1847  */
1848 static int tcp_v4_init_sock(struct sock *sk)
1849 {
1850         struct inet_connection_sock *icsk = inet_csk(sk);
1851         struct tcp_sock *tp = tcp_sk(sk);
1852
1853         skb_queue_head_init(&tp->out_of_order_queue);
1854         tcp_init_xmit_timers(sk);
1855         tcp_prequeue_init(tp);
1856
1857         icsk->icsk_rto = TCP_TIMEOUT_INIT;
1858         tp->mdev = TCP_TIMEOUT_INIT;
1859
1860         /* So many TCP implementations out there (incorrectly) count the
1861          * initial SYN frame in their delayed-ACK and congestion control
1862          * algorithms that we must have the following bandaid to talk
1863          * efficiently to them.  -DaveM
1864          */
1865         tp->snd_cwnd = 2;
1866
1867         /* See draft-stevens-tcpca-spec-01 for discussion of the
1868          * initialization of these values.
1869          */
1870         tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1871         tp->snd_cwnd_clamp = ~0;
1872         tp->mss_cache = TCP_MSS_DEFAULT;
1873
1874         tp->reordering = sysctl_tcp_reordering;
1875         icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1876
1877         sk->sk_state = TCP_CLOSE;
1878
1879         sk->sk_write_space = sk_stream_write_space;
1880         sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1881
1882         icsk->icsk_af_ops = &ipv4_specific;
1883         icsk->icsk_sync_mss = tcp_sync_mss;
1884 #ifdef CONFIG_TCP_MD5SIG
1885         tp->af_specific = &tcp_sock_ipv4_specific;
1886 #endif
1887
1888         /* TCP Cookie Transactions */
1889         if (sysctl_tcp_cookie_size > 0) {
1890                 /* Default, cookies without s_data_payload. */
1891                 tp->cookie_values =
1892                         kzalloc(sizeof(*tp->cookie_values),
1893                                 sk->sk_allocation);
1894                 if (tp->cookie_values != NULL)
1895                         kref_init(&tp->cookie_values->kref);
1896         }
1897         /* Presumed zeroed, in order of appearance:
1898          *      cookie_in_always, cookie_out_never,
1899          *      s_data_constant, s_data_in, s_data_out
1900          */
1901         sk->sk_sndbuf = sysctl_tcp_wmem[1];
1902         sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1903
1904         local_bh_disable();
1905         percpu_counter_inc(&tcp_sockets_allocated);
1906         local_bh_enable();
1907
1908         return 0;
1909 }
1910
1911 void tcp_v4_destroy_sock(struct sock *sk)
1912 {
1913         struct tcp_sock *tp = tcp_sk(sk);
1914
1915         tcp_clear_xmit_timers(sk);
1916
1917         tcp_cleanup_congestion_control(sk);
1918
1919         /* Cleanup up the write buffer. */
1920         tcp_write_queue_purge(sk);
1921
1922         /* Cleans up our, hopefully empty, out_of_order_queue. */
1923         __skb_queue_purge(&tp->out_of_order_queue);
1924
1925 #ifdef CONFIG_TCP_MD5SIG
1926         /* Clean up the MD5 key list, if any */
1927         if (tp->md5sig_info) {
1928                 tcp_v4_clear_md5_list(sk);
1929                 kfree(tp->md5sig_info);
1930                 tp->md5sig_info = NULL;
1931         }
1932 #endif
1933
1934 #ifdef CONFIG_NET_DMA
1935         /* Cleans up our sk_async_wait_queue */
1936         __skb_queue_purge(&sk->sk_async_wait_queue);
1937 #endif
1938
1939         /* Clean prequeue, it must be empty really */
1940         __skb_queue_purge(&tp->ucopy.prequeue);
1941
1942         /* Clean up a referenced TCP bind bucket. */
1943         if (inet_csk(sk)->icsk_bind_hash)
1944                 inet_put_port(sk);
1945
1946         /*
1947          * If sendmsg cached page exists, toss it.
1948          */
1949         if (sk->sk_sndmsg_page) {
1950                 __free_page(sk->sk_sndmsg_page);
1951                 sk->sk_sndmsg_page = NULL;
1952         }
1953
1954         /* TCP Cookie Transactions */
1955         if (tp->cookie_values != NULL) {
1956                 kref_put(&tp->cookie_values->kref,
1957                          tcp_cookie_values_release);
1958                 tp->cookie_values = NULL;
1959         }
1960
1961         percpu_counter_dec(&tcp_sockets_allocated);
1962 }
1963
1964 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1965
1966 #ifdef CONFIG_PROC_FS
1967 /* Proc filesystem TCP sock list dumping. */
1968
1969 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1970 {
1971         return hlist_nulls_empty(head) ? NULL :
1972                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1973 }
1974
1975 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1976 {
1977         return !is_a_nulls(tw->tw_node.next) ?
1978                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1979 }
1980
1981 static void *listening_get_next(struct seq_file *seq, void *cur)
1982 {
1983         struct inet_connection_sock *icsk;
1984         struct hlist_nulls_node *node;
1985         struct sock *sk = cur;
1986         struct inet_listen_hashbucket *ilb;
1987         struct tcp_iter_state *st = seq->private;
1988         struct net *net = seq_file_net(seq);
1989
1990         if (!sk) {
1991                 st->bucket = 0;
1992                 ilb = &tcp_hashinfo.listening_hash[0];
1993                 spin_lock_bh(&ilb->lock);
1994                 sk = sk_nulls_head(&ilb->head);
1995                 goto get_sk;
1996         }
1997         ilb = &tcp_hashinfo.listening_hash[st->bucket];
1998         ++st->num;
1999
2000         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2001                 struct request_sock *req = cur;
2002
2003                 icsk = inet_csk(st->syn_wait_sk);
2004                 req = req->dl_next;
2005                 while (1) {
2006                         while (req) {
2007                                 if (req->rsk_ops->family == st->family) {
2008                                         cur = req;
2009                                         goto out;
2010                                 }
2011                                 req = req->dl_next;
2012                         }
2013                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2014                                 break;
2015 get_req:
2016                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2017                 }
2018                 sk        = sk_next(st->syn_wait_sk);
2019                 st->state = TCP_SEQ_STATE_LISTENING;
2020                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2021         } else {
2022                 icsk = inet_csk(sk);
2023                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2024                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2025                         goto start_req;
2026                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2027                 sk = sk_next(sk);
2028         }
2029 get_sk:
2030         sk_nulls_for_each_from(sk, node) {
2031                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
2032                         cur = sk;
2033                         goto out;
2034                 }
2035                 icsk = inet_csk(sk);
2036                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2037                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2038 start_req:
2039                         st->uid         = sock_i_uid(sk);
2040                         st->syn_wait_sk = sk;
2041                         st->state       = TCP_SEQ_STATE_OPENREQ;
2042                         st->sbucket     = 0;
2043                         goto get_req;
2044                 }
2045                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2046         }
2047         spin_unlock_bh(&ilb->lock);
2048         if (++st->bucket < INET_LHTABLE_SIZE) {
2049                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2050                 spin_lock_bh(&ilb->lock);
2051                 sk = sk_nulls_head(&ilb->head);
2052                 goto get_sk;
2053         }
2054         cur = NULL;
2055 out:
2056         return cur;
2057 }
2058
2059 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2060 {
2061         void *rc = listening_get_next(seq, NULL);
2062
2063         while (rc && *pos) {
2064                 rc = listening_get_next(seq, rc);
2065                 --*pos;
2066         }
2067         return rc;
2068 }
2069
2070 static inline int empty_bucket(struct tcp_iter_state *st)
2071 {
2072         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2073                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2074 }
2075
2076 static void *established_get_first(struct seq_file *seq)
2077 {
2078         struct tcp_iter_state *st = seq->private;
2079         struct net *net = seq_file_net(seq);
2080         void *rc = NULL;
2081
2082         for (st->bucket = 0; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2083                 struct sock *sk;
2084                 struct hlist_nulls_node *node;
2085                 struct inet_timewait_sock *tw;
2086                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2087
2088                 /* Lockless fast path for the common case of empty buckets */
2089                 if (empty_bucket(st))
2090                         continue;
2091
2092                 spin_lock_bh(lock);
2093                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2094                         if (sk->sk_family != st->family ||
2095                             !net_eq(sock_net(sk), net)) {
2096                                 continue;
2097                         }
2098                         rc = sk;
2099                         goto out;
2100                 }
2101                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2102                 inet_twsk_for_each(tw, node,
2103                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2104                         if (tw->tw_family != st->family ||
2105                             !net_eq(twsk_net(tw), net)) {
2106                                 continue;
2107                         }
2108                         rc = tw;
2109                         goto out;
2110                 }
2111                 spin_unlock_bh(lock);
2112                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2113         }
2114 out:
2115         return rc;
2116 }
2117
2118 static void *established_get_next(struct seq_file *seq, void *cur)
2119 {
2120         struct sock *sk = cur;
2121         struct inet_timewait_sock *tw;
2122         struct hlist_nulls_node *node;
2123         struct tcp_iter_state *st = seq->private;
2124         struct net *net = seq_file_net(seq);
2125
2126         ++st->num;
2127
2128         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2129                 tw = cur;
2130                 tw = tw_next(tw);
2131 get_tw:
2132                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2133                         tw = tw_next(tw);
2134                 }
2135                 if (tw) {
2136                         cur = tw;
2137                         goto out;
2138                 }
2139                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2140                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2141
2142                 /* Look for next non empty bucket */
2143                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2144                                 empty_bucket(st))
2145                         ;
2146                 if (st->bucket > tcp_hashinfo.ehash_mask)
2147                         return NULL;
2148
2149                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2150                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2151         } else
2152                 sk = sk_nulls_next(sk);
2153
2154         sk_nulls_for_each_from(sk, node) {
2155                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2156                         goto found;
2157         }
2158
2159         st->state = TCP_SEQ_STATE_TIME_WAIT;
2160         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2161         goto get_tw;
2162 found:
2163         cur = sk;
2164 out:
2165         return cur;
2166 }
2167
2168 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2169 {
2170         void *rc = established_get_first(seq);
2171
2172         while (rc && pos) {
2173                 rc = established_get_next(seq, rc);
2174                 --pos;
2175         }
2176         return rc;
2177 }
2178
2179 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2180 {
2181         void *rc;
2182         struct tcp_iter_state *st = seq->private;
2183
2184         st->state = TCP_SEQ_STATE_LISTENING;
2185         rc        = listening_get_idx(seq, &pos);
2186
2187         if (!rc) {
2188                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2189                 rc        = established_get_idx(seq, pos);
2190         }
2191
2192         return rc;
2193 }
2194
2195 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2196 {
2197         struct tcp_iter_state *st = seq->private;
2198         st->state = TCP_SEQ_STATE_LISTENING;
2199         st->num = 0;
2200         return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2201 }
2202
2203 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2204 {
2205         void *rc = NULL;
2206         struct tcp_iter_state *st;
2207
2208         if (v == SEQ_START_TOKEN) {
2209                 rc = tcp_get_idx(seq, 0);
2210                 goto out;
2211         }
2212         st = seq->private;
2213
2214         switch (st->state) {
2215         case TCP_SEQ_STATE_OPENREQ:
2216         case TCP_SEQ_STATE_LISTENING:
2217                 rc = listening_get_next(seq, v);
2218                 if (!rc) {
2219                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2220                         rc        = established_get_first(seq);
2221                 }
2222                 break;
2223         case TCP_SEQ_STATE_ESTABLISHED:
2224         case TCP_SEQ_STATE_TIME_WAIT:
2225                 rc = established_get_next(seq, v);
2226                 break;
2227         }
2228 out:
2229         ++*pos;
2230         return rc;
2231 }
2232
2233 static void tcp_seq_stop(struct seq_file *seq, void *v)
2234 {
2235         struct tcp_iter_state *st = seq->private;
2236
2237         switch (st->state) {
2238         case TCP_SEQ_STATE_OPENREQ:
2239                 if (v) {
2240                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2241                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2242                 }
2243         case TCP_SEQ_STATE_LISTENING:
2244                 if (v != SEQ_START_TOKEN)
2245                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2246                 break;
2247         case TCP_SEQ_STATE_TIME_WAIT:
2248         case TCP_SEQ_STATE_ESTABLISHED:
2249                 if (v)
2250                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2251                 break;
2252         }
2253 }
2254
2255 static int tcp_seq_open(struct inode *inode, struct file *file)
2256 {
2257         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2258         struct tcp_iter_state *s;
2259         int err;
2260
2261         err = seq_open_net(inode, file, &afinfo->seq_ops,
2262                           sizeof(struct tcp_iter_state));
2263         if (err < 0)
2264                 return err;
2265
2266         s = ((struct seq_file *)file->private_data)->private;
2267         s->family               = afinfo->family;
2268         return 0;
2269 }
2270
2271 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2272 {
2273         int rc = 0;
2274         struct proc_dir_entry *p;
2275
2276         afinfo->seq_fops.open           = tcp_seq_open;
2277         afinfo->seq_fops.read           = seq_read;
2278         afinfo->seq_fops.llseek         = seq_lseek;
2279         afinfo->seq_fops.release        = seq_release_net;
2280
2281         afinfo->seq_ops.start           = tcp_seq_start;
2282         afinfo->seq_ops.next            = tcp_seq_next;
2283         afinfo->seq_ops.stop            = tcp_seq_stop;
2284
2285         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2286                              &afinfo->seq_fops, afinfo);
2287         if (!p)
2288                 rc = -ENOMEM;
2289         return rc;
2290 }
2291
2292 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2293 {
2294         proc_net_remove(net, afinfo->name);
2295 }
2296
2297 static void get_openreq4(struct sock *sk, struct request_sock *req,
2298                          struct seq_file *f, int i, int uid, int *len)
2299 {
2300         const struct inet_request_sock *ireq = inet_rsk(req);
2301         int ttd = req->expires - jiffies;
2302
2303         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2304                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2305                 i,
2306                 ireq->loc_addr,
2307                 ntohs(inet_sk(sk)->inet_sport),
2308                 ireq->rmt_addr,
2309                 ntohs(ireq->rmt_port),
2310                 TCP_SYN_RECV,
2311                 0, 0, /* could print option size, but that is af dependent. */
2312                 1,    /* timers active (only the expire timer) */
2313                 jiffies_to_clock_t(ttd),
2314                 req->retrans,
2315                 uid,
2316                 0,  /* non standard timer */
2317                 0, /* open_requests have no inode */
2318                 atomic_read(&sk->sk_refcnt),
2319                 req,
2320                 len);
2321 }
2322
2323 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2324 {
2325         int timer_active;
2326         unsigned long timer_expires;
2327         struct tcp_sock *tp = tcp_sk(sk);
2328         const struct inet_connection_sock *icsk = inet_csk(sk);
2329         struct inet_sock *inet = inet_sk(sk);
2330         __be32 dest = inet->inet_daddr;
2331         __be32 src = inet->inet_rcv_saddr;
2332         __u16 destp = ntohs(inet->inet_dport);
2333         __u16 srcp = ntohs(inet->inet_sport);
2334         int rx_queue;
2335
2336         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2337                 timer_active    = 1;
2338                 timer_expires   = icsk->icsk_timeout;
2339         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2340                 timer_active    = 4;
2341                 timer_expires   = icsk->icsk_timeout;
2342         } else if (timer_pending(&sk->sk_timer)) {
2343                 timer_active    = 2;
2344                 timer_expires   = sk->sk_timer.expires;
2345         } else {
2346                 timer_active    = 0;
2347                 timer_expires = jiffies;
2348         }
2349
2350         if (sk->sk_state == TCP_LISTEN)
2351                 rx_queue = sk->sk_ack_backlog;
2352         else
2353                 /*
2354                  * because we dont lock socket, we might find a transient negative value
2355                  */
2356                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2357
2358         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2359                         "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2360                 i, src, srcp, dest, destp, sk->sk_state,
2361                 tp->write_seq - tp->snd_una,
2362                 rx_queue,
2363                 timer_active,
2364                 jiffies_to_clock_t(timer_expires - jiffies),
2365                 icsk->icsk_retransmits,
2366                 sock_i_uid(sk),
2367                 icsk->icsk_probes_out,
2368                 sock_i_ino(sk),
2369                 atomic_read(&sk->sk_refcnt), sk,
2370                 jiffies_to_clock_t(icsk->icsk_rto),
2371                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2372                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2373                 tp->snd_cwnd,
2374                 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2375                 len);
2376 }
2377
2378 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2379                                struct seq_file *f, int i, int *len)
2380 {
2381         __be32 dest, src;
2382         __u16 destp, srcp;
2383         int ttd = tw->tw_ttd - jiffies;
2384
2385         if (ttd < 0)
2386                 ttd = 0;
2387
2388         dest  = tw->tw_daddr;
2389         src   = tw->tw_rcv_saddr;
2390         destp = ntohs(tw->tw_dport);
2391         srcp  = ntohs(tw->tw_sport);
2392
2393         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2394                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2395                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2396                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2397                 atomic_read(&tw->tw_refcnt), tw, len);
2398 }
2399
2400 #define TMPSZ 150
2401
2402 static int tcp4_seq_show(struct seq_file *seq, void *v)
2403 {
2404         struct tcp_iter_state *st;
2405         int len;
2406
2407         if (v == SEQ_START_TOKEN) {
2408                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2409                            "  sl  local_address rem_address   st tx_queue "
2410                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2411                            "inode");
2412                 goto out;
2413         }
2414         st = seq->private;
2415
2416         switch (st->state) {
2417         case TCP_SEQ_STATE_LISTENING:
2418         case TCP_SEQ_STATE_ESTABLISHED:
2419                 get_tcp4_sock(v, seq, st->num, &len);
2420                 break;
2421         case TCP_SEQ_STATE_OPENREQ:
2422                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2423                 break;
2424         case TCP_SEQ_STATE_TIME_WAIT:
2425                 get_timewait4_sock(v, seq, st->num, &len);
2426                 break;
2427         }
2428         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2429 out:
2430         return 0;
2431 }
2432
2433 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2434         .name           = "tcp",
2435         .family         = AF_INET,
2436         .seq_fops       = {
2437                 .owner          = THIS_MODULE,
2438         },
2439         .seq_ops        = {
2440                 .show           = tcp4_seq_show,
2441         },
2442 };
2443
2444 static int __net_init tcp4_proc_init_net(struct net *net)
2445 {
2446         return tcp_proc_register(net, &tcp4_seq_afinfo);
2447 }
2448
2449 static void __net_exit tcp4_proc_exit_net(struct net *net)
2450 {
2451         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2452 }
2453
2454 static struct pernet_operations tcp4_net_ops = {
2455         .init = tcp4_proc_init_net,
2456         .exit = tcp4_proc_exit_net,
2457 };
2458
2459 int __init tcp4_proc_init(void)
2460 {
2461         return register_pernet_subsys(&tcp4_net_ops);
2462 }
2463
2464 void tcp4_proc_exit(void)
2465 {
2466         unregister_pernet_subsys(&tcp4_net_ops);
2467 }
2468 #endif /* CONFIG_PROC_FS */
2469
2470 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2471 {
2472         struct iphdr *iph = skb_gro_network_header(skb);
2473
2474         switch (skb->ip_summed) {
2475         case CHECKSUM_COMPLETE:
2476                 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2477                                   skb->csum)) {
2478                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2479                         break;
2480                 }
2481
2482                 /* fall through */
2483         case CHECKSUM_NONE:
2484                 NAPI_GRO_CB(skb)->flush = 1;
2485                 return NULL;
2486         }
2487
2488         return tcp_gro_receive(head, skb);
2489 }
2490 EXPORT_SYMBOL(tcp4_gro_receive);
2491
2492 int tcp4_gro_complete(struct sk_buff *skb)
2493 {
2494         struct iphdr *iph = ip_hdr(skb);
2495         struct tcphdr *th = tcp_hdr(skb);
2496
2497         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2498                                   iph->saddr, iph->daddr, 0);
2499         skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2500
2501         return tcp_gro_complete(skb);
2502 }
2503 EXPORT_SYMBOL(tcp4_gro_complete);
2504
2505 struct proto tcp_prot = {
2506         .name                   = "TCP",
2507         .owner                  = THIS_MODULE,
2508         .close                  = tcp_close,
2509         .connect                = tcp_v4_connect,
2510         .disconnect             = tcp_disconnect,
2511         .accept                 = inet_csk_accept,
2512         .ioctl                  = tcp_ioctl,
2513         .init                   = tcp_v4_init_sock,
2514         .destroy                = tcp_v4_destroy_sock,
2515         .shutdown               = tcp_shutdown,
2516         .setsockopt             = tcp_setsockopt,
2517         .getsockopt             = tcp_getsockopt,
2518         .recvmsg                = tcp_recvmsg,
2519         .backlog_rcv            = tcp_v4_do_rcv,
2520         .hash                   = inet_hash,
2521         .unhash                 = inet_unhash,
2522         .get_port               = inet_csk_get_port,
2523         .enter_memory_pressure  = tcp_enter_memory_pressure,
2524         .sockets_allocated      = &tcp_sockets_allocated,
2525         .orphan_count           = &tcp_orphan_count,
2526         .memory_allocated       = &tcp_memory_allocated,
2527         .memory_pressure        = &tcp_memory_pressure,
2528         .sysctl_mem             = sysctl_tcp_mem,
2529         .sysctl_wmem            = sysctl_tcp_wmem,
2530         .sysctl_rmem            = sysctl_tcp_rmem,
2531         .max_header             = MAX_TCP_HEADER,
2532         .obj_size               = sizeof(struct tcp_sock),
2533         .slab_flags             = SLAB_DESTROY_BY_RCU,
2534         .twsk_prot              = &tcp_timewait_sock_ops,
2535         .rsk_prot               = &tcp_request_sock_ops,
2536         .h.hashinfo             = &tcp_hashinfo,
2537 #ifdef CONFIG_COMPAT
2538         .compat_setsockopt      = compat_tcp_setsockopt,
2539         .compat_getsockopt      = compat_tcp_getsockopt,
2540 #endif
2541 };
2542
2543
2544 static int __net_init tcp_sk_init(struct net *net)
2545 {
2546         return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2547                                     PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2548 }
2549
2550 static void __net_exit tcp_sk_exit(struct net *net)
2551 {
2552         inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2553 }
2554
2555 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2556 {
2557         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2558 }
2559
2560 static struct pernet_operations __net_initdata tcp_sk_ops = {
2561        .init       = tcp_sk_init,
2562        .exit       = tcp_sk_exit,
2563        .exit_batch = tcp_sk_exit_batch,
2564 };
2565
2566 void __init tcp_v4_init(void)
2567 {
2568         inet_hashinfo_init(&tcp_hashinfo);
2569         if (register_pernet_subsys(&tcp_sk_ops))
2570                 panic("Failed to create the TCP control socket.\n");
2571 }
2572
2573 EXPORT_SYMBOL(ipv4_specific);
2574 EXPORT_SYMBOL(tcp_hashinfo);
2575 EXPORT_SYMBOL(tcp_prot);
2576 EXPORT_SYMBOL(tcp_v4_conn_request);
2577 EXPORT_SYMBOL(tcp_v4_connect);
2578 EXPORT_SYMBOL(tcp_v4_do_rcv);
2579 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2580 EXPORT_SYMBOL(tcp_v4_send_check);
2581 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2582
2583 #ifdef CONFIG_PROC_FS
2584 EXPORT_SYMBOL(tcp_proc_register);
2585 EXPORT_SYMBOL(tcp_proc_unregister);
2586 #endif
2587 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2588