drm/i915: Factor in pixel-repeat in FDI M/N calculation
[linux-flexiantxendom0-natty.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50     /* given values */
51     int n;
52     int m1, m2;
53     int p1, p2;
54     /* derived values */
55     int dot;
56     int vco;
57     int m;
58     int p;
59 } intel_clock_t;
60
61 typedef struct {
62     int min, max;
63 } intel_range_t;
64
65 typedef struct {
66     int dot_limit;
67     int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM                  2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74     intel_p2_t      p2;
75     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76                       int, int, intel_clock_t *);
77 };
78
79 #define I8XX_DOT_MIN              25000
80 #define I8XX_DOT_MAX             350000
81 #define I8XX_VCO_MIN             930000
82 #define I8XX_VCO_MAX            1400000
83 #define I8XX_N_MIN                    3
84 #define I8XX_N_MAX                   16
85 #define I8XX_M_MIN                   96
86 #define I8XX_M_MAX                  140
87 #define I8XX_M1_MIN                  18
88 #define I8XX_M1_MAX                  26
89 #define I8XX_M2_MIN                   6
90 #define I8XX_M2_MAX                  16
91 #define I8XX_P_MIN                    4
92 #define I8XX_P_MAX                  128
93 #define I8XX_P1_MIN                   2
94 #define I8XX_P1_MAX                  33
95 #define I8XX_P1_LVDS_MIN              1
96 #define I8XX_P1_LVDS_MAX              6
97 #define I8XX_P2_SLOW                  4
98 #define I8XX_P2_FAST                  2
99 #define I8XX_P2_LVDS_SLOW             14
100 #define I8XX_P2_LVDS_FAST             7
101 #define I8XX_P2_SLOW_LIMIT       165000
102
103 #define I9XX_DOT_MIN              20000
104 #define I9XX_DOT_MAX             400000
105 #define I9XX_VCO_MIN            1400000
106 #define I9XX_VCO_MAX            2800000
107 #define PINEVIEW_VCO_MIN                1700000
108 #define PINEVIEW_VCO_MAX                3500000
109 #define I9XX_N_MIN                    1
110 #define I9XX_N_MAX                    6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN                3
113 #define PINEVIEW_N_MAX                6
114 #define I9XX_M_MIN                   70
115 #define I9XX_M_MAX                  120
116 #define PINEVIEW_M_MIN                2
117 #define PINEVIEW_M_MAX              256
118 #define I9XX_M1_MIN                  10
119 #define I9XX_M1_MAX                  22
120 #define I9XX_M2_MIN                   5
121 #define I9XX_M2_MAX                   9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN               0
124 #define PINEVIEW_M1_MAX               0
125 #define PINEVIEW_M2_MIN               0
126 #define PINEVIEW_M2_MAX               254
127 #define I9XX_P_SDVO_DAC_MIN           5
128 #define I9XX_P_SDVO_DAC_MAX          80
129 #define I9XX_P_LVDS_MIN               7
130 #define I9XX_P_LVDS_MAX              98
131 #define PINEVIEW_P_LVDS_MIN                   7
132 #define PINEVIEW_P_LVDS_MAX                  112
133 #define I9XX_P1_MIN                   1
134 #define I9XX_P1_MAX                   8
135 #define I9XX_P2_SDVO_DAC_SLOW                10
136 #define I9XX_P2_SDVO_DAC_FAST                 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
138 #define I9XX_P2_LVDS_SLOW                    14
139 #define I9XX_P2_LVDS_FAST                     7
140 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
141
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN           25000
144 #define G4X_DOT_SDVO_MAX           270000
145 #define G4X_VCO_MIN                1750000
146 #define G4X_VCO_MAX                3500000
147 #define G4X_N_SDVO_MIN             1
148 #define G4X_N_SDVO_MAX             4
149 #define G4X_M_SDVO_MIN             104
150 #define G4X_M_SDVO_MAX             138
151 #define G4X_M1_SDVO_MIN            17
152 #define G4X_M1_SDVO_MAX            23
153 #define G4X_M2_SDVO_MIN            5
154 #define G4X_M2_SDVO_MAX            11
155 #define G4X_P_SDVO_MIN             10
156 #define G4X_P_SDVO_MAX             30
157 #define G4X_P1_SDVO_MIN            1
158 #define G4X_P1_SDVO_MAX            3
159 #define G4X_P2_SDVO_SLOW           10
160 #define G4X_P2_SDVO_FAST           10
161 #define G4X_P2_SDVO_LIMIT          270000
162
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN           22000
165 #define G4X_DOT_HDMI_DAC_MAX           400000
166 #define G4X_N_HDMI_DAC_MIN             1
167 #define G4X_N_HDMI_DAC_MAX             4
168 #define G4X_M_HDMI_DAC_MIN             104
169 #define G4X_M_HDMI_DAC_MAX             138
170 #define G4X_M1_HDMI_DAC_MIN            16
171 #define G4X_M1_HDMI_DAC_MAX            23
172 #define G4X_M2_HDMI_DAC_MIN            5
173 #define G4X_M2_HDMI_DAC_MAX            11
174 #define G4X_P_HDMI_DAC_MIN             5
175 #define G4X_P_HDMI_DAC_MAX             80
176 #define G4X_P1_HDMI_DAC_MIN            1
177 #define G4X_P1_HDMI_DAC_MAX            8
178 #define G4X_P2_HDMI_DAC_SLOW           10
179 #define G4X_P2_HDMI_DAC_FAST           5
180 #define G4X_P2_HDMI_DAC_LIMIT          165000
181
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
200
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
219
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN           161670
222 #define G4X_DOT_DISPLAY_PORT_MAX           227000
223 #define G4X_N_DISPLAY_PORT_MIN             1
224 #define G4X_N_DISPLAY_PORT_MAX             2
225 #define G4X_M_DISPLAY_PORT_MIN             97
226 #define G4X_M_DISPLAY_PORT_MAX             108
227 #define G4X_M1_DISPLAY_PORT_MIN            0x10
228 #define G4X_M1_DISPLAY_PORT_MAX            0x12
229 #define G4X_M2_DISPLAY_PORT_MIN            0x05
230 #define G4X_M2_DISPLAY_PORT_MAX            0x06
231 #define G4X_P_DISPLAY_PORT_MIN             10
232 #define G4X_P_DISPLAY_PORT_MAX             20
233 #define G4X_P1_DISPLAY_PORT_MIN            1
234 #define G4X_P1_DISPLAY_PORT_MAX            2
235 #define G4X_P2_DISPLAY_PORT_SLOW           10
236 #define G4X_P2_DISPLAY_PORT_FAST           10
237 #define G4X_P2_DISPLAY_PORT_LIMIT          0
238
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241    N/M1/M2, so here the range value for them is (actual_value-2).
242  */
243 #define IRONLAKE_DOT_MIN         25000
244 #define IRONLAKE_DOT_MAX         350000
245 #define IRONLAKE_VCO_MIN         1760000
246 #define IRONLAKE_VCO_MAX         3510000
247 #define IRONLAKE_M1_MIN          12
248 #define IRONLAKE_M1_MAX          22
249 #define IRONLAKE_M2_MIN          5
250 #define IRONLAKE_M2_MAX          9
251 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
252
253 /* We have parameter ranges for different type of outputs. */
254
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN      1
257 #define IRONLAKE_DAC_N_MAX      5
258 #define IRONLAKE_DAC_M_MIN      79
259 #define IRONLAKE_DAC_M_MAX      127
260 #define IRONLAKE_DAC_P_MIN      5
261 #define IRONLAKE_DAC_P_MAX      80
262 #define IRONLAKE_DAC_P1_MIN     1
263 #define IRONLAKE_DAC_P1_MAX     8
264 #define IRONLAKE_DAC_P2_SLOW    10
265 #define IRONLAKE_DAC_P2_FAST    5
266
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN   1
269 #define IRONLAKE_LVDS_S_N_MAX   3
270 #define IRONLAKE_LVDS_S_M_MIN   79
271 #define IRONLAKE_LVDS_S_M_MAX   118
272 #define IRONLAKE_LVDS_S_P_MIN   28
273 #define IRONLAKE_LVDS_S_P_MAX   112
274 #define IRONLAKE_LVDS_S_P1_MIN  2
275 #define IRONLAKE_LVDS_S_P1_MAX  8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
278
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN   1
281 #define IRONLAKE_LVDS_D_N_MAX   3
282 #define IRONLAKE_LVDS_D_M_MIN   79
283 #define IRONLAKE_LVDS_D_M_MAX   127
284 #define IRONLAKE_LVDS_D_P_MIN   14
285 #define IRONLAKE_LVDS_D_P_MAX   56
286 #define IRONLAKE_LVDS_D_P1_MIN  2
287 #define IRONLAKE_LVDS_D_P1_MAX  8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
290
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
302
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
314
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN               1
317 #define IRONLAKE_DP_N_MAX               2
318 #define IRONLAKE_DP_M_MIN               81
319 #define IRONLAKE_DP_M_MAX               90
320 #define IRONLAKE_DP_P_MIN               10
321 #define IRONLAKE_DP_P_MAX               20
322 #define IRONLAKE_DP_P2_FAST             10
323 #define IRONLAKE_DP_P2_SLOW             10
324 #define IRONLAKE_DP_P2_LIMIT            0
325 #define IRONLAKE_DP_P1_MIN              1
326 #define IRONLAKE_DP_P1_MAX              2
327
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
330
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333                     int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336                         int target, int refclk, intel_clock_t *best_clock);
337
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340                       int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343                            int target, int refclk, intel_clock_t *best_clock);
344
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
347 {
348         if (IS_GEN5(dev)) {
349                 struct drm_i915_private *dev_priv = dev->dev_private;
350                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
351         } else
352                 return 27;
353 }
354
355 static const intel_limit_t intel_limits_i8xx_dvo = {
356         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
357         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
358         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
359         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
360         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
361         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
362         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
363         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
364         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
365                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
366         .find_pll = intel_find_best_PLL,
367 };
368
369 static const intel_limit_t intel_limits_i8xx_lvds = {
370         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
371         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
372         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
373         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
374         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
375         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
376         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
377         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
378         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
379                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
380         .find_pll = intel_find_best_PLL,
381 };
382         
383 static const intel_limit_t intel_limits_i9xx_sdvo = {
384         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
385         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
386         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
387         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
388         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
389         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
390         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
391         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
392         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
393                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
394         .find_pll = intel_find_best_PLL,
395 };
396
397 static const intel_limit_t intel_limits_i9xx_lvds = {
398         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
399         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
400         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
401         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
402         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
403         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
404         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
405         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
406         /* The single-channel range is 25-112Mhz, and dual-channel
407          * is 80-224Mhz.  Prefer single channel as much as possible.
408          */
409         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
410                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
411         .find_pll = intel_find_best_PLL,
412 };
413
414     /* below parameter and function is for G4X Chipset Family*/
415 static const intel_limit_t intel_limits_g4x_sdvo = {
416         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
417         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
418         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
419         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
420         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
421         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
422         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
423         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
424         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
425                  .p2_slow = G4X_P2_SDVO_SLOW,
426                  .p2_fast = G4X_P2_SDVO_FAST
427         },
428         .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_hdmi = {
432         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
433         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
434         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
435         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
436         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
437         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
438         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
439         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
440         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
441                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
442                  .p2_fast = G4X_P2_HDMI_DAC_FAST
443         },
444         .find_pll = intel_g4x_find_best_PLL,
445 };
446
447 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
448         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
449                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
450         .vco = { .min = G4X_VCO_MIN,
451                  .max = G4X_VCO_MAX },
452         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
453                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
454         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
455                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
456         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
457                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
458         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
459                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
460         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
461                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
462         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
463                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
464         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
465                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
466                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
467         },
468         .find_pll = intel_g4x_find_best_PLL,
469 };
470
471 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
472         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
473                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
474         .vco = { .min = G4X_VCO_MIN,
475                  .max = G4X_VCO_MAX },
476         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
477                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
478         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
479                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
480         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
481                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
482         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
483                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
484         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
485                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
486         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
487                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
488         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
489                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
490                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
491         },
492         .find_pll = intel_g4x_find_best_PLL,
493 };
494
495 static const intel_limit_t intel_limits_g4x_display_port = {
496         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
497                  .max = G4X_DOT_DISPLAY_PORT_MAX },
498         .vco = { .min = G4X_VCO_MIN,
499                  .max = G4X_VCO_MAX},
500         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
501                  .max = G4X_N_DISPLAY_PORT_MAX },
502         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
503                  .max = G4X_M_DISPLAY_PORT_MAX },
504         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
505                  .max = G4X_M1_DISPLAY_PORT_MAX },
506         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
507                  .max = G4X_M2_DISPLAY_PORT_MAX },
508         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
509                  .max = G4X_P_DISPLAY_PORT_MAX },
510         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
511                  .max = G4X_P1_DISPLAY_PORT_MAX},
512         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
513                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
514                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
515         .find_pll = intel_find_pll_g4x_dp,
516 };
517
518 static const intel_limit_t intel_limits_pineview_sdvo = {
519         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
520         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
521         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
522         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
523         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
524         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
525         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
526         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
527         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
528                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
529         .find_pll = intel_find_best_PLL,
530 };
531
532 static const intel_limit_t intel_limits_pineview_lvds = {
533         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
534         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
535         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
536         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
537         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
538         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
539         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
540         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
541         /* Pineview only supports single-channel mode. */
542         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
543                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
544         .find_pll = intel_find_best_PLL,
545 };
546
547 static const intel_limit_t intel_limits_ironlake_dac = {
548         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
549         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
550         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
551         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
552         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
553         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
554         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
555         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
556         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
557                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
558                  .p2_fast = IRONLAKE_DAC_P2_FAST },
559         .find_pll = intel_g4x_find_best_PLL,
560 };
561
562 static const intel_limit_t intel_limits_ironlake_single_lvds = {
563         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
564         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
565         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
566         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
567         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
568         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
569         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
570         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
571         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
572                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
573                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
574         .find_pll = intel_g4x_find_best_PLL,
575 };
576
577 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
578         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
579         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
580         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
581         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
582         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
583         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
584         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
585         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
586         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
587                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
588                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
589         .find_pll = intel_g4x_find_best_PLL,
590 };
591
592 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
593         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
594         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
595         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
596         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
597         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
598         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
599         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
600         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
601         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
602                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
603                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
604         .find_pll = intel_g4x_find_best_PLL,
605 };
606
607 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
608         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
609         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
610         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
611         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
612         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
613         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
614         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
615         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
616         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
617                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
618                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
619         .find_pll = intel_g4x_find_best_PLL,
620 };
621
622 static const intel_limit_t intel_limits_ironlake_display_port = {
623         .dot = { .min = IRONLAKE_DOT_MIN,
624                  .max = IRONLAKE_DOT_MAX },
625         .vco = { .min = IRONLAKE_VCO_MIN,
626                  .max = IRONLAKE_VCO_MAX},
627         .n   = { .min = IRONLAKE_DP_N_MIN,
628                  .max = IRONLAKE_DP_N_MAX },
629         .m   = { .min = IRONLAKE_DP_M_MIN,
630                  .max = IRONLAKE_DP_M_MAX },
631         .m1  = { .min = IRONLAKE_M1_MIN,
632                  .max = IRONLAKE_M1_MAX },
633         .m2  = { .min = IRONLAKE_M2_MIN,
634                  .max = IRONLAKE_M2_MAX },
635         .p   = { .min = IRONLAKE_DP_P_MIN,
636                  .max = IRONLAKE_DP_P_MAX },
637         .p1  = { .min = IRONLAKE_DP_P1_MIN,
638                  .max = IRONLAKE_DP_P1_MAX},
639         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
640                  .p2_slow = IRONLAKE_DP_P2_SLOW,
641                  .p2_fast = IRONLAKE_DP_P2_FAST },
642         .find_pll = intel_find_pll_ironlake_dp,
643 };
644
645 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
646 {
647         struct drm_device *dev = crtc->dev;
648         struct drm_i915_private *dev_priv = dev->dev_private;
649         const intel_limit_t *limit;
650         int refclk = 120;
651
652         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
654                         refclk = 100;
655
656                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
657                     LVDS_CLKB_POWER_UP) {
658                         /* LVDS dual channel */
659                         if (refclk == 100)
660                                 limit = &intel_limits_ironlake_dual_lvds_100m;
661                         else
662                                 limit = &intel_limits_ironlake_dual_lvds;
663                 } else {
664                         if (refclk == 100)
665                                 limit = &intel_limits_ironlake_single_lvds_100m;
666                         else
667                                 limit = &intel_limits_ironlake_single_lvds;
668                 }
669         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
670                         HAS_eDP)
671                 limit = &intel_limits_ironlake_display_port;
672         else
673                 limit = &intel_limits_ironlake_dac;
674
675         return limit;
676 }
677
678 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
679 {
680         struct drm_device *dev = crtc->dev;
681         struct drm_i915_private *dev_priv = dev->dev_private;
682         const intel_limit_t *limit;
683
684         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
685                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
686                     LVDS_CLKB_POWER_UP)
687                         /* LVDS with dual channel */
688                         limit = &intel_limits_g4x_dual_channel_lvds;
689                 else
690                         /* LVDS with dual channel */
691                         limit = &intel_limits_g4x_single_channel_lvds;
692         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
693                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
694                 limit = &intel_limits_g4x_hdmi;
695         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
696                 limit = &intel_limits_g4x_sdvo;
697         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
698                 limit = &intel_limits_g4x_display_port;
699         } else /* The option is for other outputs */
700                 limit = &intel_limits_i9xx_sdvo;
701
702         return limit;
703 }
704
705 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
706 {
707         struct drm_device *dev = crtc->dev;
708         const intel_limit_t *limit;
709
710         if (HAS_PCH_SPLIT(dev))
711                 limit = intel_ironlake_limit(crtc);
712         else if (IS_G4X(dev)) {
713                 limit = intel_g4x_limit(crtc);
714         } else if (IS_PINEVIEW(dev)) {
715                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
716                         limit = &intel_limits_pineview_lvds;
717                 else
718                         limit = &intel_limits_pineview_sdvo;
719         } else if (!IS_GEN2(dev)) {
720                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
721                         limit = &intel_limits_i9xx_lvds;
722                 else
723                         limit = &intel_limits_i9xx_sdvo;
724         } else {
725                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
726                         limit = &intel_limits_i8xx_lvds;
727                 else
728                         limit = &intel_limits_i8xx_dvo;
729         }
730         return limit;
731 }
732
733 /* m1 is reserved as 0 in Pineview, n is a ring counter */
734 static void pineview_clock(int refclk, intel_clock_t *clock)
735 {
736         clock->m = clock->m2 + 2;
737         clock->p = clock->p1 * clock->p2;
738         clock->vco = refclk * clock->m / clock->n;
739         clock->dot = clock->vco / clock->p;
740 }
741
742 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
743 {
744         if (IS_PINEVIEW(dev)) {
745                 pineview_clock(refclk, clock);
746                 return;
747         }
748         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
749         clock->p = clock->p1 * clock->p2;
750         clock->vco = refclk * clock->m / (clock->n + 2);
751         clock->dot = clock->vco / clock->p;
752 }
753
754 /**
755  * Returns whether any output on the specified pipe is of the specified type
756  */
757 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
758 {
759         struct drm_device *dev = crtc->dev;
760         struct drm_mode_config *mode_config = &dev->mode_config;
761         struct intel_encoder *encoder;
762
763         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
764                 if (encoder->base.crtc == crtc && encoder->type == type)
765                         return true;
766
767         return false;
768 }
769
770 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
771 /**
772  * Returns whether the given set of divisors are valid for a given refclk with
773  * the given connectors.
774  */
775
776 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
777 {
778         const intel_limit_t *limit = intel_limit (crtc);
779         struct drm_device *dev = crtc->dev;
780
781         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
782                 INTELPllInvalid ("p1 out of range\n");
783         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
784                 INTELPllInvalid ("p out of range\n");
785         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
786                 INTELPllInvalid ("m2 out of range\n");
787         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
788                 INTELPllInvalid ("m1 out of range\n");
789         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
790                 INTELPllInvalid ("m1 <= m2\n");
791         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
792                 INTELPllInvalid ("m out of range\n");
793         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
794                 INTELPllInvalid ("n out of range\n");
795         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
796                 INTELPllInvalid ("vco out of range\n");
797         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
798          * connector, etc., rather than just a single range.
799          */
800         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
801                 INTELPllInvalid ("dot out of range\n");
802
803         return true;
804 }
805
806 static bool
807 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
808                     int target, int refclk, intel_clock_t *best_clock)
809
810 {
811         struct drm_device *dev = crtc->dev;
812         struct drm_i915_private *dev_priv = dev->dev_private;
813         intel_clock_t clock;
814         int err = target;
815
816         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
817             (I915_READ(LVDS)) != 0) {
818                 /*
819                  * For LVDS, if the panel is on, just rely on its current
820                  * settings for dual-channel.  We haven't figured out how to
821                  * reliably set up different single/dual channel state, if we
822                  * even can.
823                  */
824                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
825                     LVDS_CLKB_POWER_UP)
826                         clock.p2 = limit->p2.p2_fast;
827                 else
828                         clock.p2 = limit->p2.p2_slow;
829         } else {
830                 if (target < limit->p2.dot_limit)
831                         clock.p2 = limit->p2.p2_slow;
832                 else
833                         clock.p2 = limit->p2.p2_fast;
834         }
835
836         memset (best_clock, 0, sizeof (*best_clock));
837
838         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
839              clock.m1++) {
840                 for (clock.m2 = limit->m2.min;
841                      clock.m2 <= limit->m2.max; clock.m2++) {
842                         /* m1 is always 0 in Pineview */
843                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
844                                 break;
845                         for (clock.n = limit->n.min;
846                              clock.n <= limit->n.max; clock.n++) {
847                                 for (clock.p1 = limit->p1.min;
848                                         clock.p1 <= limit->p1.max; clock.p1++) {
849                                         int this_err;
850
851                                         intel_clock(dev, refclk, &clock);
852
853                                         if (!intel_PLL_is_valid(crtc, &clock))
854                                                 continue;
855
856                                         this_err = abs(clock.dot - target);
857                                         if (this_err < err) {
858                                                 *best_clock = clock;
859                                                 err = this_err;
860                                         }
861                                 }
862                         }
863                 }
864         }
865
866         return (err != target);
867 }
868
869 static bool
870 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
871                         int target, int refclk, intel_clock_t *best_clock)
872 {
873         struct drm_device *dev = crtc->dev;
874         struct drm_i915_private *dev_priv = dev->dev_private;
875         intel_clock_t clock;
876         int max_n;
877         bool found;
878         /* approximately equals target * 0.00585 */
879         int err_most = (target >> 8) + (target >> 9);
880         found = false;
881
882         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
883                 int lvds_reg;
884
885                 if (HAS_PCH_SPLIT(dev))
886                         lvds_reg = PCH_LVDS;
887                 else
888                         lvds_reg = LVDS;
889                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
890                     LVDS_CLKB_POWER_UP)
891                         clock.p2 = limit->p2.p2_fast;
892                 else
893                         clock.p2 = limit->p2.p2_slow;
894         } else {
895                 if (target < limit->p2.dot_limit)
896                         clock.p2 = limit->p2.p2_slow;
897                 else
898                         clock.p2 = limit->p2.p2_fast;
899         }
900
901         memset(best_clock, 0, sizeof(*best_clock));
902         max_n = limit->n.max;
903         /* based on hardware requirement, prefer smaller n to precision */
904         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
905                 /* based on hardware requirement, prefere larger m1,m2 */
906                 for (clock.m1 = limit->m1.max;
907                      clock.m1 >= limit->m1.min; clock.m1--) {
908                         for (clock.m2 = limit->m2.max;
909                              clock.m2 >= limit->m2.min; clock.m2--) {
910                                 for (clock.p1 = limit->p1.max;
911                                      clock.p1 >= limit->p1.min; clock.p1--) {
912                                         int this_err;
913
914                                         intel_clock(dev, refclk, &clock);
915                                         if (!intel_PLL_is_valid(crtc, &clock))
916                                                 continue;
917                                         this_err = abs(clock.dot - target) ;
918                                         if (this_err < err_most) {
919                                                 *best_clock = clock;
920                                                 err_most = this_err;
921                                                 max_n = clock.n;
922                                                 found = true;
923                                         }
924                                 }
925                         }
926                 }
927         }
928         return found;
929 }
930
931 static bool
932 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
933                            int target, int refclk, intel_clock_t *best_clock)
934 {
935         struct drm_device *dev = crtc->dev;
936         intel_clock_t clock;
937
938         if (target < 200000) {
939                 clock.n = 1;
940                 clock.p1 = 2;
941                 clock.p2 = 10;
942                 clock.m1 = 12;
943                 clock.m2 = 9;
944         } else {
945                 clock.n = 2;
946                 clock.p1 = 1;
947                 clock.p2 = 10;
948                 clock.m1 = 14;
949                 clock.m2 = 8;
950         }
951         intel_clock(dev, refclk, &clock);
952         memcpy(best_clock, &clock, sizeof(intel_clock_t));
953         return true;
954 }
955
956 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
957 static bool
958 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
959                       int target, int refclk, intel_clock_t *best_clock)
960 {
961         intel_clock_t clock;
962         if (target < 200000) {
963                 clock.p1 = 2;
964                 clock.p2 = 10;
965                 clock.n = 2;
966                 clock.m1 = 23;
967                 clock.m2 = 8;
968         } else {
969                 clock.p1 = 1;
970                 clock.p2 = 10;
971                 clock.n = 1;
972                 clock.m1 = 14;
973                 clock.m2 = 2;
974         }
975         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
976         clock.p = (clock.p1 * clock.p2);
977         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
978         clock.vco = 0;
979         memcpy(best_clock, &clock, sizeof(intel_clock_t));
980         return true;
981 }
982
983 /**
984  * intel_wait_for_vblank - wait for vblank on a given pipe
985  * @dev: drm device
986  * @pipe: pipe to wait for
987  *
988  * Wait for vblank to occur on a given pipe.  Needed for various bits of
989  * mode setting code.
990  */
991 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
992 {
993         struct drm_i915_private *dev_priv = dev->dev_private;
994         int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
995
996         /* Clear existing vblank status. Note this will clear any other
997          * sticky status fields as well.
998          *
999          * This races with i915_driver_irq_handler() with the result
1000          * that either function could miss a vblank event.  Here it is not
1001          * fatal, as we will either wait upon the next vblank interrupt or
1002          * timeout.  Generally speaking intel_wait_for_vblank() is only
1003          * called during modeset at which time the GPU should be idle and
1004          * should *not* be performing page flips and thus not waiting on
1005          * vblanks...
1006          * Currently, the result of us stealing a vblank from the irq
1007          * handler is that a single frame will be skipped during swapbuffers.
1008          */
1009         I915_WRITE(pipestat_reg,
1010                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1011
1012         /* Wait for vblank interrupt bit to set */
1013         if (wait_for(I915_READ(pipestat_reg) &
1014                      PIPE_VBLANK_INTERRUPT_STATUS,
1015                      50))
1016                 DRM_DEBUG_KMS("vblank wait timed out\n");
1017 }
1018
1019 /*
1020  * intel_wait_for_pipe_off - wait for pipe to turn off
1021  * @dev: drm device
1022  * @pipe: pipe to wait for
1023  *
1024  * After disabling a pipe, we can't wait for vblank in the usual way,
1025  * spinning on the vblank interrupt status bit, since we won't actually
1026  * see an interrupt when the pipe is disabled.
1027  *
1028  * On Gen4 and above:
1029  *   wait for the pipe register state bit to turn off
1030  *
1031  * Otherwise:
1032  *   wait for the display line value to settle (it usually
1033  *   ends up stopping at the start of the next frame).
1034  *
1035  */
1036 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1037 {
1038         struct drm_i915_private *dev_priv = dev->dev_private;
1039
1040         if (INTEL_INFO(dev)->gen >= 4) {
1041                 int reg = PIPECONF(pipe);
1042
1043                 /* Wait for the Pipe State to go off */
1044                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1045                              100))
1046                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1047         } else {
1048                 u32 last_line;
1049                 int reg = PIPEDSL(pipe);
1050                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1051
1052                 /* Wait for the display line to settle */
1053                 do {
1054                         last_line = I915_READ(reg) & DSL_LINEMASK;
1055                         mdelay(5);
1056                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1057                          time_after(timeout, jiffies));
1058                 if (time_after(jiffies, timeout))
1059                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1060         }
1061 }
1062
1063 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1064 {
1065         struct drm_device *dev = crtc->dev;
1066         struct drm_i915_private *dev_priv = dev->dev_private;
1067         struct drm_framebuffer *fb = crtc->fb;
1068         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1069         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1070         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1071         int plane, i;
1072         u32 fbc_ctl, fbc_ctl2;
1073
1074         if (fb->pitch == dev_priv->cfb_pitch &&
1075             obj_priv->fence_reg == dev_priv->cfb_fence &&
1076             intel_crtc->plane == dev_priv->cfb_plane &&
1077             I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1078                 return;
1079
1080         i8xx_disable_fbc(dev);
1081
1082         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1083
1084         if (fb->pitch < dev_priv->cfb_pitch)
1085                 dev_priv->cfb_pitch = fb->pitch;
1086
1087         /* FBC_CTL wants 64B units */
1088         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1089         dev_priv->cfb_fence = obj_priv->fence_reg;
1090         dev_priv->cfb_plane = intel_crtc->plane;
1091         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1092
1093         /* Clear old tags */
1094         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1095                 I915_WRITE(FBC_TAG + (i * 4), 0);
1096
1097         /* Set it up... */
1098         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1099         if (obj_priv->tiling_mode != I915_TILING_NONE)
1100                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1101         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1102         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1103
1104         /* enable it... */
1105         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1106         if (IS_I945GM(dev))
1107                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1108         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1109         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1110         if (obj_priv->tiling_mode != I915_TILING_NONE)
1111                 fbc_ctl |= dev_priv->cfb_fence;
1112         I915_WRITE(FBC_CONTROL, fbc_ctl);
1113
1114         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1115                       dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1116 }
1117
1118 void i8xx_disable_fbc(struct drm_device *dev)
1119 {
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121         u32 fbc_ctl;
1122
1123         /* Disable compression */
1124         fbc_ctl = I915_READ(FBC_CONTROL);
1125         if ((fbc_ctl & FBC_CTL_EN) == 0)
1126                 return;
1127
1128         fbc_ctl &= ~FBC_CTL_EN;
1129         I915_WRITE(FBC_CONTROL, fbc_ctl);
1130
1131         /* Wait for compressing bit to clear */
1132         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1133                 DRM_DEBUG_KMS("FBC idle timed out\n");
1134                 return;
1135         }
1136
1137         DRM_DEBUG_KMS("disabled FBC\n");
1138 }
1139
1140 static bool i8xx_fbc_enabled(struct drm_device *dev)
1141 {
1142         struct drm_i915_private *dev_priv = dev->dev_private;
1143
1144         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1145 }
1146
1147 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1148 {
1149         struct drm_device *dev = crtc->dev;
1150         struct drm_i915_private *dev_priv = dev->dev_private;
1151         struct drm_framebuffer *fb = crtc->fb;
1152         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1153         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1154         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1155         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1156         unsigned long stall_watermark = 200;
1157         u32 dpfc_ctl;
1158
1159         dpfc_ctl = I915_READ(DPFC_CONTROL);
1160         if (dpfc_ctl & DPFC_CTL_EN) {
1161                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1162                     dev_priv->cfb_fence == obj_priv->fence_reg &&
1163                     dev_priv->cfb_plane == intel_crtc->plane &&
1164                     dev_priv->cfb_y == crtc->y)
1165                         return;
1166
1167                 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1168                 POSTING_READ(DPFC_CONTROL);
1169                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1170         }
1171
1172         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1173         dev_priv->cfb_fence = obj_priv->fence_reg;
1174         dev_priv->cfb_plane = intel_crtc->plane;
1175         dev_priv->cfb_y = crtc->y;
1176
1177         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1178         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1179                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1180                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1181         } else {
1182                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1183         }
1184
1185         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1186                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1187                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1188         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1189
1190         /* enable it... */
1191         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1192
1193         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1194 }
1195
1196 void g4x_disable_fbc(struct drm_device *dev)
1197 {
1198         struct drm_i915_private *dev_priv = dev->dev_private;
1199         u32 dpfc_ctl;
1200
1201         /* Disable compression */
1202         dpfc_ctl = I915_READ(DPFC_CONTROL);
1203         if (dpfc_ctl & DPFC_CTL_EN) {
1204                 dpfc_ctl &= ~DPFC_CTL_EN;
1205                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1206
1207                 DRM_DEBUG_KMS("disabled FBC\n");
1208         }
1209 }
1210
1211 static bool g4x_fbc_enabled(struct drm_device *dev)
1212 {
1213         struct drm_i915_private *dev_priv = dev->dev_private;
1214
1215         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1216 }
1217
1218 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1219 {
1220         struct drm_device *dev = crtc->dev;
1221         struct drm_i915_private *dev_priv = dev->dev_private;
1222         struct drm_framebuffer *fb = crtc->fb;
1223         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1224         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1225         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1226         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1227         unsigned long stall_watermark = 200;
1228         u32 dpfc_ctl;
1229
1230         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1231         if (dpfc_ctl & DPFC_CTL_EN) {
1232                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1233                     dev_priv->cfb_fence == obj_priv->fence_reg &&
1234                     dev_priv->cfb_plane == intel_crtc->plane &&
1235                     dev_priv->cfb_offset == obj_priv->gtt_offset &&
1236                     dev_priv->cfb_y == crtc->y)
1237                         return;
1238
1239                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1240                 POSTING_READ(ILK_DPFC_CONTROL);
1241                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1242         }
1243
1244         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1245         dev_priv->cfb_fence = obj_priv->fence_reg;
1246         dev_priv->cfb_plane = intel_crtc->plane;
1247         dev_priv->cfb_offset = obj_priv->gtt_offset;
1248         dev_priv->cfb_y = crtc->y;
1249
1250         dpfc_ctl &= DPFC_RESERVED;
1251         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1252         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1253                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1254                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1255         } else {
1256                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1257         }
1258
1259         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1260                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1261                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1262         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1263         I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1264         /* enable it... */
1265         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1266
1267         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1268 }
1269
1270 void ironlake_disable_fbc(struct drm_device *dev)
1271 {
1272         struct drm_i915_private *dev_priv = dev->dev_private;
1273         u32 dpfc_ctl;
1274
1275         /* Disable compression */
1276         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1277         if (dpfc_ctl & DPFC_CTL_EN) {
1278                 dpfc_ctl &= ~DPFC_CTL_EN;
1279                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1280
1281                 DRM_DEBUG_KMS("disabled FBC\n");
1282         }
1283 }
1284
1285 static bool ironlake_fbc_enabled(struct drm_device *dev)
1286 {
1287         struct drm_i915_private *dev_priv = dev->dev_private;
1288
1289         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1290 }
1291
1292 bool intel_fbc_enabled(struct drm_device *dev)
1293 {
1294         struct drm_i915_private *dev_priv = dev->dev_private;
1295
1296         if (!dev_priv->display.fbc_enabled)
1297                 return false;
1298
1299         return dev_priv->display.fbc_enabled(dev);
1300 }
1301
1302 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1303 {
1304         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1305
1306         if (!dev_priv->display.enable_fbc)
1307                 return;
1308
1309         dev_priv->display.enable_fbc(crtc, interval);
1310 }
1311
1312 void intel_disable_fbc(struct drm_device *dev)
1313 {
1314         struct drm_i915_private *dev_priv = dev->dev_private;
1315
1316         if (!dev_priv->display.disable_fbc)
1317                 return;
1318
1319         dev_priv->display.disable_fbc(dev);
1320 }
1321
1322 /**
1323  * intel_update_fbc - enable/disable FBC as needed
1324  * @dev: the drm_device
1325  *
1326  * Set up the framebuffer compression hardware at mode set time.  We
1327  * enable it if possible:
1328  *   - plane A only (on pre-965)
1329  *   - no pixel mulitply/line duplication
1330  *   - no alpha buffer discard
1331  *   - no dual wide
1332  *   - framebuffer <= 2048 in width, 1536 in height
1333  *
1334  * We can't assume that any compression will take place (worst case),
1335  * so the compressed buffer has to be the same size as the uncompressed
1336  * one.  It also must reside (along with the line length buffer) in
1337  * stolen memory.
1338  *
1339  * We need to enable/disable FBC on a global basis.
1340  */
1341 static void intel_update_fbc(struct drm_device *dev)
1342 {
1343         struct drm_i915_private *dev_priv = dev->dev_private;
1344         struct drm_crtc *crtc = NULL, *tmp_crtc;
1345         struct intel_crtc *intel_crtc;
1346         struct drm_framebuffer *fb;
1347         struct intel_framebuffer *intel_fb;
1348         struct drm_i915_gem_object *obj_priv;
1349
1350         DRM_DEBUG_KMS("\n");
1351
1352         if (!i915_powersave)
1353                 return;
1354
1355         if (!I915_HAS_FBC(dev))
1356                 return;
1357
1358         /*
1359          * If FBC is already on, we just have to verify that we can
1360          * keep it that way...
1361          * Need to disable if:
1362          *   - more than one pipe is active
1363          *   - changing FBC params (stride, fence, mode)
1364          *   - new fb is too large to fit in compressed buffer
1365          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1366          */
1367         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1368                 if (tmp_crtc->enabled) {
1369                         if (crtc) {
1370                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1371                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1372                                 goto out_disable;
1373                         }
1374                         crtc = tmp_crtc;
1375                 }
1376         }
1377
1378         if (!crtc || crtc->fb == NULL) {
1379                 DRM_DEBUG_KMS("no output, disabling\n");
1380                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1381                 goto out_disable;
1382         }
1383
1384         intel_crtc = to_intel_crtc(crtc);
1385         fb = crtc->fb;
1386         intel_fb = to_intel_framebuffer(fb);
1387         obj_priv = to_intel_bo(intel_fb->obj);
1388
1389         if (intel_fb->obj->size > dev_priv->cfb_size) {
1390                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1391                               "compression\n");
1392                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1393                 goto out_disable;
1394         }
1395         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1396             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1397                 DRM_DEBUG_KMS("mode incompatible with compression, "
1398                               "disabling\n");
1399                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1400                 goto out_disable;
1401         }
1402         if ((crtc->mode.hdisplay > 2048) ||
1403             (crtc->mode.vdisplay > 1536)) {
1404                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1405                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1406                 goto out_disable;
1407         }
1408         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1409                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1410                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1411                 goto out_disable;
1412         }
1413         if (obj_priv->tiling_mode != I915_TILING_X) {
1414                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1415                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1416                 goto out_disable;
1417         }
1418
1419         /* If the kernel debugger is active, always disable compression */
1420         if (in_dbg_master())
1421                 goto out_disable;
1422
1423         intel_enable_fbc(crtc, 500);
1424         return;
1425
1426 out_disable:
1427         /* Multiple disables should be harmless */
1428         if (intel_fbc_enabled(dev)) {
1429                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1430                 intel_disable_fbc(dev);
1431         }
1432 }
1433
1434 int
1435 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1436                            struct drm_gem_object *obj,
1437                            bool pipelined)
1438 {
1439         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1440         u32 alignment;
1441         int ret;
1442
1443         switch (obj_priv->tiling_mode) {
1444         case I915_TILING_NONE:
1445                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1446                         alignment = 128 * 1024;
1447                 else if (INTEL_INFO(dev)->gen >= 4)
1448                         alignment = 4 * 1024;
1449                 else
1450                         alignment = 64 * 1024;
1451                 break;
1452         case I915_TILING_X:
1453                 /* pin() will align the object as required by fence */
1454                 alignment = 0;
1455                 break;
1456         case I915_TILING_Y:
1457                 /* FIXME: Is this true? */
1458                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1459                 return -EINVAL;
1460         default:
1461                 BUG();
1462         }
1463
1464         ret = i915_gem_object_pin(obj, alignment);
1465         if (ret)
1466                 return ret;
1467
1468         ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1469         if (ret)
1470                 goto err_unpin;
1471
1472         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1473          * fence, whereas 965+ only requires a fence if using
1474          * framebuffer compression.  For simplicity, we always install
1475          * a fence as the cost is not that onerous.
1476          */
1477         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1478             obj_priv->tiling_mode != I915_TILING_NONE) {
1479                 ret = i915_gem_object_get_fence_reg(obj, false);
1480                 if (ret)
1481                         goto err_unpin;
1482         }
1483
1484         return 0;
1485
1486 err_unpin:
1487         i915_gem_object_unpin(obj);
1488         return ret;
1489 }
1490
1491 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1492 static int
1493 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1494                            int x, int y, enum mode_set_atomic state)
1495 {
1496         struct drm_device *dev = crtc->dev;
1497         struct drm_i915_private *dev_priv = dev->dev_private;
1498         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1499         struct intel_framebuffer *intel_fb;
1500         struct drm_i915_gem_object *obj_priv;
1501         struct drm_gem_object *obj;
1502         int plane = intel_crtc->plane;
1503         unsigned long Start, Offset;
1504         u32 dspcntr;
1505         u32 reg;
1506
1507         switch (plane) {
1508         case 0:
1509         case 1:
1510                 break;
1511         default:
1512                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1513                 return -EINVAL;
1514         }
1515
1516         intel_fb = to_intel_framebuffer(fb);
1517         obj = intel_fb->obj;
1518         obj_priv = to_intel_bo(obj);
1519
1520         reg = DSPCNTR(plane);
1521         dspcntr = I915_READ(reg);
1522         /* Mask out pixel format bits in case we change it */
1523         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1524         switch (fb->bits_per_pixel) {
1525         case 8:
1526                 dspcntr |= DISPPLANE_8BPP;
1527                 break;
1528         case 16:
1529                 if (fb->depth == 15)
1530                         dspcntr |= DISPPLANE_15_16BPP;
1531                 else
1532                         dspcntr |= DISPPLANE_16BPP;
1533                 break;
1534         case 24:
1535         case 32:
1536                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1537                 break;
1538         default:
1539                 DRM_ERROR("Unknown color depth\n");
1540                 return -EINVAL;
1541         }
1542         if (INTEL_INFO(dev)->gen >= 4) {
1543                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1544                         dspcntr |= DISPPLANE_TILED;
1545                 else
1546                         dspcntr &= ~DISPPLANE_TILED;
1547         }
1548
1549         if (HAS_PCH_SPLIT(dev))
1550                 /* must disable */
1551                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1552
1553         I915_WRITE(reg, dspcntr);
1554
1555         Start = obj_priv->gtt_offset;
1556         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1557
1558         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1559                       Start, Offset, x, y, fb->pitch);
1560         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1561         if (INTEL_INFO(dev)->gen >= 4) {
1562                 I915_WRITE(DSPSURF(plane), Start);
1563                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1564                 I915_WRITE(DSPADDR(plane), Offset);
1565         } else
1566                 I915_WRITE(DSPADDR(plane), Start + Offset);
1567         POSTING_READ(reg);
1568
1569         intel_update_fbc(dev);
1570         intel_increase_pllclock(crtc);
1571
1572         return 0;
1573 }
1574
1575 static int
1576 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1577                     struct drm_framebuffer *old_fb)
1578 {
1579         struct drm_device *dev = crtc->dev;
1580         struct drm_i915_master_private *master_priv;
1581         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1582         int ret;
1583
1584         /* no fb bound */
1585         if (!crtc->fb) {
1586                 DRM_DEBUG_KMS("No FB bound\n");
1587                 return 0;
1588         }
1589
1590         switch (intel_crtc->plane) {
1591         case 0:
1592         case 1:
1593                 break;
1594         default:
1595                 return -EINVAL;
1596         }
1597
1598         mutex_lock(&dev->struct_mutex);
1599         ret = intel_pin_and_fence_fb_obj(dev,
1600                                          to_intel_framebuffer(crtc->fb)->obj,
1601                                          false);
1602         if (ret != 0) {
1603                 mutex_unlock(&dev->struct_mutex);
1604                 return ret;
1605         }
1606
1607         if (old_fb) {
1608                 struct drm_i915_private *dev_priv = dev->dev_private;
1609                 struct drm_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1610                 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1611
1612                 wait_event(dev_priv->pending_flip_queue,
1613                            atomic_read(&obj_priv->pending_flip) == 0);
1614
1615                 /* Big Hammer, we also need to ensure that any pending
1616                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1617                  * current scanout is retired before unpinning the old
1618                  * framebuffer.
1619                  */
1620                 ret = i915_gem_object_flush_gpu(obj_priv, false);
1621                 if (ret) {
1622                         i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1623                         mutex_unlock(&dev->struct_mutex);
1624                         return ret;
1625                 }
1626         }
1627
1628         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1629                                          LEAVE_ATOMIC_MODE_SET);
1630         if (ret) {
1631                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1632                 mutex_unlock(&dev->struct_mutex);
1633                 return ret;
1634         }
1635
1636         if (old_fb)
1637                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1638
1639         mutex_unlock(&dev->struct_mutex);
1640
1641         if (!dev->primary->master)
1642                 return 0;
1643
1644         master_priv = dev->primary->master->driver_priv;
1645         if (!master_priv->sarea_priv)
1646                 return 0;
1647
1648         if (intel_crtc->pipe) {
1649                 master_priv->sarea_priv->pipeB_x = x;
1650                 master_priv->sarea_priv->pipeB_y = y;
1651         } else {
1652                 master_priv->sarea_priv->pipeA_x = x;
1653                 master_priv->sarea_priv->pipeA_y = y;
1654         }
1655
1656         return 0;
1657 }
1658
1659 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1660 {
1661         struct drm_device *dev = crtc->dev;
1662         struct drm_i915_private *dev_priv = dev->dev_private;
1663         u32 dpa_ctl;
1664
1665         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1666         dpa_ctl = I915_READ(DP_A);
1667         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1668
1669         if (clock < 200000) {
1670                 u32 temp;
1671                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1672                 /* workaround for 160Mhz:
1673                    1) program 0x4600c bits 15:0 = 0x8124
1674                    2) program 0x46010 bit 0 = 1
1675                    3) program 0x46034 bit 24 = 1
1676                    4) program 0x64000 bit 14 = 1
1677                    */
1678                 temp = I915_READ(0x4600c);
1679                 temp &= 0xffff0000;
1680                 I915_WRITE(0x4600c, temp | 0x8124);
1681
1682                 temp = I915_READ(0x46010);
1683                 I915_WRITE(0x46010, temp | 1);
1684
1685                 temp = I915_READ(0x46034);
1686                 I915_WRITE(0x46034, temp | (1 << 24));
1687         } else {
1688                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1689         }
1690         I915_WRITE(DP_A, dpa_ctl);
1691
1692         POSTING_READ(DP_A);
1693         udelay(500);
1694 }
1695
1696 static void intel_fdi_normal_train(struct drm_crtc *crtc)
1697 {
1698         struct drm_device *dev = crtc->dev;
1699         struct drm_i915_private *dev_priv = dev->dev_private;
1700         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1701         int pipe = intel_crtc->pipe;
1702         u32 reg, temp;
1703
1704         /* enable normal train */
1705         reg = FDI_TX_CTL(pipe);
1706         temp = I915_READ(reg);
1707         temp &= ~FDI_LINK_TRAIN_NONE;
1708         temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
1709         I915_WRITE(reg, temp);
1710
1711         reg = FDI_RX_CTL(pipe);
1712         temp = I915_READ(reg);
1713         if (HAS_PCH_CPT(dev)) {
1714                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1715                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1716         } else {
1717                 temp &= ~FDI_LINK_TRAIN_NONE;
1718                 temp |= FDI_LINK_TRAIN_NONE;
1719         }
1720         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1721
1722         /* wait one idle pattern time */
1723         POSTING_READ(reg);
1724         udelay(1000);
1725 }
1726
1727 /* The FDI link training functions for ILK/Ibexpeak. */
1728 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1729 {
1730         struct drm_device *dev = crtc->dev;
1731         struct drm_i915_private *dev_priv = dev->dev_private;
1732         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1733         int pipe = intel_crtc->pipe;
1734         u32 reg, temp, tries;
1735
1736         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1737            for train result */
1738         reg = FDI_RX_IMR(pipe);
1739         temp = I915_READ(reg);
1740         temp &= ~FDI_RX_SYMBOL_LOCK;
1741         temp &= ~FDI_RX_BIT_LOCK;
1742         I915_WRITE(reg, temp);
1743         I915_READ(reg);
1744         udelay(150);
1745
1746         /* enable CPU FDI TX and PCH FDI RX */
1747         reg = FDI_TX_CTL(pipe);
1748         temp = I915_READ(reg);
1749         temp &= ~(7 << 19);
1750         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1751         temp &= ~FDI_LINK_TRAIN_NONE;
1752         temp |= FDI_LINK_TRAIN_PATTERN_1;
1753         I915_WRITE(reg, temp | FDI_TX_ENABLE);
1754
1755         reg = FDI_RX_CTL(pipe);
1756         temp = I915_READ(reg);
1757         temp &= ~FDI_LINK_TRAIN_NONE;
1758         temp |= FDI_LINK_TRAIN_PATTERN_1;
1759         I915_WRITE(reg, temp | FDI_RX_ENABLE);
1760
1761         POSTING_READ(reg);
1762         udelay(150);
1763
1764         /* Ironlake workaround, enable clock pointer after FDI enable*/
1765         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_ENABLE);
1766
1767         reg = FDI_RX_IIR(pipe);
1768         for (tries = 0; tries < 5; tries++) {
1769                 temp = I915_READ(reg);
1770                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1771
1772                 if ((temp & FDI_RX_BIT_LOCK)) {
1773                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1774                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1775                         break;
1776                 }
1777         }
1778         if (tries == 5)
1779                 DRM_ERROR("FDI train 1 fail!\n");
1780
1781         /* Train 2 */
1782         reg = FDI_TX_CTL(pipe);
1783         temp = I915_READ(reg);
1784         temp &= ~FDI_LINK_TRAIN_NONE;
1785         temp |= FDI_LINK_TRAIN_PATTERN_2;
1786         I915_WRITE(reg, temp);
1787
1788         reg = FDI_RX_CTL(pipe);
1789         temp = I915_READ(reg);
1790         temp &= ~FDI_LINK_TRAIN_NONE;
1791         temp |= FDI_LINK_TRAIN_PATTERN_2;
1792         I915_WRITE(reg, temp);
1793
1794         POSTING_READ(reg);
1795         udelay(150);
1796
1797         reg = FDI_RX_IIR(pipe);
1798         for (tries = 0; tries < 5; tries++) {
1799                 temp = I915_READ(reg);
1800                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1801
1802                 if (temp & FDI_RX_SYMBOL_LOCK) {
1803                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1804                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1805                         break;
1806                 }
1807         }
1808         if (tries == 5)
1809                 DRM_ERROR("FDI train 2 fail!\n");
1810
1811         DRM_DEBUG_KMS("FDI train done\n");
1812
1813 }
1814
1815 static const int const snb_b_fdi_train_param [] = {
1816         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1817         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1818         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1819         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1820 };
1821
1822 /* The FDI link training functions for SNB/Cougarpoint. */
1823 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1824 {
1825         struct drm_device *dev = crtc->dev;
1826         struct drm_i915_private *dev_priv = dev->dev_private;
1827         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1828         int pipe = intel_crtc->pipe;
1829         u32 reg, temp, i;
1830
1831         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1832            for train result */
1833         reg = FDI_RX_IMR(pipe);
1834         temp = I915_READ(reg);
1835         temp &= ~FDI_RX_SYMBOL_LOCK;
1836         temp &= ~FDI_RX_BIT_LOCK;
1837         I915_WRITE(reg, temp);
1838
1839         POSTING_READ(reg);
1840         udelay(150);
1841
1842         /* enable CPU FDI TX and PCH FDI RX */
1843         reg = FDI_TX_CTL(pipe);
1844         temp = I915_READ(reg);
1845         temp &= ~(7 << 19);
1846         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1847         temp &= ~FDI_LINK_TRAIN_NONE;
1848         temp |= FDI_LINK_TRAIN_PATTERN_1;
1849         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1850         /* SNB-B */
1851         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1852         I915_WRITE(reg, temp | FDI_TX_ENABLE);
1853
1854         reg = FDI_RX_CTL(pipe);
1855         temp = I915_READ(reg);
1856         if (HAS_PCH_CPT(dev)) {
1857                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1858                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1859         } else {
1860                 temp &= ~FDI_LINK_TRAIN_NONE;
1861                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1862         }
1863         I915_WRITE(reg, temp | FDI_RX_ENABLE);
1864
1865         POSTING_READ(reg);
1866         udelay(150);
1867
1868         for (i = 0; i < 4; i++ ) {
1869                 reg = FDI_TX_CTL(pipe);
1870                 temp = I915_READ(reg);
1871                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1872                 temp |= snb_b_fdi_train_param[i];
1873                 I915_WRITE(reg, temp);
1874
1875                 POSTING_READ(reg);
1876                 udelay(500);
1877
1878                 reg = FDI_RX_IIR(pipe);
1879                 temp = I915_READ(reg);
1880                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1881
1882                 if (temp & FDI_RX_BIT_LOCK) {
1883                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1884                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1885                         break;
1886                 }
1887         }
1888         if (i == 4)
1889                 DRM_ERROR("FDI train 1 fail!\n");
1890
1891         /* Train 2 */
1892         reg = FDI_TX_CTL(pipe);
1893         temp = I915_READ(reg);
1894         temp &= ~FDI_LINK_TRAIN_NONE;
1895         temp |= FDI_LINK_TRAIN_PATTERN_2;
1896         if (IS_GEN6(dev)) {
1897                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1898                 /* SNB-B */
1899                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1900         }
1901         I915_WRITE(reg, temp);
1902
1903         reg = FDI_RX_CTL(pipe);
1904         temp = I915_READ(reg);
1905         if (HAS_PCH_CPT(dev)) {
1906                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1907                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1908         } else {
1909                 temp &= ~FDI_LINK_TRAIN_NONE;
1910                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1911         }
1912         I915_WRITE(reg, temp);
1913
1914         POSTING_READ(reg);
1915         udelay(150);
1916
1917         for (i = 0; i < 4; i++ ) {
1918                 reg = FDI_TX_CTL(pipe);
1919                 temp = I915_READ(reg);
1920                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1921                 temp |= snb_b_fdi_train_param[i];
1922                 I915_WRITE(reg, temp);
1923
1924                 POSTING_READ(reg);
1925                 udelay(500);
1926
1927                 reg = FDI_RX_IIR(pipe);
1928                 temp = I915_READ(reg);
1929                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1930
1931                 if (temp & FDI_RX_SYMBOL_LOCK) {
1932                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1933                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1934                         break;
1935                 }
1936         }
1937         if (i == 4)
1938                 DRM_ERROR("FDI train 2 fail!\n");
1939
1940         DRM_DEBUG_KMS("FDI train done.\n");
1941 }
1942
1943 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1944 {
1945         struct drm_device *dev = crtc->dev;
1946         struct drm_i915_private *dev_priv = dev->dev_private;
1947         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1948         int pipe = intel_crtc->pipe;
1949         u32 reg, temp;
1950
1951         /* Write the TU size bits so error detection works */
1952         I915_WRITE(FDI_RX_TUSIZE1(pipe),
1953                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1954
1955         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1956         reg = FDI_RX_CTL(pipe);
1957         temp = I915_READ(reg);
1958         temp &= ~((0x7 << 19) | (0x7 << 16));
1959         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1960         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1961         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1962
1963         POSTING_READ(reg);
1964         udelay(200);
1965
1966         /* Switch from Rawclk to PCDclk */
1967         temp = I915_READ(reg);
1968         I915_WRITE(reg, temp | FDI_PCDCLK);
1969
1970         POSTING_READ(reg);
1971         udelay(200);
1972
1973         /* Enable CPU FDI TX PLL, always on for Ironlake */
1974         reg = FDI_TX_CTL(pipe);
1975         temp = I915_READ(reg);
1976         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1977                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
1978
1979                 POSTING_READ(reg);
1980                 udelay(100);
1981         }
1982 }
1983
1984 static void intel_flush_display_plane(struct drm_device *dev,
1985                                       int plane)
1986 {
1987         struct drm_i915_private *dev_priv = dev->dev_private;
1988         u32 reg = DSPADDR(plane);
1989         I915_WRITE(reg, I915_READ(reg));
1990 }
1991
1992 /*
1993  * When we disable a pipe, we need to clear any pending scanline wait events
1994  * to avoid hanging the ring, which we assume we are waiting on.
1995  */
1996 static void intel_clear_scanline_wait(struct drm_device *dev)
1997 {
1998         struct drm_i915_private *dev_priv = dev->dev_private;
1999         u32 tmp;
2000
2001         if (IS_GEN2(dev))
2002                 /* Can't break the hang on i8xx */
2003                 return;
2004
2005         tmp = I915_READ(PRB0_CTL);
2006         if (tmp & RING_WAIT) {
2007                 I915_WRITE(PRB0_CTL, tmp);
2008                 POSTING_READ(PRB0_CTL);
2009         }
2010 }
2011
2012 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2013 {
2014         struct drm_i915_gem_object *obj_priv;
2015         struct drm_i915_private *dev_priv;
2016
2017         if (crtc->fb == NULL)
2018                 return;
2019
2020         obj_priv = to_intel_bo(to_intel_framebuffer(crtc->fb)->obj);
2021         dev_priv = crtc->dev->dev_private;
2022         wait_event(dev_priv->pending_flip_queue,
2023                    atomic_read(&obj_priv->pending_flip) == 0);
2024 }
2025
2026 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2027 {
2028         struct drm_device *dev = crtc->dev;
2029         struct drm_i915_private *dev_priv = dev->dev_private;
2030         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2031         int pipe = intel_crtc->pipe;
2032         int plane = intel_crtc->plane;
2033         u32 reg, temp;
2034
2035         if (intel_crtc->active)
2036                 return;
2037
2038         intel_crtc->active = true;
2039         intel_update_watermarks(dev);
2040
2041         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2042                 temp = I915_READ(PCH_LVDS);
2043                 if ((temp & LVDS_PORT_EN) == 0)
2044                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2045         }
2046
2047         ironlake_fdi_enable(crtc);
2048
2049         /* Enable panel fitting for LVDS */
2050         if (dev_priv->pch_pf_size &&
2051             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2052                 /* Force use of hard-coded filter coefficients
2053                  * as some pre-programmed values are broken,
2054                  * e.g. x201.
2055                  */
2056                 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
2057                            PF_ENABLE | PF_FILTER_MED_3x3);
2058                 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
2059                            dev_priv->pch_pf_pos);
2060                 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
2061                            dev_priv->pch_pf_size);
2062         }
2063
2064         /* Enable CPU pipe */
2065         reg = PIPECONF(pipe);
2066         temp = I915_READ(reg);
2067         if ((temp & PIPECONF_ENABLE) == 0) {
2068                 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2069                 POSTING_READ(reg);
2070                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2071         }
2072
2073         /* configure and enable CPU plane */
2074         reg = DSPCNTR(plane);
2075         temp = I915_READ(reg);
2076         if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2077                 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2078                 intel_flush_display_plane(dev, plane);
2079         }
2080
2081         /* For PCH output, training FDI link */
2082         if (IS_GEN6(dev))
2083                 gen6_fdi_link_train(crtc);
2084         else
2085                 ironlake_fdi_link_train(crtc);
2086
2087         /* enable PCH DPLL */
2088         reg = PCH_DPLL(pipe);
2089         temp = I915_READ(reg);
2090         if ((temp & DPLL_VCO_ENABLE) == 0) {
2091                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2092                 POSTING_READ(reg);
2093                 udelay(200);
2094         }
2095
2096         if (HAS_PCH_CPT(dev)) {
2097                 /* Be sure PCH DPLL SEL is set */
2098                 temp = I915_READ(PCH_DPLL_SEL);
2099                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2100                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2101                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2102                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2103                 I915_WRITE(PCH_DPLL_SEL, temp);
2104         }
2105
2106         /* set transcoder timing */
2107         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2108         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2109         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2110
2111         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2112         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2113         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2114
2115         intel_fdi_normal_train(crtc);
2116
2117         /* For PCH DP, enable TRANS_DP_CTL */
2118         if (HAS_PCH_CPT(dev) &&
2119             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2120                 reg = TRANS_DP_CTL(pipe);
2121                 temp = I915_READ(reg);
2122                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2123                           TRANS_DP_SYNC_MASK |
2124                           TRANS_DP_BPC_MASK);
2125                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2126                          TRANS_DP_ENH_FRAMING);
2127                 temp |= TRANS_DP_8BPC;
2128
2129                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2130                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2131                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2132                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2133
2134                 switch (intel_trans_dp_port_sel(crtc)) {
2135                 case PCH_DP_B:
2136                         temp |= TRANS_DP_PORT_SEL_B;
2137                         break;
2138                 case PCH_DP_C:
2139                         temp |= TRANS_DP_PORT_SEL_C;
2140                         break;
2141                 case PCH_DP_D:
2142                         temp |= TRANS_DP_PORT_SEL_D;
2143                         break;
2144                 default:
2145                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2146                         temp |= TRANS_DP_PORT_SEL_B;
2147                         break;
2148                 }
2149
2150                 I915_WRITE(reg, temp);
2151         }
2152
2153         /* enable PCH transcoder */
2154         reg = TRANSCONF(pipe);
2155         temp = I915_READ(reg);
2156         /*
2157          * make the BPC in transcoder be consistent with
2158          * that in pipeconf reg.
2159          */
2160         temp &= ~PIPE_BPC_MASK;
2161         temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2162         I915_WRITE(reg, temp | TRANS_ENABLE);
2163         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2164                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
2165
2166         intel_crtc_load_lut(crtc);
2167         intel_update_fbc(dev);
2168         intel_crtc_update_cursor(crtc, true);
2169 }
2170
2171 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2172 {
2173         struct drm_device *dev = crtc->dev;
2174         struct drm_i915_private *dev_priv = dev->dev_private;
2175         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2176         int pipe = intel_crtc->pipe;
2177         int plane = intel_crtc->plane;
2178         u32 reg, temp;
2179
2180         if (!intel_crtc->active)
2181                 return;
2182
2183         intel_crtc_wait_for_pending_flips(crtc);
2184         drm_vblank_off(dev, pipe);
2185         intel_crtc_update_cursor(crtc, false);
2186
2187         /* Disable display plane */
2188         reg = DSPCNTR(plane);
2189         temp = I915_READ(reg);
2190         if (temp & DISPLAY_PLANE_ENABLE) {
2191                 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2192                 intel_flush_display_plane(dev, plane);
2193         }
2194
2195         if (dev_priv->cfb_plane == plane &&
2196             dev_priv->display.disable_fbc)
2197                 dev_priv->display.disable_fbc(dev);
2198
2199         /* disable cpu pipe, disable after all planes disabled */
2200         reg = PIPECONF(pipe);
2201         temp = I915_READ(reg);
2202         if (temp & PIPECONF_ENABLE) {
2203                 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2204                 POSTING_READ(reg);
2205                 /* wait for cpu pipe off, pipe state */
2206                 intel_wait_for_pipe_off(dev, intel_crtc->pipe);
2207         }
2208
2209         /* Disable PF */
2210         I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2211         I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2212
2213         /* disable CPU FDI tx and PCH FDI rx */
2214         reg = FDI_TX_CTL(pipe);
2215         temp = I915_READ(reg);
2216         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2217         POSTING_READ(reg);
2218
2219         reg = FDI_RX_CTL(pipe);
2220         temp = I915_READ(reg);
2221         temp &= ~(0x7 << 16);
2222         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2223         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2224
2225         POSTING_READ(reg);
2226         udelay(100);
2227
2228         /* Ironlake workaround, disable clock pointer after downing FDI */
2229         if (HAS_PCH_IBX(dev))
2230                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2231                            I915_READ(FDI_RX_CHICKEN(pipe) &
2232                                      ~FDI_RX_PHASE_SYNC_POINTER_ENABLE));
2233
2234         /* still set train pattern 1 */
2235         reg = FDI_TX_CTL(pipe);
2236         temp = I915_READ(reg);
2237         temp &= ~FDI_LINK_TRAIN_NONE;
2238         temp |= FDI_LINK_TRAIN_PATTERN_1;
2239         I915_WRITE(reg, temp);
2240
2241         reg = FDI_RX_CTL(pipe);
2242         temp = I915_READ(reg);
2243         if (HAS_PCH_CPT(dev)) {
2244                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2245                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2246         } else {
2247                 temp &= ~FDI_LINK_TRAIN_NONE;
2248                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2249         }
2250         /* BPC in FDI rx is consistent with that in PIPECONF */
2251         temp &= ~(0x07 << 16);
2252         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2253         I915_WRITE(reg, temp);
2254
2255         POSTING_READ(reg);
2256         udelay(100);
2257
2258         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2259                 temp = I915_READ(PCH_LVDS);
2260                 if (temp & LVDS_PORT_EN) {
2261                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2262                         POSTING_READ(PCH_LVDS);
2263                         udelay(100);
2264                 }
2265         }
2266
2267         /* disable PCH transcoder */
2268         reg = TRANSCONF(plane);
2269         temp = I915_READ(reg);
2270         if (temp & TRANS_ENABLE) {
2271                 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2272                 /* wait for PCH transcoder off, transcoder state */
2273                 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2274                         DRM_ERROR("failed to disable transcoder\n");
2275         }
2276
2277         if (HAS_PCH_CPT(dev)) {
2278                 /* disable TRANS_DP_CTL */
2279                 reg = TRANS_DP_CTL(pipe);
2280                 temp = I915_READ(reg);
2281                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2282                 I915_WRITE(reg, temp);
2283
2284                 /* disable DPLL_SEL */
2285                 temp = I915_READ(PCH_DPLL_SEL);
2286                 if (pipe == 0)
2287                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2288                 else
2289                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2290                 I915_WRITE(PCH_DPLL_SEL, temp);
2291         }
2292
2293         /* disable PCH DPLL */
2294         reg = PCH_DPLL(pipe);
2295         temp = I915_READ(reg);
2296         I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2297
2298         /* Switch from PCDclk to Rawclk */
2299         reg = FDI_RX_CTL(pipe);
2300         temp = I915_READ(reg);
2301         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2302
2303         /* Disable CPU FDI TX PLL */
2304         reg = FDI_TX_CTL(pipe);
2305         temp = I915_READ(reg);
2306         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2307
2308         POSTING_READ(reg);
2309         udelay(100);
2310
2311         reg = FDI_RX_CTL(pipe);
2312         temp = I915_READ(reg);
2313         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2314
2315         /* Wait for the clocks to turn off. */
2316         POSTING_READ(reg);
2317         udelay(100);
2318
2319         intel_crtc->active = false;
2320         intel_update_watermarks(dev);
2321         intel_update_fbc(dev);
2322         intel_clear_scanline_wait(dev);
2323 }
2324
2325 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2326 {
2327         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2328         int pipe = intel_crtc->pipe;
2329         int plane = intel_crtc->plane;
2330
2331         /* XXX: When our outputs are all unaware of DPMS modes other than off
2332          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2333          */
2334         switch (mode) {
2335         case DRM_MODE_DPMS_ON:
2336         case DRM_MODE_DPMS_STANDBY:
2337         case DRM_MODE_DPMS_SUSPEND:
2338                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2339                 ironlake_crtc_enable(crtc);
2340                 break;
2341
2342         case DRM_MODE_DPMS_OFF:
2343                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2344                 ironlake_crtc_disable(crtc);
2345                 break;
2346         }
2347 }
2348
2349 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2350 {
2351         if (!enable && intel_crtc->overlay) {
2352                 struct drm_device *dev = intel_crtc->base.dev;
2353
2354                 mutex_lock(&dev->struct_mutex);
2355                 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2356                 mutex_unlock(&dev->struct_mutex);
2357         }
2358
2359         /* Let userspace switch the overlay on again. In most cases userspace
2360          * has to recompute where to put it anyway.
2361          */
2362 }
2363
2364 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2365 {
2366         struct drm_device *dev = crtc->dev;
2367         struct drm_i915_private *dev_priv = dev->dev_private;
2368         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2369         int pipe = intel_crtc->pipe;
2370         int plane = intel_crtc->plane;
2371         u32 reg, temp;
2372
2373         if (intel_crtc->active)
2374                 return;
2375
2376         intel_crtc->active = true;
2377         intel_update_watermarks(dev);
2378
2379         /* Enable the DPLL */
2380         reg = DPLL(pipe);
2381         temp = I915_READ(reg);
2382         if ((temp & DPLL_VCO_ENABLE) == 0) {
2383                 I915_WRITE(reg, temp);
2384
2385                 /* Wait for the clocks to stabilize. */
2386                 POSTING_READ(reg);
2387                 udelay(150);
2388
2389                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2390
2391                 /* Wait for the clocks to stabilize. */
2392                 POSTING_READ(reg);
2393                 udelay(150);
2394
2395                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2396
2397                 /* Wait for the clocks to stabilize. */
2398                 POSTING_READ(reg);
2399                 udelay(150);
2400         }
2401
2402         /* Enable the pipe */
2403         reg = PIPECONF(pipe);
2404         temp = I915_READ(reg);
2405         if ((temp & PIPECONF_ENABLE) == 0)
2406                 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2407
2408         /* Enable the plane */
2409         reg = DSPCNTR(plane);
2410         temp = I915_READ(reg);
2411         if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2412                 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2413                 intel_flush_display_plane(dev, plane);
2414         }
2415
2416         intel_crtc_load_lut(crtc);
2417         intel_update_fbc(dev);
2418
2419         /* Give the overlay scaler a chance to enable if it's on this pipe */
2420         intel_crtc_dpms_overlay(intel_crtc, true);
2421         intel_crtc_update_cursor(crtc, true);
2422 }
2423
2424 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2425 {
2426         struct drm_device *dev = crtc->dev;
2427         struct drm_i915_private *dev_priv = dev->dev_private;
2428         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2429         int pipe = intel_crtc->pipe;
2430         int plane = intel_crtc->plane;
2431         u32 reg, temp;
2432
2433         if (!intel_crtc->active)
2434                 return;
2435
2436         /* Give the overlay scaler a chance to disable if it's on this pipe */
2437         intel_crtc_wait_for_pending_flips(crtc);
2438         drm_vblank_off(dev, pipe);
2439         intel_crtc_dpms_overlay(intel_crtc, false);
2440         intel_crtc_update_cursor(crtc, false);
2441
2442         if (dev_priv->cfb_plane == plane &&
2443             dev_priv->display.disable_fbc)
2444                 dev_priv->display.disable_fbc(dev);
2445
2446         /* Disable display plane */
2447         reg = DSPCNTR(plane);
2448         temp = I915_READ(reg);
2449         if (temp & DISPLAY_PLANE_ENABLE) {
2450                 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2451                 /* Flush the plane changes */
2452                 intel_flush_display_plane(dev, plane);
2453
2454                 /* Wait for vblank for the disable to take effect */
2455                 if (IS_GEN2(dev))
2456                         intel_wait_for_vblank(dev, pipe);
2457         }
2458
2459         /* Don't disable pipe A or pipe A PLLs if needed */
2460         if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2461                 goto done;
2462
2463         /* Next, disable display pipes */
2464         reg = PIPECONF(pipe);
2465         temp = I915_READ(reg);
2466         if (temp & PIPECONF_ENABLE) {
2467                 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2468
2469                 /* Wait for the pipe to turn off */
2470                 POSTING_READ(reg);
2471                 intel_wait_for_pipe_off(dev, pipe);
2472         }
2473
2474         reg = DPLL(pipe);
2475         temp = I915_READ(reg);
2476         if (temp & DPLL_VCO_ENABLE) {
2477                 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2478
2479                 /* Wait for the clocks to turn off. */
2480                 POSTING_READ(reg);
2481                 udelay(150);
2482         }
2483
2484 done:
2485         intel_crtc->active = false;
2486         intel_update_fbc(dev);
2487         intel_update_watermarks(dev);
2488         intel_clear_scanline_wait(dev);
2489 }
2490
2491 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2492 {
2493         /* XXX: When our outputs are all unaware of DPMS modes other than off
2494          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2495          */
2496         switch (mode) {
2497         case DRM_MODE_DPMS_ON:
2498         case DRM_MODE_DPMS_STANDBY:
2499         case DRM_MODE_DPMS_SUSPEND:
2500                 i9xx_crtc_enable(crtc);
2501                 break;
2502         case DRM_MODE_DPMS_OFF:
2503                 i9xx_crtc_disable(crtc);
2504                 break;
2505         }
2506 }
2507
2508 /**
2509  * Sets the power management mode of the pipe and plane.
2510  */
2511 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2512 {
2513         struct drm_device *dev = crtc->dev;
2514         struct drm_i915_private *dev_priv = dev->dev_private;
2515         struct drm_i915_master_private *master_priv;
2516         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2517         int pipe = intel_crtc->pipe;
2518         bool enabled;
2519
2520         if (intel_crtc->dpms_mode == mode)
2521                 return;
2522
2523         intel_crtc->dpms_mode = mode;
2524
2525         dev_priv->display.dpms(crtc, mode);
2526
2527         if (!dev->primary->master)
2528                 return;
2529
2530         master_priv = dev->primary->master->driver_priv;
2531         if (!master_priv->sarea_priv)
2532                 return;
2533
2534         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2535
2536         switch (pipe) {
2537         case 0:
2538                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2539                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2540                 break;
2541         case 1:
2542                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2543                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2544                 break;
2545         default:
2546                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2547                 break;
2548         }
2549 }
2550
2551 static void intel_crtc_disable(struct drm_crtc *crtc)
2552 {
2553         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2554         struct drm_device *dev = crtc->dev;
2555
2556         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2557
2558         if (crtc->fb) {
2559                 mutex_lock(&dev->struct_mutex);
2560                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2561                 mutex_unlock(&dev->struct_mutex);
2562         }
2563 }
2564
2565 /* Prepare for a mode set.
2566  *
2567  * Note we could be a lot smarter here.  We need to figure out which outputs
2568  * will be enabled, which disabled (in short, how the config will changes)
2569  * and perform the minimum necessary steps to accomplish that, e.g. updating
2570  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2571  * panel fitting is in the proper state, etc.
2572  */
2573 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2574 {
2575         i9xx_crtc_disable(crtc);
2576 }
2577
2578 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2579 {
2580         i9xx_crtc_enable(crtc);
2581 }
2582
2583 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2584 {
2585         ironlake_crtc_disable(crtc);
2586 }
2587
2588 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2589 {
2590         ironlake_crtc_enable(crtc);
2591 }
2592
2593 void intel_encoder_prepare (struct drm_encoder *encoder)
2594 {
2595         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2596         /* lvds has its own version of prepare see intel_lvds_prepare */
2597         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2598 }
2599
2600 void intel_encoder_commit (struct drm_encoder *encoder)
2601 {
2602         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2603         /* lvds has its own version of commit see intel_lvds_commit */
2604         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2605 }
2606
2607 void intel_encoder_destroy(struct drm_encoder *encoder)
2608 {
2609         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2610
2611         drm_encoder_cleanup(encoder);
2612         kfree(intel_encoder);
2613 }
2614
2615 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2616                                   struct drm_display_mode *mode,
2617                                   struct drm_display_mode *adjusted_mode)
2618 {
2619         struct drm_device *dev = crtc->dev;
2620
2621         if (HAS_PCH_SPLIT(dev)) {
2622                 /* FDI link clock is fixed at 2.7G */
2623                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2624                         return false;
2625         }
2626
2627         /* XXX some encoders set the crtcinfo, others don't.
2628          * Obviously we need some form of conflict resolution here...
2629          */
2630         if (adjusted_mode->crtc_htotal == 0)
2631                 drm_mode_set_crtcinfo(adjusted_mode, 0);
2632
2633         return true;
2634 }
2635
2636 static int i945_get_display_clock_speed(struct drm_device *dev)
2637 {
2638         return 400000;
2639 }
2640
2641 static int i915_get_display_clock_speed(struct drm_device *dev)
2642 {
2643         return 333000;
2644 }
2645
2646 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2647 {
2648         return 200000;
2649 }
2650
2651 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2652 {
2653         u16 gcfgc = 0;
2654
2655         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2656
2657         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2658                 return 133000;
2659         else {
2660                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2661                 case GC_DISPLAY_CLOCK_333_MHZ:
2662                         return 333000;
2663                 default:
2664                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2665                         return 190000;
2666                 }
2667         }
2668 }
2669
2670 static int i865_get_display_clock_speed(struct drm_device *dev)
2671 {
2672         return 266000;
2673 }
2674
2675 static int i855_get_display_clock_speed(struct drm_device *dev)
2676 {
2677         u16 hpllcc = 0;
2678         /* Assume that the hardware is in the high speed state.  This
2679          * should be the default.
2680          */
2681         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2682         case GC_CLOCK_133_200:
2683         case GC_CLOCK_100_200:
2684                 return 200000;
2685         case GC_CLOCK_166_250:
2686                 return 250000;
2687         case GC_CLOCK_100_133:
2688                 return 133000;
2689         }
2690
2691         /* Shouldn't happen */
2692         return 0;
2693 }
2694
2695 static int i830_get_display_clock_speed(struct drm_device *dev)
2696 {
2697         return 133000;
2698 }
2699
2700 struct fdi_m_n {
2701         u32        tu;
2702         u32        gmch_m;
2703         u32        gmch_n;
2704         u32        link_m;
2705         u32        link_n;
2706 };
2707
2708 static void
2709 fdi_reduce_ratio(u32 *num, u32 *den)
2710 {
2711         while (*num > 0xffffff || *den > 0xffffff) {
2712                 *num >>= 1;
2713                 *den >>= 1;
2714         }
2715 }
2716
2717 static void
2718 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2719                      int link_clock, struct fdi_m_n *m_n)
2720 {
2721         m_n->tu = 64; /* default size */
2722
2723         /* BUG_ON(pixel_clock > INT_MAX / 36); */
2724         m_n->gmch_m = bits_per_pixel * pixel_clock;
2725         m_n->gmch_n = link_clock * nlanes * 8;
2726         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2727
2728         m_n->link_m = pixel_clock;
2729         m_n->link_n = link_clock;
2730         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2731 }
2732
2733
2734 struct intel_watermark_params {
2735         unsigned long fifo_size;
2736         unsigned long max_wm;
2737         unsigned long default_wm;
2738         unsigned long guard_size;
2739         unsigned long cacheline_size;
2740 };
2741
2742 /* Pineview has different values for various configs */
2743 static struct intel_watermark_params pineview_display_wm = {
2744         PINEVIEW_DISPLAY_FIFO,
2745         PINEVIEW_MAX_WM,
2746         PINEVIEW_DFT_WM,
2747         PINEVIEW_GUARD_WM,
2748         PINEVIEW_FIFO_LINE_SIZE
2749 };
2750 static struct intel_watermark_params pineview_display_hplloff_wm = {
2751         PINEVIEW_DISPLAY_FIFO,
2752         PINEVIEW_MAX_WM,
2753         PINEVIEW_DFT_HPLLOFF_WM,
2754         PINEVIEW_GUARD_WM,
2755         PINEVIEW_FIFO_LINE_SIZE
2756 };
2757 static struct intel_watermark_params pineview_cursor_wm = {
2758         PINEVIEW_CURSOR_FIFO,
2759         PINEVIEW_CURSOR_MAX_WM,
2760         PINEVIEW_CURSOR_DFT_WM,
2761         PINEVIEW_CURSOR_GUARD_WM,
2762         PINEVIEW_FIFO_LINE_SIZE,
2763 };
2764 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2765         PINEVIEW_CURSOR_FIFO,
2766         PINEVIEW_CURSOR_MAX_WM,
2767         PINEVIEW_CURSOR_DFT_WM,
2768         PINEVIEW_CURSOR_GUARD_WM,
2769         PINEVIEW_FIFO_LINE_SIZE
2770 };
2771 static struct intel_watermark_params g4x_wm_info = {
2772         G4X_FIFO_SIZE,
2773         G4X_MAX_WM,
2774         G4X_MAX_WM,
2775         2,
2776         G4X_FIFO_LINE_SIZE,
2777 };
2778 static struct intel_watermark_params g4x_cursor_wm_info = {
2779         I965_CURSOR_FIFO,
2780         I965_CURSOR_MAX_WM,
2781         I965_CURSOR_DFT_WM,
2782         2,
2783         G4X_FIFO_LINE_SIZE,
2784 };
2785 static struct intel_watermark_params i965_cursor_wm_info = {
2786         I965_CURSOR_FIFO,
2787         I965_CURSOR_MAX_WM,
2788         I965_CURSOR_DFT_WM,
2789         2,
2790         I915_FIFO_LINE_SIZE,
2791 };
2792 static struct intel_watermark_params i945_wm_info = {
2793         I945_FIFO_SIZE,
2794         I915_MAX_WM,
2795         1,
2796         2,
2797         I915_FIFO_LINE_SIZE
2798 };
2799 static struct intel_watermark_params i915_wm_info = {
2800         I915_FIFO_SIZE,
2801         I915_MAX_WM,
2802         1,
2803         2,
2804         I915_FIFO_LINE_SIZE
2805 };
2806 static struct intel_watermark_params i855_wm_info = {
2807         I855GM_FIFO_SIZE,
2808         I915_MAX_WM,
2809         1,
2810         2,
2811         I830_FIFO_LINE_SIZE
2812 };
2813 static struct intel_watermark_params i830_wm_info = {
2814         I830_FIFO_SIZE,
2815         I915_MAX_WM,
2816         1,
2817         2,
2818         I830_FIFO_LINE_SIZE
2819 };
2820
2821 static struct intel_watermark_params ironlake_display_wm_info = {
2822         ILK_DISPLAY_FIFO,
2823         ILK_DISPLAY_MAXWM,
2824         ILK_DISPLAY_DFTWM,
2825         2,
2826         ILK_FIFO_LINE_SIZE
2827 };
2828
2829 static struct intel_watermark_params ironlake_cursor_wm_info = {
2830         ILK_CURSOR_FIFO,
2831         ILK_CURSOR_MAXWM,
2832         ILK_CURSOR_DFTWM,
2833         2,
2834         ILK_FIFO_LINE_SIZE
2835 };
2836
2837 static struct intel_watermark_params ironlake_display_srwm_info = {
2838         ILK_DISPLAY_SR_FIFO,
2839         ILK_DISPLAY_MAX_SRWM,
2840         ILK_DISPLAY_DFT_SRWM,
2841         2,
2842         ILK_FIFO_LINE_SIZE
2843 };
2844
2845 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2846         ILK_CURSOR_SR_FIFO,
2847         ILK_CURSOR_MAX_SRWM,
2848         ILK_CURSOR_DFT_SRWM,
2849         2,
2850         ILK_FIFO_LINE_SIZE
2851 };
2852
2853 /**
2854  * intel_calculate_wm - calculate watermark level
2855  * @clock_in_khz: pixel clock
2856  * @wm: chip FIFO params
2857  * @pixel_size: display pixel size
2858  * @latency_ns: memory latency for the platform
2859  *
2860  * Calculate the watermark level (the level at which the display plane will
2861  * start fetching from memory again).  Each chip has a different display
2862  * FIFO size and allocation, so the caller needs to figure that out and pass
2863  * in the correct intel_watermark_params structure.
2864  *
2865  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2866  * on the pixel size.  When it reaches the watermark level, it'll start
2867  * fetching FIFO line sized based chunks from memory until the FIFO fills
2868  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2869  * will occur, and a display engine hang could result.
2870  */
2871 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2872                                         struct intel_watermark_params *wm,
2873                                         int pixel_size,
2874                                         unsigned long latency_ns)
2875 {
2876         long entries_required, wm_size;
2877
2878         /*
2879          * Note: we need to make sure we don't overflow for various clock &
2880          * latency values.
2881          * clocks go from a few thousand to several hundred thousand.
2882          * latency is usually a few thousand
2883          */
2884         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2885                 1000;
2886         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2887
2888         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2889
2890         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2891
2892         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2893
2894         /* Don't promote wm_size to unsigned... */
2895         if (wm_size > (long)wm->max_wm)
2896                 wm_size = wm->max_wm;
2897         if (wm_size <= 0)
2898                 wm_size = wm->default_wm;
2899         return wm_size;
2900 }
2901
2902 struct cxsr_latency {
2903         int is_desktop;
2904         int is_ddr3;
2905         unsigned long fsb_freq;
2906         unsigned long mem_freq;
2907         unsigned long display_sr;
2908         unsigned long display_hpll_disable;
2909         unsigned long cursor_sr;
2910         unsigned long cursor_hpll_disable;
2911 };
2912
2913 static const struct cxsr_latency cxsr_latency_table[] = {
2914         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2915         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2916         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2917         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
2918         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
2919
2920         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2921         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2922         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2923         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
2924         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
2925
2926         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2927         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2928         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2929         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
2930         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
2931
2932         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2933         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2934         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2935         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
2936         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
2937
2938         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2939         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2940         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2941         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
2942         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
2943
2944         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2945         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2946         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2947         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
2948         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
2949 };
2950
2951 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2952                                                          int is_ddr3,
2953                                                          int fsb,
2954                                                          int mem)
2955 {
2956         const struct cxsr_latency *latency;
2957         int i;
2958
2959         if (fsb == 0 || mem == 0)
2960                 return NULL;
2961
2962         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2963                 latency = &cxsr_latency_table[i];
2964                 if (is_desktop == latency->is_desktop &&
2965                     is_ddr3 == latency->is_ddr3 &&
2966                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2967                         return latency;
2968         }
2969
2970         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2971
2972         return NULL;
2973 }
2974
2975 static void pineview_disable_cxsr(struct drm_device *dev)
2976 {
2977         struct drm_i915_private *dev_priv = dev->dev_private;
2978
2979         /* deactivate cxsr */
2980         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2981 }
2982
2983 /*
2984  * Latency for FIFO fetches is dependent on several factors:
2985  *   - memory configuration (speed, channels)
2986  *   - chipset
2987  *   - current MCH state
2988  * It can be fairly high in some situations, so here we assume a fairly
2989  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2990  * set this value too high, the FIFO will fetch frequently to stay full)
2991  * and power consumption (set it too low to save power and we might see
2992  * FIFO underruns and display "flicker").
2993  *
2994  * A value of 5us seems to be a good balance; safe for very low end
2995  * platforms but not overly aggressive on lower latency configs.
2996  */
2997 static const int latency_ns = 5000;
2998
2999 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3000 {
3001         struct drm_i915_private *dev_priv = dev->dev_private;
3002         uint32_t dsparb = I915_READ(DSPARB);
3003         int size;
3004
3005         size = dsparb & 0x7f;
3006         if (plane)
3007                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3008
3009         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3010                       plane ? "B" : "A", size);
3011
3012         return size;
3013 }
3014
3015 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3016 {
3017         struct drm_i915_private *dev_priv = dev->dev_private;
3018         uint32_t dsparb = I915_READ(DSPARB);
3019         int size;
3020
3021         size = dsparb & 0x1ff;
3022         if (plane)
3023                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3024         size >>= 1; /* Convert to cachelines */
3025
3026         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3027                       plane ? "B" : "A", size);
3028
3029         return size;
3030 }
3031
3032 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3033 {
3034         struct drm_i915_private *dev_priv = dev->dev_private;
3035         uint32_t dsparb = I915_READ(DSPARB);
3036         int size;
3037
3038         size = dsparb & 0x7f;
3039         size >>= 2; /* Convert to cachelines */
3040
3041         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3042                       plane ? "B" : "A",
3043                       size);
3044
3045         return size;
3046 }
3047
3048 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3049 {
3050         struct drm_i915_private *dev_priv = dev->dev_private;
3051         uint32_t dsparb = I915_READ(DSPARB);
3052         int size;
3053
3054         size = dsparb & 0x7f;
3055         size >>= 1; /* Convert to cachelines */
3056
3057         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3058                       plane ? "B" : "A", size);
3059
3060         return size;
3061 }
3062
3063 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
3064                                int planeb_clock, int sr_hdisplay, int unused,
3065                                int pixel_size)
3066 {
3067         struct drm_i915_private *dev_priv = dev->dev_private;
3068         const struct cxsr_latency *latency;
3069         u32 reg;
3070         unsigned long wm;
3071         int sr_clock;
3072
3073         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3074                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3075         if (!latency) {
3076                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3077                 pineview_disable_cxsr(dev);
3078                 return;
3079         }
3080
3081         if (!planea_clock || !planeb_clock) {
3082                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3083
3084                 /* Display SR */
3085                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3086                                         pixel_size, latency->display_sr);
3087                 reg = I915_READ(DSPFW1);
3088                 reg &= ~DSPFW_SR_MASK;
3089                 reg |= wm << DSPFW_SR_SHIFT;
3090                 I915_WRITE(DSPFW1, reg);
3091                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3092
3093                 /* cursor SR */
3094                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3095                                         pixel_size, latency->cursor_sr);
3096                 reg = I915_READ(DSPFW3);
3097                 reg &= ~DSPFW_CURSOR_SR_MASK;
3098                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3099                 I915_WRITE(DSPFW3, reg);
3100
3101                 /* Display HPLL off SR */
3102                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3103                                         pixel_size, latency->display_hpll_disable);
3104                 reg = I915_READ(DSPFW3);
3105                 reg &= ~DSPFW_HPLL_SR_MASK;
3106                 reg |= wm & DSPFW_HPLL_SR_MASK;
3107                 I915_WRITE(DSPFW3, reg);
3108
3109                 /* cursor HPLL off SR */
3110                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3111                                         pixel_size, latency->cursor_hpll_disable);
3112                 reg = I915_READ(DSPFW3);
3113                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3114                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3115                 I915_WRITE(DSPFW3, reg);
3116                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3117
3118                 /* activate cxsr */
3119                 I915_WRITE(DSPFW3,
3120                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3121                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3122         } else {
3123                 pineview_disable_cxsr(dev);
3124                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3125         }
3126 }
3127
3128 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
3129                           int planeb_clock, int sr_hdisplay, int sr_htotal,
3130                           int pixel_size)
3131 {
3132         struct drm_i915_private *dev_priv = dev->dev_private;
3133         int total_size, cacheline_size;
3134         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3135         struct intel_watermark_params planea_params, planeb_params;
3136         unsigned long line_time_us;
3137         int sr_clock, sr_entries = 0, entries_required;
3138
3139         /* Create copies of the base settings for each pipe */
3140         planea_params = planeb_params = g4x_wm_info;
3141
3142         /* Grab a couple of global values before we overwrite them */
3143         total_size = planea_params.fifo_size;
3144         cacheline_size = planea_params.cacheline_size;
3145
3146         /*
3147          * Note: we need to make sure we don't overflow for various clock &
3148          * latency values.
3149          * clocks go from a few thousand to several hundred thousand.
3150          * latency is usually a few thousand
3151          */
3152         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3153                 1000;
3154         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3155         planea_wm = entries_required + planea_params.guard_size;
3156
3157         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3158                 1000;
3159         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3160         planeb_wm = entries_required + planeb_params.guard_size;
3161
3162         cursora_wm = cursorb_wm = 16;
3163         cursor_sr = 32;
3164
3165         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3166
3167         /* Calc sr entries for one plane configs */
3168         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3169                 /* self-refresh has much higher latency */
3170                 static const int sr_latency_ns = 12000;
3171
3172                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3173                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3174
3175                 /* Use ns/us then divide to preserve precision */
3176                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3177                         pixel_size * sr_hdisplay;
3178                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3179
3180                 entries_required = (((sr_latency_ns / line_time_us) +
3181                                      1000) / 1000) * pixel_size * 64;
3182                 entries_required = DIV_ROUND_UP(entries_required,
3183                                                 g4x_cursor_wm_info.cacheline_size);
3184                 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3185
3186                 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3187                         cursor_sr = g4x_cursor_wm_info.max_wm;
3188                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3189                               "cursor %d\n", sr_entries, cursor_sr);
3190
3191                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3192         } else {
3193                 /* Turn off self refresh if both pipes are enabled */
3194                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3195                            & ~FW_BLC_SELF_EN);
3196         }
3197
3198         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3199                   planea_wm, planeb_wm, sr_entries);
3200
3201         planea_wm &= 0x3f;
3202         planeb_wm &= 0x3f;
3203
3204         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3205                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3206                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3207         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3208                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3209         /* HPLL off in SR has some issues on G4x... disable it */
3210         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3211                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3212 }
3213
3214 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3215                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3216                            int pixel_size)
3217 {
3218         struct drm_i915_private *dev_priv = dev->dev_private;
3219         unsigned long line_time_us;
3220         int sr_clock, sr_entries, srwm = 1;
3221         int cursor_sr = 16;
3222
3223         /* Calc sr entries for one plane configs */
3224         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3225                 /* self-refresh has much higher latency */
3226                 static const int sr_latency_ns = 12000;
3227
3228                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3229                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3230
3231                 /* Use ns/us then divide to preserve precision */
3232                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3233                         pixel_size * sr_hdisplay;
3234                 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3235                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3236                 srwm = I965_FIFO_SIZE - sr_entries;
3237                 if (srwm < 0)
3238                         srwm = 1;
3239                 srwm &= 0x1ff;
3240
3241                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3242                         pixel_size * 64;
3243                 sr_entries = DIV_ROUND_UP(sr_entries,
3244                                           i965_cursor_wm_info.cacheline_size);
3245                 cursor_sr = i965_cursor_wm_info.fifo_size -
3246                         (sr_entries + i965_cursor_wm_info.guard_size);
3247
3248                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3249                         cursor_sr = i965_cursor_wm_info.max_wm;
3250
3251                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3252                               "cursor %d\n", srwm, cursor_sr);
3253
3254                 if (IS_CRESTLINE(dev))
3255                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3256         } else {
3257                 /* Turn off self refresh if both pipes are enabled */
3258                 if (IS_CRESTLINE(dev))
3259                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3260                                    & ~FW_BLC_SELF_EN);
3261         }
3262
3263         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3264                       srwm);
3265
3266         /* 965 has limitations... */
3267         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3268                    (8 << 0));
3269         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3270         /* update cursor SR watermark */
3271         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3272 }
3273
3274 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3275                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3276                            int pixel_size)
3277 {
3278         struct drm_i915_private *dev_priv = dev->dev_private;
3279         uint32_t fwater_lo;
3280         uint32_t fwater_hi;
3281         int total_size, cacheline_size, cwm, srwm = 1;
3282         int planea_wm, planeb_wm;
3283         struct intel_watermark_params planea_params, planeb_params;
3284         unsigned long line_time_us;
3285         int sr_clock, sr_entries = 0;
3286
3287         /* Create copies of the base settings for each pipe */
3288         if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3289                 planea_params = planeb_params = i945_wm_info;
3290         else if (!IS_GEN2(dev))
3291                 planea_params = planeb_params = i915_wm_info;
3292         else
3293                 planea_params = planeb_params = i855_wm_info;
3294
3295         /* Grab a couple of global values before we overwrite them */
3296         total_size = planea_params.fifo_size;
3297         cacheline_size = planea_params.cacheline_size;
3298
3299         /* Update per-plane FIFO sizes */
3300         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3301         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3302
3303         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3304                                        pixel_size, latency_ns);
3305         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3306                                        pixel_size, latency_ns);
3307         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3308
3309         /*
3310          * Overlay gets an aggressive default since video jitter is bad.
3311          */
3312         cwm = 2;
3313
3314         /* Calc sr entries for one plane configs */
3315         if (HAS_FW_BLC(dev) && sr_hdisplay &&
3316             (!planea_clock || !planeb_clock)) {
3317                 /* self-refresh has much higher latency */
3318                 static const int sr_latency_ns = 6000;
3319
3320                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3321                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3322
3323                 /* Use ns/us then divide to preserve precision */
3324                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3325                         pixel_size * sr_hdisplay;
3326                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3327                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3328                 srwm = total_size - sr_entries;
3329                 if (srwm < 0)
3330                         srwm = 1;
3331
3332                 if (IS_I945G(dev) || IS_I945GM(dev))
3333                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3334                 else if (IS_I915GM(dev)) {
3335                         /* 915M has a smaller SRWM field */
3336                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3337                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3338                 }
3339         } else {
3340                 /* Turn off self refresh if both pipes are enabled */
3341                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3342                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3343                                    & ~FW_BLC_SELF_EN);
3344                 } else if (IS_I915GM(dev)) {
3345                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3346                 }
3347         }
3348
3349         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3350                       planea_wm, planeb_wm, cwm, srwm);
3351
3352         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3353         fwater_hi = (cwm & 0x1f);
3354
3355         /* Set request length to 8 cachelines per fetch */
3356         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3357         fwater_hi = fwater_hi | (1 << 8);
3358
3359         I915_WRITE(FW_BLC, fwater_lo);
3360         I915_WRITE(FW_BLC2, fwater_hi);
3361 }
3362
3363 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3364                            int unused2, int unused3, int pixel_size)
3365 {
3366         struct drm_i915_private *dev_priv = dev->dev_private;
3367         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3368         int planea_wm;
3369
3370         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3371
3372         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3373                                        pixel_size, latency_ns);
3374         fwater_lo |= (3<<8) | planea_wm;
3375
3376         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3377
3378         I915_WRITE(FW_BLC, fwater_lo);
3379 }
3380
3381 #define ILK_LP0_PLANE_LATENCY           700
3382 #define ILK_LP0_CURSOR_LATENCY          1300
3383
3384 static bool ironlake_compute_wm0(struct drm_device *dev,
3385                                  int pipe,
3386                                  int *plane_wm,
3387                                  int *cursor_wm)
3388 {
3389         struct drm_crtc *crtc;
3390         int htotal, hdisplay, clock, pixel_size = 0;
3391         int line_time_us, line_count, entries;
3392
3393         crtc = intel_get_crtc_for_pipe(dev, pipe);
3394         if (crtc->fb == NULL || !crtc->enabled)
3395                 return false;
3396
3397         htotal = crtc->mode.htotal;
3398         hdisplay = crtc->mode.hdisplay;
3399         clock = crtc->mode.clock;
3400         pixel_size = crtc->fb->bits_per_pixel / 8;
3401
3402         /* Use the small buffer method to calculate plane watermark */
3403         entries = ((clock * pixel_size / 1000) * ILK_LP0_PLANE_LATENCY) / 1000;
3404         entries = DIV_ROUND_UP(entries,
3405                                ironlake_display_wm_info.cacheline_size);
3406         *plane_wm = entries + ironlake_display_wm_info.guard_size;
3407         if (*plane_wm > (int)ironlake_display_wm_info.max_wm)
3408                 *plane_wm = ironlake_display_wm_info.max_wm;
3409
3410         /* Use the large buffer method to calculate cursor watermark */
3411         line_time_us = ((htotal * 1000) / clock);
3412         line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3413         entries = line_count * 64 * pixel_size;
3414         entries = DIV_ROUND_UP(entries,
3415                                ironlake_cursor_wm_info.cacheline_size);
3416         *cursor_wm = entries + ironlake_cursor_wm_info.guard_size;
3417         if (*cursor_wm > ironlake_cursor_wm_info.max_wm)
3418                 *cursor_wm = ironlake_cursor_wm_info.max_wm;
3419
3420         return true;
3421 }
3422
3423 static void ironlake_update_wm(struct drm_device *dev,
3424                                int planea_clock, int planeb_clock,
3425                                int sr_hdisplay, int sr_htotal,
3426                                int pixel_size)
3427 {
3428         struct drm_i915_private *dev_priv = dev->dev_private;
3429         int plane_wm, cursor_wm, enabled;
3430         int tmp;
3431
3432         enabled = 0;
3433         if (ironlake_compute_wm0(dev, 0, &plane_wm, &cursor_wm)) {
3434                 I915_WRITE(WM0_PIPEA_ILK,
3435                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3436                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3437                               " plane %d, " "cursor: %d\n",
3438                               plane_wm, cursor_wm);
3439                 enabled++;
3440         }
3441
3442         if (ironlake_compute_wm0(dev, 1, &plane_wm, &cursor_wm)) {
3443                 I915_WRITE(WM0_PIPEB_ILK,
3444                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3445                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3446                               " plane %d, cursor: %d\n",
3447                               plane_wm, cursor_wm);
3448                 enabled++;
3449         }
3450
3451         /*
3452          * Calculate and update the self-refresh watermark only when one
3453          * display plane is used.
3454          */
3455         tmp = 0;
3456         if (enabled == 1 && /* XXX disabled due to buggy implmentation? */ 0) {
3457                 unsigned long line_time_us;
3458                 int small, large, plane_fbc;
3459                 int sr_clock, entries;
3460                 int line_count, line_size;
3461                 /* Read the self-refresh latency. The unit is 0.5us */
3462                 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3463
3464                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3465                 line_time_us = (sr_htotal * 1000) / sr_clock;
3466
3467                 /* Use ns/us then divide to preserve precision */
3468                 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3469                         / 1000;
3470                 line_size = sr_hdisplay * pixel_size;
3471
3472                 /* Use the minimum of the small and large buffer method for primary */
3473                 small = ((sr_clock * pixel_size / 1000) * (ilk_sr_latency * 500)) / 1000;
3474                 large = line_count * line_size;
3475
3476                 entries = DIV_ROUND_UP(min(small, large),
3477                                        ironlake_display_srwm_info.cacheline_size);
3478
3479                 plane_fbc = entries * 64;
3480                 plane_fbc = DIV_ROUND_UP(plane_fbc, line_size);
3481
3482                 plane_wm = entries + ironlake_display_srwm_info.guard_size;
3483                 if (plane_wm > (int)ironlake_display_srwm_info.max_wm)
3484                         plane_wm = ironlake_display_srwm_info.max_wm;
3485
3486                 /* calculate the self-refresh watermark for display cursor */
3487                 entries = line_count * pixel_size * 64;
3488                 entries = DIV_ROUND_UP(entries,
3489                                        ironlake_cursor_srwm_info.cacheline_size);
3490
3491                 cursor_wm = entries + ironlake_cursor_srwm_info.guard_size;
3492                 if (cursor_wm > (int)ironlake_cursor_srwm_info.max_wm)
3493                         cursor_wm = ironlake_cursor_srwm_info.max_wm;
3494
3495                 /* configure watermark and enable self-refresh */
3496                 tmp = (WM1_LP_SR_EN |
3497                        (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3498                        (plane_fbc << WM1_LP_FBC_SHIFT) |
3499                        (plane_wm << WM1_LP_SR_SHIFT) |
3500                        cursor_wm);
3501                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
3502                               " cursor %d\n", plane_wm, plane_fbc, cursor_wm);
3503         }
3504         I915_WRITE(WM1_LP_ILK, tmp);
3505         /* XXX setup WM2 and WM3 */
3506 }
3507
3508 /**
3509  * intel_update_watermarks - update FIFO watermark values based on current modes
3510  *
3511  * Calculate watermark values for the various WM regs based on current mode
3512  * and plane configuration.
3513  *
3514  * There are several cases to deal with here:
3515  *   - normal (i.e. non-self-refresh)
3516  *   - self-refresh (SR) mode
3517  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3518  *   - lines are small relative to FIFO size (buffer can hold more than 2
3519  *     lines), so need to account for TLB latency
3520  *
3521  *   The normal calculation is:
3522  *     watermark = dotclock * bytes per pixel * latency
3523  *   where latency is platform & configuration dependent (we assume pessimal
3524  *   values here).
3525  *
3526  *   The SR calculation is:
3527  *     watermark = (trunc(latency/line time)+1) * surface width *
3528  *       bytes per pixel
3529  *   where
3530  *     line time = htotal / dotclock
3531  *     surface width = hdisplay for normal plane and 64 for cursor
3532  *   and latency is assumed to be high, as above.
3533  *
3534  * The final value programmed to the register should always be rounded up,
3535  * and include an extra 2 entries to account for clock crossings.
3536  *
3537  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3538  * to set the non-SR watermarks to 8.
3539  */
3540 static void intel_update_watermarks(struct drm_device *dev)
3541 {
3542         struct drm_i915_private *dev_priv = dev->dev_private;
3543         struct drm_crtc *crtc;
3544         int sr_hdisplay = 0;
3545         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3546         int enabled = 0, pixel_size = 0;
3547         int sr_htotal = 0;
3548
3549         if (!dev_priv->display.update_wm)
3550                 return;
3551
3552         /* Get the clock config from both planes */
3553         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3554                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3555                 if (intel_crtc->active) {
3556                         enabled++;
3557                         if (intel_crtc->plane == 0) {
3558                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3559                                               intel_crtc->pipe, crtc->mode.clock);
3560                                 planea_clock = crtc->mode.clock;
3561                         } else {
3562                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3563                                               intel_crtc->pipe, crtc->mode.clock);
3564                                 planeb_clock = crtc->mode.clock;
3565                         }
3566                         sr_hdisplay = crtc->mode.hdisplay;
3567                         sr_clock = crtc->mode.clock;
3568                         sr_htotal = crtc->mode.htotal;
3569                         if (crtc->fb)
3570                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3571                         else
3572                                 pixel_size = 4; /* by default */
3573                 }
3574         }
3575
3576         if (enabled <= 0)
3577                 return;
3578
3579         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3580                                     sr_hdisplay, sr_htotal, pixel_size);
3581 }
3582
3583 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3584                                struct drm_display_mode *mode,
3585                                struct drm_display_mode *adjusted_mode,
3586                                int x, int y,
3587                                struct drm_framebuffer *old_fb)
3588 {
3589         struct drm_device *dev = crtc->dev;
3590         struct drm_i915_private *dev_priv = dev->dev_private;
3591         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3592         int pipe = intel_crtc->pipe;
3593         int plane = intel_crtc->plane;
3594         u32 fp_reg, dpll_reg;
3595         int refclk, num_connectors = 0;
3596         intel_clock_t clock, reduced_clock;
3597         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3598         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3599         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3600         struct intel_encoder *has_edp_encoder = NULL;
3601         struct drm_mode_config *mode_config = &dev->mode_config;
3602         struct intel_encoder *encoder;
3603         const intel_limit_t *limit;
3604         int ret;
3605         struct fdi_m_n m_n = {0};
3606         u32 reg, temp;
3607         int target_clock;
3608
3609         drm_vblank_pre_modeset(dev, pipe);
3610
3611         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3612                 if (encoder->base.crtc != crtc)
3613                         continue;
3614
3615                 switch (encoder->type) {
3616                 case INTEL_OUTPUT_LVDS:
3617                         is_lvds = true;
3618                         break;
3619                 case INTEL_OUTPUT_SDVO:
3620                 case INTEL_OUTPUT_HDMI:
3621                         is_sdvo = true;
3622                         if (encoder->needs_tv_clock)
3623                                 is_tv = true;
3624                         break;
3625                 case INTEL_OUTPUT_DVO:
3626                         is_dvo = true;
3627                         break;
3628                 case INTEL_OUTPUT_TVOUT:
3629                         is_tv = true;
3630                         break;
3631                 case INTEL_OUTPUT_ANALOG:
3632                         is_crt = true;
3633                         break;
3634                 case INTEL_OUTPUT_DISPLAYPORT:
3635                         is_dp = true;
3636                         break;
3637                 case INTEL_OUTPUT_EDP:
3638                         has_edp_encoder = encoder;
3639                         break;
3640                 }
3641
3642                 num_connectors++;
3643         }
3644
3645         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3646                 refclk = dev_priv->lvds_ssc_freq * 1000;
3647                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3648                               refclk / 1000);
3649         } else if (!IS_GEN2(dev)) {
3650                 refclk = 96000;
3651                 if (HAS_PCH_SPLIT(dev) &&
3652                     (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)))
3653                         refclk = 120000; /* 120Mhz refclk */
3654         } else {
3655                 refclk = 48000;
3656         }
3657
3658         /*
3659          * Returns a set of divisors for the desired target clock with the given
3660          * refclk, or FALSE.  The returned values represent the clock equation:
3661          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3662          */
3663         limit = intel_limit(crtc);
3664         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3665         if (!ok) {
3666                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3667                 drm_vblank_post_modeset(dev, pipe);
3668                 return -EINVAL;
3669         }
3670
3671         /* Ensure that the cursor is valid for the new mode before changing... */
3672         intel_crtc_update_cursor(crtc, true);
3673
3674         if (is_lvds && dev_priv->lvds_downclock_avail) {
3675                 has_reduced_clock = limit->find_pll(limit, crtc,
3676                                                     dev_priv->lvds_downclock,
3677                                                     refclk,
3678                                                     &reduced_clock);
3679                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3680                         /*
3681                          * If the different P is found, it means that we can't
3682                          * switch the display clock by using the FP0/FP1.
3683                          * In such case we will disable the LVDS downclock
3684                          * feature.
3685                          */
3686                         DRM_DEBUG_KMS("Different P is found for "
3687                                       "LVDS clock/downclock\n");
3688                         has_reduced_clock = 0;
3689                 }
3690         }
3691         /* SDVO TV has fixed PLL values depend on its clock range,
3692            this mirrors vbios setting. */
3693         if (is_sdvo && is_tv) {
3694                 if (adjusted_mode->clock >= 100000
3695                     && adjusted_mode->clock < 140500) {
3696                         clock.p1 = 2;
3697                         clock.p2 = 10;
3698                         clock.n = 3;
3699                         clock.m1 = 16;
3700                         clock.m2 = 8;
3701                 } else if (adjusted_mode->clock >= 140500
3702                            && adjusted_mode->clock <= 200000) {
3703                         clock.p1 = 1;
3704                         clock.p2 = 10;
3705                         clock.n = 6;
3706                         clock.m1 = 12;
3707                         clock.m2 = 8;
3708                 }
3709         }
3710
3711         /* FDI link */
3712         if (HAS_PCH_SPLIT(dev)) {
3713                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3714                 int lane = 0, link_bw, bpp;
3715                 /* CPU eDP doesn't require FDI link, so just set DP M/N
3716                    according to current link config */
3717                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&encoder->base)) {
3718                         target_clock = mode->clock;
3719                         intel_edp_link_config(has_edp_encoder,
3720                                               &lane, &link_bw);
3721                 } else {
3722                         /* [e]DP over FDI requires target mode clock
3723                            instead of link clock */
3724                         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3725                                 target_clock = mode->clock;
3726                         else
3727                                 target_clock = adjusted_mode->clock;
3728
3729                         /* FDI is a binary signal running at ~2.7GHz, encoding
3730                          * each output octet as 10 bits. The actual frequency
3731                          * is stored as a divider into a 100MHz clock, and the
3732                          * mode pixel clock is stored in units of 1KHz.
3733                          * Hence the bw of each lane in terms of the mode signal
3734                          * is:
3735                          */
3736                         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
3737                 }
3738
3739                 /* determine panel color depth */
3740                 temp = I915_READ(PIPECONF(pipe));
3741                 temp &= ~PIPE_BPC_MASK;
3742                 if (is_lvds) {
3743                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3744                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3745                                 temp |= PIPE_8BPC;
3746                         else
3747                                 temp |= PIPE_6BPC;
3748                 } else if (has_edp_encoder) {
3749                         switch (dev_priv->edp.bpp/3) {
3750                         case 8:
3751                                 temp |= PIPE_8BPC;
3752                                 break;
3753                         case 10:
3754                                 temp |= PIPE_10BPC;
3755                                 break;
3756                         case 6:
3757                                 temp |= PIPE_6BPC;
3758                                 break;
3759                         case 12:
3760                                 temp |= PIPE_12BPC;
3761                                 break;
3762                         }
3763                 } else
3764                         temp |= PIPE_8BPC;
3765                 I915_WRITE(PIPECONF(pipe), temp);
3766
3767                 switch (temp & PIPE_BPC_MASK) {
3768                 case PIPE_8BPC:
3769                         bpp = 24;
3770                         break;
3771                 case PIPE_10BPC:
3772                         bpp = 30;
3773                         break;
3774                 case PIPE_6BPC:
3775                         bpp = 18;
3776                         break;
3777                 case PIPE_12BPC:
3778                         bpp = 36;
3779                         break;
3780                 default:
3781                         DRM_ERROR("unknown pipe bpc value\n");
3782                         bpp = 24;
3783                 }
3784
3785                 if (!lane) {
3786                         /* 
3787                          * Account for spread spectrum to avoid
3788                          * oversubscribing the link. Max center spread
3789                          * is 2.5%; use 5% for safety's sake.
3790                          */
3791                         u32 bps = target_clock * bpp * 21 / 20;
3792                         lane = bps / (link_bw * 8) + 1;
3793                 }
3794
3795                 intel_crtc->fdi_lanes = lane;
3796
3797                 if (pixel_multiplier > 1)
3798                         link_bw *= pixel_multiplier;
3799                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3800         }
3801
3802         /* Ironlake: try to setup display ref clock before DPLL
3803          * enabling. This is only under driver's control after
3804          * PCH B stepping, previous chipset stepping should be
3805          * ignoring this setting.
3806          */
3807         if (HAS_PCH_SPLIT(dev)) {
3808                 temp = I915_READ(PCH_DREF_CONTROL);
3809                 /* Always enable nonspread source */
3810                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3811                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3812                 temp &= ~DREF_SSC_SOURCE_MASK;
3813                 temp |= DREF_SSC_SOURCE_ENABLE;
3814                 I915_WRITE(PCH_DREF_CONTROL, temp);
3815
3816                 POSTING_READ(PCH_DREF_CONTROL);
3817                 udelay(200);
3818
3819                 if (has_edp_encoder) {
3820                         if (dev_priv->lvds_use_ssc) {
3821                                 temp |= DREF_SSC1_ENABLE;
3822                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3823
3824                                 POSTING_READ(PCH_DREF_CONTROL);
3825                                 udelay(200);
3826                         }
3827                         temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3828
3829                         /* Enable CPU source on CPU attached eDP */
3830                         if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3831                                 if (dev_priv->lvds_use_ssc)
3832                                         temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3833                                 else
3834                                         temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3835                         } else {
3836                                 /* Enable SSC on PCH eDP if needed */
3837                                 if (dev_priv->lvds_use_ssc) {
3838                                         DRM_ERROR("enabling SSC on PCH\n");
3839                                         temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
3840                                 }
3841                         }
3842                         I915_WRITE(PCH_DREF_CONTROL, temp);
3843                         POSTING_READ(PCH_DREF_CONTROL);
3844                         udelay(200);
3845                 }
3846         }
3847
3848         if (IS_PINEVIEW(dev)) {
3849                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3850                 if (has_reduced_clock)
3851                         fp2 = (1 << reduced_clock.n) << 16 |
3852                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3853         } else {
3854                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3855                 if (has_reduced_clock)
3856                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3857                                 reduced_clock.m2;
3858         }
3859
3860         dpll = 0;
3861         if (!HAS_PCH_SPLIT(dev))
3862                 dpll = DPLL_VGA_MODE_DIS;
3863
3864         if (!IS_GEN2(dev)) {
3865                 if (is_lvds)
3866                         dpll |= DPLLB_MODE_LVDS;
3867                 else
3868                         dpll |= DPLLB_MODE_DAC_SERIAL;
3869                 if (is_sdvo) {
3870                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3871                         if (pixel_multiplier > 1) {
3872                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3873                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3874                                 else if (HAS_PCH_SPLIT(dev))
3875                                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3876                         }
3877                         dpll |= DPLL_DVO_HIGH_SPEED;
3878                 }
3879                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3880                         dpll |= DPLL_DVO_HIGH_SPEED;
3881
3882                 /* compute bitmask from p1 value */
3883                 if (IS_PINEVIEW(dev))
3884                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3885                 else {
3886                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3887                         /* also FPA1 */
3888                         if (HAS_PCH_SPLIT(dev))
3889                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3890                         if (IS_G4X(dev) && has_reduced_clock)
3891                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3892                 }
3893                 switch (clock.p2) {
3894                 case 5:
3895                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3896                         break;
3897                 case 7:
3898                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3899                         break;
3900                 case 10:
3901                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3902                         break;
3903                 case 14:
3904                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3905                         break;
3906                 }
3907                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
3908                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3909         } else {
3910                 if (is_lvds) {
3911                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3912                 } else {
3913                         if (clock.p1 == 2)
3914                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3915                         else
3916                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3917                         if (clock.p2 == 4)
3918                                 dpll |= PLL_P2_DIVIDE_BY_4;
3919                 }
3920         }
3921
3922         if (is_sdvo && is_tv)
3923                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3924         else if (is_tv)
3925                 /* XXX: just matching BIOS for now */
3926                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3927                 dpll |= 3;
3928         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3929                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3930         else
3931                 dpll |= PLL_REF_INPUT_DREFCLK;
3932
3933         /* setup pipeconf */
3934         pipeconf = I915_READ(PIPECONF(pipe));
3935
3936         /* Set up the display plane register */
3937         dspcntr = DISPPLANE_GAMMA_ENABLE;
3938
3939         /* Ironlake's plane is forced to pipe, bit 24 is to
3940            enable color space conversion */
3941         if (!HAS_PCH_SPLIT(dev)) {
3942                 if (pipe == 0)
3943                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3944                 else
3945                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3946         }
3947
3948         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3949                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3950                  * core speed.
3951                  *
3952                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3953                  * pipe == 0 check?
3954                  */
3955                 if (mode->clock >
3956                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3957                         pipeconf |= PIPECONF_DOUBLE_WIDE;
3958                 else
3959                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3960         }
3961
3962         dspcntr |= DISPLAY_PLANE_ENABLE;
3963         pipeconf |= PIPECONF_ENABLE;
3964         dpll |= DPLL_VCO_ENABLE;
3965
3966         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3967         drm_mode_debug_printmodeline(mode);
3968
3969         /* assign to Ironlake registers */
3970         if (HAS_PCH_SPLIT(dev)) {
3971                 fp_reg = PCH_FP0(pipe);
3972                 dpll_reg = PCH_DPLL(pipe);
3973         } else {
3974                 fp_reg = FP0(pipe);
3975                 dpll_reg = DPLL(pipe);
3976         }
3977
3978         /* PCH eDP needs FDI, but CPU eDP does not */
3979         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3980                 I915_WRITE(fp_reg, fp);
3981                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3982
3983                 POSTING_READ(dpll_reg);
3984                 udelay(150);
3985         }
3986
3987         /* enable transcoder DPLL */
3988         if (HAS_PCH_CPT(dev)) {
3989                 temp = I915_READ(PCH_DPLL_SEL);
3990                 if (pipe == 0)
3991                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
3992                 else
3993                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
3994                 I915_WRITE(PCH_DPLL_SEL, temp);
3995
3996                 POSTING_READ(PCH_DPLL_SEL);
3997                 udelay(150);
3998         }
3999
4000         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4001          * This is an exception to the general rule that mode_set doesn't turn
4002          * things on.
4003          */
4004         if (is_lvds) {
4005                 reg = LVDS;
4006                 if (HAS_PCH_SPLIT(dev))
4007                         reg = PCH_LVDS;
4008
4009                 temp = I915_READ(reg);
4010                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4011                 if (pipe == 1) {
4012                         if (HAS_PCH_CPT(dev))
4013                                 temp |= PORT_TRANS_B_SEL_CPT;
4014                         else
4015                                 temp |= LVDS_PIPEB_SELECT;
4016                 } else {
4017                         if (HAS_PCH_CPT(dev))
4018                                 temp &= ~PORT_TRANS_SEL_MASK;
4019                         else
4020                                 temp &= ~LVDS_PIPEB_SELECT;
4021                 }
4022                 /* set the corresponsding LVDS_BORDER bit */
4023                 temp |= dev_priv->lvds_border_bits;
4024                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4025                  * set the DPLLs for dual-channel mode or not.
4026                  */
4027                 if (clock.p2 == 7)
4028                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4029                 else
4030                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4031
4032                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4033                  * appropriately here, but we need to look more thoroughly into how
4034                  * panels behave in the two modes.
4035                  */
4036                 /* set the dithering flag on non-PCH LVDS as needed */
4037                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4038                         if (dev_priv->lvds_dither)
4039                                 temp |= LVDS_ENABLE_DITHER;
4040                         else
4041                                 temp &= ~LVDS_ENABLE_DITHER;
4042                 }
4043                 I915_WRITE(reg, temp);
4044         }
4045
4046         /* set the dithering flag and clear for anything other than a panel. */
4047         if (HAS_PCH_SPLIT(dev)) {
4048                 pipeconf &= ~PIPECONF_DITHER_EN;
4049                 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4050                 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
4051                         pipeconf |= PIPECONF_DITHER_EN;
4052                         pipeconf |= PIPECONF_DITHER_TYPE_ST1;
4053                 }
4054         }
4055
4056         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4057                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4058         } else if (HAS_PCH_SPLIT(dev)) {
4059                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4060                 if (pipe == 0) {
4061                         I915_WRITE(TRANSA_DATA_M1, 0);
4062                         I915_WRITE(TRANSA_DATA_N1, 0);
4063                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
4064                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
4065                 } else {
4066                         I915_WRITE(TRANSB_DATA_M1, 0);
4067                         I915_WRITE(TRANSB_DATA_N1, 0);
4068                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
4069                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
4070                 }
4071         }
4072
4073         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4074                 I915_WRITE(fp_reg, fp);
4075                 I915_WRITE(dpll_reg, dpll);
4076
4077                 /* Wait for the clocks to stabilize. */
4078                 POSTING_READ(dpll_reg);
4079                 udelay(150);
4080
4081                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4082                         temp = 0;
4083                         if (is_sdvo) {
4084                                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4085                                 if (temp > 1)
4086                                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4087                                 else
4088                                         temp = 0;
4089                         }
4090                         I915_WRITE(DPLL_MD(pipe), temp);
4091                 } else {
4092                         /* write it again -- the BIOS does, after all */
4093                         I915_WRITE(dpll_reg, dpll);
4094                 }
4095
4096                 /* Wait for the clocks to stabilize. */
4097                 POSTING_READ(dpll_reg);
4098                 udelay(150);
4099         }
4100
4101         intel_crtc->lowfreq_avail = false;
4102         if (is_lvds && has_reduced_clock && i915_powersave) {
4103                 I915_WRITE(fp_reg + 4, fp2);
4104                 intel_crtc->lowfreq_avail = true;
4105                 if (HAS_PIPE_CXSR(dev)) {
4106                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4107                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4108                 }
4109         } else {
4110                 I915_WRITE(fp_reg + 4, fp);
4111                 if (HAS_PIPE_CXSR(dev)) {
4112                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4113                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4114                 }
4115         }
4116
4117         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4118                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4119                 /* the chip adds 2 halflines automatically */
4120                 adjusted_mode->crtc_vdisplay -= 1;
4121                 adjusted_mode->crtc_vtotal -= 1;
4122                 adjusted_mode->crtc_vblank_start -= 1;
4123                 adjusted_mode->crtc_vblank_end -= 1;
4124                 adjusted_mode->crtc_vsync_end -= 1;
4125                 adjusted_mode->crtc_vsync_start -= 1;
4126         } else
4127                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4128
4129         I915_WRITE(HTOTAL(pipe),
4130                    (adjusted_mode->crtc_hdisplay - 1) |
4131                    ((adjusted_mode->crtc_htotal - 1) << 16));
4132         I915_WRITE(HBLANK(pipe),
4133                    (adjusted_mode->crtc_hblank_start - 1) |
4134                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4135         I915_WRITE(HSYNC(pipe),
4136                    (adjusted_mode->crtc_hsync_start - 1) |
4137                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4138
4139         I915_WRITE(VTOTAL(pipe),
4140                    (adjusted_mode->crtc_vdisplay - 1) |
4141                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4142         I915_WRITE(VBLANK(pipe),
4143                    (adjusted_mode->crtc_vblank_start - 1) |
4144                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4145         I915_WRITE(VSYNC(pipe),
4146                    (adjusted_mode->crtc_vsync_start - 1) |
4147                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4148
4149         /* pipesrc and dspsize control the size that is scaled from,
4150          * which should always be the user's requested size.
4151          */
4152         if (!HAS_PCH_SPLIT(dev)) {
4153                 I915_WRITE(DSPSIZE(plane),
4154                            ((mode->vdisplay - 1) << 16) |
4155                            (mode->hdisplay - 1));
4156                 I915_WRITE(DSPPOS(plane), 0);
4157         }
4158         I915_WRITE(PIPESRC(pipe),
4159                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4160
4161         if (HAS_PCH_SPLIT(dev)) {
4162                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4163                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4164                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4165                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4166
4167                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4168                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4169                 }
4170         }
4171
4172         I915_WRITE(PIPECONF(pipe), pipeconf);
4173         POSTING_READ(PIPECONF(pipe));
4174
4175         intel_wait_for_vblank(dev, pipe);
4176
4177         if (IS_GEN5(dev)) {
4178                 /* enable address swizzle for tiling buffer */
4179                 temp = I915_READ(DISP_ARB_CTL);
4180                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4181         }
4182
4183         I915_WRITE(DSPCNTR(plane), dspcntr);
4184
4185         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4186
4187         intel_update_watermarks(dev);
4188
4189         drm_vblank_post_modeset(dev, pipe);
4190
4191         return ret;
4192 }
4193
4194 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4195 void intel_crtc_load_lut(struct drm_crtc *crtc)
4196 {
4197         struct drm_device *dev = crtc->dev;
4198         struct drm_i915_private *dev_priv = dev->dev_private;
4199         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4200         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4201         int i;
4202
4203         /* The clocks have to be on to load the palette. */
4204         if (!crtc->enabled)
4205                 return;
4206
4207         /* use legacy palette for Ironlake */
4208         if (HAS_PCH_SPLIT(dev))
4209                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4210                                                    LGC_PALETTE_B;
4211
4212         for (i = 0; i < 256; i++) {
4213                 I915_WRITE(palreg + 4 * i,
4214                            (intel_crtc->lut_r[i] << 16) |
4215                            (intel_crtc->lut_g[i] << 8) |
4216                            intel_crtc->lut_b[i]);
4217         }
4218 }
4219
4220 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4221 {
4222         struct drm_device *dev = crtc->dev;
4223         struct drm_i915_private *dev_priv = dev->dev_private;
4224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4225         bool visible = base != 0;
4226         u32 cntl;
4227
4228         if (intel_crtc->cursor_visible == visible)
4229                 return;
4230
4231         cntl = I915_READ(CURACNTR);
4232         if (visible) {
4233                 /* On these chipsets we can only modify the base whilst
4234                  * the cursor is disabled.
4235                  */
4236                 I915_WRITE(CURABASE, base);
4237
4238                 cntl &= ~(CURSOR_FORMAT_MASK);
4239                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4240                 cntl |= CURSOR_ENABLE |
4241                         CURSOR_GAMMA_ENABLE |
4242                         CURSOR_FORMAT_ARGB;
4243         } else
4244                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4245         I915_WRITE(CURACNTR, cntl);
4246
4247         intel_crtc->cursor_visible = visible;
4248 }
4249
4250 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4251 {
4252         struct drm_device *dev = crtc->dev;
4253         struct drm_i915_private *dev_priv = dev->dev_private;
4254         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4255         int pipe = intel_crtc->pipe;
4256         bool visible = base != 0;
4257
4258         if (intel_crtc->cursor_visible != visible) {
4259                 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4260                 if (base) {
4261                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4262                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4263                         cntl |= pipe << 28; /* Connect to correct pipe */
4264                 } else {
4265                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4266                         cntl |= CURSOR_MODE_DISABLE;
4267                 }
4268                 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4269
4270                 intel_crtc->cursor_visible = visible;
4271         }
4272         /* and commit changes on next vblank */
4273         I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4274 }
4275
4276 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4277 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4278                                      bool on)
4279 {
4280         struct drm_device *dev = crtc->dev;
4281         struct drm_i915_private *dev_priv = dev->dev_private;
4282         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4283         int pipe = intel_crtc->pipe;
4284         int x = intel_crtc->cursor_x;
4285         int y = intel_crtc->cursor_y;
4286         u32 base, pos;
4287         bool visible;
4288
4289         pos = 0;
4290
4291         if (on && crtc->enabled && crtc->fb) {
4292                 base = intel_crtc->cursor_addr;
4293                 if (x > (int) crtc->fb->width)
4294                         base = 0;
4295
4296                 if (y > (int) crtc->fb->height)
4297                         base = 0;
4298         } else
4299                 base = 0;
4300
4301         if (x < 0) {
4302                 if (x + intel_crtc->cursor_width < 0)
4303                         base = 0;
4304
4305                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4306                 x = -x;
4307         }
4308         pos |= x << CURSOR_X_SHIFT;
4309
4310         if (y < 0) {
4311                 if (y + intel_crtc->cursor_height < 0)
4312                         base = 0;
4313
4314                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4315                 y = -y;
4316         }
4317         pos |= y << CURSOR_Y_SHIFT;
4318
4319         visible = base != 0;
4320         if (!visible && !intel_crtc->cursor_visible)
4321                 return;
4322
4323         I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4324         if (IS_845G(dev) || IS_I865G(dev))
4325                 i845_update_cursor(crtc, base);
4326         else
4327                 i9xx_update_cursor(crtc, base);
4328
4329         if (visible)
4330                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4331 }
4332
4333 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4334                                  struct drm_file *file_priv,
4335                                  uint32_t handle,
4336                                  uint32_t width, uint32_t height)
4337 {
4338         struct drm_device *dev = crtc->dev;
4339         struct drm_i915_private *dev_priv = dev->dev_private;
4340         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4341         struct drm_gem_object *bo;
4342         struct drm_i915_gem_object *obj_priv;
4343         uint32_t addr;
4344         int ret;
4345
4346         DRM_DEBUG_KMS("\n");
4347
4348         /* if we want to turn off the cursor ignore width and height */
4349         if (!handle) {
4350                 DRM_DEBUG_KMS("cursor off\n");
4351                 addr = 0;
4352                 bo = NULL;
4353                 mutex_lock(&dev->struct_mutex);
4354                 goto finish;
4355         }
4356
4357         /* Currently we only support 64x64 cursors */
4358         if (width != 64 || height != 64) {
4359                 DRM_ERROR("we currently only support 64x64 cursors\n");
4360                 return -EINVAL;
4361         }
4362
4363         bo = drm_gem_object_lookup(dev, file_priv, handle);
4364         if (!bo)
4365                 return -ENOENT;
4366
4367         obj_priv = to_intel_bo(bo);
4368
4369         if (bo->size < width * height * 4) {
4370                 DRM_ERROR("buffer is to small\n");
4371                 ret = -ENOMEM;
4372                 goto fail;
4373         }
4374
4375         /* we only need to pin inside GTT if cursor is non-phy */
4376         mutex_lock(&dev->struct_mutex);
4377         if (!dev_priv->info->cursor_needs_physical) {
4378                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4379                 if (ret) {
4380                         DRM_ERROR("failed to pin cursor bo\n");
4381                         goto fail_locked;
4382                 }
4383
4384                 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4385                 if (ret) {
4386                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4387                         goto fail_unpin;
4388                 }
4389
4390                 addr = obj_priv->gtt_offset;
4391         } else {
4392                 int align = IS_I830(dev) ? 16 * 1024 : 256;
4393                 ret = i915_gem_attach_phys_object(dev, bo,
4394                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4395                                                   align);
4396                 if (ret) {
4397                         DRM_ERROR("failed to attach phys object\n");
4398                         goto fail_locked;
4399                 }
4400                 addr = obj_priv->phys_obj->handle->busaddr;
4401         }
4402
4403         if (IS_GEN2(dev))
4404                 I915_WRITE(CURSIZE, (height << 12) | width);
4405
4406  finish:
4407         if (intel_crtc->cursor_bo) {
4408                 if (dev_priv->info->cursor_needs_physical) {
4409                         if (intel_crtc->cursor_bo != bo)
4410                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4411                 } else
4412                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4413                 drm_gem_object_unreference(intel_crtc->cursor_bo);
4414         }
4415
4416         mutex_unlock(&dev->struct_mutex);
4417
4418         intel_crtc->cursor_addr = addr;
4419         intel_crtc->cursor_bo = bo;
4420         intel_crtc->cursor_width = width;
4421         intel_crtc->cursor_height = height;
4422
4423         intel_crtc_update_cursor(crtc, true);
4424
4425         return 0;
4426 fail_unpin:
4427         i915_gem_object_unpin(bo);
4428 fail_locked:
4429         mutex_unlock(&dev->struct_mutex);
4430 fail:
4431         drm_gem_object_unreference_unlocked(bo);
4432         return ret;
4433 }
4434
4435 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4436 {
4437         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4438
4439         intel_crtc->cursor_x = x;
4440         intel_crtc->cursor_y = y;
4441
4442         intel_crtc_update_cursor(crtc, true);
4443
4444         return 0;
4445 }
4446
4447 /** Sets the color ramps on behalf of RandR */
4448 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4449                                  u16 blue, int regno)
4450 {
4451         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4452
4453         intel_crtc->lut_r[regno] = red >> 8;
4454         intel_crtc->lut_g[regno] = green >> 8;
4455         intel_crtc->lut_b[regno] = blue >> 8;
4456 }
4457
4458 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4459                              u16 *blue, int regno)
4460 {
4461         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4462
4463         *red = intel_crtc->lut_r[regno] << 8;
4464         *green = intel_crtc->lut_g[regno] << 8;
4465         *blue = intel_crtc->lut_b[regno] << 8;
4466 }
4467
4468 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4469                                  u16 *blue, uint32_t start, uint32_t size)
4470 {
4471         int end = (start + size > 256) ? 256 : start + size, i;
4472         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4473
4474         for (i = start; i < end; i++) {
4475                 intel_crtc->lut_r[i] = red[i] >> 8;
4476                 intel_crtc->lut_g[i] = green[i] >> 8;
4477                 intel_crtc->lut_b[i] = blue[i] >> 8;
4478         }
4479
4480         intel_crtc_load_lut(crtc);
4481 }
4482
4483 /**
4484  * Get a pipe with a simple mode set on it for doing load-based monitor
4485  * detection.
4486  *
4487  * It will be up to the load-detect code to adjust the pipe as appropriate for
4488  * its requirements.  The pipe will be connected to no other encoders.
4489  *
4490  * Currently this code will only succeed if there is a pipe with no encoders
4491  * configured for it.  In the future, it could choose to temporarily disable
4492  * some outputs to free up a pipe for its use.
4493  *
4494  * \return crtc, or NULL if no pipes are available.
4495  */
4496
4497 /* VESA 640x480x72Hz mode to set on the pipe */
4498 static struct drm_display_mode load_detect_mode = {
4499         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4500                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4501 };
4502
4503 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4504                                             struct drm_connector *connector,
4505                                             struct drm_display_mode *mode,
4506                                             int *dpms_mode)
4507 {
4508         struct intel_crtc *intel_crtc;
4509         struct drm_crtc *possible_crtc;
4510         struct drm_crtc *supported_crtc =NULL;
4511         struct drm_encoder *encoder = &intel_encoder->base;
4512         struct drm_crtc *crtc = NULL;
4513         struct drm_device *dev = encoder->dev;
4514         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4515         struct drm_crtc_helper_funcs *crtc_funcs;
4516         int i = -1;
4517
4518         /*
4519          * Algorithm gets a little messy:
4520          *   - if the connector already has an assigned crtc, use it (but make
4521          *     sure it's on first)
4522          *   - try to find the first unused crtc that can drive this connector,
4523          *     and use that if we find one
4524          *   - if there are no unused crtcs available, try to use the first
4525          *     one we found that supports the connector
4526          */
4527
4528         /* See if we already have a CRTC for this connector */
4529         if (encoder->crtc) {
4530                 crtc = encoder->crtc;
4531                 /* Make sure the crtc and connector are running */
4532                 intel_crtc = to_intel_crtc(crtc);
4533                 *dpms_mode = intel_crtc->dpms_mode;
4534                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4535                         crtc_funcs = crtc->helper_private;
4536                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4537                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4538                 }
4539                 return crtc;
4540         }
4541
4542         /* Find an unused one (if possible) */
4543         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4544                 i++;
4545                 if (!(encoder->possible_crtcs & (1 << i)))
4546                         continue;
4547                 if (!possible_crtc->enabled) {
4548                         crtc = possible_crtc;
4549                         break;
4550                 }
4551                 if (!supported_crtc)
4552                         supported_crtc = possible_crtc;
4553         }
4554
4555         /*
4556          * If we didn't find an unused CRTC, don't use any.
4557          */
4558         if (!crtc) {
4559                 return NULL;
4560         }
4561
4562         encoder->crtc = crtc;
4563         connector->encoder = encoder;
4564         intel_encoder->load_detect_temp = true;
4565
4566         intel_crtc = to_intel_crtc(crtc);
4567         *dpms_mode = intel_crtc->dpms_mode;
4568
4569         if (!crtc->enabled) {
4570                 if (!mode)
4571                         mode = &load_detect_mode;
4572                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4573         } else {
4574                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4575                         crtc_funcs = crtc->helper_private;
4576                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4577                 }
4578
4579                 /* Add this connector to the crtc */
4580                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4581                 encoder_funcs->commit(encoder);
4582         }
4583         /* let the connector get through one full cycle before testing */
4584         intel_wait_for_vblank(dev, intel_crtc->pipe);
4585
4586         return crtc;
4587 }
4588
4589 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4590                                     struct drm_connector *connector, int dpms_mode)
4591 {
4592         struct drm_encoder *encoder = &intel_encoder->base;
4593         struct drm_device *dev = encoder->dev;
4594         struct drm_crtc *crtc = encoder->crtc;
4595         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4596         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4597
4598         if (intel_encoder->load_detect_temp) {
4599                 encoder->crtc = NULL;
4600                 connector->encoder = NULL;
4601                 intel_encoder->load_detect_temp = false;
4602                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4603                 drm_helper_disable_unused_functions(dev);
4604         }
4605
4606         /* Switch crtc and encoder back off if necessary */
4607         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4608                 if (encoder->crtc == crtc)
4609                         encoder_funcs->dpms(encoder, dpms_mode);
4610                 crtc_funcs->dpms(crtc, dpms_mode);
4611         }
4612 }
4613
4614 /* Returns the clock of the currently programmed mode of the given pipe. */
4615 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4616 {
4617         struct drm_i915_private *dev_priv = dev->dev_private;
4618         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4619         int pipe = intel_crtc->pipe;
4620         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4621         u32 fp;
4622         intel_clock_t clock;
4623
4624         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4625                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4626         else
4627                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4628
4629         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4630         if (IS_PINEVIEW(dev)) {
4631                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4632                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4633         } else {
4634                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4635                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4636         }
4637
4638         if (!IS_GEN2(dev)) {
4639                 if (IS_PINEVIEW(dev))
4640                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4641                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4642                 else
4643                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4644                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4645
4646                 switch (dpll & DPLL_MODE_MASK) {
4647                 case DPLLB_MODE_DAC_SERIAL:
4648                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4649                                 5 : 10;
4650                         break;
4651                 case DPLLB_MODE_LVDS:
4652                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4653                                 7 : 14;
4654                         break;
4655                 default:
4656                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4657                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4658                         return 0;
4659                 }
4660
4661                 /* XXX: Handle the 100Mhz refclk */
4662                 intel_clock(dev, 96000, &clock);
4663         } else {
4664                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4665
4666                 if (is_lvds) {
4667                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4668                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4669                         clock.p2 = 14;
4670
4671                         if ((dpll & PLL_REF_INPUT_MASK) ==
4672                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4673                                 /* XXX: might not be 66MHz */
4674                                 intel_clock(dev, 66000, &clock);
4675                         } else
4676                                 intel_clock(dev, 48000, &clock);
4677                 } else {
4678                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4679                                 clock.p1 = 2;
4680                         else {
4681                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4682                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4683                         }
4684                         if (dpll & PLL_P2_DIVIDE_BY_4)
4685                                 clock.p2 = 4;
4686                         else
4687                                 clock.p2 = 2;
4688
4689                         intel_clock(dev, 48000, &clock);
4690                 }
4691         }
4692
4693         /* XXX: It would be nice to validate the clocks, but we can't reuse
4694          * i830PllIsValid() because it relies on the xf86_config connector
4695          * configuration being accurate, which it isn't necessarily.
4696          */
4697
4698         return clock.dot;
4699 }
4700
4701 /** Returns the currently programmed mode of the given pipe. */
4702 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4703                                              struct drm_crtc *crtc)
4704 {
4705         struct drm_i915_private *dev_priv = dev->dev_private;
4706         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4707         int pipe = intel_crtc->pipe;
4708         struct drm_display_mode *mode;
4709         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4710         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4711         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4712         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4713
4714         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4715         if (!mode)
4716                 return NULL;
4717
4718         mode->clock = intel_crtc_clock_get(dev, crtc);
4719         mode->hdisplay = (htot & 0xffff) + 1;
4720         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4721         mode->hsync_start = (hsync & 0xffff) + 1;
4722         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4723         mode->vdisplay = (vtot & 0xffff) + 1;
4724         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4725         mode->vsync_start = (vsync & 0xffff) + 1;
4726         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4727
4728         drm_mode_set_name(mode);
4729         drm_mode_set_crtcinfo(mode, 0);
4730
4731         return mode;
4732 }
4733
4734 #define GPU_IDLE_TIMEOUT 500 /* ms */
4735
4736 /* When this timer fires, we've been idle for awhile */
4737 static void intel_gpu_idle_timer(unsigned long arg)
4738 {
4739         struct drm_device *dev = (struct drm_device *)arg;
4740         drm_i915_private_t *dev_priv = dev->dev_private;
4741
4742         dev_priv->busy = false;
4743
4744         queue_work(dev_priv->wq, &dev_priv->idle_work);
4745 }
4746
4747 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4748
4749 static void intel_crtc_idle_timer(unsigned long arg)
4750 {
4751         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4752         struct drm_crtc *crtc = &intel_crtc->base;
4753         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4754
4755         intel_crtc->busy = false;
4756
4757         queue_work(dev_priv->wq, &dev_priv->idle_work);
4758 }
4759
4760 static void intel_increase_pllclock(struct drm_crtc *crtc)
4761 {
4762         struct drm_device *dev = crtc->dev;
4763         drm_i915_private_t *dev_priv = dev->dev_private;
4764         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4765         int pipe = intel_crtc->pipe;
4766         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4767         int dpll = I915_READ(dpll_reg);
4768
4769         if (HAS_PCH_SPLIT(dev))
4770                 return;
4771
4772         if (!dev_priv->lvds_downclock_avail)
4773                 return;
4774
4775         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4776                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4777
4778                 /* Unlock panel regs */
4779                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4780                            PANEL_UNLOCK_REGS);
4781
4782                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4783                 I915_WRITE(dpll_reg, dpll);
4784                 dpll = I915_READ(dpll_reg);
4785                 intel_wait_for_vblank(dev, pipe);
4786                 dpll = I915_READ(dpll_reg);
4787                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4788                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4789
4790                 /* ...and lock them again */
4791                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4792         }
4793
4794         /* Schedule downclock */
4795         mod_timer(&intel_crtc->idle_timer, jiffies +
4796                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4797 }
4798
4799 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4800 {
4801         struct drm_device *dev = crtc->dev;
4802         drm_i915_private_t *dev_priv = dev->dev_private;
4803         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4804         int pipe = intel_crtc->pipe;
4805         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4806         int dpll = I915_READ(dpll_reg);
4807
4808         if (HAS_PCH_SPLIT(dev))
4809                 return;
4810
4811         if (!dev_priv->lvds_downclock_avail)
4812                 return;
4813
4814         /*
4815          * Since this is called by a timer, we should never get here in
4816          * the manual case.
4817          */
4818         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4819                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4820
4821                 /* Unlock panel regs */
4822                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4823                            PANEL_UNLOCK_REGS);
4824
4825                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4826                 I915_WRITE(dpll_reg, dpll);
4827                 dpll = I915_READ(dpll_reg);
4828                 intel_wait_for_vblank(dev, pipe);
4829                 dpll = I915_READ(dpll_reg);
4830                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4831                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4832
4833                 /* ...and lock them again */
4834                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4835         }
4836
4837 }
4838
4839 /**
4840  * intel_idle_update - adjust clocks for idleness
4841  * @work: work struct
4842  *
4843  * Either the GPU or display (or both) went idle.  Check the busy status
4844  * here and adjust the CRTC and GPU clocks as necessary.
4845  */
4846 static void intel_idle_update(struct work_struct *work)
4847 {
4848         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4849                                                     idle_work);
4850         struct drm_device *dev = dev_priv->dev;
4851         struct drm_crtc *crtc;
4852         struct intel_crtc *intel_crtc;
4853         int enabled = 0;
4854
4855         if (!i915_powersave)
4856                 return;
4857
4858         mutex_lock(&dev->struct_mutex);
4859
4860         i915_update_gfx_val(dev_priv);
4861
4862         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4863                 /* Skip inactive CRTCs */
4864                 if (!crtc->fb)
4865                         continue;
4866
4867                 enabled++;
4868                 intel_crtc = to_intel_crtc(crtc);
4869                 if (!intel_crtc->busy)
4870                         intel_decrease_pllclock(crtc);
4871         }
4872
4873         if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4874                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4875                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4876         }
4877
4878         mutex_unlock(&dev->struct_mutex);
4879 }
4880
4881 /**
4882  * intel_mark_busy - mark the GPU and possibly the display busy
4883  * @dev: drm device
4884  * @obj: object we're operating on
4885  *
4886  * Callers can use this function to indicate that the GPU is busy processing
4887  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4888  * buffer), we'll also mark the display as busy, so we know to increase its
4889  * clock frequency.
4890  */
4891 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4892 {
4893         drm_i915_private_t *dev_priv = dev->dev_private;
4894         struct drm_crtc *crtc = NULL;
4895         struct intel_framebuffer *intel_fb;
4896         struct intel_crtc *intel_crtc;
4897
4898         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4899                 return;
4900
4901         if (!dev_priv->busy) {
4902                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4903                         u32 fw_blc_self;
4904
4905                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4906                         fw_blc_self = I915_READ(FW_BLC_SELF);
4907                         fw_blc_self &= ~FW_BLC_SELF_EN;
4908                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4909                 }
4910                 dev_priv->busy = true;
4911         } else
4912                 mod_timer(&dev_priv->idle_timer, jiffies +
4913                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4914
4915         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4916                 if (!crtc->fb)
4917                         continue;
4918
4919                 intel_crtc = to_intel_crtc(crtc);
4920                 intel_fb = to_intel_framebuffer(crtc->fb);
4921                 if (intel_fb->obj == obj) {
4922                         if (!intel_crtc->busy) {
4923                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4924                                         u32 fw_blc_self;
4925
4926                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4927                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4928                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4929                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4930                                 }
4931                                 /* Non-busy -> busy, upclock */
4932                                 intel_increase_pllclock(crtc);
4933                                 intel_crtc->busy = true;
4934                         } else {
4935                                 /* Busy -> busy, put off timer */
4936                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4937                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4938                         }
4939                 }
4940         }
4941 }
4942
4943 static void intel_crtc_destroy(struct drm_crtc *crtc)
4944 {
4945         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4946         struct drm_device *dev = crtc->dev;
4947         struct intel_unpin_work *work;
4948         unsigned long flags;
4949
4950         spin_lock_irqsave(&dev->event_lock, flags);
4951         work = intel_crtc->unpin_work;
4952         intel_crtc->unpin_work = NULL;
4953         spin_unlock_irqrestore(&dev->event_lock, flags);
4954
4955         if (work) {
4956                 cancel_work_sync(&work->work);
4957                 kfree(work);
4958         }
4959
4960         drm_crtc_cleanup(crtc);
4961
4962         kfree(intel_crtc);
4963 }
4964
4965 static void intel_unpin_work_fn(struct work_struct *__work)
4966 {
4967         struct intel_unpin_work *work =
4968                 container_of(__work, struct intel_unpin_work, work);
4969
4970         mutex_lock(&work->dev->struct_mutex);
4971         i915_gem_object_unpin(work->old_fb_obj);
4972         drm_gem_object_unreference(work->pending_flip_obj);
4973         drm_gem_object_unreference(work->old_fb_obj);
4974         mutex_unlock(&work->dev->struct_mutex);
4975         kfree(work);
4976 }
4977
4978 static void do_intel_finish_page_flip(struct drm_device *dev,
4979                                       struct drm_crtc *crtc)
4980 {
4981         drm_i915_private_t *dev_priv = dev->dev_private;
4982         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4983         struct intel_unpin_work *work;
4984         struct drm_i915_gem_object *obj_priv;
4985         struct drm_pending_vblank_event *e;
4986         struct timeval now;
4987         unsigned long flags;
4988
4989         /* Ignore early vblank irqs */
4990         if (intel_crtc == NULL)
4991                 return;
4992
4993         spin_lock_irqsave(&dev->event_lock, flags);
4994         work = intel_crtc->unpin_work;
4995         if (work == NULL || !work->pending) {
4996                 spin_unlock_irqrestore(&dev->event_lock, flags);
4997                 return;
4998         }
4999
5000         intel_crtc->unpin_work = NULL;
5001         drm_vblank_put(dev, intel_crtc->pipe);
5002
5003         if (work->event) {
5004                 e = work->event;
5005                 do_gettimeofday(&now);
5006                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
5007                 e->event.tv_sec = now.tv_sec;
5008                 e->event.tv_usec = now.tv_usec;
5009                 list_add_tail(&e->base.link,
5010                               &e->base.file_priv->event_list);
5011                 wake_up_interruptible(&e->base.file_priv->event_wait);
5012         }
5013
5014         spin_unlock_irqrestore(&dev->event_lock, flags);
5015
5016         obj_priv = to_intel_bo(work->old_fb_obj);
5017         atomic_clear_mask(1 << intel_crtc->plane,
5018                           &obj_priv->pending_flip.counter);
5019         if (atomic_read(&obj_priv->pending_flip) == 0)
5020                 wake_up(&dev_priv->pending_flip_queue);
5021         schedule_work(&work->work);
5022
5023         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5024 }
5025
5026 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5027 {
5028         drm_i915_private_t *dev_priv = dev->dev_private;
5029         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5030
5031         do_intel_finish_page_flip(dev, crtc);
5032 }
5033
5034 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5035 {
5036         drm_i915_private_t *dev_priv = dev->dev_private;
5037         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5038
5039         do_intel_finish_page_flip(dev, crtc);
5040 }
5041
5042 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5043 {
5044         drm_i915_private_t *dev_priv = dev->dev_private;
5045         struct intel_crtc *intel_crtc =
5046                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5047         unsigned long flags;
5048
5049         spin_lock_irqsave(&dev->event_lock, flags);
5050         if (intel_crtc->unpin_work) {
5051                 if ((++intel_crtc->unpin_work->pending) > 1)
5052                         DRM_ERROR("Prepared flip multiple times\n");
5053         } else {
5054                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5055         }
5056         spin_unlock_irqrestore(&dev->event_lock, flags);
5057 }
5058
5059 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5060                                 struct drm_framebuffer *fb,
5061                                 struct drm_pending_vblank_event *event)
5062 {
5063         struct drm_device *dev = crtc->dev;
5064         struct drm_i915_private *dev_priv = dev->dev_private;
5065         struct intel_framebuffer *intel_fb;
5066         struct drm_i915_gem_object *obj_priv;
5067         struct drm_gem_object *obj;
5068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5069         struct intel_unpin_work *work;
5070         unsigned long flags, offset;
5071         int pipe = intel_crtc->pipe;
5072         u32 pf, pipesrc;
5073         int ret;
5074
5075         work = kzalloc(sizeof *work, GFP_KERNEL);
5076         if (work == NULL)
5077                 return -ENOMEM;
5078
5079         work->event = event;
5080         work->dev = crtc->dev;
5081         intel_fb = to_intel_framebuffer(crtc->fb);
5082         work->old_fb_obj = intel_fb->obj;
5083         INIT_WORK(&work->work, intel_unpin_work_fn);
5084
5085         /* We borrow the event spin lock for protecting unpin_work */
5086         spin_lock_irqsave(&dev->event_lock, flags);
5087         if (intel_crtc->unpin_work) {
5088                 spin_unlock_irqrestore(&dev->event_lock, flags);
5089                 kfree(work);
5090
5091                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5092                 return -EBUSY;
5093         }
5094         intel_crtc->unpin_work = work;
5095         spin_unlock_irqrestore(&dev->event_lock, flags);
5096
5097         intel_fb = to_intel_framebuffer(fb);
5098         obj = intel_fb->obj;
5099
5100         mutex_lock(&dev->struct_mutex);
5101         ret = intel_pin_and_fence_fb_obj(dev, obj, true);
5102         if (ret)
5103                 goto cleanup_work;
5104
5105         /* Reference the objects for the scheduled work. */
5106         drm_gem_object_reference(work->old_fb_obj);
5107         drm_gem_object_reference(obj);
5108
5109         crtc->fb = fb;
5110
5111         ret = drm_vblank_get(dev, intel_crtc->pipe);
5112         if (ret)
5113                 goto cleanup_objs;
5114
5115         /* Block clients from rendering to the new back buffer until
5116          * the flip occurs and the object is no longer visible.
5117          */
5118         atomic_add(1 << intel_crtc->plane,
5119                    &to_intel_bo(work->old_fb_obj)->pending_flip);
5120
5121         work->pending_flip_obj = obj;
5122         obj_priv = to_intel_bo(obj);
5123
5124         if (IS_GEN3(dev) || IS_GEN2(dev)) {
5125                 u32 flip_mask;
5126
5127                 /* Can't queue multiple flips, so wait for the previous
5128                  * one to finish before executing the next.
5129                  */
5130                 BEGIN_LP_RING(2);
5131                 if (intel_crtc->plane)
5132                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5133                 else
5134                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5135                 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5136                 OUT_RING(MI_NOOP);
5137                 ADVANCE_LP_RING();
5138         }
5139
5140         work->enable_stall_check = true;
5141
5142         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5143         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5144
5145         BEGIN_LP_RING(4);
5146         switch(INTEL_INFO(dev)->gen) {
5147         case 2:
5148                 OUT_RING(MI_DISPLAY_FLIP |
5149                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5150                 OUT_RING(fb->pitch);
5151                 OUT_RING(obj_priv->gtt_offset + offset);
5152                 OUT_RING(MI_NOOP);
5153                 break;
5154
5155         case 3:
5156                 OUT_RING(MI_DISPLAY_FLIP_I915 |
5157                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5158                 OUT_RING(fb->pitch);
5159                 OUT_RING(obj_priv->gtt_offset + offset);
5160                 OUT_RING(MI_NOOP);
5161                 break;
5162
5163         case 4:
5164         case 5:
5165                 /* i965+ uses the linear or tiled offsets from the
5166                  * Display Registers (which do not change across a page-flip)
5167                  * so we need only reprogram the base address.
5168                  */
5169                 OUT_RING(MI_DISPLAY_FLIP |
5170                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5171                 OUT_RING(fb->pitch);
5172                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
5173
5174                 /* XXX Enabling the panel-fitter across page-flip is so far
5175                  * untested on non-native modes, so ignore it for now.
5176                  * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5177                  */
5178                 pf = 0;
5179                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5180                 OUT_RING(pf | pipesrc);
5181                 break;
5182
5183         case 6:
5184                 OUT_RING(MI_DISPLAY_FLIP |
5185                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5186                 OUT_RING(fb->pitch | obj_priv->tiling_mode);
5187                 OUT_RING(obj_priv->gtt_offset);
5188
5189                 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5190                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5191                 OUT_RING(pf | pipesrc);
5192                 break;
5193         }
5194         ADVANCE_LP_RING();
5195
5196         mutex_unlock(&dev->struct_mutex);
5197
5198         trace_i915_flip_request(intel_crtc->plane, obj);
5199
5200         return 0;
5201
5202 cleanup_objs:
5203         drm_gem_object_unreference(work->old_fb_obj);
5204         drm_gem_object_unreference(obj);
5205 cleanup_work:
5206         mutex_unlock(&dev->struct_mutex);
5207
5208         spin_lock_irqsave(&dev->event_lock, flags);
5209         intel_crtc->unpin_work = NULL;
5210         spin_unlock_irqrestore(&dev->event_lock, flags);
5211
5212         kfree(work);
5213
5214         return ret;
5215 }
5216
5217 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5218         .dpms = intel_crtc_dpms,
5219         .mode_fixup = intel_crtc_mode_fixup,
5220         .mode_set = intel_crtc_mode_set,
5221         .mode_set_base = intel_pipe_set_base,
5222         .mode_set_base_atomic = intel_pipe_set_base_atomic,
5223         .load_lut = intel_crtc_load_lut,
5224         .disable = intel_crtc_disable,
5225 };
5226
5227 static const struct drm_crtc_funcs intel_crtc_funcs = {
5228         .cursor_set = intel_crtc_cursor_set,
5229         .cursor_move = intel_crtc_cursor_move,
5230         .gamma_set = intel_crtc_gamma_set,
5231         .set_config = drm_crtc_helper_set_config,
5232         .destroy = intel_crtc_destroy,
5233         .page_flip = intel_crtc_page_flip,
5234 };
5235
5236 static void intel_sanitize_modesetting(struct drm_device *dev,
5237                                        int pipe, int plane)
5238 {
5239         struct drm_i915_private *dev_priv = dev->dev_private;
5240         u32 reg, val;
5241
5242         if (HAS_PCH_SPLIT(dev))
5243                 return;
5244
5245         /* Who knows what state these registers were left in by the BIOS or
5246          * grub?
5247          *
5248          * If we leave the registers in a conflicting state (e.g. with the
5249          * display plane reading from the other pipe than the one we intend
5250          * to use) then when we attempt to teardown the active mode, we will
5251          * not disable the pipes and planes in the correct order -- leaving
5252          * a plane reading from a disabled pipe and possibly leading to
5253          * undefined behaviour.
5254          */
5255
5256         reg = DSPCNTR(plane);
5257         val = I915_READ(reg);
5258
5259         if ((val & DISPLAY_PLANE_ENABLE) == 0)
5260                 return;
5261         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
5262                 return;
5263
5264         /* This display plane is active and attached to the other CPU pipe. */
5265         pipe = !pipe;
5266
5267         /* Disable the plane and wait for it to stop reading from the pipe. */
5268         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
5269         intel_flush_display_plane(dev, plane);
5270
5271         if (IS_GEN2(dev))
5272                 intel_wait_for_vblank(dev, pipe);
5273
5274         if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
5275                 return;
5276
5277         /* Switch off the pipe. */
5278         reg = PIPECONF(pipe);
5279         val = I915_READ(reg);
5280         if (val & PIPECONF_ENABLE) {
5281                 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
5282                 intel_wait_for_pipe_off(dev, pipe);
5283         }
5284 }
5285
5286 static void intel_crtc_init(struct drm_device *dev, int pipe)
5287 {
5288         drm_i915_private_t *dev_priv = dev->dev_private;
5289         struct intel_crtc *intel_crtc;
5290         int i;
5291
5292         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5293         if (intel_crtc == NULL)
5294                 return;
5295
5296         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5297
5298         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5299         for (i = 0; i < 256; i++) {
5300                 intel_crtc->lut_r[i] = i;
5301                 intel_crtc->lut_g[i] = i;
5302                 intel_crtc->lut_b[i] = i;
5303         }
5304
5305         /* Swap pipes & planes for FBC on pre-965 */
5306         intel_crtc->pipe = pipe;
5307         intel_crtc->plane = pipe;
5308         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5309                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5310                 intel_crtc->plane = !pipe;
5311         }
5312
5313         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5314                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5315         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5316         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5317
5318         intel_crtc->cursor_addr = 0;
5319         intel_crtc->dpms_mode = -1;
5320         intel_crtc->active = true; /* force the pipe off on setup_init_config */
5321
5322         if (HAS_PCH_SPLIT(dev)) {
5323                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
5324                 intel_helper_funcs.commit = ironlake_crtc_commit;
5325         } else {
5326                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
5327                 intel_helper_funcs.commit = i9xx_crtc_commit;
5328         }
5329
5330         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5331
5332         intel_crtc->busy = false;
5333
5334         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5335                     (unsigned long)intel_crtc);
5336
5337         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
5338 }
5339
5340 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5341                                 struct drm_file *file_priv)
5342 {
5343         drm_i915_private_t *dev_priv = dev->dev_private;
5344         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5345         struct drm_mode_object *drmmode_obj;
5346         struct intel_crtc *crtc;
5347
5348         if (!dev_priv) {
5349                 DRM_ERROR("called with no initialization\n");
5350                 return -EINVAL;
5351         }
5352
5353         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5354                         DRM_MODE_OBJECT_CRTC);
5355
5356         if (!drmmode_obj) {
5357                 DRM_ERROR("no such CRTC id\n");
5358                 return -EINVAL;
5359         }
5360
5361         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5362         pipe_from_crtc_id->pipe = crtc->pipe;
5363
5364         return 0;
5365 }
5366
5367 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5368 {
5369         struct intel_encoder *encoder;
5370         int index_mask = 0;
5371         int entry = 0;
5372
5373         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5374                 if (type_mask & encoder->clone_mask)
5375                         index_mask |= (1 << entry);
5376                 entry++;
5377         }
5378
5379         return index_mask;
5380 }
5381
5382 static void intel_setup_outputs(struct drm_device *dev)
5383 {
5384         struct drm_i915_private *dev_priv = dev->dev_private;
5385         struct intel_encoder *encoder;
5386         bool dpd_is_edp = false;
5387         bool has_lvds = false;
5388
5389         if (IS_MOBILE(dev) && !IS_I830(dev))
5390                 has_lvds = intel_lvds_init(dev);
5391         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
5392                 /* disable the panel fitter on everything but LVDS */
5393                 I915_WRITE(PFIT_CONTROL, 0);
5394         }
5395
5396         if (HAS_PCH_SPLIT(dev)) {
5397                 dpd_is_edp = intel_dpd_is_edp(dev);
5398
5399                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5400                         intel_dp_init(dev, DP_A);
5401
5402                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5403                         intel_dp_init(dev, PCH_DP_D);
5404         }
5405
5406         intel_crt_init(dev);
5407
5408         if (HAS_PCH_SPLIT(dev)) {
5409                 int found;
5410
5411                 if (I915_READ(HDMIB) & PORT_DETECTED) {
5412                         /* PCH SDVOB multiplex with HDMIB */
5413                         found = intel_sdvo_init(dev, PCH_SDVOB);
5414                         if (!found)
5415                                 intel_hdmi_init(dev, HDMIB);
5416                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5417                                 intel_dp_init(dev, PCH_DP_B);
5418                 }
5419
5420                 if (I915_READ(HDMIC) & PORT_DETECTED)
5421                         intel_hdmi_init(dev, HDMIC);
5422
5423                 if (I915_READ(HDMID) & PORT_DETECTED)
5424                         intel_hdmi_init(dev, HDMID);
5425
5426                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5427                         intel_dp_init(dev, PCH_DP_C);
5428
5429                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5430                         intel_dp_init(dev, PCH_DP_D);
5431
5432         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5433                 bool found = false;
5434
5435                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5436                         DRM_DEBUG_KMS("probing SDVOB\n");
5437                         found = intel_sdvo_init(dev, SDVOB);
5438                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5439                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5440                                 intel_hdmi_init(dev, SDVOB);
5441                         }
5442
5443                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5444                                 DRM_DEBUG_KMS("probing DP_B\n");
5445                                 intel_dp_init(dev, DP_B);
5446                         }
5447                 }
5448
5449                 /* Before G4X SDVOC doesn't have its own detect register */
5450
5451                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5452                         DRM_DEBUG_KMS("probing SDVOC\n");
5453                         found = intel_sdvo_init(dev, SDVOC);
5454                 }
5455
5456                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5457
5458                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5459                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5460                                 intel_hdmi_init(dev, SDVOC);
5461                         }
5462                         if (SUPPORTS_INTEGRATED_DP(dev)) {
5463                                 DRM_DEBUG_KMS("probing DP_C\n");
5464                                 intel_dp_init(dev, DP_C);
5465                         }
5466                 }
5467
5468                 if (SUPPORTS_INTEGRATED_DP(dev) &&
5469                     (I915_READ(DP_D) & DP_DETECTED)) {
5470                         DRM_DEBUG_KMS("probing DP_D\n");
5471                         intel_dp_init(dev, DP_D);
5472                 }
5473         } else if (IS_GEN2(dev))
5474                 intel_dvo_init(dev);
5475
5476         if (SUPPORTS_TV(dev))
5477                 intel_tv_init(dev);
5478
5479         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5480                 encoder->base.possible_crtcs = encoder->crtc_mask;
5481                 encoder->base.possible_clones =
5482                         intel_encoder_clones(dev, encoder->clone_mask);
5483         }
5484 }
5485
5486 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5487 {
5488         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5489
5490         drm_framebuffer_cleanup(fb);
5491         drm_gem_object_unreference_unlocked(intel_fb->obj);
5492
5493         kfree(intel_fb);
5494 }
5495
5496 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5497                                                 struct drm_file *file_priv,
5498                                                 unsigned int *handle)
5499 {
5500         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5501         struct drm_gem_object *object = intel_fb->obj;
5502
5503         return drm_gem_handle_create(file_priv, object, handle);
5504 }
5505
5506 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5507         .destroy = intel_user_framebuffer_destroy,
5508         .create_handle = intel_user_framebuffer_create_handle,
5509 };
5510
5511 int intel_framebuffer_init(struct drm_device *dev,
5512                            struct intel_framebuffer *intel_fb,
5513                            struct drm_mode_fb_cmd *mode_cmd,
5514                            struct drm_gem_object *obj)
5515 {
5516         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5517         int ret;
5518
5519         if (obj_priv->tiling_mode == I915_TILING_Y)
5520                 return -EINVAL;
5521
5522         if (mode_cmd->pitch & 63)
5523                 return -EINVAL;
5524
5525         switch (mode_cmd->bpp) {
5526         case 8:
5527         case 16:
5528         case 24:
5529         case 32:
5530                 break;
5531         default:
5532                 return -EINVAL;
5533         }
5534
5535         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5536         if (ret) {
5537                 DRM_ERROR("framebuffer init failed %d\n", ret);
5538                 return ret;
5539         }
5540
5541         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5542         intel_fb->obj = obj;
5543         return 0;
5544 }
5545
5546 static struct drm_framebuffer *
5547 intel_user_framebuffer_create(struct drm_device *dev,
5548                               struct drm_file *filp,
5549                               struct drm_mode_fb_cmd *mode_cmd)
5550 {
5551         struct drm_gem_object *obj;
5552         struct intel_framebuffer *intel_fb;
5553         int ret;
5554
5555         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5556         if (!obj)
5557                 return ERR_PTR(-ENOENT);
5558
5559         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5560         if (!intel_fb)
5561                 return ERR_PTR(-ENOMEM);
5562
5563         ret = intel_framebuffer_init(dev, intel_fb,
5564                                      mode_cmd, obj);
5565         if (ret) {
5566                 drm_gem_object_unreference_unlocked(obj);
5567                 kfree(intel_fb);
5568                 return ERR_PTR(ret);
5569         }
5570
5571         return &intel_fb->base;
5572 }
5573
5574 static const struct drm_mode_config_funcs intel_mode_funcs = {
5575         .fb_create = intel_user_framebuffer_create,
5576         .output_poll_changed = intel_fb_output_poll_changed,
5577 };
5578
5579 static struct drm_gem_object *
5580 intel_alloc_context_page(struct drm_device *dev)
5581 {
5582         struct drm_gem_object *ctx;
5583         int ret;
5584
5585         ctx = i915_gem_alloc_object(dev, 4096);
5586         if (!ctx) {
5587                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5588                 return NULL;
5589         }
5590
5591         mutex_lock(&dev->struct_mutex);
5592         ret = i915_gem_object_pin(ctx, 4096);
5593         if (ret) {
5594                 DRM_ERROR("failed to pin power context: %d\n", ret);
5595                 goto err_unref;
5596         }
5597
5598         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5599         if (ret) {
5600                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5601                 goto err_unpin;
5602         }
5603         mutex_unlock(&dev->struct_mutex);
5604
5605         return ctx;
5606
5607 err_unpin:
5608         i915_gem_object_unpin(ctx);
5609 err_unref:
5610         drm_gem_object_unreference(ctx);
5611         mutex_unlock(&dev->struct_mutex);
5612         return NULL;
5613 }
5614
5615 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5616 {
5617         struct drm_i915_private *dev_priv = dev->dev_private;
5618         u16 rgvswctl;
5619
5620         rgvswctl = I915_READ16(MEMSWCTL);
5621         if (rgvswctl & MEMCTL_CMD_STS) {
5622                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5623                 return false; /* still busy with another command */
5624         }
5625
5626         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5627                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5628         I915_WRITE16(MEMSWCTL, rgvswctl);
5629         POSTING_READ16(MEMSWCTL);
5630
5631         rgvswctl |= MEMCTL_CMD_STS;
5632         I915_WRITE16(MEMSWCTL, rgvswctl);
5633
5634         return true;
5635 }
5636
5637 void ironlake_enable_drps(struct drm_device *dev)
5638 {
5639         struct drm_i915_private *dev_priv = dev->dev_private;
5640         u32 rgvmodectl = I915_READ(MEMMODECTL);
5641         u8 fmax, fmin, fstart, vstart;
5642
5643         /* Enable temp reporting */
5644         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5645         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5646
5647         /* 100ms RC evaluation intervals */
5648         I915_WRITE(RCUPEI, 100000);
5649         I915_WRITE(RCDNEI, 100000);
5650
5651         /* Set max/min thresholds to 90ms and 80ms respectively */
5652         I915_WRITE(RCBMAXAVG, 90000);
5653         I915_WRITE(RCBMINAVG, 80000);
5654
5655         I915_WRITE(MEMIHYST, 1);
5656
5657         /* Set up min, max, and cur for interrupt handling */
5658         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5659         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5660         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5661                 MEMMODE_FSTART_SHIFT;
5662
5663         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5664                 PXVFREQ_PX_SHIFT;
5665
5666         dev_priv->fmax = fmax; /* IPS callback will increase this */
5667         dev_priv->fstart = fstart;
5668
5669         dev_priv->max_delay = fstart;
5670         dev_priv->min_delay = fmin;
5671         dev_priv->cur_delay = fstart;
5672
5673         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5674                          fmax, fmin, fstart);
5675
5676         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5677
5678         /*
5679          * Interrupts will be enabled in ironlake_irq_postinstall
5680          */
5681
5682         I915_WRITE(VIDSTART, vstart);
5683         POSTING_READ(VIDSTART);
5684
5685         rgvmodectl |= MEMMODE_SWMODE_EN;
5686         I915_WRITE(MEMMODECTL, rgvmodectl);
5687
5688         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5689                 DRM_ERROR("stuck trying to change perf mode\n");
5690         msleep(1);
5691
5692         ironlake_set_drps(dev, fstart);
5693
5694         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5695                 I915_READ(0x112e0);
5696         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5697         dev_priv->last_count2 = I915_READ(0x112f4);
5698         getrawmonotonic(&dev_priv->last_time2);
5699 }
5700
5701 void ironlake_disable_drps(struct drm_device *dev)
5702 {
5703         struct drm_i915_private *dev_priv = dev->dev_private;
5704         u16 rgvswctl = I915_READ16(MEMSWCTL);
5705
5706         /* Ack interrupts, disable EFC interrupt */
5707         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5708         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5709         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5710         I915_WRITE(DEIIR, DE_PCU_EVENT);
5711         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5712
5713         /* Go back to the starting frequency */
5714         ironlake_set_drps(dev, dev_priv->fstart);
5715         msleep(1);
5716         rgvswctl |= MEMCTL_CMD_STS;
5717         I915_WRITE(MEMSWCTL, rgvswctl);
5718         msleep(1);
5719
5720 }
5721
5722 static unsigned long intel_pxfreq(u32 vidfreq)
5723 {
5724         unsigned long freq;
5725         int div = (vidfreq & 0x3f0000) >> 16;
5726         int post = (vidfreq & 0x3000) >> 12;
5727         int pre = (vidfreq & 0x7);
5728
5729         if (!pre)
5730                 return 0;
5731
5732         freq = ((div * 133333) / ((1<<post) * pre));
5733
5734         return freq;
5735 }
5736
5737 void intel_init_emon(struct drm_device *dev)
5738 {
5739         struct drm_i915_private *dev_priv = dev->dev_private;
5740         u32 lcfuse;
5741         u8 pxw[16];
5742         int i;
5743
5744         /* Disable to program */
5745         I915_WRITE(ECR, 0);
5746         POSTING_READ(ECR);
5747
5748         /* Program energy weights for various events */
5749         I915_WRITE(SDEW, 0x15040d00);
5750         I915_WRITE(CSIEW0, 0x007f0000);
5751         I915_WRITE(CSIEW1, 0x1e220004);
5752         I915_WRITE(CSIEW2, 0x04000004);
5753
5754         for (i = 0; i < 5; i++)
5755                 I915_WRITE(PEW + (i * 4), 0);
5756         for (i = 0; i < 3; i++)
5757                 I915_WRITE(DEW + (i * 4), 0);
5758
5759         /* Program P-state weights to account for frequency power adjustment */
5760         for (i = 0; i < 16; i++) {
5761                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5762                 unsigned long freq = intel_pxfreq(pxvidfreq);
5763                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5764                         PXVFREQ_PX_SHIFT;
5765                 unsigned long val;
5766
5767                 val = vid * vid;
5768                 val *= (freq / 1000);
5769                 val *= 255;
5770                 val /= (127*127*900);
5771                 if (val > 0xff)
5772                         DRM_ERROR("bad pxval: %ld\n", val);
5773                 pxw[i] = val;
5774         }
5775         /* Render standby states get 0 weight */
5776         pxw[14] = 0;
5777         pxw[15] = 0;
5778
5779         for (i = 0; i < 4; i++) {
5780                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5781                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5782                 I915_WRITE(PXW + (i * 4), val);
5783         }
5784
5785         /* Adjust magic regs to magic values (more experimental results) */
5786         I915_WRITE(OGW0, 0);
5787         I915_WRITE(OGW1, 0);
5788         I915_WRITE(EG0, 0x00007f00);
5789         I915_WRITE(EG1, 0x0000000e);
5790         I915_WRITE(EG2, 0x000e0000);
5791         I915_WRITE(EG3, 0x68000300);
5792         I915_WRITE(EG4, 0x42000000);
5793         I915_WRITE(EG5, 0x00140031);
5794         I915_WRITE(EG6, 0);
5795         I915_WRITE(EG7, 0);
5796
5797         for (i = 0; i < 8; i++)
5798                 I915_WRITE(PXWL + (i * 4), 0);
5799
5800         /* Enable PMON + select events */
5801         I915_WRITE(ECR, 0x80000019);
5802
5803         lcfuse = I915_READ(LCFUSE02);
5804
5805         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5806 }
5807
5808 void intel_init_clock_gating(struct drm_device *dev)
5809 {
5810         struct drm_i915_private *dev_priv = dev->dev_private;
5811
5812         /*
5813          * Disable clock gating reported to work incorrectly according to the
5814          * specs, but enable as much else as we can.
5815          */
5816         if (HAS_PCH_SPLIT(dev)) {
5817                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5818
5819                 if (IS_GEN5(dev)) {
5820                         /* Required for FBC */
5821                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5822                         /* Required for CxSR */
5823                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5824
5825                         I915_WRITE(PCH_3DCGDIS0,
5826                                    MARIUNIT_CLOCK_GATE_DISABLE |
5827                                    SVSMUNIT_CLOCK_GATE_DISABLE);
5828                 }
5829
5830                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5831
5832                 /*
5833                  * On Ibex Peak and Cougar Point, we need to disable clock
5834                  * gating for the panel power sequencer or it will fail to
5835                  * start up when no ports are active.
5836                  */
5837                 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5838
5839                 /*
5840                  * According to the spec the following bits should be set in
5841                  * order to enable memory self-refresh
5842                  * The bit 22/21 of 0x42004
5843                  * The bit 5 of 0x42020
5844                  * The bit 15 of 0x45000
5845                  */
5846                 if (IS_GEN5(dev)) {
5847                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5848                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
5849                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5850                         I915_WRITE(ILK_DSPCLK_GATE,
5851                                         (I915_READ(ILK_DSPCLK_GATE) |
5852                                                 ILK_DPARB_CLK_GATE));
5853                         I915_WRITE(DISP_ARB_CTL,
5854                                         (I915_READ(DISP_ARB_CTL) |
5855                                                 DISP_FBC_WM_DIS));
5856                 I915_WRITE(WM3_LP_ILK, 0);
5857                 I915_WRITE(WM2_LP_ILK, 0);
5858                 I915_WRITE(WM1_LP_ILK, 0);
5859                 }
5860                 /*
5861                  * Based on the document from hardware guys the following bits
5862                  * should be set unconditionally in order to enable FBC.
5863                  * The bit 22 of 0x42000
5864                  * The bit 22 of 0x42004
5865                  * The bit 7,8,9 of 0x42020.
5866                  */
5867                 if (IS_IRONLAKE_M(dev)) {
5868                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5869                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5870                                    ILK_FBCQ_DIS);
5871                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5872                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5873                                    ILK_DPARB_GATE);
5874                         I915_WRITE(ILK_DSPCLK_GATE,
5875                                    I915_READ(ILK_DSPCLK_GATE) |
5876                                    ILK_DPFC_DIS1 |
5877                                    ILK_DPFC_DIS2 |
5878                                    ILK_CLK_FBC);
5879                 }
5880                 return;
5881         } else if (IS_G4X(dev)) {
5882                 uint32_t dspclk_gate;
5883                 I915_WRITE(RENCLK_GATE_D1, 0);
5884                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5885                        GS_UNIT_CLOCK_GATE_DISABLE |
5886                        CL_UNIT_CLOCK_GATE_DISABLE);
5887                 I915_WRITE(RAMCLK_GATE_D, 0);
5888                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5889                         OVRUNIT_CLOCK_GATE_DISABLE |
5890                         OVCUNIT_CLOCK_GATE_DISABLE;
5891                 if (IS_GM45(dev))
5892                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5893                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5894         } else if (IS_CRESTLINE(dev)) {
5895                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5896                 I915_WRITE(RENCLK_GATE_D2, 0);
5897                 I915_WRITE(DSPCLK_GATE_D, 0);
5898                 I915_WRITE(RAMCLK_GATE_D, 0);
5899                 I915_WRITE16(DEUC, 0);
5900         } else if (IS_BROADWATER(dev)) {
5901                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5902                        I965_RCC_CLOCK_GATE_DISABLE |
5903                        I965_RCPB_CLOCK_GATE_DISABLE |
5904                        I965_ISC_CLOCK_GATE_DISABLE |
5905                        I965_FBC_CLOCK_GATE_DISABLE);
5906                 I915_WRITE(RENCLK_GATE_D2, 0);
5907         } else if (IS_GEN3(dev)) {
5908                 u32 dstate = I915_READ(D_STATE);
5909
5910                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5911                         DSTATE_DOT_CLOCK_GATING;
5912                 I915_WRITE(D_STATE, dstate);
5913         } else if (IS_I85X(dev) || IS_I865G(dev)) {
5914                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5915         } else if (IS_I830(dev)) {
5916                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5917         }
5918
5919         /*
5920          * GPU can automatically power down the render unit if given a page
5921          * to save state.
5922          */
5923         if (IS_IRONLAKE_M(dev)) {
5924                 if (dev_priv->renderctx == NULL)
5925                         dev_priv->renderctx = intel_alloc_context_page(dev);
5926                 if (dev_priv->renderctx) {
5927                         struct drm_i915_gem_object *obj_priv;
5928                         obj_priv = to_intel_bo(dev_priv->renderctx);
5929                         if (obj_priv) {
5930                                 BEGIN_LP_RING(4);
5931                                 OUT_RING(MI_SET_CONTEXT);
5932                                 OUT_RING(obj_priv->gtt_offset |
5933                                                 MI_MM_SPACE_GTT |
5934                                                 MI_SAVE_EXT_STATE_EN |
5935                                                 MI_RESTORE_EXT_STATE_EN |
5936                                                 MI_RESTORE_INHIBIT);
5937                                 OUT_RING(MI_NOOP);
5938                                 OUT_RING(MI_FLUSH);
5939                                 ADVANCE_LP_RING();
5940                         }
5941                 } else
5942                         DRM_DEBUG_KMS("Failed to allocate render context."
5943                                        "Disable RC6\n");
5944         }
5945
5946         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5947                 struct drm_i915_gem_object *obj_priv = NULL;
5948
5949                 if (dev_priv->pwrctx) {
5950                         obj_priv = to_intel_bo(dev_priv->pwrctx);
5951                 } else {
5952                         struct drm_gem_object *pwrctx;
5953
5954                         pwrctx = intel_alloc_context_page(dev);
5955                         if (pwrctx) {
5956                                 dev_priv->pwrctx = pwrctx;
5957                                 obj_priv = to_intel_bo(pwrctx);
5958                         }
5959                 }
5960
5961                 if (obj_priv) {
5962                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5963                         I915_WRITE(MCHBAR_RENDER_STANDBY,
5964                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5965                 }
5966         }
5967 }
5968
5969 /* Set up chip specific display functions */
5970 static void intel_init_display(struct drm_device *dev)
5971 {
5972         struct drm_i915_private *dev_priv = dev->dev_private;
5973
5974         /* We always want a DPMS function */
5975         if (HAS_PCH_SPLIT(dev))
5976                 dev_priv->display.dpms = ironlake_crtc_dpms;
5977         else
5978                 dev_priv->display.dpms = i9xx_crtc_dpms;
5979
5980         if (I915_HAS_FBC(dev)) {
5981                 if (IS_IRONLAKE_M(dev)) {
5982                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5983                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
5984                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5985                 } else if (IS_GM45(dev)) {
5986                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5987                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5988                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5989                 } else if (IS_CRESTLINE(dev)) {
5990                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5991                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5992                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5993                 }
5994                 /* 855GM needs testing */
5995         }
5996
5997         /* Returns the core display clock speed */
5998         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5999                 dev_priv->display.get_display_clock_speed =
6000                         i945_get_display_clock_speed;
6001         else if (IS_I915G(dev))
6002                 dev_priv->display.get_display_clock_speed =
6003                         i915_get_display_clock_speed;
6004         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
6005                 dev_priv->display.get_display_clock_speed =
6006                         i9xx_misc_get_display_clock_speed;
6007         else if (IS_I915GM(dev))
6008                 dev_priv->display.get_display_clock_speed =
6009                         i915gm_get_display_clock_speed;
6010         else if (IS_I865G(dev))
6011                 dev_priv->display.get_display_clock_speed =
6012                         i865_get_display_clock_speed;
6013         else if (IS_I85X(dev))
6014                 dev_priv->display.get_display_clock_speed =
6015                         i855_get_display_clock_speed;
6016         else /* 852, 830 */
6017                 dev_priv->display.get_display_clock_speed =
6018                         i830_get_display_clock_speed;
6019
6020         /* For FIFO watermark updates */
6021         if (HAS_PCH_SPLIT(dev)) {
6022                 if (IS_GEN5(dev)) {
6023                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
6024                                 dev_priv->display.update_wm = ironlake_update_wm;
6025                         else {
6026                                 DRM_DEBUG_KMS("Failed to get proper latency. "
6027                                               "Disable CxSR\n");
6028                                 dev_priv->display.update_wm = NULL;
6029                         }
6030                 } else
6031                         dev_priv->display.update_wm = NULL;
6032         } else if (IS_PINEVIEW(dev)) {
6033                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6034                                             dev_priv->is_ddr3,
6035                                             dev_priv->fsb_freq,
6036                                             dev_priv->mem_freq)) {
6037                         DRM_INFO("failed to find known CxSR latency "
6038                                  "(found ddr%s fsb freq %d, mem freq %d), "
6039                                  "disabling CxSR\n",
6040                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
6041                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6042                         /* Disable CxSR and never update its watermark again */
6043                         pineview_disable_cxsr(dev);
6044                         dev_priv->display.update_wm = NULL;
6045                 } else
6046                         dev_priv->display.update_wm = pineview_update_wm;
6047         } else if (IS_G4X(dev))
6048                 dev_priv->display.update_wm = g4x_update_wm;
6049         else if (IS_GEN4(dev))
6050                 dev_priv->display.update_wm = i965_update_wm;
6051         else if (IS_GEN3(dev)) {
6052                 dev_priv->display.update_wm = i9xx_update_wm;
6053                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6054         } else if (IS_I85X(dev)) {
6055                 dev_priv->display.update_wm = i9xx_update_wm;
6056                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6057         } else {
6058                 dev_priv->display.update_wm = i830_update_wm;
6059                 if (IS_845G(dev))
6060                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6061                 else
6062                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6063         }
6064 }
6065
6066 /*
6067  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6068  * resume, or other times.  This quirk makes sure that's the case for
6069  * affected systems.
6070  */
6071 static void quirk_pipea_force (struct drm_device *dev)
6072 {
6073         struct drm_i915_private *dev_priv = dev->dev_private;
6074
6075         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6076         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
6077 }
6078
6079 struct intel_quirk {
6080         int device;
6081         int subsystem_vendor;
6082         int subsystem_device;
6083         void (*hook)(struct drm_device *dev);
6084 };
6085
6086 struct intel_quirk intel_quirks[] = {
6087         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
6088         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
6089         /* HP Mini needs pipe A force quirk (LP: #322104) */
6090         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
6091
6092         /* Thinkpad R31 needs pipe A force quirk */
6093         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6094         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6095         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6096
6097         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6098         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
6099         /* ThinkPad X40 needs pipe A force quirk */
6100
6101         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6102         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6103
6104         /* 855 & before need to leave pipe A & dpll A up */
6105         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6106         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6107 };
6108
6109 static void intel_init_quirks(struct drm_device *dev)
6110 {
6111         struct pci_dev *d = dev->pdev;
6112         int i;
6113
6114         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6115                 struct intel_quirk *q = &intel_quirks[i];
6116
6117                 if (d->device == q->device &&
6118                     (d->subsystem_vendor == q->subsystem_vendor ||
6119                      q->subsystem_vendor == PCI_ANY_ID) &&
6120                     (d->subsystem_device == q->subsystem_device ||
6121                      q->subsystem_device == PCI_ANY_ID))
6122                         q->hook(dev);
6123         }
6124 }
6125
6126 /* Disable the VGA plane that we never use */
6127 static void i915_disable_vga(struct drm_device *dev)
6128 {
6129         struct drm_i915_private *dev_priv = dev->dev_private;
6130         u8 sr1;
6131         u32 vga_reg;
6132
6133         if (HAS_PCH_SPLIT(dev))
6134                 vga_reg = CPU_VGACNTRL;
6135         else
6136                 vga_reg = VGACNTRL;
6137
6138         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6139         outb(1, VGA_SR_INDEX);
6140         sr1 = inb(VGA_SR_DATA);
6141         outb(sr1 | 1<<5, VGA_SR_DATA);
6142         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6143         udelay(300);
6144
6145         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6146         POSTING_READ(vga_reg);
6147 }
6148
6149 void intel_modeset_init(struct drm_device *dev)
6150 {
6151         struct drm_i915_private *dev_priv = dev->dev_private;
6152         int i;
6153
6154         drm_mode_config_init(dev);
6155
6156         dev->mode_config.min_width = 0;
6157         dev->mode_config.min_height = 0;
6158
6159         dev->mode_config.funcs = (void *)&intel_mode_funcs;
6160
6161         intel_init_quirks(dev);
6162
6163         intel_init_display(dev);
6164
6165         if (IS_GEN2(dev)) {
6166                 dev->mode_config.max_width = 2048;
6167                 dev->mode_config.max_height = 2048;
6168         } else if (IS_GEN3(dev)) {
6169                 dev->mode_config.max_width = 4096;
6170                 dev->mode_config.max_height = 4096;
6171         } else {
6172                 dev->mode_config.max_width = 8192;
6173                 dev->mode_config.max_height = 8192;
6174         }
6175
6176         /* set memory base */
6177         if (IS_GEN2(dev))
6178                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6179         else
6180                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6181
6182         if (IS_MOBILE(dev) || !IS_GEN2(dev))
6183                 dev_priv->num_pipe = 2;
6184         else
6185                 dev_priv->num_pipe = 1;
6186         DRM_DEBUG_KMS("%d display pipe%s available.\n",
6187                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6188
6189         for (i = 0; i < dev_priv->num_pipe; i++) {
6190                 intel_crtc_init(dev, i);
6191         }
6192
6193         intel_setup_outputs(dev);
6194
6195         intel_init_clock_gating(dev);
6196
6197         /* Just disable it once at startup */
6198         i915_disable_vga(dev);
6199
6200         if (IS_IRONLAKE_M(dev)) {
6201                 ironlake_enable_drps(dev);
6202                 intel_init_emon(dev);
6203         }
6204
6205         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6206         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6207                     (unsigned long)dev);
6208
6209         intel_setup_overlay(dev);
6210 }
6211
6212 void intel_modeset_cleanup(struct drm_device *dev)
6213 {
6214         struct drm_i915_private *dev_priv = dev->dev_private;
6215         struct drm_crtc *crtc;
6216         struct intel_crtc *intel_crtc;
6217
6218         drm_kms_helper_poll_fini(dev);
6219         mutex_lock(&dev->struct_mutex);
6220
6221         intel_unregister_dsm_handler();
6222
6223
6224         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6225                 /* Skip inactive CRTCs */
6226                 if (!crtc->fb)
6227                         continue;
6228
6229                 intel_crtc = to_intel_crtc(crtc);
6230                 intel_increase_pllclock(crtc);
6231         }
6232
6233         if (dev_priv->display.disable_fbc)
6234                 dev_priv->display.disable_fbc(dev);
6235
6236         if (dev_priv->renderctx) {
6237                 struct drm_i915_gem_object *obj_priv;
6238
6239                 obj_priv = to_intel_bo(dev_priv->renderctx);
6240                 I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
6241                 I915_READ(CCID);
6242                 i915_gem_object_unpin(dev_priv->renderctx);
6243                 drm_gem_object_unreference(dev_priv->renderctx);
6244         }
6245
6246         if (dev_priv->pwrctx) {
6247                 struct drm_i915_gem_object *obj_priv;
6248
6249                 obj_priv = to_intel_bo(dev_priv->pwrctx);
6250                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6251                 I915_READ(PWRCTXA);
6252                 i915_gem_object_unpin(dev_priv->pwrctx);
6253                 drm_gem_object_unreference(dev_priv->pwrctx);
6254         }
6255
6256         if (IS_IRONLAKE_M(dev))
6257                 ironlake_disable_drps(dev);
6258
6259         mutex_unlock(&dev->struct_mutex);
6260
6261         /* Disable the irq before mode object teardown, for the irq might
6262          * enqueue unpin/hotplug work. */
6263         drm_irq_uninstall(dev);
6264         cancel_work_sync(&dev_priv->hotplug_work);
6265
6266         /* Shut off idle work before the crtcs get freed. */
6267         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6268                 intel_crtc = to_intel_crtc(crtc);
6269                 del_timer_sync(&intel_crtc->idle_timer);
6270         }
6271         del_timer_sync(&dev_priv->idle_timer);
6272         cancel_work_sync(&dev_priv->idle_work);
6273
6274         drm_mode_config_cleanup(dev);
6275 }
6276
6277 /*
6278  * Return which encoder is currently attached for connector.
6279  */
6280 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6281 {
6282         return &intel_attached_encoder(connector)->base;
6283 }
6284
6285 void intel_connector_attach_encoder(struct intel_connector *connector,
6286                                     struct intel_encoder *encoder)
6287 {
6288         connector->encoder = encoder;
6289         drm_mode_connector_attach_encoder(&connector->base,
6290                                           &encoder->base);
6291 }
6292
6293 /*
6294  * set vga decode state - true == enable VGA decode
6295  */
6296 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6297 {
6298         struct drm_i915_private *dev_priv = dev->dev_private;
6299         u16 gmch_ctrl;
6300
6301         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6302         if (state)
6303                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6304         else
6305                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6306         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6307         return 0;
6308 }