perf: Fix up delayed_put_task_struct()
[linux-flexiantxendom0-natty.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 static atomic_t nr_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47  * perf event paranoia level:
48  *  -1 - not paranoid at all
49  *   0 - disallow raw tracepoint access for unpriv
50  *   1 - disallow cpu events for unpriv
51  *   2 - disallow kernel profiling for unpriv
52  */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58  * max perf event sample rate
59  */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void)        { }
65
66 void perf_pmu_disable(struct pmu *pmu)
67 {
68         int *count = this_cpu_ptr(pmu->pmu_disable_count);
69         if (!(*count)++)
70                 pmu->pmu_disable(pmu);
71 }
72
73 void perf_pmu_enable(struct pmu *pmu)
74 {
75         int *count = this_cpu_ptr(pmu->pmu_disable_count);
76         if (!--(*count))
77                 pmu->pmu_enable(pmu);
78 }
79
80 static void perf_pmu_rotate_start(struct pmu *pmu)
81 {
82         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
83
84         if (hrtimer_active(&cpuctx->timer))
85                 return;
86
87         __hrtimer_start_range_ns(&cpuctx->timer,
88                         ns_to_ktime(cpuctx->timer_interval), 0,
89                         HRTIMER_MODE_REL_PINNED, 0);
90 }
91
92 static void perf_pmu_rotate_stop(struct pmu *pmu)
93 {
94         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95
96         hrtimer_cancel(&cpuctx->timer);
97 }
98
99 static void get_ctx(struct perf_event_context *ctx)
100 {
101         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
102 }
103
104 static void free_ctx(struct rcu_head *head)
105 {
106         struct perf_event_context *ctx;
107
108         ctx = container_of(head, struct perf_event_context, rcu_head);
109         kfree(ctx);
110 }
111
112 static void put_ctx(struct perf_event_context *ctx)
113 {
114         if (atomic_dec_and_test(&ctx->refcount)) {
115                 if (ctx->parent_ctx)
116                         put_ctx(ctx->parent_ctx);
117                 if (ctx->task)
118                         put_task_struct(ctx->task);
119                 call_rcu(&ctx->rcu_head, free_ctx);
120         }
121 }
122
123 static void unclone_ctx(struct perf_event_context *ctx)
124 {
125         if (ctx->parent_ctx) {
126                 put_ctx(ctx->parent_ctx);
127                 ctx->parent_ctx = NULL;
128         }
129 }
130
131 /*
132  * If we inherit events we want to return the parent event id
133  * to userspace.
134  */
135 static u64 primary_event_id(struct perf_event *event)
136 {
137         u64 id = event->id;
138
139         if (event->parent)
140                 id = event->parent->id;
141
142         return id;
143 }
144
145 /*
146  * Get the perf_event_context for a task and lock it.
147  * This has to cope with with the fact that until it is locked,
148  * the context could get moved to another task.
149  */
150 static struct perf_event_context *
151 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
152 {
153         struct perf_event_context *ctx;
154
155         rcu_read_lock();
156 retry:
157         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
158         if (ctx) {
159                 /*
160                  * If this context is a clone of another, it might
161                  * get swapped for another underneath us by
162                  * perf_event_task_sched_out, though the
163                  * rcu_read_lock() protects us from any context
164                  * getting freed.  Lock the context and check if it
165                  * got swapped before we could get the lock, and retry
166                  * if so.  If we locked the right context, then it
167                  * can't get swapped on us any more.
168                  */
169                 raw_spin_lock_irqsave(&ctx->lock, *flags);
170                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
171                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
172                         goto retry;
173                 }
174
175                 if (!atomic_inc_not_zero(&ctx->refcount)) {
176                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177                         ctx = NULL;
178                 }
179         }
180         rcu_read_unlock();
181         return ctx;
182 }
183
184 /*
185  * Get the context for a task and increment its pin_count so it
186  * can't get swapped to another task.  This also increments its
187  * reference count so that the context can't get freed.
188  */
189 static struct perf_event_context *
190 perf_pin_task_context(struct task_struct *task, int ctxn)
191 {
192         struct perf_event_context *ctx;
193         unsigned long flags;
194
195         ctx = perf_lock_task_context(task, ctxn, &flags);
196         if (ctx) {
197                 ++ctx->pin_count;
198                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
199         }
200         return ctx;
201 }
202
203 static void perf_unpin_context(struct perf_event_context *ctx)
204 {
205         unsigned long flags;
206
207         raw_spin_lock_irqsave(&ctx->lock, flags);
208         --ctx->pin_count;
209         raw_spin_unlock_irqrestore(&ctx->lock, flags);
210         put_ctx(ctx);
211 }
212
213 static inline u64 perf_clock(void)
214 {
215         return local_clock();
216 }
217
218 /*
219  * Update the record of the current time in a context.
220  */
221 static void update_context_time(struct perf_event_context *ctx)
222 {
223         u64 now = perf_clock();
224
225         ctx->time += now - ctx->timestamp;
226         ctx->timestamp = now;
227 }
228
229 /*
230  * Update the total_time_enabled and total_time_running fields for a event.
231  */
232 static void update_event_times(struct perf_event *event)
233 {
234         struct perf_event_context *ctx = event->ctx;
235         u64 run_end;
236
237         if (event->state < PERF_EVENT_STATE_INACTIVE ||
238             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
239                 return;
240
241         if (ctx->is_active)
242                 run_end = ctx->time;
243         else
244                 run_end = event->tstamp_stopped;
245
246         event->total_time_enabled = run_end - event->tstamp_enabled;
247
248         if (event->state == PERF_EVENT_STATE_INACTIVE)
249                 run_end = event->tstamp_stopped;
250         else
251                 run_end = ctx->time;
252
253         event->total_time_running = run_end - event->tstamp_running;
254 }
255
256 /*
257  * Update total_time_enabled and total_time_running for all events in a group.
258  */
259 static void update_group_times(struct perf_event *leader)
260 {
261         struct perf_event *event;
262
263         update_event_times(leader);
264         list_for_each_entry(event, &leader->sibling_list, group_entry)
265                 update_event_times(event);
266 }
267
268 static struct list_head *
269 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
270 {
271         if (event->attr.pinned)
272                 return &ctx->pinned_groups;
273         else
274                 return &ctx->flexible_groups;
275 }
276
277 /*
278  * Add a event from the lists for its context.
279  * Must be called with ctx->mutex and ctx->lock held.
280  */
281 static void
282 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
283 {
284         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
285         event->attach_state |= PERF_ATTACH_CONTEXT;
286
287         /*
288          * If we're a stand alone event or group leader, we go to the context
289          * list, group events are kept attached to the group so that
290          * perf_group_detach can, at all times, locate all siblings.
291          */
292         if (event->group_leader == event) {
293                 struct list_head *list;
294
295                 if (is_software_event(event))
296                         event->group_flags |= PERF_GROUP_SOFTWARE;
297
298                 list = ctx_group_list(event, ctx);
299                 list_add_tail(&event->group_entry, list);
300         }
301
302         list_add_rcu(&event->event_entry, &ctx->event_list);
303         if (!ctx->nr_events)
304                 perf_pmu_rotate_start(ctx->pmu);
305         ctx->nr_events++;
306         if (event->attr.inherit_stat)
307                 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312         struct perf_event *group_leader = event->group_leader;
313
314         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315         event->attach_state |= PERF_ATTACH_GROUP;
316
317         if (group_leader == event)
318                 return;
319
320         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321                         !is_software_event(event))
322                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324         list_add_tail(&event->group_entry, &group_leader->sibling_list);
325         group_leader->nr_siblings++;
326 }
327
328 /*
329  * Remove a event from the lists for its context.
330  * Must be called with ctx->mutex and ctx->lock held.
331  */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335         /*
336          * We can have double detach due to exit/hot-unplug + close.
337          */
338         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339                 return;
340
341         event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343         ctx->nr_events--;
344         if (event->attr.inherit_stat)
345                 ctx->nr_stat--;
346
347         list_del_rcu(&event->event_entry);
348
349         if (event->group_leader == event)
350                 list_del_init(&event->group_entry);
351
352         update_group_times(event);
353
354         /*
355          * If event was in error state, then keep it
356          * that way, otherwise bogus counts will be
357          * returned on read(). The only way to get out
358          * of error state is by explicit re-enabling
359          * of the event
360          */
361         if (event->state > PERF_EVENT_STATE_OFF)
362                 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367         struct perf_event *sibling, *tmp;
368         struct list_head *list = NULL;
369
370         /*
371          * We can have double detach due to exit/hot-unplug + close.
372          */
373         if (!(event->attach_state & PERF_ATTACH_GROUP))
374                 return;
375
376         event->attach_state &= ~PERF_ATTACH_GROUP;
377
378         /*
379          * If this is a sibling, remove it from its group.
380          */
381         if (event->group_leader != event) {
382                 list_del_init(&event->group_entry);
383                 event->group_leader->nr_siblings--;
384                 return;
385         }
386
387         if (!list_empty(&event->group_entry))
388                 list = &event->group_entry;
389
390         /*
391          * If this was a group event with sibling events then
392          * upgrade the siblings to singleton events by adding them
393          * to whatever list we are on.
394          */
395         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396                 if (list)
397                         list_move_tail(&sibling->group_entry, list);
398                 sibling->group_leader = sibling;
399
400                 /* Inherit group flags from the previous leader */
401                 sibling->group_flags = event->group_flags;
402         }
403 }
404
405 static inline int
406 event_filter_match(struct perf_event *event)
407 {
408         return event->cpu == -1 || event->cpu == smp_processor_id();
409 }
410
411 static void
412 event_sched_out(struct perf_event *event,
413                   struct perf_cpu_context *cpuctx,
414                   struct perf_event_context *ctx)
415 {
416         u64 delta;
417         /*
418          * An event which could not be activated because of
419          * filter mismatch still needs to have its timings
420          * maintained, otherwise bogus information is return
421          * via read() for time_enabled, time_running:
422          */
423         if (event->state == PERF_EVENT_STATE_INACTIVE
424             && !event_filter_match(event)) {
425                 delta = ctx->time - event->tstamp_stopped;
426                 event->tstamp_running += delta;
427                 event->tstamp_stopped = ctx->time;
428         }
429
430         if (event->state != PERF_EVENT_STATE_ACTIVE)
431                 return;
432
433         event->state = PERF_EVENT_STATE_INACTIVE;
434         if (event->pending_disable) {
435                 event->pending_disable = 0;
436                 event->state = PERF_EVENT_STATE_OFF;
437         }
438         event->tstamp_stopped = ctx->time;
439         event->pmu->del(event, 0);
440         event->oncpu = -1;
441
442         if (!is_software_event(event))
443                 cpuctx->active_oncpu--;
444         ctx->nr_active--;
445         if (event->attr.exclusive || !cpuctx->active_oncpu)
446                 cpuctx->exclusive = 0;
447 }
448
449 static void
450 group_sched_out(struct perf_event *group_event,
451                 struct perf_cpu_context *cpuctx,
452                 struct perf_event_context *ctx)
453 {
454         struct perf_event *event;
455         int state = group_event->state;
456
457         event_sched_out(group_event, cpuctx, ctx);
458
459         /*
460          * Schedule out siblings (if any):
461          */
462         list_for_each_entry(event, &group_event->sibling_list, group_entry)
463                 event_sched_out(event, cpuctx, ctx);
464
465         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466                 cpuctx->exclusive = 0;
467 }
468
469 static inline struct perf_cpu_context *
470 __get_cpu_context(struct perf_event_context *ctx)
471 {
472         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
473 }
474
475 /*
476  * Cross CPU call to remove a performance event
477  *
478  * We disable the event on the hardware level first. After that we
479  * remove it from the context list.
480  */
481 static void __perf_event_remove_from_context(void *info)
482 {
483         struct perf_event *event = info;
484         struct perf_event_context *ctx = event->ctx;
485         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
486
487         /*
488          * If this is a task context, we need to check whether it is
489          * the current task context of this cpu. If not it has been
490          * scheduled out before the smp call arrived.
491          */
492         if (ctx->task && cpuctx->task_ctx != ctx)
493                 return;
494
495         raw_spin_lock(&ctx->lock);
496
497         event_sched_out(event, cpuctx, ctx);
498
499         list_del_event(event, ctx);
500
501         raw_spin_unlock(&ctx->lock);
502 }
503
504
505 /*
506  * Remove the event from a task's (or a CPU's) list of events.
507  *
508  * Must be called with ctx->mutex held.
509  *
510  * CPU events are removed with a smp call. For task events we only
511  * call when the task is on a CPU.
512  *
513  * If event->ctx is a cloned context, callers must make sure that
514  * every task struct that event->ctx->task could possibly point to
515  * remains valid.  This is OK when called from perf_release since
516  * that only calls us on the top-level context, which can't be a clone.
517  * When called from perf_event_exit_task, it's OK because the
518  * context has been detached from its task.
519  */
520 static void perf_event_remove_from_context(struct perf_event *event)
521 {
522         struct perf_event_context *ctx = event->ctx;
523         struct task_struct *task = ctx->task;
524
525         if (!task) {
526                 /*
527                  * Per cpu events are removed via an smp call and
528                  * the removal is always successful.
529                  */
530                 smp_call_function_single(event->cpu,
531                                          __perf_event_remove_from_context,
532                                          event, 1);
533                 return;
534         }
535
536 retry:
537         task_oncpu_function_call(task, __perf_event_remove_from_context,
538                                  event);
539
540         raw_spin_lock_irq(&ctx->lock);
541         /*
542          * If the context is active we need to retry the smp call.
543          */
544         if (ctx->nr_active && !list_empty(&event->group_entry)) {
545                 raw_spin_unlock_irq(&ctx->lock);
546                 goto retry;
547         }
548
549         /*
550          * The lock prevents that this context is scheduled in so we
551          * can remove the event safely, if the call above did not
552          * succeed.
553          */
554         if (!list_empty(&event->group_entry))
555                 list_del_event(event, ctx);
556         raw_spin_unlock_irq(&ctx->lock);
557 }
558
559 /*
560  * Cross CPU call to disable a performance event
561  */
562 static void __perf_event_disable(void *info)
563 {
564         struct perf_event *event = info;
565         struct perf_event_context *ctx = event->ctx;
566         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
567
568         /*
569          * If this is a per-task event, need to check whether this
570          * event's task is the current task on this cpu.
571          */
572         if (ctx->task && cpuctx->task_ctx != ctx)
573                 return;
574
575         raw_spin_lock(&ctx->lock);
576
577         /*
578          * If the event is on, turn it off.
579          * If it is in error state, leave it in error state.
580          */
581         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
582                 update_context_time(ctx);
583                 update_group_times(event);
584                 if (event == event->group_leader)
585                         group_sched_out(event, cpuctx, ctx);
586                 else
587                         event_sched_out(event, cpuctx, ctx);
588                 event->state = PERF_EVENT_STATE_OFF;
589         }
590
591         raw_spin_unlock(&ctx->lock);
592 }
593
594 /*
595  * Disable a event.
596  *
597  * If event->ctx is a cloned context, callers must make sure that
598  * every task struct that event->ctx->task could possibly point to
599  * remains valid.  This condition is satisifed when called through
600  * perf_event_for_each_child or perf_event_for_each because they
601  * hold the top-level event's child_mutex, so any descendant that
602  * goes to exit will block in sync_child_event.
603  * When called from perf_pending_event it's OK because event->ctx
604  * is the current context on this CPU and preemption is disabled,
605  * hence we can't get into perf_event_task_sched_out for this context.
606  */
607 void perf_event_disable(struct perf_event *event)
608 {
609         struct perf_event_context *ctx = event->ctx;
610         struct task_struct *task = ctx->task;
611
612         if (!task) {
613                 /*
614                  * Disable the event on the cpu that it's on
615                  */
616                 smp_call_function_single(event->cpu, __perf_event_disable,
617                                          event, 1);
618                 return;
619         }
620
621 retry:
622         task_oncpu_function_call(task, __perf_event_disable, event);
623
624         raw_spin_lock_irq(&ctx->lock);
625         /*
626          * If the event is still active, we need to retry the cross-call.
627          */
628         if (event->state == PERF_EVENT_STATE_ACTIVE) {
629                 raw_spin_unlock_irq(&ctx->lock);
630                 goto retry;
631         }
632
633         /*
634          * Since we have the lock this context can't be scheduled
635          * in, so we can change the state safely.
636          */
637         if (event->state == PERF_EVENT_STATE_INACTIVE) {
638                 update_group_times(event);
639                 event->state = PERF_EVENT_STATE_OFF;
640         }
641
642         raw_spin_unlock_irq(&ctx->lock);
643 }
644
645 static int
646 event_sched_in(struct perf_event *event,
647                  struct perf_cpu_context *cpuctx,
648                  struct perf_event_context *ctx)
649 {
650         if (event->state <= PERF_EVENT_STATE_OFF)
651                 return 0;
652
653         event->state = PERF_EVENT_STATE_ACTIVE;
654         event->oncpu = smp_processor_id();
655         /*
656          * The new state must be visible before we turn it on in the hardware:
657          */
658         smp_wmb();
659
660         if (event->pmu->add(event, PERF_EF_START)) {
661                 event->state = PERF_EVENT_STATE_INACTIVE;
662                 event->oncpu = -1;
663                 return -EAGAIN;
664         }
665
666         event->tstamp_running += ctx->time - event->tstamp_stopped;
667
668         if (!is_software_event(event))
669                 cpuctx->active_oncpu++;
670         ctx->nr_active++;
671
672         if (event->attr.exclusive)
673                 cpuctx->exclusive = 1;
674
675         return 0;
676 }
677
678 static int
679 group_sched_in(struct perf_event *group_event,
680                struct perf_cpu_context *cpuctx,
681                struct perf_event_context *ctx)
682 {
683         struct perf_event *event, *partial_group = NULL;
684         struct pmu *pmu = group_event->pmu;
685
686         if (group_event->state == PERF_EVENT_STATE_OFF)
687                 return 0;
688
689         pmu->start_txn(pmu);
690
691         if (event_sched_in(group_event, cpuctx, ctx)) {
692                 pmu->cancel_txn(pmu);
693                 return -EAGAIN;
694         }
695
696         /*
697          * Schedule in siblings as one group (if any):
698          */
699         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
700                 if (event_sched_in(event, cpuctx, ctx)) {
701                         partial_group = event;
702                         goto group_error;
703                 }
704         }
705
706         if (!pmu->commit_txn(pmu))
707                 return 0;
708
709 group_error:
710         /*
711          * Groups can be scheduled in as one unit only, so undo any
712          * partial group before returning:
713          */
714         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
715                 if (event == partial_group)
716                         break;
717                 event_sched_out(event, cpuctx, ctx);
718         }
719         event_sched_out(group_event, cpuctx, ctx);
720
721         pmu->cancel_txn(pmu);
722
723         return -EAGAIN;
724 }
725
726 /*
727  * Work out whether we can put this event group on the CPU now.
728  */
729 static int group_can_go_on(struct perf_event *event,
730                            struct perf_cpu_context *cpuctx,
731                            int can_add_hw)
732 {
733         /*
734          * Groups consisting entirely of software events can always go on.
735          */
736         if (event->group_flags & PERF_GROUP_SOFTWARE)
737                 return 1;
738         /*
739          * If an exclusive group is already on, no other hardware
740          * events can go on.
741          */
742         if (cpuctx->exclusive)
743                 return 0;
744         /*
745          * If this group is exclusive and there are already
746          * events on the CPU, it can't go on.
747          */
748         if (event->attr.exclusive && cpuctx->active_oncpu)
749                 return 0;
750         /*
751          * Otherwise, try to add it if all previous groups were able
752          * to go on.
753          */
754         return can_add_hw;
755 }
756
757 static void add_event_to_ctx(struct perf_event *event,
758                                struct perf_event_context *ctx)
759 {
760         list_add_event(event, ctx);
761         perf_group_attach(event);
762         event->tstamp_enabled = ctx->time;
763         event->tstamp_running = ctx->time;
764         event->tstamp_stopped = ctx->time;
765 }
766
767 /*
768  * Cross CPU call to install and enable a performance event
769  *
770  * Must be called with ctx->mutex held
771  */
772 static void __perf_install_in_context(void *info)
773 {
774         struct perf_event *event = info;
775         struct perf_event_context *ctx = event->ctx;
776         struct perf_event *leader = event->group_leader;
777         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
778         int err;
779
780         /*
781          * If this is a task context, we need to check whether it is
782          * the current task context of this cpu. If not it has been
783          * scheduled out before the smp call arrived.
784          * Or possibly this is the right context but it isn't
785          * on this cpu because it had no events.
786          */
787         if (ctx->task && cpuctx->task_ctx != ctx) {
788                 if (cpuctx->task_ctx || ctx->task != current)
789                         return;
790                 cpuctx->task_ctx = ctx;
791         }
792
793         raw_spin_lock(&ctx->lock);
794         ctx->is_active = 1;
795         update_context_time(ctx);
796
797         add_event_to_ctx(event, ctx);
798
799         if (event->cpu != -1 && event->cpu != smp_processor_id())
800                 goto unlock;
801
802         /*
803          * Don't put the event on if it is disabled or if
804          * it is in a group and the group isn't on.
805          */
806         if (event->state != PERF_EVENT_STATE_INACTIVE ||
807             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
808                 goto unlock;
809
810         /*
811          * An exclusive event can't go on if there are already active
812          * hardware events, and no hardware event can go on if there
813          * is already an exclusive event on.
814          */
815         if (!group_can_go_on(event, cpuctx, 1))
816                 err = -EEXIST;
817         else
818                 err = event_sched_in(event, cpuctx, ctx);
819
820         if (err) {
821                 /*
822                  * This event couldn't go on.  If it is in a group
823                  * then we have to pull the whole group off.
824                  * If the event group is pinned then put it in error state.
825                  */
826                 if (leader != event)
827                         group_sched_out(leader, cpuctx, ctx);
828                 if (leader->attr.pinned) {
829                         update_group_times(leader);
830                         leader->state = PERF_EVENT_STATE_ERROR;
831                 }
832         }
833
834 unlock:
835         raw_spin_unlock(&ctx->lock);
836 }
837
838 /*
839  * Attach a performance event to a context
840  *
841  * First we add the event to the list with the hardware enable bit
842  * in event->hw_config cleared.
843  *
844  * If the event is attached to a task which is on a CPU we use a smp
845  * call to enable it in the task context. The task might have been
846  * scheduled away, but we check this in the smp call again.
847  *
848  * Must be called with ctx->mutex held.
849  */
850 static void
851 perf_install_in_context(struct perf_event_context *ctx,
852                         struct perf_event *event,
853                         int cpu)
854 {
855         struct task_struct *task = ctx->task;
856
857         event->ctx = ctx;
858
859         if (!task) {
860                 /*
861                  * Per cpu events are installed via an smp call and
862                  * the install is always successful.
863                  */
864                 smp_call_function_single(cpu, __perf_install_in_context,
865                                          event, 1);
866                 return;
867         }
868
869 retry:
870         task_oncpu_function_call(task, __perf_install_in_context,
871                                  event);
872
873         raw_spin_lock_irq(&ctx->lock);
874         /*
875          * we need to retry the smp call.
876          */
877         if (ctx->is_active && list_empty(&event->group_entry)) {
878                 raw_spin_unlock_irq(&ctx->lock);
879                 goto retry;
880         }
881
882         /*
883          * The lock prevents that this context is scheduled in so we
884          * can add the event safely, if it the call above did not
885          * succeed.
886          */
887         if (list_empty(&event->group_entry))
888                 add_event_to_ctx(event, ctx);
889         raw_spin_unlock_irq(&ctx->lock);
890 }
891
892 /*
893  * Put a event into inactive state and update time fields.
894  * Enabling the leader of a group effectively enables all
895  * the group members that aren't explicitly disabled, so we
896  * have to update their ->tstamp_enabled also.
897  * Note: this works for group members as well as group leaders
898  * since the non-leader members' sibling_lists will be empty.
899  */
900 static void __perf_event_mark_enabled(struct perf_event *event,
901                                         struct perf_event_context *ctx)
902 {
903         struct perf_event *sub;
904
905         event->state = PERF_EVENT_STATE_INACTIVE;
906         event->tstamp_enabled = ctx->time - event->total_time_enabled;
907         list_for_each_entry(sub, &event->sibling_list, group_entry) {
908                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
909                         sub->tstamp_enabled =
910                                 ctx->time - sub->total_time_enabled;
911                 }
912         }
913 }
914
915 /*
916  * Cross CPU call to enable a performance event
917  */
918 static void __perf_event_enable(void *info)
919 {
920         struct perf_event *event = info;
921         struct perf_event_context *ctx = event->ctx;
922         struct perf_event *leader = event->group_leader;
923         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
924         int err;
925
926         /*
927          * If this is a per-task event, need to check whether this
928          * event's task is the current task on this cpu.
929          */
930         if (ctx->task && cpuctx->task_ctx != ctx) {
931                 if (cpuctx->task_ctx || ctx->task != current)
932                         return;
933                 cpuctx->task_ctx = ctx;
934         }
935
936         raw_spin_lock(&ctx->lock);
937         ctx->is_active = 1;
938         update_context_time(ctx);
939
940         if (event->state >= PERF_EVENT_STATE_INACTIVE)
941                 goto unlock;
942         __perf_event_mark_enabled(event, ctx);
943
944         if (event->cpu != -1 && event->cpu != smp_processor_id())
945                 goto unlock;
946
947         /*
948          * If the event is in a group and isn't the group leader,
949          * then don't put it on unless the group is on.
950          */
951         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
952                 goto unlock;
953
954         if (!group_can_go_on(event, cpuctx, 1)) {
955                 err = -EEXIST;
956         } else {
957                 if (event == leader)
958                         err = group_sched_in(event, cpuctx, ctx);
959                 else
960                         err = event_sched_in(event, cpuctx, ctx);
961         }
962
963         if (err) {
964                 /*
965                  * If this event can't go on and it's part of a
966                  * group, then the whole group has to come off.
967                  */
968                 if (leader != event)
969                         group_sched_out(leader, cpuctx, ctx);
970                 if (leader->attr.pinned) {
971                         update_group_times(leader);
972                         leader->state = PERF_EVENT_STATE_ERROR;
973                 }
974         }
975
976 unlock:
977         raw_spin_unlock(&ctx->lock);
978 }
979
980 /*
981  * Enable a event.
982  *
983  * If event->ctx is a cloned context, callers must make sure that
984  * every task struct that event->ctx->task could possibly point to
985  * remains valid.  This condition is satisfied when called through
986  * perf_event_for_each_child or perf_event_for_each as described
987  * for perf_event_disable.
988  */
989 void perf_event_enable(struct perf_event *event)
990 {
991         struct perf_event_context *ctx = event->ctx;
992         struct task_struct *task = ctx->task;
993
994         if (!task) {
995                 /*
996                  * Enable the event on the cpu that it's on
997                  */
998                 smp_call_function_single(event->cpu, __perf_event_enable,
999                                          event, 1);
1000                 return;
1001         }
1002
1003         raw_spin_lock_irq(&ctx->lock);
1004         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1005                 goto out;
1006
1007         /*
1008          * If the event is in error state, clear that first.
1009          * That way, if we see the event in error state below, we
1010          * know that it has gone back into error state, as distinct
1011          * from the task having been scheduled away before the
1012          * cross-call arrived.
1013          */
1014         if (event->state == PERF_EVENT_STATE_ERROR)
1015                 event->state = PERF_EVENT_STATE_OFF;
1016
1017 retry:
1018         raw_spin_unlock_irq(&ctx->lock);
1019         task_oncpu_function_call(task, __perf_event_enable, event);
1020
1021         raw_spin_lock_irq(&ctx->lock);
1022
1023         /*
1024          * If the context is active and the event is still off,
1025          * we need to retry the cross-call.
1026          */
1027         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1028                 goto retry;
1029
1030         /*
1031          * Since we have the lock this context can't be scheduled
1032          * in, so we can change the state safely.
1033          */
1034         if (event->state == PERF_EVENT_STATE_OFF)
1035                 __perf_event_mark_enabled(event, ctx);
1036
1037 out:
1038         raw_spin_unlock_irq(&ctx->lock);
1039 }
1040
1041 static int perf_event_refresh(struct perf_event *event, int refresh)
1042 {
1043         /*
1044          * not supported on inherited events
1045          */
1046         if (event->attr.inherit)
1047                 return -EINVAL;
1048
1049         atomic_add(refresh, &event->event_limit);
1050         perf_event_enable(event);
1051
1052         return 0;
1053 }
1054
1055 enum event_type_t {
1056         EVENT_FLEXIBLE = 0x1,
1057         EVENT_PINNED = 0x2,
1058         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1059 };
1060
1061 static void ctx_sched_out(struct perf_event_context *ctx,
1062                           struct perf_cpu_context *cpuctx,
1063                           enum event_type_t event_type)
1064 {
1065         struct perf_event *event;
1066
1067         raw_spin_lock(&ctx->lock);
1068         perf_pmu_disable(ctx->pmu);
1069         ctx->is_active = 0;
1070         if (likely(!ctx->nr_events))
1071                 goto out;
1072         update_context_time(ctx);
1073
1074         if (!ctx->nr_active)
1075                 goto out;
1076
1077         if (event_type & EVENT_PINNED) {
1078                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1079                         group_sched_out(event, cpuctx, ctx);
1080         }
1081
1082         if (event_type & EVENT_FLEXIBLE) {
1083                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1084                         group_sched_out(event, cpuctx, ctx);
1085         }
1086 out:
1087         perf_pmu_enable(ctx->pmu);
1088         raw_spin_unlock(&ctx->lock);
1089 }
1090
1091 /*
1092  * Test whether two contexts are equivalent, i.e. whether they
1093  * have both been cloned from the same version of the same context
1094  * and they both have the same number of enabled events.
1095  * If the number of enabled events is the same, then the set
1096  * of enabled events should be the same, because these are both
1097  * inherited contexts, therefore we can't access individual events
1098  * in them directly with an fd; we can only enable/disable all
1099  * events via prctl, or enable/disable all events in a family
1100  * via ioctl, which will have the same effect on both contexts.
1101  */
1102 static int context_equiv(struct perf_event_context *ctx1,
1103                          struct perf_event_context *ctx2)
1104 {
1105         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1106                 && ctx1->parent_gen == ctx2->parent_gen
1107                 && !ctx1->pin_count && !ctx2->pin_count;
1108 }
1109
1110 static void __perf_event_sync_stat(struct perf_event *event,
1111                                      struct perf_event *next_event)
1112 {
1113         u64 value;
1114
1115         if (!event->attr.inherit_stat)
1116                 return;
1117
1118         /*
1119          * Update the event value, we cannot use perf_event_read()
1120          * because we're in the middle of a context switch and have IRQs
1121          * disabled, which upsets smp_call_function_single(), however
1122          * we know the event must be on the current CPU, therefore we
1123          * don't need to use it.
1124          */
1125         switch (event->state) {
1126         case PERF_EVENT_STATE_ACTIVE:
1127                 event->pmu->read(event);
1128                 /* fall-through */
1129
1130         case PERF_EVENT_STATE_INACTIVE:
1131                 update_event_times(event);
1132                 break;
1133
1134         default:
1135                 break;
1136         }
1137
1138         /*
1139          * In order to keep per-task stats reliable we need to flip the event
1140          * values when we flip the contexts.
1141          */
1142         value = local64_read(&next_event->count);
1143         value = local64_xchg(&event->count, value);
1144         local64_set(&next_event->count, value);
1145
1146         swap(event->total_time_enabled, next_event->total_time_enabled);
1147         swap(event->total_time_running, next_event->total_time_running);
1148
1149         /*
1150          * Since we swizzled the values, update the user visible data too.
1151          */
1152         perf_event_update_userpage(event);
1153         perf_event_update_userpage(next_event);
1154 }
1155
1156 #define list_next_entry(pos, member) \
1157         list_entry(pos->member.next, typeof(*pos), member)
1158
1159 static void perf_event_sync_stat(struct perf_event_context *ctx,
1160                                    struct perf_event_context *next_ctx)
1161 {
1162         struct perf_event *event, *next_event;
1163
1164         if (!ctx->nr_stat)
1165                 return;
1166
1167         update_context_time(ctx);
1168
1169         event = list_first_entry(&ctx->event_list,
1170                                    struct perf_event, event_entry);
1171
1172         next_event = list_first_entry(&next_ctx->event_list,
1173                                         struct perf_event, event_entry);
1174
1175         while (&event->event_entry != &ctx->event_list &&
1176                &next_event->event_entry != &next_ctx->event_list) {
1177
1178                 __perf_event_sync_stat(event, next_event);
1179
1180                 event = list_next_entry(event, event_entry);
1181                 next_event = list_next_entry(next_event, event_entry);
1182         }
1183 }
1184
1185 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1186                                   struct task_struct *next)
1187 {
1188         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1189         struct perf_event_context *next_ctx;
1190         struct perf_event_context *parent;
1191         struct perf_cpu_context *cpuctx;
1192         int do_switch = 1;
1193
1194         if (likely(!ctx))
1195                 return;
1196
1197         cpuctx = __get_cpu_context(ctx);
1198         if (!cpuctx->task_ctx)
1199                 return;
1200
1201         rcu_read_lock();
1202         parent = rcu_dereference(ctx->parent_ctx);
1203         next_ctx = next->perf_event_ctxp[ctxn];
1204         if (parent && next_ctx &&
1205             rcu_dereference(next_ctx->parent_ctx) == parent) {
1206                 /*
1207                  * Looks like the two contexts are clones, so we might be
1208                  * able to optimize the context switch.  We lock both
1209                  * contexts and check that they are clones under the
1210                  * lock (including re-checking that neither has been
1211                  * uncloned in the meantime).  It doesn't matter which
1212                  * order we take the locks because no other cpu could
1213                  * be trying to lock both of these tasks.
1214                  */
1215                 raw_spin_lock(&ctx->lock);
1216                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1217                 if (context_equiv(ctx, next_ctx)) {
1218                         /*
1219                          * XXX do we need a memory barrier of sorts
1220                          * wrt to rcu_dereference() of perf_event_ctxp
1221                          */
1222                         task->perf_event_ctxp[ctxn] = next_ctx;
1223                         next->perf_event_ctxp[ctxn] = ctx;
1224                         ctx->task = next;
1225                         next_ctx->task = task;
1226                         do_switch = 0;
1227
1228                         perf_event_sync_stat(ctx, next_ctx);
1229                 }
1230                 raw_spin_unlock(&next_ctx->lock);
1231                 raw_spin_unlock(&ctx->lock);
1232         }
1233         rcu_read_unlock();
1234
1235         if (do_switch) {
1236                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1237                 cpuctx->task_ctx = NULL;
1238         }
1239 }
1240
1241 #define for_each_task_context_nr(ctxn)                                  \
1242         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1243
1244 /*
1245  * Called from scheduler to remove the events of the current task,
1246  * with interrupts disabled.
1247  *
1248  * We stop each event and update the event value in event->count.
1249  *
1250  * This does not protect us against NMI, but disable()
1251  * sets the disabled bit in the control field of event _before_
1252  * accessing the event control register. If a NMI hits, then it will
1253  * not restart the event.
1254  */
1255 void perf_event_task_sched_out(struct task_struct *task,
1256                                struct task_struct *next)
1257 {
1258         int ctxn;
1259
1260         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1261
1262         for_each_task_context_nr(ctxn)
1263                 perf_event_context_sched_out(task, ctxn, next);
1264 }
1265
1266 static void task_ctx_sched_out(struct perf_event_context *ctx,
1267                                enum event_type_t event_type)
1268 {
1269         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1270
1271         if (!cpuctx->task_ctx)
1272                 return;
1273
1274         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1275                 return;
1276
1277         ctx_sched_out(ctx, cpuctx, event_type);
1278         cpuctx->task_ctx = NULL;
1279 }
1280
1281 /*
1282  * Called with IRQs disabled
1283  */
1284 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1285 {
1286         task_ctx_sched_out(ctx, EVENT_ALL);
1287 }
1288
1289 /*
1290  * Called with IRQs disabled
1291  */
1292 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1293                               enum event_type_t event_type)
1294 {
1295         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1296 }
1297
1298 static void
1299 ctx_pinned_sched_in(struct perf_event_context *ctx,
1300                     struct perf_cpu_context *cpuctx)
1301 {
1302         struct perf_event *event;
1303
1304         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1305                 if (event->state <= PERF_EVENT_STATE_OFF)
1306                         continue;
1307                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1308                         continue;
1309
1310                 if (group_can_go_on(event, cpuctx, 1))
1311                         group_sched_in(event, cpuctx, ctx);
1312
1313                 /*
1314                  * If this pinned group hasn't been scheduled,
1315                  * put it in error state.
1316                  */
1317                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1318                         update_group_times(event);
1319                         event->state = PERF_EVENT_STATE_ERROR;
1320                 }
1321         }
1322 }
1323
1324 static void
1325 ctx_flexible_sched_in(struct perf_event_context *ctx,
1326                       struct perf_cpu_context *cpuctx)
1327 {
1328         struct perf_event *event;
1329         int can_add_hw = 1;
1330
1331         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1332                 /* Ignore events in OFF or ERROR state */
1333                 if (event->state <= PERF_EVENT_STATE_OFF)
1334                         continue;
1335                 /*
1336                  * Listen to the 'cpu' scheduling filter constraint
1337                  * of events:
1338                  */
1339                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1340                         continue;
1341
1342                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1343                         if (group_sched_in(event, cpuctx, ctx))
1344                                 can_add_hw = 0;
1345                 }
1346         }
1347 }
1348
1349 static void
1350 ctx_sched_in(struct perf_event_context *ctx,
1351              struct perf_cpu_context *cpuctx,
1352              enum event_type_t event_type)
1353 {
1354         raw_spin_lock(&ctx->lock);
1355         ctx->is_active = 1;
1356         if (likely(!ctx->nr_events))
1357                 goto out;
1358
1359         ctx->timestamp = perf_clock();
1360
1361         /*
1362          * First go through the list and put on any pinned groups
1363          * in order to give them the best chance of going on.
1364          */
1365         if (event_type & EVENT_PINNED)
1366                 ctx_pinned_sched_in(ctx, cpuctx);
1367
1368         /* Then walk through the lower prio flexible groups */
1369         if (event_type & EVENT_FLEXIBLE)
1370                 ctx_flexible_sched_in(ctx, cpuctx);
1371
1372 out:
1373         raw_spin_unlock(&ctx->lock);
1374 }
1375
1376 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1377                              enum event_type_t event_type)
1378 {
1379         struct perf_event_context *ctx = &cpuctx->ctx;
1380
1381         ctx_sched_in(ctx, cpuctx, event_type);
1382 }
1383
1384 static void task_ctx_sched_in(struct perf_event_context *ctx,
1385                               enum event_type_t event_type)
1386 {
1387         struct perf_cpu_context *cpuctx;
1388
1389         cpuctx = __get_cpu_context(ctx);
1390         if (cpuctx->task_ctx == ctx)
1391                 return;
1392
1393         ctx_sched_in(ctx, cpuctx, event_type);
1394         cpuctx->task_ctx = ctx;
1395 }
1396
1397 void perf_event_context_sched_in(struct perf_event_context *ctx)
1398 {
1399         struct perf_cpu_context *cpuctx;
1400
1401         cpuctx = __get_cpu_context(ctx);
1402         if (cpuctx->task_ctx == ctx)
1403                 return;
1404
1405         perf_pmu_disable(ctx->pmu);
1406         /*
1407          * We want to keep the following priority order:
1408          * cpu pinned (that don't need to move), task pinned,
1409          * cpu flexible, task flexible.
1410          */
1411         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1412
1413         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1414         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1415         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1416
1417         cpuctx->task_ctx = ctx;
1418
1419         /*
1420          * Since these rotations are per-cpu, we need to ensure the
1421          * cpu-context we got scheduled on is actually rotating.
1422          */
1423         perf_pmu_rotate_start(ctx->pmu);
1424         perf_pmu_enable(ctx->pmu);
1425 }
1426
1427 /*
1428  * Called from scheduler to add the events of the current task
1429  * with interrupts disabled.
1430  *
1431  * We restore the event value and then enable it.
1432  *
1433  * This does not protect us against NMI, but enable()
1434  * sets the enabled bit in the control field of event _before_
1435  * accessing the event control register. If a NMI hits, then it will
1436  * keep the event running.
1437  */
1438 void perf_event_task_sched_in(struct task_struct *task)
1439 {
1440         struct perf_event_context *ctx;
1441         int ctxn;
1442
1443         for_each_task_context_nr(ctxn) {
1444                 ctx = task->perf_event_ctxp[ctxn];
1445                 if (likely(!ctx))
1446                         continue;
1447
1448                 perf_event_context_sched_in(ctx);
1449         }
1450 }
1451
1452 #define MAX_INTERRUPTS (~0ULL)
1453
1454 static void perf_log_throttle(struct perf_event *event, int enable);
1455
1456 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1457 {
1458         u64 frequency = event->attr.sample_freq;
1459         u64 sec = NSEC_PER_SEC;
1460         u64 divisor, dividend;
1461
1462         int count_fls, nsec_fls, frequency_fls, sec_fls;
1463
1464         count_fls = fls64(count);
1465         nsec_fls = fls64(nsec);
1466         frequency_fls = fls64(frequency);
1467         sec_fls = 30;
1468
1469         /*
1470          * We got @count in @nsec, with a target of sample_freq HZ
1471          * the target period becomes:
1472          *
1473          *             @count * 10^9
1474          * period = -------------------
1475          *          @nsec * sample_freq
1476          *
1477          */
1478
1479         /*
1480          * Reduce accuracy by one bit such that @a and @b converge
1481          * to a similar magnitude.
1482          */
1483 #define REDUCE_FLS(a, b)                \
1484 do {                                    \
1485         if (a##_fls > b##_fls) {        \
1486                 a >>= 1;                \
1487                 a##_fls--;              \
1488         } else {                        \
1489                 b >>= 1;                \
1490                 b##_fls--;              \
1491         }                               \
1492 } while (0)
1493
1494         /*
1495          * Reduce accuracy until either term fits in a u64, then proceed with
1496          * the other, so that finally we can do a u64/u64 division.
1497          */
1498         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1499                 REDUCE_FLS(nsec, frequency);
1500                 REDUCE_FLS(sec, count);
1501         }
1502
1503         if (count_fls + sec_fls > 64) {
1504                 divisor = nsec * frequency;
1505
1506                 while (count_fls + sec_fls > 64) {
1507                         REDUCE_FLS(count, sec);
1508                         divisor >>= 1;
1509                 }
1510
1511                 dividend = count * sec;
1512         } else {
1513                 dividend = count * sec;
1514
1515                 while (nsec_fls + frequency_fls > 64) {
1516                         REDUCE_FLS(nsec, frequency);
1517                         dividend >>= 1;
1518                 }
1519
1520                 divisor = nsec * frequency;
1521         }
1522
1523         if (!divisor)
1524                 return dividend;
1525
1526         return div64_u64(dividend, divisor);
1527 }
1528
1529 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1530 {
1531         struct hw_perf_event *hwc = &event->hw;
1532         s64 period, sample_period;
1533         s64 delta;
1534
1535         period = perf_calculate_period(event, nsec, count);
1536
1537         delta = (s64)(period - hwc->sample_period);
1538         delta = (delta + 7) / 8; /* low pass filter */
1539
1540         sample_period = hwc->sample_period + delta;
1541
1542         if (!sample_period)
1543                 sample_period = 1;
1544
1545         hwc->sample_period = sample_period;
1546
1547         if (local64_read(&hwc->period_left) > 8*sample_period) {
1548                 event->pmu->stop(event, PERF_EF_UPDATE);
1549                 local64_set(&hwc->period_left, 0);
1550                 event->pmu->start(event, PERF_EF_RELOAD);
1551         }
1552 }
1553
1554 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1555 {
1556         struct perf_event *event;
1557         struct hw_perf_event *hwc;
1558         u64 interrupts, now;
1559         s64 delta;
1560
1561         raw_spin_lock(&ctx->lock);
1562         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1563                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1564                         continue;
1565
1566                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1567                         continue;
1568
1569                 hwc = &event->hw;
1570
1571                 interrupts = hwc->interrupts;
1572                 hwc->interrupts = 0;
1573
1574                 /*
1575                  * unthrottle events on the tick
1576                  */
1577                 if (interrupts == MAX_INTERRUPTS) {
1578                         perf_log_throttle(event, 1);
1579                         event->pmu->start(event, 0);
1580                 }
1581
1582                 if (!event->attr.freq || !event->attr.sample_freq)
1583                         continue;
1584
1585                 event->pmu->read(event);
1586                 now = local64_read(&event->count);
1587                 delta = now - hwc->freq_count_stamp;
1588                 hwc->freq_count_stamp = now;
1589
1590                 if (delta > 0)
1591                         perf_adjust_period(event, period, delta);
1592         }
1593         raw_spin_unlock(&ctx->lock);
1594 }
1595
1596 /*
1597  * Round-robin a context's events:
1598  */
1599 static void rotate_ctx(struct perf_event_context *ctx)
1600 {
1601         raw_spin_lock(&ctx->lock);
1602
1603         /* Rotate the first entry last of non-pinned groups */
1604         list_rotate_left(&ctx->flexible_groups);
1605
1606         raw_spin_unlock(&ctx->lock);
1607 }
1608
1609 /*
1610  * Cannot race with ->pmu_rotate_start() because this is ran from hardirq
1611  * context, and ->pmu_rotate_start() is called with irqs disabled (both are
1612  * cpu affine, so there are no SMP races).
1613  */
1614 static enum hrtimer_restart perf_event_context_tick(struct hrtimer *timer)
1615 {
1616         enum hrtimer_restart restart = HRTIMER_NORESTART;
1617         struct perf_cpu_context *cpuctx;
1618         struct perf_event_context *ctx = NULL;
1619         int rotate = 0;
1620
1621         cpuctx = container_of(timer, struct perf_cpu_context, timer);
1622
1623         if (cpuctx->ctx.nr_events) {
1624                 restart = HRTIMER_RESTART;
1625                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1626                         rotate = 1;
1627         }
1628
1629         ctx = cpuctx->task_ctx;
1630         if (ctx && ctx->nr_events) {
1631                 restart = HRTIMER_RESTART;
1632                 if (ctx->nr_events != ctx->nr_active)
1633                         rotate = 1;
1634         }
1635
1636         perf_pmu_disable(cpuctx->ctx.pmu);
1637         perf_ctx_adjust_freq(&cpuctx->ctx, cpuctx->timer_interval);
1638         if (ctx)
1639                 perf_ctx_adjust_freq(ctx, cpuctx->timer_interval);
1640
1641         if (!rotate)
1642                 goto done;
1643
1644         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1645         if (ctx)
1646                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1647
1648         rotate_ctx(&cpuctx->ctx);
1649         if (ctx)
1650                 rotate_ctx(ctx);
1651
1652         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1653         if (ctx)
1654                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1655
1656 done:
1657         perf_pmu_enable(cpuctx->ctx.pmu);
1658         hrtimer_forward_now(timer, ns_to_ktime(cpuctx->timer_interval));
1659
1660         return restart;
1661 }
1662
1663 static int event_enable_on_exec(struct perf_event *event,
1664                                 struct perf_event_context *ctx)
1665 {
1666         if (!event->attr.enable_on_exec)
1667                 return 0;
1668
1669         event->attr.enable_on_exec = 0;
1670         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1671                 return 0;
1672
1673         __perf_event_mark_enabled(event, ctx);
1674
1675         return 1;
1676 }
1677
1678 /*
1679  * Enable all of a task's events that have been marked enable-on-exec.
1680  * This expects task == current.
1681  */
1682 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1683 {
1684         struct perf_event *event;
1685         unsigned long flags;
1686         int enabled = 0;
1687         int ret;
1688
1689         local_irq_save(flags);
1690         if (!ctx || !ctx->nr_events)
1691                 goto out;
1692
1693         task_ctx_sched_out(ctx, EVENT_ALL);
1694
1695         raw_spin_lock(&ctx->lock);
1696
1697         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1698                 ret = event_enable_on_exec(event, ctx);
1699                 if (ret)
1700                         enabled = 1;
1701         }
1702
1703         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1704                 ret = event_enable_on_exec(event, ctx);
1705                 if (ret)
1706                         enabled = 1;
1707         }
1708
1709         /*
1710          * Unclone this context if we enabled any event.
1711          */
1712         if (enabled)
1713                 unclone_ctx(ctx);
1714
1715         raw_spin_unlock(&ctx->lock);
1716
1717         perf_event_context_sched_in(ctx);
1718 out:
1719         local_irq_restore(flags);
1720 }
1721
1722 /*
1723  * Cross CPU call to read the hardware event
1724  */
1725 static void __perf_event_read(void *info)
1726 {
1727         struct perf_event *event = info;
1728         struct perf_event_context *ctx = event->ctx;
1729         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1730
1731         /*
1732          * If this is a task context, we need to check whether it is
1733          * the current task context of this cpu.  If not it has been
1734          * scheduled out before the smp call arrived.  In that case
1735          * event->count would have been updated to a recent sample
1736          * when the event was scheduled out.
1737          */
1738         if (ctx->task && cpuctx->task_ctx != ctx)
1739                 return;
1740
1741         raw_spin_lock(&ctx->lock);
1742         update_context_time(ctx);
1743         update_event_times(event);
1744         raw_spin_unlock(&ctx->lock);
1745
1746         event->pmu->read(event);
1747 }
1748
1749 static inline u64 perf_event_count(struct perf_event *event)
1750 {
1751         return local64_read(&event->count) + atomic64_read(&event->child_count);
1752 }
1753
1754 static u64 perf_event_read(struct perf_event *event)
1755 {
1756         /*
1757          * If event is enabled and currently active on a CPU, update the
1758          * value in the event structure:
1759          */
1760         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1761                 smp_call_function_single(event->oncpu,
1762                                          __perf_event_read, event, 1);
1763         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1764                 struct perf_event_context *ctx = event->ctx;
1765                 unsigned long flags;
1766
1767                 raw_spin_lock_irqsave(&ctx->lock, flags);
1768                 update_context_time(ctx);
1769                 update_event_times(event);
1770                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1771         }
1772
1773         return perf_event_count(event);
1774 }
1775
1776 /*
1777  * Callchain support
1778  */
1779
1780 struct callchain_cpus_entries {
1781         struct rcu_head                 rcu_head;
1782         struct perf_callchain_entry     *cpu_entries[0];
1783 };
1784
1785 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1786 static atomic_t nr_callchain_events;
1787 static DEFINE_MUTEX(callchain_mutex);
1788 struct callchain_cpus_entries *callchain_cpus_entries;
1789
1790
1791 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1792                                   struct pt_regs *regs)
1793 {
1794 }
1795
1796 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1797                                 struct pt_regs *regs)
1798 {
1799 }
1800
1801 static void release_callchain_buffers_rcu(struct rcu_head *head)
1802 {
1803         struct callchain_cpus_entries *entries;
1804         int cpu;
1805
1806         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1807
1808         for_each_possible_cpu(cpu)
1809                 kfree(entries->cpu_entries[cpu]);
1810
1811         kfree(entries);
1812 }
1813
1814 static void release_callchain_buffers(void)
1815 {
1816         struct callchain_cpus_entries *entries;
1817
1818         entries = callchain_cpus_entries;
1819         rcu_assign_pointer(callchain_cpus_entries, NULL);
1820         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1821 }
1822
1823 static int alloc_callchain_buffers(void)
1824 {
1825         int cpu;
1826         int size;
1827         struct callchain_cpus_entries *entries;
1828
1829         /*
1830          * We can't use the percpu allocation API for data that can be
1831          * accessed from NMI. Use a temporary manual per cpu allocation
1832          * until that gets sorted out.
1833          */
1834         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1835                 num_possible_cpus();
1836
1837         entries = kzalloc(size, GFP_KERNEL);
1838         if (!entries)
1839                 return -ENOMEM;
1840
1841         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1842
1843         for_each_possible_cpu(cpu) {
1844                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1845                                                          cpu_to_node(cpu));
1846                 if (!entries->cpu_entries[cpu])
1847                         goto fail;
1848         }
1849
1850         rcu_assign_pointer(callchain_cpus_entries, entries);
1851
1852         return 0;
1853
1854 fail:
1855         for_each_possible_cpu(cpu)
1856                 kfree(entries->cpu_entries[cpu]);
1857         kfree(entries);
1858
1859         return -ENOMEM;
1860 }
1861
1862 static int get_callchain_buffers(void)
1863 {
1864         int err = 0;
1865         int count;
1866
1867         mutex_lock(&callchain_mutex);
1868
1869         count = atomic_inc_return(&nr_callchain_events);
1870         if (WARN_ON_ONCE(count < 1)) {
1871                 err = -EINVAL;
1872                 goto exit;
1873         }
1874
1875         if (count > 1) {
1876                 /* If the allocation failed, give up */
1877                 if (!callchain_cpus_entries)
1878                         err = -ENOMEM;
1879                 goto exit;
1880         }
1881
1882         err = alloc_callchain_buffers();
1883         if (err)
1884                 release_callchain_buffers();
1885 exit:
1886         mutex_unlock(&callchain_mutex);
1887
1888         return err;
1889 }
1890
1891 static void put_callchain_buffers(void)
1892 {
1893         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1894                 release_callchain_buffers();
1895                 mutex_unlock(&callchain_mutex);
1896         }
1897 }
1898
1899 static int get_recursion_context(int *recursion)
1900 {
1901         int rctx;
1902
1903         if (in_nmi())
1904                 rctx = 3;
1905         else if (in_irq())
1906                 rctx = 2;
1907         else if (in_softirq())
1908                 rctx = 1;
1909         else
1910                 rctx = 0;
1911
1912         if (recursion[rctx])
1913                 return -1;
1914
1915         recursion[rctx]++;
1916         barrier();
1917
1918         return rctx;
1919 }
1920
1921 static inline void put_recursion_context(int *recursion, int rctx)
1922 {
1923         barrier();
1924         recursion[rctx]--;
1925 }
1926
1927 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1928 {
1929         int cpu;
1930         struct callchain_cpus_entries *entries;
1931
1932         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1933         if (*rctx == -1)
1934                 return NULL;
1935
1936         entries = rcu_dereference(callchain_cpus_entries);
1937         if (!entries)
1938                 return NULL;
1939
1940         cpu = smp_processor_id();
1941
1942         return &entries->cpu_entries[cpu][*rctx];
1943 }
1944
1945 static void
1946 put_callchain_entry(int rctx)
1947 {
1948         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1949 }
1950
1951 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1952 {
1953         int rctx;
1954         struct perf_callchain_entry *entry;
1955
1956
1957         entry = get_callchain_entry(&rctx);
1958         if (rctx == -1)
1959                 return NULL;
1960
1961         if (!entry)
1962                 goto exit_put;
1963
1964         entry->nr = 0;
1965
1966         if (!user_mode(regs)) {
1967                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
1968                 perf_callchain_kernel(entry, regs);
1969                 if (current->mm)
1970                         regs = task_pt_regs(current);
1971                 else
1972                         regs = NULL;
1973         }
1974
1975         if (regs) {
1976                 perf_callchain_store(entry, PERF_CONTEXT_USER);
1977                 perf_callchain_user(entry, regs);
1978         }
1979
1980 exit_put:
1981         put_callchain_entry(rctx);
1982
1983         return entry;
1984 }
1985
1986 /*
1987  * Initialize the perf_event context in a task_struct:
1988  */
1989 static void __perf_event_init_context(struct perf_event_context *ctx)
1990 {
1991         raw_spin_lock_init(&ctx->lock);
1992         mutex_init(&ctx->mutex);
1993         INIT_LIST_HEAD(&ctx->pinned_groups);
1994         INIT_LIST_HEAD(&ctx->flexible_groups);
1995         INIT_LIST_HEAD(&ctx->event_list);
1996         atomic_set(&ctx->refcount, 1);
1997 }
1998
1999 static struct perf_event_context *
2000 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2001 {
2002         struct perf_event_context *ctx;
2003
2004         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2005         if (!ctx)
2006                 return NULL;
2007
2008         __perf_event_init_context(ctx);
2009         if (task) {
2010                 ctx->task = task;
2011                 get_task_struct(task);
2012         }
2013         ctx->pmu = pmu;
2014
2015         return ctx;
2016 }
2017
2018 static struct perf_event_context *
2019 find_get_context(struct pmu *pmu, pid_t pid, int cpu)
2020 {
2021         struct perf_event_context *ctx;
2022         struct perf_cpu_context *cpuctx;
2023         struct task_struct *task;
2024         unsigned long flags;
2025         int ctxn, err;
2026
2027         if (pid == -1 && cpu != -1) {
2028                 /* Must be root to operate on a CPU event: */
2029                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2030                         return ERR_PTR(-EACCES);
2031
2032                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2033                         return ERR_PTR(-EINVAL);
2034
2035                 /*
2036                  * We could be clever and allow to attach a event to an
2037                  * offline CPU and activate it when the CPU comes up, but
2038                  * that's for later.
2039                  */
2040                 if (!cpu_online(cpu))
2041                         return ERR_PTR(-ENODEV);
2042
2043                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2044                 ctx = &cpuctx->ctx;
2045                 get_ctx(ctx);
2046
2047                 return ctx;
2048         }
2049
2050         rcu_read_lock();
2051         if (!pid)
2052                 task = current;
2053         else
2054                 task = find_task_by_vpid(pid);
2055         if (task)
2056                 get_task_struct(task);
2057         rcu_read_unlock();
2058
2059         if (!task)
2060                 return ERR_PTR(-ESRCH);
2061
2062         /*
2063          * Can't attach events to a dying task.
2064          */
2065         err = -ESRCH;
2066         if (task->flags & PF_EXITING)
2067                 goto errout;
2068
2069         /* Reuse ptrace permission checks for now. */
2070         err = -EACCES;
2071         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2072                 goto errout;
2073
2074         err = -EINVAL;
2075         ctxn = pmu->task_ctx_nr;
2076         if (ctxn < 0)
2077                 goto errout;
2078
2079 retry:
2080         ctx = perf_lock_task_context(task, ctxn, &flags);
2081         if (ctx) {
2082                 unclone_ctx(ctx);
2083                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2084         }
2085
2086         if (!ctx) {
2087                 ctx = alloc_perf_context(pmu, task);
2088                 err = -ENOMEM;
2089                 if (!ctx)
2090                         goto errout;
2091
2092                 get_ctx(ctx);
2093
2094                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2095                         /*
2096                          * We raced with some other task; use
2097                          * the context they set.
2098                          */
2099                         put_task_struct(task);
2100                         kfree(ctx);
2101                         goto retry;
2102                 }
2103         }
2104
2105         put_task_struct(task);
2106         return ctx;
2107
2108 errout:
2109         put_task_struct(task);
2110         return ERR_PTR(err);
2111 }
2112
2113 static void perf_event_free_filter(struct perf_event *event);
2114
2115 static void free_event_rcu(struct rcu_head *head)
2116 {
2117         struct perf_event *event;
2118
2119         event = container_of(head, struct perf_event, rcu_head);
2120         if (event->ns)
2121                 put_pid_ns(event->ns);
2122         perf_event_free_filter(event);
2123         kfree(event);
2124 }
2125
2126 static void perf_pending_sync(struct perf_event *event);
2127 static void perf_buffer_put(struct perf_buffer *buffer);
2128
2129 static void free_event(struct perf_event *event)
2130 {
2131         perf_pending_sync(event);
2132
2133         if (!event->parent) {
2134                 atomic_dec(&nr_events);
2135                 if (event->attr.mmap || event->attr.mmap_data)
2136                         atomic_dec(&nr_mmap_events);
2137                 if (event->attr.comm)
2138                         atomic_dec(&nr_comm_events);
2139                 if (event->attr.task)
2140                         atomic_dec(&nr_task_events);
2141                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2142                         put_callchain_buffers();
2143         }
2144
2145         if (event->buffer) {
2146                 perf_buffer_put(event->buffer);
2147                 event->buffer = NULL;
2148         }
2149
2150         if (event->destroy)
2151                 event->destroy(event);
2152
2153         put_ctx(event->ctx);
2154         call_rcu(&event->rcu_head, free_event_rcu);
2155 }
2156
2157 int perf_event_release_kernel(struct perf_event *event)
2158 {
2159         struct perf_event_context *ctx = event->ctx;
2160
2161         /*
2162          * Remove from the PMU, can't get re-enabled since we got
2163          * here because the last ref went.
2164          */
2165         perf_event_disable(event);
2166
2167         WARN_ON_ONCE(ctx->parent_ctx);
2168         /*
2169          * There are two ways this annotation is useful:
2170          *
2171          *  1) there is a lock recursion from perf_event_exit_task
2172          *     see the comment there.
2173          *
2174          *  2) there is a lock-inversion with mmap_sem through
2175          *     perf_event_read_group(), which takes faults while
2176          *     holding ctx->mutex, however this is called after
2177          *     the last filedesc died, so there is no possibility
2178          *     to trigger the AB-BA case.
2179          */
2180         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2181         raw_spin_lock_irq(&ctx->lock);
2182         perf_group_detach(event);
2183         list_del_event(event, ctx);
2184         raw_spin_unlock_irq(&ctx->lock);
2185         mutex_unlock(&ctx->mutex);
2186
2187         mutex_lock(&event->owner->perf_event_mutex);
2188         list_del_init(&event->owner_entry);
2189         mutex_unlock(&event->owner->perf_event_mutex);
2190         put_task_struct(event->owner);
2191
2192         free_event(event);
2193
2194         return 0;
2195 }
2196 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2197
2198 /*
2199  * Called when the last reference to the file is gone.
2200  */
2201 static int perf_release(struct inode *inode, struct file *file)
2202 {
2203         struct perf_event *event = file->private_data;
2204
2205         file->private_data = NULL;
2206
2207         return perf_event_release_kernel(event);
2208 }
2209
2210 static int perf_event_read_size(struct perf_event *event)
2211 {
2212         int entry = sizeof(u64); /* value */
2213         int size = 0;
2214         int nr = 1;
2215
2216         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2217                 size += sizeof(u64);
2218
2219         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2220                 size += sizeof(u64);
2221
2222         if (event->attr.read_format & PERF_FORMAT_ID)
2223                 entry += sizeof(u64);
2224
2225         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2226                 nr += event->group_leader->nr_siblings;
2227                 size += sizeof(u64);
2228         }
2229
2230         size += entry * nr;
2231
2232         return size;
2233 }
2234
2235 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2236 {
2237         struct perf_event *child;
2238         u64 total = 0;
2239
2240         *enabled = 0;
2241         *running = 0;
2242
2243         mutex_lock(&event->child_mutex);
2244         total += perf_event_read(event);
2245         *enabled += event->total_time_enabled +
2246                         atomic64_read(&event->child_total_time_enabled);
2247         *running += event->total_time_running +
2248                         atomic64_read(&event->child_total_time_running);
2249
2250         list_for_each_entry(child, &event->child_list, child_list) {
2251                 total += perf_event_read(child);
2252                 *enabled += child->total_time_enabled;
2253                 *running += child->total_time_running;
2254         }
2255         mutex_unlock(&event->child_mutex);
2256
2257         return total;
2258 }
2259 EXPORT_SYMBOL_GPL(perf_event_read_value);
2260
2261 static int perf_event_read_group(struct perf_event *event,
2262                                    u64 read_format, char __user *buf)
2263 {
2264         struct perf_event *leader = event->group_leader, *sub;
2265         int n = 0, size = 0, ret = -EFAULT;
2266         struct perf_event_context *ctx = leader->ctx;
2267         u64 values[5];
2268         u64 count, enabled, running;
2269
2270         mutex_lock(&ctx->mutex);
2271         count = perf_event_read_value(leader, &enabled, &running);
2272
2273         values[n++] = 1 + leader->nr_siblings;
2274         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2275                 values[n++] = enabled;
2276         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2277                 values[n++] = running;
2278         values[n++] = count;
2279         if (read_format & PERF_FORMAT_ID)
2280                 values[n++] = primary_event_id(leader);
2281
2282         size = n * sizeof(u64);
2283
2284         if (copy_to_user(buf, values, size))
2285                 goto unlock;
2286
2287         ret = size;
2288
2289         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2290                 n = 0;
2291
2292                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2293                 if (read_format & PERF_FORMAT_ID)
2294                         values[n++] = primary_event_id(sub);
2295
2296                 size = n * sizeof(u64);
2297
2298                 if (copy_to_user(buf + ret, values, size)) {
2299                         ret = -EFAULT;
2300                         goto unlock;
2301                 }
2302
2303                 ret += size;
2304         }
2305 unlock:
2306         mutex_unlock(&ctx->mutex);
2307
2308         return ret;
2309 }
2310
2311 static int perf_event_read_one(struct perf_event *event,
2312                                  u64 read_format, char __user *buf)
2313 {
2314         u64 enabled, running;
2315         u64 values[4];
2316         int n = 0;
2317
2318         values[n++] = perf_event_read_value(event, &enabled, &running);
2319         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2320                 values[n++] = enabled;
2321         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2322                 values[n++] = running;
2323         if (read_format & PERF_FORMAT_ID)
2324                 values[n++] = primary_event_id(event);
2325
2326         if (copy_to_user(buf, values, n * sizeof(u64)))
2327                 return -EFAULT;
2328
2329         return n * sizeof(u64);
2330 }
2331
2332 /*
2333  * Read the performance event - simple non blocking version for now
2334  */
2335 static ssize_t
2336 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2337 {
2338         u64 read_format = event->attr.read_format;
2339         int ret;
2340
2341         /*
2342          * Return end-of-file for a read on a event that is in
2343          * error state (i.e. because it was pinned but it couldn't be
2344          * scheduled on to the CPU at some point).
2345          */
2346         if (event->state == PERF_EVENT_STATE_ERROR)
2347                 return 0;
2348
2349         if (count < perf_event_read_size(event))
2350                 return -ENOSPC;
2351
2352         WARN_ON_ONCE(event->ctx->parent_ctx);
2353         if (read_format & PERF_FORMAT_GROUP)
2354                 ret = perf_event_read_group(event, read_format, buf);
2355         else
2356                 ret = perf_event_read_one(event, read_format, buf);
2357
2358         return ret;
2359 }
2360
2361 static ssize_t
2362 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2363 {
2364         struct perf_event *event = file->private_data;
2365
2366         return perf_read_hw(event, buf, count);
2367 }
2368
2369 static unsigned int perf_poll(struct file *file, poll_table *wait)
2370 {
2371         struct perf_event *event = file->private_data;
2372         struct perf_buffer *buffer;
2373         unsigned int events = POLL_HUP;
2374
2375         rcu_read_lock();
2376         buffer = rcu_dereference(event->buffer);
2377         if (buffer)
2378                 events = atomic_xchg(&buffer->poll, 0);
2379         rcu_read_unlock();
2380
2381         poll_wait(file, &event->waitq, wait);
2382
2383         return events;
2384 }
2385
2386 static void perf_event_reset(struct perf_event *event)
2387 {
2388         (void)perf_event_read(event);
2389         local64_set(&event->count, 0);
2390         perf_event_update_userpage(event);
2391 }
2392
2393 /*
2394  * Holding the top-level event's child_mutex means that any
2395  * descendant process that has inherited this event will block
2396  * in sync_child_event if it goes to exit, thus satisfying the
2397  * task existence requirements of perf_event_enable/disable.
2398  */
2399 static void perf_event_for_each_child(struct perf_event *event,
2400                                         void (*func)(struct perf_event *))
2401 {
2402         struct perf_event *child;
2403
2404         WARN_ON_ONCE(event->ctx->parent_ctx);
2405         mutex_lock(&event->child_mutex);
2406         func(event);
2407         list_for_each_entry(child, &event->child_list, child_list)
2408                 func(child);
2409         mutex_unlock(&event->child_mutex);
2410 }
2411
2412 static void perf_event_for_each(struct perf_event *event,
2413                                   void (*func)(struct perf_event *))
2414 {
2415         struct perf_event_context *ctx = event->ctx;
2416         struct perf_event *sibling;
2417
2418         WARN_ON_ONCE(ctx->parent_ctx);
2419         mutex_lock(&ctx->mutex);
2420         event = event->group_leader;
2421
2422         perf_event_for_each_child(event, func);
2423         func(event);
2424         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2425                 perf_event_for_each_child(event, func);
2426         mutex_unlock(&ctx->mutex);
2427 }
2428
2429 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2430 {
2431         struct perf_event_context *ctx = event->ctx;
2432         unsigned long size;
2433         int ret = 0;
2434         u64 value;
2435
2436         if (!event->attr.sample_period)
2437                 return -EINVAL;
2438
2439         size = copy_from_user(&value, arg, sizeof(value));
2440         if (size != sizeof(value))
2441                 return -EFAULT;
2442
2443         if (!value)
2444                 return -EINVAL;
2445
2446         raw_spin_lock_irq(&ctx->lock);
2447         if (event->attr.freq) {
2448                 if (value > sysctl_perf_event_sample_rate) {
2449                         ret = -EINVAL;
2450                         goto unlock;
2451                 }
2452
2453                 event->attr.sample_freq = value;
2454         } else {
2455                 event->attr.sample_period = value;
2456                 event->hw.sample_period = value;
2457         }
2458 unlock:
2459         raw_spin_unlock_irq(&ctx->lock);
2460
2461         return ret;
2462 }
2463
2464 static const struct file_operations perf_fops;
2465
2466 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2467 {
2468         struct file *file;
2469
2470         file = fget_light(fd, fput_needed);
2471         if (!file)
2472                 return ERR_PTR(-EBADF);
2473
2474         if (file->f_op != &perf_fops) {
2475                 fput_light(file, *fput_needed);
2476                 *fput_needed = 0;
2477                 return ERR_PTR(-EBADF);
2478         }
2479
2480         return file->private_data;
2481 }
2482
2483 static int perf_event_set_output(struct perf_event *event,
2484                                  struct perf_event *output_event);
2485 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2486
2487 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2488 {
2489         struct perf_event *event = file->private_data;
2490         void (*func)(struct perf_event *);
2491         u32 flags = arg;
2492
2493         switch (cmd) {
2494         case PERF_EVENT_IOC_ENABLE:
2495                 func = perf_event_enable;
2496                 break;
2497         case PERF_EVENT_IOC_DISABLE:
2498                 func = perf_event_disable;
2499                 break;
2500         case PERF_EVENT_IOC_RESET:
2501                 func = perf_event_reset;
2502                 break;
2503
2504         case PERF_EVENT_IOC_REFRESH:
2505                 return perf_event_refresh(event, arg);
2506
2507         case PERF_EVENT_IOC_PERIOD:
2508                 return perf_event_period(event, (u64 __user *)arg);
2509
2510         case PERF_EVENT_IOC_SET_OUTPUT:
2511         {
2512                 struct perf_event *output_event = NULL;
2513                 int fput_needed = 0;
2514                 int ret;
2515
2516                 if (arg != -1) {
2517                         output_event = perf_fget_light(arg, &fput_needed);
2518                         if (IS_ERR(output_event))
2519                                 return PTR_ERR(output_event);
2520                 }
2521
2522                 ret = perf_event_set_output(event, output_event);
2523                 if (output_event)
2524                         fput_light(output_event->filp, fput_needed);
2525
2526                 return ret;
2527         }
2528
2529         case PERF_EVENT_IOC_SET_FILTER:
2530                 return perf_event_set_filter(event, (void __user *)arg);
2531
2532         default:
2533                 return -ENOTTY;
2534         }
2535
2536         if (flags & PERF_IOC_FLAG_GROUP)
2537                 perf_event_for_each(event, func);
2538         else
2539                 perf_event_for_each_child(event, func);
2540
2541         return 0;
2542 }
2543
2544 int perf_event_task_enable(void)
2545 {
2546         struct perf_event *event;
2547
2548         mutex_lock(&current->perf_event_mutex);
2549         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2550                 perf_event_for_each_child(event, perf_event_enable);
2551         mutex_unlock(&current->perf_event_mutex);
2552
2553         return 0;
2554 }
2555
2556 int perf_event_task_disable(void)
2557 {
2558         struct perf_event *event;
2559
2560         mutex_lock(&current->perf_event_mutex);
2561         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2562                 perf_event_for_each_child(event, perf_event_disable);
2563         mutex_unlock(&current->perf_event_mutex);
2564
2565         return 0;
2566 }
2567
2568 #ifndef PERF_EVENT_INDEX_OFFSET
2569 # define PERF_EVENT_INDEX_OFFSET 0
2570 #endif
2571
2572 static int perf_event_index(struct perf_event *event)
2573 {
2574         if (event->hw.state & PERF_HES_STOPPED)
2575                 return 0;
2576
2577         if (event->state != PERF_EVENT_STATE_ACTIVE)
2578                 return 0;
2579
2580         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2581 }
2582
2583 /*
2584  * Callers need to ensure there can be no nesting of this function, otherwise
2585  * the seqlock logic goes bad. We can not serialize this because the arch
2586  * code calls this from NMI context.
2587  */
2588 void perf_event_update_userpage(struct perf_event *event)
2589 {
2590         struct perf_event_mmap_page *userpg;
2591         struct perf_buffer *buffer;
2592
2593         rcu_read_lock();
2594         buffer = rcu_dereference(event->buffer);
2595         if (!buffer)
2596                 goto unlock;
2597
2598         userpg = buffer->user_page;
2599
2600         /*
2601          * Disable preemption so as to not let the corresponding user-space
2602          * spin too long if we get preempted.
2603          */
2604         preempt_disable();
2605         ++userpg->lock;
2606         barrier();
2607         userpg->index = perf_event_index(event);
2608         userpg->offset = perf_event_count(event);
2609         if (event->state == PERF_EVENT_STATE_ACTIVE)
2610                 userpg->offset -= local64_read(&event->hw.prev_count);
2611
2612         userpg->time_enabled = event->total_time_enabled +
2613                         atomic64_read(&event->child_total_time_enabled);
2614
2615         userpg->time_running = event->total_time_running +
2616                         atomic64_read(&event->child_total_time_running);
2617
2618         barrier();
2619         ++userpg->lock;
2620         preempt_enable();
2621 unlock:
2622         rcu_read_unlock();
2623 }
2624
2625 static unsigned long perf_data_size(struct perf_buffer *buffer);
2626
2627 static void
2628 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2629 {
2630         long max_size = perf_data_size(buffer);
2631
2632         if (watermark)
2633                 buffer->watermark = min(max_size, watermark);
2634
2635         if (!buffer->watermark)
2636                 buffer->watermark = max_size / 2;
2637
2638         if (flags & PERF_BUFFER_WRITABLE)
2639                 buffer->writable = 1;
2640
2641         atomic_set(&buffer->refcount, 1);
2642 }
2643
2644 #ifndef CONFIG_PERF_USE_VMALLOC
2645
2646 /*
2647  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2648  */
2649
2650 static struct page *
2651 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2652 {
2653         if (pgoff > buffer->nr_pages)
2654                 return NULL;
2655
2656         if (pgoff == 0)
2657                 return virt_to_page(buffer->user_page);
2658
2659         return virt_to_page(buffer->data_pages[pgoff - 1]);
2660 }
2661
2662 static void *perf_mmap_alloc_page(int cpu)
2663 {
2664         struct page *page;
2665         int node;
2666
2667         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2668         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2669         if (!page)
2670                 return NULL;
2671
2672         return page_address(page);
2673 }
2674
2675 static struct perf_buffer *
2676 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2677 {
2678         struct perf_buffer *buffer;
2679         unsigned long size;
2680         int i;
2681
2682         size = sizeof(struct perf_buffer);
2683         size += nr_pages * sizeof(void *);
2684
2685         buffer = kzalloc(size, GFP_KERNEL);
2686         if (!buffer)
2687                 goto fail;
2688
2689         buffer->user_page = perf_mmap_alloc_page(cpu);
2690         if (!buffer->user_page)
2691                 goto fail_user_page;
2692
2693         for (i = 0; i < nr_pages; i++) {
2694                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2695                 if (!buffer->data_pages[i])
2696                         goto fail_data_pages;
2697         }
2698
2699         buffer->nr_pages = nr_pages;
2700
2701         perf_buffer_init(buffer, watermark, flags);
2702
2703         return buffer;
2704
2705 fail_data_pages:
2706         for (i--; i >= 0; i--)
2707                 free_page((unsigned long)buffer->data_pages[i]);
2708
2709         free_page((unsigned long)buffer->user_page);
2710
2711 fail_user_page:
2712         kfree(buffer);
2713
2714 fail:
2715         return NULL;
2716 }
2717
2718 static void perf_mmap_free_page(unsigned long addr)
2719 {
2720         struct page *page = virt_to_page((void *)addr);
2721
2722         page->mapping = NULL;
2723         __free_page(page);
2724 }
2725
2726 static void perf_buffer_free(struct perf_buffer *buffer)
2727 {
2728         int i;
2729
2730         perf_mmap_free_page((unsigned long)buffer->user_page);
2731         for (i = 0; i < buffer->nr_pages; i++)
2732                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2733         kfree(buffer);
2734 }
2735
2736 static inline int page_order(struct perf_buffer *buffer)
2737 {
2738         return 0;
2739 }
2740
2741 #else
2742
2743 /*
2744  * Back perf_mmap() with vmalloc memory.
2745  *
2746  * Required for architectures that have d-cache aliasing issues.
2747  */
2748
2749 static inline int page_order(struct perf_buffer *buffer)
2750 {
2751         return buffer->page_order;
2752 }
2753
2754 static struct page *
2755 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2756 {
2757         if (pgoff > (1UL << page_order(buffer)))
2758                 return NULL;
2759
2760         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2761 }
2762
2763 static void perf_mmap_unmark_page(void *addr)
2764 {
2765         struct page *page = vmalloc_to_page(addr);
2766
2767         page->mapping = NULL;
2768 }
2769
2770 static void perf_buffer_free_work(struct work_struct *work)
2771 {
2772         struct perf_buffer *buffer;
2773         void *base;
2774         int i, nr;
2775
2776         buffer = container_of(work, struct perf_buffer, work);
2777         nr = 1 << page_order(buffer);
2778
2779         base = buffer->user_page;
2780         for (i = 0; i < nr + 1; i++)
2781                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2782
2783         vfree(base);
2784         kfree(buffer);
2785 }
2786
2787 static void perf_buffer_free(struct perf_buffer *buffer)
2788 {
2789         schedule_work(&buffer->work);
2790 }
2791
2792 static struct perf_buffer *
2793 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2794 {
2795         struct perf_buffer *buffer;
2796         unsigned long size;
2797         void *all_buf;
2798
2799         size = sizeof(struct perf_buffer);
2800         size += sizeof(void *);
2801
2802         buffer = kzalloc(size, GFP_KERNEL);
2803         if (!buffer)
2804                 goto fail;
2805
2806         INIT_WORK(&buffer->work, perf_buffer_free_work);
2807
2808         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2809         if (!all_buf)
2810                 goto fail_all_buf;
2811
2812         buffer->user_page = all_buf;
2813         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2814         buffer->page_order = ilog2(nr_pages);
2815         buffer->nr_pages = 1;
2816
2817         perf_buffer_init(buffer, watermark, flags);
2818
2819         return buffer;
2820
2821 fail_all_buf:
2822         kfree(buffer);
2823
2824 fail:
2825         return NULL;
2826 }
2827
2828 #endif
2829
2830 static unsigned long perf_data_size(struct perf_buffer *buffer)
2831 {
2832         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2833 }
2834
2835 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2836 {
2837         struct perf_event *event = vma->vm_file->private_data;
2838         struct perf_buffer *buffer;
2839         int ret = VM_FAULT_SIGBUS;
2840
2841         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2842                 if (vmf->pgoff == 0)
2843                         ret = 0;
2844                 return ret;
2845         }
2846
2847         rcu_read_lock();
2848         buffer = rcu_dereference(event->buffer);
2849         if (!buffer)
2850                 goto unlock;
2851
2852         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2853                 goto unlock;
2854
2855         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2856         if (!vmf->page)
2857                 goto unlock;
2858
2859         get_page(vmf->page);
2860         vmf->page->mapping = vma->vm_file->f_mapping;
2861         vmf->page->index   = vmf->pgoff;
2862
2863         ret = 0;
2864 unlock:
2865         rcu_read_unlock();
2866
2867         return ret;
2868 }
2869
2870 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2871 {
2872         struct perf_buffer *buffer;
2873
2874         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2875         perf_buffer_free(buffer);
2876 }
2877
2878 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2879 {
2880         struct perf_buffer *buffer;
2881
2882         rcu_read_lock();
2883         buffer = rcu_dereference(event->buffer);
2884         if (buffer) {
2885                 if (!atomic_inc_not_zero(&buffer->refcount))
2886                         buffer = NULL;
2887         }
2888         rcu_read_unlock();
2889
2890         return buffer;
2891 }
2892
2893 static void perf_buffer_put(struct perf_buffer *buffer)
2894 {
2895         if (!atomic_dec_and_test(&buffer->refcount))
2896                 return;
2897
2898         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2899 }
2900
2901 static void perf_mmap_open(struct vm_area_struct *vma)
2902 {
2903         struct perf_event *event = vma->vm_file->private_data;
2904
2905         atomic_inc(&event->mmap_count);
2906 }
2907
2908 static void perf_mmap_close(struct vm_area_struct *vma)
2909 {
2910         struct perf_event *event = vma->vm_file->private_data;
2911
2912         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2913                 unsigned long size = perf_data_size(event->buffer);
2914                 struct user_struct *user = event->mmap_user;
2915                 struct perf_buffer *buffer = event->buffer;
2916
2917                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2918                 vma->vm_mm->locked_vm -= event->mmap_locked;
2919                 rcu_assign_pointer(event->buffer, NULL);
2920                 mutex_unlock(&event->mmap_mutex);
2921
2922                 perf_buffer_put(buffer);
2923                 free_uid(user);
2924         }
2925 }
2926
2927 static const struct vm_operations_struct perf_mmap_vmops = {
2928         .open           = perf_mmap_open,
2929         .close          = perf_mmap_close,
2930         .fault          = perf_mmap_fault,
2931         .page_mkwrite   = perf_mmap_fault,
2932 };
2933
2934 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2935 {
2936         struct perf_event *event = file->private_data;
2937         unsigned long user_locked, user_lock_limit;
2938         struct user_struct *user = current_user();
2939         unsigned long locked, lock_limit;
2940         struct perf_buffer *buffer;
2941         unsigned long vma_size;
2942         unsigned long nr_pages;
2943         long user_extra, extra;
2944         int ret = 0, flags = 0;
2945
2946         /*
2947          * Don't allow mmap() of inherited per-task counters. This would
2948          * create a performance issue due to all children writing to the
2949          * same buffer.
2950          */
2951         if (event->cpu == -1 && event->attr.inherit)
2952                 return -EINVAL;
2953
2954         if (!(vma->vm_flags & VM_SHARED))
2955                 return -EINVAL;
2956
2957         vma_size = vma->vm_end - vma->vm_start;
2958         nr_pages = (vma_size / PAGE_SIZE) - 1;
2959
2960         /*
2961          * If we have buffer pages ensure they're a power-of-two number, so we
2962          * can do bitmasks instead of modulo.
2963          */
2964         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2965                 return -EINVAL;
2966
2967         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2968                 return -EINVAL;
2969
2970         if (vma->vm_pgoff != 0)
2971                 return -EINVAL;
2972
2973         WARN_ON_ONCE(event->ctx->parent_ctx);
2974         mutex_lock(&event->mmap_mutex);
2975         if (event->buffer) {
2976                 if (event->buffer->nr_pages == nr_pages)
2977                         atomic_inc(&event->buffer->refcount);
2978                 else
2979                         ret = -EINVAL;
2980                 goto unlock;
2981         }
2982
2983         user_extra = nr_pages + 1;
2984         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2985
2986         /*
2987          * Increase the limit linearly with more CPUs:
2988          */
2989         user_lock_limit *= num_online_cpus();
2990
2991         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2992
2993         extra = 0;
2994         if (user_locked > user_lock_limit)
2995                 extra = user_locked - user_lock_limit;
2996
2997         lock_limit = rlimit(RLIMIT_MEMLOCK);
2998         lock_limit >>= PAGE_SHIFT;
2999         locked = vma->vm_mm->locked_vm + extra;
3000
3001         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3002                 !capable(CAP_IPC_LOCK)) {
3003                 ret = -EPERM;
3004                 goto unlock;
3005         }
3006
3007         WARN_ON(event->buffer);
3008
3009         if (vma->vm_flags & VM_WRITE)
3010                 flags |= PERF_BUFFER_WRITABLE;
3011
3012         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3013                                    event->cpu, flags);
3014         if (!buffer) {
3015                 ret = -ENOMEM;
3016                 goto unlock;
3017         }
3018         rcu_assign_pointer(event->buffer, buffer);
3019
3020         atomic_long_add(user_extra, &user->locked_vm);
3021         event->mmap_locked = extra;
3022         event->mmap_user = get_current_user();
3023         vma->vm_mm->locked_vm += event->mmap_locked;
3024
3025 unlock:
3026         if (!ret)
3027                 atomic_inc(&event->mmap_count);
3028         mutex_unlock(&event->mmap_mutex);
3029
3030         vma->vm_flags |= VM_RESERVED;
3031         vma->vm_ops = &perf_mmap_vmops;
3032
3033         return ret;
3034 }
3035
3036 static int perf_fasync(int fd, struct file *filp, int on)
3037 {
3038         struct inode *inode = filp->f_path.dentry->d_inode;
3039         struct perf_event *event = filp->private_data;
3040         int retval;
3041
3042         mutex_lock(&inode->i_mutex);
3043         retval = fasync_helper(fd, filp, on, &event->fasync);
3044         mutex_unlock(&inode->i_mutex);
3045
3046         if (retval < 0)
3047                 return retval;
3048
3049         return 0;
3050 }
3051
3052 static const struct file_operations perf_fops = {
3053         .llseek                 = no_llseek,
3054         .release                = perf_release,
3055         .read                   = perf_read,
3056         .poll                   = perf_poll,
3057         .unlocked_ioctl         = perf_ioctl,
3058         .compat_ioctl           = perf_ioctl,
3059         .mmap                   = perf_mmap,
3060         .fasync                 = perf_fasync,
3061 };
3062
3063 /*
3064  * Perf event wakeup
3065  *
3066  * If there's data, ensure we set the poll() state and publish everything
3067  * to user-space before waking everybody up.
3068  */
3069
3070 void perf_event_wakeup(struct perf_event *event)
3071 {
3072         wake_up_all(&event->waitq);
3073
3074         if (event->pending_kill) {
3075                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3076                 event->pending_kill = 0;
3077         }
3078 }
3079
3080 /*
3081  * Pending wakeups
3082  *
3083  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
3084  *
3085  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
3086  * single linked list and use cmpxchg() to add entries lockless.
3087  */
3088
3089 static void perf_pending_event(struct perf_pending_entry *entry)
3090 {
3091         struct perf_event *event = container_of(entry,
3092                         struct perf_event, pending);
3093
3094         if (event->pending_disable) {
3095                 event->pending_disable = 0;
3096                 __perf_event_disable(event);
3097         }
3098
3099         if (event->pending_wakeup) {
3100                 event->pending_wakeup = 0;
3101                 perf_event_wakeup(event);
3102         }
3103 }
3104
3105 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3106
3107 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3108         PENDING_TAIL,
3109 };
3110
3111 static void perf_pending_queue(struct perf_pending_entry *entry,
3112                                void (*func)(struct perf_pending_entry *))
3113 {
3114         struct perf_pending_entry **head;
3115
3116         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3117                 return;
3118
3119         entry->func = func;
3120
3121         head = &get_cpu_var(perf_pending_head);
3122
3123         do {
3124                 entry->next = *head;
3125         } while (cmpxchg(head, entry->next, entry) != entry->next);
3126
3127         set_perf_event_pending();
3128
3129         put_cpu_var(perf_pending_head);
3130 }
3131
3132 static int __perf_pending_run(void)
3133 {
3134         struct perf_pending_entry *list;
3135         int nr = 0;
3136
3137         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3138         while (list != PENDING_TAIL) {
3139                 void (*func)(struct perf_pending_entry *);
3140                 struct perf_pending_entry *entry = list;
3141
3142                 list = list->next;
3143
3144                 func = entry->func;
3145                 entry->next = NULL;
3146                 /*
3147                  * Ensure we observe the unqueue before we issue the wakeup,
3148                  * so that we won't be waiting forever.
3149                  * -- see perf_not_pending().
3150                  */
3151                 smp_wmb();
3152
3153                 func(entry);
3154                 nr++;
3155         }
3156
3157         return nr;
3158 }
3159
3160 static inline int perf_not_pending(struct perf_event *event)
3161 {
3162         /*
3163          * If we flush on whatever cpu we run, there is a chance we don't
3164          * need to wait.
3165          */
3166         get_cpu();
3167         __perf_pending_run();
3168         put_cpu();
3169
3170         /*
3171          * Ensure we see the proper queue state before going to sleep
3172          * so that we do not miss the wakeup. -- see perf_pending_handle()
3173          */
3174         smp_rmb();
3175         return event->pending.next == NULL;
3176 }
3177
3178 static void perf_pending_sync(struct perf_event *event)
3179 {
3180         wait_event(event->waitq, perf_not_pending(event));
3181 }
3182
3183 void perf_event_do_pending(void)
3184 {
3185         __perf_pending_run();
3186 }
3187
3188 /*
3189  * We assume there is only KVM supporting the callbacks.
3190  * Later on, we might change it to a list if there is
3191  * another virtualization implementation supporting the callbacks.
3192  */
3193 struct perf_guest_info_callbacks *perf_guest_cbs;
3194
3195 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3196 {
3197         perf_guest_cbs = cbs;
3198         return 0;
3199 }
3200 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3201
3202 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3203 {
3204         perf_guest_cbs = NULL;
3205         return 0;
3206 }
3207 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3208
3209 /*
3210  * Output
3211  */
3212 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3213                               unsigned long offset, unsigned long head)
3214 {
3215         unsigned long mask;
3216
3217         if (!buffer->writable)
3218                 return true;
3219
3220         mask = perf_data_size(buffer) - 1;
3221
3222         offset = (offset - tail) & mask;
3223         head   = (head   - tail) & mask;
3224
3225         if ((int)(head - offset) < 0)
3226                 return false;
3227
3228         return true;
3229 }
3230
3231 static void perf_output_wakeup(struct perf_output_handle *handle)
3232 {
3233         atomic_set(&handle->buffer->poll, POLL_IN);
3234
3235         if (handle->nmi) {
3236                 handle->event->pending_wakeup = 1;
3237                 perf_pending_queue(&handle->event->pending,
3238                                    perf_pending_event);
3239         } else
3240                 perf_event_wakeup(handle->event);
3241 }
3242
3243 /*
3244  * We need to ensure a later event_id doesn't publish a head when a former
3245  * event isn't done writing. However since we need to deal with NMIs we
3246  * cannot fully serialize things.
3247  *
3248  * We only publish the head (and generate a wakeup) when the outer-most
3249  * event completes.
3250  */
3251 static void perf_output_get_handle(struct perf_output_handle *handle)
3252 {
3253         struct perf_buffer *buffer = handle->buffer;
3254
3255         preempt_disable();
3256         local_inc(&buffer->nest);
3257         handle->wakeup = local_read(&buffer->wakeup);
3258 }
3259
3260 static void perf_output_put_handle(struct perf_output_handle *handle)
3261 {
3262         struct perf_buffer *buffer = handle->buffer;
3263         unsigned long head;
3264
3265 again:
3266         head = local_read(&buffer->head);
3267
3268         /*
3269          * IRQ/NMI can happen here, which means we can miss a head update.
3270          */
3271
3272         if (!local_dec_and_test(&buffer->nest))
3273                 goto out;
3274
3275         /*
3276          * Publish the known good head. Rely on the full barrier implied
3277          * by atomic_dec_and_test() order the buffer->head read and this
3278          * write.
3279          */
3280         buffer->user_page->data_head = head;
3281
3282         /*
3283          * Now check if we missed an update, rely on the (compiler)
3284          * barrier in atomic_dec_and_test() to re-read buffer->head.
3285          */
3286         if (unlikely(head != local_read(&buffer->head))) {
3287                 local_inc(&buffer->nest);
3288                 goto again;
3289         }
3290
3291         if (handle->wakeup != local_read(&buffer->wakeup))
3292                 perf_output_wakeup(handle);
3293
3294 out:
3295         preempt_enable();
3296 }
3297
3298 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3299                       const void *buf, unsigned int len)
3300 {
3301         do {
3302                 unsigned long size = min_t(unsigned long, handle->size, len);
3303
3304                 memcpy(handle->addr, buf, size);
3305
3306                 len -= size;
3307                 handle->addr += size;
3308                 buf += size;
3309                 handle->size -= size;
3310                 if (!handle->size) {
3311                         struct perf_buffer *buffer = handle->buffer;
3312
3313                         handle->page++;
3314                         handle->page &= buffer->nr_pages - 1;
3315                         handle->addr = buffer->data_pages[handle->page];
3316                         handle->size = PAGE_SIZE << page_order(buffer);
3317                 }
3318         } while (len);
3319 }
3320
3321 int perf_output_begin(struct perf_output_handle *handle,
3322                       struct perf_event *event, unsigned int size,
3323                       int nmi, int sample)
3324 {
3325         struct perf_buffer *buffer;
3326         unsigned long tail, offset, head;
3327         int have_lost;
3328         struct {
3329                 struct perf_event_header header;
3330                 u64                      id;
3331                 u64                      lost;
3332         } lost_event;
3333
3334         rcu_read_lock();
3335         /*
3336          * For inherited events we send all the output towards the parent.
3337          */
3338         if (event->parent)
3339                 event = event->parent;
3340
3341         buffer = rcu_dereference(event->buffer);
3342         if (!buffer)
3343                 goto out;
3344
3345         handle->buffer  = buffer;
3346         handle->event   = event;
3347         handle->nmi     = nmi;
3348         handle->sample  = sample;
3349
3350         if (!buffer->nr_pages)
3351                 goto out;
3352
3353         have_lost = local_read(&buffer->lost);
3354         if (have_lost)
3355                 size += sizeof(lost_event);
3356
3357         perf_output_get_handle(handle);
3358
3359         do {
3360                 /*
3361                  * Userspace could choose to issue a mb() before updating the
3362                  * tail pointer. So that all reads will be completed before the
3363                  * write is issued.
3364                  */
3365                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3366                 smp_rmb();
3367                 offset = head = local_read(&buffer->head);
3368                 head += size;
3369                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3370                         goto fail;
3371         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3372
3373         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3374                 local_add(buffer->watermark, &buffer->wakeup);
3375
3376         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3377         handle->page &= buffer->nr_pages - 1;
3378         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3379         handle->addr = buffer->data_pages[handle->page];
3380         handle->addr += handle->size;
3381         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3382
3383         if (have_lost) {
3384                 lost_event.header.type = PERF_RECORD_LOST;
3385                 lost_event.header.misc = 0;
3386                 lost_event.header.size = sizeof(lost_event);
3387                 lost_event.id          = event->id;
3388                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3389
3390                 perf_output_put(handle, lost_event);
3391         }
3392
3393         return 0;
3394
3395 fail:
3396         local_inc(&buffer->lost);
3397         perf_output_put_handle(handle);
3398 out:
3399         rcu_read_unlock();
3400
3401         return -ENOSPC;
3402 }
3403
3404 void perf_output_end(struct perf_output_handle *handle)
3405 {
3406         struct perf_event *event = handle->event;
3407         struct perf_buffer *buffer = handle->buffer;
3408
3409         int wakeup_events = event->attr.wakeup_events;
3410
3411         if (handle->sample && wakeup_events) {
3412                 int events = local_inc_return(&buffer->events);
3413                 if (events >= wakeup_events) {
3414                         local_sub(wakeup_events, &buffer->events);
3415                         local_inc(&buffer->wakeup);
3416                 }
3417         }
3418
3419         perf_output_put_handle(handle);
3420         rcu_read_unlock();
3421 }
3422
3423 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3424 {
3425         /*
3426          * only top level events have the pid namespace they were created in
3427          */
3428         if (event->parent)
3429                 event = event->parent;
3430
3431         return task_tgid_nr_ns(p, event->ns);
3432 }
3433
3434 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3435 {
3436         /*
3437          * only top level events have the pid namespace they were created in
3438          */
3439         if (event->parent)
3440                 event = event->parent;
3441
3442         return task_pid_nr_ns(p, event->ns);
3443 }
3444
3445 static void perf_output_read_one(struct perf_output_handle *handle,
3446                                  struct perf_event *event)
3447 {
3448         u64 read_format = event->attr.read_format;
3449         u64 values[4];
3450         int n = 0;
3451
3452         values[n++] = perf_event_count(event);
3453         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3454                 values[n++] = event->total_time_enabled +
3455                         atomic64_read(&event->child_total_time_enabled);
3456         }
3457         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3458                 values[n++] = event->total_time_running +
3459                         atomic64_read(&event->child_total_time_running);
3460         }
3461         if (read_format & PERF_FORMAT_ID)
3462                 values[n++] = primary_event_id(event);
3463
3464         perf_output_copy(handle, values, n * sizeof(u64));
3465 }
3466
3467 /*
3468  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3469  */
3470 static void perf_output_read_group(struct perf_output_handle *handle,
3471                             struct perf_event *event)
3472 {
3473         struct perf_event *leader = event->group_leader, *sub;
3474         u64 read_format = event->attr.read_format;
3475         u64 values[5];
3476         int n = 0;
3477
3478         values[n++] = 1 + leader->nr_siblings;
3479
3480         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3481                 values[n++] = leader->total_time_enabled;
3482
3483         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3484                 values[n++] = leader->total_time_running;
3485
3486         if (leader != event)
3487                 leader->pmu->read(leader);
3488
3489         values[n++] = perf_event_count(leader);
3490         if (read_format & PERF_FORMAT_ID)
3491                 values[n++] = primary_event_id(leader);
3492
3493         perf_output_copy(handle, values, n * sizeof(u64));
3494
3495         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3496                 n = 0;
3497
3498                 if (sub != event)
3499                         sub->pmu->read(sub);
3500
3501                 values[n++] = perf_event_count(sub);
3502                 if (read_format & PERF_FORMAT_ID)
3503                         values[n++] = primary_event_id(sub);
3504
3505                 perf_output_copy(handle, values, n * sizeof(u64));
3506         }
3507 }
3508
3509 static void perf_output_read(struct perf_output_handle *handle,
3510                              struct perf_event *event)
3511 {
3512         if (event->attr.read_format & PERF_FORMAT_GROUP)
3513                 perf_output_read_group(handle, event);
3514         else
3515                 perf_output_read_one(handle, event);
3516 }
3517
3518 void perf_output_sample(struct perf_output_handle *handle,
3519                         struct perf_event_header *header,
3520                         struct perf_sample_data *data,
3521                         struct perf_event *event)
3522 {
3523         u64 sample_type = data->type;
3524
3525         perf_output_put(handle, *header);
3526
3527         if (sample_type & PERF_SAMPLE_IP)
3528                 perf_output_put(handle, data->ip);
3529
3530         if (sample_type & PERF_SAMPLE_TID)
3531                 perf_output_put(handle, data->tid_entry);
3532
3533         if (sample_type & PERF_SAMPLE_TIME)
3534                 perf_output_put(handle, data->time);
3535
3536         if (sample_type & PERF_SAMPLE_ADDR)
3537                 perf_output_put(handle, data->addr);
3538
3539         if (sample_type & PERF_SAMPLE_ID)
3540                 perf_output_put(handle, data->id);
3541
3542         if (sample_type & PERF_SAMPLE_STREAM_ID)
3543                 perf_output_put(handle, data->stream_id);
3544
3545         if (sample_type & PERF_SAMPLE_CPU)
3546                 perf_output_put(handle, data->cpu_entry);
3547
3548         if (sample_type & PERF_SAMPLE_PERIOD)
3549                 perf_output_put(handle, data->period);
3550
3551         if (sample_type & PERF_SAMPLE_READ)
3552                 perf_output_read(handle, event);
3553
3554         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3555                 if (data->callchain) {
3556                         int size = 1;
3557
3558                         if (data->callchain)
3559                                 size += data->callchain->nr;
3560
3561                         size *= sizeof(u64);
3562
3563                         perf_output_copy(handle, data->callchain, size);
3564                 } else {
3565                         u64 nr = 0;
3566                         perf_output_put(handle, nr);
3567                 }
3568         }
3569
3570         if (sample_type & PERF_SAMPLE_RAW) {
3571                 if (data->raw) {
3572                         perf_output_put(handle, data->raw->size);
3573                         perf_output_copy(handle, data->raw->data,
3574                                          data->raw->size);
3575                 } else {
3576                         struct {
3577                                 u32     size;
3578                                 u32     data;
3579                         } raw = {
3580                                 .size = sizeof(u32),
3581                                 .data = 0,
3582                         };
3583                         perf_output_put(handle, raw);
3584                 }
3585         }
3586 }
3587
3588 void perf_prepare_sample(struct perf_event_header *header,
3589                          struct perf_sample_data *data,
3590                          struct perf_event *event,
3591                          struct pt_regs *regs)
3592 {
3593         u64 sample_type = event->attr.sample_type;
3594
3595         data->type = sample_type;
3596
3597         header->type = PERF_RECORD_SAMPLE;
3598         header->size = sizeof(*header);
3599
3600         header->misc = 0;
3601         header->misc |= perf_misc_flags(regs);
3602
3603         if (sample_type & PERF_SAMPLE_IP) {
3604                 data->ip = perf_instruction_pointer(regs);
3605
3606                 header->size += sizeof(data->ip);
3607         }
3608
3609         if (sample_type & PERF_SAMPLE_TID) {
3610                 /* namespace issues */
3611                 data->tid_entry.pid = perf_event_pid(event, current);
3612                 data->tid_entry.tid = perf_event_tid(event, current);
3613
3614                 header->size += sizeof(data->tid_entry);
3615         }
3616
3617         if (sample_type & PERF_SAMPLE_TIME) {
3618                 data->time = perf_clock();
3619
3620                 header->size += sizeof(data->time);
3621         }
3622
3623         if (sample_type & PERF_SAMPLE_ADDR)
3624                 header->size += sizeof(data->addr);
3625
3626         if (sample_type & PERF_SAMPLE_ID) {
3627                 data->id = primary_event_id(event);
3628
3629                 header->size += sizeof(data->id);
3630         }
3631
3632         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3633                 data->stream_id = event->id;
3634
3635                 header->size += sizeof(data->stream_id);
3636         }
3637
3638         if (sample_type & PERF_SAMPLE_CPU) {
3639                 data->cpu_entry.cpu             = raw_smp_processor_id();
3640                 data->cpu_entry.reserved        = 0;
3641
3642                 header->size += sizeof(data->cpu_entry);
3643         }
3644
3645         if (sample_type & PERF_SAMPLE_PERIOD)
3646                 header->size += sizeof(data->period);
3647
3648         if (sample_type & PERF_SAMPLE_READ)
3649                 header->size += perf_event_read_size(event);
3650
3651         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3652                 int size = 1;
3653
3654                 data->callchain = perf_callchain(regs);
3655
3656                 if (data->callchain)
3657                         size += data->callchain->nr;
3658
3659                 header->size += size * sizeof(u64);
3660         }
3661
3662         if (sample_type & PERF_SAMPLE_RAW) {
3663                 int size = sizeof(u32);
3664
3665                 if (data->raw)
3666                         size += data->raw->size;
3667                 else
3668                         size += sizeof(u32);
3669
3670                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3671                 header->size += size;
3672         }
3673 }
3674
3675 static void perf_event_output(struct perf_event *event, int nmi,
3676                                 struct perf_sample_data *data,
3677                                 struct pt_regs *regs)
3678 {
3679         struct perf_output_handle handle;
3680         struct perf_event_header header;
3681
3682         /* protect the callchain buffers */
3683         rcu_read_lock();
3684
3685         perf_prepare_sample(&header, data, event, regs);
3686
3687         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3688                 goto exit;
3689
3690         perf_output_sample(&handle, &header, data, event);
3691
3692         perf_output_end(&handle);
3693
3694 exit:
3695         rcu_read_unlock();
3696 }
3697
3698 /*
3699  * read event_id
3700  */
3701
3702 struct perf_read_event {
3703         struct perf_event_header        header;
3704
3705         u32                             pid;
3706         u32                             tid;
3707 };
3708
3709 static void
3710 perf_event_read_event(struct perf_event *event,
3711                         struct task_struct *task)
3712 {
3713         struct perf_output_handle handle;
3714         struct perf_read_event read_event = {
3715                 .header = {
3716                         .type = PERF_RECORD_READ,
3717                         .misc = 0,
3718                         .size = sizeof(read_event) + perf_event_read_size(event),
3719                 },
3720                 .pid = perf_event_pid(event, task),
3721                 .tid = perf_event_tid(event, task),
3722         };
3723         int ret;
3724
3725         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3726         if (ret)
3727                 return;
3728
3729         perf_output_put(&handle, read_event);
3730         perf_output_read(&handle, event);
3731
3732         perf_output_end(&handle);
3733 }
3734
3735 /*
3736  * task tracking -- fork/exit
3737  *
3738  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3739  */
3740
3741 struct perf_task_event {
3742         struct task_struct              *task;
3743         struct perf_event_context       *task_ctx;
3744
3745         struct {
3746                 struct perf_event_header        header;
3747
3748                 u32                             pid;
3749                 u32                             ppid;
3750                 u32                             tid;
3751                 u32                             ptid;
3752                 u64                             time;
3753         } event_id;
3754 };
3755
3756 static void perf_event_task_output(struct perf_event *event,
3757                                      struct perf_task_event *task_event)
3758 {
3759         struct perf_output_handle handle;
3760         struct task_struct *task = task_event->task;
3761         int size, ret;
3762
3763         size  = task_event->event_id.header.size;
3764         ret = perf_output_begin(&handle, event, size, 0, 0);
3765
3766         if (ret)
3767                 return;
3768
3769         task_event->event_id.pid = perf_event_pid(event, task);
3770         task_event->event_id.ppid = perf_event_pid(event, current);
3771
3772         task_event->event_id.tid = perf_event_tid(event, task);
3773         task_event->event_id.ptid = perf_event_tid(event, current);
3774
3775         perf_output_put(&handle, task_event->event_id);
3776
3777         perf_output_end(&handle);
3778 }
3779
3780 static int perf_event_task_match(struct perf_event *event)
3781 {
3782         if (event->state < PERF_EVENT_STATE_INACTIVE)
3783                 return 0;
3784
3785         if (event->cpu != -1 && event->cpu != smp_processor_id())
3786                 return 0;
3787
3788         if (event->attr.comm || event->attr.mmap ||
3789             event->attr.mmap_data || event->attr.task)
3790                 return 1;
3791
3792         return 0;
3793 }
3794
3795 static void perf_event_task_ctx(struct perf_event_context *ctx,
3796                                   struct perf_task_event *task_event)
3797 {
3798         struct perf_event *event;
3799
3800         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3801                 if (perf_event_task_match(event))
3802                         perf_event_task_output(event, task_event);
3803         }
3804 }
3805
3806 static void perf_event_task_event(struct perf_task_event *task_event)
3807 {
3808         struct perf_cpu_context *cpuctx;
3809         struct perf_event_context *ctx;
3810         struct pmu *pmu;
3811         int ctxn;
3812
3813         rcu_read_lock_sched();
3814         list_for_each_entry_rcu(pmu, &pmus, entry) {
3815                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3816                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3817
3818                 ctx = task_event->task_ctx;
3819                 if (!ctx) {
3820                         ctxn = pmu->task_ctx_nr;
3821                         if (ctxn < 0)
3822                                 continue;
3823                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3824                 }
3825                 if (ctx)
3826                         perf_event_task_ctx(ctx, task_event);
3827         }
3828         rcu_read_unlock_sched();
3829 }
3830
3831 static void perf_event_task(struct task_struct *task,
3832                               struct perf_event_context *task_ctx,
3833                               int new)
3834 {
3835         struct perf_task_event task_event;
3836
3837         if (!atomic_read(&nr_comm_events) &&
3838             !atomic_read(&nr_mmap_events) &&
3839             !atomic_read(&nr_task_events))
3840                 return;
3841
3842         task_event = (struct perf_task_event){
3843                 .task     = task,
3844                 .task_ctx = task_ctx,
3845                 .event_id    = {
3846                         .header = {
3847                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3848                                 .misc = 0,
3849                                 .size = sizeof(task_event.event_id),
3850                         },
3851                         /* .pid  */
3852                         /* .ppid */
3853                         /* .tid  */
3854                         /* .ptid */
3855                         .time = perf_clock(),
3856                 },
3857         };
3858
3859         perf_event_task_event(&task_event);
3860 }
3861
3862 void perf_event_fork(struct task_struct *task)
3863 {
3864         perf_event_task(task, NULL, 1);
3865 }
3866
3867 /*
3868  * comm tracking
3869  */
3870
3871 struct perf_comm_event {
3872         struct task_struct      *task;
3873         char                    *comm;
3874         int                     comm_size;
3875
3876         struct {
3877                 struct perf_event_header        header;
3878
3879                 u32                             pid;
3880                 u32                             tid;
3881         } event_id;
3882 };
3883
3884 static void perf_event_comm_output(struct perf_event *event,
3885                                      struct perf_comm_event *comm_event)
3886 {
3887         struct perf_output_handle handle;
3888         int size = comm_event->event_id.header.size;
3889         int ret = perf_output_begin(&handle, event, size, 0, 0);
3890
3891         if (ret)
3892                 return;
3893
3894         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3895         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3896
3897         perf_output_put(&handle, comm_event->event_id);
3898         perf_output_copy(&handle, comm_event->comm,
3899                                    comm_event->comm_size);
3900         perf_output_end(&handle);
3901 }
3902
3903 static int perf_event_comm_match(struct perf_event *event)
3904 {
3905         if (event->state < PERF_EVENT_STATE_INACTIVE)
3906                 return 0;
3907
3908         if (event->cpu != -1 && event->cpu != smp_processor_id())
3909                 return 0;
3910
3911         if (event->attr.comm)
3912                 return 1;
3913
3914         return 0;
3915 }
3916
3917 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3918                                   struct perf_comm_event *comm_event)
3919 {
3920         struct perf_event *event;
3921
3922         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3923                 if (perf_event_comm_match(event))
3924                         perf_event_comm_output(event, comm_event);
3925         }
3926 }
3927
3928 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3929 {
3930         struct perf_cpu_context *cpuctx;
3931         struct perf_event_context *ctx;
3932         char comm[TASK_COMM_LEN];
3933         unsigned int size;
3934         struct pmu *pmu;
3935         int ctxn;
3936
3937         memset(comm, 0, sizeof(comm));
3938         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3939         size = ALIGN(strlen(comm)+1, sizeof(u64));
3940
3941         comm_event->comm = comm;
3942         comm_event->comm_size = size;
3943
3944         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3945
3946         rcu_read_lock_sched();
3947         list_for_each_entry_rcu(pmu, &pmus, entry) {
3948                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3949                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3950
3951                 ctxn = pmu->task_ctx_nr;
3952                 if (ctxn < 0)
3953                         continue;
3954
3955                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3956                 if (ctx)
3957                         perf_event_comm_ctx(ctx, comm_event);
3958         }
3959         rcu_read_unlock_sched();
3960 }
3961
3962 void perf_event_comm(struct task_struct *task)
3963 {
3964         struct perf_comm_event comm_event;
3965         struct perf_event_context *ctx;
3966         int ctxn;
3967
3968         for_each_task_context_nr(ctxn) {
3969                 ctx = task->perf_event_ctxp[ctxn];
3970                 if (!ctx)
3971                         continue;
3972
3973                 perf_event_enable_on_exec(ctx);
3974         }
3975
3976         if (!atomic_read(&nr_comm_events))
3977                 return;
3978
3979         comm_event = (struct perf_comm_event){
3980                 .task   = task,
3981                 /* .comm      */
3982                 /* .comm_size */
3983                 .event_id  = {
3984                         .header = {
3985                                 .type = PERF_RECORD_COMM,
3986                                 .misc = 0,
3987                                 /* .size */
3988                         },
3989                         /* .pid */
3990                         /* .tid */
3991                 },
3992         };
3993
3994         perf_event_comm_event(&comm_event);
3995 }
3996
3997 /*
3998  * mmap tracking
3999  */
4000
4001 struct perf_mmap_event {
4002         struct vm_area_struct   *vma;
4003
4004         const char              *file_name;
4005         int                     file_size;
4006
4007         struct {
4008                 struct perf_event_header        header;
4009
4010                 u32                             pid;
4011                 u32                             tid;
4012                 u64                             start;
4013                 u64                             len;
4014                 u64                             pgoff;
4015         } event_id;
4016 };
4017
4018 static void perf_event_mmap_output(struct perf_event *event,
4019                                      struct perf_mmap_event *mmap_event)
4020 {
4021         struct perf_output_handle handle;
4022         int size = mmap_event->event_id.header.size;
4023         int ret = perf_output_begin(&handle, event, size, 0, 0);
4024
4025         if (ret)
4026                 return;
4027
4028         mmap_event->event_id.pid = perf_event_pid(event, current);
4029         mmap_event->event_id.tid = perf_event_tid(event, current);
4030
4031         perf_output_put(&handle, mmap_event->event_id);
4032         perf_output_copy(&handle, mmap_event->file_name,
4033                                    mmap_event->file_size);
4034         perf_output_end(&handle);
4035 }
4036
4037 static int perf_event_mmap_match(struct perf_event *event,
4038                                    struct perf_mmap_event *mmap_event,
4039                                    int executable)
4040 {
4041         if (event->state < PERF_EVENT_STATE_INACTIVE)
4042                 return 0;
4043
4044         if (event->cpu != -1 && event->cpu != smp_processor_id())
4045                 return 0;
4046
4047         if ((!executable && event->attr.mmap_data) ||
4048             (executable && event->attr.mmap))
4049                 return 1;
4050
4051         return 0;
4052 }
4053
4054 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4055                                   struct perf_mmap_event *mmap_event,
4056                                   int executable)
4057 {
4058         struct perf_event *event;
4059
4060         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4061                 if (perf_event_mmap_match(event, mmap_event, executable))
4062                         perf_event_mmap_output(event, mmap_event);
4063         }
4064 }
4065
4066 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4067 {
4068         struct perf_cpu_context *cpuctx;
4069         struct perf_event_context *ctx;
4070         struct vm_area_struct *vma = mmap_event->vma;
4071         struct file *file = vma->vm_file;
4072         unsigned int size;
4073         char tmp[16];
4074         char *buf = NULL;
4075         const char *name;
4076         struct pmu *pmu;
4077         int ctxn;
4078
4079         memset(tmp, 0, sizeof(tmp));
4080
4081         if (file) {
4082                 /*
4083                  * d_path works from the end of the buffer backwards, so we
4084                  * need to add enough zero bytes after the string to handle
4085                  * the 64bit alignment we do later.
4086                  */
4087                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4088                 if (!buf) {
4089                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4090                         goto got_name;
4091                 }
4092                 name = d_path(&file->f_path, buf, PATH_MAX);
4093                 if (IS_ERR(name)) {
4094                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4095                         goto got_name;
4096                 }
4097         } else {
4098                 if (arch_vma_name(mmap_event->vma)) {
4099                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4100                                        sizeof(tmp));
4101                         goto got_name;
4102                 }
4103
4104                 if (!vma->vm_mm) {
4105                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4106                         goto got_name;
4107                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4108                                 vma->vm_end >= vma->vm_mm->brk) {
4109                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4110                         goto got_name;
4111                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4112                                 vma->vm_end >= vma->vm_mm->start_stack) {
4113                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4114                         goto got_name;
4115                 }
4116
4117                 name = strncpy(tmp, "//anon", sizeof(tmp));
4118                 goto got_name;
4119         }
4120
4121 got_name:
4122         size = ALIGN(strlen(name)+1, sizeof(u64));
4123
4124         mmap_event->file_name = name;
4125         mmap_event->file_size = size;
4126
4127         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4128
4129         rcu_read_lock_sched();
4130         list_for_each_entry_rcu(pmu, &pmus, entry) {
4131                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
4132                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4133                                         vma->vm_flags & VM_EXEC);
4134
4135                 ctxn = pmu->task_ctx_nr;
4136                 if (ctxn < 0)
4137                         continue;
4138
4139                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4140                 if (ctx) {
4141                         perf_event_mmap_ctx(ctx, mmap_event,
4142                                         vma->vm_flags & VM_EXEC);
4143                 }
4144         }
4145         rcu_read_unlock_sched();
4146
4147         kfree(buf);
4148 }
4149
4150 void perf_event_mmap(struct vm_area_struct *vma)
4151 {
4152         struct perf_mmap_event mmap_event;
4153
4154         if (!atomic_read(&nr_mmap_events))
4155                 return;
4156
4157         mmap_event = (struct perf_mmap_event){
4158                 .vma    = vma,
4159                 /* .file_name */
4160                 /* .file_size */
4161                 .event_id  = {
4162                         .header = {
4163                                 .type = PERF_RECORD_MMAP,
4164                                 .misc = PERF_RECORD_MISC_USER,
4165                                 /* .size */
4166                         },
4167                         /* .pid */
4168                         /* .tid */
4169                         .start  = vma->vm_start,
4170                         .len    = vma->vm_end - vma->vm_start,
4171                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4172                 },
4173         };
4174
4175         perf_event_mmap_event(&mmap_event);
4176 }
4177
4178 /*
4179  * IRQ throttle logging
4180  */
4181
4182 static void perf_log_throttle(struct perf_event *event, int enable)
4183 {
4184         struct perf_output_handle handle;
4185         int ret;
4186
4187         struct {
4188                 struct perf_event_header        header;
4189                 u64                             time;
4190                 u64                             id;
4191                 u64                             stream_id;
4192         } throttle_event = {
4193                 .header = {
4194                         .type = PERF_RECORD_THROTTLE,
4195                         .misc = 0,
4196                         .size = sizeof(throttle_event),
4197                 },
4198                 .time           = perf_clock(),
4199                 .id             = primary_event_id(event),
4200                 .stream_id      = event->id,
4201         };
4202
4203         if (enable)
4204                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4205
4206         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4207         if (ret)
4208                 return;
4209
4210         perf_output_put(&handle, throttle_event);
4211         perf_output_end(&handle);
4212 }
4213
4214 /*
4215  * Generic event overflow handling, sampling.
4216  */
4217
4218 static int __perf_event_overflow(struct perf_event *event, int nmi,
4219                                    int throttle, struct perf_sample_data *data,
4220                                    struct pt_regs *regs)
4221 {
4222         int events = atomic_read(&event->event_limit);
4223         struct hw_perf_event *hwc = &event->hw;
4224         int ret = 0;
4225
4226         if (!throttle) {
4227                 hwc->interrupts++;
4228         } else {
4229                 if (hwc->interrupts != MAX_INTERRUPTS) {
4230                         hwc->interrupts++;
4231                         if (HZ * hwc->interrupts >
4232                                         (u64)sysctl_perf_event_sample_rate) {
4233                                 hwc->interrupts = MAX_INTERRUPTS;
4234                                 perf_log_throttle(event, 0);
4235                                 ret = 1;
4236                         }
4237                 } else {
4238                         /*
4239                          * Keep re-disabling events even though on the previous
4240                          * pass we disabled it - just in case we raced with a
4241                          * sched-in and the event got enabled again:
4242                          */
4243                         ret = 1;
4244                 }
4245         }
4246
4247         if (event->attr.freq) {
4248                 u64 now = perf_clock();
4249                 s64 delta = now - hwc->freq_time_stamp;
4250
4251                 hwc->freq_time_stamp = now;
4252
4253                 if (delta > 0 && delta < 2*TICK_NSEC)
4254                         perf_adjust_period(event, delta, hwc->last_period);
4255         }
4256
4257         /*
4258          * XXX event_limit might not quite work as expected on inherited
4259          * events
4260          */
4261
4262         event->pending_kill = POLL_IN;
4263         if (events && atomic_dec_and_test(&event->event_limit)) {
4264                 ret = 1;
4265                 event->pending_kill = POLL_HUP;
4266                 if (nmi) {
4267                         event->pending_disable = 1;
4268                         perf_pending_queue(&event->pending,
4269                                            perf_pending_event);
4270                 } else
4271                         perf_event_disable(event);
4272         }
4273
4274         if (event->overflow_handler)
4275                 event->overflow_handler(event, nmi, data, regs);
4276         else
4277                 perf_event_output(event, nmi, data, regs);
4278
4279         return ret;
4280 }
4281
4282 int perf_event_overflow(struct perf_event *event, int nmi,
4283                           struct perf_sample_data *data,
4284                           struct pt_regs *regs)
4285 {
4286         return __perf_event_overflow(event, nmi, 1, data, regs);
4287 }
4288
4289 /*
4290  * Generic software event infrastructure
4291  */
4292
4293 struct swevent_htable {
4294         struct swevent_hlist            *swevent_hlist;
4295         struct mutex                    hlist_mutex;
4296         int                             hlist_refcount;
4297
4298         /* Recursion avoidance in each contexts */
4299         int                             recursion[PERF_NR_CONTEXTS];
4300 };
4301
4302 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4303
4304 /*
4305  * We directly increment event->count and keep a second value in
4306  * event->hw.period_left to count intervals. This period event
4307  * is kept in the range [-sample_period, 0] so that we can use the
4308  * sign as trigger.
4309  */
4310
4311 static u64 perf_swevent_set_period(struct perf_event *event)
4312 {
4313         struct hw_perf_event *hwc = &event->hw;
4314         u64 period = hwc->last_period;
4315         u64 nr, offset;
4316         s64 old, val;
4317
4318         hwc->last_period = hwc->sample_period;
4319
4320 again:
4321         old = val = local64_read(&hwc->period_left);
4322         if (val < 0)
4323                 return 0;
4324
4325         nr = div64_u64(period + val, period);
4326         offset = nr * period;
4327         val -= offset;
4328         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4329                 goto again;
4330
4331         return nr;
4332 }
4333
4334 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4335                                     int nmi, struct perf_sample_data *data,
4336                                     struct pt_regs *regs)
4337 {
4338         struct hw_perf_event *hwc = &event->hw;
4339         int throttle = 0;
4340
4341         data->period = event->hw.last_period;
4342         if (!overflow)
4343                 overflow = perf_swevent_set_period(event);
4344
4345         if (hwc->interrupts == MAX_INTERRUPTS)
4346                 return;
4347
4348         for (; overflow; overflow--) {
4349                 if (__perf_event_overflow(event, nmi, throttle,
4350                                             data, regs)) {
4351                         /*
4352                          * We inhibit the overflow from happening when
4353                          * hwc->interrupts == MAX_INTERRUPTS.
4354                          */
4355                         break;
4356                 }
4357                 throttle = 1;
4358         }
4359 }
4360
4361 static void perf_swevent_event(struct perf_event *event, u64 nr,
4362                                int nmi, struct perf_sample_data *data,
4363                                struct pt_regs *regs)
4364 {
4365         struct hw_perf_event *hwc = &event->hw;
4366
4367         local64_add(nr, &event->count);
4368
4369         if (!regs)
4370                 return;
4371
4372         if (!hwc->sample_period)
4373                 return;
4374
4375         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4376                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4377
4378         if (local64_add_negative(nr, &hwc->period_left))
4379                 return;
4380
4381         perf_swevent_overflow(event, 0, nmi, data, regs);
4382 }
4383
4384 static int perf_exclude_event(struct perf_event *event,
4385                               struct pt_regs *regs)
4386 {
4387         if (event->hw.state & PERF_HES_STOPPED)
4388                 return 0;
4389
4390         if (regs) {
4391                 if (event->attr.exclude_user && user_mode(regs))
4392                         return 1;
4393
4394                 if (event->attr.exclude_kernel && !user_mode(regs))
4395                         return 1;
4396         }
4397
4398         return 0;
4399 }
4400
4401 static int perf_swevent_match(struct perf_event *event,
4402                                 enum perf_type_id type,
4403                                 u32 event_id,
4404                                 struct perf_sample_data *data,
4405                                 struct pt_regs *regs)
4406 {
4407         if (event->attr.type != type)
4408                 return 0;
4409
4410         if (event->attr.config != event_id)
4411                 return 0;
4412
4413         if (perf_exclude_event(event, regs))
4414                 return 0;
4415
4416         return 1;
4417 }
4418
4419 static inline u64 swevent_hash(u64 type, u32 event_id)
4420 {
4421         u64 val = event_id | (type << 32);
4422
4423         return hash_64(val, SWEVENT_HLIST_BITS);
4424 }
4425
4426 static inline struct hlist_head *
4427 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4428 {
4429         u64 hash = swevent_hash(type, event_id);
4430
4431         return &hlist->heads[hash];
4432 }
4433
4434 /* For the read side: events when they trigger */
4435 static inline struct hlist_head *
4436 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4437 {
4438         struct swevent_hlist *hlist;
4439
4440         hlist = rcu_dereference(swhash->swevent_hlist);
4441         if (!hlist)
4442                 return NULL;
4443
4444         return __find_swevent_head(hlist, type, event_id);
4445 }
4446
4447 /* For the event head insertion and removal in the hlist */
4448 static inline struct hlist_head *
4449 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4450 {
4451         struct swevent_hlist *hlist;
4452         u32 event_id = event->attr.config;
4453         u64 type = event->attr.type;
4454
4455         /*
4456          * Event scheduling is always serialized against hlist allocation
4457          * and release. Which makes the protected version suitable here.
4458          * The context lock guarantees that.
4459          */
4460         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4461                                           lockdep_is_held(&event->ctx->lock));
4462         if (!hlist)
4463                 return NULL;
4464
4465         return __find_swevent_head(hlist, type, event_id);
4466 }
4467
4468 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4469                                     u64 nr, int nmi,
4470                                     struct perf_sample_data *data,
4471                                     struct pt_regs *regs)
4472 {
4473         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4474         struct perf_event *event;
4475         struct hlist_node *node;
4476         struct hlist_head *head;
4477
4478         rcu_read_lock();
4479         head = find_swevent_head_rcu(swhash, type, event_id);
4480         if (!head)
4481                 goto end;
4482
4483         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4484                 if (perf_swevent_match(event, type, event_id, data, regs))
4485                         perf_swevent_event(event, nr, nmi, data, regs);
4486         }
4487 end:
4488         rcu_read_unlock();
4489 }
4490
4491 int perf_swevent_get_recursion_context(void)
4492 {
4493         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4494
4495         return get_recursion_context(swhash->recursion);
4496 }
4497 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4498
4499 void inline perf_swevent_put_recursion_context(int rctx)
4500 {
4501         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4502
4503         put_recursion_context(swhash->recursion, rctx);
4504 }
4505
4506 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4507                             struct pt_regs *regs, u64 addr)
4508 {
4509         struct perf_sample_data data;
4510         int rctx;
4511
4512         preempt_disable_notrace();
4513         rctx = perf_swevent_get_recursion_context();
4514         if (rctx < 0)
4515                 return;
4516
4517         perf_sample_data_init(&data, addr);
4518
4519         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4520
4521         perf_swevent_put_recursion_context(rctx);
4522         preempt_enable_notrace();
4523 }
4524
4525 static void perf_swevent_read(struct perf_event *event)
4526 {
4527 }
4528
4529 static int perf_swevent_add(struct perf_event *event, int flags)
4530 {
4531         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4532         struct hw_perf_event *hwc = &event->hw;
4533         struct hlist_head *head;
4534
4535         if (hwc->sample_period) {
4536                 hwc->last_period = hwc->sample_period;
4537                 perf_swevent_set_period(event);
4538         }
4539
4540         hwc->state = !(flags & PERF_EF_START);
4541
4542         head = find_swevent_head(swhash, event);
4543         if (WARN_ON_ONCE(!head))
4544                 return -EINVAL;
4545
4546         hlist_add_head_rcu(&event->hlist_entry, head);
4547
4548         return 0;
4549 }
4550
4551 static void perf_swevent_del(struct perf_event *event, int flags)
4552 {
4553         hlist_del_rcu(&event->hlist_entry);
4554 }
4555
4556 static void perf_swevent_start(struct perf_event *event, int flags)
4557 {
4558         event->hw.state = 0;
4559 }
4560
4561 static void perf_swevent_stop(struct perf_event *event, int flags)
4562 {
4563         event->hw.state = PERF_HES_STOPPED;
4564 }
4565
4566 /* Deref the hlist from the update side */
4567 static inline struct swevent_hlist *
4568 swevent_hlist_deref(struct swevent_htable *swhash)
4569 {
4570         return rcu_dereference_protected(swhash->swevent_hlist,
4571                                          lockdep_is_held(&swhash->hlist_mutex));
4572 }
4573
4574 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4575 {
4576         struct swevent_hlist *hlist;
4577
4578         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4579         kfree(hlist);
4580 }
4581
4582 static void swevent_hlist_release(struct swevent_htable *swhash)
4583 {
4584         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4585
4586         if (!hlist)
4587                 return;
4588
4589         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4590         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4591 }
4592
4593 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4594 {
4595         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4596
4597         mutex_lock(&swhash->hlist_mutex);
4598
4599         if (!--swhash->hlist_refcount)
4600                 swevent_hlist_release(swhash);
4601
4602         mutex_unlock(&swhash->hlist_mutex);
4603 }
4604
4605 static void swevent_hlist_put(struct perf_event *event)
4606 {
4607         int cpu;
4608
4609         if (event->cpu != -1) {
4610                 swevent_hlist_put_cpu(event, event->cpu);
4611                 return;
4612         }
4613
4614         for_each_possible_cpu(cpu)
4615                 swevent_hlist_put_cpu(event, cpu);
4616 }
4617
4618 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4619 {
4620         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4621         int err = 0;
4622
4623         mutex_lock(&swhash->hlist_mutex);
4624
4625         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4626                 struct swevent_hlist *hlist;
4627
4628                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4629                 if (!hlist) {
4630                         err = -ENOMEM;
4631                         goto exit;
4632                 }
4633                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4634         }
4635         swhash->hlist_refcount++;
4636 exit:
4637         mutex_unlock(&swhash->hlist_mutex);
4638
4639         return err;
4640 }
4641
4642 static int swevent_hlist_get(struct perf_event *event)
4643 {
4644         int err;
4645         int cpu, failed_cpu;
4646
4647         if (event->cpu != -1)
4648                 return swevent_hlist_get_cpu(event, event->cpu);
4649
4650         get_online_cpus();
4651         for_each_possible_cpu(cpu) {
4652                 err = swevent_hlist_get_cpu(event, cpu);
4653                 if (err) {
4654                         failed_cpu = cpu;
4655                         goto fail;
4656                 }
4657         }
4658         put_online_cpus();
4659
4660         return 0;
4661 fail:
4662         for_each_possible_cpu(cpu) {
4663                 if (cpu == failed_cpu)
4664                         break;
4665                 swevent_hlist_put_cpu(event, cpu);
4666         }
4667
4668         put_online_cpus();
4669         return err;
4670 }
4671
4672 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4673
4674 static void sw_perf_event_destroy(struct perf_event *event)
4675 {
4676         u64 event_id = event->attr.config;
4677
4678         WARN_ON(event->parent);
4679
4680         atomic_dec(&perf_swevent_enabled[event_id]);
4681         swevent_hlist_put(event);
4682 }
4683
4684 static int perf_swevent_init(struct perf_event *event)
4685 {
4686         int event_id = event->attr.config;
4687
4688         if (event->attr.type != PERF_TYPE_SOFTWARE)
4689                 return -ENOENT;
4690
4691         switch (event_id) {
4692         case PERF_COUNT_SW_CPU_CLOCK:
4693         case PERF_COUNT_SW_TASK_CLOCK:
4694                 return -ENOENT;
4695
4696         default:
4697                 break;
4698         }
4699
4700         if (event_id > PERF_COUNT_SW_MAX)
4701                 return -ENOENT;
4702
4703         if (!event->parent) {
4704                 int err;
4705
4706                 err = swevent_hlist_get(event);
4707                 if (err)
4708                         return err;
4709
4710                 atomic_inc(&perf_swevent_enabled[event_id]);
4711                 event->destroy = sw_perf_event_destroy;
4712         }
4713
4714         return 0;
4715 }
4716
4717 static struct pmu perf_swevent = {
4718         .task_ctx_nr    = perf_sw_context,
4719
4720         .event_init     = perf_swevent_init,
4721         .add            = perf_swevent_add,
4722         .del            = perf_swevent_del,
4723         .start          = perf_swevent_start,
4724         .stop           = perf_swevent_stop,
4725         .read           = perf_swevent_read,
4726 };
4727
4728 #ifdef CONFIG_EVENT_TRACING
4729
4730 static int perf_tp_filter_match(struct perf_event *event,
4731                                 struct perf_sample_data *data)
4732 {
4733         void *record = data->raw->data;
4734
4735         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4736                 return 1;
4737         return 0;
4738 }
4739
4740 static int perf_tp_event_match(struct perf_event *event,
4741                                 struct perf_sample_data *data,
4742                                 struct pt_regs *regs)
4743 {
4744         /*
4745          * All tracepoints are from kernel-space.
4746          */
4747         if (event->attr.exclude_kernel)
4748                 return 0;
4749
4750         if (!perf_tp_filter_match(event, data))
4751                 return 0;
4752
4753         return 1;
4754 }
4755
4756 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4757                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4758 {
4759         struct perf_sample_data data;
4760         struct perf_event *event;
4761         struct hlist_node *node;
4762
4763         struct perf_raw_record raw = {
4764                 .size = entry_size,
4765                 .data = record,
4766         };
4767
4768         perf_sample_data_init(&data, addr);
4769         data.raw = &raw;
4770
4771         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4772                 if (perf_tp_event_match(event, &data, regs))
4773                         perf_swevent_event(event, count, 1, &data, regs);
4774         }
4775
4776         perf_swevent_put_recursion_context(rctx);
4777 }
4778 EXPORT_SYMBOL_GPL(perf_tp_event);
4779
4780 static void tp_perf_event_destroy(struct perf_event *event)
4781 {
4782         perf_trace_destroy(event);
4783 }
4784
4785 static int perf_tp_event_init(struct perf_event *event)
4786 {
4787         int err;
4788
4789         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4790                 return -ENOENT;
4791
4792         /*
4793          * Raw tracepoint data is a severe data leak, only allow root to
4794          * have these.
4795          */
4796         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4797                         perf_paranoid_tracepoint_raw() &&
4798                         !capable(CAP_SYS_ADMIN))
4799                 return -EPERM;
4800
4801         err = perf_trace_init(event);
4802         if (err)
4803                 return err;
4804
4805         event->destroy = tp_perf_event_destroy;
4806
4807         return 0;
4808 }
4809
4810 static struct pmu perf_tracepoint = {
4811         .task_ctx_nr    = perf_sw_context,
4812
4813         .event_init     = perf_tp_event_init,
4814         .add            = perf_trace_add,
4815         .del            = perf_trace_del,
4816         .start          = perf_swevent_start,
4817         .stop           = perf_swevent_stop,
4818         .read           = perf_swevent_read,
4819 };
4820
4821 static inline void perf_tp_register(void)
4822 {
4823         perf_pmu_register(&perf_tracepoint);
4824 }
4825
4826 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4827 {
4828         char *filter_str;
4829         int ret;
4830
4831         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4832                 return -EINVAL;
4833
4834         filter_str = strndup_user(arg, PAGE_SIZE);
4835         if (IS_ERR(filter_str))
4836                 return PTR_ERR(filter_str);
4837
4838         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4839
4840         kfree(filter_str);
4841         return ret;
4842 }
4843
4844 static void perf_event_free_filter(struct perf_event *event)
4845 {
4846         ftrace_profile_free_filter(event);
4847 }
4848
4849 #else
4850
4851 static inline void perf_tp_register(void)
4852 {
4853 }
4854
4855 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4856 {
4857         return -ENOENT;
4858 }
4859
4860 static void perf_event_free_filter(struct perf_event *event)
4861 {
4862 }
4863
4864 #endif /* CONFIG_EVENT_TRACING */
4865
4866 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4867 void perf_bp_event(struct perf_event *bp, void *data)
4868 {
4869         struct perf_sample_data sample;
4870         struct pt_regs *regs = data;
4871
4872         perf_sample_data_init(&sample, bp->attr.bp_addr);
4873
4874         if (!bp->hw.state && !perf_exclude_event(bp, regs))
4875                 perf_swevent_event(bp, 1, 1, &sample, regs);
4876 }
4877 #endif
4878
4879 /*
4880  * hrtimer based swevent callback
4881  */
4882
4883 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4884 {
4885         enum hrtimer_restart ret = HRTIMER_RESTART;
4886         struct perf_sample_data data;
4887         struct pt_regs *regs;
4888         struct perf_event *event;
4889         u64 period;
4890
4891         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4892         event->pmu->read(event);
4893
4894         perf_sample_data_init(&data, 0);
4895         data.period = event->hw.last_period;
4896         regs = get_irq_regs();
4897
4898         if (regs && !perf_exclude_event(event, regs)) {
4899                 if (!(event->attr.exclude_idle && current->pid == 0))
4900                         if (perf_event_overflow(event, 0, &data, regs))
4901                                 ret = HRTIMER_NORESTART;
4902         }
4903
4904         period = max_t(u64, 10000, event->hw.sample_period);
4905         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4906
4907         return ret;
4908 }
4909
4910 static void perf_swevent_start_hrtimer(struct perf_event *event)
4911 {
4912         struct hw_perf_event *hwc = &event->hw;
4913
4914         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4915         hwc->hrtimer.function = perf_swevent_hrtimer;
4916         if (hwc->sample_period) {
4917                 s64 period = local64_read(&hwc->period_left);
4918
4919                 if (period) {
4920                         if (period < 0)
4921                                 period = 10000;
4922
4923                         local64_set(&hwc->period_left, 0);
4924                 } else {
4925                         period = max_t(u64, 10000, hwc->sample_period);
4926                 }
4927                 __hrtimer_start_range_ns(&hwc->hrtimer,
4928                                 ns_to_ktime(period), 0,
4929                                 HRTIMER_MODE_REL_PINNED, 0);
4930         }
4931 }
4932
4933 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4934 {
4935         struct hw_perf_event *hwc = &event->hw;
4936
4937         if (hwc->sample_period) {
4938                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4939                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4940
4941                 hrtimer_cancel(&hwc->hrtimer);
4942         }
4943 }
4944
4945 /*
4946  * Software event: cpu wall time clock
4947  */
4948
4949 static void cpu_clock_event_update(struct perf_event *event)
4950 {
4951         s64 prev;
4952         u64 now;
4953
4954         now = local_clock();
4955         prev = local64_xchg(&event->hw.prev_count, now);
4956         local64_add(now - prev, &event->count);
4957 }
4958
4959 static void cpu_clock_event_start(struct perf_event *event, int flags)
4960 {
4961         local64_set(&event->hw.prev_count, local_clock());
4962         perf_swevent_start_hrtimer(event);
4963 }
4964
4965 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4966 {
4967         perf_swevent_cancel_hrtimer(event);
4968         cpu_clock_event_update(event);
4969 }
4970
4971 static int cpu_clock_event_add(struct perf_event *event, int flags)
4972 {
4973         if (flags & PERF_EF_START)
4974                 cpu_clock_event_start(event, flags);
4975
4976         return 0;
4977 }
4978
4979 static void cpu_clock_event_del(struct perf_event *event, int flags)
4980 {
4981         cpu_clock_event_stop(event, flags);
4982 }
4983
4984 static void cpu_clock_event_read(struct perf_event *event)
4985 {
4986         cpu_clock_event_update(event);
4987 }
4988
4989 static int cpu_clock_event_init(struct perf_event *event)
4990 {
4991         if (event->attr.type != PERF_TYPE_SOFTWARE)
4992                 return -ENOENT;
4993
4994         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4995                 return -ENOENT;
4996
4997         return 0;
4998 }
4999
5000 static struct pmu perf_cpu_clock = {
5001         .task_ctx_nr    = perf_sw_context,
5002
5003         .event_init     = cpu_clock_event_init,
5004         .add            = cpu_clock_event_add,
5005         .del            = cpu_clock_event_del,
5006         .start          = cpu_clock_event_start,
5007         .stop           = cpu_clock_event_stop,
5008         .read           = cpu_clock_event_read,
5009 };
5010
5011 /*
5012  * Software event: task time clock
5013  */
5014
5015 static void task_clock_event_update(struct perf_event *event, u64 now)
5016 {
5017         u64 prev;
5018         s64 delta;
5019
5020         prev = local64_xchg(&event->hw.prev_count, now);
5021         delta = now - prev;
5022         local64_add(delta, &event->count);
5023 }
5024
5025 static void task_clock_event_start(struct perf_event *event, int flags)
5026 {
5027         local64_set(&event->hw.prev_count, event->ctx->time);
5028         perf_swevent_start_hrtimer(event);
5029 }
5030
5031 static void task_clock_event_stop(struct perf_event *event, int flags)
5032 {
5033         perf_swevent_cancel_hrtimer(event);
5034         task_clock_event_update(event, event->ctx->time);
5035 }
5036
5037 static int task_clock_event_add(struct perf_event *event, int flags)
5038 {
5039         if (flags & PERF_EF_START)
5040                 task_clock_event_start(event, flags);
5041
5042         return 0;
5043 }
5044
5045 static void task_clock_event_del(struct perf_event *event, int flags)
5046 {
5047         task_clock_event_stop(event, PERF_EF_UPDATE);
5048 }
5049
5050 static void task_clock_event_read(struct perf_event *event)
5051 {
5052         u64 time;
5053
5054         if (!in_nmi()) {
5055                 update_context_time(event->ctx);
5056                 time = event->ctx->time;
5057         } else {
5058                 u64 now = perf_clock();
5059                 u64 delta = now - event->ctx->timestamp;
5060                 time = event->ctx->time + delta;
5061         }
5062
5063         task_clock_event_update(event, time);
5064 }
5065
5066 static int task_clock_event_init(struct perf_event *event)
5067 {
5068         if (event->attr.type != PERF_TYPE_SOFTWARE)
5069                 return -ENOENT;
5070
5071         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5072                 return -ENOENT;
5073
5074         return 0;
5075 }
5076
5077 static struct pmu perf_task_clock = {
5078         .task_ctx_nr    = perf_sw_context,
5079
5080         .event_init     = task_clock_event_init,
5081         .add            = task_clock_event_add,
5082         .del            = task_clock_event_del,
5083         .start          = task_clock_event_start,
5084         .stop           = task_clock_event_stop,
5085         .read           = task_clock_event_read,
5086 };
5087
5088 static void perf_pmu_nop_void(struct pmu *pmu)
5089 {
5090 }
5091
5092 static int perf_pmu_nop_int(struct pmu *pmu)
5093 {
5094         return 0;
5095 }
5096
5097 static void perf_pmu_start_txn(struct pmu *pmu)
5098 {
5099         perf_pmu_disable(pmu);
5100 }
5101
5102 static int perf_pmu_commit_txn(struct pmu *pmu)
5103 {
5104         perf_pmu_enable(pmu);
5105         return 0;
5106 }
5107
5108 static void perf_pmu_cancel_txn(struct pmu *pmu)
5109 {
5110         perf_pmu_enable(pmu);
5111 }
5112
5113 /*
5114  * Ensures all contexts with the same task_ctx_nr have the same
5115  * pmu_cpu_context too.
5116  */
5117 static void *find_pmu_context(int ctxn)
5118 {
5119         struct pmu *pmu;
5120
5121         if (ctxn < 0)
5122                 return NULL;
5123
5124         list_for_each_entry(pmu, &pmus, entry) {
5125                 if (pmu->task_ctx_nr == ctxn)
5126                         return pmu->pmu_cpu_context;
5127         }
5128
5129         return NULL;
5130 }
5131
5132 static void free_pmu_context(void * __percpu cpu_context)
5133 {
5134         struct pmu *pmu;
5135
5136         mutex_lock(&pmus_lock);
5137         /*
5138          * Like a real lame refcount.
5139          */
5140         list_for_each_entry(pmu, &pmus, entry) {
5141                 if (pmu->pmu_cpu_context == cpu_context)
5142                         goto out;
5143         }
5144
5145         free_percpu(cpu_context);
5146 out:
5147         mutex_unlock(&pmus_lock);
5148 }
5149
5150 int perf_pmu_register(struct pmu *pmu)
5151 {
5152         int cpu, ret;
5153
5154         mutex_lock(&pmus_lock);
5155         ret = -ENOMEM;
5156         pmu->pmu_disable_count = alloc_percpu(int);
5157         if (!pmu->pmu_disable_count)
5158                 goto unlock;
5159
5160         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5161         if (pmu->pmu_cpu_context)
5162                 goto got_cpu_context;
5163
5164         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5165         if (!pmu->pmu_cpu_context)
5166                 goto free_pdc;
5167
5168         for_each_possible_cpu(cpu) {
5169                 struct perf_cpu_context *cpuctx;
5170
5171                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5172                 __perf_event_init_context(&cpuctx->ctx);
5173                 cpuctx->ctx.pmu = pmu;
5174                 cpuctx->timer_interval = TICK_NSEC;
5175                 hrtimer_init(&cpuctx->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5176                 cpuctx->timer.function = perf_event_context_tick;
5177         }
5178
5179 got_cpu_context:
5180         if (!pmu->start_txn) {
5181                 if (pmu->pmu_enable) {
5182                         /*
5183                          * If we have pmu_enable/pmu_disable calls, install
5184                          * transaction stubs that use that to try and batch
5185                          * hardware accesses.
5186                          */
5187                         pmu->start_txn  = perf_pmu_start_txn;
5188                         pmu->commit_txn = perf_pmu_commit_txn;
5189                         pmu->cancel_txn = perf_pmu_cancel_txn;
5190                 } else {
5191                         pmu->start_txn  = perf_pmu_nop_void;
5192                         pmu->commit_txn = perf_pmu_nop_int;
5193                         pmu->cancel_txn = perf_pmu_nop_void;
5194                 }
5195         }
5196
5197         if (!pmu->pmu_enable) {
5198                 pmu->pmu_enable  = perf_pmu_nop_void;
5199                 pmu->pmu_disable = perf_pmu_nop_void;
5200         }
5201
5202         list_add_rcu(&pmu->entry, &pmus);
5203         ret = 0;
5204 unlock:
5205         mutex_unlock(&pmus_lock);
5206
5207         return ret;
5208
5209 free_pdc:
5210         free_percpu(pmu->pmu_disable_count);
5211         goto unlock;
5212 }
5213
5214 void perf_pmu_unregister(struct pmu *pmu)
5215 {
5216         mutex_lock(&pmus_lock);
5217         list_del_rcu(&pmu->entry);
5218         mutex_unlock(&pmus_lock);
5219
5220         /*
5221          * We use the pmu list either under SRCU or preempt_disable,
5222          * synchronize_srcu() implies synchronize_sched() so we're good.
5223          */
5224         synchronize_srcu(&pmus_srcu);
5225
5226         free_percpu(pmu->pmu_disable_count);
5227         free_pmu_context(pmu->pmu_cpu_context);
5228 }
5229
5230 struct pmu *perf_init_event(struct perf_event *event)
5231 {
5232         struct pmu *pmu = NULL;
5233         int idx;
5234
5235         idx = srcu_read_lock(&pmus_srcu);
5236         list_for_each_entry_rcu(pmu, &pmus, entry) {
5237                 int ret = pmu->event_init(event);
5238                 if (!ret)
5239                         break;
5240                 if (ret != -ENOENT) {
5241                         pmu = ERR_PTR(ret);
5242                         break;
5243                 }
5244         }
5245         srcu_read_unlock(&pmus_srcu, idx);
5246
5247         return pmu;
5248 }
5249
5250 /*
5251  * Allocate and initialize a event structure
5252  */
5253 static struct perf_event *
5254 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5255                    struct perf_event *group_leader,
5256                    struct perf_event *parent_event,
5257                    perf_overflow_handler_t overflow_handler)
5258 {
5259         struct pmu *pmu;
5260         struct perf_event *event;
5261         struct hw_perf_event *hwc;
5262         long err;
5263
5264         event = kzalloc(sizeof(*event), GFP_KERNEL);
5265         if (!event)
5266                 return ERR_PTR(-ENOMEM);
5267
5268         /*
5269          * Single events are their own group leaders, with an
5270          * empty sibling list:
5271          */
5272         if (!group_leader)
5273                 group_leader = event;
5274
5275         mutex_init(&event->child_mutex);
5276         INIT_LIST_HEAD(&event->child_list);
5277
5278         INIT_LIST_HEAD(&event->group_entry);
5279         INIT_LIST_HEAD(&event->event_entry);
5280         INIT_LIST_HEAD(&event->sibling_list);
5281         init_waitqueue_head(&event->waitq);
5282
5283         mutex_init(&event->mmap_mutex);
5284
5285         event->cpu              = cpu;
5286         event->attr             = *attr;
5287         event->group_leader     = group_leader;
5288         event->pmu              = NULL;
5289         event->oncpu            = -1;
5290
5291         event->parent           = parent_event;
5292
5293         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5294         event->id               = atomic64_inc_return(&perf_event_id);
5295
5296         event->state            = PERF_EVENT_STATE_INACTIVE;
5297
5298         if (!overflow_handler && parent_event)
5299                 overflow_handler = parent_event->overflow_handler;
5300         
5301         event->overflow_handler = overflow_handler;
5302
5303         if (attr->disabled)
5304                 event->state = PERF_EVENT_STATE_OFF;
5305
5306         pmu = NULL;
5307
5308         hwc = &event->hw;
5309         hwc->sample_period = attr->sample_period;
5310         if (attr->freq && attr->sample_freq)
5311                 hwc->sample_period = 1;
5312         hwc->last_period = hwc->sample_period;
5313
5314         local64_set(&hwc->period_left, hwc->sample_period);
5315
5316         /*
5317          * we currently do not support PERF_FORMAT_GROUP on inherited events
5318          */
5319         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5320                 goto done;
5321
5322         pmu = perf_init_event(event);
5323
5324 done:
5325         err = 0;
5326         if (!pmu)
5327                 err = -EINVAL;
5328         else if (IS_ERR(pmu))
5329                 err = PTR_ERR(pmu);
5330
5331         if (err) {
5332                 if (event->ns)
5333                         put_pid_ns(event->ns);
5334                 kfree(event);
5335                 return ERR_PTR(err);
5336         }
5337
5338         event->pmu = pmu;
5339
5340         if (!event->parent) {
5341                 atomic_inc(&nr_events);
5342                 if (event->attr.mmap || event->attr.mmap_data)
5343                         atomic_inc(&nr_mmap_events);
5344                 if (event->attr.comm)
5345                         atomic_inc(&nr_comm_events);
5346                 if (event->attr.task)
5347                         atomic_inc(&nr_task_events);
5348                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5349                         err = get_callchain_buffers();
5350                         if (err) {
5351                                 free_event(event);
5352                                 return ERR_PTR(err);
5353                         }
5354                 }
5355         }
5356
5357         return event;
5358 }
5359
5360 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5361                           struct perf_event_attr *attr)
5362 {
5363         u32 size;
5364         int ret;
5365
5366         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5367                 return -EFAULT;
5368
5369         /*
5370          * zero the full structure, so that a short copy will be nice.
5371          */
5372         memset(attr, 0, sizeof(*attr));
5373
5374         ret = get_user(size, &uattr->size);
5375         if (ret)
5376                 return ret;
5377
5378         if (size > PAGE_SIZE)   /* silly large */
5379                 goto err_size;
5380
5381         if (!size)              /* abi compat */
5382                 size = PERF_ATTR_SIZE_VER0;
5383
5384         if (size < PERF_ATTR_SIZE_VER0)
5385                 goto err_size;
5386
5387         /*
5388          * If we're handed a bigger struct than we know of,
5389          * ensure all the unknown bits are 0 - i.e. new
5390          * user-space does not rely on any kernel feature
5391          * extensions we dont know about yet.
5392          */
5393         if (size > sizeof(*attr)) {
5394                 unsigned char __user *addr;
5395                 unsigned char __user *end;
5396                 unsigned char val;
5397
5398                 addr = (void __user *)uattr + sizeof(*attr);
5399                 end  = (void __user *)uattr + size;
5400
5401                 for (; addr < end; addr++) {
5402                         ret = get_user(val, addr);
5403                         if (ret)
5404                                 return ret;
5405                         if (val)
5406                                 goto err_size;
5407                 }
5408                 size = sizeof(*attr);
5409         }
5410
5411         ret = copy_from_user(attr, uattr, size);
5412         if (ret)
5413                 return -EFAULT;
5414
5415         /*
5416          * If the type exists, the corresponding creation will verify
5417          * the attr->config.
5418          */
5419         if (attr->type >= PERF_TYPE_MAX)
5420                 return -EINVAL;
5421
5422         if (attr->__reserved_1)
5423                 return -EINVAL;
5424
5425         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5426                 return -EINVAL;
5427
5428         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5429                 return -EINVAL;
5430
5431 out:
5432         return ret;
5433
5434 err_size:
5435         put_user(sizeof(*attr), &uattr->size);
5436         ret = -E2BIG;
5437         goto out;
5438 }
5439
5440 static int
5441 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5442 {
5443         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5444         int ret = -EINVAL;
5445
5446         if (!output_event)
5447                 goto set;
5448
5449         /* don't allow circular references */
5450         if (event == output_event)
5451                 goto out;
5452
5453         /*
5454          * Don't allow cross-cpu buffers
5455          */
5456         if (output_event->cpu != event->cpu)
5457                 goto out;
5458
5459         /*
5460          * If its not a per-cpu buffer, it must be the same task.
5461          */
5462         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5463                 goto out;
5464
5465 set:
5466         mutex_lock(&event->mmap_mutex);
5467         /* Can't redirect output if we've got an active mmap() */
5468         if (atomic_read(&event->mmap_count))
5469                 goto unlock;
5470
5471         if (output_event) {
5472                 /* get the buffer we want to redirect to */
5473                 buffer = perf_buffer_get(output_event);
5474                 if (!buffer)
5475                         goto unlock;
5476         }
5477
5478         old_buffer = event->buffer;
5479         rcu_assign_pointer(event->buffer, buffer);
5480         ret = 0;
5481 unlock:
5482         mutex_unlock(&event->mmap_mutex);
5483
5484         if (old_buffer)
5485                 perf_buffer_put(old_buffer);
5486 out:
5487         return ret;
5488 }
5489
5490 /**
5491  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5492  *
5493  * @attr_uptr:  event_id type attributes for monitoring/sampling
5494  * @pid:                target pid
5495  * @cpu:                target cpu
5496  * @group_fd:           group leader event fd
5497  */
5498 SYSCALL_DEFINE5(perf_event_open,
5499                 struct perf_event_attr __user *, attr_uptr,
5500                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5501 {
5502         struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5503         struct perf_event_attr attr;
5504         struct perf_event_context *ctx;
5505         struct file *event_file = NULL;
5506         struct file *group_file = NULL;
5507         struct pmu *pmu;
5508         int event_fd;
5509         int fput_needed = 0;
5510         int err;
5511
5512         /* for future expandability... */
5513         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5514                 return -EINVAL;
5515
5516         err = perf_copy_attr(attr_uptr, &attr);
5517         if (err)
5518                 return err;
5519
5520         if (!attr.exclude_kernel) {
5521                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5522                         return -EACCES;
5523         }
5524
5525         if (attr.freq) {
5526                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5527                         return -EINVAL;
5528         }
5529
5530         event_fd = get_unused_fd_flags(O_RDWR);
5531         if (event_fd < 0)
5532                 return event_fd;
5533
5534         event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
5535         if (IS_ERR(event)) {
5536                 err = PTR_ERR(event);
5537                 goto err_fd;
5538         }
5539
5540         if (group_fd != -1) {
5541                 group_leader = perf_fget_light(group_fd, &fput_needed);
5542                 if (IS_ERR(group_leader)) {
5543                         err = PTR_ERR(group_leader);
5544                         goto err_alloc;
5545                 }
5546                 group_file = group_leader->filp;
5547                 if (flags & PERF_FLAG_FD_OUTPUT)
5548                         output_event = group_leader;
5549                 if (flags & PERF_FLAG_FD_NO_GROUP)
5550                         group_leader = NULL;
5551         }
5552
5553         /*
5554          * Special case software events and allow them to be part of
5555          * any hardware group.
5556          */
5557         pmu = event->pmu;
5558         if ((pmu->task_ctx_nr == perf_sw_context) && group_leader)
5559                 pmu = group_leader->pmu;
5560
5561         /*
5562          * Get the target context (task or percpu):
5563          */
5564         ctx = find_get_context(pmu, pid, cpu);
5565         if (IS_ERR(ctx)) {
5566                 err = PTR_ERR(ctx);
5567                 goto err_group_fd;
5568         }
5569
5570         /*
5571          * Look up the group leader (we will attach this event to it):
5572          */
5573         if (group_leader) {
5574                 err = -EINVAL;
5575
5576                 /*
5577                  * Do not allow a recursive hierarchy (this new sibling
5578                  * becoming part of another group-sibling):
5579                  */
5580                 if (group_leader->group_leader != group_leader)
5581                         goto err_context;
5582                 /*
5583                  * Do not allow to attach to a group in a different
5584                  * task or CPU context:
5585                  */
5586                 if (group_leader->ctx != ctx)
5587                         goto err_context;
5588                 /*
5589                  * Only a group leader can be exclusive or pinned
5590                  */
5591                 if (attr.exclusive || attr.pinned)
5592                         goto err_context;
5593         }
5594
5595         if (output_event) {
5596                 err = perf_event_set_output(event, output_event);
5597                 if (err)
5598                         goto err_context;
5599         }
5600
5601         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5602         if (IS_ERR(event_file)) {
5603                 err = PTR_ERR(event_file);
5604                 goto err_context;
5605         }
5606
5607         event->filp = event_file;
5608         WARN_ON_ONCE(ctx->parent_ctx);
5609         mutex_lock(&ctx->mutex);
5610         perf_install_in_context(ctx, event, cpu);
5611         ++ctx->generation;
5612         mutex_unlock(&ctx->mutex);
5613
5614         event->owner = current;
5615         get_task_struct(current);
5616         mutex_lock(&current->perf_event_mutex);
5617         list_add_tail(&event->owner_entry, &current->perf_event_list);
5618         mutex_unlock(&current->perf_event_mutex);
5619
5620         /*
5621          * Drop the reference on the group_event after placing the
5622          * new event on the sibling_list. This ensures destruction
5623          * of the group leader will find the pointer to itself in
5624          * perf_group_detach().
5625          */
5626         fput_light(group_file, fput_needed);
5627         fd_install(event_fd, event_file);
5628         return event_fd;
5629
5630 err_context:
5631         put_ctx(ctx);
5632 err_group_fd:
5633         fput_light(group_file, fput_needed);
5634 err_alloc:
5635         free_event(event);
5636 err_fd:
5637         put_unused_fd(event_fd);
5638         return err;
5639 }
5640
5641 /**
5642  * perf_event_create_kernel_counter
5643  *
5644  * @attr: attributes of the counter to create
5645  * @cpu: cpu in which the counter is bound
5646  * @pid: task to profile
5647  */
5648 struct perf_event *
5649 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5650                                  pid_t pid,
5651                                  perf_overflow_handler_t overflow_handler)
5652 {
5653         struct perf_event_context *ctx;
5654         struct perf_event *event;
5655         int err;
5656
5657         /*
5658          * Get the target context (task or percpu):
5659          */
5660
5661         event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
5662         if (IS_ERR(event)) {
5663                 err = PTR_ERR(event);
5664                 goto err;
5665         }
5666
5667         ctx = find_get_context(event->pmu, pid, cpu);
5668         if (IS_ERR(ctx)) {
5669                 err = PTR_ERR(ctx);
5670                 goto err_free;
5671         }
5672
5673         event->filp = NULL;
5674         WARN_ON_ONCE(ctx->parent_ctx);
5675         mutex_lock(&ctx->mutex);
5676         perf_install_in_context(ctx, event, cpu);
5677         ++ctx->generation;
5678         mutex_unlock(&ctx->mutex);
5679
5680         event->owner = current;
5681         get_task_struct(current);
5682         mutex_lock(&current->perf_event_mutex);
5683         list_add_tail(&event->owner_entry, &current->perf_event_list);
5684         mutex_unlock(&current->perf_event_mutex);
5685
5686         return event;
5687
5688 err_free:
5689         free_event(event);
5690 err:
5691         return ERR_PTR(err);
5692 }
5693 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5694
5695 static void sync_child_event(struct perf_event *child_event,
5696                                struct task_struct *child)
5697 {
5698         struct perf_event *parent_event = child_event->parent;
5699         u64 child_val;
5700
5701         if (child_event->attr.inherit_stat)
5702                 perf_event_read_event(child_event, child);
5703
5704         child_val = perf_event_count(child_event);
5705
5706         /*
5707          * Add back the child's count to the parent's count:
5708          */
5709         atomic64_add(child_val, &parent_event->child_count);
5710         atomic64_add(child_event->total_time_enabled,
5711                      &parent_event->child_total_time_enabled);
5712         atomic64_add(child_event->total_time_running,
5713                      &parent_event->child_total_time_running);
5714
5715         /*
5716          * Remove this event from the parent's list
5717          */
5718         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5719         mutex_lock(&parent_event->child_mutex);
5720         list_del_init(&child_event->child_list);
5721         mutex_unlock(&parent_event->child_mutex);
5722
5723         /*
5724          * Release the parent event, if this was the last
5725          * reference to it.
5726          */
5727         fput(parent_event->filp);
5728 }
5729
5730 static void
5731 __perf_event_exit_task(struct perf_event *child_event,
5732                          struct perf_event_context *child_ctx,
5733                          struct task_struct *child)
5734 {
5735         struct perf_event *parent_event;
5736
5737         perf_event_remove_from_context(child_event);
5738
5739         parent_event = child_event->parent;
5740         /*
5741          * It can happen that parent exits first, and has events
5742          * that are still around due to the child reference. These
5743          * events need to be zapped - but otherwise linger.
5744          */
5745         if (parent_event) {
5746                 sync_child_event(child_event, child);
5747                 free_event(child_event);
5748         }
5749 }
5750
5751 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5752 {
5753         struct perf_event *child_event, *tmp;
5754         struct perf_event_context *child_ctx;
5755         unsigned long flags;
5756
5757         if (likely(!child->perf_event_ctxp[ctxn])) {
5758                 perf_event_task(child, NULL, 0);
5759                 return;
5760         }
5761
5762         local_irq_save(flags);
5763         /*
5764          * We can't reschedule here because interrupts are disabled,
5765          * and either child is current or it is a task that can't be
5766          * scheduled, so we are now safe from rescheduling changing
5767          * our context.
5768          */
5769         child_ctx = child->perf_event_ctxp[ctxn];
5770         __perf_event_task_sched_out(child_ctx);
5771
5772         /*
5773          * Take the context lock here so that if find_get_context is
5774          * reading child->perf_event_ctxp, we wait until it has
5775          * incremented the context's refcount before we do put_ctx below.
5776          */
5777         raw_spin_lock(&child_ctx->lock);
5778         child->perf_event_ctxp[ctxn] = NULL;
5779         /*
5780          * If this context is a clone; unclone it so it can't get
5781          * swapped to another process while we're removing all
5782          * the events from it.
5783          */
5784         unclone_ctx(child_ctx);
5785         update_context_time(child_ctx);
5786         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5787
5788         /*
5789          * Report the task dead after unscheduling the events so that we
5790          * won't get any samples after PERF_RECORD_EXIT. We can however still
5791          * get a few PERF_RECORD_READ events.
5792          */
5793         perf_event_task(child, child_ctx, 0);
5794
5795         /*
5796          * We can recurse on the same lock type through:
5797          *
5798          *   __perf_event_exit_task()
5799          *     sync_child_event()
5800          *       fput(parent_event->filp)
5801          *         perf_release()
5802          *           mutex_lock(&ctx->mutex)
5803          *
5804          * But since its the parent context it won't be the same instance.
5805          */
5806         mutex_lock(&child_ctx->mutex);
5807
5808 again:
5809         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5810                                  group_entry)
5811                 __perf_event_exit_task(child_event, child_ctx, child);
5812
5813         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5814                                  group_entry)
5815                 __perf_event_exit_task(child_event, child_ctx, child);
5816
5817         /*
5818          * If the last event was a group event, it will have appended all
5819          * its siblings to the list, but we obtained 'tmp' before that which
5820          * will still point to the list head terminating the iteration.
5821          */
5822         if (!list_empty(&child_ctx->pinned_groups) ||
5823             !list_empty(&child_ctx->flexible_groups))
5824                 goto again;
5825
5826         mutex_unlock(&child_ctx->mutex);
5827
5828         put_ctx(child_ctx);
5829 }
5830
5831 /*
5832  * When a child task exits, feed back event values to parent events.
5833  */
5834 void perf_event_exit_task(struct task_struct *child)
5835 {
5836         int ctxn;
5837
5838         for_each_task_context_nr(ctxn)
5839                 perf_event_exit_task_context(child, ctxn);
5840 }
5841
5842 static void perf_free_event(struct perf_event *event,
5843                             struct perf_event_context *ctx)
5844 {
5845         struct perf_event *parent = event->parent;
5846
5847         if (WARN_ON_ONCE(!parent))
5848                 return;
5849
5850         mutex_lock(&parent->child_mutex);
5851         list_del_init(&event->child_list);
5852         mutex_unlock(&parent->child_mutex);
5853
5854         fput(parent->filp);
5855
5856         perf_group_detach(event);
5857         list_del_event(event, ctx);
5858         free_event(event);
5859 }
5860
5861 /*
5862  * free an unexposed, unused context as created by inheritance by
5863  * perf_event_init_task below, used by fork() in case of fail.
5864  */
5865 void perf_event_free_task(struct task_struct *task)
5866 {
5867         struct perf_event_context *ctx;
5868         struct perf_event *event, *tmp;
5869         int ctxn;
5870
5871         for_each_task_context_nr(ctxn) {
5872                 ctx = task->perf_event_ctxp[ctxn];
5873                 if (!ctx)
5874                         continue;
5875
5876                 mutex_lock(&ctx->mutex);
5877 again:
5878                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5879                                 group_entry)
5880                         perf_free_event(event, ctx);
5881
5882                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5883                                 group_entry)
5884                         perf_free_event(event, ctx);
5885
5886                 if (!list_empty(&ctx->pinned_groups) ||
5887                                 !list_empty(&ctx->flexible_groups))
5888                         goto again;
5889
5890                 mutex_unlock(&ctx->mutex);
5891
5892                 put_ctx(ctx);
5893         }
5894 }
5895
5896 void perf_event_delayed_put(struct task_struct *task)
5897 {
5898         int ctxn;
5899
5900         for_each_task_context_nr(ctxn)
5901                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5902 }
5903
5904 /*
5905  * inherit a event from parent task to child task:
5906  */
5907 static struct perf_event *
5908 inherit_event(struct perf_event *parent_event,
5909               struct task_struct *parent,
5910               struct perf_event_context *parent_ctx,
5911               struct task_struct *child,
5912               struct perf_event *group_leader,
5913               struct perf_event_context *child_ctx)
5914 {
5915         struct perf_event *child_event;
5916
5917         /*
5918          * Instead of creating recursive hierarchies of events,
5919          * we link inherited events back to the original parent,
5920          * which has a filp for sure, which we use as the reference
5921          * count:
5922          */
5923         if (parent_event->parent)
5924                 parent_event = parent_event->parent;
5925
5926         child_event = perf_event_alloc(&parent_event->attr,
5927                                            parent_event->cpu,
5928                                            group_leader, parent_event,
5929                                            NULL);
5930         if (IS_ERR(child_event))
5931                 return child_event;
5932         get_ctx(child_ctx);
5933
5934         /*
5935          * Make the child state follow the state of the parent event,
5936          * not its attr.disabled bit.  We hold the parent's mutex,
5937          * so we won't race with perf_event_{en, dis}able_family.
5938          */
5939         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5940                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5941         else
5942                 child_event->state = PERF_EVENT_STATE_OFF;
5943
5944         if (parent_event->attr.freq) {
5945                 u64 sample_period = parent_event->hw.sample_period;
5946                 struct hw_perf_event *hwc = &child_event->hw;
5947
5948                 hwc->sample_period = sample_period;
5949                 hwc->last_period   = sample_period;
5950
5951                 local64_set(&hwc->period_left, sample_period);
5952         }
5953
5954         child_event->ctx = child_ctx;
5955         child_event->overflow_handler = parent_event->overflow_handler;
5956
5957         /*
5958          * Link it up in the child's context:
5959          */
5960         add_event_to_ctx(child_event, child_ctx);
5961
5962         /*
5963          * Get a reference to the parent filp - we will fput it
5964          * when the child event exits. This is safe to do because
5965          * we are in the parent and we know that the filp still
5966          * exists and has a nonzero count:
5967          */
5968         atomic_long_inc(&parent_event->filp->f_count);
5969
5970         /*
5971          * Link this into the parent event's child list
5972          */
5973         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5974         mutex_lock(&parent_event->child_mutex);
5975         list_add_tail(&child_event->child_list, &parent_event->child_list);
5976         mutex_unlock(&parent_event->child_mutex);
5977
5978         return child_event;
5979 }
5980
5981 static int inherit_group(struct perf_event *parent_event,
5982               struct task_struct *parent,
5983               struct perf_event_context *parent_ctx,
5984               struct task_struct *child,
5985               struct perf_event_context *child_ctx)
5986 {
5987         struct perf_event *leader;
5988         struct perf_event *sub;
5989         struct perf_event *child_ctr;
5990
5991         leader = inherit_event(parent_event, parent, parent_ctx,
5992                                  child, NULL, child_ctx);
5993         if (IS_ERR(leader))
5994                 return PTR_ERR(leader);
5995         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5996                 child_ctr = inherit_event(sub, parent, parent_ctx,
5997                                             child, leader, child_ctx);
5998                 if (IS_ERR(child_ctr))
5999                         return PTR_ERR(child_ctr);
6000         }
6001         return 0;
6002 }
6003
6004 static int
6005 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6006                    struct perf_event_context *parent_ctx,
6007                    struct task_struct *child, int ctxn,
6008                    int *inherited_all)
6009 {
6010         int ret;
6011         struct perf_event_context *child_ctx;
6012
6013         if (!event->attr.inherit) {
6014                 *inherited_all = 0;
6015                 return 0;
6016         }
6017
6018         child_ctx = child->perf_event_ctxp[ctxn];
6019         if (!child_ctx) {
6020                 /*
6021                  * This is executed from the parent task context, so
6022                  * inherit events that have been marked for cloning.
6023                  * First allocate and initialize a context for the
6024                  * child.
6025                  */
6026
6027                 child_ctx = alloc_perf_context(event->pmu, child);
6028                 if (!child_ctx)
6029                         return -ENOMEM;
6030
6031                 child->perf_event_ctxp[ctxn] = child_ctx;
6032         }
6033
6034         ret = inherit_group(event, parent, parent_ctx,
6035                             child, child_ctx);
6036
6037         if (ret)
6038                 *inherited_all = 0;
6039
6040         return ret;
6041 }
6042
6043 /*
6044  * Initialize the perf_event context in task_struct
6045  */
6046 int perf_event_init_context(struct task_struct *child, int ctxn)
6047 {
6048         struct perf_event_context *child_ctx, *parent_ctx;
6049         struct perf_event_context *cloned_ctx;
6050         struct perf_event *event;
6051         struct task_struct *parent = current;
6052         int inherited_all = 1;
6053         int ret = 0;
6054
6055         child->perf_event_ctxp[ctxn] = NULL;
6056
6057         mutex_init(&child->perf_event_mutex);
6058         INIT_LIST_HEAD(&child->perf_event_list);
6059
6060         if (likely(!parent->perf_event_ctxp[ctxn]))
6061                 return 0;
6062
6063         /*
6064          * If the parent's context is a clone, pin it so it won't get
6065          * swapped under us.
6066          */
6067         parent_ctx = perf_pin_task_context(parent, ctxn);
6068
6069         /*
6070          * No need to check if parent_ctx != NULL here; since we saw
6071          * it non-NULL earlier, the only reason for it to become NULL
6072          * is if we exit, and since we're currently in the middle of
6073          * a fork we can't be exiting at the same time.
6074          */
6075
6076         /*
6077          * Lock the parent list. No need to lock the child - not PID
6078          * hashed yet and not running, so nobody can access it.
6079          */
6080         mutex_lock(&parent_ctx->mutex);
6081
6082         /*
6083          * We dont have to disable NMIs - we are only looking at
6084          * the list, not manipulating it:
6085          */
6086         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6087                 ret = inherit_task_group(event, parent, parent_ctx,
6088                                          child, ctxn, &inherited_all);
6089                 if (ret)
6090                         break;
6091         }
6092
6093         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6094                 ret = inherit_task_group(event, parent, parent_ctx,
6095                                          child, ctxn, &inherited_all);
6096                 if (ret)
6097                         break;
6098         }
6099
6100         child_ctx = child->perf_event_ctxp[ctxn];
6101
6102         if (child_ctx && inherited_all) {
6103                 /*
6104                  * Mark the child context as a clone of the parent
6105                  * context, or of whatever the parent is a clone of.
6106                  * Note that if the parent is a clone, it could get
6107                  * uncloned at any point, but that doesn't matter
6108                  * because the list of events and the generation
6109                  * count can't have changed since we took the mutex.
6110                  */
6111                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6112                 if (cloned_ctx) {
6113                         child_ctx->parent_ctx = cloned_ctx;
6114                         child_ctx->parent_gen = parent_ctx->parent_gen;
6115                 } else {
6116                         child_ctx->parent_ctx = parent_ctx;
6117                         child_ctx->parent_gen = parent_ctx->generation;
6118                 }
6119                 get_ctx(child_ctx->parent_ctx);
6120         }
6121
6122         mutex_unlock(&parent_ctx->mutex);
6123
6124         perf_unpin_context(parent_ctx);
6125
6126         return ret;
6127 }
6128
6129 /*
6130  * Initialize the perf_event context in task_struct
6131  */
6132 int perf_event_init_task(struct task_struct *child)
6133 {
6134         int ctxn, ret;
6135
6136         for_each_task_context_nr(ctxn) {
6137                 ret = perf_event_init_context(child, ctxn);
6138                 if (ret)
6139                         return ret;
6140         }
6141
6142         return 0;
6143 }
6144
6145 static void __init perf_event_init_all_cpus(void)
6146 {
6147         struct swevent_htable *swhash;
6148         int cpu;
6149
6150         for_each_possible_cpu(cpu) {
6151                 swhash = &per_cpu(swevent_htable, cpu);
6152                 mutex_init(&swhash->hlist_mutex);
6153         }
6154 }
6155
6156 static void __cpuinit perf_event_init_cpu(int cpu)
6157 {
6158         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6159
6160         mutex_lock(&swhash->hlist_mutex);
6161         if (swhash->hlist_refcount > 0) {
6162                 struct swevent_hlist *hlist;
6163
6164                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6165                 WARN_ON(!hlist);
6166                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6167         }
6168         mutex_unlock(&swhash->hlist_mutex);
6169 }
6170
6171 #ifdef CONFIG_HOTPLUG_CPU
6172 static void __perf_event_exit_context(void *__info)
6173 {
6174         struct perf_event_context *ctx = __info;
6175         struct perf_event *event, *tmp;
6176
6177         perf_pmu_rotate_stop(ctx->pmu);
6178
6179         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6180                 __perf_event_remove_from_context(event);
6181         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6182                 __perf_event_remove_from_context(event);
6183 }
6184
6185 static void perf_event_exit_cpu_context(int cpu)
6186 {
6187         struct perf_event_context *ctx;
6188         struct pmu *pmu;
6189         int idx;
6190
6191         idx = srcu_read_lock(&pmus_srcu);
6192         list_for_each_entry_rcu(pmu, &pmus, entry) {
6193                 ctx = &this_cpu_ptr(pmu->pmu_cpu_context)->ctx;
6194
6195                 mutex_lock(&ctx->mutex);
6196                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6197                 mutex_unlock(&ctx->mutex);
6198         }
6199         srcu_read_unlock(&pmus_srcu, idx);
6200
6201 }
6202
6203 static void perf_event_exit_cpu(int cpu)
6204 {
6205         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6206
6207         mutex_lock(&swhash->hlist_mutex);
6208         swevent_hlist_release(swhash);
6209         mutex_unlock(&swhash->hlist_mutex);
6210
6211         perf_event_exit_cpu_context(cpu);
6212 }
6213 #else
6214 static inline void perf_event_exit_cpu(int cpu) { }
6215 #endif
6216
6217 static int __cpuinit
6218 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6219 {
6220         unsigned int cpu = (long)hcpu;
6221
6222         switch (action & ~CPU_TASKS_FROZEN) {
6223
6224         case CPU_UP_PREPARE:
6225         case CPU_DOWN_FAILED:
6226                 perf_event_init_cpu(cpu);
6227                 break;
6228
6229         case CPU_UP_CANCELED:
6230         case CPU_DOWN_PREPARE:
6231                 perf_event_exit_cpu(cpu);
6232                 break;
6233
6234         default:
6235                 break;
6236         }
6237
6238         return NOTIFY_OK;
6239 }
6240
6241 void __init perf_event_init(void)
6242 {
6243         perf_event_init_all_cpus();
6244         init_srcu_struct(&pmus_srcu);
6245         perf_pmu_register(&perf_swevent);
6246         perf_pmu_register(&perf_cpu_clock);
6247         perf_pmu_register(&perf_task_clock);
6248         perf_tp_register();
6249         perf_cpu_notifier(perf_cpu_notify);
6250 }