ALSA: pcm: fix infinite loop in snd_pcm_update_hw_ptr0()
[linux-flexiantxendom0-natty.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         struct snd_pcm_runtime *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled >= runtime->buffer_size)
60                         return;
61                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63                         return;
64                 frames = runtime->silence_threshold - noise_dist;
65                 if (frames > runtime->silence_size)
66                         frames = runtime->silence_size;
67         } else {
68                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
69                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70                         if (avail > runtime->buffer_size)
71                                 avail = runtime->buffer_size;
72                         runtime->silence_filled = avail > 0 ? avail : 0;
73                         runtime->silence_start = (runtime->status->hw_ptr +
74                                                   runtime->silence_filled) %
75                                                  runtime->boundary;
76                 } else {
77                         ofs = runtime->status->hw_ptr;
78                         frames = new_hw_ptr - ofs;
79                         if ((snd_pcm_sframes_t)frames < 0)
80                                 frames += runtime->boundary;
81                         runtime->silence_filled -= frames;
82                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
83                                 runtime->silence_filled = 0;
84                                 runtime->silence_start = new_hw_ptr;
85                         } else {
86                                 runtime->silence_start = ofs;
87                         }
88                 }
89                 frames = runtime->buffer_size - runtime->silence_filled;
90         }
91         if (snd_BUG_ON(frames > runtime->buffer_size))
92                 return;
93         if (frames == 0)
94                 return;
95         ofs = runtime->silence_start % runtime->buffer_size;
96         while (frames > 0) {
97                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
98                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
99                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
100                         if (substream->ops->silence) {
101                                 int err;
102                                 err = substream->ops->silence(substream, -1, ofs, transfer);
103                                 snd_BUG_ON(err < 0);
104                         } else {
105                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
106                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
107                         }
108                 } else {
109                         unsigned int c;
110                         unsigned int channels = runtime->channels;
111                         if (substream->ops->silence) {
112                                 for (c = 0; c < channels; ++c) {
113                                         int err;
114                                         err = substream->ops->silence(substream, c, ofs, transfer);
115                                         snd_BUG_ON(err < 0);
116                                 }
117                         } else {
118                                 size_t dma_csize = runtime->dma_bytes / channels;
119                                 for (c = 0; c < channels; ++c) {
120                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
121                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
122                                 }
123                         }
124                 }
125                 runtime->silence_filled += transfer;
126                 frames -= transfer;
127                 ofs = 0;
128         }
129 }
130
131 static void pcm_debug_name(struct snd_pcm_substream *substream,
132                            char *name, size_t len)
133 {
134         snprintf(name, len, "pcmC%dD%d%c:%d",
135                  substream->pcm->card->number,
136                  substream->pcm->device,
137                  substream->stream ? 'c' : 'p',
138                  substream->number);
139 }
140
141 #define XRUN_DEBUG_BASIC        (1<<0)
142 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
143 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
144 #define XRUN_DEBUG_PERIODUPDATE (1<<3)  /* full period update info */
145 #define XRUN_DEBUG_HWPTRUPDATE  (1<<4)  /* full hwptr update info */
146 #define XRUN_DEBUG_LOG          (1<<5)  /* show last 10 positions on err */
147 #define XRUN_DEBUG_LOGONCE      (1<<6)  /* do above only once */
148
149 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
150
151 #define xrun_debug(substream, mask) \
152                         ((substream)->pstr->xrun_debug & (mask))
153 #else
154 #define xrun_debug(substream, mask)     0
155 #endif
156
157 #define dump_stack_on_xrun(substream) do {                      \
158                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
159                         dump_stack();                           \
160         } while (0)
161
162 static void xrun(struct snd_pcm_substream *substream)
163 {
164         struct snd_pcm_runtime *runtime = substream->runtime;
165
166         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
167                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
168         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
169         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
170                 char name[16];
171                 pcm_debug_name(substream, name, sizeof(name));
172                 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
173                 dump_stack_on_xrun(substream);
174         }
175 }
176
177 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
178 #define hw_ptr_error(substream, fmt, args...)                           \
179         do {                                                            \
180                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
181                         xrun_log_show(substream);                       \
182                         if (printk_ratelimit()) {                       \
183                                 snd_printd("PCM: " fmt, ##args);        \
184                         }                                               \
185                         dump_stack_on_xrun(substream);                  \
186                 }                                                       \
187         } while (0)
188
189 #define XRUN_LOG_CNT    10
190
191 struct hwptr_log_entry {
192         unsigned long jiffies;
193         snd_pcm_uframes_t pos;
194         snd_pcm_uframes_t period_size;
195         snd_pcm_uframes_t buffer_size;
196         snd_pcm_uframes_t old_hw_ptr;
197         snd_pcm_uframes_t hw_ptr_base;
198 };
199
200 struct snd_pcm_hwptr_log {
201         unsigned int idx;
202         unsigned int hit: 1;
203         struct hwptr_log_entry entries[XRUN_LOG_CNT];
204 };
205
206 static void xrun_log(struct snd_pcm_substream *substream,
207                      snd_pcm_uframes_t pos)
208 {
209         struct snd_pcm_runtime *runtime = substream->runtime;
210         struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
211         struct hwptr_log_entry *entry;
212
213         if (log == NULL) {
214                 log = kzalloc(sizeof(*log), GFP_ATOMIC);
215                 if (log == NULL)
216                         return;
217                 runtime->hwptr_log = log;
218         } else {
219                 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
220                         return;
221         }
222         entry = &log->entries[log->idx];
223         entry->jiffies = jiffies;
224         entry->pos = pos;
225         entry->period_size = runtime->period_size;
226         entry->buffer_size = runtime->buffer_size;
227         entry->old_hw_ptr = runtime->status->hw_ptr;
228         entry->hw_ptr_base = runtime->hw_ptr_base;
229         log->idx = (log->idx + 1) % XRUN_LOG_CNT;
230 }
231
232 static void xrun_log_show(struct snd_pcm_substream *substream)
233 {
234         struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
235         struct hwptr_log_entry *entry;
236         char name[16];
237         unsigned int idx;
238         int cnt;
239
240         if (log == NULL)
241                 return;
242         if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
243                 return;
244         pcm_debug_name(substream, name, sizeof(name));
245         for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
246                 entry = &log->entries[idx];
247                 if (entry->period_size == 0)
248                         break;
249                 snd_printd("hwptr log: %s: j=%lu, pos=%ld/%ld/%ld, "
250                            "hwptr=%ld/%ld\n",
251                            name, entry->jiffies, (unsigned long)entry->pos,
252                            (unsigned long)entry->period_size,
253                            (unsigned long)entry->buffer_size,
254                            (unsigned long)entry->old_hw_ptr,
255                            (unsigned long)entry->hw_ptr_base);
256                 idx++;
257                 idx %= XRUN_LOG_CNT;
258         }
259         log->hit = 1;
260 }
261
262 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
263
264 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
265 #define xrun_log(substream, pos)        do { } while (0)
266 #define xrun_log_show(substream)        do { } while (0)
267
268 #endif
269
270 int snd_pcm_update_state(struct snd_pcm_substream *substream,
271                          struct snd_pcm_runtime *runtime)
272 {
273         snd_pcm_uframes_t avail;
274
275         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
276                 avail = snd_pcm_playback_avail(runtime);
277         else
278                 avail = snd_pcm_capture_avail(runtime);
279         if (avail > runtime->avail_max)
280                 runtime->avail_max = avail;
281         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
282                 if (avail >= runtime->buffer_size) {
283                         snd_pcm_drain_done(substream);
284                         return -EPIPE;
285                 }
286         } else {
287                 if (avail >= runtime->stop_threshold) {
288                         xrun(substream);
289                         return -EPIPE;
290                 }
291         }
292         if (runtime->twake) {
293                 if (avail >= runtime->twake)
294                         wake_up(&runtime->tsleep);
295         } else if (avail >= runtime->control->avail_min)
296                 wake_up(&runtime->sleep);
297         return 0;
298 }
299
300 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
301                                   unsigned int in_interrupt)
302 {
303         struct snd_pcm_runtime *runtime = substream->runtime;
304         snd_pcm_uframes_t pos;
305         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
306         snd_pcm_sframes_t hdelta, delta;
307         unsigned long jdelta;
308
309         old_hw_ptr = runtime->status->hw_ptr;
310         pos = substream->ops->pointer(substream);
311         if (pos == SNDRV_PCM_POS_XRUN) {
312                 xrun(substream);
313                 return -EPIPE;
314         }
315         if (pos >= runtime->buffer_size) {
316                 if (printk_ratelimit()) {
317                         char name[16];
318                         pcm_debug_name(substream, name, sizeof(name));
319                         xrun_log_show(substream);
320                         snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
321                                    "buffer size = %ld, period size = %ld\n",
322                                    name, pos, runtime->buffer_size,
323                                    runtime->period_size);
324                 }
325                 pos = 0;
326         }
327         pos -= pos % runtime->min_align;
328         if (xrun_debug(substream, XRUN_DEBUG_LOG))
329                 xrun_log(substream, pos);
330         hw_base = runtime->hw_ptr_base;
331         new_hw_ptr = hw_base + pos;
332         if (in_interrupt) {
333                 /* we know that one period was processed */
334                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
335                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
336                 if (delta > new_hw_ptr) {
337                         /* check for double acknowledged interrupts */
338                         hdelta = jiffies - runtime->hw_ptr_jiffies;
339                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
340                                 hw_base += runtime->buffer_size;
341                                 if (hw_base >= runtime->boundary)
342                                         hw_base = 0;
343                                 new_hw_ptr = hw_base + pos;
344                                 goto __delta;
345                         }
346                 }
347         }
348         /* new_hw_ptr might be lower than old_hw_ptr in case when */
349         /* pointer crosses the end of the ring buffer */
350         if (new_hw_ptr < old_hw_ptr) {
351                 hw_base += runtime->buffer_size;
352                 if (hw_base >= runtime->boundary)
353                         hw_base = 0;
354                 new_hw_ptr = hw_base + pos;
355         }
356       __delta:
357         delta = new_hw_ptr - old_hw_ptr;
358         if (delta < 0)
359                 delta += runtime->boundary;
360         if (xrun_debug(substream, in_interrupt ?
361                         XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
362                 char name[16];
363                 pcm_debug_name(substream, name, sizeof(name));
364                 snd_printd("%s_update: %s: pos=%u/%u/%u, "
365                            "hwptr=%ld/%ld/%ld/%ld\n",
366                            in_interrupt ? "period" : "hwptr",
367                            name,
368                            (unsigned int)pos,
369                            (unsigned int)runtime->period_size,
370                            (unsigned int)runtime->buffer_size,
371                            (unsigned long)delta,
372                            (unsigned long)old_hw_ptr,
373                            (unsigned long)new_hw_ptr,
374                            (unsigned long)runtime->hw_ptr_base);
375         }
376
377         if (runtime->no_period_wakeup) {
378                 snd_pcm_sframes_t xrun_threshold;
379                 /*
380                  * Without regular period interrupts, we have to check
381                  * the elapsed time to detect xruns.
382                  */
383                 jdelta = jiffies - runtime->hw_ptr_jiffies;
384                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
385                         goto no_delta_check;
386                 hdelta = jdelta - delta * HZ / runtime->rate;
387                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
388                 while (hdelta > xrun_threshold) {
389                         delta += runtime->buffer_size;
390                         hw_base += runtime->buffer_size;
391                         if (hw_base >= runtime->boundary)
392                                 hw_base = 0;
393                         new_hw_ptr = hw_base + pos;
394                         hdelta -= runtime->hw_ptr_buffer_jiffies;
395                 }
396                 goto no_delta_check;
397         }
398
399         /* something must be really wrong */
400         if (delta >= runtime->buffer_size + runtime->period_size) {
401                 hw_ptr_error(substream,
402                                "Unexpected hw_pointer value %s"
403                                "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
404                                "old_hw_ptr=%ld)\n",
405                                      in_interrupt ? "[Q] " : "[P]",
406                                      substream->stream, (long)pos,
407                                      (long)new_hw_ptr, (long)old_hw_ptr);
408                 return 0;
409         }
410
411         /* Do jiffies check only in xrun_debug mode */
412         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
413                 goto no_jiffies_check;
414
415         /* Skip the jiffies check for hardwares with BATCH flag.
416          * Such hardware usually just increases the position at each IRQ,
417          * thus it can't give any strange position.
418          */
419         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
420                 goto no_jiffies_check;
421         hdelta = delta;
422         if (hdelta < runtime->delay)
423                 goto no_jiffies_check;
424         hdelta -= runtime->delay;
425         jdelta = jiffies - runtime->hw_ptr_jiffies;
426         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
427                 delta = jdelta /
428                         (((runtime->period_size * HZ) / runtime->rate)
429                                                                 + HZ/100);
430                 /* move new_hw_ptr according jiffies not pos variable */
431                 new_hw_ptr = old_hw_ptr;
432                 hw_base = delta;
433                 /* use loop to avoid checks for delta overflows */
434                 /* the delta value is small or zero in most cases */
435                 while (delta > 0) {
436                         new_hw_ptr += runtime->period_size;
437                         if (new_hw_ptr >= runtime->boundary)
438                                 new_hw_ptr -= runtime->boundary;
439                         delta--;
440                 }
441                 /* align hw_base to buffer_size */
442                 hw_ptr_error(substream,
443                              "hw_ptr skipping! %s"
444                              "(pos=%ld, delta=%ld, period=%ld, "
445                              "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
446                              in_interrupt ? "[Q] " : "",
447                              (long)pos, (long)hdelta,
448                              (long)runtime->period_size, jdelta,
449                              ((hdelta * HZ) / runtime->rate), hw_base,
450                              (unsigned long)old_hw_ptr,
451                              (unsigned long)new_hw_ptr);
452                 /* reset values to proper state */
453                 delta = 0;
454                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
455         }
456  no_jiffies_check:
457         if (delta > runtime->period_size + runtime->period_size / 2) {
458                 hw_ptr_error(substream,
459                              "Lost interrupts? %s"
460                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
461                              "old_hw_ptr=%ld)\n",
462                              in_interrupt ? "[Q] " : "",
463                              substream->stream, (long)delta,
464                              (long)new_hw_ptr,
465                              (long)old_hw_ptr);
466         }
467
468  no_delta_check:
469         if (runtime->status->hw_ptr == new_hw_ptr)
470                 return 0;
471
472         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
473             runtime->silence_size > 0)
474                 snd_pcm_playback_silence(substream, new_hw_ptr);
475
476         if (in_interrupt) {
477                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
478                 if (delta < 0)
479                         delta += runtime->boundary;
480                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
481                 runtime->hw_ptr_interrupt += delta;
482                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
483                         runtime->hw_ptr_interrupt -= runtime->boundary;
484         }
485         runtime->hw_ptr_base = hw_base;
486         runtime->status->hw_ptr = new_hw_ptr;
487         runtime->hw_ptr_jiffies = jiffies;
488         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
489                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
490
491         return snd_pcm_update_state(substream, runtime);
492 }
493
494 /* CAUTION: call it with irq disabled */
495 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
496 {
497         return snd_pcm_update_hw_ptr0(substream, 0);
498 }
499
500 /**
501  * snd_pcm_set_ops - set the PCM operators
502  * @pcm: the pcm instance
503  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
504  * @ops: the operator table
505  *
506  * Sets the given PCM operators to the pcm instance.
507  */
508 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
509 {
510         struct snd_pcm_str *stream = &pcm->streams[direction];
511         struct snd_pcm_substream *substream;
512         
513         for (substream = stream->substream; substream != NULL; substream = substream->next)
514                 substream->ops = ops;
515 }
516
517 EXPORT_SYMBOL(snd_pcm_set_ops);
518
519 /**
520  * snd_pcm_sync - set the PCM sync id
521  * @substream: the pcm substream
522  *
523  * Sets the PCM sync identifier for the card.
524  */
525 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
526 {
527         struct snd_pcm_runtime *runtime = substream->runtime;
528         
529         runtime->sync.id32[0] = substream->pcm->card->number;
530         runtime->sync.id32[1] = -1;
531         runtime->sync.id32[2] = -1;
532         runtime->sync.id32[3] = -1;
533 }
534
535 EXPORT_SYMBOL(snd_pcm_set_sync);
536
537 /*
538  *  Standard ioctl routine
539  */
540
541 static inline unsigned int div32(unsigned int a, unsigned int b, 
542                                  unsigned int *r)
543 {
544         if (b == 0) {
545                 *r = 0;
546                 return UINT_MAX;
547         }
548         *r = a % b;
549         return a / b;
550 }
551
552 static inline unsigned int div_down(unsigned int a, unsigned int b)
553 {
554         if (b == 0)
555                 return UINT_MAX;
556         return a / b;
557 }
558
559 static inline unsigned int div_up(unsigned int a, unsigned int b)
560 {
561         unsigned int r;
562         unsigned int q;
563         if (b == 0)
564                 return UINT_MAX;
565         q = div32(a, b, &r);
566         if (r)
567                 ++q;
568         return q;
569 }
570
571 static inline unsigned int mul(unsigned int a, unsigned int b)
572 {
573         if (a == 0)
574                 return 0;
575         if (div_down(UINT_MAX, a) < b)
576                 return UINT_MAX;
577         return a * b;
578 }
579
580 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
581                                     unsigned int c, unsigned int *r)
582 {
583         u_int64_t n = (u_int64_t) a * b;
584         if (c == 0) {
585                 snd_BUG_ON(!n);
586                 *r = 0;
587                 return UINT_MAX;
588         }
589         n = div_u64_rem(n, c, r);
590         if (n >= UINT_MAX) {
591                 *r = 0;
592                 return UINT_MAX;
593         }
594         return n;
595 }
596
597 /**
598  * snd_interval_refine - refine the interval value of configurator
599  * @i: the interval value to refine
600  * @v: the interval value to refer to
601  *
602  * Refines the interval value with the reference value.
603  * The interval is changed to the range satisfying both intervals.
604  * The interval status (min, max, integer, etc.) are evaluated.
605  *
606  * Returns non-zero if the value is changed, zero if not changed.
607  */
608 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
609 {
610         int changed = 0;
611         if (snd_BUG_ON(snd_interval_empty(i)))
612                 return -EINVAL;
613         if (i->min < v->min) {
614                 i->min = v->min;
615                 i->openmin = v->openmin;
616                 changed = 1;
617         } else if (i->min == v->min && !i->openmin && v->openmin) {
618                 i->openmin = 1;
619                 changed = 1;
620         }
621         if (i->max > v->max) {
622                 i->max = v->max;
623                 i->openmax = v->openmax;
624                 changed = 1;
625         } else if (i->max == v->max && !i->openmax && v->openmax) {
626                 i->openmax = 1;
627                 changed = 1;
628         }
629         if (!i->integer && v->integer) {
630                 i->integer = 1;
631                 changed = 1;
632         }
633         if (i->integer) {
634                 if (i->openmin) {
635                         i->min++;
636                         i->openmin = 0;
637                 }
638                 if (i->openmax) {
639                         i->max--;
640                         i->openmax = 0;
641                 }
642         } else if (!i->openmin && !i->openmax && i->min == i->max)
643                 i->integer = 1;
644         if (snd_interval_checkempty(i)) {
645                 snd_interval_none(i);
646                 return -EINVAL;
647         }
648         return changed;
649 }
650
651 EXPORT_SYMBOL(snd_interval_refine);
652
653 static int snd_interval_refine_first(struct snd_interval *i)
654 {
655         if (snd_BUG_ON(snd_interval_empty(i)))
656                 return -EINVAL;
657         if (snd_interval_single(i))
658                 return 0;
659         i->max = i->min;
660         i->openmax = i->openmin;
661         if (i->openmax)
662                 i->max++;
663         return 1;
664 }
665
666 static int snd_interval_refine_last(struct snd_interval *i)
667 {
668         if (snd_BUG_ON(snd_interval_empty(i)))
669                 return -EINVAL;
670         if (snd_interval_single(i))
671                 return 0;
672         i->min = i->max;
673         i->openmin = i->openmax;
674         if (i->openmin)
675                 i->min--;
676         return 1;
677 }
678
679 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
680 {
681         if (a->empty || b->empty) {
682                 snd_interval_none(c);
683                 return;
684         }
685         c->empty = 0;
686         c->min = mul(a->min, b->min);
687         c->openmin = (a->openmin || b->openmin);
688         c->max = mul(a->max,  b->max);
689         c->openmax = (a->openmax || b->openmax);
690         c->integer = (a->integer && b->integer);
691 }
692
693 /**
694  * snd_interval_div - refine the interval value with division
695  * @a: dividend
696  * @b: divisor
697  * @c: quotient
698  *
699  * c = a / b
700  *
701  * Returns non-zero if the value is changed, zero if not changed.
702  */
703 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
704 {
705         unsigned int r;
706         if (a->empty || b->empty) {
707                 snd_interval_none(c);
708                 return;
709         }
710         c->empty = 0;
711         c->min = div32(a->min, b->max, &r);
712         c->openmin = (r || a->openmin || b->openmax);
713         if (b->min > 0) {
714                 c->max = div32(a->max, b->min, &r);
715                 if (r) {
716                         c->max++;
717                         c->openmax = 1;
718                 } else
719                         c->openmax = (a->openmax || b->openmin);
720         } else {
721                 c->max = UINT_MAX;
722                 c->openmax = 0;
723         }
724         c->integer = 0;
725 }
726
727 /**
728  * snd_interval_muldivk - refine the interval value
729  * @a: dividend 1
730  * @b: dividend 2
731  * @k: divisor (as integer)
732  * @c: result
733   *
734  * c = a * b / k
735  *
736  * Returns non-zero if the value is changed, zero if not changed.
737  */
738 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
739                       unsigned int k, struct snd_interval *c)
740 {
741         unsigned int r;
742         if (a->empty || b->empty) {
743                 snd_interval_none(c);
744                 return;
745         }
746         c->empty = 0;
747         c->min = muldiv32(a->min, b->min, k, &r);
748         c->openmin = (r || a->openmin || b->openmin);
749         c->max = muldiv32(a->max, b->max, k, &r);
750         if (r) {
751                 c->max++;
752                 c->openmax = 1;
753         } else
754                 c->openmax = (a->openmax || b->openmax);
755         c->integer = 0;
756 }
757
758 /**
759  * snd_interval_mulkdiv - refine the interval value
760  * @a: dividend 1
761  * @k: dividend 2 (as integer)
762  * @b: divisor
763  * @c: result
764  *
765  * c = a * k / b
766  *
767  * Returns non-zero if the value is changed, zero if not changed.
768  */
769 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
770                       const struct snd_interval *b, struct snd_interval *c)
771 {
772         unsigned int r;
773         if (a->empty || b->empty) {
774                 snd_interval_none(c);
775                 return;
776         }
777         c->empty = 0;
778         c->min = muldiv32(a->min, k, b->max, &r);
779         c->openmin = (r || a->openmin || b->openmax);
780         if (b->min > 0) {
781                 c->max = muldiv32(a->max, k, b->min, &r);
782                 if (r) {
783                         c->max++;
784                         c->openmax = 1;
785                 } else
786                         c->openmax = (a->openmax || b->openmin);
787         } else {
788                 c->max = UINT_MAX;
789                 c->openmax = 0;
790         }
791         c->integer = 0;
792 }
793
794 /* ---- */
795
796
797 /**
798  * snd_interval_ratnum - refine the interval value
799  * @i: interval to refine
800  * @rats_count: number of ratnum_t 
801  * @rats: ratnum_t array
802  * @nump: pointer to store the resultant numerator
803  * @denp: pointer to store the resultant denominator
804  *
805  * Returns non-zero if the value is changed, zero if not changed.
806  */
807 int snd_interval_ratnum(struct snd_interval *i,
808                         unsigned int rats_count, struct snd_ratnum *rats,
809                         unsigned int *nump, unsigned int *denp)
810 {
811         unsigned int best_num, best_den;
812         int best_diff;
813         unsigned int k;
814         struct snd_interval t;
815         int err;
816         unsigned int result_num, result_den;
817         int result_diff;
818
819         best_num = best_den = best_diff = 0;
820         for (k = 0; k < rats_count; ++k) {
821                 unsigned int num = rats[k].num;
822                 unsigned int den;
823                 unsigned int q = i->min;
824                 int diff;
825                 if (q == 0)
826                         q = 1;
827                 den = div_up(num, q);
828                 if (den < rats[k].den_min)
829                         continue;
830                 if (den > rats[k].den_max)
831                         den = rats[k].den_max;
832                 else {
833                         unsigned int r;
834                         r = (den - rats[k].den_min) % rats[k].den_step;
835                         if (r != 0)
836                                 den -= r;
837                 }
838                 diff = num - q * den;
839                 if (diff < 0)
840                         diff = -diff;
841                 if (best_num == 0 ||
842                     diff * best_den < best_diff * den) {
843                         best_diff = diff;
844                         best_den = den;
845                         best_num = num;
846                 }
847         }
848         if (best_den == 0) {
849                 i->empty = 1;
850                 return -EINVAL;
851         }
852         t.min = div_down(best_num, best_den);
853         t.openmin = !!(best_num % best_den);
854         
855         result_num = best_num;
856         result_diff = best_diff;
857         result_den = best_den;
858         best_num = best_den = best_diff = 0;
859         for (k = 0; k < rats_count; ++k) {
860                 unsigned int num = rats[k].num;
861                 unsigned int den;
862                 unsigned int q = i->max;
863                 int diff;
864                 if (q == 0) {
865                         i->empty = 1;
866                         return -EINVAL;
867                 }
868                 den = div_down(num, q);
869                 if (den > rats[k].den_max)
870                         continue;
871                 if (den < rats[k].den_min)
872                         den = rats[k].den_min;
873                 else {
874                         unsigned int r;
875                         r = (den - rats[k].den_min) % rats[k].den_step;
876                         if (r != 0)
877                                 den += rats[k].den_step - r;
878                 }
879                 diff = q * den - num;
880                 if (diff < 0)
881                         diff = -diff;
882                 if (best_num == 0 ||
883                     diff * best_den < best_diff * den) {
884                         best_diff = diff;
885                         best_den = den;
886                         best_num = num;
887                 }
888         }
889         if (best_den == 0) {
890                 i->empty = 1;
891                 return -EINVAL;
892         }
893         t.max = div_up(best_num, best_den);
894         t.openmax = !!(best_num % best_den);
895         t.integer = 0;
896         err = snd_interval_refine(i, &t);
897         if (err < 0)
898                 return err;
899
900         if (snd_interval_single(i)) {
901                 if (best_diff * result_den < result_diff * best_den) {
902                         result_num = best_num;
903                         result_den = best_den;
904                 }
905                 if (nump)
906                         *nump = result_num;
907                 if (denp)
908                         *denp = result_den;
909         }
910         return err;
911 }
912
913 EXPORT_SYMBOL(snd_interval_ratnum);
914
915 /**
916  * snd_interval_ratden - refine the interval value
917  * @i: interval to refine
918  * @rats_count: number of struct ratden
919  * @rats: struct ratden array
920  * @nump: pointer to store the resultant numerator
921  * @denp: pointer to store the resultant denominator
922  *
923  * Returns non-zero if the value is changed, zero if not changed.
924  */
925 static int snd_interval_ratden(struct snd_interval *i,
926                                unsigned int rats_count, struct snd_ratden *rats,
927                                unsigned int *nump, unsigned int *denp)
928 {
929         unsigned int best_num, best_diff, best_den;
930         unsigned int k;
931         struct snd_interval t;
932         int err;
933
934         best_num = best_den = best_diff = 0;
935         for (k = 0; k < rats_count; ++k) {
936                 unsigned int num;
937                 unsigned int den = rats[k].den;
938                 unsigned int q = i->min;
939                 int diff;
940                 num = mul(q, den);
941                 if (num > rats[k].num_max)
942                         continue;
943                 if (num < rats[k].num_min)
944                         num = rats[k].num_max;
945                 else {
946                         unsigned int r;
947                         r = (num - rats[k].num_min) % rats[k].num_step;
948                         if (r != 0)
949                                 num += rats[k].num_step - r;
950                 }
951                 diff = num - q * den;
952                 if (best_num == 0 ||
953                     diff * best_den < best_diff * den) {
954                         best_diff = diff;
955                         best_den = den;
956                         best_num = num;
957                 }
958         }
959         if (best_den == 0) {
960                 i->empty = 1;
961                 return -EINVAL;
962         }
963         t.min = div_down(best_num, best_den);
964         t.openmin = !!(best_num % best_den);
965         
966         best_num = best_den = best_diff = 0;
967         for (k = 0; k < rats_count; ++k) {
968                 unsigned int num;
969                 unsigned int den = rats[k].den;
970                 unsigned int q = i->max;
971                 int diff;
972                 num = mul(q, den);
973                 if (num < rats[k].num_min)
974                         continue;
975                 if (num > rats[k].num_max)
976                         num = rats[k].num_max;
977                 else {
978                         unsigned int r;
979                         r = (num - rats[k].num_min) % rats[k].num_step;
980                         if (r != 0)
981                                 num -= r;
982                 }
983                 diff = q * den - num;
984                 if (best_num == 0 ||
985                     diff * best_den < best_diff * den) {
986                         best_diff = diff;
987                         best_den = den;
988                         best_num = num;
989                 }
990         }
991         if (best_den == 0) {
992                 i->empty = 1;
993                 return -EINVAL;
994         }
995         t.max = div_up(best_num, best_den);
996         t.openmax = !!(best_num % best_den);
997         t.integer = 0;
998         err = snd_interval_refine(i, &t);
999         if (err < 0)
1000                 return err;
1001
1002         if (snd_interval_single(i)) {
1003                 if (nump)
1004                         *nump = best_num;
1005                 if (denp)
1006                         *denp = best_den;
1007         }
1008         return err;
1009 }
1010
1011 /**
1012  * snd_interval_list - refine the interval value from the list
1013  * @i: the interval value to refine
1014  * @count: the number of elements in the list
1015  * @list: the value list
1016  * @mask: the bit-mask to evaluate
1017  *
1018  * Refines the interval value from the list.
1019  * When mask is non-zero, only the elements corresponding to bit 1 are
1020  * evaluated.
1021  *
1022  * Returns non-zero if the value is changed, zero if not changed.
1023  */
1024 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
1025 {
1026         unsigned int k;
1027         struct snd_interval list_range;
1028
1029         if (!count) {
1030                 i->empty = 1;
1031                 return -EINVAL;
1032         }
1033         snd_interval_any(&list_range);
1034         list_range.min = UINT_MAX;
1035         list_range.max = 0;
1036         for (k = 0; k < count; k++) {
1037                 if (mask && !(mask & (1 << k)))
1038                         continue;
1039                 if (!snd_interval_test(i, list[k]))
1040                         continue;
1041                 list_range.min = min(list_range.min, list[k]);
1042                 list_range.max = max(list_range.max, list[k]);
1043         }
1044         return snd_interval_refine(i, &list_range);
1045 }
1046
1047 EXPORT_SYMBOL(snd_interval_list);
1048
1049 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1050 {
1051         unsigned int n;
1052         int changed = 0;
1053         n = (i->min - min) % step;
1054         if (n != 0 || i->openmin) {
1055                 i->min += step - n;
1056                 changed = 1;
1057         }
1058         n = (i->max - min) % step;
1059         if (n != 0 || i->openmax) {
1060                 i->max -= n;
1061                 changed = 1;
1062         }
1063         if (snd_interval_checkempty(i)) {
1064                 i->empty = 1;
1065                 return -EINVAL;
1066         }
1067         return changed;
1068 }
1069
1070 /* Info constraints helpers */
1071
1072 /**
1073  * snd_pcm_hw_rule_add - add the hw-constraint rule
1074  * @runtime: the pcm runtime instance
1075  * @cond: condition bits
1076  * @var: the variable to evaluate
1077  * @func: the evaluation function
1078  * @private: the private data pointer passed to function
1079  * @dep: the dependent variables
1080  *
1081  * Returns zero if successful, or a negative error code on failure.
1082  */
1083 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1084                         int var,
1085                         snd_pcm_hw_rule_func_t func, void *private,
1086                         int dep, ...)
1087 {
1088         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1089         struct snd_pcm_hw_rule *c;
1090         unsigned int k;
1091         va_list args;
1092         va_start(args, dep);
1093         if (constrs->rules_num >= constrs->rules_all) {
1094                 struct snd_pcm_hw_rule *new;
1095                 unsigned int new_rules = constrs->rules_all + 16;
1096                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1097                 if (!new) {
1098                         va_end(args);
1099                         return -ENOMEM;
1100                 }
1101                 if (constrs->rules) {
1102                         memcpy(new, constrs->rules,
1103                                constrs->rules_num * sizeof(*c));
1104                         kfree(constrs->rules);
1105                 }
1106                 constrs->rules = new;
1107                 constrs->rules_all = new_rules;
1108         }
1109         c = &constrs->rules[constrs->rules_num];
1110         c->cond = cond;
1111         c->func = func;
1112         c->var = var;
1113         c->private = private;
1114         k = 0;
1115         while (1) {
1116                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1117                         va_end(args);
1118                         return -EINVAL;
1119                 }
1120                 c->deps[k++] = dep;
1121                 if (dep < 0)
1122                         break;
1123                 dep = va_arg(args, int);
1124         }
1125         constrs->rules_num++;
1126         va_end(args);
1127         return 0;
1128 }
1129
1130 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1131
1132 /**
1133  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1134  * @runtime: PCM runtime instance
1135  * @var: hw_params variable to apply the mask
1136  * @mask: the bitmap mask
1137  *
1138  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1139  */
1140 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1141                                u_int32_t mask)
1142 {
1143         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1144         struct snd_mask *maskp = constrs_mask(constrs, var);
1145         *maskp->bits &= mask;
1146         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1147         if (*maskp->bits == 0)
1148                 return -EINVAL;
1149         return 0;
1150 }
1151
1152 /**
1153  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1154  * @runtime: PCM runtime instance
1155  * @var: hw_params variable to apply the mask
1156  * @mask: the 64bit bitmap mask
1157  *
1158  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1159  */
1160 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1161                                  u_int64_t mask)
1162 {
1163         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1164         struct snd_mask *maskp = constrs_mask(constrs, var);
1165         maskp->bits[0] &= (u_int32_t)mask;
1166         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1167         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1168         if (! maskp->bits[0] && ! maskp->bits[1])
1169                 return -EINVAL;
1170         return 0;
1171 }
1172
1173 /**
1174  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1175  * @runtime: PCM runtime instance
1176  * @var: hw_params variable to apply the integer constraint
1177  *
1178  * Apply the constraint of integer to an interval parameter.
1179  */
1180 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1181 {
1182         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1183         return snd_interval_setinteger(constrs_interval(constrs, var));
1184 }
1185
1186 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1187
1188 /**
1189  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1190  * @runtime: PCM runtime instance
1191  * @var: hw_params variable to apply the range
1192  * @min: the minimal value
1193  * @max: the maximal value
1194  * 
1195  * Apply the min/max range constraint to an interval parameter.
1196  */
1197 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1198                                  unsigned int min, unsigned int max)
1199 {
1200         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1201         struct snd_interval t;
1202         t.min = min;
1203         t.max = max;
1204         t.openmin = t.openmax = 0;
1205         t.integer = 0;
1206         return snd_interval_refine(constrs_interval(constrs, var), &t);
1207 }
1208
1209 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1210
1211 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1212                                 struct snd_pcm_hw_rule *rule)
1213 {
1214         struct snd_pcm_hw_constraint_list *list = rule->private;
1215         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1216 }               
1217
1218
1219 /**
1220  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1221  * @runtime: PCM runtime instance
1222  * @cond: condition bits
1223  * @var: hw_params variable to apply the list constraint
1224  * @l: list
1225  * 
1226  * Apply the list of constraints to an interval parameter.
1227  */
1228 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1229                                unsigned int cond,
1230                                snd_pcm_hw_param_t var,
1231                                struct snd_pcm_hw_constraint_list *l)
1232 {
1233         return snd_pcm_hw_rule_add(runtime, cond, var,
1234                                    snd_pcm_hw_rule_list, l,
1235                                    var, -1);
1236 }
1237
1238 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1239
1240 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1241                                    struct snd_pcm_hw_rule *rule)
1242 {
1243         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1244         unsigned int num = 0, den = 0;
1245         int err;
1246         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1247                                   r->nrats, r->rats, &num, &den);
1248         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1249                 params->rate_num = num;
1250                 params->rate_den = den;
1251         }
1252         return err;
1253 }
1254
1255 /**
1256  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1257  * @runtime: PCM runtime instance
1258  * @cond: condition bits
1259  * @var: hw_params variable to apply the ratnums constraint
1260  * @r: struct snd_ratnums constriants
1261  */
1262 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1263                                   unsigned int cond,
1264                                   snd_pcm_hw_param_t var,
1265                                   struct snd_pcm_hw_constraint_ratnums *r)
1266 {
1267         return snd_pcm_hw_rule_add(runtime, cond, var,
1268                                    snd_pcm_hw_rule_ratnums, r,
1269                                    var, -1);
1270 }
1271
1272 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1273
1274 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1275                                    struct snd_pcm_hw_rule *rule)
1276 {
1277         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1278         unsigned int num = 0, den = 0;
1279         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1280                                   r->nrats, r->rats, &num, &den);
1281         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1282                 params->rate_num = num;
1283                 params->rate_den = den;
1284         }
1285         return err;
1286 }
1287
1288 /**
1289  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1290  * @runtime: PCM runtime instance
1291  * @cond: condition bits
1292  * @var: hw_params variable to apply the ratdens constraint
1293  * @r: struct snd_ratdens constriants
1294  */
1295 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1296                                   unsigned int cond,
1297                                   snd_pcm_hw_param_t var,
1298                                   struct snd_pcm_hw_constraint_ratdens *r)
1299 {
1300         return snd_pcm_hw_rule_add(runtime, cond, var,
1301                                    snd_pcm_hw_rule_ratdens, r,
1302                                    var, -1);
1303 }
1304
1305 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1306
1307 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1308                                   struct snd_pcm_hw_rule *rule)
1309 {
1310         unsigned int l = (unsigned long) rule->private;
1311         int width = l & 0xffff;
1312         unsigned int msbits = l >> 16;
1313         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1314         if (snd_interval_single(i) && snd_interval_value(i) == width)
1315                 params->msbits = msbits;
1316         return 0;
1317 }
1318
1319 /**
1320  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1321  * @runtime: PCM runtime instance
1322  * @cond: condition bits
1323  * @width: sample bits width
1324  * @msbits: msbits width
1325  */
1326 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1327                                  unsigned int cond,
1328                                  unsigned int width,
1329                                  unsigned int msbits)
1330 {
1331         unsigned long l = (msbits << 16) | width;
1332         return snd_pcm_hw_rule_add(runtime, cond, -1,
1333                                     snd_pcm_hw_rule_msbits,
1334                                     (void*) l,
1335                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1336 }
1337
1338 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1339
1340 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1341                                 struct snd_pcm_hw_rule *rule)
1342 {
1343         unsigned long step = (unsigned long) rule->private;
1344         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1345 }
1346
1347 /**
1348  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1349  * @runtime: PCM runtime instance
1350  * @cond: condition bits
1351  * @var: hw_params variable to apply the step constraint
1352  * @step: step size
1353  */
1354 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1355                                unsigned int cond,
1356                                snd_pcm_hw_param_t var,
1357                                unsigned long step)
1358 {
1359         return snd_pcm_hw_rule_add(runtime, cond, var, 
1360                                    snd_pcm_hw_rule_step, (void *) step,
1361                                    var, -1);
1362 }
1363
1364 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1365
1366 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1367 {
1368         static unsigned int pow2_sizes[] = {
1369                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1370                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1371                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1372                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1373         };
1374         return snd_interval_list(hw_param_interval(params, rule->var),
1375                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1376 }               
1377
1378 /**
1379  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1380  * @runtime: PCM runtime instance
1381  * @cond: condition bits
1382  * @var: hw_params variable to apply the power-of-2 constraint
1383  */
1384 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1385                                unsigned int cond,
1386                                snd_pcm_hw_param_t var)
1387 {
1388         return snd_pcm_hw_rule_add(runtime, cond, var, 
1389                                    snd_pcm_hw_rule_pow2, NULL,
1390                                    var, -1);
1391 }
1392
1393 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1394
1395 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1396                                   snd_pcm_hw_param_t var)
1397 {
1398         if (hw_is_mask(var)) {
1399                 snd_mask_any(hw_param_mask(params, var));
1400                 params->cmask |= 1 << var;
1401                 params->rmask |= 1 << var;
1402                 return;
1403         }
1404         if (hw_is_interval(var)) {
1405                 snd_interval_any(hw_param_interval(params, var));
1406                 params->cmask |= 1 << var;
1407                 params->rmask |= 1 << var;
1408                 return;
1409         }
1410         snd_BUG();
1411 }
1412
1413 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1414 {
1415         unsigned int k;
1416         memset(params, 0, sizeof(*params));
1417         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1418                 _snd_pcm_hw_param_any(params, k);
1419         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1420                 _snd_pcm_hw_param_any(params, k);
1421         params->info = ~0U;
1422 }
1423
1424 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1425
1426 /**
1427  * snd_pcm_hw_param_value - return @params field @var value
1428  * @params: the hw_params instance
1429  * @var: parameter to retrieve
1430  * @dir: pointer to the direction (-1,0,1) or %NULL
1431  *
1432  * Return the value for field @var if it's fixed in configuration space
1433  * defined by @params. Return -%EINVAL otherwise.
1434  */
1435 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1436                            snd_pcm_hw_param_t var, int *dir)
1437 {
1438         if (hw_is_mask(var)) {
1439                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1440                 if (!snd_mask_single(mask))
1441                         return -EINVAL;
1442                 if (dir)
1443                         *dir = 0;
1444                 return snd_mask_value(mask);
1445         }
1446         if (hw_is_interval(var)) {
1447                 const struct snd_interval *i = hw_param_interval_c(params, var);
1448                 if (!snd_interval_single(i))
1449                         return -EINVAL;
1450                 if (dir)
1451                         *dir = i->openmin;
1452                 return snd_interval_value(i);
1453         }
1454         return -EINVAL;
1455 }
1456
1457 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1458
1459 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1460                                 snd_pcm_hw_param_t var)
1461 {
1462         if (hw_is_mask(var)) {
1463                 snd_mask_none(hw_param_mask(params, var));
1464                 params->cmask |= 1 << var;
1465                 params->rmask |= 1 << var;
1466         } else if (hw_is_interval(var)) {
1467                 snd_interval_none(hw_param_interval(params, var));
1468                 params->cmask |= 1 << var;
1469                 params->rmask |= 1 << var;
1470         } else {
1471                 snd_BUG();
1472         }
1473 }
1474
1475 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1476
1477 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1478                                    snd_pcm_hw_param_t var)
1479 {
1480         int changed;
1481         if (hw_is_mask(var))
1482                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1483         else if (hw_is_interval(var))
1484                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1485         else
1486                 return -EINVAL;
1487         if (changed) {
1488                 params->cmask |= 1 << var;
1489                 params->rmask |= 1 << var;
1490         }
1491         return changed;
1492 }
1493
1494
1495 /**
1496  * snd_pcm_hw_param_first - refine config space and return minimum value
1497  * @pcm: PCM instance
1498  * @params: the hw_params instance
1499  * @var: parameter to retrieve
1500  * @dir: pointer to the direction (-1,0,1) or %NULL
1501  *
1502  * Inside configuration space defined by @params remove from @var all
1503  * values > minimum. Reduce configuration space accordingly.
1504  * Return the minimum.
1505  */
1506 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1507                            struct snd_pcm_hw_params *params, 
1508                            snd_pcm_hw_param_t var, int *dir)
1509 {
1510         int changed = _snd_pcm_hw_param_first(params, var);
1511         if (changed < 0)
1512                 return changed;
1513         if (params->rmask) {
1514                 int err = snd_pcm_hw_refine(pcm, params);
1515                 if (snd_BUG_ON(err < 0))
1516                         return err;
1517         }
1518         return snd_pcm_hw_param_value(params, var, dir);
1519 }
1520
1521 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1522
1523 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1524                                   snd_pcm_hw_param_t var)
1525 {
1526         int changed;
1527         if (hw_is_mask(var))
1528                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1529         else if (hw_is_interval(var))
1530                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1531         else
1532                 return -EINVAL;
1533         if (changed) {
1534                 params->cmask |= 1 << var;
1535                 params->rmask |= 1 << var;
1536         }
1537         return changed;
1538 }
1539
1540
1541 /**
1542  * snd_pcm_hw_param_last - refine config space and return maximum value
1543  * @pcm: PCM instance
1544  * @params: the hw_params instance
1545  * @var: parameter to retrieve
1546  * @dir: pointer to the direction (-1,0,1) or %NULL
1547  *
1548  * Inside configuration space defined by @params remove from @var all
1549  * values < maximum. Reduce configuration space accordingly.
1550  * Return the maximum.
1551  */
1552 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1553                           struct snd_pcm_hw_params *params,
1554                           snd_pcm_hw_param_t var, int *dir)
1555 {
1556         int changed = _snd_pcm_hw_param_last(params, var);
1557         if (changed < 0)
1558                 return changed;
1559         if (params->rmask) {
1560                 int err = snd_pcm_hw_refine(pcm, params);
1561                 if (snd_BUG_ON(err < 0))
1562                         return err;
1563         }
1564         return snd_pcm_hw_param_value(params, var, dir);
1565 }
1566
1567 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1568
1569 /**
1570  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1571  * @pcm: PCM instance
1572  * @params: the hw_params instance
1573  *
1574  * Choose one configuration from configuration space defined by @params.
1575  * The configuration chosen is that obtained fixing in this order:
1576  * first access, first format, first subformat, min channels,
1577  * min rate, min period time, max buffer size, min tick time
1578  */
1579 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1580                              struct snd_pcm_hw_params *params)
1581 {
1582         static int vars[] = {
1583                 SNDRV_PCM_HW_PARAM_ACCESS,
1584                 SNDRV_PCM_HW_PARAM_FORMAT,
1585                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1586                 SNDRV_PCM_HW_PARAM_CHANNELS,
1587                 SNDRV_PCM_HW_PARAM_RATE,
1588                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1589                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1590                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1591                 -1
1592         };
1593         int err, *v;
1594
1595         for (v = vars; *v != -1; v++) {
1596                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1597                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1598                 else
1599                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1600                 if (snd_BUG_ON(err < 0))
1601                         return err;
1602         }
1603         return 0;
1604 }
1605
1606 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1607                                    void *arg)
1608 {
1609         struct snd_pcm_runtime *runtime = substream->runtime;
1610         unsigned long flags;
1611         snd_pcm_stream_lock_irqsave(substream, flags);
1612         if (snd_pcm_running(substream) &&
1613             snd_pcm_update_hw_ptr(substream) >= 0)
1614                 runtime->status->hw_ptr %= runtime->buffer_size;
1615         else
1616                 runtime->status->hw_ptr = 0;
1617         snd_pcm_stream_unlock_irqrestore(substream, flags);
1618         return 0;
1619 }
1620
1621 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1622                                           void *arg)
1623 {
1624         struct snd_pcm_channel_info *info = arg;
1625         struct snd_pcm_runtime *runtime = substream->runtime;
1626         int width;
1627         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1628                 info->offset = -1;
1629                 return 0;
1630         }
1631         width = snd_pcm_format_physical_width(runtime->format);
1632         if (width < 0)
1633                 return width;
1634         info->offset = 0;
1635         switch (runtime->access) {
1636         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1637         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1638                 info->first = info->channel * width;
1639                 info->step = runtime->channels * width;
1640                 break;
1641         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1642         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1643         {
1644                 size_t size = runtime->dma_bytes / runtime->channels;
1645                 info->first = info->channel * size * 8;
1646                 info->step = width;
1647                 break;
1648         }
1649         default:
1650                 snd_BUG();
1651                 break;
1652         }
1653         return 0;
1654 }
1655
1656 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1657                                        void *arg)
1658 {
1659         struct snd_pcm_hw_params *params = arg;
1660         snd_pcm_format_t format;
1661         int channels, width;
1662
1663         params->fifo_size = substream->runtime->hw.fifo_size;
1664         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1665                 format = params_format(params);
1666                 channels = params_channels(params);
1667                 width = snd_pcm_format_physical_width(format);
1668                 params->fifo_size /= width * channels;
1669         }
1670         return 0;
1671 }
1672
1673 /**
1674  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1675  * @substream: the pcm substream instance
1676  * @cmd: ioctl command
1677  * @arg: ioctl argument
1678  *
1679  * Processes the generic ioctl commands for PCM.
1680  * Can be passed as the ioctl callback for PCM ops.
1681  *
1682  * Returns zero if successful, or a negative error code on failure.
1683  */
1684 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1685                       unsigned int cmd, void *arg)
1686 {
1687         switch (cmd) {
1688         case SNDRV_PCM_IOCTL1_INFO:
1689                 return 0;
1690         case SNDRV_PCM_IOCTL1_RESET:
1691                 return snd_pcm_lib_ioctl_reset(substream, arg);
1692         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1693                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1694         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1695                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1696         }
1697         return -ENXIO;
1698 }
1699
1700 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1701
1702 /**
1703  * snd_pcm_period_elapsed - update the pcm status for the next period
1704  * @substream: the pcm substream instance
1705  *
1706  * This function is called from the interrupt handler when the
1707  * PCM has processed the period size.  It will update the current
1708  * pointer, wake up sleepers, etc.
1709  *
1710  * Even if more than one periods have elapsed since the last call, you
1711  * have to call this only once.
1712  */
1713 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1714 {
1715         struct snd_pcm_runtime *runtime;
1716         unsigned long flags;
1717
1718         if (PCM_RUNTIME_CHECK(substream))
1719                 return;
1720         runtime = substream->runtime;
1721
1722         if (runtime->transfer_ack_begin)
1723                 runtime->transfer_ack_begin(substream);
1724
1725         snd_pcm_stream_lock_irqsave(substream, flags);
1726         if (!snd_pcm_running(substream) ||
1727             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1728                 goto _end;
1729
1730         if (substream->timer_running)
1731                 snd_timer_interrupt(substream->timer, 1);
1732  _end:
1733         snd_pcm_stream_unlock_irqrestore(substream, flags);
1734         if (runtime->transfer_ack_end)
1735                 runtime->transfer_ack_end(substream);
1736         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1737 }
1738
1739 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1740
1741 /*
1742  * Wait until avail_min data becomes available
1743  * Returns a negative error code if any error occurs during operation.
1744  * The available space is stored on availp.  When err = 0 and avail = 0
1745  * on the capture stream, it indicates the stream is in DRAINING state.
1746  */
1747 static int wait_for_avail(struct snd_pcm_substream *substream,
1748                               snd_pcm_uframes_t *availp)
1749 {
1750         struct snd_pcm_runtime *runtime = substream->runtime;
1751         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1752         wait_queue_t wait;
1753         int err = 0;
1754         snd_pcm_uframes_t avail = 0;
1755         long tout;
1756
1757         init_waitqueue_entry(&wait, current);
1758         add_wait_queue(&runtime->tsleep, &wait);
1759         for (;;) {
1760                 if (signal_pending(current)) {
1761                         err = -ERESTARTSYS;
1762                         break;
1763                 }
1764                 set_current_state(TASK_INTERRUPTIBLE);
1765                 snd_pcm_stream_unlock_irq(substream);
1766                 tout = schedule_timeout(msecs_to_jiffies(10000));
1767                 snd_pcm_stream_lock_irq(substream);
1768                 switch (runtime->status->state) {
1769                 case SNDRV_PCM_STATE_SUSPENDED:
1770                         err = -ESTRPIPE;
1771                         goto _endloop;
1772                 case SNDRV_PCM_STATE_XRUN:
1773                         err = -EPIPE;
1774                         goto _endloop;
1775                 case SNDRV_PCM_STATE_DRAINING:
1776                         if (is_playback)
1777                                 err = -EPIPE;
1778                         else 
1779                                 avail = 0; /* indicate draining */
1780                         goto _endloop;
1781                 case SNDRV_PCM_STATE_OPEN:
1782                 case SNDRV_PCM_STATE_SETUP:
1783                 case SNDRV_PCM_STATE_DISCONNECTED:
1784                         err = -EBADFD;
1785                         goto _endloop;
1786                 }
1787                 if (!tout) {
1788                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1789                                    is_playback ? "playback" : "capture");
1790                         err = -EIO;
1791                         break;
1792                 }
1793                 if (is_playback)
1794                         avail = snd_pcm_playback_avail(runtime);
1795                 else
1796                         avail = snd_pcm_capture_avail(runtime);
1797                 if (avail >= runtime->twake)
1798                         break;
1799         }
1800  _endloop:
1801         remove_wait_queue(&runtime->tsleep, &wait);
1802         *availp = avail;
1803         return err;
1804 }
1805         
1806 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1807                                       unsigned int hwoff,
1808                                       unsigned long data, unsigned int off,
1809                                       snd_pcm_uframes_t frames)
1810 {
1811         struct snd_pcm_runtime *runtime = substream->runtime;
1812         int err;
1813         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1814         if (substream->ops->copy) {
1815                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1816                         return err;
1817         } else {
1818                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1819                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1820                         return -EFAULT;
1821         }
1822         return 0;
1823 }
1824  
1825 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1826                           unsigned long data, unsigned int off,
1827                           snd_pcm_uframes_t size);
1828
1829 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1830                                             unsigned long data,
1831                                             snd_pcm_uframes_t size,
1832                                             int nonblock,
1833                                             transfer_f transfer)
1834 {
1835         struct snd_pcm_runtime *runtime = substream->runtime;
1836         snd_pcm_uframes_t xfer = 0;
1837         snd_pcm_uframes_t offset = 0;
1838         int err = 0;
1839
1840         if (size == 0)
1841                 return 0;
1842
1843         snd_pcm_stream_lock_irq(substream);
1844         switch (runtime->status->state) {
1845         case SNDRV_PCM_STATE_PREPARED:
1846         case SNDRV_PCM_STATE_RUNNING:
1847         case SNDRV_PCM_STATE_PAUSED:
1848                 break;
1849         case SNDRV_PCM_STATE_XRUN:
1850                 err = -EPIPE;
1851                 goto _end_unlock;
1852         case SNDRV_PCM_STATE_SUSPENDED:
1853                 err = -ESTRPIPE;
1854                 goto _end_unlock;
1855         default:
1856                 err = -EBADFD;
1857                 goto _end_unlock;
1858         }
1859
1860         runtime->twake = runtime->control->avail_min ? : 1;
1861         while (size > 0) {
1862                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1863                 snd_pcm_uframes_t avail;
1864                 snd_pcm_uframes_t cont;
1865                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1866                         snd_pcm_update_hw_ptr(substream);
1867                 avail = snd_pcm_playback_avail(runtime);
1868                 if (!avail) {
1869                         if (nonblock) {
1870                                 err = -EAGAIN;
1871                                 goto _end_unlock;
1872                         }
1873                         runtime->twake = min_t(snd_pcm_uframes_t, size,
1874                                         runtime->control->avail_min ? : 1);
1875                         err = wait_for_avail(substream, &avail);
1876                         if (err < 0)
1877                                 goto _end_unlock;
1878                 }
1879                 frames = size > avail ? avail : size;
1880                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1881                 if (frames > cont)
1882                         frames = cont;
1883                 if (snd_BUG_ON(!frames)) {
1884                         runtime->twake = 0;
1885                         snd_pcm_stream_unlock_irq(substream);
1886                         return -EINVAL;
1887                 }
1888                 appl_ptr = runtime->control->appl_ptr;
1889                 appl_ofs = appl_ptr % runtime->buffer_size;
1890                 snd_pcm_stream_unlock_irq(substream);
1891                 err = transfer(substream, appl_ofs, data, offset, frames);
1892                 snd_pcm_stream_lock_irq(substream);
1893                 if (err < 0)
1894                         goto _end_unlock;
1895                 switch (runtime->status->state) {
1896                 case SNDRV_PCM_STATE_XRUN:
1897                         err = -EPIPE;
1898                         goto _end_unlock;
1899                 case SNDRV_PCM_STATE_SUSPENDED:
1900                         err = -ESTRPIPE;
1901                         goto _end_unlock;
1902                 default:
1903                         break;
1904                 }
1905                 appl_ptr += frames;
1906                 if (appl_ptr >= runtime->boundary)
1907                         appl_ptr -= runtime->boundary;
1908                 runtime->control->appl_ptr = appl_ptr;
1909                 if (substream->ops->ack)
1910                         substream->ops->ack(substream);
1911
1912                 offset += frames;
1913                 size -= frames;
1914                 xfer += frames;
1915                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1916                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1917                         err = snd_pcm_start(substream);
1918                         if (err < 0)
1919                                 goto _end_unlock;
1920                 }
1921         }
1922  _end_unlock:
1923         runtime->twake = 0;
1924         if (xfer > 0 && err >= 0)
1925                 snd_pcm_update_state(substream, runtime);
1926         snd_pcm_stream_unlock_irq(substream);
1927         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1928 }
1929
1930 /* sanity-check for read/write methods */
1931 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1932 {
1933         struct snd_pcm_runtime *runtime;
1934         if (PCM_RUNTIME_CHECK(substream))
1935                 return -ENXIO;
1936         runtime = substream->runtime;
1937         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1938                 return -EINVAL;
1939         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1940                 return -EBADFD;
1941         return 0;
1942 }
1943
1944 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1945 {
1946         struct snd_pcm_runtime *runtime;
1947         int nonblock;
1948         int err;
1949
1950         err = pcm_sanity_check(substream);
1951         if (err < 0)
1952                 return err;
1953         runtime = substream->runtime;
1954         nonblock = !!(substream->f_flags & O_NONBLOCK);
1955
1956         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1957             runtime->channels > 1)
1958                 return -EINVAL;
1959         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1960                                   snd_pcm_lib_write_transfer);
1961 }
1962
1963 EXPORT_SYMBOL(snd_pcm_lib_write);
1964
1965 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1966                                        unsigned int hwoff,
1967                                        unsigned long data, unsigned int off,
1968                                        snd_pcm_uframes_t frames)
1969 {
1970         struct snd_pcm_runtime *runtime = substream->runtime;
1971         int err;
1972         void __user **bufs = (void __user **)data;
1973         int channels = runtime->channels;
1974         int c;
1975         if (substream->ops->copy) {
1976                 if (snd_BUG_ON(!substream->ops->silence))
1977                         return -EINVAL;
1978                 for (c = 0; c < channels; ++c, ++bufs) {
1979                         if (*bufs == NULL) {
1980                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1981                                         return err;
1982                         } else {
1983                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1984                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1985                                         return err;
1986                         }
1987                 }
1988         } else {
1989                 /* default transfer behaviour */
1990                 size_t dma_csize = runtime->dma_bytes / channels;
1991                 for (c = 0; c < channels; ++c, ++bufs) {
1992                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1993                         if (*bufs == NULL) {
1994                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1995                         } else {
1996                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1997                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1998                                         return -EFAULT;
1999                         }
2000                 }
2001         }
2002         return 0;
2003 }
2004  
2005 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2006                                      void __user **bufs,
2007                                      snd_pcm_uframes_t frames)
2008 {
2009         struct snd_pcm_runtime *runtime;
2010         int nonblock;
2011         int err;
2012
2013         err = pcm_sanity_check(substream);
2014         if (err < 0)
2015                 return err;
2016         runtime = substream->runtime;
2017         nonblock = !!(substream->f_flags & O_NONBLOCK);
2018
2019         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2020                 return -EINVAL;
2021         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2022                                   nonblock, snd_pcm_lib_writev_transfer);
2023 }
2024
2025 EXPORT_SYMBOL(snd_pcm_lib_writev);
2026
2027 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2028                                      unsigned int hwoff,
2029                                      unsigned long data, unsigned int off,
2030                                      snd_pcm_uframes_t frames)
2031 {
2032         struct snd_pcm_runtime *runtime = substream->runtime;
2033         int err;
2034         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2035         if (substream->ops->copy) {
2036                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2037                         return err;
2038         } else {
2039                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2040                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2041                         return -EFAULT;
2042         }
2043         return 0;
2044 }
2045
2046 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2047                                            unsigned long data,
2048                                            snd_pcm_uframes_t size,
2049                                            int nonblock,
2050                                            transfer_f transfer)
2051 {
2052         struct snd_pcm_runtime *runtime = substream->runtime;
2053         snd_pcm_uframes_t xfer = 0;
2054         snd_pcm_uframes_t offset = 0;
2055         int err = 0;
2056
2057         if (size == 0)
2058                 return 0;
2059
2060         snd_pcm_stream_lock_irq(substream);
2061         switch (runtime->status->state) {
2062         case SNDRV_PCM_STATE_PREPARED:
2063                 if (size >= runtime->start_threshold) {
2064                         err = snd_pcm_start(substream);
2065                         if (err < 0)
2066                                 goto _end_unlock;
2067                 }
2068                 break;
2069         case SNDRV_PCM_STATE_DRAINING:
2070         case SNDRV_PCM_STATE_RUNNING:
2071         case SNDRV_PCM_STATE_PAUSED:
2072                 break;
2073         case SNDRV_PCM_STATE_XRUN:
2074                 err = -EPIPE;
2075                 goto _end_unlock;
2076         case SNDRV_PCM_STATE_SUSPENDED:
2077                 err = -ESTRPIPE;
2078                 goto _end_unlock;
2079         default:
2080                 err = -EBADFD;
2081                 goto _end_unlock;
2082         }
2083
2084         runtime->twake = runtime->control->avail_min ? : 1;
2085         while (size > 0) {
2086                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2087                 snd_pcm_uframes_t avail;
2088                 snd_pcm_uframes_t cont;
2089                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2090                         snd_pcm_update_hw_ptr(substream);
2091                 avail = snd_pcm_capture_avail(runtime);
2092                 if (!avail) {
2093                         if (runtime->status->state ==
2094                             SNDRV_PCM_STATE_DRAINING) {
2095                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2096                                 goto _end_unlock;
2097                         }
2098                         if (nonblock) {
2099                                 err = -EAGAIN;
2100                                 goto _end_unlock;
2101                         }
2102                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2103                                         runtime->control->avail_min ? : 1);
2104                         err = wait_for_avail(substream, &avail);
2105                         if (err < 0)
2106                                 goto _end_unlock;
2107                         if (!avail)
2108                                 continue; /* draining */
2109                 }
2110                 frames = size > avail ? avail : size;
2111                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2112                 if (frames > cont)
2113                         frames = cont;
2114                 if (snd_BUG_ON(!frames)) {
2115                         runtime->twake = 0;
2116                         snd_pcm_stream_unlock_irq(substream);
2117                         return -EINVAL;
2118                 }
2119                 appl_ptr = runtime->control->appl_ptr;
2120                 appl_ofs = appl_ptr % runtime->buffer_size;
2121                 snd_pcm_stream_unlock_irq(substream);
2122                 err = transfer(substream, appl_ofs, data, offset, frames);
2123                 snd_pcm_stream_lock_irq(substream);
2124                 if (err < 0)
2125                         goto _end_unlock;
2126                 switch (runtime->status->state) {
2127                 case SNDRV_PCM_STATE_XRUN:
2128                         err = -EPIPE;
2129                         goto _end_unlock;
2130                 case SNDRV_PCM_STATE_SUSPENDED:
2131                         err = -ESTRPIPE;
2132                         goto _end_unlock;
2133                 default:
2134                         break;
2135                 }
2136                 appl_ptr += frames;
2137                 if (appl_ptr >= runtime->boundary)
2138                         appl_ptr -= runtime->boundary;
2139                 runtime->control->appl_ptr = appl_ptr;
2140                 if (substream->ops->ack)
2141                         substream->ops->ack(substream);
2142
2143                 offset += frames;
2144                 size -= frames;
2145                 xfer += frames;
2146         }
2147  _end_unlock:
2148         runtime->twake = 0;
2149         if (xfer > 0 && err >= 0)
2150                 snd_pcm_update_state(substream, runtime);
2151         snd_pcm_stream_unlock_irq(substream);
2152         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2153 }
2154
2155 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2156 {
2157         struct snd_pcm_runtime *runtime;
2158         int nonblock;
2159         int err;
2160         
2161         err = pcm_sanity_check(substream);
2162         if (err < 0)
2163                 return err;
2164         runtime = substream->runtime;
2165         nonblock = !!(substream->f_flags & O_NONBLOCK);
2166         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2167                 return -EINVAL;
2168         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2169 }
2170
2171 EXPORT_SYMBOL(snd_pcm_lib_read);
2172
2173 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2174                                       unsigned int hwoff,
2175                                       unsigned long data, unsigned int off,
2176                                       snd_pcm_uframes_t frames)
2177 {
2178         struct snd_pcm_runtime *runtime = substream->runtime;
2179         int err;
2180         void __user **bufs = (void __user **)data;
2181         int channels = runtime->channels;
2182         int c;
2183         if (substream->ops->copy) {
2184                 for (c = 0; c < channels; ++c, ++bufs) {
2185                         char __user *buf;
2186                         if (*bufs == NULL)
2187                                 continue;
2188                         buf = *bufs + samples_to_bytes(runtime, off);
2189                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2190                                 return err;
2191                 }
2192         } else {
2193                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2194                 for (c = 0; c < channels; ++c, ++bufs) {
2195                         char *hwbuf;
2196                         char __user *buf;
2197                         if (*bufs == NULL)
2198                                 continue;
2199
2200                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2201                         buf = *bufs + samples_to_bytes(runtime, off);
2202                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2203                                 return -EFAULT;
2204                 }
2205         }
2206         return 0;
2207 }
2208  
2209 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2210                                     void __user **bufs,
2211                                     snd_pcm_uframes_t frames)
2212 {
2213         struct snd_pcm_runtime *runtime;
2214         int nonblock;
2215         int err;
2216
2217         err = pcm_sanity_check(substream);
2218         if (err < 0)
2219                 return err;
2220         runtime = substream->runtime;
2221         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2222                 return -EBADFD;
2223
2224         nonblock = !!(substream->f_flags & O_NONBLOCK);
2225         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2226                 return -EINVAL;
2227         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2228 }
2229
2230 EXPORT_SYMBOL(snd_pcm_lib_readv);