KVM: X86: Report SVM bit to userspace only when supported
[linux-flexiantxendom0-natty.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affilates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <trace/events/kvm.h>
47
48 #define CREATE_TRACE_POINTS
49 #include "trace.h"
50
51 #include <asm/debugreg.h>
52 #include <asm/msr.h>
53 #include <asm/desc.h>
54 #include <asm/mtrr.h>
55 #include <asm/mce.h>
56 #include <asm/i387.h>
57 #include <asm/xcr.h>
58 #include <asm/pvclock.h>
59 #include <asm/div64.h>
60
61 #define MAX_IO_MSRS 256
62 #define CR0_RESERVED_BITS                                               \
63         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
64                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
65                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
66 #define CR4_RESERVED_BITS                                               \
67         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
68                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
69                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
70                           | X86_CR4_OSXSAVE \
71                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
72
73 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
74
75 #define KVM_MAX_MCE_BANKS 32
76 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
77
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
84 #else
85 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
86 #endif
87
88 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
89 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
90
91 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
92 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
93                                     struct kvm_cpuid_entry2 __user *entries);
94
95 struct kvm_x86_ops *kvm_x86_ops;
96 EXPORT_SYMBOL_GPL(kvm_x86_ops);
97
98 int ignore_msrs = 0;
99 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
100
101 #define KVM_NR_SHARED_MSRS 16
102
103 struct kvm_shared_msrs_global {
104         int nr;
105         u32 msrs[KVM_NR_SHARED_MSRS];
106 };
107
108 struct kvm_shared_msrs {
109         struct user_return_notifier urn;
110         bool registered;
111         struct kvm_shared_msr_values {
112                 u64 host;
113                 u64 curr;
114         } values[KVM_NR_SHARED_MSRS];
115 };
116
117 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
118 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
119
120 struct kvm_stats_debugfs_item debugfs_entries[] = {
121         { "pf_fixed", VCPU_STAT(pf_fixed) },
122         { "pf_guest", VCPU_STAT(pf_guest) },
123         { "tlb_flush", VCPU_STAT(tlb_flush) },
124         { "invlpg", VCPU_STAT(invlpg) },
125         { "exits", VCPU_STAT(exits) },
126         { "io_exits", VCPU_STAT(io_exits) },
127         { "mmio_exits", VCPU_STAT(mmio_exits) },
128         { "signal_exits", VCPU_STAT(signal_exits) },
129         { "irq_window", VCPU_STAT(irq_window_exits) },
130         { "nmi_window", VCPU_STAT(nmi_window_exits) },
131         { "halt_exits", VCPU_STAT(halt_exits) },
132         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
133         { "hypercalls", VCPU_STAT(hypercalls) },
134         { "request_irq", VCPU_STAT(request_irq_exits) },
135         { "irq_exits", VCPU_STAT(irq_exits) },
136         { "host_state_reload", VCPU_STAT(host_state_reload) },
137         { "efer_reload", VCPU_STAT(efer_reload) },
138         { "fpu_reload", VCPU_STAT(fpu_reload) },
139         { "insn_emulation", VCPU_STAT(insn_emulation) },
140         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
141         { "irq_injections", VCPU_STAT(irq_injections) },
142         { "nmi_injections", VCPU_STAT(nmi_injections) },
143         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
144         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
145         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
146         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
147         { "mmu_flooded", VM_STAT(mmu_flooded) },
148         { "mmu_recycled", VM_STAT(mmu_recycled) },
149         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
150         { "mmu_unsync", VM_STAT(mmu_unsync) },
151         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
152         { "largepages", VM_STAT(lpages) },
153         { NULL }
154 };
155
156 u64 __read_mostly host_xcr0;
157
158 static inline u32 bit(int bitno)
159 {
160         return 1 << (bitno & 31);
161 }
162
163 static void kvm_on_user_return(struct user_return_notifier *urn)
164 {
165         unsigned slot;
166         struct kvm_shared_msrs *locals
167                 = container_of(urn, struct kvm_shared_msrs, urn);
168         struct kvm_shared_msr_values *values;
169
170         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
171                 values = &locals->values[slot];
172                 if (values->host != values->curr) {
173                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
174                         values->curr = values->host;
175                 }
176         }
177         locals->registered = false;
178         user_return_notifier_unregister(urn);
179 }
180
181 static void shared_msr_update(unsigned slot, u32 msr)
182 {
183         struct kvm_shared_msrs *smsr;
184         u64 value;
185
186         smsr = &__get_cpu_var(shared_msrs);
187         /* only read, and nobody should modify it at this time,
188          * so don't need lock */
189         if (slot >= shared_msrs_global.nr) {
190                 printk(KERN_ERR "kvm: invalid MSR slot!");
191                 return;
192         }
193         rdmsrl_safe(msr, &value);
194         smsr->values[slot].host = value;
195         smsr->values[slot].curr = value;
196 }
197
198 void kvm_define_shared_msr(unsigned slot, u32 msr)
199 {
200         if (slot >= shared_msrs_global.nr)
201                 shared_msrs_global.nr = slot + 1;
202         shared_msrs_global.msrs[slot] = msr;
203         /* we need ensured the shared_msr_global have been updated */
204         smp_wmb();
205 }
206 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
207
208 static void kvm_shared_msr_cpu_online(void)
209 {
210         unsigned i;
211
212         for (i = 0; i < shared_msrs_global.nr; ++i)
213                 shared_msr_update(i, shared_msrs_global.msrs[i]);
214 }
215
216 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
217 {
218         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
219
220         if (((value ^ smsr->values[slot].curr) & mask) == 0)
221                 return;
222         smsr->values[slot].curr = value;
223         wrmsrl(shared_msrs_global.msrs[slot], value);
224         if (!smsr->registered) {
225                 smsr->urn.on_user_return = kvm_on_user_return;
226                 user_return_notifier_register(&smsr->urn);
227                 smsr->registered = true;
228         }
229 }
230 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
231
232 static void drop_user_return_notifiers(void *ignore)
233 {
234         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
235
236         if (smsr->registered)
237                 kvm_on_user_return(&smsr->urn);
238 }
239
240 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
241 {
242         if (irqchip_in_kernel(vcpu->kvm))
243                 return vcpu->arch.apic_base;
244         else
245                 return vcpu->arch.apic_base;
246 }
247 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
248
249 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
250 {
251         /* TODO: reserve bits check */
252         if (irqchip_in_kernel(vcpu->kvm))
253                 kvm_lapic_set_base(vcpu, data);
254         else
255                 vcpu->arch.apic_base = data;
256 }
257 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
258
259 #define EXCPT_BENIGN            0
260 #define EXCPT_CONTRIBUTORY      1
261 #define EXCPT_PF                2
262
263 static int exception_class(int vector)
264 {
265         switch (vector) {
266         case PF_VECTOR:
267                 return EXCPT_PF;
268         case DE_VECTOR:
269         case TS_VECTOR:
270         case NP_VECTOR:
271         case SS_VECTOR:
272         case GP_VECTOR:
273                 return EXCPT_CONTRIBUTORY;
274         default:
275                 break;
276         }
277         return EXCPT_BENIGN;
278 }
279
280 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
281                 unsigned nr, bool has_error, u32 error_code,
282                 bool reinject)
283 {
284         u32 prev_nr;
285         int class1, class2;
286
287         if (!vcpu->arch.exception.pending) {
288         queue:
289                 vcpu->arch.exception.pending = true;
290                 vcpu->arch.exception.has_error_code = has_error;
291                 vcpu->arch.exception.nr = nr;
292                 vcpu->arch.exception.error_code = error_code;
293                 vcpu->arch.exception.reinject = reinject;
294                 return;
295         }
296
297         /* to check exception */
298         prev_nr = vcpu->arch.exception.nr;
299         if (prev_nr == DF_VECTOR) {
300                 /* triple fault -> shutdown */
301                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
302                 return;
303         }
304         class1 = exception_class(prev_nr);
305         class2 = exception_class(nr);
306         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
307                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
308                 /* generate double fault per SDM Table 5-5 */
309                 vcpu->arch.exception.pending = true;
310                 vcpu->arch.exception.has_error_code = true;
311                 vcpu->arch.exception.nr = DF_VECTOR;
312                 vcpu->arch.exception.error_code = 0;
313         } else
314                 /* replace previous exception with a new one in a hope
315                    that instruction re-execution will regenerate lost
316                    exception */
317                 goto queue;
318 }
319
320 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
321 {
322         kvm_multiple_exception(vcpu, nr, false, 0, false);
323 }
324 EXPORT_SYMBOL_GPL(kvm_queue_exception);
325
326 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
327 {
328         kvm_multiple_exception(vcpu, nr, false, 0, true);
329 }
330 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
331
332 void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
333 {
334         unsigned error_code = vcpu->arch.fault.error_code;
335
336         ++vcpu->stat.pf_guest;
337         vcpu->arch.cr2 = vcpu->arch.fault.address;
338         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
339 }
340
341 void kvm_propagate_fault(struct kvm_vcpu *vcpu)
342 {
343         u32 nested, error;
344
345         error   = vcpu->arch.fault.error_code;
346         nested  = error &  PFERR_NESTED_MASK;
347         error   = error & ~PFERR_NESTED_MASK;
348
349         vcpu->arch.fault.error_code = error;
350
351         if (mmu_is_nested(vcpu) && !nested)
352                 vcpu->arch.nested_mmu.inject_page_fault(vcpu);
353         else
354                 vcpu->arch.mmu.inject_page_fault(vcpu);
355 }
356
357 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
358 {
359         vcpu->arch.nmi_pending = 1;
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
362
363 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
364 {
365         kvm_multiple_exception(vcpu, nr, true, error_code, false);
366 }
367 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
368
369 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370 {
371         kvm_multiple_exception(vcpu, nr, true, error_code, true);
372 }
373 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
374
375 /*
376  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
377  * a #GP and return false.
378  */
379 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
380 {
381         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
382                 return true;
383         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
384         return false;
385 }
386 EXPORT_SYMBOL_GPL(kvm_require_cpl);
387
388 /*
389  * This function will be used to read from the physical memory of the currently
390  * running guest. The difference to kvm_read_guest_page is that this function
391  * can read from guest physical or from the guest's guest physical memory.
392  */
393 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
394                             gfn_t ngfn, void *data, int offset, int len,
395                             u32 access)
396 {
397         gfn_t real_gfn;
398         gpa_t ngpa;
399
400         ngpa     = gfn_to_gpa(ngfn);
401         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
402         if (real_gfn == UNMAPPED_GVA)
403                 return -EFAULT;
404
405         real_gfn = gpa_to_gfn(real_gfn);
406
407         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
408 }
409 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
410
411 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
412                                void *data, int offset, int len, u32 access)
413 {
414         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
415                                        data, offset, len, access);
416 }
417
418 /*
419  * Load the pae pdptrs.  Return true is they are all valid.
420  */
421 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
422 {
423         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
424         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
425         int i;
426         int ret;
427         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
428
429         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
430                                       offset * sizeof(u64), sizeof(pdpte),
431                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
432         if (ret < 0) {
433                 ret = 0;
434                 goto out;
435         }
436         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
437                 if (is_present_gpte(pdpte[i]) &&
438                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
439                         ret = 0;
440                         goto out;
441                 }
442         }
443         ret = 1;
444
445         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
446         __set_bit(VCPU_EXREG_PDPTR,
447                   (unsigned long *)&vcpu->arch.regs_avail);
448         __set_bit(VCPU_EXREG_PDPTR,
449                   (unsigned long *)&vcpu->arch.regs_dirty);
450 out:
451
452         return ret;
453 }
454 EXPORT_SYMBOL_GPL(load_pdptrs);
455
456 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
457 {
458         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
459         bool changed = true;
460         int offset;
461         gfn_t gfn;
462         int r;
463
464         if (is_long_mode(vcpu) || !is_pae(vcpu))
465                 return false;
466
467         if (!test_bit(VCPU_EXREG_PDPTR,
468                       (unsigned long *)&vcpu->arch.regs_avail))
469                 return true;
470
471         gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
472         offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
473         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
474                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
475         if (r < 0)
476                 goto out;
477         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
478 out:
479
480         return changed;
481 }
482
483 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
484 {
485         unsigned long old_cr0 = kvm_read_cr0(vcpu);
486         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
487                                     X86_CR0_CD | X86_CR0_NW;
488
489         cr0 |= X86_CR0_ET;
490
491 #ifdef CONFIG_X86_64
492         if (cr0 & 0xffffffff00000000UL)
493                 return 1;
494 #endif
495
496         cr0 &= ~CR0_RESERVED_BITS;
497
498         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
499                 return 1;
500
501         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
502                 return 1;
503
504         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
505 #ifdef CONFIG_X86_64
506                 if ((vcpu->arch.efer & EFER_LME)) {
507                         int cs_db, cs_l;
508
509                         if (!is_pae(vcpu))
510                                 return 1;
511                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
512                         if (cs_l)
513                                 return 1;
514                 } else
515 #endif
516                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
517                                                  vcpu->arch.cr3))
518                         return 1;
519         }
520
521         kvm_x86_ops->set_cr0(vcpu, cr0);
522
523         if ((cr0 ^ old_cr0) & update_bits)
524                 kvm_mmu_reset_context(vcpu);
525         return 0;
526 }
527 EXPORT_SYMBOL_GPL(kvm_set_cr0);
528
529 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
530 {
531         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
532 }
533 EXPORT_SYMBOL_GPL(kvm_lmsw);
534
535 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
536 {
537         u64 xcr0;
538
539         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
540         if (index != XCR_XFEATURE_ENABLED_MASK)
541                 return 1;
542         xcr0 = xcr;
543         if (kvm_x86_ops->get_cpl(vcpu) != 0)
544                 return 1;
545         if (!(xcr0 & XSTATE_FP))
546                 return 1;
547         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
548                 return 1;
549         if (xcr0 & ~host_xcr0)
550                 return 1;
551         vcpu->arch.xcr0 = xcr0;
552         vcpu->guest_xcr0_loaded = 0;
553         return 0;
554 }
555
556 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
557 {
558         if (__kvm_set_xcr(vcpu, index, xcr)) {
559                 kvm_inject_gp(vcpu, 0);
560                 return 1;
561         }
562         return 0;
563 }
564 EXPORT_SYMBOL_GPL(kvm_set_xcr);
565
566 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
567 {
568         struct kvm_cpuid_entry2 *best;
569
570         best = kvm_find_cpuid_entry(vcpu, 1, 0);
571         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
572 }
573
574 static void update_cpuid(struct kvm_vcpu *vcpu)
575 {
576         struct kvm_cpuid_entry2 *best;
577
578         best = kvm_find_cpuid_entry(vcpu, 1, 0);
579         if (!best)
580                 return;
581
582         /* Update OSXSAVE bit */
583         if (cpu_has_xsave && best->function == 0x1) {
584                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
585                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
586                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
587         }
588 }
589
590 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
591 {
592         unsigned long old_cr4 = kvm_read_cr4(vcpu);
593         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
594
595         if (cr4 & CR4_RESERVED_BITS)
596                 return 1;
597
598         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
599                 return 1;
600
601         if (is_long_mode(vcpu)) {
602                 if (!(cr4 & X86_CR4_PAE))
603                         return 1;
604         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605                    && ((cr4 ^ old_cr4) & pdptr_bits)
606                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
607                 return 1;
608
609         if (cr4 & X86_CR4_VMXE)
610                 return 1;
611
612         kvm_x86_ops->set_cr4(vcpu, cr4);
613
614         if ((cr4 ^ old_cr4) & pdptr_bits)
615                 kvm_mmu_reset_context(vcpu);
616
617         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
618                 update_cpuid(vcpu);
619
620         return 0;
621 }
622 EXPORT_SYMBOL_GPL(kvm_set_cr4);
623
624 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
625 {
626         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
627                 kvm_mmu_sync_roots(vcpu);
628                 kvm_mmu_flush_tlb(vcpu);
629                 return 0;
630         }
631
632         if (is_long_mode(vcpu)) {
633                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
634                         return 1;
635         } else {
636                 if (is_pae(vcpu)) {
637                         if (cr3 & CR3_PAE_RESERVED_BITS)
638                                 return 1;
639                         if (is_paging(vcpu) &&
640                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
641                                 return 1;
642                 }
643                 /*
644                  * We don't check reserved bits in nonpae mode, because
645                  * this isn't enforced, and VMware depends on this.
646                  */
647         }
648
649         /*
650          * Does the new cr3 value map to physical memory? (Note, we
651          * catch an invalid cr3 even in real-mode, because it would
652          * cause trouble later on when we turn on paging anyway.)
653          *
654          * A real CPU would silently accept an invalid cr3 and would
655          * attempt to use it - with largely undefined (and often hard
656          * to debug) behavior on the guest side.
657          */
658         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
659                 return 1;
660         vcpu->arch.cr3 = cr3;
661         vcpu->arch.mmu.new_cr3(vcpu);
662         return 0;
663 }
664 EXPORT_SYMBOL_GPL(kvm_set_cr3);
665
666 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
667 {
668         if (cr8 & CR8_RESERVED_BITS)
669                 return 1;
670         if (irqchip_in_kernel(vcpu->kvm))
671                 kvm_lapic_set_tpr(vcpu, cr8);
672         else
673                 vcpu->arch.cr8 = cr8;
674         return 0;
675 }
676
677 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
678 {
679         if (__kvm_set_cr8(vcpu, cr8))
680                 kvm_inject_gp(vcpu, 0);
681 }
682 EXPORT_SYMBOL_GPL(kvm_set_cr8);
683
684 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
685 {
686         if (irqchip_in_kernel(vcpu->kvm))
687                 return kvm_lapic_get_cr8(vcpu);
688         else
689                 return vcpu->arch.cr8;
690 }
691 EXPORT_SYMBOL_GPL(kvm_get_cr8);
692
693 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
694 {
695         switch (dr) {
696         case 0 ... 3:
697                 vcpu->arch.db[dr] = val;
698                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
699                         vcpu->arch.eff_db[dr] = val;
700                 break;
701         case 4:
702                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
703                         return 1; /* #UD */
704                 /* fall through */
705         case 6:
706                 if (val & 0xffffffff00000000ULL)
707                         return -1; /* #GP */
708                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
709                 break;
710         case 5:
711                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
712                         return 1; /* #UD */
713                 /* fall through */
714         default: /* 7 */
715                 if (val & 0xffffffff00000000ULL)
716                         return -1; /* #GP */
717                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
718                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
719                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
720                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
721                 }
722                 break;
723         }
724
725         return 0;
726 }
727
728 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
729 {
730         int res;
731
732         res = __kvm_set_dr(vcpu, dr, val);
733         if (res > 0)
734                 kvm_queue_exception(vcpu, UD_VECTOR);
735         else if (res < 0)
736                 kvm_inject_gp(vcpu, 0);
737
738         return res;
739 }
740 EXPORT_SYMBOL_GPL(kvm_set_dr);
741
742 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
743 {
744         switch (dr) {
745         case 0 ... 3:
746                 *val = vcpu->arch.db[dr];
747                 break;
748         case 4:
749                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
750                         return 1;
751                 /* fall through */
752         case 6:
753                 *val = vcpu->arch.dr6;
754                 break;
755         case 5:
756                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
757                         return 1;
758                 /* fall through */
759         default: /* 7 */
760                 *val = vcpu->arch.dr7;
761                 break;
762         }
763
764         return 0;
765 }
766
767 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
768 {
769         if (_kvm_get_dr(vcpu, dr, val)) {
770                 kvm_queue_exception(vcpu, UD_VECTOR);
771                 return 1;
772         }
773         return 0;
774 }
775 EXPORT_SYMBOL_GPL(kvm_get_dr);
776
777 /*
778  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
779  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
780  *
781  * This list is modified at module load time to reflect the
782  * capabilities of the host cpu. This capabilities test skips MSRs that are
783  * kvm-specific. Those are put in the beginning of the list.
784  */
785
786 #define KVM_SAVE_MSRS_BEGIN     7
787 static u32 msrs_to_save[] = {
788         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
789         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
790         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
791         HV_X64_MSR_APIC_ASSIST_PAGE,
792         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
793         MSR_STAR,
794 #ifdef CONFIG_X86_64
795         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
796 #endif
797         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
798 };
799
800 static unsigned num_msrs_to_save;
801
802 static u32 emulated_msrs[] = {
803         MSR_IA32_MISC_ENABLE,
804         MSR_IA32_MCG_STATUS,
805         MSR_IA32_MCG_CTL,
806 };
807
808 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
809 {
810         u64 old_efer = vcpu->arch.efer;
811
812         if (efer & efer_reserved_bits)
813                 return 1;
814
815         if (is_paging(vcpu)
816             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
817                 return 1;
818
819         if (efer & EFER_FFXSR) {
820                 struct kvm_cpuid_entry2 *feat;
821
822                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
823                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
824                         return 1;
825         }
826
827         if (efer & EFER_SVME) {
828                 struct kvm_cpuid_entry2 *feat;
829
830                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
831                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
832                         return 1;
833         }
834
835         efer &= ~EFER_LMA;
836         efer |= vcpu->arch.efer & EFER_LMA;
837
838         kvm_x86_ops->set_efer(vcpu, efer);
839
840         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
841         kvm_mmu_reset_context(vcpu);
842
843         /* Update reserved bits */
844         if ((efer ^ old_efer) & EFER_NX)
845                 kvm_mmu_reset_context(vcpu);
846
847         return 0;
848 }
849
850 void kvm_enable_efer_bits(u64 mask)
851 {
852        efer_reserved_bits &= ~mask;
853 }
854 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
855
856
857 /*
858  * Writes msr value into into the appropriate "register".
859  * Returns 0 on success, non-0 otherwise.
860  * Assumes vcpu_load() was already called.
861  */
862 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
863 {
864         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
865 }
866
867 /*
868  * Adapt set_msr() to msr_io()'s calling convention
869  */
870 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
871 {
872         return kvm_set_msr(vcpu, index, *data);
873 }
874
875 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
876 {
877         int version;
878         int r;
879         struct pvclock_wall_clock wc;
880         struct timespec boot;
881
882         if (!wall_clock)
883                 return;
884
885         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
886         if (r)
887                 return;
888
889         if (version & 1)
890                 ++version;  /* first time write, random junk */
891
892         ++version;
893
894         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
895
896         /*
897          * The guest calculates current wall clock time by adding
898          * system time (updated by kvm_write_guest_time below) to the
899          * wall clock specified here.  guest system time equals host
900          * system time for us, thus we must fill in host boot time here.
901          */
902         getboottime(&boot);
903
904         wc.sec = boot.tv_sec;
905         wc.nsec = boot.tv_nsec;
906         wc.version = version;
907
908         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
909
910         version++;
911         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
912 }
913
914 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
915 {
916         uint32_t quotient, remainder;
917
918         /* Don't try to replace with do_div(), this one calculates
919          * "(dividend << 32) / divisor" */
920         __asm__ ( "divl %4"
921                   : "=a" (quotient), "=d" (remainder)
922                   : "0" (0), "1" (dividend), "r" (divisor) );
923         return quotient;
924 }
925
926 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
927 {
928         uint64_t nsecs = 1000000000LL;
929         int32_t  shift = 0;
930         uint64_t tps64;
931         uint32_t tps32;
932
933         tps64 = tsc_khz * 1000LL;
934         while (tps64 > nsecs*2) {
935                 tps64 >>= 1;
936                 shift--;
937         }
938
939         tps32 = (uint32_t)tps64;
940         while (tps32 <= (uint32_t)nsecs) {
941                 tps32 <<= 1;
942                 shift++;
943         }
944
945         hv_clock->tsc_shift = shift;
946         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
947
948         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
949                  __func__, tsc_khz, hv_clock->tsc_shift,
950                  hv_clock->tsc_to_system_mul);
951 }
952
953 static inline u64 get_kernel_ns(void)
954 {
955         struct timespec ts;
956
957         WARN_ON(preemptible());
958         ktime_get_ts(&ts);
959         monotonic_to_bootbased(&ts);
960         return timespec_to_ns(&ts);
961 }
962
963 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
964
965 static inline int kvm_tsc_changes_freq(void)
966 {
967         int cpu = get_cpu();
968         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
969                   cpufreq_quick_get(cpu) != 0;
970         put_cpu();
971         return ret;
972 }
973
974 static inline u64 nsec_to_cycles(u64 nsec)
975 {
976         u64 ret;
977
978         WARN_ON(preemptible());
979         if (kvm_tsc_changes_freq())
980                 printk_once(KERN_WARNING
981                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
982         ret = nsec * __get_cpu_var(cpu_tsc_khz);
983         do_div(ret, USEC_PER_SEC);
984         return ret;
985 }
986
987 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
988 {
989         struct kvm *kvm = vcpu->kvm;
990         u64 offset, ns, elapsed;
991         unsigned long flags;
992         s64 sdiff;
993
994         spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
995         offset = data - native_read_tsc();
996         ns = get_kernel_ns();
997         elapsed = ns - kvm->arch.last_tsc_nsec;
998         sdiff = data - kvm->arch.last_tsc_write;
999         if (sdiff < 0)
1000                 sdiff = -sdiff;
1001
1002         /*
1003          * Special case: close write to TSC within 5 seconds of
1004          * another CPU is interpreted as an attempt to synchronize
1005          * The 5 seconds is to accomodate host load / swapping as
1006          * well as any reset of TSC during the boot process.
1007          *
1008          * In that case, for a reliable TSC, we can match TSC offsets,
1009          * or make a best guest using elapsed value.
1010          */
1011         if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1012             elapsed < 5ULL * NSEC_PER_SEC) {
1013                 if (!check_tsc_unstable()) {
1014                         offset = kvm->arch.last_tsc_offset;
1015                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1016                 } else {
1017                         u64 delta = nsec_to_cycles(elapsed);
1018                         offset += delta;
1019                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1020                 }
1021                 ns = kvm->arch.last_tsc_nsec;
1022         }
1023         kvm->arch.last_tsc_nsec = ns;
1024         kvm->arch.last_tsc_write = data;
1025         kvm->arch.last_tsc_offset = offset;
1026         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1027         spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1028
1029         /* Reset of TSC must disable overshoot protection below */
1030         vcpu->arch.hv_clock.tsc_timestamp = 0;
1031 }
1032 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1033
1034 static int kvm_write_guest_time(struct kvm_vcpu *v)
1035 {
1036         unsigned long flags;
1037         struct kvm_vcpu_arch *vcpu = &v->arch;
1038         void *shared_kaddr;
1039         unsigned long this_tsc_khz;
1040         s64 kernel_ns, max_kernel_ns;
1041         u64 tsc_timestamp;
1042
1043         if ((!vcpu->time_page))
1044                 return 0;
1045
1046         /* Keep irq disabled to prevent changes to the clock */
1047         local_irq_save(flags);
1048         kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1049         kernel_ns = get_kernel_ns();
1050         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1051         local_irq_restore(flags);
1052
1053         if (unlikely(this_tsc_khz == 0)) {
1054                 kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
1055                 return 1;
1056         }
1057
1058         /*
1059          * Time as measured by the TSC may go backwards when resetting the base
1060          * tsc_timestamp.  The reason for this is that the TSC resolution is
1061          * higher than the resolution of the other clock scales.  Thus, many
1062          * possible measurments of the TSC correspond to one measurement of any
1063          * other clock, and so a spread of values is possible.  This is not a
1064          * problem for the computation of the nanosecond clock; with TSC rates
1065          * around 1GHZ, there can only be a few cycles which correspond to one
1066          * nanosecond value, and any path through this code will inevitably
1067          * take longer than that.  However, with the kernel_ns value itself,
1068          * the precision may be much lower, down to HZ granularity.  If the
1069          * first sampling of TSC against kernel_ns ends in the low part of the
1070          * range, and the second in the high end of the range, we can get:
1071          *
1072          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1073          *
1074          * As the sampling errors potentially range in the thousands of cycles,
1075          * it is possible such a time value has already been observed by the
1076          * guest.  To protect against this, we must compute the system time as
1077          * observed by the guest and ensure the new system time is greater.
1078          */
1079         max_kernel_ns = 0;
1080         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1081                 max_kernel_ns = vcpu->last_guest_tsc -
1082                                 vcpu->hv_clock.tsc_timestamp;
1083                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1084                                     vcpu->hv_clock.tsc_to_system_mul,
1085                                     vcpu->hv_clock.tsc_shift);
1086                 max_kernel_ns += vcpu->last_kernel_ns;
1087         }
1088
1089         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1090                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
1091                 vcpu->hw_tsc_khz = this_tsc_khz;
1092         }
1093
1094         if (max_kernel_ns > kernel_ns)
1095                 kernel_ns = max_kernel_ns;
1096
1097         /* With all the info we got, fill in the values */
1098         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1099         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1100         vcpu->last_kernel_ns = kernel_ns;
1101         vcpu->hv_clock.flags = 0;
1102
1103         /*
1104          * The interface expects us to write an even number signaling that the
1105          * update is finished. Since the guest won't see the intermediate
1106          * state, we just increase by 2 at the end.
1107          */
1108         vcpu->hv_clock.version += 2;
1109
1110         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1111
1112         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1113                sizeof(vcpu->hv_clock));
1114
1115         kunmap_atomic(shared_kaddr, KM_USER0);
1116
1117         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1118         return 0;
1119 }
1120
1121 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
1122 {
1123         struct kvm_vcpu_arch *vcpu = &v->arch;
1124
1125         if (!vcpu->time_page)
1126                 return 0;
1127         kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
1128         return 1;
1129 }
1130
1131 static bool msr_mtrr_valid(unsigned msr)
1132 {
1133         switch (msr) {
1134         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1135         case MSR_MTRRfix64K_00000:
1136         case MSR_MTRRfix16K_80000:
1137         case MSR_MTRRfix16K_A0000:
1138         case MSR_MTRRfix4K_C0000:
1139         case MSR_MTRRfix4K_C8000:
1140         case MSR_MTRRfix4K_D0000:
1141         case MSR_MTRRfix4K_D8000:
1142         case MSR_MTRRfix4K_E0000:
1143         case MSR_MTRRfix4K_E8000:
1144         case MSR_MTRRfix4K_F0000:
1145         case MSR_MTRRfix4K_F8000:
1146         case MSR_MTRRdefType:
1147         case MSR_IA32_CR_PAT:
1148                 return true;
1149         case 0x2f8:
1150                 return true;
1151         }
1152         return false;
1153 }
1154
1155 static bool valid_pat_type(unsigned t)
1156 {
1157         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1158 }
1159
1160 static bool valid_mtrr_type(unsigned t)
1161 {
1162         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1163 }
1164
1165 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1166 {
1167         int i;
1168
1169         if (!msr_mtrr_valid(msr))
1170                 return false;
1171
1172         if (msr == MSR_IA32_CR_PAT) {
1173                 for (i = 0; i < 8; i++)
1174                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1175                                 return false;
1176                 return true;
1177         } else if (msr == MSR_MTRRdefType) {
1178                 if (data & ~0xcff)
1179                         return false;
1180                 return valid_mtrr_type(data & 0xff);
1181         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1182                 for (i = 0; i < 8 ; i++)
1183                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1184                                 return false;
1185                 return true;
1186         }
1187
1188         /* variable MTRRs */
1189         return valid_mtrr_type(data & 0xff);
1190 }
1191
1192 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1193 {
1194         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1195
1196         if (!mtrr_valid(vcpu, msr, data))
1197                 return 1;
1198
1199         if (msr == MSR_MTRRdefType) {
1200                 vcpu->arch.mtrr_state.def_type = data;
1201                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1202         } else if (msr == MSR_MTRRfix64K_00000)
1203                 p[0] = data;
1204         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1205                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1206         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1207                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1208         else if (msr == MSR_IA32_CR_PAT)
1209                 vcpu->arch.pat = data;
1210         else {  /* Variable MTRRs */
1211                 int idx, is_mtrr_mask;
1212                 u64 *pt;
1213
1214                 idx = (msr - 0x200) / 2;
1215                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1216                 if (!is_mtrr_mask)
1217                         pt =
1218                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1219                 else
1220                         pt =
1221                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1222                 *pt = data;
1223         }
1224
1225         kvm_mmu_reset_context(vcpu);
1226         return 0;
1227 }
1228
1229 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1230 {
1231         u64 mcg_cap = vcpu->arch.mcg_cap;
1232         unsigned bank_num = mcg_cap & 0xff;
1233
1234         switch (msr) {
1235         case MSR_IA32_MCG_STATUS:
1236                 vcpu->arch.mcg_status = data;
1237                 break;
1238         case MSR_IA32_MCG_CTL:
1239                 if (!(mcg_cap & MCG_CTL_P))
1240                         return 1;
1241                 if (data != 0 && data != ~(u64)0)
1242                         return -1;
1243                 vcpu->arch.mcg_ctl = data;
1244                 break;
1245         default:
1246                 if (msr >= MSR_IA32_MC0_CTL &&
1247                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1248                         u32 offset = msr - MSR_IA32_MC0_CTL;
1249                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1250                          * some Linux kernels though clear bit 10 in bank 4 to
1251                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1252                          * this to avoid an uncatched #GP in the guest
1253                          */
1254                         if ((offset & 0x3) == 0 &&
1255                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1256                                 return -1;
1257                         vcpu->arch.mce_banks[offset] = data;
1258                         break;
1259                 }
1260                 return 1;
1261         }
1262         return 0;
1263 }
1264
1265 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1266 {
1267         struct kvm *kvm = vcpu->kvm;
1268         int lm = is_long_mode(vcpu);
1269         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1270                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1271         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1272                 : kvm->arch.xen_hvm_config.blob_size_32;
1273         u32 page_num = data & ~PAGE_MASK;
1274         u64 page_addr = data & PAGE_MASK;
1275         u8 *page;
1276         int r;
1277
1278         r = -E2BIG;
1279         if (page_num >= blob_size)
1280                 goto out;
1281         r = -ENOMEM;
1282         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1283         if (!page)
1284                 goto out;
1285         r = -EFAULT;
1286         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1287                 goto out_free;
1288         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1289                 goto out_free;
1290         r = 0;
1291 out_free:
1292         kfree(page);
1293 out:
1294         return r;
1295 }
1296
1297 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1298 {
1299         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1300 }
1301
1302 static bool kvm_hv_msr_partition_wide(u32 msr)
1303 {
1304         bool r = false;
1305         switch (msr) {
1306         case HV_X64_MSR_GUEST_OS_ID:
1307         case HV_X64_MSR_HYPERCALL:
1308                 r = true;
1309                 break;
1310         }
1311
1312         return r;
1313 }
1314
1315 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1316 {
1317         struct kvm *kvm = vcpu->kvm;
1318
1319         switch (msr) {
1320         case HV_X64_MSR_GUEST_OS_ID:
1321                 kvm->arch.hv_guest_os_id = data;
1322                 /* setting guest os id to zero disables hypercall page */
1323                 if (!kvm->arch.hv_guest_os_id)
1324                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1325                 break;
1326         case HV_X64_MSR_HYPERCALL: {
1327                 u64 gfn;
1328                 unsigned long addr;
1329                 u8 instructions[4];
1330
1331                 /* if guest os id is not set hypercall should remain disabled */
1332                 if (!kvm->arch.hv_guest_os_id)
1333                         break;
1334                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1335                         kvm->arch.hv_hypercall = data;
1336                         break;
1337                 }
1338                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1339                 addr = gfn_to_hva(kvm, gfn);
1340                 if (kvm_is_error_hva(addr))
1341                         return 1;
1342                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1343                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1344                 if (copy_to_user((void __user *)addr, instructions, 4))
1345                         return 1;
1346                 kvm->arch.hv_hypercall = data;
1347                 break;
1348         }
1349         default:
1350                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1351                           "data 0x%llx\n", msr, data);
1352                 return 1;
1353         }
1354         return 0;
1355 }
1356
1357 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1358 {
1359         switch (msr) {
1360         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1361                 unsigned long addr;
1362
1363                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1364                         vcpu->arch.hv_vapic = data;
1365                         break;
1366                 }
1367                 addr = gfn_to_hva(vcpu->kvm, data >>
1368                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1369                 if (kvm_is_error_hva(addr))
1370                         return 1;
1371                 if (clear_user((void __user *)addr, PAGE_SIZE))
1372                         return 1;
1373                 vcpu->arch.hv_vapic = data;
1374                 break;
1375         }
1376         case HV_X64_MSR_EOI:
1377                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1378         case HV_X64_MSR_ICR:
1379                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1380         case HV_X64_MSR_TPR:
1381                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1382         default:
1383                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1384                           "data 0x%llx\n", msr, data);
1385                 return 1;
1386         }
1387
1388         return 0;
1389 }
1390
1391 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1392 {
1393         switch (msr) {
1394         case MSR_EFER:
1395                 return set_efer(vcpu, data);
1396         case MSR_K7_HWCR:
1397                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1398                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1399                 if (data != 0) {
1400                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1401                                 data);
1402                         return 1;
1403                 }
1404                 break;
1405         case MSR_FAM10H_MMIO_CONF_BASE:
1406                 if (data != 0) {
1407                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1408                                 "0x%llx\n", data);
1409                         return 1;
1410                 }
1411                 break;
1412         case MSR_AMD64_NB_CFG:
1413                 break;
1414         case MSR_IA32_DEBUGCTLMSR:
1415                 if (!data) {
1416                         /* We support the non-activated case already */
1417                         break;
1418                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1419                         /* Values other than LBR and BTF are vendor-specific,
1420                            thus reserved and should throw a #GP */
1421                         return 1;
1422                 }
1423                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1424                         __func__, data);
1425                 break;
1426         case MSR_IA32_UCODE_REV:
1427         case MSR_IA32_UCODE_WRITE:
1428         case MSR_VM_HSAVE_PA:
1429         case MSR_AMD64_PATCH_LOADER:
1430                 break;
1431         case 0x200 ... 0x2ff:
1432                 return set_msr_mtrr(vcpu, msr, data);
1433         case MSR_IA32_APICBASE:
1434                 kvm_set_apic_base(vcpu, data);
1435                 break;
1436         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1437                 return kvm_x2apic_msr_write(vcpu, msr, data);
1438         case MSR_IA32_MISC_ENABLE:
1439                 vcpu->arch.ia32_misc_enable_msr = data;
1440                 break;
1441         case MSR_KVM_WALL_CLOCK_NEW:
1442         case MSR_KVM_WALL_CLOCK:
1443                 vcpu->kvm->arch.wall_clock = data;
1444                 kvm_write_wall_clock(vcpu->kvm, data);
1445                 break;
1446         case MSR_KVM_SYSTEM_TIME_NEW:
1447         case MSR_KVM_SYSTEM_TIME: {
1448                 if (vcpu->arch.time_page) {
1449                         kvm_release_page_dirty(vcpu->arch.time_page);
1450                         vcpu->arch.time_page = NULL;
1451                 }
1452
1453                 vcpu->arch.time = data;
1454
1455                 /* we verify if the enable bit is set... */
1456                 if (!(data & 1))
1457                         break;
1458
1459                 /* ...but clean it before doing the actual write */
1460                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1461
1462                 vcpu->arch.time_page =
1463                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1464
1465                 if (is_error_page(vcpu->arch.time_page)) {
1466                         kvm_release_page_clean(vcpu->arch.time_page);
1467                         vcpu->arch.time_page = NULL;
1468                 }
1469
1470                 kvm_request_guest_time_update(vcpu);
1471                 break;
1472         }
1473         case MSR_IA32_MCG_CTL:
1474         case MSR_IA32_MCG_STATUS:
1475         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1476                 return set_msr_mce(vcpu, msr, data);
1477
1478         /* Performance counters are not protected by a CPUID bit,
1479          * so we should check all of them in the generic path for the sake of
1480          * cross vendor migration.
1481          * Writing a zero into the event select MSRs disables them,
1482          * which we perfectly emulate ;-). Any other value should be at least
1483          * reported, some guests depend on them.
1484          */
1485         case MSR_P6_EVNTSEL0:
1486         case MSR_P6_EVNTSEL1:
1487         case MSR_K7_EVNTSEL0:
1488         case MSR_K7_EVNTSEL1:
1489         case MSR_K7_EVNTSEL2:
1490         case MSR_K7_EVNTSEL3:
1491                 if (data != 0)
1492                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1493                                 "0x%x data 0x%llx\n", msr, data);
1494                 break;
1495         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1496          * so we ignore writes to make it happy.
1497          */
1498         case MSR_P6_PERFCTR0:
1499         case MSR_P6_PERFCTR1:
1500         case MSR_K7_PERFCTR0:
1501         case MSR_K7_PERFCTR1:
1502         case MSR_K7_PERFCTR2:
1503         case MSR_K7_PERFCTR3:
1504                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1505                         "0x%x data 0x%llx\n", msr, data);
1506                 break;
1507         case MSR_K7_CLK_CTL:
1508                 /*
1509                  * Ignore all writes to this no longer documented MSR.
1510                  * Writes are only relevant for old K7 processors,
1511                  * all pre-dating SVM, but a recommended workaround from
1512                  * AMD for these chips. It is possible to speicify the
1513                  * affected processor models on the command line, hence
1514                  * the need to ignore the workaround.
1515                  */
1516                 break;
1517         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1518                 if (kvm_hv_msr_partition_wide(msr)) {
1519                         int r;
1520                         mutex_lock(&vcpu->kvm->lock);
1521                         r = set_msr_hyperv_pw(vcpu, msr, data);
1522                         mutex_unlock(&vcpu->kvm->lock);
1523                         return r;
1524                 } else
1525                         return set_msr_hyperv(vcpu, msr, data);
1526                 break;
1527         default:
1528                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1529                         return xen_hvm_config(vcpu, data);
1530                 if (!ignore_msrs) {
1531                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1532                                 msr, data);
1533                         return 1;
1534                 } else {
1535                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1536                                 msr, data);
1537                         break;
1538                 }
1539         }
1540         return 0;
1541 }
1542 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1543
1544
1545 /*
1546  * Reads an msr value (of 'msr_index') into 'pdata'.
1547  * Returns 0 on success, non-0 otherwise.
1548  * Assumes vcpu_load() was already called.
1549  */
1550 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1551 {
1552         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1553 }
1554
1555 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1556 {
1557         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1558
1559         if (!msr_mtrr_valid(msr))
1560                 return 1;
1561
1562         if (msr == MSR_MTRRdefType)
1563                 *pdata = vcpu->arch.mtrr_state.def_type +
1564                          (vcpu->arch.mtrr_state.enabled << 10);
1565         else if (msr == MSR_MTRRfix64K_00000)
1566                 *pdata = p[0];
1567         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1568                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1569         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1570                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1571         else if (msr == MSR_IA32_CR_PAT)
1572                 *pdata = vcpu->arch.pat;
1573         else {  /* Variable MTRRs */
1574                 int idx, is_mtrr_mask;
1575                 u64 *pt;
1576
1577                 idx = (msr - 0x200) / 2;
1578                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1579                 if (!is_mtrr_mask)
1580                         pt =
1581                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1582                 else
1583                         pt =
1584                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1585                 *pdata = *pt;
1586         }
1587
1588         return 0;
1589 }
1590
1591 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1592 {
1593         u64 data;
1594         u64 mcg_cap = vcpu->arch.mcg_cap;
1595         unsigned bank_num = mcg_cap & 0xff;
1596
1597         switch (msr) {
1598         case MSR_IA32_P5_MC_ADDR:
1599         case MSR_IA32_P5_MC_TYPE:
1600                 data = 0;
1601                 break;
1602         case MSR_IA32_MCG_CAP:
1603                 data = vcpu->arch.mcg_cap;
1604                 break;
1605         case MSR_IA32_MCG_CTL:
1606                 if (!(mcg_cap & MCG_CTL_P))
1607                         return 1;
1608                 data = vcpu->arch.mcg_ctl;
1609                 break;
1610         case MSR_IA32_MCG_STATUS:
1611                 data = vcpu->arch.mcg_status;
1612                 break;
1613         default:
1614                 if (msr >= MSR_IA32_MC0_CTL &&
1615                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1616                         u32 offset = msr - MSR_IA32_MC0_CTL;
1617                         data = vcpu->arch.mce_banks[offset];
1618                         break;
1619                 }
1620                 return 1;
1621         }
1622         *pdata = data;
1623         return 0;
1624 }
1625
1626 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1627 {
1628         u64 data = 0;
1629         struct kvm *kvm = vcpu->kvm;
1630
1631         switch (msr) {
1632         case HV_X64_MSR_GUEST_OS_ID:
1633                 data = kvm->arch.hv_guest_os_id;
1634                 break;
1635         case HV_X64_MSR_HYPERCALL:
1636                 data = kvm->arch.hv_hypercall;
1637                 break;
1638         default:
1639                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1640                 return 1;
1641         }
1642
1643         *pdata = data;
1644         return 0;
1645 }
1646
1647 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1648 {
1649         u64 data = 0;
1650
1651         switch (msr) {
1652         case HV_X64_MSR_VP_INDEX: {
1653                 int r;
1654                 struct kvm_vcpu *v;
1655                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1656                         if (v == vcpu)
1657                                 data = r;
1658                 break;
1659         }
1660         case HV_X64_MSR_EOI:
1661                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1662         case HV_X64_MSR_ICR:
1663                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1664         case HV_X64_MSR_TPR:
1665                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1666         default:
1667                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1668                 return 1;
1669         }
1670         *pdata = data;
1671         return 0;
1672 }
1673
1674 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1675 {
1676         u64 data;
1677
1678         switch (msr) {
1679         case MSR_IA32_PLATFORM_ID:
1680         case MSR_IA32_UCODE_REV:
1681         case MSR_IA32_EBL_CR_POWERON:
1682         case MSR_IA32_DEBUGCTLMSR:
1683         case MSR_IA32_LASTBRANCHFROMIP:
1684         case MSR_IA32_LASTBRANCHTOIP:
1685         case MSR_IA32_LASTINTFROMIP:
1686         case MSR_IA32_LASTINTTOIP:
1687         case MSR_K8_SYSCFG:
1688         case MSR_K7_HWCR:
1689         case MSR_VM_HSAVE_PA:
1690         case MSR_P6_PERFCTR0:
1691         case MSR_P6_PERFCTR1:
1692         case MSR_P6_EVNTSEL0:
1693         case MSR_P6_EVNTSEL1:
1694         case MSR_K7_EVNTSEL0:
1695         case MSR_K7_PERFCTR0:
1696         case MSR_K8_INT_PENDING_MSG:
1697         case MSR_AMD64_NB_CFG:
1698         case MSR_FAM10H_MMIO_CONF_BASE:
1699                 data = 0;
1700                 break;
1701         case MSR_MTRRcap:
1702                 data = 0x500 | KVM_NR_VAR_MTRR;
1703                 break;
1704         case 0x200 ... 0x2ff:
1705                 return get_msr_mtrr(vcpu, msr, pdata);
1706         case 0xcd: /* fsb frequency */
1707                 data = 3;
1708                 break;
1709                 /*
1710                  * MSR_EBC_FREQUENCY_ID
1711                  * Conservative value valid for even the basic CPU models.
1712                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1713                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1714                  * and 266MHz for model 3, or 4. Set Core Clock
1715                  * Frequency to System Bus Frequency Ratio to 1 (bits
1716                  * 31:24) even though these are only valid for CPU
1717                  * models > 2, however guests may end up dividing or
1718                  * multiplying by zero otherwise.
1719                  */
1720         case MSR_EBC_FREQUENCY_ID:
1721                 data = 1 << 24;
1722                 break;
1723         case MSR_IA32_APICBASE:
1724                 data = kvm_get_apic_base(vcpu);
1725                 break;
1726         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1727                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1728                 break;
1729         case MSR_IA32_MISC_ENABLE:
1730                 data = vcpu->arch.ia32_misc_enable_msr;
1731                 break;
1732         case MSR_IA32_PERF_STATUS:
1733                 /* TSC increment by tick */
1734                 data = 1000ULL;
1735                 /* CPU multiplier */
1736                 data |= (((uint64_t)4ULL) << 40);
1737                 break;
1738         case MSR_EFER:
1739                 data = vcpu->arch.efer;
1740                 break;
1741         case MSR_KVM_WALL_CLOCK:
1742         case MSR_KVM_WALL_CLOCK_NEW:
1743                 data = vcpu->kvm->arch.wall_clock;
1744                 break;
1745         case MSR_KVM_SYSTEM_TIME:
1746         case MSR_KVM_SYSTEM_TIME_NEW:
1747                 data = vcpu->arch.time;
1748                 break;
1749         case MSR_IA32_P5_MC_ADDR:
1750         case MSR_IA32_P5_MC_TYPE:
1751         case MSR_IA32_MCG_CAP:
1752         case MSR_IA32_MCG_CTL:
1753         case MSR_IA32_MCG_STATUS:
1754         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1755                 return get_msr_mce(vcpu, msr, pdata);
1756         case MSR_K7_CLK_CTL:
1757                 /*
1758                  * Provide expected ramp-up count for K7. All other
1759                  * are set to zero, indicating minimum divisors for
1760                  * every field.
1761                  *
1762                  * This prevents guest kernels on AMD host with CPU
1763                  * type 6, model 8 and higher from exploding due to
1764                  * the rdmsr failing.
1765                  */
1766                 data = 0x20000000;
1767                 break;
1768         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1769                 if (kvm_hv_msr_partition_wide(msr)) {
1770                         int r;
1771                         mutex_lock(&vcpu->kvm->lock);
1772                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1773                         mutex_unlock(&vcpu->kvm->lock);
1774                         return r;
1775                 } else
1776                         return get_msr_hyperv(vcpu, msr, pdata);
1777                 break;
1778         default:
1779                 if (!ignore_msrs) {
1780                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1781                         return 1;
1782                 } else {
1783                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1784                         data = 0;
1785                 }
1786                 break;
1787         }
1788         *pdata = data;
1789         return 0;
1790 }
1791 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1792
1793 /*
1794  * Read or write a bunch of msrs. All parameters are kernel addresses.
1795  *
1796  * @return number of msrs set successfully.
1797  */
1798 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1799                     struct kvm_msr_entry *entries,
1800                     int (*do_msr)(struct kvm_vcpu *vcpu,
1801                                   unsigned index, u64 *data))
1802 {
1803         int i, idx;
1804
1805         idx = srcu_read_lock(&vcpu->kvm->srcu);
1806         for (i = 0; i < msrs->nmsrs; ++i)
1807                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1808                         break;
1809         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1810
1811         return i;
1812 }
1813
1814 /*
1815  * Read or write a bunch of msrs. Parameters are user addresses.
1816  *
1817  * @return number of msrs set successfully.
1818  */
1819 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1820                   int (*do_msr)(struct kvm_vcpu *vcpu,
1821                                 unsigned index, u64 *data),
1822                   int writeback)
1823 {
1824         struct kvm_msrs msrs;
1825         struct kvm_msr_entry *entries;
1826         int r, n;
1827         unsigned size;
1828
1829         r = -EFAULT;
1830         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1831                 goto out;
1832
1833         r = -E2BIG;
1834         if (msrs.nmsrs >= MAX_IO_MSRS)
1835                 goto out;
1836
1837         r = -ENOMEM;
1838         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1839         entries = kmalloc(size, GFP_KERNEL);
1840         if (!entries)
1841                 goto out;
1842
1843         r = -EFAULT;
1844         if (copy_from_user(entries, user_msrs->entries, size))
1845                 goto out_free;
1846
1847         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1848         if (r < 0)
1849                 goto out_free;
1850
1851         r = -EFAULT;
1852         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1853                 goto out_free;
1854
1855         r = n;
1856
1857 out_free:
1858         kfree(entries);
1859 out:
1860         return r;
1861 }
1862
1863 int kvm_dev_ioctl_check_extension(long ext)
1864 {
1865         int r;
1866
1867         switch (ext) {
1868         case KVM_CAP_IRQCHIP:
1869         case KVM_CAP_HLT:
1870         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1871         case KVM_CAP_SET_TSS_ADDR:
1872         case KVM_CAP_EXT_CPUID:
1873         case KVM_CAP_CLOCKSOURCE:
1874         case KVM_CAP_PIT:
1875         case KVM_CAP_NOP_IO_DELAY:
1876         case KVM_CAP_MP_STATE:
1877         case KVM_CAP_SYNC_MMU:
1878         case KVM_CAP_REINJECT_CONTROL:
1879         case KVM_CAP_IRQ_INJECT_STATUS:
1880         case KVM_CAP_ASSIGN_DEV_IRQ:
1881         case KVM_CAP_IRQFD:
1882         case KVM_CAP_IOEVENTFD:
1883         case KVM_CAP_PIT2:
1884         case KVM_CAP_PIT_STATE2:
1885         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1886         case KVM_CAP_XEN_HVM:
1887         case KVM_CAP_ADJUST_CLOCK:
1888         case KVM_CAP_VCPU_EVENTS:
1889         case KVM_CAP_HYPERV:
1890         case KVM_CAP_HYPERV_VAPIC:
1891         case KVM_CAP_HYPERV_SPIN:
1892         case KVM_CAP_PCI_SEGMENT:
1893         case KVM_CAP_DEBUGREGS:
1894         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1895         case KVM_CAP_XSAVE:
1896                 r = 1;
1897                 break;
1898         case KVM_CAP_COALESCED_MMIO:
1899                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1900                 break;
1901         case KVM_CAP_VAPIC:
1902                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1903                 break;
1904         case KVM_CAP_NR_VCPUS:
1905                 r = KVM_MAX_VCPUS;
1906                 break;
1907         case KVM_CAP_NR_MEMSLOTS:
1908                 r = KVM_MEMORY_SLOTS;
1909                 break;
1910         case KVM_CAP_PV_MMU:    /* obsolete */
1911                 r = 0;
1912                 break;
1913         case KVM_CAP_IOMMU:
1914                 r = iommu_found();
1915                 break;
1916         case KVM_CAP_MCE:
1917                 r = KVM_MAX_MCE_BANKS;
1918                 break;
1919         case KVM_CAP_XCRS:
1920                 r = cpu_has_xsave;
1921                 break;
1922         default:
1923                 r = 0;
1924                 break;
1925         }
1926         return r;
1927
1928 }
1929
1930 long kvm_arch_dev_ioctl(struct file *filp,
1931                         unsigned int ioctl, unsigned long arg)
1932 {
1933         void __user *argp = (void __user *)arg;
1934         long r;
1935
1936         switch (ioctl) {
1937         case KVM_GET_MSR_INDEX_LIST: {
1938                 struct kvm_msr_list __user *user_msr_list = argp;
1939                 struct kvm_msr_list msr_list;
1940                 unsigned n;
1941
1942                 r = -EFAULT;
1943                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1944                         goto out;
1945                 n = msr_list.nmsrs;
1946                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1947                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1948                         goto out;
1949                 r = -E2BIG;
1950                 if (n < msr_list.nmsrs)
1951                         goto out;
1952                 r = -EFAULT;
1953                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1954                                  num_msrs_to_save * sizeof(u32)))
1955                         goto out;
1956                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1957                                  &emulated_msrs,
1958                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1959                         goto out;
1960                 r = 0;
1961                 break;
1962         }
1963         case KVM_GET_SUPPORTED_CPUID: {
1964                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1965                 struct kvm_cpuid2 cpuid;
1966
1967                 r = -EFAULT;
1968                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1969                         goto out;
1970                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1971                                                       cpuid_arg->entries);
1972                 if (r)
1973                         goto out;
1974
1975                 r = -EFAULT;
1976                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1977                         goto out;
1978                 r = 0;
1979                 break;
1980         }
1981         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1982                 u64 mce_cap;
1983
1984                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1985                 r = -EFAULT;
1986                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1987                         goto out;
1988                 r = 0;
1989                 break;
1990         }
1991         default:
1992                 r = -EINVAL;
1993         }
1994 out:
1995         return r;
1996 }
1997
1998 static void wbinvd_ipi(void *garbage)
1999 {
2000         wbinvd();
2001 }
2002
2003 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2004 {
2005         return vcpu->kvm->arch.iommu_domain &&
2006                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2007 }
2008
2009 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2010 {
2011         /* Address WBINVD may be executed by guest */
2012         if (need_emulate_wbinvd(vcpu)) {
2013                 if (kvm_x86_ops->has_wbinvd_exit())
2014                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2015                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2016                         smp_call_function_single(vcpu->cpu,
2017                                         wbinvd_ipi, NULL, 1);
2018         }
2019
2020         kvm_x86_ops->vcpu_load(vcpu, cpu);
2021         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2022                 /* Make sure TSC doesn't go backwards */
2023                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2024                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2025                 if (tsc_delta < 0)
2026                         mark_tsc_unstable("KVM discovered backwards TSC");
2027                 if (check_tsc_unstable())
2028                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2029                 kvm_migrate_timers(vcpu);
2030                 vcpu->cpu = cpu;
2031         }
2032 }
2033
2034 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2035 {
2036         kvm_x86_ops->vcpu_put(vcpu);
2037         kvm_put_guest_fpu(vcpu);
2038         vcpu->arch.last_host_tsc = native_read_tsc();
2039 }
2040
2041 static int is_efer_nx(void)
2042 {
2043         unsigned long long efer = 0;
2044
2045         rdmsrl_safe(MSR_EFER, &efer);
2046         return efer & EFER_NX;
2047 }
2048
2049 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2050 {
2051         int i;
2052         struct kvm_cpuid_entry2 *e, *entry;
2053
2054         entry = NULL;
2055         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2056                 e = &vcpu->arch.cpuid_entries[i];
2057                 if (e->function == 0x80000001) {
2058                         entry = e;
2059                         break;
2060                 }
2061         }
2062         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2063                 entry->edx &= ~(1 << 20);
2064                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2065         }
2066 }
2067
2068 /* when an old userspace process fills a new kernel module */
2069 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2070                                     struct kvm_cpuid *cpuid,
2071                                     struct kvm_cpuid_entry __user *entries)
2072 {
2073         int r, i;
2074         struct kvm_cpuid_entry *cpuid_entries;
2075
2076         r = -E2BIG;
2077         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2078                 goto out;
2079         r = -ENOMEM;
2080         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2081         if (!cpuid_entries)
2082                 goto out;
2083         r = -EFAULT;
2084         if (copy_from_user(cpuid_entries, entries,
2085                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2086                 goto out_free;
2087         for (i = 0; i < cpuid->nent; i++) {
2088                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2089                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2090                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2091                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2092                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2093                 vcpu->arch.cpuid_entries[i].index = 0;
2094                 vcpu->arch.cpuid_entries[i].flags = 0;
2095                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2096                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2097                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2098         }
2099         vcpu->arch.cpuid_nent = cpuid->nent;
2100         cpuid_fix_nx_cap(vcpu);
2101         r = 0;
2102         kvm_apic_set_version(vcpu);
2103         kvm_x86_ops->cpuid_update(vcpu);
2104         update_cpuid(vcpu);
2105
2106 out_free:
2107         vfree(cpuid_entries);
2108 out:
2109         return r;
2110 }
2111
2112 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2113                                      struct kvm_cpuid2 *cpuid,
2114                                      struct kvm_cpuid_entry2 __user *entries)
2115 {
2116         int r;
2117
2118         r = -E2BIG;
2119         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2120                 goto out;
2121         r = -EFAULT;
2122         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2123                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2124                 goto out;
2125         vcpu->arch.cpuid_nent = cpuid->nent;
2126         kvm_apic_set_version(vcpu);
2127         kvm_x86_ops->cpuid_update(vcpu);
2128         update_cpuid(vcpu);
2129         return 0;
2130
2131 out:
2132         return r;
2133 }
2134
2135 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2136                                      struct kvm_cpuid2 *cpuid,
2137                                      struct kvm_cpuid_entry2 __user *entries)
2138 {
2139         int r;
2140
2141         r = -E2BIG;
2142         if (cpuid->nent < vcpu->arch.cpuid_nent)
2143                 goto out;
2144         r = -EFAULT;
2145         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2146                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2147                 goto out;
2148         return 0;
2149
2150 out:
2151         cpuid->nent = vcpu->arch.cpuid_nent;
2152         return r;
2153 }
2154
2155 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2156                            u32 index)
2157 {
2158         entry->function = function;
2159         entry->index = index;
2160         cpuid_count(entry->function, entry->index,
2161                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2162         entry->flags = 0;
2163 }
2164
2165 #define F(x) bit(X86_FEATURE_##x)
2166
2167 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2168                          u32 index, int *nent, int maxnent)
2169 {
2170         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2171 #ifdef CONFIG_X86_64
2172         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2173                                 ? F(GBPAGES) : 0;
2174         unsigned f_lm = F(LM);
2175 #else
2176         unsigned f_gbpages = 0;
2177         unsigned f_lm = 0;
2178 #endif
2179         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2180
2181         /* cpuid 1.edx */
2182         const u32 kvm_supported_word0_x86_features =
2183                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2184                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2185                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2186                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2187                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2188                 0 /* Reserved, DS, ACPI */ | F(MMX) |
2189                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2190                 0 /* HTT, TM, Reserved, PBE */;
2191         /* cpuid 0x80000001.edx */
2192         const u32 kvm_supported_word1_x86_features =
2193                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2194                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2195                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2196                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2197                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2198                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2199                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2200                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2201         /* cpuid 1.ecx */
2202         const u32 kvm_supported_word4_x86_features =
2203                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2204                 0 /* DS-CPL, VMX, SMX, EST */ |
2205                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2206                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2207                 0 /* Reserved, DCA */ | F(XMM4_1) |
2208                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2209                 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX);
2210         /* cpuid 0x80000001.ecx */
2211         const u32 kvm_supported_word6_x86_features =
2212                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2213                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2214                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
2215                 0 /* SKINIT */ | 0 /* WDT */;
2216
2217         /* all calls to cpuid_count() should be made on the same cpu */
2218         get_cpu();
2219         do_cpuid_1_ent(entry, function, index);
2220         ++*nent;
2221
2222         switch (function) {
2223         case 0:
2224                 entry->eax = min(entry->eax, (u32)0xd);
2225                 break;
2226         case 1:
2227                 entry->edx &= kvm_supported_word0_x86_features;
2228                 entry->ecx &= kvm_supported_word4_x86_features;
2229                 /* we support x2apic emulation even if host does not support
2230                  * it since we emulate x2apic in software */
2231                 entry->ecx |= F(X2APIC);
2232                 break;
2233         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2234          * may return different values. This forces us to get_cpu() before
2235          * issuing the first command, and also to emulate this annoying behavior
2236          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2237         case 2: {
2238                 int t, times = entry->eax & 0xff;
2239
2240                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2241                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2242                 for (t = 1; t < times && *nent < maxnent; ++t) {
2243                         do_cpuid_1_ent(&entry[t], function, 0);
2244                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2245                         ++*nent;
2246                 }
2247                 break;
2248         }
2249         /* function 4 and 0xb have additional index. */
2250         case 4: {
2251                 int i, cache_type;
2252
2253                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2254                 /* read more entries until cache_type is zero */
2255                 for (i = 1; *nent < maxnent; ++i) {
2256                         cache_type = entry[i - 1].eax & 0x1f;
2257                         if (!cache_type)
2258                                 break;
2259                         do_cpuid_1_ent(&entry[i], function, i);
2260                         entry[i].flags |=
2261                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2262                         ++*nent;
2263                 }
2264                 break;
2265         }
2266         case 0xb: {
2267                 int i, level_type;
2268
2269                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2270                 /* read more entries until level_type is zero */
2271                 for (i = 1; *nent < maxnent; ++i) {
2272                         level_type = entry[i - 1].ecx & 0xff00;
2273                         if (!level_type)
2274                                 break;
2275                         do_cpuid_1_ent(&entry[i], function, i);
2276                         entry[i].flags |=
2277                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2278                         ++*nent;
2279                 }
2280                 break;
2281         }
2282         case 0xd: {
2283                 int i;
2284
2285                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2286                 for (i = 1; *nent < maxnent; ++i) {
2287                         if (entry[i - 1].eax == 0 && i != 2)
2288                                 break;
2289                         do_cpuid_1_ent(&entry[i], function, i);
2290                         entry[i].flags |=
2291                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2292                         ++*nent;
2293                 }
2294                 break;
2295         }
2296         case KVM_CPUID_SIGNATURE: {
2297                 char signature[12] = "KVMKVMKVM\0\0";
2298                 u32 *sigptr = (u32 *)signature;
2299                 entry->eax = 0;
2300                 entry->ebx = sigptr[0];
2301                 entry->ecx = sigptr[1];
2302                 entry->edx = sigptr[2];
2303                 break;
2304         }
2305         case KVM_CPUID_FEATURES:
2306                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2307                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2308                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2309                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2310                 entry->ebx = 0;
2311                 entry->ecx = 0;
2312                 entry->edx = 0;
2313                 break;
2314         case 0x80000000:
2315                 entry->eax = min(entry->eax, 0x8000001a);
2316                 break;
2317         case 0x80000001:
2318                 entry->edx &= kvm_supported_word1_x86_features;
2319                 entry->ecx &= kvm_supported_word6_x86_features;
2320                 break;
2321         }
2322
2323         kvm_x86_ops->set_supported_cpuid(function, entry);
2324
2325         put_cpu();
2326 }
2327
2328 #undef F
2329
2330 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2331                                      struct kvm_cpuid_entry2 __user *entries)
2332 {
2333         struct kvm_cpuid_entry2 *cpuid_entries;
2334         int limit, nent = 0, r = -E2BIG;
2335         u32 func;
2336
2337         if (cpuid->nent < 1)
2338                 goto out;
2339         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2340                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2341         r = -ENOMEM;
2342         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2343         if (!cpuid_entries)
2344                 goto out;
2345
2346         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2347         limit = cpuid_entries[0].eax;
2348         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2349                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2350                              &nent, cpuid->nent);
2351         r = -E2BIG;
2352         if (nent >= cpuid->nent)
2353                 goto out_free;
2354
2355         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2356         limit = cpuid_entries[nent - 1].eax;
2357         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2358                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2359                              &nent, cpuid->nent);
2360
2361
2362
2363         r = -E2BIG;
2364         if (nent >= cpuid->nent)
2365                 goto out_free;
2366
2367         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2368                      cpuid->nent);
2369
2370         r = -E2BIG;
2371         if (nent >= cpuid->nent)
2372                 goto out_free;
2373
2374         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2375                      cpuid->nent);
2376
2377         r = -E2BIG;
2378         if (nent >= cpuid->nent)
2379                 goto out_free;
2380
2381         r = -EFAULT;
2382         if (copy_to_user(entries, cpuid_entries,
2383                          nent * sizeof(struct kvm_cpuid_entry2)))
2384                 goto out_free;
2385         cpuid->nent = nent;
2386         r = 0;
2387
2388 out_free:
2389         vfree(cpuid_entries);
2390 out:
2391         return r;
2392 }
2393
2394 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2395                                     struct kvm_lapic_state *s)
2396 {
2397         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2398
2399         return 0;
2400 }
2401
2402 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2403                                     struct kvm_lapic_state *s)
2404 {
2405         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2406         kvm_apic_post_state_restore(vcpu);
2407         update_cr8_intercept(vcpu);
2408
2409         return 0;
2410 }
2411
2412 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2413                                     struct kvm_interrupt *irq)
2414 {
2415         if (irq->irq < 0 || irq->irq >= 256)
2416                 return -EINVAL;
2417         if (irqchip_in_kernel(vcpu->kvm))
2418                 return -ENXIO;
2419
2420         kvm_queue_interrupt(vcpu, irq->irq, false);
2421
2422         return 0;
2423 }
2424
2425 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2426 {
2427         kvm_inject_nmi(vcpu);
2428
2429         return 0;
2430 }
2431
2432 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2433                                            struct kvm_tpr_access_ctl *tac)
2434 {
2435         if (tac->flags)
2436                 return -EINVAL;
2437         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2438         return 0;
2439 }
2440
2441 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2442                                         u64 mcg_cap)
2443 {
2444         int r;
2445         unsigned bank_num = mcg_cap & 0xff, bank;
2446
2447         r = -EINVAL;
2448         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2449                 goto out;
2450         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2451                 goto out;
2452         r = 0;
2453         vcpu->arch.mcg_cap = mcg_cap;
2454         /* Init IA32_MCG_CTL to all 1s */
2455         if (mcg_cap & MCG_CTL_P)
2456                 vcpu->arch.mcg_ctl = ~(u64)0;
2457         /* Init IA32_MCi_CTL to all 1s */
2458         for (bank = 0; bank < bank_num; bank++)
2459                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2460 out:
2461         return r;
2462 }
2463
2464 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2465                                       struct kvm_x86_mce *mce)
2466 {
2467         u64 mcg_cap = vcpu->arch.mcg_cap;
2468         unsigned bank_num = mcg_cap & 0xff;
2469         u64 *banks = vcpu->arch.mce_banks;
2470
2471         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2472                 return -EINVAL;
2473         /*
2474          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2475          * reporting is disabled
2476          */
2477         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2478             vcpu->arch.mcg_ctl != ~(u64)0)
2479                 return 0;
2480         banks += 4 * mce->bank;
2481         /*
2482          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2483          * reporting is disabled for the bank
2484          */
2485         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2486                 return 0;
2487         if (mce->status & MCI_STATUS_UC) {
2488                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2489                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2490                         printk(KERN_DEBUG "kvm: set_mce: "
2491                                "injects mce exception while "
2492                                "previous one is in progress!\n");
2493                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2494                         return 0;
2495                 }
2496                 if (banks[1] & MCI_STATUS_VAL)
2497                         mce->status |= MCI_STATUS_OVER;
2498                 banks[2] = mce->addr;
2499                 banks[3] = mce->misc;
2500                 vcpu->arch.mcg_status = mce->mcg_status;
2501                 banks[1] = mce->status;
2502                 kvm_queue_exception(vcpu, MC_VECTOR);
2503         } else if (!(banks[1] & MCI_STATUS_VAL)
2504                    || !(banks[1] & MCI_STATUS_UC)) {
2505                 if (banks[1] & MCI_STATUS_VAL)
2506                         mce->status |= MCI_STATUS_OVER;
2507                 banks[2] = mce->addr;
2508                 banks[3] = mce->misc;
2509                 banks[1] = mce->status;
2510         } else
2511                 banks[1] |= MCI_STATUS_OVER;
2512         return 0;
2513 }
2514
2515 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2516                                                struct kvm_vcpu_events *events)
2517 {
2518         events->exception.injected =
2519                 vcpu->arch.exception.pending &&
2520                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2521         events->exception.nr = vcpu->arch.exception.nr;
2522         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2523         events->exception.error_code = vcpu->arch.exception.error_code;
2524
2525         events->interrupt.injected =
2526                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2527         events->interrupt.nr = vcpu->arch.interrupt.nr;
2528         events->interrupt.soft = 0;
2529         events->interrupt.shadow =
2530                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2531                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2532
2533         events->nmi.injected = vcpu->arch.nmi_injected;
2534         events->nmi.pending = vcpu->arch.nmi_pending;
2535         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2536
2537         events->sipi_vector = vcpu->arch.sipi_vector;
2538
2539         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2540                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2541                          | KVM_VCPUEVENT_VALID_SHADOW);
2542 }
2543
2544 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2545                                               struct kvm_vcpu_events *events)
2546 {
2547         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2548                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2549                               | KVM_VCPUEVENT_VALID_SHADOW))
2550                 return -EINVAL;
2551
2552         vcpu->arch.exception.pending = events->exception.injected;
2553         vcpu->arch.exception.nr = events->exception.nr;
2554         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2555         vcpu->arch.exception.error_code = events->exception.error_code;
2556
2557         vcpu->arch.interrupt.pending = events->interrupt.injected;
2558         vcpu->arch.interrupt.nr = events->interrupt.nr;
2559         vcpu->arch.interrupt.soft = events->interrupt.soft;
2560         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2561                 kvm_pic_clear_isr_ack(vcpu->kvm);
2562         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2563                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2564                                                   events->interrupt.shadow);
2565
2566         vcpu->arch.nmi_injected = events->nmi.injected;
2567         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2568                 vcpu->arch.nmi_pending = events->nmi.pending;
2569         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2570
2571         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2572                 vcpu->arch.sipi_vector = events->sipi_vector;
2573
2574         return 0;
2575 }
2576
2577 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2578                                              struct kvm_debugregs *dbgregs)
2579 {
2580         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2581         dbgregs->dr6 = vcpu->arch.dr6;
2582         dbgregs->dr7 = vcpu->arch.dr7;
2583         dbgregs->flags = 0;
2584 }
2585
2586 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2587                                             struct kvm_debugregs *dbgregs)
2588 {
2589         if (dbgregs->flags)
2590                 return -EINVAL;
2591
2592         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2593         vcpu->arch.dr6 = dbgregs->dr6;
2594         vcpu->arch.dr7 = dbgregs->dr7;
2595
2596         return 0;
2597 }
2598
2599 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2600                                          struct kvm_xsave *guest_xsave)
2601 {
2602         if (cpu_has_xsave)
2603                 memcpy(guest_xsave->region,
2604                         &vcpu->arch.guest_fpu.state->xsave,
2605                         xstate_size);
2606         else {
2607                 memcpy(guest_xsave->region,
2608                         &vcpu->arch.guest_fpu.state->fxsave,
2609                         sizeof(struct i387_fxsave_struct));
2610                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2611                         XSTATE_FPSSE;
2612         }
2613 }
2614
2615 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2616                                         struct kvm_xsave *guest_xsave)
2617 {
2618         u64 xstate_bv =
2619                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2620
2621         if (cpu_has_xsave)
2622                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2623                         guest_xsave->region, xstate_size);
2624         else {
2625                 if (xstate_bv & ~XSTATE_FPSSE)
2626                         return -EINVAL;
2627                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2628                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2629         }
2630         return 0;
2631 }
2632
2633 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2634                                         struct kvm_xcrs *guest_xcrs)
2635 {
2636         if (!cpu_has_xsave) {
2637                 guest_xcrs->nr_xcrs = 0;
2638                 return;
2639         }
2640
2641         guest_xcrs->nr_xcrs = 1;
2642         guest_xcrs->flags = 0;
2643         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2644         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2645 }
2646
2647 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2648                                        struct kvm_xcrs *guest_xcrs)
2649 {
2650         int i, r = 0;
2651
2652         if (!cpu_has_xsave)
2653                 return -EINVAL;
2654
2655         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2656                 return -EINVAL;
2657
2658         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2659                 /* Only support XCR0 currently */
2660                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2661                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2662                                 guest_xcrs->xcrs[0].value);
2663                         break;
2664                 }
2665         if (r)
2666                 r = -EINVAL;
2667         return r;
2668 }
2669
2670 long kvm_arch_vcpu_ioctl(struct file *filp,
2671                          unsigned int ioctl, unsigned long arg)
2672 {
2673         struct kvm_vcpu *vcpu = filp->private_data;
2674         void __user *argp = (void __user *)arg;
2675         int r;
2676         union {
2677                 struct kvm_lapic_state *lapic;
2678                 struct kvm_xsave *xsave;
2679                 struct kvm_xcrs *xcrs;
2680                 void *buffer;
2681         } u;
2682
2683         u.buffer = NULL;
2684         switch (ioctl) {
2685         case KVM_GET_LAPIC: {
2686                 r = -EINVAL;
2687                 if (!vcpu->arch.apic)
2688                         goto out;
2689                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2690
2691                 r = -ENOMEM;
2692                 if (!u.lapic)
2693                         goto out;
2694                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2695                 if (r)
2696                         goto out;
2697                 r = -EFAULT;
2698                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2699                         goto out;
2700                 r = 0;
2701                 break;
2702         }
2703         case KVM_SET_LAPIC: {
2704                 r = -EINVAL;
2705                 if (!vcpu->arch.apic)
2706                         goto out;
2707                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2708                 r = -ENOMEM;
2709                 if (!u.lapic)
2710                         goto out;
2711                 r = -EFAULT;
2712                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2713                         goto out;
2714                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2715                 if (r)
2716                         goto out;
2717                 r = 0;
2718                 break;
2719         }
2720         case KVM_INTERRUPT: {
2721                 struct kvm_interrupt irq;
2722
2723                 r = -EFAULT;
2724                 if (copy_from_user(&irq, argp, sizeof irq))
2725                         goto out;
2726                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2727                 if (r)
2728                         goto out;
2729                 r = 0;
2730                 break;
2731         }
2732         case KVM_NMI: {
2733                 r = kvm_vcpu_ioctl_nmi(vcpu);
2734                 if (r)
2735                         goto out;
2736                 r = 0;
2737                 break;
2738         }
2739         case KVM_SET_CPUID: {
2740                 struct kvm_cpuid __user *cpuid_arg = argp;
2741                 struct kvm_cpuid cpuid;
2742
2743                 r = -EFAULT;
2744                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2745                         goto out;
2746                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2747                 if (r)
2748                         goto out;
2749                 break;
2750         }
2751         case KVM_SET_CPUID2: {
2752                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2753                 struct kvm_cpuid2 cpuid;
2754
2755                 r = -EFAULT;
2756                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2757                         goto out;
2758                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2759                                               cpuid_arg->entries);
2760                 if (r)
2761                         goto out;
2762                 break;
2763         }
2764         case KVM_GET_CPUID2: {
2765                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2766                 struct kvm_cpuid2 cpuid;
2767
2768                 r = -EFAULT;
2769                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2770                         goto out;
2771                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2772                                               cpuid_arg->entries);
2773                 if (r)
2774                         goto out;
2775                 r = -EFAULT;
2776                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2777                         goto out;
2778                 r = 0;
2779                 break;
2780         }
2781         case KVM_GET_MSRS:
2782                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2783                 break;
2784         case KVM_SET_MSRS:
2785                 r = msr_io(vcpu, argp, do_set_msr, 0);
2786                 break;
2787         case KVM_TPR_ACCESS_REPORTING: {
2788                 struct kvm_tpr_access_ctl tac;
2789
2790                 r = -EFAULT;
2791                 if (copy_from_user(&tac, argp, sizeof tac))
2792                         goto out;
2793                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2794                 if (r)
2795                         goto out;
2796                 r = -EFAULT;
2797                 if (copy_to_user(argp, &tac, sizeof tac))
2798                         goto out;
2799                 r = 0;
2800                 break;
2801         };
2802         case KVM_SET_VAPIC_ADDR: {
2803                 struct kvm_vapic_addr va;
2804
2805                 r = -EINVAL;
2806                 if (!irqchip_in_kernel(vcpu->kvm))
2807                         goto out;
2808                 r = -EFAULT;
2809                 if (copy_from_user(&va, argp, sizeof va))
2810                         goto out;
2811                 r = 0;
2812                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2813                 break;
2814         }
2815         case KVM_X86_SETUP_MCE: {
2816                 u64 mcg_cap;
2817
2818                 r = -EFAULT;
2819                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2820                         goto out;
2821                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2822                 break;
2823         }
2824         case KVM_X86_SET_MCE: {
2825                 struct kvm_x86_mce mce;
2826
2827                 r = -EFAULT;
2828                 if (copy_from_user(&mce, argp, sizeof mce))
2829                         goto out;
2830                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2831                 break;
2832         }
2833         case KVM_GET_VCPU_EVENTS: {
2834                 struct kvm_vcpu_events events;
2835
2836                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2837
2838                 r = -EFAULT;
2839                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2840                         break;
2841                 r = 0;
2842                 break;
2843         }
2844         case KVM_SET_VCPU_EVENTS: {
2845                 struct kvm_vcpu_events events;
2846
2847                 r = -EFAULT;
2848                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2849                         break;
2850
2851                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2852                 break;
2853         }
2854         case KVM_GET_DEBUGREGS: {
2855                 struct kvm_debugregs dbgregs;
2856
2857                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2858
2859                 r = -EFAULT;
2860                 if (copy_to_user(argp, &dbgregs,
2861                                  sizeof(struct kvm_debugregs)))
2862                         break;
2863                 r = 0;
2864                 break;
2865         }
2866         case KVM_SET_DEBUGREGS: {
2867                 struct kvm_debugregs dbgregs;
2868
2869                 r = -EFAULT;
2870                 if (copy_from_user(&dbgregs, argp,
2871                                    sizeof(struct kvm_debugregs)))
2872                         break;
2873
2874                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2875                 break;
2876         }
2877         case KVM_GET_XSAVE: {
2878                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2879                 r = -ENOMEM;
2880                 if (!u.xsave)
2881                         break;
2882
2883                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2884
2885                 r = -EFAULT;
2886                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2887                         break;
2888                 r = 0;
2889                 break;
2890         }
2891         case KVM_SET_XSAVE: {
2892                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2893                 r = -ENOMEM;
2894                 if (!u.xsave)
2895                         break;
2896
2897                 r = -EFAULT;
2898                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2899                         break;
2900
2901                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2902                 break;
2903         }
2904         case KVM_GET_XCRS: {
2905                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2906                 r = -ENOMEM;
2907                 if (!u.xcrs)
2908                         break;
2909
2910                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2911
2912                 r = -EFAULT;
2913                 if (copy_to_user(argp, u.xcrs,
2914                                  sizeof(struct kvm_xcrs)))
2915                         break;
2916                 r = 0;
2917                 break;
2918         }
2919         case KVM_SET_XCRS: {
2920                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2921                 r = -ENOMEM;
2922                 if (!u.xcrs)
2923                         break;
2924
2925                 r = -EFAULT;
2926                 if (copy_from_user(u.xcrs, argp,
2927                                    sizeof(struct kvm_xcrs)))
2928                         break;
2929
2930                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2931                 break;
2932         }
2933         default:
2934                 r = -EINVAL;
2935         }
2936 out:
2937         kfree(u.buffer);
2938         return r;
2939 }
2940
2941 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2942 {
2943         int ret;
2944
2945         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2946                 return -1;
2947         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2948         return ret;
2949 }
2950
2951 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2952                                               u64 ident_addr)
2953 {
2954         kvm->arch.ept_identity_map_addr = ident_addr;
2955         return 0;
2956 }
2957
2958 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2959                                           u32 kvm_nr_mmu_pages)
2960 {
2961         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2962                 return -EINVAL;
2963
2964         mutex_lock(&kvm->slots_lock);
2965         spin_lock(&kvm->mmu_lock);
2966
2967         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2968         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2969
2970         spin_unlock(&kvm->mmu_lock);
2971         mutex_unlock(&kvm->slots_lock);
2972         return 0;
2973 }
2974
2975 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2976 {
2977         return kvm->arch.n_max_mmu_pages;
2978 }
2979
2980 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2981 {
2982         int r;
2983
2984         r = 0;
2985         switch (chip->chip_id) {
2986         case KVM_IRQCHIP_PIC_MASTER:
2987                 memcpy(&chip->chip.pic,
2988                         &pic_irqchip(kvm)->pics[0],
2989                         sizeof(struct kvm_pic_state));
2990                 break;
2991         case KVM_IRQCHIP_PIC_SLAVE:
2992                 memcpy(&chip->chip.pic,
2993                         &pic_irqchip(kvm)->pics[1],
2994                         sizeof(struct kvm_pic_state));
2995                 break;
2996         case KVM_IRQCHIP_IOAPIC:
2997                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2998                 break;
2999         default:
3000                 r = -EINVAL;
3001                 break;
3002         }
3003         return r;
3004 }
3005
3006 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3007 {
3008         int r;
3009
3010         r = 0;
3011         switch (chip->chip_id) {
3012         case KVM_IRQCHIP_PIC_MASTER:
3013                 raw_spin_lock(&pic_irqchip(kvm)->lock);
3014                 memcpy(&pic_irqchip(kvm)->pics[0],
3015                         &chip->chip.pic,
3016                         sizeof(struct kvm_pic_state));
3017                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
3018                 break;
3019         case KVM_IRQCHIP_PIC_SLAVE:
3020                 raw_spin_lock(&pic_irqchip(kvm)->lock);
3021                 memcpy(&pic_irqchip(kvm)->pics[1],
3022                         &chip->chip.pic,
3023                         sizeof(struct kvm_pic_state));
3024                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
3025                 break;
3026         case KVM_IRQCHIP_IOAPIC:
3027                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3028                 break;
3029         default:
3030                 r = -EINVAL;
3031                 break;
3032         }
3033         kvm_pic_update_irq(pic_irqchip(kvm));
3034         return r;
3035 }
3036
3037 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3038 {
3039         int r = 0;
3040
3041         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3042         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3043         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3044         return r;
3045 }
3046
3047 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3048 {
3049         int r = 0;
3050
3051         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3052         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3053         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3054         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3055         return r;
3056 }
3057
3058 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3059 {
3060         int r = 0;
3061
3062         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3063         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3064                 sizeof(ps->channels));
3065         ps->flags = kvm->arch.vpit->pit_state.flags;
3066         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3067         return r;
3068 }
3069
3070 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3071 {
3072         int r = 0, start = 0;
3073         u32 prev_legacy, cur_legacy;
3074         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3075         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3076         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3077         if (!prev_legacy && cur_legacy)
3078                 start = 1;
3079         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3080                sizeof(kvm->arch.vpit->pit_state.channels));
3081         kvm->arch.vpit->pit_state.flags = ps->flags;
3082         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3083         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3084         return r;
3085 }
3086
3087 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3088                                  struct kvm_reinject_control *control)
3089 {
3090         if (!kvm->arch.vpit)
3091                 return -ENXIO;
3092         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3093         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3094         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3095         return 0;
3096 }
3097
3098 /*
3099  * Get (and clear) the dirty memory log for a memory slot.
3100  */
3101 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3102                                       struct kvm_dirty_log *log)
3103 {
3104         int r, i;
3105         struct kvm_memory_slot *memslot;
3106         unsigned long n;
3107         unsigned long is_dirty = 0;
3108
3109         mutex_lock(&kvm->slots_lock);
3110
3111         r = -EINVAL;
3112         if (log->slot >= KVM_MEMORY_SLOTS)
3113                 goto out;
3114
3115         memslot = &kvm->memslots->memslots[log->slot];
3116         r = -ENOENT;
3117         if (!memslot->dirty_bitmap)
3118                 goto out;
3119
3120         n = kvm_dirty_bitmap_bytes(memslot);
3121
3122         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3123                 is_dirty = memslot->dirty_bitmap[i];
3124
3125         /* If nothing is dirty, don't bother messing with page tables. */
3126         if (is_dirty) {
3127                 struct kvm_memslots *slots, *old_slots;
3128                 unsigned long *dirty_bitmap;
3129
3130                 spin_lock(&kvm->mmu_lock);
3131                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3132                 spin_unlock(&kvm->mmu_lock);
3133
3134                 r = -ENOMEM;
3135                 dirty_bitmap = vmalloc(n);
3136                 if (!dirty_bitmap)
3137                         goto out;
3138                 memset(dirty_bitmap, 0, n);
3139
3140                 r = -ENOMEM;
3141                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3142                 if (!slots) {
3143                         vfree(dirty_bitmap);
3144                         goto out;
3145                 }
3146                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3147                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3148
3149                 old_slots = kvm->memslots;
3150                 rcu_assign_pointer(kvm->memslots, slots);
3151                 synchronize_srcu_expedited(&kvm->srcu);
3152                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3153                 kfree(old_slots);
3154
3155                 r = -EFAULT;
3156                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
3157                         vfree(dirty_bitmap);
3158                         goto out;
3159                 }
3160                 vfree(dirty_bitmap);
3161         } else {
3162                 r = -EFAULT;
3163                 if (clear_user(log->dirty_bitmap, n))
3164                         goto out;
3165         }
3166
3167         r = 0;
3168 out:
3169         mutex_unlock(&kvm->slots_lock);
3170         return r;
3171 }
3172
3173 long kvm_arch_vm_ioctl(struct file *filp,
3174                        unsigned int ioctl, unsigned long arg)
3175 {
3176         struct kvm *kvm = filp->private_data;
3177         void __user *argp = (void __user *)arg;
3178         int r = -ENOTTY;
3179         /*
3180          * This union makes it completely explicit to gcc-3.x
3181          * that these two variables' stack usage should be
3182          * combined, not added together.
3183          */
3184         union {
3185                 struct kvm_pit_state ps;
3186                 struct kvm_pit_state2 ps2;
3187                 struct kvm_pit_config pit_config;
3188         } u;
3189
3190         switch (ioctl) {
3191         case KVM_SET_TSS_ADDR:
3192                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3193                 if (r < 0)
3194                         goto out;
3195                 break;
3196         case KVM_SET_IDENTITY_MAP_ADDR: {
3197                 u64 ident_addr;
3198
3199                 r = -EFAULT;
3200                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3201                         goto out;
3202                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3203                 if (r < 0)
3204                         goto out;
3205                 break;
3206         }
3207         case KVM_SET_NR_MMU_PAGES:
3208                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3209                 if (r)
3210                         goto out;
3211                 break;
3212         case KVM_GET_NR_MMU_PAGES:
3213                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3214                 break;
3215         case KVM_CREATE_IRQCHIP: {
3216                 struct kvm_pic *vpic;
3217
3218                 mutex_lock(&kvm->lock);
3219                 r = -EEXIST;
3220                 if (kvm->arch.vpic)
3221                         goto create_irqchip_unlock;
3222                 r = -ENOMEM;
3223                 vpic = kvm_create_pic(kvm);
3224                 if (vpic) {
3225                         r = kvm_ioapic_init(kvm);
3226                         if (r) {
3227                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3228                                                           &vpic->dev);
3229                                 kfree(vpic);
3230                                 goto create_irqchip_unlock;
3231                         }
3232                 } else
3233                         goto create_irqchip_unlock;
3234                 smp_wmb();
3235                 kvm->arch.vpic = vpic;
3236                 smp_wmb();
3237                 r = kvm_setup_default_irq_routing(kvm);
3238                 if (r) {
3239                         mutex_lock(&kvm->irq_lock);
3240                         kvm_ioapic_destroy(kvm);
3241                         kvm_destroy_pic(kvm);
3242                         mutex_unlock(&kvm->irq_lock);
3243                 }
3244         create_irqchip_unlock:
3245                 mutex_unlock(&kvm->lock);
3246                 break;
3247         }
3248         case KVM_CREATE_PIT:
3249                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3250                 goto create_pit;
3251         case KVM_CREATE_PIT2:
3252                 r = -EFAULT;
3253                 if (copy_from_user(&u.pit_config, argp,
3254                                    sizeof(struct kvm_pit_config)))
3255                         goto out;
3256         create_pit:
3257                 mutex_lock(&kvm->slots_lock);
3258                 r = -EEXIST;
3259                 if (kvm->arch.vpit)
3260                         goto create_pit_unlock;
3261                 r = -ENOMEM;
3262                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3263                 if (kvm->arch.vpit)
3264                         r = 0;
3265         create_pit_unlock:
3266                 mutex_unlock(&kvm->slots_lock);
3267                 break;
3268         case KVM_IRQ_LINE_STATUS:
3269         case KVM_IRQ_LINE: {
3270                 struct kvm_irq_level irq_event;
3271
3272                 r = -EFAULT;
3273                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3274                         goto out;
3275                 r = -ENXIO;
3276                 if (irqchip_in_kernel(kvm)) {
3277                         __s32 status;
3278                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3279                                         irq_event.irq, irq_event.level);
3280                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3281                                 r = -EFAULT;
3282                                 irq_event.status = status;
3283                                 if (copy_to_user(argp, &irq_event,
3284                                                         sizeof irq_event))
3285                                         goto out;
3286                         }
3287                         r = 0;
3288                 }
3289                 break;
3290         }
3291         case KVM_GET_IRQCHIP: {
3292                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3293                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3294
3295                 r = -ENOMEM;
3296                 if (!chip)
3297                         goto out;
3298                 r = -EFAULT;
3299                 if (copy_from_user(chip, argp, sizeof *chip))
3300                         goto get_irqchip_out;
3301                 r = -ENXIO;
3302                 if (!irqchip_in_kernel(kvm))
3303                         goto get_irqchip_out;
3304                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3305                 if (r)
3306                         goto get_irqchip_out;
3307                 r = -EFAULT;
3308                 if (copy_to_user(argp, chip, sizeof *chip))
3309                         goto get_irqchip_out;
3310                 r = 0;
3311         get_irqchip_out:
3312                 kfree(chip);
3313                 if (r)
3314                         goto out;
3315                 break;
3316         }
3317         case KVM_SET_IRQCHIP: {
3318                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3319                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3320
3321                 r = -ENOMEM;
3322                 if (!chip)
3323                         goto out;
3324                 r = -EFAULT;
3325                 if (copy_from_user(chip, argp, sizeof *chip))
3326                         goto set_irqchip_out;
3327                 r = -ENXIO;
3328                 if (!irqchip_in_kernel(kvm))
3329                         goto set_irqchip_out;
3330                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3331                 if (r)
3332                         goto set_irqchip_out;
3333                 r = 0;
3334         set_irqchip_out:
3335                 kfree(chip);
3336                 if (r)
3337                         goto out;
3338                 break;
3339         }
3340         case KVM_GET_PIT: {
3341                 r = -EFAULT;
3342                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3343                         goto out;
3344                 r = -ENXIO;
3345                 if (!kvm->arch.vpit)
3346                         goto out;
3347                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3348                 if (r)
3349                         goto out;
3350                 r = -EFAULT;
3351                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3352                         goto out;
3353                 r = 0;
3354                 break;
3355         }
3356         case KVM_SET_PIT: {
3357                 r = -EFAULT;
3358                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3359                         goto out;
3360                 r = -ENXIO;
3361                 if (!kvm->arch.vpit)
3362                         goto out;
3363                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3364                 if (r)
3365                         goto out;
3366                 r = 0;
3367                 break;
3368         }
3369         case KVM_GET_PIT2: {
3370                 r = -ENXIO;
3371                 if (!kvm->arch.vpit)
3372                         goto out;
3373                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3374                 if (r)
3375                         goto out;
3376                 r = -EFAULT;
3377                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3378                         goto out;
3379                 r = 0;
3380                 break;
3381         }
3382         case KVM_SET_PIT2: {
3383                 r = -EFAULT;
3384                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3385                         goto out;
3386                 r = -ENXIO;
3387                 if (!kvm->arch.vpit)
3388                         goto out;
3389                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3390                 if (r)
3391                         goto out;
3392                 r = 0;
3393                 break;
3394         }
3395         case KVM_REINJECT_CONTROL: {
3396                 struct kvm_reinject_control control;
3397                 r =  -EFAULT;
3398                 if (copy_from_user(&control, argp, sizeof(control)))
3399                         goto out;
3400                 r = kvm_vm_ioctl_reinject(kvm, &control);
3401                 if (r)
3402                         goto out;
3403                 r = 0;
3404                 break;
3405         }
3406         case KVM_XEN_HVM_CONFIG: {
3407                 r = -EFAULT;
3408                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3409                                    sizeof(struct kvm_xen_hvm_config)))
3410                         goto out;
3411                 r = -EINVAL;
3412                 if (kvm->arch.xen_hvm_config.flags)
3413                         goto out;
3414                 r = 0;
3415                 break;
3416         }
3417         case KVM_SET_CLOCK: {
3418                 struct kvm_clock_data user_ns;
3419                 u64 now_ns;
3420                 s64 delta;
3421
3422                 r = -EFAULT;
3423                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3424                         goto out;
3425
3426                 r = -EINVAL;
3427                 if (user_ns.flags)
3428                         goto out;
3429
3430                 r = 0;
3431                 now_ns = get_kernel_ns();
3432                 delta = user_ns.clock - now_ns;
3433                 kvm->arch.kvmclock_offset = delta;
3434                 break;
3435         }
3436         case KVM_GET_CLOCK: {
3437                 struct kvm_clock_data user_ns;
3438                 u64 now_ns;
3439
3440                 now_ns = get_kernel_ns();
3441                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3442                 user_ns.flags = 0;
3443
3444                 r = -EFAULT;
3445                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3446                         goto out;
3447                 r = 0;
3448                 break;
3449         }
3450
3451         default:
3452                 ;
3453         }
3454 out:
3455         return r;
3456 }
3457
3458 static void kvm_init_msr_list(void)
3459 {
3460         u32 dummy[2];
3461         unsigned i, j;
3462
3463         /* skip the first msrs in the list. KVM-specific */
3464         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3465                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3466                         continue;
3467                 if (j < i)
3468                         msrs_to_save[j] = msrs_to_save[i];
3469                 j++;
3470         }
3471         num_msrs_to_save = j;
3472 }
3473
3474 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3475                            const void *v)
3476 {
3477         if (vcpu->arch.apic &&
3478             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3479                 return 0;
3480
3481         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3482 }
3483
3484 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3485 {
3486         if (vcpu->arch.apic &&
3487             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3488                 return 0;
3489
3490         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3491 }
3492
3493 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3494                         struct kvm_segment *var, int seg)
3495 {
3496         kvm_x86_ops->set_segment(vcpu, var, seg);
3497 }
3498
3499 void kvm_get_segment(struct kvm_vcpu *vcpu,
3500                      struct kvm_segment *var, int seg)
3501 {
3502         kvm_x86_ops->get_segment(vcpu, var, seg);
3503 }
3504
3505 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3506 {
3507         return gpa;
3508 }
3509
3510 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3511 {
3512         gpa_t t_gpa;
3513         u32 error;
3514
3515         BUG_ON(!mmu_is_nested(vcpu));
3516
3517         /* NPT walks are always user-walks */
3518         access |= PFERR_USER_MASK;
3519         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error);
3520         if (t_gpa == UNMAPPED_GVA)
3521                 vcpu->arch.fault.error_code |= PFERR_NESTED_MASK;
3522
3523         return t_gpa;
3524 }
3525
3526 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3527 {
3528         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3529         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3530 }
3531
3532  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3533 {
3534         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3535         access |= PFERR_FETCH_MASK;
3536         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3537 }
3538
3539 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3540 {
3541         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3542         access |= PFERR_WRITE_MASK;
3543         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3544 }
3545
3546 /* uses this to access any guest's mapped memory without checking CPL */
3547 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3548 {
3549         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
3550 }
3551
3552 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3553                                       struct kvm_vcpu *vcpu, u32 access,
3554                                       u32 *error)
3555 {
3556         void *data = val;
3557         int r = X86EMUL_CONTINUE;
3558
3559         while (bytes) {
3560                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3561                                                             error);
3562                 unsigned offset = addr & (PAGE_SIZE-1);
3563                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3564                 int ret;
3565
3566                 if (gpa == UNMAPPED_GVA) {
3567                         r = X86EMUL_PROPAGATE_FAULT;
3568                         goto out;
3569                 }
3570                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3571                 if (ret < 0) {
3572                         r = X86EMUL_IO_NEEDED;
3573                         goto out;
3574                 }
3575
3576                 bytes -= toread;
3577                 data += toread;
3578                 addr += toread;
3579         }
3580 out:
3581         return r;
3582 }
3583
3584 /* used for instruction fetching */
3585 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3586                                 struct kvm_vcpu *vcpu, u32 *error)
3587 {
3588         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3589         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3590                                           access | PFERR_FETCH_MASK, error);
3591 }
3592
3593 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3594                                struct kvm_vcpu *vcpu, u32 *error)
3595 {
3596         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3597         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3598                                           error);
3599 }
3600
3601 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3602                                struct kvm_vcpu *vcpu, u32 *error)
3603 {
3604         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3605 }
3606
3607 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3608                                        unsigned int bytes,
3609                                        struct kvm_vcpu *vcpu,
3610                                        u32 *error)
3611 {
3612         void *data = val;
3613         int r = X86EMUL_CONTINUE;
3614
3615         while (bytes) {
3616                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3617                                                              PFERR_WRITE_MASK,
3618                                                              error);
3619                 unsigned offset = addr & (PAGE_SIZE-1);
3620                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3621                 int ret;
3622
3623                 if (gpa == UNMAPPED_GVA) {
3624                         r = X86EMUL_PROPAGATE_FAULT;
3625                         goto out;
3626                 }
3627                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3628                 if (ret < 0) {
3629                         r = X86EMUL_IO_NEEDED;
3630                         goto out;
3631                 }
3632
3633                 bytes -= towrite;
3634                 data += towrite;
3635                 addr += towrite;
3636         }
3637 out:
3638         return r;
3639 }
3640
3641 static int emulator_read_emulated(unsigned long addr,
3642                                   void *val,
3643                                   unsigned int bytes,
3644                                   unsigned int *error_code,
3645                                   struct kvm_vcpu *vcpu)
3646 {
3647         gpa_t                 gpa;
3648
3649         if (vcpu->mmio_read_completed) {
3650                 memcpy(val, vcpu->mmio_data, bytes);
3651                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3652                                vcpu->mmio_phys_addr, *(u64 *)val);
3653                 vcpu->mmio_read_completed = 0;
3654                 return X86EMUL_CONTINUE;
3655         }
3656
3657         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3658
3659         if (gpa == UNMAPPED_GVA)
3660                 return X86EMUL_PROPAGATE_FAULT;
3661
3662         /* For APIC access vmexit */
3663         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3664                 goto mmio;
3665
3666         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3667                                 == X86EMUL_CONTINUE)
3668                 return X86EMUL_CONTINUE;
3669
3670 mmio:
3671         /*
3672          * Is this MMIO handled locally?
3673          */
3674         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3675                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3676                 return X86EMUL_CONTINUE;
3677         }
3678
3679         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3680
3681         vcpu->mmio_needed = 1;
3682         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3683         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3684         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3685         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3686
3687         return X86EMUL_IO_NEEDED;
3688 }
3689
3690 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3691                           const void *val, int bytes)
3692 {
3693         int ret;
3694
3695         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3696         if (ret < 0)
3697                 return 0;
3698         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3699         return 1;
3700 }
3701
3702 static int emulator_write_emulated_onepage(unsigned long addr,
3703                                            const void *val,
3704                                            unsigned int bytes,
3705                                            unsigned int *error_code,
3706                                            struct kvm_vcpu *vcpu)
3707 {
3708         gpa_t                 gpa;
3709
3710         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3711
3712         if (gpa == UNMAPPED_GVA)
3713                 return X86EMUL_PROPAGATE_FAULT;
3714
3715         /* For APIC access vmexit */
3716         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3717                 goto mmio;
3718
3719         if (emulator_write_phys(vcpu, gpa, val, bytes))
3720                 return X86EMUL_CONTINUE;
3721
3722 mmio:
3723         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3724         /*
3725          * Is this MMIO handled locally?
3726          */
3727         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3728                 return X86EMUL_CONTINUE;
3729
3730         vcpu->mmio_needed = 1;
3731         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3732         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3733         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3734         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3735         memcpy(vcpu->run->mmio.data, val, bytes);
3736
3737         return X86EMUL_CONTINUE;
3738 }
3739
3740 int emulator_write_emulated(unsigned long addr,
3741                             const void *val,
3742                             unsigned int bytes,
3743                             unsigned int *error_code,
3744                             struct kvm_vcpu *vcpu)
3745 {
3746         /* Crossing a page boundary? */
3747         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3748                 int rc, now;
3749
3750                 now = -addr & ~PAGE_MASK;
3751                 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3752                                                      vcpu);
3753                 if (rc != X86EMUL_CONTINUE)
3754                         return rc;
3755                 addr += now;
3756                 val += now;
3757                 bytes -= now;
3758         }
3759         return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3760                                                vcpu);
3761 }
3762
3763 #define CMPXCHG_TYPE(t, ptr, old, new) \
3764         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3765
3766 #ifdef CONFIG_X86_64
3767 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3768 #else
3769 #  define CMPXCHG64(ptr, old, new) \
3770         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3771 #endif
3772
3773 static int emulator_cmpxchg_emulated(unsigned long addr,
3774                                      const void *old,
3775                                      const void *new,
3776                                      unsigned int bytes,
3777                                      unsigned int *error_code,
3778                                      struct kvm_vcpu *vcpu)
3779 {
3780         gpa_t gpa;
3781         struct page *page;
3782         char *kaddr;
3783         bool exchanged;
3784
3785         /* guests cmpxchg8b have to be emulated atomically */
3786         if (bytes > 8 || (bytes & (bytes - 1)))
3787                 goto emul_write;
3788
3789         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3790
3791         if (gpa == UNMAPPED_GVA ||
3792             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3793                 goto emul_write;
3794
3795         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3796                 goto emul_write;
3797
3798         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3799         if (is_error_page(page)) {
3800                 kvm_release_page_clean(page);
3801                 goto emul_write;
3802         }
3803
3804         kaddr = kmap_atomic(page, KM_USER0);
3805         kaddr += offset_in_page(gpa);
3806         switch (bytes) {
3807         case 1:
3808                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3809                 break;
3810         case 2:
3811                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3812                 break;
3813         case 4:
3814                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3815                 break;
3816         case 8:
3817                 exchanged = CMPXCHG64(kaddr, old, new);
3818                 break;
3819         default:
3820                 BUG();
3821         }
3822         kunmap_atomic(kaddr, KM_USER0);
3823         kvm_release_page_dirty(page);
3824
3825         if (!exchanged)
3826                 return X86EMUL_CMPXCHG_FAILED;
3827
3828         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3829
3830         return X86EMUL_CONTINUE;
3831
3832 emul_write:
3833         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3834
3835         return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3836 }
3837
3838 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3839 {
3840         /* TODO: String I/O for in kernel device */
3841         int r;
3842
3843         if (vcpu->arch.pio.in)
3844                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3845                                     vcpu->arch.pio.size, pd);
3846         else
3847                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3848                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3849                                      pd);
3850         return r;
3851 }
3852
3853
3854 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3855                              unsigned int count, struct kvm_vcpu *vcpu)
3856 {
3857         if (vcpu->arch.pio.count)
3858                 goto data_avail;
3859
3860         trace_kvm_pio(0, port, size, 1);
3861
3862         vcpu->arch.pio.port = port;
3863         vcpu->arch.pio.in = 1;
3864         vcpu->arch.pio.count  = count;
3865         vcpu->arch.pio.size = size;
3866
3867         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3868         data_avail:
3869                 memcpy(val, vcpu->arch.pio_data, size * count);
3870                 vcpu->arch.pio.count = 0;
3871                 return 1;
3872         }
3873
3874         vcpu->run->exit_reason = KVM_EXIT_IO;
3875         vcpu->run->io.direction = KVM_EXIT_IO_IN;
3876         vcpu->run->io.size = size;
3877         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3878         vcpu->run->io.count = count;
3879         vcpu->run->io.port = port;
3880
3881         return 0;
3882 }
3883
3884 static int emulator_pio_out_emulated(int size, unsigned short port,
3885                               const void *val, unsigned int count,
3886                               struct kvm_vcpu *vcpu)
3887 {
3888         trace_kvm_pio(1, port, size, 1);
3889
3890         vcpu->arch.pio.port = port;
3891         vcpu->arch.pio.in = 0;
3892         vcpu->arch.pio.count = count;
3893         vcpu->arch.pio.size = size;
3894
3895         memcpy(vcpu->arch.pio_data, val, size * count);
3896
3897         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3898                 vcpu->arch.pio.count = 0;
3899                 return 1;
3900         }
3901
3902         vcpu->run->exit_reason = KVM_EXIT_IO;
3903         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3904         vcpu->run->io.size = size;
3905         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3906         vcpu->run->io.count = count;
3907         vcpu->run->io.port = port;
3908
3909         return 0;
3910 }
3911
3912 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3913 {
3914         return kvm_x86_ops->get_segment_base(vcpu, seg);
3915 }
3916
3917 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3918 {
3919         kvm_mmu_invlpg(vcpu, address);
3920         return X86EMUL_CONTINUE;
3921 }
3922
3923 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3924 {
3925         if (!need_emulate_wbinvd(vcpu))
3926                 return X86EMUL_CONTINUE;
3927
3928         if (kvm_x86_ops->has_wbinvd_exit()) {
3929                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3930                                 wbinvd_ipi, NULL, 1);
3931                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3932         }
3933         wbinvd();
3934         return X86EMUL_CONTINUE;
3935 }
3936 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3937
3938 int emulate_clts(struct kvm_vcpu *vcpu)
3939 {
3940         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3941         kvm_x86_ops->fpu_activate(vcpu);
3942         return X86EMUL_CONTINUE;
3943 }
3944
3945 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
3946 {
3947         return _kvm_get_dr(vcpu, dr, dest);
3948 }
3949
3950 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
3951 {
3952
3953         return __kvm_set_dr(vcpu, dr, value);
3954 }
3955
3956 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3957 {
3958         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3959 }
3960
3961 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3962 {
3963         unsigned long value;
3964
3965         switch (cr) {
3966         case 0:
3967                 value = kvm_read_cr0(vcpu);
3968                 break;
3969         case 2:
3970                 value = vcpu->arch.cr2;
3971                 break;
3972         case 3:
3973                 value = vcpu->arch.cr3;
3974                 break;
3975         case 4:
3976                 value = kvm_read_cr4(vcpu);
3977                 break;
3978         case 8:
3979                 value = kvm_get_cr8(vcpu);
3980                 break;
3981         default:
3982                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3983                 return 0;
3984         }
3985
3986         return value;
3987 }
3988
3989 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3990 {
3991         int res = 0;
3992
3993         switch (cr) {
3994         case 0:
3995                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3996                 break;
3997         case 2:
3998                 vcpu->arch.cr2 = val;
3999                 break;
4000         case 3:
4001                 res = kvm_set_cr3(vcpu, val);
4002                 break;
4003         case 4:
4004                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4005                 break;
4006         case 8:
4007                 res = __kvm_set_cr8(vcpu, val & 0xfUL);
4008                 break;
4009         default:
4010                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4011                 res = -1;
4012         }
4013
4014         return res;
4015 }
4016
4017 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4018 {
4019         return kvm_x86_ops->get_cpl(vcpu);
4020 }
4021
4022 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4023 {
4024         kvm_x86_ops->get_gdt(vcpu, dt);
4025 }
4026
4027 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4028 {
4029         kvm_x86_ops->get_idt(vcpu, dt);
4030 }
4031
4032 static unsigned long emulator_get_cached_segment_base(int seg,
4033                                                       struct kvm_vcpu *vcpu)
4034 {
4035         return get_segment_base(vcpu, seg);
4036 }
4037
4038 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4039                                            struct kvm_vcpu *vcpu)
4040 {
4041         struct kvm_segment var;
4042
4043         kvm_get_segment(vcpu, &var, seg);
4044
4045         if (var.unusable)
4046                 return false;
4047
4048         if (var.g)
4049                 var.limit >>= 12;
4050         set_desc_limit(desc, var.limit);
4051         set_desc_base(desc, (unsigned long)var.base);
4052         desc->type = var.type;
4053         desc->s = var.s;
4054         desc->dpl = var.dpl;
4055         desc->p = var.present;
4056         desc->avl = var.avl;
4057         desc->l = var.l;
4058         desc->d = var.db;
4059         desc->g = var.g;
4060
4061         return true;
4062 }
4063
4064 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4065                                            struct kvm_vcpu *vcpu)
4066 {
4067         struct kvm_segment var;
4068
4069         /* needed to preserve selector */
4070         kvm_get_segment(vcpu, &var, seg);
4071
4072         var.base = get_desc_base(desc);
4073         var.limit = get_desc_limit(desc);
4074         if (desc->g)
4075                 var.limit = (var.limit << 12) | 0xfff;
4076         var.type = desc->type;
4077         var.present = desc->p;
4078         var.dpl = desc->dpl;
4079         var.db = desc->d;
4080         var.s = desc->s;
4081         var.l = desc->l;
4082         var.g = desc->g;
4083         var.avl = desc->avl;
4084         var.present = desc->p;
4085         var.unusable = !var.present;
4086         var.padding = 0;
4087
4088         kvm_set_segment(vcpu, &var, seg);
4089         return;
4090 }
4091
4092 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4093 {
4094         struct kvm_segment kvm_seg;
4095
4096         kvm_get_segment(vcpu, &kvm_seg, seg);
4097         return kvm_seg.selector;
4098 }
4099
4100 static void emulator_set_segment_selector(u16 sel, int seg,
4101                                           struct kvm_vcpu *vcpu)
4102 {
4103         struct kvm_segment kvm_seg;
4104
4105         kvm_get_segment(vcpu, &kvm_seg, seg);
4106         kvm_seg.selector = sel;
4107         kvm_set_segment(vcpu, &kvm_seg, seg);
4108 }
4109
4110 static struct x86_emulate_ops emulate_ops = {
4111         .read_std            = kvm_read_guest_virt_system,
4112         .write_std           = kvm_write_guest_virt_system,
4113         .fetch               = kvm_fetch_guest_virt,
4114         .read_emulated       = emulator_read_emulated,
4115         .write_emulated      = emulator_write_emulated,
4116         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4117         .pio_in_emulated     = emulator_pio_in_emulated,
4118         .pio_out_emulated    = emulator_pio_out_emulated,
4119         .get_cached_descriptor = emulator_get_cached_descriptor,
4120         .set_cached_descriptor = emulator_set_cached_descriptor,
4121         .get_segment_selector = emulator_get_segment_selector,
4122         .set_segment_selector = emulator_set_segment_selector,
4123         .get_cached_segment_base = emulator_get_cached_segment_base,
4124         .get_gdt             = emulator_get_gdt,
4125         .get_idt             = emulator_get_idt,
4126         .get_cr              = emulator_get_cr,
4127         .set_cr              = emulator_set_cr,
4128         .cpl                 = emulator_get_cpl,
4129         .get_dr              = emulator_get_dr,
4130         .set_dr              = emulator_set_dr,
4131         .set_msr             = kvm_set_msr,
4132         .get_msr             = kvm_get_msr,
4133 };
4134
4135 static void cache_all_regs(struct kvm_vcpu *vcpu)
4136 {
4137         kvm_register_read(vcpu, VCPU_REGS_RAX);
4138         kvm_register_read(vcpu, VCPU_REGS_RSP);
4139         kvm_register_read(vcpu, VCPU_REGS_RIP);
4140         vcpu->arch.regs_dirty = ~0;
4141 }
4142
4143 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4144 {
4145         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4146         /*
4147          * an sti; sti; sequence only disable interrupts for the first
4148          * instruction. So, if the last instruction, be it emulated or
4149          * not, left the system with the INT_STI flag enabled, it
4150          * means that the last instruction is an sti. We should not
4151          * leave the flag on in this case. The same goes for mov ss
4152          */
4153         if (!(int_shadow & mask))
4154                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4155 }
4156
4157 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4158 {
4159         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4160         if (ctxt->exception == PF_VECTOR)
4161                 kvm_propagate_fault(vcpu);
4162         else if (ctxt->error_code_valid)
4163                 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
4164         else
4165                 kvm_queue_exception(vcpu, ctxt->exception);
4166 }
4167
4168 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4169 {
4170         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4171         int cs_db, cs_l;
4172
4173         cache_all_regs(vcpu);
4174
4175         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4176
4177         vcpu->arch.emulate_ctxt.vcpu = vcpu;
4178         vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4179         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4180         vcpu->arch.emulate_ctxt.mode =
4181                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4182                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4183                 ? X86EMUL_MODE_VM86 : cs_l
4184                 ? X86EMUL_MODE_PROT64 : cs_db
4185                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4186         memset(c, 0, sizeof(struct decode_cache));
4187         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4188 }
4189
4190 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4191 {
4192         ++vcpu->stat.insn_emulation_fail;
4193         trace_kvm_emulate_insn_failed(vcpu);
4194         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4195         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4196         vcpu->run->internal.ndata = 0;
4197         kvm_queue_exception(vcpu, UD_VECTOR);
4198         return EMULATE_FAIL;
4199 }
4200
4201 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4202 {
4203         gpa_t gpa;
4204
4205         if (tdp_enabled)
4206                 return false;
4207
4208         /*
4209          * if emulation was due to access to shadowed page table
4210          * and it failed try to unshadow page and re-entetr the
4211          * guest to let CPU execute the instruction.
4212          */
4213         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4214                 return true;
4215
4216         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4217
4218         if (gpa == UNMAPPED_GVA)
4219                 return true; /* let cpu generate fault */
4220
4221         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4222                 return true;
4223
4224         return false;
4225 }
4226
4227 int emulate_instruction(struct kvm_vcpu *vcpu,
4228                         unsigned long cr2,
4229                         u16 error_code,
4230                         int emulation_type)
4231 {
4232         int r;
4233         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4234
4235         kvm_clear_exception_queue(vcpu);
4236         vcpu->arch.mmio_fault_cr2 = cr2;
4237         /*
4238          * TODO: fix emulate.c to use guest_read/write_register
4239          * instead of direct ->regs accesses, can save hundred cycles
4240          * on Intel for instructions that don't read/change RSP, for
4241          * for example.
4242          */
4243         cache_all_regs(vcpu);
4244
4245         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4246                 init_emulate_ctxt(vcpu);
4247                 vcpu->arch.emulate_ctxt.interruptibility = 0;
4248                 vcpu->arch.emulate_ctxt.exception = -1;
4249                 vcpu->arch.emulate_ctxt.perm_ok = false;
4250
4251                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4252                 if (r == X86EMUL_PROPAGATE_FAULT)
4253                         goto done;
4254
4255                 trace_kvm_emulate_insn_start(vcpu);
4256
4257                 /* Only allow emulation of specific instructions on #UD
4258                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
4259                 if (emulation_type & EMULTYPE_TRAP_UD) {
4260                         if (!c->twobyte)
4261                                 return EMULATE_FAIL;
4262                         switch (c->b) {
4263                         case 0x01: /* VMMCALL */
4264                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4265                                         return EMULATE_FAIL;
4266                                 break;
4267                         case 0x34: /* sysenter */
4268                         case 0x35: /* sysexit */
4269                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4270                                         return EMULATE_FAIL;
4271                                 break;
4272                         case 0x05: /* syscall */
4273                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4274                                         return EMULATE_FAIL;
4275                                 break;
4276                         default:
4277                                 return EMULATE_FAIL;
4278                         }
4279
4280                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4281                                 return EMULATE_FAIL;
4282                 }
4283
4284                 ++vcpu->stat.insn_emulation;
4285                 if (r)  {
4286                         if (reexecute_instruction(vcpu, cr2))
4287                                 return EMULATE_DONE;
4288                         if (emulation_type & EMULTYPE_SKIP)
4289                                 return EMULATE_FAIL;
4290                         return handle_emulation_failure(vcpu);
4291                 }
4292         }
4293
4294         if (emulation_type & EMULTYPE_SKIP) {
4295                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4296                 return EMULATE_DONE;
4297         }
4298
4299         /* this is needed for vmware backdor interface to work since it
4300            changes registers values  during IO operation */
4301         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4302
4303 restart:
4304         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4305
4306         if (r == EMULATION_FAILED) {
4307                 if (reexecute_instruction(vcpu, cr2))
4308                         return EMULATE_DONE;
4309
4310                 return handle_emulation_failure(vcpu);
4311         }
4312
4313 done:
4314         if (vcpu->arch.emulate_ctxt.exception >= 0) {
4315                 inject_emulated_exception(vcpu);
4316                 r = EMULATE_DONE;
4317         } else if (vcpu->arch.pio.count) {
4318                 if (!vcpu->arch.pio.in)
4319                         vcpu->arch.pio.count = 0;
4320                 r = EMULATE_DO_MMIO;
4321         } else if (vcpu->mmio_needed) {
4322                 if (vcpu->mmio_is_write)
4323                         vcpu->mmio_needed = 0;
4324                 r = EMULATE_DO_MMIO;
4325         } else if (r == EMULATION_RESTART)
4326                 goto restart;
4327         else
4328                 r = EMULATE_DONE;
4329
4330         toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4331         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4332         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4333         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4334
4335         return r;
4336 }
4337 EXPORT_SYMBOL_GPL(emulate_instruction);
4338
4339 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4340 {
4341         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4342         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4343         /* do not return to emulator after return from userspace */
4344         vcpu->arch.pio.count = 0;
4345         return ret;
4346 }
4347 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4348
4349 static void tsc_bad(void *info)
4350 {
4351         __get_cpu_var(cpu_tsc_khz) = 0;
4352 }
4353
4354 static void tsc_khz_changed(void *data)
4355 {
4356         struct cpufreq_freqs *freq = data;
4357         unsigned long khz = 0;
4358
4359         if (data)
4360                 khz = freq->new;
4361         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4362                 khz = cpufreq_quick_get(raw_smp_processor_id());
4363         if (!khz)
4364                 khz = tsc_khz;
4365         __get_cpu_var(cpu_tsc_khz) = khz;
4366 }
4367
4368 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4369                                      void *data)
4370 {
4371         struct cpufreq_freqs *freq = data;
4372         struct kvm *kvm;
4373         struct kvm_vcpu *vcpu;
4374         int i, send_ipi = 0;
4375
4376         /*
4377          * We allow guests to temporarily run on slowing clocks,
4378          * provided we notify them after, or to run on accelerating
4379          * clocks, provided we notify them before.  Thus time never
4380          * goes backwards.
4381          *
4382          * However, we have a problem.  We can't atomically update
4383          * the frequency of a given CPU from this function; it is
4384          * merely a notifier, which can be called from any CPU.
4385          * Changing the TSC frequency at arbitrary points in time
4386          * requires a recomputation of local variables related to
4387          * the TSC for each VCPU.  We must flag these local variables
4388          * to be updated and be sure the update takes place with the
4389          * new frequency before any guests proceed.
4390          *
4391          * Unfortunately, the combination of hotplug CPU and frequency
4392          * change creates an intractable locking scenario; the order
4393          * of when these callouts happen is undefined with respect to
4394          * CPU hotplug, and they can race with each other.  As such,
4395          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4396          * undefined; you can actually have a CPU frequency change take
4397          * place in between the computation of X and the setting of the
4398          * variable.  To protect against this problem, all updates of
4399          * the per_cpu tsc_khz variable are done in an interrupt
4400          * protected IPI, and all callers wishing to update the value
4401          * must wait for a synchronous IPI to complete (which is trivial
4402          * if the caller is on the CPU already).  This establishes the
4403          * necessary total order on variable updates.
4404          *
4405          * Note that because a guest time update may take place
4406          * anytime after the setting of the VCPU's request bit, the
4407          * correct TSC value must be set before the request.  However,
4408          * to ensure the update actually makes it to any guest which
4409          * starts running in hardware virtualization between the set
4410          * and the acquisition of the spinlock, we must also ping the
4411          * CPU after setting the request bit.
4412          *
4413          */
4414
4415         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4416                 return 0;
4417         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4418                 return 0;
4419
4420         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4421
4422         spin_lock(&kvm_lock);
4423         list_for_each_entry(kvm, &vm_list, vm_list) {
4424                 kvm_for_each_vcpu(i, vcpu, kvm) {
4425                         if (vcpu->cpu != freq->cpu)
4426                                 continue;
4427                         if (!kvm_request_guest_time_update(vcpu))
4428                                 continue;
4429                         if (vcpu->cpu != smp_processor_id())
4430                                 send_ipi = 1;
4431                 }
4432         }
4433         spin_unlock(&kvm_lock);
4434
4435         if (freq->old < freq->new && send_ipi) {
4436                 /*
4437                  * We upscale the frequency.  Must make the guest
4438                  * doesn't see old kvmclock values while running with
4439                  * the new frequency, otherwise we risk the guest sees
4440                  * time go backwards.
4441                  *
4442                  * In case we update the frequency for another cpu
4443                  * (which might be in guest context) send an interrupt
4444                  * to kick the cpu out of guest context.  Next time
4445                  * guest context is entered kvmclock will be updated,
4446                  * so the guest will not see stale values.
4447                  */
4448                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4449         }
4450         return 0;
4451 }
4452
4453 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4454         .notifier_call  = kvmclock_cpufreq_notifier
4455 };
4456
4457 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4458                                         unsigned long action, void *hcpu)
4459 {
4460         unsigned int cpu = (unsigned long)hcpu;
4461
4462         switch (action) {
4463                 case CPU_ONLINE:
4464                 case CPU_DOWN_FAILED:
4465                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4466                         break;
4467                 case CPU_DOWN_PREPARE:
4468                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4469                         break;
4470         }
4471         return NOTIFY_OK;
4472 }
4473
4474 static struct notifier_block kvmclock_cpu_notifier_block = {
4475         .notifier_call  = kvmclock_cpu_notifier,
4476         .priority = -INT_MAX
4477 };
4478
4479 static void kvm_timer_init(void)
4480 {
4481         int cpu;
4482
4483         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4484         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4485                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4486                                           CPUFREQ_TRANSITION_NOTIFIER);
4487         }
4488         for_each_online_cpu(cpu)
4489                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4490 }
4491
4492 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4493
4494 static int kvm_is_in_guest(void)
4495 {
4496         return percpu_read(current_vcpu) != NULL;
4497 }
4498
4499 static int kvm_is_user_mode(void)
4500 {
4501         int user_mode = 3;
4502
4503         if (percpu_read(current_vcpu))
4504                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4505
4506         return user_mode != 0;
4507 }
4508
4509 static unsigned long kvm_get_guest_ip(void)
4510 {
4511         unsigned long ip = 0;
4512
4513         if (percpu_read(current_vcpu))
4514                 ip = kvm_rip_read(percpu_read(current_vcpu));
4515
4516         return ip;
4517 }
4518
4519 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4520         .is_in_guest            = kvm_is_in_guest,
4521         .is_user_mode           = kvm_is_user_mode,
4522         .get_guest_ip           = kvm_get_guest_ip,
4523 };
4524
4525 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4526 {
4527         percpu_write(current_vcpu, vcpu);
4528 }
4529 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4530
4531 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4532 {
4533         percpu_write(current_vcpu, NULL);
4534 }
4535 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4536
4537 int kvm_arch_init(void *opaque)
4538 {
4539         int r;
4540         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4541
4542         if (kvm_x86_ops) {
4543                 printk(KERN_ERR "kvm: already loaded the other module\n");
4544                 r = -EEXIST;
4545                 goto out;
4546         }
4547
4548         if (!ops->cpu_has_kvm_support()) {
4549                 printk(KERN_ERR "kvm: no hardware support\n");
4550                 r = -EOPNOTSUPP;
4551                 goto out;
4552         }
4553         if (ops->disabled_by_bios()) {
4554                 printk(KERN_ERR "kvm: disabled by bios\n");
4555                 r = -EOPNOTSUPP;
4556                 goto out;
4557         }
4558
4559         r = kvm_mmu_module_init();
4560         if (r)
4561                 goto out;
4562
4563         kvm_init_msr_list();
4564
4565         kvm_x86_ops = ops;
4566         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4567         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4568         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4569                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4570
4571         kvm_timer_init();
4572
4573         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4574
4575         if (cpu_has_xsave)
4576                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4577
4578         return 0;
4579
4580 out:
4581         return r;
4582 }
4583
4584 void kvm_arch_exit(void)
4585 {
4586         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4587
4588         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4589                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4590                                             CPUFREQ_TRANSITION_NOTIFIER);
4591         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4592         kvm_x86_ops = NULL;
4593         kvm_mmu_module_exit();
4594 }
4595
4596 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4597 {
4598         ++vcpu->stat.halt_exits;
4599         if (irqchip_in_kernel(vcpu->kvm)) {
4600                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4601                 return 1;
4602         } else {
4603                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4604                 return 0;
4605         }
4606 }
4607 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4608
4609 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4610                            unsigned long a1)
4611 {
4612         if (is_long_mode(vcpu))
4613                 return a0;
4614         else
4615                 return a0 | ((gpa_t)a1 << 32);
4616 }
4617
4618 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4619 {
4620         u64 param, ingpa, outgpa, ret;
4621         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4622         bool fast, longmode;
4623         int cs_db, cs_l;
4624
4625         /*
4626          * hypercall generates UD from non zero cpl and real mode
4627          * per HYPER-V spec
4628          */
4629         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4630                 kvm_queue_exception(vcpu, UD_VECTOR);
4631                 return 0;
4632         }
4633
4634         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4635         longmode = is_long_mode(vcpu) && cs_l == 1;
4636
4637         if (!longmode) {
4638                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4639                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4640                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4641                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4642                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4643                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4644         }
4645 #ifdef CONFIG_X86_64
4646         else {
4647                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4648                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4649                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4650         }
4651 #endif
4652
4653         code = param & 0xffff;
4654         fast = (param >> 16) & 0x1;
4655         rep_cnt = (param >> 32) & 0xfff;
4656         rep_idx = (param >> 48) & 0xfff;
4657
4658         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4659
4660         switch (code) {
4661         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4662                 kvm_vcpu_on_spin(vcpu);
4663                 break;
4664         default:
4665                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4666                 break;
4667         }
4668
4669         ret = res | (((u64)rep_done & 0xfff) << 32);
4670         if (longmode) {
4671                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4672         } else {
4673                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4674                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4675         }
4676
4677         return 1;
4678 }
4679
4680 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4681 {
4682         unsigned long nr, a0, a1, a2, a3, ret;
4683         int r = 1;
4684
4685         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4686                 return kvm_hv_hypercall(vcpu);
4687
4688         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4689         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4690         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4691         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4692         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4693
4694         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4695
4696         if (!is_long_mode(vcpu)) {
4697                 nr &= 0xFFFFFFFF;
4698                 a0 &= 0xFFFFFFFF;
4699                 a1 &= 0xFFFFFFFF;
4700                 a2 &= 0xFFFFFFFF;
4701                 a3 &= 0xFFFFFFFF;
4702         }
4703
4704         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4705                 ret = -KVM_EPERM;
4706                 goto out;
4707         }
4708
4709         switch (nr) {
4710         case KVM_HC_VAPIC_POLL_IRQ:
4711                 ret = 0;
4712                 break;
4713         case KVM_HC_MMU_OP:
4714                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4715                 break;
4716         default:
4717                 ret = -KVM_ENOSYS;
4718                 break;
4719         }
4720 out:
4721         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4722         ++vcpu->stat.hypercalls;
4723         return r;
4724 }
4725 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4726
4727 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4728 {
4729         char instruction[3];
4730         unsigned long rip = kvm_rip_read(vcpu);
4731
4732         /*
4733          * Blow out the MMU to ensure that no other VCPU has an active mapping
4734          * to ensure that the updated hypercall appears atomically across all
4735          * VCPUs.
4736          */
4737         kvm_mmu_zap_all(vcpu->kvm);
4738
4739         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4740
4741         return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4742 }
4743
4744 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4745 {
4746         struct desc_ptr dt = { limit, base };
4747
4748         kvm_x86_ops->set_gdt(vcpu, &dt);
4749 }
4750
4751 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4752 {
4753         struct desc_ptr dt = { limit, base };
4754
4755         kvm_x86_ops->set_idt(vcpu, &dt);
4756 }
4757
4758 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4759 {
4760         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4761         int j, nent = vcpu->arch.cpuid_nent;
4762
4763         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4764         /* when no next entry is found, the current entry[i] is reselected */
4765         for (j = i + 1; ; j = (j + 1) % nent) {
4766                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4767                 if (ej->function == e->function) {
4768                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4769                         return j;
4770                 }
4771         }
4772         return 0; /* silence gcc, even though control never reaches here */
4773 }
4774
4775 /* find an entry with matching function, matching index (if needed), and that
4776  * should be read next (if it's stateful) */
4777 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4778         u32 function, u32 index)
4779 {
4780         if (e->function != function)
4781                 return 0;
4782         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4783                 return 0;
4784         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4785             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4786                 return 0;
4787         return 1;
4788 }
4789
4790 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4791                                               u32 function, u32 index)
4792 {
4793         int i;
4794         struct kvm_cpuid_entry2 *best = NULL;
4795
4796         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4797                 struct kvm_cpuid_entry2 *e;
4798
4799                 e = &vcpu->arch.cpuid_entries[i];
4800                 if (is_matching_cpuid_entry(e, function, index)) {
4801                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4802                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4803                         best = e;
4804                         break;
4805                 }
4806                 /*
4807                  * Both basic or both extended?
4808                  */
4809                 if (((e->function ^ function) & 0x80000000) == 0)
4810                         if (!best || e->function > best->function)
4811                                 best = e;
4812         }
4813         return best;
4814 }
4815 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4816
4817 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4818 {
4819         struct kvm_cpuid_entry2 *best;
4820
4821         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4822         if (!best || best->eax < 0x80000008)
4823                 goto not_found;
4824         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4825         if (best)
4826                 return best->eax & 0xff;
4827 not_found:
4828         return 36;
4829 }
4830
4831 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4832 {
4833         u32 function, index;
4834         struct kvm_cpuid_entry2 *best;
4835
4836         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4837         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4838         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4839         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4840         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4841         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4842         best = kvm_find_cpuid_entry(vcpu, function, index);
4843         if (best) {
4844                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4845                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4846                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4847                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4848         }
4849         kvm_x86_ops->skip_emulated_instruction(vcpu);
4850         trace_kvm_cpuid(function,
4851                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4852                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4853                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4854                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4855 }
4856 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4857
4858 /*
4859  * Check if userspace requested an interrupt window, and that the
4860  * interrupt window is open.
4861  *
4862  * No need to exit to userspace if we already have an interrupt queued.
4863  */
4864 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4865 {
4866         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4867                 vcpu->run->request_interrupt_window &&
4868                 kvm_arch_interrupt_allowed(vcpu));
4869 }
4870
4871 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4872 {
4873         struct kvm_run *kvm_run = vcpu->run;
4874
4875         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4876         kvm_run->cr8 = kvm_get_cr8(vcpu);
4877         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4878         if (irqchip_in_kernel(vcpu->kvm))
4879                 kvm_run->ready_for_interrupt_injection = 1;
4880         else
4881                 kvm_run->ready_for_interrupt_injection =
4882                         kvm_arch_interrupt_allowed(vcpu) &&
4883                         !kvm_cpu_has_interrupt(vcpu) &&
4884                         !kvm_event_needs_reinjection(vcpu);
4885 }
4886
4887 static void vapic_enter(struct kvm_vcpu *vcpu)
4888 {
4889         struct kvm_lapic *apic = vcpu->arch.apic;
4890         struct page *page;
4891
4892         if (!apic || !apic->vapic_addr)
4893                 return;
4894
4895         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4896
4897         vcpu->arch.apic->vapic_page = page;
4898 }
4899
4900 static void vapic_exit(struct kvm_vcpu *vcpu)
4901 {
4902         struct kvm_lapic *apic = vcpu->arch.apic;
4903         int idx;
4904
4905         if (!apic || !apic->vapic_addr)
4906                 return;
4907
4908         idx = srcu_read_lock(&vcpu->kvm->srcu);
4909         kvm_release_page_dirty(apic->vapic_page);
4910         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4911         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4912 }
4913
4914 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4915 {
4916         int max_irr, tpr;
4917
4918         if (!kvm_x86_ops->update_cr8_intercept)
4919                 return;
4920
4921         if (!vcpu->arch.apic)
4922                 return;
4923
4924         if (!vcpu->arch.apic->vapic_addr)
4925                 max_irr = kvm_lapic_find_highest_irr(vcpu);
4926         else
4927                 max_irr = -1;
4928
4929         if (max_irr != -1)
4930                 max_irr >>= 4;
4931
4932         tpr = kvm_lapic_get_cr8(vcpu);
4933
4934         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4935 }
4936
4937 static void inject_pending_event(struct kvm_vcpu *vcpu)
4938 {
4939         /* try to reinject previous events if any */
4940         if (vcpu->arch.exception.pending) {
4941                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4942                                         vcpu->arch.exception.has_error_code,
4943                                         vcpu->arch.exception.error_code);
4944                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4945                                           vcpu->arch.exception.has_error_code,
4946                                           vcpu->arch.exception.error_code,
4947                                           vcpu->arch.exception.reinject);
4948                 return;
4949         }
4950
4951         if (vcpu->arch.nmi_injected) {
4952                 kvm_x86_ops->set_nmi(vcpu);
4953                 return;
4954         }
4955
4956         if (vcpu->arch.interrupt.pending) {
4957                 kvm_x86_ops->set_irq(vcpu);
4958                 return;
4959         }
4960
4961         /* try to inject new event if pending */
4962         if (vcpu->arch.nmi_pending) {
4963                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4964                         vcpu->arch.nmi_pending = false;
4965                         vcpu->arch.nmi_injected = true;
4966                         kvm_x86_ops->set_nmi(vcpu);
4967                 }
4968         } else if (kvm_cpu_has_interrupt(vcpu)) {
4969                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4970                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4971                                             false);
4972                         kvm_x86_ops->set_irq(vcpu);
4973                 }
4974         }
4975 }
4976
4977 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
4978 {
4979         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
4980                         !vcpu->guest_xcr0_loaded) {
4981                 /* kvm_set_xcr() also depends on this */
4982                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
4983                 vcpu->guest_xcr0_loaded = 1;
4984         }
4985 }
4986
4987 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
4988 {
4989         if (vcpu->guest_xcr0_loaded) {
4990                 if (vcpu->arch.xcr0 != host_xcr0)
4991                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
4992                 vcpu->guest_xcr0_loaded = 0;
4993         }
4994 }
4995
4996 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4997 {
4998         int r;
4999         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5000                 vcpu->run->request_interrupt_window;
5001
5002         if (vcpu->requests) {
5003                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5004                         kvm_mmu_unload(vcpu);
5005                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5006                         __kvm_migrate_timers(vcpu);
5007                 if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu)) {
5008                         r = kvm_write_guest_time(vcpu);
5009                         if (unlikely(r))
5010                                 goto out;
5011                 }
5012                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5013                         kvm_mmu_sync_roots(vcpu);
5014                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5015                         kvm_x86_ops->tlb_flush(vcpu);
5016                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5017                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5018                         r = 0;
5019                         goto out;
5020                 }
5021                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5022                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5023                         r = 0;
5024                         goto out;
5025                 }
5026                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5027                         vcpu->fpu_active = 0;
5028                         kvm_x86_ops->fpu_deactivate(vcpu);
5029                 }
5030         }
5031
5032         r = kvm_mmu_reload(vcpu);
5033         if (unlikely(r))
5034                 goto out;
5035
5036         preempt_disable();
5037
5038         kvm_x86_ops->prepare_guest_switch(vcpu);
5039         if (vcpu->fpu_active)
5040                 kvm_load_guest_fpu(vcpu);
5041         kvm_load_guest_xcr0(vcpu);
5042
5043         atomic_set(&vcpu->guest_mode, 1);
5044         smp_wmb();
5045
5046         local_irq_disable();
5047
5048         if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
5049             || need_resched() || signal_pending(current)) {
5050                 atomic_set(&vcpu->guest_mode, 0);
5051                 smp_wmb();
5052                 local_irq_enable();
5053                 preempt_enable();
5054                 r = 1;
5055                 goto out;
5056         }
5057
5058         inject_pending_event(vcpu);
5059
5060         /* enable NMI/IRQ window open exits if needed */
5061         if (vcpu->arch.nmi_pending)
5062                 kvm_x86_ops->enable_nmi_window(vcpu);
5063         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5064                 kvm_x86_ops->enable_irq_window(vcpu);
5065
5066         if (kvm_lapic_enabled(vcpu)) {
5067                 update_cr8_intercept(vcpu);
5068                 kvm_lapic_sync_to_vapic(vcpu);
5069         }
5070
5071         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5072
5073         kvm_guest_enter();
5074
5075         if (unlikely(vcpu->arch.switch_db_regs)) {
5076                 set_debugreg(0, 7);
5077                 set_debugreg(vcpu->arch.eff_db[0], 0);
5078                 set_debugreg(vcpu->arch.eff_db[1], 1);
5079                 set_debugreg(vcpu->arch.eff_db[2], 2);
5080                 set_debugreg(vcpu->arch.eff_db[3], 3);
5081         }
5082
5083         trace_kvm_entry(vcpu->vcpu_id);
5084         kvm_x86_ops->run(vcpu);
5085
5086         /*
5087          * If the guest has used debug registers, at least dr7
5088          * will be disabled while returning to the host.
5089          * If we don't have active breakpoints in the host, we don't
5090          * care about the messed up debug address registers. But if
5091          * we have some of them active, restore the old state.
5092          */
5093         if (hw_breakpoint_active())
5094                 hw_breakpoint_restore();
5095
5096         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5097
5098         atomic_set(&vcpu->guest_mode, 0);
5099         smp_wmb();
5100         local_irq_enable();
5101
5102         ++vcpu->stat.exits;
5103
5104         /*
5105          * We must have an instruction between local_irq_enable() and
5106          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5107          * the interrupt shadow.  The stat.exits increment will do nicely.
5108          * But we need to prevent reordering, hence this barrier():
5109          */
5110         barrier();
5111
5112         kvm_guest_exit();
5113
5114         preempt_enable();
5115
5116         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5117
5118         /*
5119          * Profile KVM exit RIPs:
5120          */
5121         if (unlikely(prof_on == KVM_PROFILING)) {
5122                 unsigned long rip = kvm_rip_read(vcpu);
5123                 profile_hit(KVM_PROFILING, (void *)rip);
5124         }
5125
5126
5127         kvm_lapic_sync_from_vapic(vcpu);
5128
5129         r = kvm_x86_ops->handle_exit(vcpu);
5130 out:
5131         return r;
5132 }
5133
5134
5135 static int __vcpu_run(struct kvm_vcpu *vcpu)
5136 {
5137         int r;
5138         struct kvm *kvm = vcpu->kvm;
5139
5140         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5141                 pr_debug("vcpu %d received sipi with vector # %x\n",
5142                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5143                 kvm_lapic_reset(vcpu);
5144                 r = kvm_arch_vcpu_reset(vcpu);
5145                 if (r)
5146                         return r;
5147                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5148         }
5149
5150         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5151         vapic_enter(vcpu);
5152
5153         r = 1;
5154         while (r > 0) {
5155                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
5156                         r = vcpu_enter_guest(vcpu);
5157                 else {
5158                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5159                         kvm_vcpu_block(vcpu);
5160                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5161                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5162                         {
5163                                 switch(vcpu->arch.mp_state) {
5164                                 case KVM_MP_STATE_HALTED:
5165                                         vcpu->arch.mp_state =
5166                                                 KVM_MP_STATE_RUNNABLE;
5167                                 case KVM_MP_STATE_RUNNABLE:
5168                                         break;
5169                                 case KVM_MP_STATE_SIPI_RECEIVED:
5170                                 default:
5171                                         r = -EINTR;
5172                                         break;
5173                                 }
5174                         }
5175                 }
5176
5177                 if (r <= 0)
5178                         break;
5179
5180                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5181                 if (kvm_cpu_has_pending_timer(vcpu))
5182                         kvm_inject_pending_timer_irqs(vcpu);
5183
5184                 if (dm_request_for_irq_injection(vcpu)) {
5185                         r = -EINTR;
5186                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5187                         ++vcpu->stat.request_irq_exits;
5188                 }
5189                 if (signal_pending(current)) {
5190                         r = -EINTR;
5191                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5192                         ++vcpu->stat.signal_exits;
5193                 }
5194                 if (need_resched()) {
5195                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5196                         kvm_resched(vcpu);
5197                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5198                 }
5199         }
5200
5201         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5202
5203         vapic_exit(vcpu);
5204
5205         return r;
5206 }
5207
5208 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5209 {
5210         int r;
5211         sigset_t sigsaved;
5212
5213         if (vcpu->sigset_active)
5214                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5215
5216         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5217                 kvm_vcpu_block(vcpu);
5218                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5219                 r = -EAGAIN;
5220                 goto out;
5221         }
5222
5223         /* re-sync apic's tpr */
5224         if (!irqchip_in_kernel(vcpu->kvm))
5225                 kvm_set_cr8(vcpu, kvm_run->cr8);
5226
5227         if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5228                 if (vcpu->mmio_needed) {
5229                         memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5230                         vcpu->mmio_read_completed = 1;
5231                         vcpu->mmio_needed = 0;
5232                 }
5233                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5234                 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
5235                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5236                 if (r != EMULATE_DONE) {
5237                         r = 0;
5238                         goto out;
5239                 }
5240         }
5241         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5242                 kvm_register_write(vcpu, VCPU_REGS_RAX,
5243                                      kvm_run->hypercall.ret);
5244
5245         r = __vcpu_run(vcpu);
5246
5247 out:
5248         post_kvm_run_save(vcpu);
5249         if (vcpu->sigset_active)
5250                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5251
5252         return r;
5253 }
5254
5255 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5256 {
5257         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5258         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5259         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5260         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5261         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5262         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5263         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5264         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5265 #ifdef CONFIG_X86_64
5266         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5267         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5268         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5269         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5270         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5271         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5272         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5273         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5274 #endif
5275
5276         regs->rip = kvm_rip_read(vcpu);
5277         regs->rflags = kvm_get_rflags(vcpu);
5278
5279         return 0;
5280 }
5281
5282 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5283 {
5284         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5285         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5286         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5287         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5288         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5289         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5290         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5291         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5292 #ifdef CONFIG_X86_64
5293         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5294         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5295         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5296         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5297         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5298         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5299         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5300         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5301 #endif
5302
5303         kvm_rip_write(vcpu, regs->rip);
5304         kvm_set_rflags(vcpu, regs->rflags);
5305
5306         vcpu->arch.exception.pending = false;
5307
5308         return 0;
5309 }
5310
5311 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5312 {
5313         struct kvm_segment cs;
5314
5315         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5316         *db = cs.db;
5317         *l = cs.l;
5318 }
5319 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5320
5321 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5322                                   struct kvm_sregs *sregs)
5323 {
5324         struct desc_ptr dt;
5325
5326         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5327         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5328         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5329         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5330         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5331         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5332
5333         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5334         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5335
5336         kvm_x86_ops->get_idt(vcpu, &dt);
5337         sregs->idt.limit = dt.size;
5338         sregs->idt.base = dt.address;
5339         kvm_x86_ops->get_gdt(vcpu, &dt);
5340         sregs->gdt.limit = dt.size;
5341         sregs->gdt.base = dt.address;
5342
5343         sregs->cr0 = kvm_read_cr0(vcpu);
5344         sregs->cr2 = vcpu->arch.cr2;
5345         sregs->cr3 = vcpu->arch.cr3;
5346         sregs->cr4 = kvm_read_cr4(vcpu);
5347         sregs->cr8 = kvm_get_cr8(vcpu);
5348         sregs->efer = vcpu->arch.efer;
5349         sregs->apic_base = kvm_get_apic_base(vcpu);
5350
5351         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5352
5353         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5354                 set_bit(vcpu->arch.interrupt.nr,
5355                         (unsigned long *)sregs->interrupt_bitmap);
5356
5357         return 0;
5358 }
5359
5360 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5361                                     struct kvm_mp_state *mp_state)
5362 {
5363         mp_state->mp_state = vcpu->arch.mp_state;
5364         return 0;
5365 }
5366
5367 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5368                                     struct kvm_mp_state *mp_state)
5369 {
5370         vcpu->arch.mp_state = mp_state->mp_state;
5371         return 0;
5372 }
5373
5374 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5375                     bool has_error_code, u32 error_code)
5376 {
5377         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5378         int ret;
5379
5380         init_emulate_ctxt(vcpu);
5381
5382         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5383                                    tss_selector, reason, has_error_code,
5384                                    error_code);
5385
5386         if (ret)
5387                 return EMULATE_FAIL;
5388
5389         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5390         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5391         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5392         return EMULATE_DONE;
5393 }
5394 EXPORT_SYMBOL_GPL(kvm_task_switch);
5395
5396 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5397                                   struct kvm_sregs *sregs)
5398 {
5399         int mmu_reset_needed = 0;
5400         int pending_vec, max_bits;
5401         struct desc_ptr dt;
5402
5403         dt.size = sregs->idt.limit;
5404         dt.address = sregs->idt.base;
5405         kvm_x86_ops->set_idt(vcpu, &dt);
5406         dt.size = sregs->gdt.limit;
5407         dt.address = sregs->gdt.base;
5408         kvm_x86_ops->set_gdt(vcpu, &dt);
5409
5410         vcpu->arch.cr2 = sregs->cr2;
5411         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5412         vcpu->arch.cr3 = sregs->cr3;
5413
5414         kvm_set_cr8(vcpu, sregs->cr8);
5415
5416         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5417         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5418         kvm_set_apic_base(vcpu, sregs->apic_base);
5419
5420         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5421         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5422         vcpu->arch.cr0 = sregs->cr0;
5423
5424         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5425         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5426         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5427                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
5428                 mmu_reset_needed = 1;
5429         }
5430
5431         if (mmu_reset_needed)
5432                 kvm_mmu_reset_context(vcpu);
5433
5434         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5435         pending_vec = find_first_bit(
5436                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5437         if (pending_vec < max_bits) {
5438                 kvm_queue_interrupt(vcpu, pending_vec, false);
5439                 pr_debug("Set back pending irq %d\n", pending_vec);
5440                 if (irqchip_in_kernel(vcpu->kvm))
5441                         kvm_pic_clear_isr_ack(vcpu->kvm);
5442         }
5443
5444         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5445         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5446         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5447         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5448         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5449         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5450
5451         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5452         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5453
5454         update_cr8_intercept(vcpu);
5455
5456         /* Older userspace won't unhalt the vcpu on reset. */
5457         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5458             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5459             !is_protmode(vcpu))
5460                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5461
5462         return 0;
5463 }
5464
5465 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5466                                         struct kvm_guest_debug *dbg)
5467 {
5468         unsigned long rflags;
5469         int i, r;
5470
5471         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5472                 r = -EBUSY;
5473                 if (vcpu->arch.exception.pending)
5474                         goto out;
5475                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5476                         kvm_queue_exception(vcpu, DB_VECTOR);
5477                 else
5478                         kvm_queue_exception(vcpu, BP_VECTOR);
5479         }
5480
5481         /*
5482          * Read rflags as long as potentially injected trace flags are still
5483          * filtered out.
5484          */
5485         rflags = kvm_get_rflags(vcpu);
5486
5487         vcpu->guest_debug = dbg->control;
5488         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5489                 vcpu->guest_debug = 0;
5490
5491         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5492                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5493                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5494                 vcpu->arch.switch_db_regs =
5495                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5496         } else {
5497                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5498                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5499                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5500         }
5501
5502         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5503                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5504                         get_segment_base(vcpu, VCPU_SREG_CS);
5505
5506         /*
5507          * Trigger an rflags update that will inject or remove the trace
5508          * flags.
5509          */
5510         kvm_set_rflags(vcpu, rflags);
5511
5512         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5513
5514         r = 0;
5515
5516 out:
5517
5518         return r;
5519 }
5520
5521 /*
5522  * Translate a guest virtual address to a guest physical address.
5523  */
5524 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5525                                     struct kvm_translation *tr)
5526 {
5527         unsigned long vaddr = tr->linear_address;
5528         gpa_t gpa;
5529         int idx;
5530
5531         idx = srcu_read_lock(&vcpu->kvm->srcu);
5532         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5533         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5534         tr->physical_address = gpa;
5535         tr->valid = gpa != UNMAPPED_GVA;
5536         tr->writeable = 1;
5537         tr->usermode = 0;
5538
5539         return 0;
5540 }
5541
5542 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5543 {
5544         struct i387_fxsave_struct *fxsave =
5545                         &vcpu->arch.guest_fpu.state->fxsave;
5546
5547         memcpy(fpu->fpr, fxsave->st_space, 128);
5548         fpu->fcw = fxsave->cwd;
5549         fpu->fsw = fxsave->swd;
5550         fpu->ftwx = fxsave->twd;
5551         fpu->last_opcode = fxsave->fop;
5552         fpu->last_ip = fxsave->rip;
5553         fpu->last_dp = fxsave->rdp;
5554         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5555
5556         return 0;
5557 }
5558
5559 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5560 {
5561         struct i387_fxsave_struct *fxsave =
5562                         &vcpu->arch.guest_fpu.state->fxsave;
5563
5564         memcpy(fxsave->st_space, fpu->fpr, 128);
5565         fxsave->cwd = fpu->fcw;
5566         fxsave->swd = fpu->fsw;
5567         fxsave->twd = fpu->ftwx;
5568         fxsave->fop = fpu->last_opcode;
5569         fxsave->rip = fpu->last_ip;
5570         fxsave->rdp = fpu->last_dp;
5571         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5572
5573         return 0;
5574 }
5575
5576 int fx_init(struct kvm_vcpu *vcpu)
5577 {
5578         int err;
5579
5580         err = fpu_alloc(&vcpu->arch.guest_fpu);
5581         if (err)
5582                 return err;
5583
5584         fpu_finit(&vcpu->arch.guest_fpu);
5585
5586         /*
5587          * Ensure guest xcr0 is valid for loading
5588          */
5589         vcpu->arch.xcr0 = XSTATE_FP;
5590
5591         vcpu->arch.cr0 |= X86_CR0_ET;
5592
5593         return 0;
5594 }
5595 EXPORT_SYMBOL_GPL(fx_init);
5596
5597 static void fx_free(struct kvm_vcpu *vcpu)
5598 {
5599         fpu_free(&vcpu->arch.guest_fpu);
5600 }
5601
5602 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5603 {
5604         if (vcpu->guest_fpu_loaded)
5605                 return;
5606
5607         /*
5608          * Restore all possible states in the guest,
5609          * and assume host would use all available bits.
5610          * Guest xcr0 would be loaded later.
5611          */
5612         kvm_put_guest_xcr0(vcpu);
5613         vcpu->guest_fpu_loaded = 1;
5614         unlazy_fpu(current);
5615         fpu_restore_checking(&vcpu->arch.guest_fpu);
5616         trace_kvm_fpu(1);
5617 }
5618
5619 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5620 {
5621         kvm_put_guest_xcr0(vcpu);
5622
5623         if (!vcpu->guest_fpu_loaded)
5624                 return;
5625
5626         vcpu->guest_fpu_loaded = 0;
5627         fpu_save_init(&vcpu->arch.guest_fpu);
5628         ++vcpu->stat.fpu_reload;
5629         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5630         trace_kvm_fpu(0);
5631 }
5632
5633 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5634 {
5635         if (vcpu->arch.time_page) {
5636                 kvm_release_page_dirty(vcpu->arch.time_page);
5637                 vcpu->arch.time_page = NULL;
5638         }
5639
5640         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5641         fx_free(vcpu);
5642         kvm_x86_ops->vcpu_free(vcpu);
5643 }
5644
5645 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5646                                                 unsigned int id)
5647 {
5648         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5649                 printk_once(KERN_WARNING
5650                 "kvm: SMP vm created on host with unstable TSC; "
5651                 "guest TSC will not be reliable\n");
5652         return kvm_x86_ops->vcpu_create(kvm, id);
5653 }
5654
5655 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5656 {
5657         int r;
5658
5659         vcpu->arch.mtrr_state.have_fixed = 1;
5660         vcpu_load(vcpu);
5661         r = kvm_arch_vcpu_reset(vcpu);
5662         if (r == 0)
5663                 r = kvm_mmu_setup(vcpu);
5664         vcpu_put(vcpu);
5665         if (r < 0)
5666                 goto free_vcpu;
5667
5668         return 0;
5669 free_vcpu:
5670         kvm_x86_ops->vcpu_free(vcpu);
5671         return r;
5672 }
5673
5674 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5675 {
5676         vcpu_load(vcpu);
5677         kvm_mmu_unload(vcpu);
5678         vcpu_put(vcpu);
5679
5680         fx_free(vcpu);
5681         kvm_x86_ops->vcpu_free(vcpu);
5682 }
5683
5684 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5685 {
5686         vcpu->arch.nmi_pending = false;
5687         vcpu->arch.nmi_injected = false;
5688
5689         vcpu->arch.switch_db_regs = 0;
5690         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5691         vcpu->arch.dr6 = DR6_FIXED_1;
5692         vcpu->arch.dr7 = DR7_FIXED_1;
5693
5694         return kvm_x86_ops->vcpu_reset(vcpu);
5695 }
5696
5697 int kvm_arch_hardware_enable(void *garbage)
5698 {
5699         struct kvm *kvm;
5700         struct kvm_vcpu *vcpu;
5701         int i;
5702
5703         kvm_shared_msr_cpu_online();
5704         list_for_each_entry(kvm, &vm_list, vm_list)
5705                 kvm_for_each_vcpu(i, vcpu, kvm)
5706                         if (vcpu->cpu == smp_processor_id())
5707                                 kvm_request_guest_time_update(vcpu);
5708         return kvm_x86_ops->hardware_enable(garbage);
5709 }
5710
5711 void kvm_arch_hardware_disable(void *garbage)
5712 {
5713         kvm_x86_ops->hardware_disable(garbage);
5714         drop_user_return_notifiers(garbage);
5715 }
5716
5717 int kvm_arch_hardware_setup(void)
5718 {
5719         return kvm_x86_ops->hardware_setup();
5720 }
5721
5722 void kvm_arch_hardware_unsetup(void)
5723 {
5724         kvm_x86_ops->hardware_unsetup();
5725 }
5726
5727 void kvm_arch_check_processor_compat(void *rtn)
5728 {
5729         kvm_x86_ops->check_processor_compatibility(rtn);
5730 }
5731
5732 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5733 {
5734         struct page *page;
5735         struct kvm *kvm;
5736         int r;
5737
5738         BUG_ON(vcpu->kvm == NULL);
5739         kvm = vcpu->kvm;
5740
5741         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5742         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5743         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5744         vcpu->arch.mmu.translate_gpa = translate_gpa;
5745         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5746         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5747                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5748         else
5749                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5750
5751         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5752         if (!page) {
5753                 r = -ENOMEM;
5754                 goto fail;
5755         }
5756         vcpu->arch.pio_data = page_address(page);
5757
5758         r = kvm_mmu_create(vcpu);
5759         if (r < 0)
5760                 goto fail_free_pio_data;
5761
5762         if (irqchip_in_kernel(kvm)) {
5763                 r = kvm_create_lapic(vcpu);
5764                 if (r < 0)
5765                         goto fail_mmu_destroy;
5766         }
5767
5768         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5769                                        GFP_KERNEL);
5770         if (!vcpu->arch.mce_banks) {
5771                 r = -ENOMEM;
5772                 goto fail_free_lapic;
5773         }
5774         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5775
5776         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5777                 goto fail_free_mce_banks;
5778
5779         return 0;
5780 fail_free_mce_banks:
5781         kfree(vcpu->arch.mce_banks);
5782 fail_free_lapic:
5783         kvm_free_lapic(vcpu);
5784 fail_mmu_destroy:
5785         kvm_mmu_destroy(vcpu);
5786 fail_free_pio_data:
5787         free_page((unsigned long)vcpu->arch.pio_data);
5788 fail:
5789         return r;
5790 }
5791
5792 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5793 {
5794         int idx;
5795
5796         kfree(vcpu->arch.mce_banks);
5797         kvm_free_lapic(vcpu);
5798         idx = srcu_read_lock(&vcpu->kvm->srcu);
5799         kvm_mmu_destroy(vcpu);
5800         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5801         free_page((unsigned long)vcpu->arch.pio_data);
5802 }
5803
5804 struct  kvm *kvm_arch_create_vm(void)
5805 {
5806         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5807
5808         if (!kvm)
5809                 return ERR_PTR(-ENOMEM);
5810
5811         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5812         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5813
5814         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5815         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5816
5817         spin_lock_init(&kvm->arch.tsc_write_lock);
5818
5819         return kvm;
5820 }
5821
5822 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5823 {
5824         vcpu_load(vcpu);
5825         kvm_mmu_unload(vcpu);
5826         vcpu_put(vcpu);
5827 }
5828
5829 static void kvm_free_vcpus(struct kvm *kvm)
5830 {
5831         unsigned int i;
5832         struct kvm_vcpu *vcpu;
5833
5834         /*
5835          * Unpin any mmu pages first.
5836          */
5837         kvm_for_each_vcpu(i, vcpu, kvm)
5838                 kvm_unload_vcpu_mmu(vcpu);
5839         kvm_for_each_vcpu(i, vcpu, kvm)
5840                 kvm_arch_vcpu_free(vcpu);
5841
5842         mutex_lock(&kvm->lock);
5843         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5844                 kvm->vcpus[i] = NULL;
5845
5846         atomic_set(&kvm->online_vcpus, 0);
5847         mutex_unlock(&kvm->lock);
5848 }
5849
5850 void kvm_arch_sync_events(struct kvm *kvm)
5851 {
5852         kvm_free_all_assigned_devices(kvm);
5853         kvm_free_pit(kvm);
5854 }
5855
5856 void kvm_arch_destroy_vm(struct kvm *kvm)
5857 {
5858         kvm_iommu_unmap_guest(kvm);
5859         kfree(kvm->arch.vpic);
5860         kfree(kvm->arch.vioapic);
5861         kvm_free_vcpus(kvm);
5862         kvm_free_physmem(kvm);
5863         if (kvm->arch.apic_access_page)
5864                 put_page(kvm->arch.apic_access_page);
5865         if (kvm->arch.ept_identity_pagetable)
5866                 put_page(kvm->arch.ept_identity_pagetable);
5867         cleanup_srcu_struct(&kvm->srcu);
5868         kfree(kvm);
5869 }
5870
5871 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5872                                 struct kvm_memory_slot *memslot,
5873                                 struct kvm_memory_slot old,
5874                                 struct kvm_userspace_memory_region *mem,
5875                                 int user_alloc)
5876 {
5877         int npages = memslot->npages;
5878         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
5879
5880         /* Prevent internal slot pages from being moved by fork()/COW. */
5881         if (memslot->id >= KVM_MEMORY_SLOTS)
5882                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
5883
5884         /*To keep backward compatibility with older userspace,
5885          *x86 needs to hanlde !user_alloc case.
5886          */
5887         if (!user_alloc) {
5888                 if (npages && !old.rmap) {
5889                         unsigned long userspace_addr;
5890
5891                         down_write(&current->mm->mmap_sem);
5892                         userspace_addr = do_mmap(NULL, 0,
5893                                                  npages * PAGE_SIZE,
5894                                                  PROT_READ | PROT_WRITE,
5895                                                  map_flags,
5896                                                  0);
5897                         up_write(&current->mm->mmap_sem);
5898
5899                         if (IS_ERR((void *)userspace_addr))
5900                                 return PTR_ERR((void *)userspace_addr);
5901
5902                         memslot->userspace_addr = userspace_addr;
5903                 }
5904         }
5905
5906
5907         return 0;
5908 }
5909
5910 void kvm_arch_commit_memory_region(struct kvm *kvm,
5911                                 struct kvm_userspace_memory_region *mem,
5912                                 struct kvm_memory_slot old,
5913                                 int user_alloc)
5914 {
5915
5916         int npages = mem->memory_size >> PAGE_SHIFT;
5917
5918         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5919                 int ret;
5920
5921                 down_write(&current->mm->mmap_sem);
5922                 ret = do_munmap(current->mm, old.userspace_addr,
5923                                 old.npages * PAGE_SIZE);
5924                 up_write(&current->mm->mmap_sem);
5925                 if (ret < 0)
5926                         printk(KERN_WARNING
5927                                "kvm_vm_ioctl_set_memory_region: "
5928                                "failed to munmap memory\n");
5929         }
5930
5931         spin_lock(&kvm->mmu_lock);
5932         if (!kvm->arch.n_requested_mmu_pages) {
5933                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5934                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5935         }
5936
5937         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5938         spin_unlock(&kvm->mmu_lock);
5939 }
5940
5941 void kvm_arch_flush_shadow(struct kvm *kvm)
5942 {
5943         kvm_mmu_zap_all(kvm);
5944         kvm_reload_remote_mmus(kvm);
5945 }
5946
5947 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5948 {
5949         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5950                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5951                 || vcpu->arch.nmi_pending ||
5952                 (kvm_arch_interrupt_allowed(vcpu) &&
5953                  kvm_cpu_has_interrupt(vcpu));
5954 }
5955
5956 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5957 {
5958         int me;
5959         int cpu = vcpu->cpu;
5960
5961         if (waitqueue_active(&vcpu->wq)) {
5962                 wake_up_interruptible(&vcpu->wq);
5963                 ++vcpu->stat.halt_wakeup;
5964         }
5965
5966         me = get_cpu();
5967         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5968                 if (atomic_xchg(&vcpu->guest_mode, 0))
5969                         smp_send_reschedule(cpu);
5970         put_cpu();
5971 }
5972
5973 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5974 {
5975         return kvm_x86_ops->interrupt_allowed(vcpu);
5976 }
5977
5978 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5979 {
5980         unsigned long current_rip = kvm_rip_read(vcpu) +
5981                 get_segment_base(vcpu, VCPU_SREG_CS);
5982
5983         return current_rip == linear_rip;
5984 }
5985 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5986
5987 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5988 {
5989         unsigned long rflags;
5990
5991         rflags = kvm_x86_ops->get_rflags(vcpu);
5992         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5993                 rflags &= ~X86_EFLAGS_TF;
5994         return rflags;
5995 }
5996 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5997
5998 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5999 {
6000         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6001             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6002                 rflags |= X86_EFLAGS_TF;
6003         kvm_x86_ops->set_rflags(vcpu, rflags);
6004 }
6005 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6006
6007 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6008 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6009 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6010 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6011 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6012 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6013 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6014 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6015 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6016 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6017 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6018 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);