4b8b37c02194e132f1df3cd918444a1d30c8b0a2
[linux-flexiantxendom0-natty.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 /*
57  * reclaim_mode determines how the inactive list is shrunk
58  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59  * RECLAIM_MODE_ASYNC:  Do not block
60  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
61  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
62  *                      page from the LRU and reclaim all pages within a
63  *                      naturally aligned range
64  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
65  *                      order-0 pages and then compact the zone
66  */
67 typedef unsigned __bitwise__ reclaim_mode_t;
68 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
69 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
70 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
71 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
72 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
73
74 struct scan_control {
75         /* Incremented by the number of inactive pages that were scanned */
76         unsigned long nr_scanned;
77
78         /* Number of pages freed so far during a call to shrink_zones() */
79         unsigned long nr_reclaimed;
80
81         /* How many pages shrink_list() should reclaim */
82         unsigned long nr_to_reclaim;
83
84         unsigned long hibernation_mode;
85
86         /* This context's GFP mask */
87         gfp_t gfp_mask;
88
89         int may_writepage;
90
91         /* Can mapped pages be reclaimed? */
92         int may_unmap;
93
94         /* Can pages be swapped as part of reclaim? */
95         int may_swap;
96
97         int swappiness;
98
99         int order;
100
101         /*
102          * Intend to reclaim enough continuous memory rather than reclaim
103          * enough amount of memory. i.e, mode for high order allocation.
104          */
105         reclaim_mode_t reclaim_mode;
106
107         /* Which cgroup do we reclaim from */
108         struct mem_cgroup *mem_cgroup;
109
110         /*
111          * Nodemask of nodes allowed by the caller. If NULL, all nodes
112          * are scanned.
113          */
114         nodemask_t      *nodemask;
115 };
116
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
118
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field)                    \
121         do {                                                            \
122                 if ((_page)->lru.prev != _base) {                       \
123                         struct page *prev;                              \
124                                                                         \
125                         prev = lru_to_page(&(_page->lru));              \
126                         prefetch(&prev->_field);                        \
127                 }                                                       \
128         } while (0)
129 #else
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
131 #endif
132
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
135         do {                                                            \
136                 if ((_page)->lru.prev != _base) {                       \
137                         struct page *prev;                              \
138                                                                         \
139                         prev = lru_to_page(&(_page->lru));              \
140                         prefetchw(&prev->_field);                       \
141                 }                                                       \
142         } while (0)
143 #else
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
145 #endif
146
147 /*
148  * From 0 .. 100.  Higher means more swappy.
149  */
150 int vm_swappiness = 60;
151 long vm_total_pages;    /* The total number of pages which the VM controls */
152
153 static LIST_HEAD(shrinker_list);
154 static DECLARE_RWSEM(shrinker_rwsem);
155
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
158 #else
159 #define scanning_global_lru(sc) (1)
160 #endif
161
162 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
163                                                   struct scan_control *sc)
164 {
165         if (!scanning_global_lru(sc))
166                 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
167
168         return &zone->reclaim_stat;
169 }
170
171 static unsigned long zone_nr_lru_pages(struct zone *zone,
172                                 struct scan_control *sc, enum lru_list lru)
173 {
174         if (!scanning_global_lru(sc))
175                 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
176
177         return zone_page_state(zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186         shrinker->nr = 0;
187         down_write(&shrinker_rwsem);
188         list_add_tail(&shrinker->list, &shrinker_list);
189         up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198         down_write(&shrinker_rwsem);
199         list_del(&shrinker->list);
200         up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 #define SHRINK_BATCH 128
205 /*
206  * Call the shrink functions to age shrinkable caches
207  *
208  * Here we assume it costs one seek to replace a lru page and that it also
209  * takes a seek to recreate a cache object.  With this in mind we age equal
210  * percentages of the lru and ageable caches.  This should balance the seeks
211  * generated by these structures.
212  *
213  * If the vm encountered mapped pages on the LRU it increase the pressure on
214  * slab to avoid swapping.
215  *
216  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
217  *
218  * `lru_pages' represents the number of on-LRU pages in all the zones which
219  * are eligible for the caller's allocation attempt.  It is used for balancing
220  * slab reclaim versus page reclaim.
221  *
222  * Returns the number of slab objects which we shrunk.
223  */
224 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
225                         unsigned long lru_pages)
226 {
227         struct shrinker *shrinker;
228         unsigned long ret = 0;
229
230         if (scanned == 0)
231                 scanned = SWAP_CLUSTER_MAX;
232
233         if (!down_read_trylock(&shrinker_rwsem)) {
234                 /* Assume we'll be able to shrink next time */
235                 ret = 1;
236                 goto out;
237         }
238
239         list_for_each_entry(shrinker, &shrinker_list, list) {
240                 unsigned long long delta;
241                 unsigned long total_scan;
242                 unsigned long max_pass;
243
244                 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
245                 delta = (4 * scanned) / shrinker->seeks;
246                 delta *= max_pass;
247                 do_div(delta, lru_pages + 1);
248                 shrinker->nr += delta;
249                 if (shrinker->nr < 0) {
250                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
251                                "delete nr=%ld\n",
252                                shrinker->shrink, shrinker->nr);
253                         shrinker->nr = max_pass;
254                 }
255
256                 /*
257                  * Avoid risking looping forever due to too large nr value:
258                  * never try to free more than twice the estimate number of
259                  * freeable entries.
260                  */
261                 if (shrinker->nr > max_pass * 2)
262                         shrinker->nr = max_pass * 2;
263
264                 total_scan = shrinker->nr;
265                 shrinker->nr = 0;
266
267                 while (total_scan >= SHRINK_BATCH) {
268                         long this_scan = SHRINK_BATCH;
269                         int shrink_ret;
270                         int nr_before;
271
272                         nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
273                         shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
274                                                                 gfp_mask);
275                         if (shrink_ret == -1)
276                                 break;
277                         if (shrink_ret < nr_before)
278                                 ret += nr_before - shrink_ret;
279                         count_vm_events(SLABS_SCANNED, this_scan);
280                         total_scan -= this_scan;
281
282                         cond_resched();
283                 }
284
285                 shrinker->nr += total_scan;
286         }
287         up_read(&shrinker_rwsem);
288 out:
289         cond_resched();
290         return ret;
291 }
292
293 static void set_reclaim_mode(int priority, struct scan_control *sc,
294                                    bool sync)
295 {
296         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
297
298         /*
299          * Initially assume we are entering either lumpy reclaim or
300          * reclaim/compaction.Depending on the order, we will either set the
301          * sync mode or just reclaim order-0 pages later.
302          */
303         if (COMPACTION_BUILD)
304                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
305         else
306                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
307
308         /*
309          * Avoid using lumpy reclaim or reclaim/compaction if possible by
310          * restricting when its set to either costly allocations or when
311          * under memory pressure
312          */
313         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
314                 sc->reclaim_mode |= syncmode;
315         else if (sc->order && priority < DEF_PRIORITY - 2)
316                 sc->reclaim_mode |= syncmode;
317         else
318                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
319 }
320
321 static void reset_reclaim_mode(struct scan_control *sc)
322 {
323         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
324 }
325
326 static inline int is_page_cache_freeable(struct page *page)
327 {
328         /*
329          * A freeable page cache page is referenced only by the caller
330          * that isolated the page, the page cache radix tree and
331          * optional buffer heads at page->private.
332          */
333         return page_count(page) - page_has_private(page) == 2;
334 }
335
336 static int may_write_to_queue(struct backing_dev_info *bdi,
337                               struct scan_control *sc)
338 {
339         if (current->flags & PF_SWAPWRITE)
340                 return 1;
341         if (!bdi_write_congested(bdi))
342                 return 1;
343         if (bdi == current->backing_dev_info)
344                 return 1;
345
346         /* lumpy reclaim for hugepage often need a lot of write */
347         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
348                 return 1;
349         return 0;
350 }
351
352 /*
353  * We detected a synchronous write error writing a page out.  Probably
354  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
355  * fsync(), msync() or close().
356  *
357  * The tricky part is that after writepage we cannot touch the mapping: nothing
358  * prevents it from being freed up.  But we have a ref on the page and once
359  * that page is locked, the mapping is pinned.
360  *
361  * We're allowed to run sleeping lock_page() here because we know the caller has
362  * __GFP_FS.
363  */
364 static void handle_write_error(struct address_space *mapping,
365                                 struct page *page, int error)
366 {
367         lock_page_nosync(page);
368         if (page_mapping(page) == mapping)
369                 mapping_set_error(mapping, error);
370         unlock_page(page);
371 }
372
373 /* possible outcome of pageout() */
374 typedef enum {
375         /* failed to write page out, page is locked */
376         PAGE_KEEP,
377         /* move page to the active list, page is locked */
378         PAGE_ACTIVATE,
379         /* page has been sent to the disk successfully, page is unlocked */
380         PAGE_SUCCESS,
381         /* page is clean and locked */
382         PAGE_CLEAN,
383 } pageout_t;
384
385 /*
386  * pageout is called by shrink_page_list() for each dirty page.
387  * Calls ->writepage().
388  */
389 static pageout_t pageout(struct page *page, struct address_space *mapping,
390                          struct scan_control *sc)
391 {
392         /*
393          * If the page is dirty, only perform writeback if that write
394          * will be non-blocking.  To prevent this allocation from being
395          * stalled by pagecache activity.  But note that there may be
396          * stalls if we need to run get_block().  We could test
397          * PagePrivate for that.
398          *
399          * If this process is currently in __generic_file_aio_write() against
400          * this page's queue, we can perform writeback even if that
401          * will block.
402          *
403          * If the page is swapcache, write it back even if that would
404          * block, for some throttling. This happens by accident, because
405          * swap_backing_dev_info is bust: it doesn't reflect the
406          * congestion state of the swapdevs.  Easy to fix, if needed.
407          */
408         if (!is_page_cache_freeable(page))
409                 return PAGE_KEEP;
410         if (!mapping) {
411                 /*
412                  * Some data journaling orphaned pages can have
413                  * page->mapping == NULL while being dirty with clean buffers.
414                  */
415                 if (page_has_private(page)) {
416                         if (try_to_free_buffers(page)) {
417                                 ClearPageDirty(page);
418                                 printk("%s: orphaned page\n", __func__);
419                                 return PAGE_CLEAN;
420                         }
421                 }
422                 return PAGE_KEEP;
423         }
424         if (mapping->a_ops->writepage == NULL)
425                 return PAGE_ACTIVATE;
426         if (!may_write_to_queue(mapping->backing_dev_info, sc))
427                 return PAGE_KEEP;
428
429         if (clear_page_dirty_for_io(page)) {
430                 int res;
431                 struct writeback_control wbc = {
432                         .sync_mode = WB_SYNC_NONE,
433                         .nr_to_write = SWAP_CLUSTER_MAX,
434                         .range_start = 0,
435                         .range_end = LLONG_MAX,
436                         .for_reclaim = 1,
437                 };
438
439                 SetPageReclaim(page);
440                 res = mapping->a_ops->writepage(page, &wbc);
441                 if (res < 0)
442                         handle_write_error(mapping, page, res);
443                 if (res == AOP_WRITEPAGE_ACTIVATE) {
444                         ClearPageReclaim(page);
445                         return PAGE_ACTIVATE;
446                 }
447
448                 /*
449                  * Wait on writeback if requested to. This happens when
450                  * direct reclaiming a large contiguous area and the
451                  * first attempt to free a range of pages fails.
452                  */
453                 if (PageWriteback(page) &&
454                     (sc->reclaim_mode & RECLAIM_MODE_SYNC))
455                         wait_on_page_writeback(page);
456
457                 if (!PageWriteback(page)) {
458                         /* synchronous write or broken a_ops? */
459                         ClearPageReclaim(page);
460                 }
461                 trace_mm_vmscan_writepage(page,
462                         trace_reclaim_flags(page, sc->reclaim_mode));
463                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
464                 return PAGE_SUCCESS;
465         }
466
467         return PAGE_CLEAN;
468 }
469
470 /*
471  * Same as remove_mapping, but if the page is removed from the mapping, it
472  * gets returned with a refcount of 0.
473  */
474 static int __remove_mapping(struct address_space *mapping, struct page *page)
475 {
476         BUG_ON(!PageLocked(page));
477         BUG_ON(mapping != page_mapping(page));
478
479         spin_lock_irq(&mapping->tree_lock);
480         /*
481          * The non racy check for a busy page.
482          *
483          * Must be careful with the order of the tests. When someone has
484          * a ref to the page, it may be possible that they dirty it then
485          * drop the reference. So if PageDirty is tested before page_count
486          * here, then the following race may occur:
487          *
488          * get_user_pages(&page);
489          * [user mapping goes away]
490          * write_to(page);
491          *                              !PageDirty(page)    [good]
492          * SetPageDirty(page);
493          * put_page(page);
494          *                              !page_count(page)   [good, discard it]
495          *
496          * [oops, our write_to data is lost]
497          *
498          * Reversing the order of the tests ensures such a situation cannot
499          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
500          * load is not satisfied before that of page->_count.
501          *
502          * Note that if SetPageDirty is always performed via set_page_dirty,
503          * and thus under tree_lock, then this ordering is not required.
504          */
505         if (!page_freeze_refs(page, 2))
506                 goto cannot_free;
507         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
508         if (unlikely(PageDirty(page))) {
509                 page_unfreeze_refs(page, 2);
510                 goto cannot_free;
511         }
512
513         if (PageSwapCache(page)) {
514                 swp_entry_t swap = { .val = page_private(page) };
515                 __delete_from_swap_cache(page);
516                 spin_unlock_irq(&mapping->tree_lock);
517                 swapcache_free(swap, page);
518         } else {
519                 void (*freepage)(struct page *);
520
521                 freepage = mapping->a_ops->freepage;
522
523                 __remove_from_page_cache(page);
524                 spin_unlock_irq(&mapping->tree_lock);
525                 mem_cgroup_uncharge_cache_page(page);
526
527                 if (freepage != NULL)
528                         freepage(page);
529         }
530
531         return 1;
532
533 cannot_free:
534         spin_unlock_irq(&mapping->tree_lock);
535         return 0;
536 }
537
538 /*
539  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
540  * someone else has a ref on the page, abort and return 0.  If it was
541  * successfully detached, return 1.  Assumes the caller has a single ref on
542  * this page.
543  */
544 int remove_mapping(struct address_space *mapping, struct page *page)
545 {
546         if (__remove_mapping(mapping, page)) {
547                 /*
548                  * Unfreezing the refcount with 1 rather than 2 effectively
549                  * drops the pagecache ref for us without requiring another
550                  * atomic operation.
551                  */
552                 page_unfreeze_refs(page, 1);
553                 return 1;
554         }
555         return 0;
556 }
557
558 /**
559  * putback_lru_page - put previously isolated page onto appropriate LRU list
560  * @page: page to be put back to appropriate lru list
561  *
562  * Add previously isolated @page to appropriate LRU list.
563  * Page may still be unevictable for other reasons.
564  *
565  * lru_lock must not be held, interrupts must be enabled.
566  */
567 void putback_lru_page(struct page *page)
568 {
569         int lru;
570         int active = !!TestClearPageActive(page);
571         int was_unevictable = PageUnevictable(page);
572
573         VM_BUG_ON(PageLRU(page));
574
575 redo:
576         ClearPageUnevictable(page);
577
578         if (page_evictable(page, NULL)) {
579                 /*
580                  * For evictable pages, we can use the cache.
581                  * In event of a race, worst case is we end up with an
582                  * unevictable page on [in]active list.
583                  * We know how to handle that.
584                  */
585                 lru = active + page_lru_base_type(page);
586                 lru_cache_add_lru(page, lru);
587         } else {
588                 /*
589                  * Put unevictable pages directly on zone's unevictable
590                  * list.
591                  */
592                 lru = LRU_UNEVICTABLE;
593                 add_page_to_unevictable_list(page);
594                 /*
595                  * When racing with an mlock clearing (page is
596                  * unlocked), make sure that if the other thread does
597                  * not observe our setting of PG_lru and fails
598                  * isolation, we see PG_mlocked cleared below and move
599                  * the page back to the evictable list.
600                  *
601                  * The other side is TestClearPageMlocked().
602                  */
603                 smp_mb();
604         }
605
606         /*
607          * page's status can change while we move it among lru. If an evictable
608          * page is on unevictable list, it never be freed. To avoid that,
609          * check after we added it to the list, again.
610          */
611         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
612                 if (!isolate_lru_page(page)) {
613                         put_page(page);
614                         goto redo;
615                 }
616                 /* This means someone else dropped this page from LRU
617                  * So, it will be freed or putback to LRU again. There is
618                  * nothing to do here.
619                  */
620         }
621
622         if (was_unevictable && lru != LRU_UNEVICTABLE)
623                 count_vm_event(UNEVICTABLE_PGRESCUED);
624         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
625                 count_vm_event(UNEVICTABLE_PGCULLED);
626
627         put_page(page);         /* drop ref from isolate */
628 }
629
630 enum page_references {
631         PAGEREF_RECLAIM,
632         PAGEREF_RECLAIM_CLEAN,
633         PAGEREF_KEEP,
634         PAGEREF_ACTIVATE,
635 };
636
637 static enum page_references page_check_references(struct page *page,
638                                                   struct scan_control *sc)
639 {
640         int referenced_ptes, referenced_page;
641         unsigned long vm_flags;
642
643         referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
644         referenced_page = TestClearPageReferenced(page);
645
646         /* Lumpy reclaim - ignore references */
647         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
648                 return PAGEREF_RECLAIM;
649
650         /*
651          * Mlock lost the isolation race with us.  Let try_to_unmap()
652          * move the page to the unevictable list.
653          */
654         if (vm_flags & VM_LOCKED)
655                 return PAGEREF_RECLAIM;
656
657         if (referenced_ptes) {
658                 if (PageAnon(page))
659                         return PAGEREF_ACTIVATE;
660                 /*
661                  * All mapped pages start out with page table
662                  * references from the instantiating fault, so we need
663                  * to look twice if a mapped file page is used more
664                  * than once.
665                  *
666                  * Mark it and spare it for another trip around the
667                  * inactive list.  Another page table reference will
668                  * lead to its activation.
669                  *
670                  * Note: the mark is set for activated pages as well
671                  * so that recently deactivated but used pages are
672                  * quickly recovered.
673                  */
674                 SetPageReferenced(page);
675
676                 if (referenced_page)
677                         return PAGEREF_ACTIVATE;
678
679                 return PAGEREF_KEEP;
680         }
681
682         /* Reclaim if clean, defer dirty pages to writeback */
683         if (referenced_page && !PageSwapBacked(page))
684                 return PAGEREF_RECLAIM_CLEAN;
685
686         return PAGEREF_RECLAIM;
687 }
688
689 static noinline_for_stack void free_page_list(struct list_head *free_pages)
690 {
691         struct pagevec freed_pvec;
692         struct page *page, *tmp;
693
694         pagevec_init(&freed_pvec, 1);
695
696         list_for_each_entry_safe(page, tmp, free_pages, lru) {
697                 list_del(&page->lru);
698                 if (!pagevec_add(&freed_pvec, page)) {
699                         __pagevec_free(&freed_pvec);
700                         pagevec_reinit(&freed_pvec);
701                 }
702         }
703
704         pagevec_free(&freed_pvec);
705 }
706
707 /*
708  * shrink_page_list() returns the number of reclaimed pages
709  */
710 static unsigned long shrink_page_list(struct list_head *page_list,
711                                       struct zone *zone,
712                                       struct scan_control *sc)
713 {
714         LIST_HEAD(ret_pages);
715         LIST_HEAD(free_pages);
716         int pgactivate = 0;
717         unsigned long nr_dirty = 0;
718         unsigned long nr_congested = 0;
719         unsigned long nr_reclaimed = 0;
720
721         cond_resched();
722
723         while (!list_empty(page_list)) {
724                 enum page_references references;
725                 struct address_space *mapping;
726                 struct page *page;
727                 int may_enter_fs;
728
729                 cond_resched();
730
731                 page = lru_to_page(page_list);
732                 list_del(&page->lru);
733
734                 if (!trylock_page(page))
735                         goto keep;
736
737                 VM_BUG_ON(PageActive(page));
738                 VM_BUG_ON(page_zone(page) != zone);
739
740                 sc->nr_scanned++;
741
742                 if (unlikely(!page_evictable(page, NULL)))
743                         goto cull_mlocked;
744
745                 if (!sc->may_unmap && page_mapped(page))
746                         goto keep_locked;
747
748                 /* Double the slab pressure for mapped and swapcache pages */
749                 if (page_mapped(page) || PageSwapCache(page))
750                         sc->nr_scanned++;
751
752                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
753                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
754
755                 if (PageWriteback(page)) {
756                         /*
757                          * Synchronous reclaim is performed in two passes,
758                          * first an asynchronous pass over the list to
759                          * start parallel writeback, and a second synchronous
760                          * pass to wait for the IO to complete.  Wait here
761                          * for any page for which writeback has already
762                          * started.
763                          */
764                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
765                             may_enter_fs)
766                                 wait_on_page_writeback(page);
767                         else {
768                                 unlock_page(page);
769                                 goto keep_lumpy;
770                         }
771                 }
772
773                 references = page_check_references(page, sc);
774                 switch (references) {
775                 case PAGEREF_ACTIVATE:
776                         goto activate_locked;
777                 case PAGEREF_KEEP:
778                         goto keep_locked;
779                 case PAGEREF_RECLAIM:
780                 case PAGEREF_RECLAIM_CLEAN:
781                         ; /* try to reclaim the page below */
782                 }
783
784                 /*
785                  * Anonymous process memory has backing store?
786                  * Try to allocate it some swap space here.
787                  */
788                 if (PageAnon(page) && !PageSwapCache(page)) {
789                         if (!(sc->gfp_mask & __GFP_IO))
790                                 goto keep_locked;
791                         if (!add_to_swap(page))
792                                 goto activate_locked;
793                         may_enter_fs = 1;
794                 }
795
796                 mapping = page_mapping(page);
797
798                 /*
799                  * The page is mapped into the page tables of one or more
800                  * processes. Try to unmap it here.
801                  */
802                 if (page_mapped(page) && mapping) {
803                         switch (try_to_unmap(page, TTU_UNMAP)) {
804                         case SWAP_FAIL:
805                                 goto activate_locked;
806                         case SWAP_AGAIN:
807                                 goto keep_locked;
808                         case SWAP_MLOCK:
809                                 goto cull_mlocked;
810                         case SWAP_SUCCESS:
811                                 ; /* try to free the page below */
812                         }
813                 }
814
815                 if (PageDirty(page)) {
816                         nr_dirty++;
817
818                         if (references == PAGEREF_RECLAIM_CLEAN)
819                                 goto keep_locked;
820                         if (!may_enter_fs)
821                                 goto keep_locked;
822                         if (!sc->may_writepage)
823                                 goto keep_locked;
824
825                         /* Page is dirty, try to write it out here */
826                         switch (pageout(page, mapping, sc)) {
827                         case PAGE_KEEP:
828                                 nr_congested++;
829                                 goto keep_locked;
830                         case PAGE_ACTIVATE:
831                                 goto activate_locked;
832                         case PAGE_SUCCESS:
833                                 if (PageWriteback(page))
834                                         goto keep_lumpy;
835                                 if (PageDirty(page))
836                                         goto keep;
837
838                                 /*
839                                  * A synchronous write - probably a ramdisk.  Go
840                                  * ahead and try to reclaim the page.
841                                  */
842                                 if (!trylock_page(page))
843                                         goto keep;
844                                 if (PageDirty(page) || PageWriteback(page))
845                                         goto keep_locked;
846                                 mapping = page_mapping(page);
847                         case PAGE_CLEAN:
848                                 ; /* try to free the page below */
849                         }
850                 }
851
852                 /*
853                  * If the page has buffers, try to free the buffer mappings
854                  * associated with this page. If we succeed we try to free
855                  * the page as well.
856                  *
857                  * We do this even if the page is PageDirty().
858                  * try_to_release_page() does not perform I/O, but it is
859                  * possible for a page to have PageDirty set, but it is actually
860                  * clean (all its buffers are clean).  This happens if the
861                  * buffers were written out directly, with submit_bh(). ext3
862                  * will do this, as well as the blockdev mapping.
863                  * try_to_release_page() will discover that cleanness and will
864                  * drop the buffers and mark the page clean - it can be freed.
865                  *
866                  * Rarely, pages can have buffers and no ->mapping.  These are
867                  * the pages which were not successfully invalidated in
868                  * truncate_complete_page().  We try to drop those buffers here
869                  * and if that worked, and the page is no longer mapped into
870                  * process address space (page_count == 1) it can be freed.
871                  * Otherwise, leave the page on the LRU so it is swappable.
872                  */
873                 if (page_has_private(page)) {
874                         if (!try_to_release_page(page, sc->gfp_mask))
875                                 goto activate_locked;
876                         if (!mapping && page_count(page) == 1) {
877                                 unlock_page(page);
878                                 if (put_page_testzero(page))
879                                         goto free_it;
880                                 else {
881                                         /*
882                                          * rare race with speculative reference.
883                                          * the speculative reference will free
884                                          * this page shortly, so we may
885                                          * increment nr_reclaimed here (and
886                                          * leave it off the LRU).
887                                          */
888                                         nr_reclaimed++;
889                                         continue;
890                                 }
891                         }
892                 }
893
894                 if (!mapping || !__remove_mapping(mapping, page))
895                         goto keep_locked;
896
897                 /*
898                  * At this point, we have no other references and there is
899                  * no way to pick any more up (removed from LRU, removed
900                  * from pagecache). Can use non-atomic bitops now (and
901                  * we obviously don't have to worry about waking up a process
902                  * waiting on the page lock, because there are no references.
903                  */
904                 __clear_page_locked(page);
905 free_it:
906                 nr_reclaimed++;
907
908                 /*
909                  * Is there need to periodically free_page_list? It would
910                  * appear not as the counts should be low
911                  */
912                 list_add(&page->lru, &free_pages);
913                 continue;
914
915 cull_mlocked:
916                 if (PageSwapCache(page))
917                         try_to_free_swap(page);
918                 unlock_page(page);
919                 putback_lru_page(page);
920                 reset_reclaim_mode(sc);
921                 continue;
922
923 activate_locked:
924                 /* Not a candidate for swapping, so reclaim swap space. */
925                 if (PageSwapCache(page) && vm_swap_full())
926                         try_to_free_swap(page);
927                 VM_BUG_ON(PageActive(page));
928                 SetPageActive(page);
929                 pgactivate++;
930 keep_locked:
931                 unlock_page(page);
932 keep:
933                 reset_reclaim_mode(sc);
934 keep_lumpy:
935                 list_add(&page->lru, &ret_pages);
936                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
937         }
938
939         /*
940          * Tag a zone as congested if all the dirty pages encountered were
941          * backed by a congested BDI. In this case, reclaimers should just
942          * back off and wait for congestion to clear because further reclaim
943          * will encounter the same problem
944          */
945         if (nr_dirty == nr_congested && nr_dirty != 0)
946                 zone_set_flag(zone, ZONE_CONGESTED);
947
948         free_page_list(&free_pages);
949
950         list_splice(&ret_pages, page_list);
951         count_vm_events(PGACTIVATE, pgactivate);
952         return nr_reclaimed;
953 }
954
955 /*
956  * Attempt to remove the specified page from its LRU.  Only take this page
957  * if it is of the appropriate PageActive status.  Pages which are being
958  * freed elsewhere are also ignored.
959  *
960  * page:        page to consider
961  * mode:        one of the LRU isolation modes defined above
962  *
963  * returns 0 on success, -ve errno on failure.
964  */
965 int __isolate_lru_page(struct page *page, int mode, int file)
966 {
967         int ret = -EINVAL;
968
969         /* Only take pages on the LRU. */
970         if (!PageLRU(page))
971                 return ret;
972
973         /*
974          * When checking the active state, we need to be sure we are
975          * dealing with comparible boolean values.  Take the logical not
976          * of each.
977          */
978         if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
979                 return ret;
980
981         if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
982                 return ret;
983
984         /*
985          * When this function is being called for lumpy reclaim, we
986          * initially look into all LRU pages, active, inactive and
987          * unevictable; only give shrink_page_list evictable pages.
988          */
989         if (PageUnevictable(page))
990                 return ret;
991
992         ret = -EBUSY;
993
994         if (likely(get_page_unless_zero(page))) {
995                 /*
996                  * Be careful not to clear PageLRU until after we're
997                  * sure the page is not being freed elsewhere -- the
998                  * page release code relies on it.
999                  */
1000                 ClearPageLRU(page);
1001                 ret = 0;
1002         }
1003
1004         return ret;
1005 }
1006
1007 /*
1008  * zone->lru_lock is heavily contended.  Some of the functions that
1009  * shrink the lists perform better by taking out a batch of pages
1010  * and working on them outside the LRU lock.
1011  *
1012  * For pagecache intensive workloads, this function is the hottest
1013  * spot in the kernel (apart from copy_*_user functions).
1014  *
1015  * Appropriate locks must be held before calling this function.
1016  *
1017  * @nr_to_scan: The number of pages to look through on the list.
1018  * @src:        The LRU list to pull pages off.
1019  * @dst:        The temp list to put pages on to.
1020  * @scanned:    The number of pages that were scanned.
1021  * @order:      The caller's attempted allocation order
1022  * @mode:       One of the LRU isolation modes
1023  * @file:       True [1] if isolating file [!anon] pages
1024  *
1025  * returns how many pages were moved onto *@dst.
1026  */
1027 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1028                 struct list_head *src, struct list_head *dst,
1029                 unsigned long *scanned, int order, int mode, int file)
1030 {
1031         unsigned long nr_taken = 0;
1032         unsigned long nr_lumpy_taken = 0;
1033         unsigned long nr_lumpy_dirty = 0;
1034         unsigned long nr_lumpy_failed = 0;
1035         unsigned long scan;
1036
1037         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1038                 struct page *page;
1039                 unsigned long pfn;
1040                 unsigned long end_pfn;
1041                 unsigned long page_pfn;
1042                 int zone_id;
1043
1044                 page = lru_to_page(src);
1045                 prefetchw_prev_lru_page(page, src, flags);
1046
1047                 VM_BUG_ON(!PageLRU(page));
1048
1049                 switch (__isolate_lru_page(page, mode, file)) {
1050                 case 0:
1051                         list_move(&page->lru, dst);
1052                         mem_cgroup_del_lru(page);
1053                         nr_taken += hpage_nr_pages(page);
1054                         break;
1055
1056                 case -EBUSY:
1057                         /* else it is being freed elsewhere */
1058                         list_move(&page->lru, src);
1059                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1060                         continue;
1061
1062                 default:
1063                         BUG();
1064                 }
1065
1066                 if (!order)
1067                         continue;
1068
1069                 /*
1070                  * Attempt to take all pages in the order aligned region
1071                  * surrounding the tag page.  Only take those pages of
1072                  * the same active state as that tag page.  We may safely
1073                  * round the target page pfn down to the requested order
1074                  * as the mem_map is guarenteed valid out to MAX_ORDER,
1075                  * where that page is in a different zone we will detect
1076                  * it from its zone id and abort this block scan.
1077                  */
1078                 zone_id = page_zone_id(page);
1079                 page_pfn = page_to_pfn(page);
1080                 pfn = page_pfn & ~((1 << order) - 1);
1081                 end_pfn = pfn + (1 << order);
1082                 for (; pfn < end_pfn; pfn++) {
1083                         struct page *cursor_page;
1084
1085                         /* The target page is in the block, ignore it. */
1086                         if (unlikely(pfn == page_pfn))
1087                                 continue;
1088
1089                         /* Avoid holes within the zone. */
1090                         if (unlikely(!pfn_valid_within(pfn)))
1091                                 break;
1092
1093                         cursor_page = pfn_to_page(pfn);
1094
1095                         /* Check that we have not crossed a zone boundary. */
1096                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1097                                 break;
1098
1099                         /*
1100                          * If we don't have enough swap space, reclaiming of
1101                          * anon page which don't already have a swap slot is
1102                          * pointless.
1103                          */
1104                         if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1105                             !PageSwapCache(cursor_page))
1106                                 break;
1107
1108                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1109                                 list_move(&cursor_page->lru, dst);
1110                                 mem_cgroup_del_lru(cursor_page);
1111                                 nr_taken += hpage_nr_pages(page);
1112                                 nr_lumpy_taken++;
1113                                 if (PageDirty(cursor_page))
1114                                         nr_lumpy_dirty++;
1115                                 scan++;
1116                         } else {
1117                                 /* the page is freed already. */
1118                                 if (!page_count(cursor_page))
1119                                         continue;
1120                                 break;
1121                         }
1122                 }
1123
1124                 /* If we break out of the loop above, lumpy reclaim failed */
1125                 if (pfn < end_pfn)
1126                         nr_lumpy_failed++;
1127         }
1128
1129         *scanned = scan;
1130
1131         trace_mm_vmscan_lru_isolate(order,
1132                         nr_to_scan, scan,
1133                         nr_taken,
1134                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1135                         mode);
1136         return nr_taken;
1137 }
1138
1139 static unsigned long isolate_pages_global(unsigned long nr,
1140                                         struct list_head *dst,
1141                                         unsigned long *scanned, int order,
1142                                         int mode, struct zone *z,
1143                                         int active, int file)
1144 {
1145         int lru = LRU_BASE;
1146         if (active)
1147                 lru += LRU_ACTIVE;
1148         if (file)
1149                 lru += LRU_FILE;
1150         return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1151                                                                 mode, file);
1152 }
1153
1154 /*
1155  * clear_active_flags() is a helper for shrink_active_list(), clearing
1156  * any active bits from the pages in the list.
1157  */
1158 static unsigned long clear_active_flags(struct list_head *page_list,
1159                                         unsigned int *count)
1160 {
1161         int nr_active = 0;
1162         int lru;
1163         struct page *page;
1164
1165         list_for_each_entry(page, page_list, lru) {
1166                 int numpages = hpage_nr_pages(page);
1167                 lru = page_lru_base_type(page);
1168                 if (PageActive(page)) {
1169                         lru += LRU_ACTIVE;
1170                         ClearPageActive(page);
1171                         nr_active += numpages;
1172                 }
1173                 if (count)
1174                         count[lru] += numpages;
1175         }
1176
1177         return nr_active;
1178 }
1179
1180 /**
1181  * isolate_lru_page - tries to isolate a page from its LRU list
1182  * @page: page to isolate from its LRU list
1183  *
1184  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1185  * vmstat statistic corresponding to whatever LRU list the page was on.
1186  *
1187  * Returns 0 if the page was removed from an LRU list.
1188  * Returns -EBUSY if the page was not on an LRU list.
1189  *
1190  * The returned page will have PageLRU() cleared.  If it was found on
1191  * the active list, it will have PageActive set.  If it was found on
1192  * the unevictable list, it will have the PageUnevictable bit set. That flag
1193  * may need to be cleared by the caller before letting the page go.
1194  *
1195  * The vmstat statistic corresponding to the list on which the page was
1196  * found will be decremented.
1197  *
1198  * Restrictions:
1199  * (1) Must be called with an elevated refcount on the page. This is a
1200  *     fundamentnal difference from isolate_lru_pages (which is called
1201  *     without a stable reference).
1202  * (2) the lru_lock must not be held.
1203  * (3) interrupts must be enabled.
1204  */
1205 int isolate_lru_page(struct page *page)
1206 {
1207         int ret = -EBUSY;
1208
1209         if (PageLRU(page)) {
1210                 struct zone *zone = page_zone(page);
1211
1212                 spin_lock_irq(&zone->lru_lock);
1213                 if (PageLRU(page) && get_page_unless_zero(page)) {
1214                         int lru = page_lru(page);
1215                         ret = 0;
1216                         ClearPageLRU(page);
1217
1218                         del_page_from_lru_list(zone, page, lru);
1219                 }
1220                 spin_unlock_irq(&zone->lru_lock);
1221         }
1222         return ret;
1223 }
1224
1225 /*
1226  * Are there way too many processes in the direct reclaim path already?
1227  */
1228 static int too_many_isolated(struct zone *zone, int file,
1229                 struct scan_control *sc)
1230 {
1231         unsigned long inactive, isolated;
1232
1233         if (current_is_kswapd())
1234                 return 0;
1235
1236         if (!scanning_global_lru(sc))
1237                 return 0;
1238
1239         if (file) {
1240                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1241                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1242         } else {
1243                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1244                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1245         }
1246
1247         return isolated > inactive;
1248 }
1249
1250 /*
1251  * TODO: Try merging with migrations version of putback_lru_pages
1252  */
1253 static noinline_for_stack void
1254 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1255                                 unsigned long nr_anon, unsigned long nr_file,
1256                                 struct list_head *page_list)
1257 {
1258         struct page *page;
1259         struct pagevec pvec;
1260         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1261
1262         pagevec_init(&pvec, 1);
1263
1264         /*
1265          * Put back any unfreeable pages.
1266          */
1267         spin_lock(&zone->lru_lock);
1268         while (!list_empty(page_list)) {
1269                 int lru;
1270                 page = lru_to_page(page_list);
1271                 VM_BUG_ON(PageLRU(page));
1272                 list_del(&page->lru);
1273                 if (unlikely(!page_evictable(page, NULL))) {
1274                         spin_unlock_irq(&zone->lru_lock);
1275                         putback_lru_page(page);
1276                         spin_lock_irq(&zone->lru_lock);
1277                         continue;
1278                 }
1279                 SetPageLRU(page);
1280                 lru = page_lru(page);
1281                 add_page_to_lru_list(zone, page, lru);
1282                 if (is_active_lru(lru)) {
1283                         int file = is_file_lru(lru);
1284                         int numpages = hpage_nr_pages(page);
1285                         reclaim_stat->recent_rotated[file] += numpages;
1286                 }
1287                 if (!pagevec_add(&pvec, page)) {
1288                         spin_unlock_irq(&zone->lru_lock);
1289                         __pagevec_release(&pvec);
1290                         spin_lock_irq(&zone->lru_lock);
1291                 }
1292         }
1293         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1294         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1295
1296         spin_unlock_irq(&zone->lru_lock);
1297         pagevec_release(&pvec);
1298 }
1299
1300 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1301                                         struct scan_control *sc,
1302                                         unsigned long *nr_anon,
1303                                         unsigned long *nr_file,
1304                                         struct list_head *isolated_list)
1305 {
1306         unsigned long nr_active;
1307         unsigned int count[NR_LRU_LISTS] = { 0, };
1308         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1309
1310         nr_active = clear_active_flags(isolated_list, count);
1311         __count_vm_events(PGDEACTIVATE, nr_active);
1312
1313         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1314                               -count[LRU_ACTIVE_FILE]);
1315         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1316                               -count[LRU_INACTIVE_FILE]);
1317         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1318                               -count[LRU_ACTIVE_ANON]);
1319         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1320                               -count[LRU_INACTIVE_ANON]);
1321
1322         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1323         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1324         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1325         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1326
1327         reclaim_stat->recent_scanned[0] += *nr_anon;
1328         reclaim_stat->recent_scanned[1] += *nr_file;
1329 }
1330
1331 /*
1332  * Returns true if the caller should wait to clean dirty/writeback pages.
1333  *
1334  * If we are direct reclaiming for contiguous pages and we do not reclaim
1335  * everything in the list, try again and wait for writeback IO to complete.
1336  * This will stall high-order allocations noticeably. Only do that when really
1337  * need to free the pages under high memory pressure.
1338  */
1339 static inline bool should_reclaim_stall(unsigned long nr_taken,
1340                                         unsigned long nr_freed,
1341                                         int priority,
1342                                         struct scan_control *sc)
1343 {
1344         int lumpy_stall_priority;
1345
1346         /* kswapd should not stall on sync IO */
1347         if (current_is_kswapd())
1348                 return false;
1349
1350         /* Only stall on lumpy reclaim */
1351         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1352                 return false;
1353
1354         /* If we have relaimed everything on the isolated list, no stall */
1355         if (nr_freed == nr_taken)
1356                 return false;
1357
1358         /*
1359          * For high-order allocations, there are two stall thresholds.
1360          * High-cost allocations stall immediately where as lower
1361          * order allocations such as stacks require the scanning
1362          * priority to be much higher before stalling.
1363          */
1364         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1365                 lumpy_stall_priority = DEF_PRIORITY;
1366         else
1367                 lumpy_stall_priority = DEF_PRIORITY / 3;
1368
1369         return priority <= lumpy_stall_priority;
1370 }
1371
1372 /*
1373  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1374  * of reclaimed pages
1375  */
1376 static noinline_for_stack unsigned long
1377 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1378                         struct scan_control *sc, int priority, int file)
1379 {
1380         LIST_HEAD(page_list);
1381         unsigned long nr_scanned;
1382         unsigned long nr_reclaimed = 0;
1383         unsigned long nr_taken;
1384         unsigned long nr_anon;
1385         unsigned long nr_file;
1386
1387         while (unlikely(too_many_isolated(zone, file, sc))) {
1388                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1389
1390                 /* We are about to die and free our memory. Return now. */
1391                 if (fatal_signal_pending(current))
1392                         return SWAP_CLUSTER_MAX;
1393         }
1394
1395         set_reclaim_mode(priority, sc, false);
1396         lru_add_drain();
1397         spin_lock_irq(&zone->lru_lock);
1398
1399         if (scanning_global_lru(sc)) {
1400                 nr_taken = isolate_pages_global(nr_to_scan,
1401                         &page_list, &nr_scanned, sc->order,
1402                         sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1403                                         ISOLATE_BOTH : ISOLATE_INACTIVE,
1404                         zone, 0, file);
1405                 zone->pages_scanned += nr_scanned;
1406                 if (current_is_kswapd())
1407                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1408                                                nr_scanned);
1409                 else
1410                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1411                                                nr_scanned);
1412         } else {
1413                 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1414                         &page_list, &nr_scanned, sc->order,
1415                         sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ?
1416                                         ISOLATE_BOTH : ISOLATE_INACTIVE,
1417                         zone, sc->mem_cgroup,
1418                         0, file);
1419                 /*
1420                  * mem_cgroup_isolate_pages() keeps track of
1421                  * scanned pages on its own.
1422                  */
1423         }
1424
1425         if (nr_taken == 0) {
1426                 spin_unlock_irq(&zone->lru_lock);
1427                 return 0;
1428         }
1429
1430         update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1431
1432         spin_unlock_irq(&zone->lru_lock);
1433
1434         nr_reclaimed = shrink_page_list(&page_list, zone, sc);
1435
1436         /* Check if we should syncronously wait for writeback */
1437         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1438                 set_reclaim_mode(priority, sc, true);
1439                 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
1440         }
1441
1442         local_irq_disable();
1443         if (current_is_kswapd())
1444                 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1445         __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1446
1447         putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1448
1449         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1450                 zone_idx(zone),
1451                 nr_scanned, nr_reclaimed,
1452                 priority,
1453                 trace_shrink_flags(file, sc->reclaim_mode));
1454         return nr_reclaimed;
1455 }
1456
1457 /*
1458  * This moves pages from the active list to the inactive list.
1459  *
1460  * We move them the other way if the page is referenced by one or more
1461  * processes, from rmap.
1462  *
1463  * If the pages are mostly unmapped, the processing is fast and it is
1464  * appropriate to hold zone->lru_lock across the whole operation.  But if
1465  * the pages are mapped, the processing is slow (page_referenced()) so we
1466  * should drop zone->lru_lock around each page.  It's impossible to balance
1467  * this, so instead we remove the pages from the LRU while processing them.
1468  * It is safe to rely on PG_active against the non-LRU pages in here because
1469  * nobody will play with that bit on a non-LRU page.
1470  *
1471  * The downside is that we have to touch page->_count against each page.
1472  * But we had to alter page->flags anyway.
1473  */
1474
1475 static void move_active_pages_to_lru(struct zone *zone,
1476                                      struct list_head *list,
1477                                      enum lru_list lru)
1478 {
1479         unsigned long pgmoved = 0;
1480         struct pagevec pvec;
1481         struct page *page;
1482
1483         pagevec_init(&pvec, 1);
1484
1485         while (!list_empty(list)) {
1486                 page = lru_to_page(list);
1487
1488                 VM_BUG_ON(PageLRU(page));
1489                 SetPageLRU(page);
1490
1491                 list_move(&page->lru, &zone->lru[lru].list);
1492                 mem_cgroup_add_lru_list(page, lru);
1493                 pgmoved += hpage_nr_pages(page);
1494
1495                 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1496                         spin_unlock_irq(&zone->lru_lock);
1497                         if (buffer_heads_over_limit)
1498                                 pagevec_strip(&pvec);
1499                         __pagevec_release(&pvec);
1500                         spin_lock_irq(&zone->lru_lock);
1501                 }
1502         }
1503         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1504         if (!is_active_lru(lru))
1505                 __count_vm_events(PGDEACTIVATE, pgmoved);
1506 }
1507
1508 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1509                         struct scan_control *sc, int priority, int file)
1510 {
1511         unsigned long nr_taken;
1512         unsigned long pgscanned;
1513         unsigned long vm_flags;
1514         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1515         LIST_HEAD(l_active);
1516         LIST_HEAD(l_inactive);
1517         struct page *page;
1518         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1519         unsigned long nr_rotated = 0;
1520
1521         lru_add_drain();
1522         spin_lock_irq(&zone->lru_lock);
1523         if (scanning_global_lru(sc)) {
1524                 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1525                                                 &pgscanned, sc->order,
1526                                                 ISOLATE_ACTIVE, zone,
1527                                                 1, file);
1528                 zone->pages_scanned += pgscanned;
1529         } else {
1530                 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1531                                                 &pgscanned, sc->order,
1532                                                 ISOLATE_ACTIVE, zone,
1533                                                 sc->mem_cgroup, 1, file);
1534                 /*
1535                  * mem_cgroup_isolate_pages() keeps track of
1536                  * scanned pages on its own.
1537                  */
1538         }
1539
1540         reclaim_stat->recent_scanned[file] += nr_taken;
1541
1542         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1543         if (file)
1544                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1545         else
1546                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1547         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1548         spin_unlock_irq(&zone->lru_lock);
1549
1550         while (!list_empty(&l_hold)) {
1551                 cond_resched();
1552                 page = lru_to_page(&l_hold);
1553                 list_del(&page->lru);
1554
1555                 if (unlikely(!page_evictable(page, NULL))) {
1556                         putback_lru_page(page);
1557                         continue;
1558                 }
1559
1560                 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1561                         nr_rotated += hpage_nr_pages(page);
1562                         /*
1563                          * Identify referenced, file-backed active pages and
1564                          * give them one more trip around the active list. So
1565                          * that executable code get better chances to stay in
1566                          * memory under moderate memory pressure.  Anon pages
1567                          * are not likely to be evicted by use-once streaming
1568                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1569                          * so we ignore them here.
1570                          */
1571                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1572                                 list_add(&page->lru, &l_active);
1573                                 continue;
1574                         }
1575                 }
1576
1577                 ClearPageActive(page);  /* we are de-activating */
1578                 list_add(&page->lru, &l_inactive);
1579         }
1580
1581         /*
1582          * Move pages back to the lru list.
1583          */
1584         spin_lock_irq(&zone->lru_lock);
1585         /*
1586          * Count referenced pages from currently used mappings as rotated,
1587          * even though only some of them are actually re-activated.  This
1588          * helps balance scan pressure between file and anonymous pages in
1589          * get_scan_ratio.
1590          */
1591         reclaim_stat->recent_rotated[file] += nr_rotated;
1592
1593         move_active_pages_to_lru(zone, &l_active,
1594                                                 LRU_ACTIVE + file * LRU_FILE);
1595         move_active_pages_to_lru(zone, &l_inactive,
1596                                                 LRU_BASE   + file * LRU_FILE);
1597         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1598         spin_unlock_irq(&zone->lru_lock);
1599 }
1600
1601 #ifdef CONFIG_SWAP
1602 static int inactive_anon_is_low_global(struct zone *zone)
1603 {
1604         unsigned long active, inactive;
1605
1606         active = zone_page_state(zone, NR_ACTIVE_ANON);
1607         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1608
1609         if (inactive * zone->inactive_ratio < active)
1610                 return 1;
1611
1612         return 0;
1613 }
1614
1615 /**
1616  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1617  * @zone: zone to check
1618  * @sc:   scan control of this context
1619  *
1620  * Returns true if the zone does not have enough inactive anon pages,
1621  * meaning some active anon pages need to be deactivated.
1622  */
1623 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1624 {
1625         int low;
1626
1627         /*
1628          * If we don't have swap space, anonymous page deactivation
1629          * is pointless.
1630          */
1631         if (!total_swap_pages)
1632                 return 0;
1633
1634         if (scanning_global_lru(sc))
1635                 low = inactive_anon_is_low_global(zone);
1636         else
1637                 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1638         return low;
1639 }
1640 #else
1641 static inline int inactive_anon_is_low(struct zone *zone,
1642                                         struct scan_control *sc)
1643 {
1644         return 0;
1645 }
1646 #endif
1647
1648 static int inactive_file_is_low_global(struct zone *zone)
1649 {
1650         unsigned long active, inactive;
1651
1652         active = zone_page_state(zone, NR_ACTIVE_FILE);
1653         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1654
1655         return (active > inactive);
1656 }
1657
1658 /**
1659  * inactive_file_is_low - check if file pages need to be deactivated
1660  * @zone: zone to check
1661  * @sc:   scan control of this context
1662  *
1663  * When the system is doing streaming IO, memory pressure here
1664  * ensures that active file pages get deactivated, until more
1665  * than half of the file pages are on the inactive list.
1666  *
1667  * Once we get to that situation, protect the system's working
1668  * set from being evicted by disabling active file page aging.
1669  *
1670  * This uses a different ratio than the anonymous pages, because
1671  * the page cache uses a use-once replacement algorithm.
1672  */
1673 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1674 {
1675         int low;
1676
1677         if (scanning_global_lru(sc))
1678                 low = inactive_file_is_low_global(zone);
1679         else
1680                 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1681         return low;
1682 }
1683
1684 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1685                                 int file)
1686 {
1687         if (file)
1688                 return inactive_file_is_low(zone, sc);
1689         else
1690                 return inactive_anon_is_low(zone, sc);
1691 }
1692
1693 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1694         struct zone *zone, struct scan_control *sc, int priority)
1695 {
1696         int file = is_file_lru(lru);
1697
1698         if (is_active_lru(lru)) {
1699                 if (inactive_list_is_low(zone, sc, file))
1700                     shrink_active_list(nr_to_scan, zone, sc, priority, file);
1701                 return 0;
1702         }
1703
1704         return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1705 }
1706
1707 /*
1708  * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1709  * until we collected @swap_cluster_max pages to scan.
1710  */
1711 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1712                                        unsigned long *nr_saved_scan)
1713 {
1714         unsigned long nr;
1715
1716         *nr_saved_scan += nr_to_scan;
1717         nr = *nr_saved_scan;
1718
1719         if (nr >= SWAP_CLUSTER_MAX)
1720                 *nr_saved_scan = 0;
1721         else
1722                 nr = 0;
1723
1724         return nr;
1725 }
1726
1727 /*
1728  * Determine how aggressively the anon and file LRU lists should be
1729  * scanned.  The relative value of each set of LRU lists is determined
1730  * by looking at the fraction of the pages scanned we did rotate back
1731  * onto the active list instead of evict.
1732  *
1733  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1734  */
1735 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1736                                         unsigned long *nr, int priority)
1737 {
1738         unsigned long anon, file, free;
1739         unsigned long anon_prio, file_prio;
1740         unsigned long ap, fp;
1741         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1742         u64 fraction[2], denominator;
1743         enum lru_list l;
1744         int noswap = 0;
1745
1746         /* If we have no swap space, do not bother scanning anon pages. */
1747         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1748                 noswap = 1;
1749                 fraction[0] = 0;
1750                 fraction[1] = 1;
1751                 denominator = 1;
1752                 goto out;
1753         }
1754
1755         anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1756                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1757         file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1758                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1759
1760         if (scanning_global_lru(sc)) {
1761                 free  = zone_page_state(zone, NR_FREE_PAGES);
1762                 /* If we have very few page cache pages,
1763                    force-scan anon pages. */
1764                 if (unlikely(file + free <= high_wmark_pages(zone))) {
1765                         fraction[0] = 1;
1766                         fraction[1] = 0;
1767                         denominator = 1;
1768                         goto out;
1769                 }
1770         }
1771
1772         /*
1773          * With swappiness at 100, anonymous and file have the same priority.
1774          * This scanning priority is essentially the inverse of IO cost.
1775          */
1776         anon_prio = sc->swappiness;
1777         file_prio = 200 - sc->swappiness;
1778
1779         /*
1780          * OK, so we have swap space and a fair amount of page cache
1781          * pages.  We use the recently rotated / recently scanned
1782          * ratios to determine how valuable each cache is.
1783          *
1784          * Because workloads change over time (and to avoid overflow)
1785          * we keep these statistics as a floating average, which ends
1786          * up weighing recent references more than old ones.
1787          *
1788          * anon in [0], file in [1]
1789          */
1790         spin_lock_irq(&zone->lru_lock);
1791         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1792                 reclaim_stat->recent_scanned[0] /= 2;
1793                 reclaim_stat->recent_rotated[0] /= 2;
1794         }
1795
1796         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1797                 reclaim_stat->recent_scanned[1] /= 2;
1798                 reclaim_stat->recent_rotated[1] /= 2;
1799         }
1800
1801         /*
1802          * The amount of pressure on anon vs file pages is inversely
1803          * proportional to the fraction of recently scanned pages on
1804          * each list that were recently referenced and in active use.
1805          */
1806         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1807         ap /= reclaim_stat->recent_rotated[0] + 1;
1808
1809         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1810         fp /= reclaim_stat->recent_rotated[1] + 1;
1811         spin_unlock_irq(&zone->lru_lock);
1812
1813         fraction[0] = ap;
1814         fraction[1] = fp;
1815         denominator = ap + fp + 1;
1816 out:
1817         for_each_evictable_lru(l) {
1818                 int file = is_file_lru(l);
1819                 unsigned long scan;
1820
1821                 scan = zone_nr_lru_pages(zone, sc, l);
1822                 if (priority || noswap) {
1823                         scan >>= priority;
1824                         scan = div64_u64(scan * fraction[file], denominator);
1825                 }
1826                 nr[l] = nr_scan_try_batch(scan,
1827                                           &reclaim_stat->nr_saved_scan[l]);
1828         }
1829 }
1830
1831 /*
1832  * Reclaim/compaction depends on a number of pages being freed. To avoid
1833  * disruption to the system, a small number of order-0 pages continue to be
1834  * rotated and reclaimed in the normal fashion. However, by the time we get
1835  * back to the allocator and call try_to_compact_zone(), we ensure that
1836  * there are enough free pages for it to be likely successful
1837  */
1838 static inline bool should_continue_reclaim(struct zone *zone,
1839                                         unsigned long nr_reclaimed,
1840                                         unsigned long nr_scanned,
1841                                         struct scan_control *sc)
1842 {
1843         unsigned long pages_for_compaction;
1844         unsigned long inactive_lru_pages;
1845
1846         /* If not in reclaim/compaction mode, stop */
1847         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1848                 return false;
1849
1850         /* Consider stopping depending on scan and reclaim activity */
1851         if (sc->gfp_mask & __GFP_REPEAT) {
1852                 /*
1853                  * For __GFP_REPEAT allocations, stop reclaiming if the
1854                  * full LRU list has been scanned and we are still failing
1855                  * to reclaim pages. This full LRU scan is potentially
1856                  * expensive but a __GFP_REPEAT caller really wants to succeed
1857                  */
1858                 if (!nr_reclaimed && !nr_scanned)
1859                         return false;
1860         } else {
1861                 /*
1862                  * For non-__GFP_REPEAT allocations which can presumably
1863                  * fail without consequence, stop if we failed to reclaim
1864                  * any pages from the last SWAP_CLUSTER_MAX number of
1865                  * pages that were scanned. This will return to the
1866                  * caller faster at the risk reclaim/compaction and
1867                  * the resulting allocation attempt fails
1868                  */
1869                 if (!nr_reclaimed)
1870                         return false;
1871         }
1872
1873         /*
1874          * If we have not reclaimed enough pages for compaction and the
1875          * inactive lists are large enough, continue reclaiming
1876          */
1877         pages_for_compaction = (2UL << sc->order);
1878         inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1879                                 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1880         if (sc->nr_reclaimed < pages_for_compaction &&
1881                         inactive_lru_pages > pages_for_compaction)
1882                 return true;
1883
1884         /* If compaction would go ahead or the allocation would succeed, stop */
1885         switch (compaction_suitable(zone, sc->order)) {
1886         case COMPACT_PARTIAL:
1887         case COMPACT_CONTINUE:
1888                 return false;
1889         default:
1890                 return true;
1891         }
1892 }
1893
1894 /*
1895  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1896  */
1897 static void shrink_zone(int priority, struct zone *zone,
1898                                 struct scan_control *sc)
1899 {
1900         unsigned long nr[NR_LRU_LISTS];
1901         unsigned long nr_to_scan;
1902         enum lru_list l;
1903         unsigned long nr_reclaimed, nr_scanned;
1904         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1905
1906 restart:
1907         nr_reclaimed = 0;
1908         nr_scanned = sc->nr_scanned;
1909         get_scan_count(zone, sc, nr, priority);
1910
1911         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1912                                         nr[LRU_INACTIVE_FILE]) {
1913                 for_each_evictable_lru(l) {
1914                         if (nr[l]) {
1915                                 nr_to_scan = min_t(unsigned long,
1916                                                    nr[l], SWAP_CLUSTER_MAX);
1917                                 nr[l] -= nr_to_scan;
1918
1919                                 nr_reclaimed += shrink_list(l, nr_to_scan,
1920                                                             zone, sc, priority);
1921                         }
1922                 }
1923                 /*
1924                  * On large memory systems, scan >> priority can become
1925                  * really large. This is fine for the starting priority;
1926                  * we want to put equal scanning pressure on each zone.
1927                  * However, if the VM has a harder time of freeing pages,
1928                  * with multiple processes reclaiming pages, the total
1929                  * freeing target can get unreasonably large.
1930                  */
1931                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1932                         break;
1933         }
1934         sc->nr_reclaimed += nr_reclaimed;
1935
1936         /*
1937          * Even if we did not try to evict anon pages at all, we want to
1938          * rebalance the anon lru active/inactive ratio.
1939          */
1940         if (inactive_anon_is_low(zone, sc))
1941                 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1942
1943         /* reclaim/compaction might need reclaim to continue */
1944         if (should_continue_reclaim(zone, nr_reclaimed,
1945                                         sc->nr_scanned - nr_scanned, sc))
1946                 goto restart;
1947
1948         throttle_vm_writeout(sc->gfp_mask);
1949 }
1950
1951 /*
1952  * This is the direct reclaim path, for page-allocating processes.  We only
1953  * try to reclaim pages from zones which will satisfy the caller's allocation
1954  * request.
1955  *
1956  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1957  * Because:
1958  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1959  *    allocation or
1960  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1961  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1962  *    zone defense algorithm.
1963  *
1964  * If a zone is deemed to be full of pinned pages then just give it a light
1965  * scan then give up on it.
1966  */
1967 static void shrink_zones(int priority, struct zonelist *zonelist,
1968                                         struct scan_control *sc)
1969 {
1970         struct zoneref *z;
1971         struct zone *zone;
1972
1973         for_each_zone_zonelist_nodemask(zone, z, zonelist,
1974                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
1975                 if (!populated_zone(zone))
1976                         continue;
1977                 /*
1978                  * Take care memory controller reclaiming has small influence
1979                  * to global LRU.
1980                  */
1981                 if (scanning_global_lru(sc)) {
1982                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1983                                 continue;
1984                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1985                                 continue;       /* Let kswapd poll it */
1986                 }
1987
1988                 shrink_zone(priority, zone, sc);
1989         }
1990 }
1991
1992 static bool zone_reclaimable(struct zone *zone)
1993 {
1994         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1995 }
1996
1997 /* All zones in zonelist are unreclaimable? */
1998 static bool all_unreclaimable(struct zonelist *zonelist,
1999                 struct scan_control *sc)
2000 {
2001         struct zoneref *z;
2002         struct zone *zone;
2003
2004         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2005                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2006                 if (!populated_zone(zone))
2007                         continue;
2008                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2009                         continue;
2010                 if (!zone->all_unreclaimable)
2011                         return false;
2012         }
2013
2014         return true;
2015 }
2016
2017 /*
2018  * This is the main entry point to direct page reclaim.
2019  *
2020  * If a full scan of the inactive list fails to free enough memory then we
2021  * are "out of memory" and something needs to be killed.
2022  *
2023  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2024  * high - the zone may be full of dirty or under-writeback pages, which this
2025  * caller can't do much about.  We kick the writeback threads and take explicit
2026  * naps in the hope that some of these pages can be written.  But if the
2027  * allocating task holds filesystem locks which prevent writeout this might not
2028  * work, and the allocation attempt will fail.
2029  *
2030  * returns:     0, if no pages reclaimed
2031  *              else, the number of pages reclaimed
2032  */
2033 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2034                                         struct scan_control *sc)
2035 {
2036         int priority;
2037         unsigned long total_scanned = 0;
2038         struct reclaim_state *reclaim_state = current->reclaim_state;
2039         struct zoneref *z;
2040         struct zone *zone;
2041         unsigned long writeback_threshold;
2042
2043         get_mems_allowed();
2044         delayacct_freepages_start();
2045
2046         if (scanning_global_lru(sc))
2047                 count_vm_event(ALLOCSTALL);
2048
2049         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2050                 sc->nr_scanned = 0;
2051                 if (!priority)
2052                         disable_swap_token();
2053                 shrink_zones(priority, zonelist, sc);
2054                 /*
2055                  * Don't shrink slabs when reclaiming memory from
2056                  * over limit cgroups
2057                  */
2058                 if (scanning_global_lru(sc)) {
2059                         unsigned long lru_pages = 0;
2060                         for_each_zone_zonelist(zone, z, zonelist,
2061                                         gfp_zone(sc->gfp_mask)) {
2062                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2063                                         continue;
2064
2065                                 lru_pages += zone_reclaimable_pages(zone);
2066                         }
2067
2068                         shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
2069                         if (reclaim_state) {
2070                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2071                                 reclaim_state->reclaimed_slab = 0;
2072                         }
2073                 }
2074                 total_scanned += sc->nr_scanned;
2075                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2076                         goto out;
2077
2078                 /*
2079                  * Try to write back as many pages as we just scanned.  This
2080                  * tends to cause slow streaming writers to write data to the
2081                  * disk smoothly, at the dirtying rate, which is nice.   But
2082                  * that's undesirable in laptop mode, where we *want* lumpy
2083                  * writeout.  So in laptop mode, write out the whole world.
2084                  */
2085                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2086                 if (total_scanned > writeback_threshold) {
2087                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
2088                         sc->may_writepage = 1;
2089                 }
2090
2091                 /* Take a nap, wait for some writeback to complete */
2092                 if (!sc->hibernation_mode && sc->nr_scanned &&
2093                     priority < DEF_PRIORITY - 2) {
2094                         struct zone *preferred_zone;
2095
2096                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2097                                                 &cpuset_current_mems_allowed,
2098                                                 &preferred_zone);
2099                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2100                 }
2101         }
2102
2103 out:
2104         delayacct_freepages_end();
2105         put_mems_allowed();
2106
2107         if (sc->nr_reclaimed)
2108                 return sc->nr_reclaimed;
2109
2110         /*
2111          * As hibernation is going on, kswapd is freezed so that it can't mark
2112          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2113          * check.
2114          */
2115         if (oom_killer_disabled)
2116                 return 0;
2117
2118         /* top priority shrink_zones still had more to do? don't OOM, then */
2119         if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2120                 return 1;
2121
2122         return 0;
2123 }
2124
2125 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2126                                 gfp_t gfp_mask, nodemask_t *nodemask)
2127 {
2128         unsigned long nr_reclaimed;
2129         struct scan_control sc = {
2130                 .gfp_mask = gfp_mask,
2131                 .may_writepage = !laptop_mode,
2132                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2133                 .may_unmap = 1,
2134                 .may_swap = 1,
2135                 .swappiness = vm_swappiness,
2136                 .order = order,
2137                 .mem_cgroup = NULL,
2138                 .nodemask = nodemask,
2139         };
2140
2141         trace_mm_vmscan_direct_reclaim_begin(order,
2142                                 sc.may_writepage,
2143                                 gfp_mask);
2144
2145         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2146
2147         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2148
2149         return nr_reclaimed;
2150 }
2151
2152 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2153
2154 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2155                                                 gfp_t gfp_mask, bool noswap,
2156                                                 unsigned int swappiness,
2157                                                 struct zone *zone)
2158 {
2159         struct scan_control sc = {
2160                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2161                 .may_writepage = !laptop_mode,
2162                 .may_unmap = 1,
2163                 .may_swap = !noswap,
2164                 .swappiness = swappiness,
2165                 .order = 0,
2166                 .mem_cgroup = mem,
2167         };
2168         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2169                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2170
2171         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2172                                                       sc.may_writepage,
2173                                                       sc.gfp_mask);
2174
2175         /*
2176          * NOTE: Although we can get the priority field, using it
2177          * here is not a good idea, since it limits the pages we can scan.
2178          * if we don't reclaim here, the shrink_zone from balance_pgdat
2179          * will pick up pages from other mem cgroup's as well. We hack
2180          * the priority and make it zero.
2181          */
2182         shrink_zone(0, zone, &sc);
2183
2184         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2185
2186         return sc.nr_reclaimed;
2187 }
2188
2189 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2190                                            gfp_t gfp_mask,
2191                                            bool noswap,
2192                                            unsigned int swappiness)
2193 {
2194         struct zonelist *zonelist;
2195         unsigned long nr_reclaimed;
2196         struct scan_control sc = {
2197                 .may_writepage = !laptop_mode,
2198                 .may_unmap = 1,
2199                 .may_swap = !noswap,
2200                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2201                 .swappiness = swappiness,
2202                 .order = 0,
2203                 .mem_cgroup = mem_cont,
2204                 .nodemask = NULL, /* we don't care the placement */
2205         };
2206
2207         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2208                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2209         zonelist = NODE_DATA(numa_node_id())->node_zonelists;
2210
2211         trace_mm_vmscan_memcg_reclaim_begin(0,
2212                                             sc.may_writepage,
2213                                             sc.gfp_mask);
2214
2215         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2216
2217         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2218
2219         return nr_reclaimed;
2220 }
2221 #endif
2222
2223 /*
2224  * pgdat_balanced is used when checking if a node is balanced for high-order
2225  * allocations. Only zones that meet watermarks and are in a zone allowed
2226  * by the callers classzone_idx are added to balanced_pages. The total of
2227  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2228  * for the node to be considered balanced. Forcing all zones to be balanced
2229  * for high orders can cause excessive reclaim when there are imbalanced zones.
2230  * The choice of 25% is due to
2231  *   o a 16M DMA zone that is balanced will not balance a zone on any
2232  *     reasonable sized machine
2233  *   o On all other machines, the top zone must be at least a reasonable
2234  *     precentage of the middle zones. For example, on 32-bit x86, highmem
2235  *     would need to be at least 256M for it to be balance a whole node.
2236  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2237  *     to balance a node on its own. These seemed like reasonable ratios.
2238  */
2239 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2240                                                 int classzone_idx)
2241 {
2242         unsigned long present_pages = 0;
2243         int i;
2244
2245         for (i = 0; i <= classzone_idx; i++)
2246                 present_pages += pgdat->node_zones[i].present_pages;
2247
2248         return balanced_pages > (present_pages >> 2);
2249 }
2250
2251 /* is kswapd sleeping prematurely? */
2252 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2253                                         int classzone_idx)
2254 {
2255         int i;
2256         unsigned long balanced = 0;
2257         bool all_zones_ok = true;
2258
2259         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2260         if (remaining)
2261                 return true;
2262
2263         /* Check the watermark levels */
2264         for (i = 0; i <= classzone_idx; i++) {
2265                 struct zone *zone = pgdat->node_zones + i;
2266
2267                 if (!populated_zone(zone))
2268                         continue;
2269
2270                 /*
2271                  * balance_pgdat() skips over all_unreclaimable after
2272                  * DEF_PRIORITY. Effectively, it considers them balanced so
2273                  * they must be considered balanced here as well if kswapd
2274                  * is to sleep
2275                  */
2276                 if (zone->all_unreclaimable) {
2277                         balanced += zone->present_pages;
2278                         continue;
2279                 }
2280
2281                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2282                                                         i, 0))
2283                         all_zones_ok = false;
2284                 else
2285                         balanced += zone->present_pages;
2286         }
2287
2288         /*
2289          * For high-order requests, the balanced zones must contain at least
2290          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2291          * must be balanced
2292          */
2293         if (order)
2294                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2295         else
2296                 return !all_zones_ok;
2297 }
2298
2299 /*
2300  * For kswapd, balance_pgdat() will work across all this node's zones until
2301  * they are all at high_wmark_pages(zone).
2302  *
2303  * Returns the final order kswapd was reclaiming at
2304  *
2305  * There is special handling here for zones which are full of pinned pages.
2306  * This can happen if the pages are all mlocked, or if they are all used by
2307  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2308  * What we do is to detect the case where all pages in the zone have been
2309  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2310  * dead and from now on, only perform a short scan.  Basically we're polling
2311  * the zone for when the problem goes away.
2312  *
2313  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2314  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2315  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2316  * lower zones regardless of the number of free pages in the lower zones. This
2317  * interoperates with the page allocator fallback scheme to ensure that aging
2318  * of pages is balanced across the zones.
2319  */
2320 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2321                                                         int *classzone_idx)
2322 {
2323         int all_zones_ok;
2324         unsigned long balanced;
2325         int priority;
2326         int i;
2327         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2328         unsigned long total_scanned;
2329         struct reclaim_state *reclaim_state = current->reclaim_state;
2330         struct scan_control sc = {
2331                 .gfp_mask = GFP_KERNEL,
2332                 .may_unmap = 1,
2333                 .may_swap = 1,
2334                 /*
2335                  * kswapd doesn't want to be bailed out while reclaim. because
2336                  * we want to put equal scanning pressure on each zone.
2337                  */
2338                 .nr_to_reclaim = ULONG_MAX,
2339                 .swappiness = vm_swappiness,
2340                 .order = order,
2341                 .mem_cgroup = NULL,
2342         };
2343 loop_again:
2344         total_scanned = 0;
2345         sc.nr_reclaimed = 0;
2346         sc.may_writepage = !laptop_mode;
2347         count_vm_event(PAGEOUTRUN);
2348
2349         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2350                 unsigned long lru_pages = 0;
2351                 int has_under_min_watermark_zone = 0;
2352
2353                 /* The swap token gets in the way of swapout... */
2354                 if (!priority)
2355                         disable_swap_token();
2356
2357                 all_zones_ok = 1;
2358                 balanced = 0;
2359
2360                 /*
2361                  * Scan in the highmem->dma direction for the highest
2362                  * zone which needs scanning
2363                  */
2364                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2365                         struct zone *zone = pgdat->node_zones + i;
2366
2367                         if (!populated_zone(zone))
2368                                 continue;
2369
2370                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2371                                 continue;
2372
2373                         /*
2374                          * Do some background aging of the anon list, to give
2375                          * pages a chance to be referenced before reclaiming.
2376                          */
2377                         if (inactive_anon_is_low(zone, &sc))
2378                                 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2379                                                         &sc, priority, 0);
2380
2381                         if (!zone_watermark_ok_safe(zone, order,
2382                                         high_wmark_pages(zone), 0, 0)) {
2383                                 end_zone = i;
2384                                 break;
2385                         }
2386                 }
2387                 if (i < 0)
2388                         goto out;
2389
2390                 for (i = 0; i <= end_zone; i++) {
2391                         struct zone *zone = pgdat->node_zones + i;
2392
2393                         lru_pages += zone_reclaimable_pages(zone);
2394                 }
2395
2396                 /*
2397                  * Now scan the zone in the dma->highmem direction, stopping
2398                  * at the last zone which needs scanning.
2399                  *
2400                  * We do this because the page allocator works in the opposite
2401                  * direction.  This prevents the page allocator from allocating
2402                  * pages behind kswapd's direction of progress, which would
2403                  * cause too much scanning of the lower zones.
2404                  */
2405                 for (i = 0; i <= end_zone; i++) {
2406                         struct zone *zone = pgdat->node_zones + i;
2407                         int nr_slab;
2408                         unsigned long balance_gap;
2409
2410                         if (!populated_zone(zone))
2411                                 continue;
2412
2413                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2414                                 continue;
2415
2416                         sc.nr_scanned = 0;
2417
2418                         /*
2419                          * Call soft limit reclaim before calling shrink_zone.
2420                          * For now we ignore the return value
2421                          */
2422                         mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2423
2424                         /*
2425                          * We put equal pressure on every zone, unless
2426                          * one zone has way too many pages free
2427                          * already. The "too many pages" is defined
2428                          * as the high wmark plus a "gap" where the
2429                          * gap is either the low watermark or 1%
2430                          * of the zone, whichever is smaller.
2431                          */
2432                         balance_gap = min(low_wmark_pages(zone),
2433                                 (zone->present_pages +
2434                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2435                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2436                         if (!zone_watermark_ok_safe(zone, order,
2437                                         high_wmark_pages(zone) + balance_gap,
2438                                         end_zone, 0)) {
2439                                 shrink_zone(priority, zone, &sc);
2440
2441                                 reclaim_state->reclaimed_slab = 0;
2442                                 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2443                                                         lru_pages);
2444                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2445                                 total_scanned += sc.nr_scanned;
2446
2447                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2448                                         zone->all_unreclaimable = 1;
2449                         }
2450
2451                         /*
2452                          * If we've done a decent amount of scanning and
2453                          * the reclaim ratio is low, start doing writepage
2454                          * even in laptop mode
2455                          */
2456                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2457                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2458                                 sc.may_writepage = 1;
2459
2460                         if (zone->all_unreclaimable) {
2461                                 if (end_zone && end_zone == i)
2462                                         end_zone--;
2463                                 continue;
2464                         }
2465
2466                         if (!zone_watermark_ok_safe(zone, order,
2467                                         high_wmark_pages(zone), end_zone, 0)) {
2468                                 all_zones_ok = 0;
2469                                 /*
2470                                  * We are still under min water mark.  This
2471                                  * means that we have a GFP_ATOMIC allocation
2472                                  * failure risk. Hurry up!
2473                                  */
2474                                 if (!zone_watermark_ok_safe(zone, order,
2475                                             min_wmark_pages(zone), end_zone, 0))
2476                                         has_under_min_watermark_zone = 1;
2477                         } else {
2478                                 /*
2479                                  * If a zone reaches its high watermark,
2480                                  * consider it to be no longer congested. It's
2481                                  * possible there are dirty pages backed by
2482                                  * congested BDIs but as pressure is relieved,
2483                                  * spectulatively avoid congestion waits
2484                                  */
2485                                 zone_clear_flag(zone, ZONE_CONGESTED);
2486                                 if (i <= *classzone_idx)
2487                                         balanced += zone->present_pages;
2488                         }
2489
2490                 }
2491                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2492                         break;          /* kswapd: all done */
2493                 /*
2494                  * OK, kswapd is getting into trouble.  Take a nap, then take
2495                  * another pass across the zones.
2496                  */
2497                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2498                         if (has_under_min_watermark_zone)
2499                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2500                         else
2501                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2502                 }
2503
2504                 /*
2505                  * We do this so kswapd doesn't build up large priorities for
2506                  * example when it is freeing in parallel with allocators. It
2507                  * matches the direct reclaim path behaviour in terms of impact
2508                  * on zone->*_priority.
2509                  */
2510                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2511                         break;
2512         }
2513 out:
2514
2515         /*
2516          * order-0: All zones must meet high watermark for a balanced node
2517          * high-order: Balanced zones must make up at least 25% of the node
2518          *             for the node to be balanced
2519          */
2520         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2521                 cond_resched();
2522
2523                 try_to_freeze();
2524
2525                 /*
2526                  * Fragmentation may mean that the system cannot be
2527                  * rebalanced for high-order allocations in all zones.
2528                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2529                  * it means the zones have been fully scanned and are still
2530                  * not balanced. For high-order allocations, there is
2531                  * little point trying all over again as kswapd may
2532                  * infinite loop.
2533                  *
2534                  * Instead, recheck all watermarks at order-0 as they
2535                  * are the most important. If watermarks are ok, kswapd will go
2536                  * back to sleep. High-order users can still perform direct
2537                  * reclaim if they wish.
2538                  */
2539                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2540                         order = sc.order = 0;
2541
2542                 goto loop_again;
2543         }
2544
2545         /*
2546          * If kswapd was reclaiming at a higher order, it has the option of
2547          * sleeping without all zones being balanced. Before it does, it must
2548          * ensure that the watermarks for order-0 on *all* zones are met and
2549          * that the congestion flags are cleared. The congestion flag must
2550          * be cleared as kswapd is the only mechanism that clears the flag
2551          * and it is potentially going to sleep here.
2552          */
2553         if (order) {
2554                 for (i = 0; i <= end_zone; i++) {
2555                         struct zone *zone = pgdat->node_zones + i;
2556
2557                         if (!populated_zone(zone))
2558                                 continue;
2559
2560                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2561                                 continue;
2562
2563                         /* Confirm the zone is balanced for order-0 */
2564                         if (!zone_watermark_ok(zone, 0,
2565                                         high_wmark_pages(zone), 0, 0)) {
2566                                 order = sc.order = 0;
2567                                 goto loop_again;
2568                         }
2569
2570                         /* If balanced, clear the congested flag */
2571                         zone_clear_flag(zone, ZONE_CONGESTED);
2572                 }
2573         }
2574
2575         /*
2576          * Return the order we were reclaiming at so sleeping_prematurely()
2577          * makes a decision on the order we were last reclaiming at. However,
2578          * if another caller entered the allocator slow path while kswapd
2579          * was awake, order will remain at the higher level
2580          */
2581         *classzone_idx = end_zone;
2582         return order;
2583 }
2584
2585 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2586 {
2587         long remaining = 0;
2588         DEFINE_WAIT(wait);
2589
2590         if (freezing(current) || kthread_should_stop())
2591                 return;
2592
2593         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2594
2595         /* Try to sleep for a short interval */
2596         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2597                 remaining = schedule_timeout(HZ/10);
2598                 finish_wait(&pgdat->kswapd_wait, &wait);
2599                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2600         }
2601
2602         /*
2603          * After a short sleep, check if it was a premature sleep. If not, then
2604          * go fully to sleep until explicitly woken up.
2605          */
2606         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2607                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2608
2609                 /*
2610                  * vmstat counters are not perfectly accurate and the estimated
2611                  * value for counters such as NR_FREE_PAGES can deviate from the
2612                  * true value by nr_online_cpus * threshold. To avoid the zone
2613                  * watermarks being breached while under pressure, we reduce the
2614                  * per-cpu vmstat threshold while kswapd is awake and restore
2615                  * them before going back to sleep.
2616                  */
2617                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2618                 schedule();
2619                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2620         } else {
2621                 if (remaining)
2622                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2623                 else
2624                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2625         }
2626         finish_wait(&pgdat->kswapd_wait, &wait);
2627 }
2628
2629 /*
2630  * The background pageout daemon, started as a kernel thread
2631  * from the init process.
2632  *
2633  * This basically trickles out pages so that we have _some_
2634  * free memory available even if there is no other activity
2635  * that frees anything up. This is needed for things like routing
2636  * etc, where we otherwise might have all activity going on in
2637  * asynchronous contexts that cannot page things out.
2638  *
2639  * If there are applications that are active memory-allocators
2640  * (most normal use), this basically shouldn't matter.
2641  */
2642 static int kswapd(void *p)
2643 {
2644         unsigned long order, new_order;
2645         int classzone_idx, new_classzone_idx;
2646         pg_data_t *pgdat = (pg_data_t*)p;
2647         struct task_struct *tsk = current;
2648
2649         struct reclaim_state reclaim_state = {
2650                 .reclaimed_slab = 0,
2651         };
2652         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2653
2654         lockdep_set_current_reclaim_state(GFP_KERNEL);
2655
2656         if (!cpumask_empty(cpumask))
2657                 set_cpus_allowed_ptr(tsk, cpumask);
2658         current->reclaim_state = &reclaim_state;
2659
2660         /*
2661          * Tell the memory management that we're a "memory allocator",
2662          * and that if we need more memory we should get access to it
2663          * regardless (see "__alloc_pages()"). "kswapd" should
2664          * never get caught in the normal page freeing logic.
2665          *
2666          * (Kswapd normally doesn't need memory anyway, but sometimes
2667          * you need a small amount of memory in order to be able to
2668          * page out something else, and this flag essentially protects
2669          * us from recursively trying to free more memory as we're
2670          * trying to free the first piece of memory in the first place).
2671          */
2672         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2673         set_freezable();
2674
2675         order = new_order = 0;
2676         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2677         for ( ; ; ) {
2678                 int ret;
2679
2680                 /*
2681                  * If the last balance_pgdat was unsuccessful it's unlikely a
2682                  * new request of a similar or harder type will succeed soon
2683                  * so consider going to sleep on the basis we reclaimed at
2684                  */
2685                 if (classzone_idx >= new_classzone_idx && order == new_order) {
2686                         new_order = pgdat->kswapd_max_order;
2687                         new_classzone_idx = pgdat->classzone_idx;
2688                         pgdat->kswapd_max_order =  0;
2689                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2690                 }
2691
2692                 if (order < new_order || classzone_idx > new_classzone_idx) {
2693                         /*
2694                          * Don't sleep if someone wants a larger 'order'
2695                          * allocation or has tigher zone constraints
2696                          */
2697                         order = new_order;
2698                         classzone_idx = new_classzone_idx;
2699                 } else {
2700                         kswapd_try_to_sleep(pgdat, order, classzone_idx);
2701                         order = pgdat->kswapd_max_order;
2702                         classzone_idx = pgdat->classzone_idx;
2703                         pgdat->kswapd_max_order = 0;
2704                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2705                 }
2706
2707                 ret = try_to_freeze();
2708                 if (kthread_should_stop())
2709                         break;
2710
2711                 /*
2712                  * We can speed up thawing tasks if we don't call balance_pgdat
2713                  * after returning from the refrigerator
2714                  */
2715                 if (!ret) {
2716                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2717                         order = balance_pgdat(pgdat, order, &classzone_idx);
2718                 }
2719         }
2720         return 0;
2721 }
2722
2723 /*
2724  * A zone is low on free memory, so wake its kswapd task to service it.
2725  */
2726 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2727 {
2728         pg_data_t *pgdat;
2729
2730         if (!populated_zone(zone))
2731                 return;
2732
2733         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2734                 return;
2735         pgdat = zone->zone_pgdat;
2736         if (pgdat->kswapd_max_order < order) {
2737                 pgdat->kswapd_max_order = order;
2738                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2739         }
2740         if (!waitqueue_active(&pgdat->kswapd_wait))
2741                 return;
2742         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2743                 return;
2744
2745         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2746         wake_up_interruptible(&pgdat->kswapd_wait);
2747 }
2748
2749 /*
2750  * The reclaimable count would be mostly accurate.
2751  * The less reclaimable pages may be
2752  * - mlocked pages, which will be moved to unevictable list when encountered
2753  * - mapped pages, which may require several travels to be reclaimed
2754  * - dirty pages, which is not "instantly" reclaimable
2755  */
2756 unsigned long global_reclaimable_pages(void)
2757 {
2758         int nr;
2759
2760         nr = global_page_state(NR_ACTIVE_FILE) +
2761              global_page_state(NR_INACTIVE_FILE);
2762
2763         if (nr_swap_pages > 0)
2764                 nr += global_page_state(NR_ACTIVE_ANON) +
2765                       global_page_state(NR_INACTIVE_ANON);
2766
2767         return nr;
2768 }
2769
2770 unsigned long zone_reclaimable_pages(struct zone *zone)
2771 {
2772         int nr;
2773
2774         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2775              zone_page_state(zone, NR_INACTIVE_FILE);
2776
2777         if (nr_swap_pages > 0)
2778                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2779                       zone_page_state(zone, NR_INACTIVE_ANON);
2780
2781         return nr;
2782 }
2783
2784 #ifdef CONFIG_HIBERNATION
2785 /*
2786  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2787  * freed pages.
2788  *
2789  * Rather than trying to age LRUs the aim is to preserve the overall
2790  * LRU order by reclaiming preferentially
2791  * inactive > active > active referenced > active mapped
2792  */
2793 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2794 {
2795         struct reclaim_state reclaim_state;
2796         struct scan_control sc = {
2797                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2798                 .may_swap = 1,
2799                 .may_unmap = 1,
2800                 .may_writepage = 1,
2801                 .nr_to_reclaim = nr_to_reclaim,
2802                 .hibernation_mode = 1,
2803                 .swappiness = vm_swappiness,
2804                 .order = 0,
2805         };
2806         struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2807         struct task_struct *p = current;
2808         unsigned long nr_reclaimed;
2809
2810         p->flags |= PF_MEMALLOC;
2811         lockdep_set_current_reclaim_state(sc.gfp_mask);
2812         reclaim_state.reclaimed_slab = 0;
2813         p->reclaim_state = &reclaim_state;
2814
2815         nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2816
2817         p->reclaim_state = NULL;
2818         lockdep_clear_current_reclaim_state();
2819         p->flags &= ~PF_MEMALLOC;
2820
2821         return nr_reclaimed;
2822 }
2823 #endif /* CONFIG_HIBERNATION */
2824
2825 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2826    not required for correctness.  So if the last cpu in a node goes
2827    away, we get changed to run anywhere: as the first one comes back,
2828    restore their cpu bindings. */
2829 static int __devinit cpu_callback(struct notifier_block *nfb,
2830                                   unsigned long action, void *hcpu)
2831 {
2832         int nid;
2833
2834         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2835                 for_each_node_state(nid, N_HIGH_MEMORY) {
2836                         pg_data_t *pgdat = NODE_DATA(nid);
2837                         const struct cpumask *mask;
2838
2839                         mask = cpumask_of_node(pgdat->node_id);
2840
2841                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2842                                 /* One of our CPUs online: restore mask */
2843                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
2844                 }
2845         }
2846         return NOTIFY_OK;
2847 }
2848
2849 /*
2850  * This kswapd start function will be called by init and node-hot-add.
2851  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2852  */
2853 int kswapd_run(int nid)
2854 {
2855         pg_data_t *pgdat = NODE_DATA(nid);
2856         int ret = 0;
2857
2858         if (pgdat->kswapd)
2859                 return 0;
2860
2861         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2862         if (IS_ERR(pgdat->kswapd)) {
2863                 /* failure at boot is fatal */
2864                 BUG_ON(system_state == SYSTEM_BOOTING);
2865                 printk("Failed to start kswapd on node %d\n",nid);
2866                 ret = -1;
2867         }
2868         return ret;
2869 }
2870
2871 /*
2872  * Called by memory hotplug when all memory in a node is offlined.
2873  */
2874 void kswapd_stop(int nid)
2875 {
2876         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2877
2878         if (kswapd)
2879                 kthread_stop(kswapd);
2880 }
2881
2882 static int __init kswapd_init(void)
2883 {
2884         int nid;
2885
2886         swap_setup();
2887         for_each_node_state(nid, N_HIGH_MEMORY)
2888                 kswapd_run(nid);
2889         hotcpu_notifier(cpu_callback, 0);
2890         return 0;
2891 }
2892
2893 module_init(kswapd_init)
2894
2895 #ifdef CONFIG_NUMA
2896 /*
2897  * Zone reclaim mode
2898  *
2899  * If non-zero call zone_reclaim when the number of free pages falls below
2900  * the watermarks.
2901  */
2902 int zone_reclaim_mode __read_mostly;
2903
2904 #define RECLAIM_OFF 0
2905 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
2906 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
2907 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
2908
2909 /*
2910  * Priority for ZONE_RECLAIM. This determines the fraction of pages
2911  * of a node considered for each zone_reclaim. 4 scans 1/16th of
2912  * a zone.
2913  */
2914 #define ZONE_RECLAIM_PRIORITY 4
2915
2916 /*
2917  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2918  * occur.
2919  */
2920 int sysctl_min_unmapped_ratio = 1;
2921
2922 /*
2923  * If the number of slab pages in a zone grows beyond this percentage then
2924  * slab reclaim needs to occur.
2925  */
2926 int sysctl_min_slab_ratio = 5;
2927
2928 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2929 {
2930         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2931         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2932                 zone_page_state(zone, NR_ACTIVE_FILE);
2933
2934         /*
2935          * It's possible for there to be more file mapped pages than
2936          * accounted for by the pages on the file LRU lists because
2937          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2938          */
2939         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2940 }
2941
2942 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2943 static long zone_pagecache_reclaimable(struct zone *zone)
2944 {
2945         long nr_pagecache_reclaimable;
2946         long delta = 0;
2947
2948         /*
2949          * If RECLAIM_SWAP is set, then all file pages are considered
2950          * potentially reclaimable. Otherwise, we have to worry about
2951          * pages like swapcache and zone_unmapped_file_pages() provides
2952          * a better estimate
2953          */
2954         if (zone_reclaim_mode & RECLAIM_SWAP)
2955                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2956         else
2957                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2958
2959         /* If we can't clean pages, remove dirty pages from consideration */
2960         if (!(zone_reclaim_mode & RECLAIM_WRITE))
2961                 delta += zone_page_state(zone, NR_FILE_DIRTY);
2962
2963         /* Watch for any possible underflows due to delta */
2964         if (unlikely(delta > nr_pagecache_reclaimable))
2965                 delta = nr_pagecache_reclaimable;
2966
2967         return nr_pagecache_reclaimable - delta;
2968 }
2969
2970 /*
2971  * Try to free up some pages from this zone through reclaim.
2972  */
2973 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2974 {
2975         /* Minimum pages needed in order to stay on node */
2976         const unsigned long nr_pages = 1 << order;
2977         struct task_struct *p = current;
2978         struct reclaim_state reclaim_state;
2979         int priority;
2980         struct scan_control sc = {
2981                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2982                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2983                 .may_swap = 1,
2984                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2985                                        SWAP_CLUSTER_MAX),
2986                 .gfp_mask = gfp_mask,
2987                 .swappiness = vm_swappiness,
2988                 .order = order,
2989         };
2990         unsigned long nr_slab_pages0, nr_slab_pages1;
2991
2992         cond_resched();
2993         /*
2994          * We need to be able to allocate from the reserves for RECLAIM_SWAP
2995          * and we also need to be able to write out pages for RECLAIM_WRITE
2996          * and RECLAIM_SWAP.
2997          */
2998         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2999         lockdep_set_current_reclaim_state(gfp_mask);
3000         reclaim_state.reclaimed_slab = 0;
3001         p->reclaim_state = &reclaim_state;
3002
3003         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3004                 /*
3005                  * Free memory by calling shrink zone with increasing
3006                  * priorities until we have enough memory freed.
3007                  */
3008                 priority = ZONE_RECLAIM_PRIORITY;
3009                 do {
3010                         shrink_zone(priority, zone, &sc);
3011                         priority--;
3012                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3013         }
3014
3015         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3016         if (nr_slab_pages0 > zone->min_slab_pages) {
3017                 /*
3018                  * shrink_slab() does not currently allow us to determine how
3019                  * many pages were freed in this zone. So we take the current
3020                  * number of slab pages and shake the slab until it is reduced
3021                  * by the same nr_pages that we used for reclaiming unmapped
3022                  * pages.
3023                  *
3024                  * Note that shrink_slab will free memory on all zones and may
3025                  * take a long time.
3026                  */
3027                 for (;;) {
3028                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3029
3030                         /* No reclaimable slab or very low memory pressure */
3031                         if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
3032                                 break;
3033
3034                         /* Freed enough memory */
3035                         nr_slab_pages1 = zone_page_state(zone,
3036                                                         NR_SLAB_RECLAIMABLE);
3037                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3038                                 break;
3039                 }
3040
3041                 /*
3042                  * Update nr_reclaimed by the number of slab pages we
3043                  * reclaimed from this zone.
3044                  */
3045                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3046                 if (nr_slab_pages1 < nr_slab_pages0)
3047                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3048         }
3049
3050         p->reclaim_state = NULL;
3051         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3052         lockdep_clear_current_reclaim_state();
3053         return sc.nr_reclaimed >= nr_pages;
3054 }
3055
3056 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3057 {
3058         int node_id;
3059         int ret;
3060
3061         /*
3062          * Zone reclaim reclaims unmapped file backed pages and
3063          * slab pages if we are over the defined limits.
3064          *
3065          * A small portion of unmapped file backed pages is needed for
3066          * file I/O otherwise pages read by file I/O will be immediately
3067          * thrown out if the zone is overallocated. So we do not reclaim
3068          * if less than a specified percentage of the zone is used by
3069          * unmapped file backed pages.
3070          */
3071         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3072             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3073                 return ZONE_RECLAIM_FULL;
3074
3075         if (zone->all_unreclaimable)
3076                 return ZONE_RECLAIM_FULL;
3077
3078         /*
3079          * Do not scan if the allocation should not be delayed.
3080          */
3081         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3082                 return ZONE_RECLAIM_NOSCAN;
3083
3084         /*
3085          * Only run zone reclaim on the local zone or on zones that do not
3086          * have associated processors. This will favor the local processor
3087          * over remote processors and spread off node memory allocations
3088          * as wide as possible.
3089          */
3090         node_id = zone_to_nid(zone);
3091         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3092                 return ZONE_RECLAIM_NOSCAN;
3093
3094         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3095                 return ZONE_RECLAIM_NOSCAN;
3096
3097         ret = __zone_reclaim(zone, gfp_mask, order);
3098         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3099
3100         if (!ret)
3101                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3102
3103         return ret;
3104 }
3105 #endif
3106
3107 /*
3108  * page_evictable - test whether a page is evictable
3109  * @page: the page to test
3110  * @vma: the VMA in which the page is or will be mapped, may be NULL
3111  *
3112  * Test whether page is evictable--i.e., should be placed on active/inactive
3113  * lists vs unevictable list.  The vma argument is !NULL when called from the
3114  * fault path to determine how to instantate a new page.
3115  *
3116  * Reasons page might not be evictable:
3117  * (1) page's mapping marked unevictable
3118  * (2) page is part of an mlocked VMA
3119  *
3120  */
3121 int page_evictable(struct page *page, struct vm_area_struct *vma)
3122 {
3123
3124         if (mapping_unevictable(page_mapping(page)))
3125                 return 0;
3126
3127         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3128                 return 0;
3129
3130         return 1;
3131 }
3132
3133 /**
3134  * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3135  * @page: page to check evictability and move to appropriate lru list
3136  * @zone: zone page is in
3137  *
3138  * Checks a page for evictability and moves the page to the appropriate
3139  * zone lru list.
3140  *
3141  * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3142  * have PageUnevictable set.
3143  */
3144 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3145 {
3146         VM_BUG_ON(PageActive(page));
3147
3148 retry:
3149         ClearPageUnevictable(page);
3150         if (page_evictable(page, NULL)) {
3151                 enum lru_list l = page_lru_base_type(page);
3152
3153                 __dec_zone_state(zone, NR_UNEVICTABLE);
3154                 list_move(&page->lru, &zone->lru[l].list);
3155                 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
3156                 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3157                 __count_vm_event(UNEVICTABLE_PGRESCUED);
3158         } else {
3159                 /*
3160                  * rotate unevictable list
3161                  */
3162                 SetPageUnevictable(page);
3163                 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
3164                 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
3165                 if (page_evictable(page, NULL))
3166                         goto retry;
3167         }
3168 }
3169
3170 /**
3171  * scan_mapping_unevictable_pages - scan an address space for evictable pages
3172  * @mapping: struct address_space to scan for evictable pages
3173  *
3174  * Scan all pages in mapping.  Check unevictable pages for
3175  * evictability and move them to the appropriate zone lru list.
3176  */
3177 void scan_mapping_unevictable_pages(struct address_space *mapping)
3178 {
3179         pgoff_t next = 0;
3180         pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3181                          PAGE_CACHE_SHIFT;
3182         struct zone *zone;
3183         struct pagevec pvec;
3184
3185         if (mapping->nrpages == 0)
3186                 return;
3187
3188         pagevec_init(&pvec, 0);
3189         while (next < end &&
3190                 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3191                 int i;
3192                 int pg_scanned = 0;
3193
3194                 zone = NULL;
3195
3196                 for (i = 0; i < pagevec_count(&pvec); i++) {
3197                         struct page *page = pvec.pages[i];
3198                         pgoff_t page_index = page->index;
3199                         struct zone *pagezone = page_zone(page);
3200
3201                         pg_scanned++;
3202                         if (page_index > next)
3203                                 next = page_index;
3204                         next++;
3205
3206                         if (pagezone != zone) {
3207                                 if (zone)
3208                                         spin_unlock_irq(&zone->lru_lock);
3209                                 zone = pagezone;
3210                                 spin_lock_irq(&zone->lru_lock);
3211                         }
3212
3213                         if (PageLRU(page) && PageUnevictable(page))
3214                                 check_move_unevictable_page(page, zone);
3215                 }
3216                 if (zone)
3217                         spin_unlock_irq(&zone->lru_lock);
3218                 pagevec_release(&pvec);
3219
3220                 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3221         }
3222
3223 }
3224
3225 /**
3226  * scan_zone_unevictable_pages - check unevictable list for evictable pages
3227  * @zone - zone of which to scan the unevictable list
3228  *
3229  * Scan @zone's unevictable LRU lists to check for pages that have become
3230  * evictable.  Move those that have to @zone's inactive list where they
3231  * become candidates for reclaim, unless shrink_inactive_zone() decides
3232  * to reactivate them.  Pages that are still unevictable are rotated
3233  * back onto @zone's unevictable list.
3234  */
3235 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3236 static void scan_zone_unevictable_pages(struct zone *zone)
3237 {
3238         struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3239         unsigned long scan;
3240         unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3241
3242         while (nr_to_scan > 0) {
3243                 unsigned long batch_size = min(nr_to_scan,
3244                                                 SCAN_UNEVICTABLE_BATCH_SIZE);
3245
3246                 spin_lock_irq(&zone->lru_lock);
3247                 for (scan = 0;  scan < batch_size; scan++) {
3248                         struct page *page = lru_to_page(l_unevictable);
3249
3250                         if (!trylock_page(page))
3251                                 continue;
3252
3253                         prefetchw_prev_lru_page(page, l_unevictable, flags);
3254
3255                         if (likely(PageLRU(page) && PageUnevictable(page)))
3256                                 check_move_unevictable_page(page, zone);
3257
3258                         unlock_page(page);
3259                 }
3260                 spin_unlock_irq(&zone->lru_lock);
3261
3262                 nr_to_scan -= batch_size;
3263         }
3264 }
3265
3266
3267 /**
3268  * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3269  *
3270  * A really big hammer:  scan all zones' unevictable LRU lists to check for
3271  * pages that have become evictable.  Move those back to the zones'
3272  * inactive list where they become candidates for reclaim.
3273  * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3274  * and we add swap to the system.  As such, it runs in the context of a task
3275  * that has possibly/probably made some previously unevictable pages
3276  * evictable.
3277  */
3278 static void scan_all_zones_unevictable_pages(void)
3279 {
3280         struct zone *zone;
3281
3282         for_each_zone(zone) {
3283                 scan_zone_unevictable_pages(zone);
3284         }
3285 }
3286
3287 /*
3288  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3289  * all nodes' unevictable lists for evictable pages
3290  */
3291 unsigned long scan_unevictable_pages;
3292
3293 int scan_unevictable_handler(struct ctl_table *table, int write,
3294                            void __user *buffer,
3295                            size_t *length, loff_t *ppos)
3296 {
3297         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3298
3299         if (write && *(unsigned long *)table->data)
3300                 scan_all_zones_unevictable_pages();
3301
3302         scan_unevictable_pages = 0;
3303         return 0;
3304 }
3305
3306 #ifdef CONFIG_NUMA
3307 /*
3308  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3309  * a specified node's per zone unevictable lists for evictable pages.
3310  */
3311
3312 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3313                                           struct sysdev_attribute *attr,
3314                                           char *buf)
3315 {
3316         return sprintf(buf, "0\n");     /* always zero; should fit... */
3317 }
3318
3319 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3320                                            struct sysdev_attribute *attr,
3321                                         const char *buf, size_t count)
3322 {
3323         struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3324         struct zone *zone;
3325         unsigned long res;
3326         unsigned long req = strict_strtoul(buf, 10, &res);
3327
3328         if (!req)
3329                 return 1;       /* zero is no-op */
3330
3331         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3332                 if (!populated_zone(zone))
3333                         continue;
3334                 scan_zone_unevictable_pages(zone);
3335         }
3336         return 1;
3337 }
3338
3339
3340 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3341                         read_scan_unevictable_node,
3342                         write_scan_unevictable_node);
3343
3344 int scan_unevictable_register_node(struct node *node)
3345 {
3346         return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3347 }
3348
3349 void scan_unevictable_unregister_node(struct node *node)
3350 {
3351         sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3352 }
3353 #endif