net: Convert TCP & DCCP hash tables to use RCU / hlist_nulls
[linux-flexiantxendom0-natty.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53
54 #include <linux/types.h>
55 #include <linux/fcntl.h>
56 #include <linux/module.h>
57 #include <linux/random.h>
58 #include <linux/cache.h>
59 #include <linux/jhash.h>
60 #include <linux/init.h>
61 #include <linux/times.h>
62
63 #include <net/net_namespace.h>
64 #include <net/icmp.h>
65 #include <net/inet_hashtables.h>
66 #include <net/tcp.h>
67 #include <net/transp_v6.h>
68 #include <net/ipv6.h>
69 #include <net/inet_common.h>
70 #include <net/timewait_sock.h>
71 #include <net/xfrm.h>
72 #include <net/netdma.h>
73
74 #include <linux/inet.h>
75 #include <linux/ipv6.h>
76 #include <linux/stddef.h>
77 #include <linux/proc_fs.h>
78 #include <linux/seq_file.h>
79
80 #include <linux/crypto.h>
81 #include <linux/scatterlist.h>
82
83 int sysctl_tcp_tw_reuse __read_mostly;
84 int sysctl_tcp_low_latency __read_mostly;
85
86
87 #ifdef CONFIG_TCP_MD5SIG
88 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
89                                                    __be32 addr);
90 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
91                                __be32 daddr, __be32 saddr, struct tcphdr *th);
92 #else
93 static inline
94 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
95 {
96         return NULL;
97 }
98 #endif
99
100 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
101         .lhash_lock  = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock),
102         .lhash_users = ATOMIC_INIT(0),
103         .lhash_wait  = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
104 };
105
106 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
107 {
108         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
109                                           ip_hdr(skb)->saddr,
110                                           tcp_hdr(skb)->dest,
111                                           tcp_hdr(skb)->source);
112 }
113
114 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
115 {
116         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
117         struct tcp_sock *tp = tcp_sk(sk);
118
119         /* With PAWS, it is safe from the viewpoint
120            of data integrity. Even without PAWS it is safe provided sequence
121            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
122
123            Actually, the idea is close to VJ's one, only timestamp cache is
124            held not per host, but per port pair and TW bucket is used as state
125            holder.
126
127            If TW bucket has been already destroyed we fall back to VJ's scheme
128            and use initial timestamp retrieved from peer table.
129          */
130         if (tcptw->tw_ts_recent_stamp &&
131             (twp == NULL || (sysctl_tcp_tw_reuse &&
132                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
133                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
134                 if (tp->write_seq == 0)
135                         tp->write_seq = 1;
136                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
137                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
138                 sock_hold(sktw);
139                 return 1;
140         }
141
142         return 0;
143 }
144
145 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
146
147 /* This will initiate an outgoing connection. */
148 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
149 {
150         struct inet_sock *inet = inet_sk(sk);
151         struct tcp_sock *tp = tcp_sk(sk);
152         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153         struct rtable *rt;
154         __be32 daddr, nexthop;
155         int tmp;
156         int err;
157
158         if (addr_len < sizeof(struct sockaddr_in))
159                 return -EINVAL;
160
161         if (usin->sin_family != AF_INET)
162                 return -EAFNOSUPPORT;
163
164         nexthop = daddr = usin->sin_addr.s_addr;
165         if (inet->opt && inet->opt->srr) {
166                 if (!daddr)
167                         return -EINVAL;
168                 nexthop = inet->opt->faddr;
169         }
170
171         tmp = ip_route_connect(&rt, nexthop, inet->saddr,
172                                RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
173                                IPPROTO_TCP,
174                                inet->sport, usin->sin_port, sk, 1);
175         if (tmp < 0) {
176                 if (tmp == -ENETUNREACH)
177                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
178                 return tmp;
179         }
180
181         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
182                 ip_rt_put(rt);
183                 return -ENETUNREACH;
184         }
185
186         if (!inet->opt || !inet->opt->srr)
187                 daddr = rt->rt_dst;
188
189         if (!inet->saddr)
190                 inet->saddr = rt->rt_src;
191         inet->rcv_saddr = inet->saddr;
192
193         if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
194                 /* Reset inherited state */
195                 tp->rx_opt.ts_recent       = 0;
196                 tp->rx_opt.ts_recent_stamp = 0;
197                 tp->write_seq              = 0;
198         }
199
200         if (tcp_death_row.sysctl_tw_recycle &&
201             !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
202                 struct inet_peer *peer = rt_get_peer(rt);
203                 /*
204                  * VJ's idea. We save last timestamp seen from
205                  * the destination in peer table, when entering state
206                  * TIME-WAIT * and initialize rx_opt.ts_recent from it,
207                  * when trying new connection.
208                  */
209                 if (peer != NULL &&
210                     peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) {
211                         tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
212                         tp->rx_opt.ts_recent = peer->tcp_ts;
213                 }
214         }
215
216         inet->dport = usin->sin_port;
217         inet->daddr = daddr;
218
219         inet_csk(sk)->icsk_ext_hdr_len = 0;
220         if (inet->opt)
221                 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
222
223         tp->rx_opt.mss_clamp = 536;
224
225         /* Socket identity is still unknown (sport may be zero).
226          * However we set state to SYN-SENT and not releasing socket
227          * lock select source port, enter ourselves into the hash tables and
228          * complete initialization after this.
229          */
230         tcp_set_state(sk, TCP_SYN_SENT);
231         err = inet_hash_connect(&tcp_death_row, sk);
232         if (err)
233                 goto failure;
234
235         err = ip_route_newports(&rt, IPPROTO_TCP,
236                                 inet->sport, inet->dport, sk);
237         if (err)
238                 goto failure;
239
240         /* OK, now commit destination to socket.  */
241         sk->sk_gso_type = SKB_GSO_TCPV4;
242         sk_setup_caps(sk, &rt->u.dst);
243
244         if (!tp->write_seq)
245                 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
246                                                            inet->daddr,
247                                                            inet->sport,
248                                                            usin->sin_port);
249
250         inet->id = tp->write_seq ^ jiffies;
251
252         err = tcp_connect(sk);
253         rt = NULL;
254         if (err)
255                 goto failure;
256
257         return 0;
258
259 failure:
260         /*
261          * This unhashes the socket and releases the local port,
262          * if necessary.
263          */
264         tcp_set_state(sk, TCP_CLOSE);
265         ip_rt_put(rt);
266         sk->sk_route_caps = 0;
267         inet->dport = 0;
268         return err;
269 }
270
271 /*
272  * This routine does path mtu discovery as defined in RFC1191.
273  */
274 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
275 {
276         struct dst_entry *dst;
277         struct inet_sock *inet = inet_sk(sk);
278
279         /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
280          * send out by Linux are always <576bytes so they should go through
281          * unfragmented).
282          */
283         if (sk->sk_state == TCP_LISTEN)
284                 return;
285
286         /* We don't check in the destentry if pmtu discovery is forbidden
287          * on this route. We just assume that no packet_to_big packets
288          * are send back when pmtu discovery is not active.
289          * There is a small race when the user changes this flag in the
290          * route, but I think that's acceptable.
291          */
292         if ((dst = __sk_dst_check(sk, 0)) == NULL)
293                 return;
294
295         dst->ops->update_pmtu(dst, mtu);
296
297         /* Something is about to be wrong... Remember soft error
298          * for the case, if this connection will not able to recover.
299          */
300         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
301                 sk->sk_err_soft = EMSGSIZE;
302
303         mtu = dst_mtu(dst);
304
305         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
306             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
307                 tcp_sync_mss(sk, mtu);
308
309                 /* Resend the TCP packet because it's
310                  * clear that the old packet has been
311                  * dropped. This is the new "fast" path mtu
312                  * discovery.
313                  */
314                 tcp_simple_retransmit(sk);
315         } /* else let the usual retransmit timer handle it */
316 }
317
318 /*
319  * This routine is called by the ICMP module when it gets some
320  * sort of error condition.  If err < 0 then the socket should
321  * be closed and the error returned to the user.  If err > 0
322  * it's just the icmp type << 8 | icmp code.  After adjustment
323  * header points to the first 8 bytes of the tcp header.  We need
324  * to find the appropriate port.
325  *
326  * The locking strategy used here is very "optimistic". When
327  * someone else accesses the socket the ICMP is just dropped
328  * and for some paths there is no check at all.
329  * A more general error queue to queue errors for later handling
330  * is probably better.
331  *
332  */
333
334 void tcp_v4_err(struct sk_buff *skb, u32 info)
335 {
336         struct iphdr *iph = (struct iphdr *)skb->data;
337         struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
338         struct tcp_sock *tp;
339         struct inet_sock *inet;
340         const int type = icmp_hdr(skb)->type;
341         const int code = icmp_hdr(skb)->code;
342         struct sock *sk;
343         __u32 seq;
344         int err;
345         struct net *net = dev_net(skb->dev);
346
347         if (skb->len < (iph->ihl << 2) + 8) {
348                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
349                 return;
350         }
351
352         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
353                         iph->saddr, th->source, inet_iif(skb));
354         if (!sk) {
355                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
356                 return;
357         }
358         if (sk->sk_state == TCP_TIME_WAIT) {
359                 inet_twsk_put(inet_twsk(sk));
360                 return;
361         }
362
363         bh_lock_sock(sk);
364         /* If too many ICMPs get dropped on busy
365          * servers this needs to be solved differently.
366          */
367         if (sock_owned_by_user(sk))
368                 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
369
370         if (sk->sk_state == TCP_CLOSE)
371                 goto out;
372
373         tp = tcp_sk(sk);
374         seq = ntohl(th->seq);
375         if (sk->sk_state != TCP_LISTEN &&
376             !between(seq, tp->snd_una, tp->snd_nxt)) {
377                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
378                 goto out;
379         }
380
381         switch (type) {
382         case ICMP_SOURCE_QUENCH:
383                 /* Just silently ignore these. */
384                 goto out;
385         case ICMP_PARAMETERPROB:
386                 err = EPROTO;
387                 break;
388         case ICMP_DEST_UNREACH:
389                 if (code > NR_ICMP_UNREACH)
390                         goto out;
391
392                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
393                         if (!sock_owned_by_user(sk))
394                                 do_pmtu_discovery(sk, iph, info);
395                         goto out;
396                 }
397
398                 err = icmp_err_convert[code].errno;
399                 break;
400         case ICMP_TIME_EXCEEDED:
401                 err = EHOSTUNREACH;
402                 break;
403         default:
404                 goto out;
405         }
406
407         switch (sk->sk_state) {
408                 struct request_sock *req, **prev;
409         case TCP_LISTEN:
410                 if (sock_owned_by_user(sk))
411                         goto out;
412
413                 req = inet_csk_search_req(sk, &prev, th->dest,
414                                           iph->daddr, iph->saddr);
415                 if (!req)
416                         goto out;
417
418                 /* ICMPs are not backlogged, hence we cannot get
419                    an established socket here.
420                  */
421                 WARN_ON(req->sk);
422
423                 if (seq != tcp_rsk(req)->snt_isn) {
424                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
425                         goto out;
426                 }
427
428                 /*
429                  * Still in SYN_RECV, just remove it silently.
430                  * There is no good way to pass the error to the newly
431                  * created socket, and POSIX does not want network
432                  * errors returned from accept().
433                  */
434                 inet_csk_reqsk_queue_drop(sk, req, prev);
435                 goto out;
436
437         case TCP_SYN_SENT:
438         case TCP_SYN_RECV:  /* Cannot happen.
439                                It can f.e. if SYNs crossed.
440                              */
441                 if (!sock_owned_by_user(sk)) {
442                         sk->sk_err = err;
443
444                         sk->sk_error_report(sk);
445
446                         tcp_done(sk);
447                 } else {
448                         sk->sk_err_soft = err;
449                 }
450                 goto out;
451         }
452
453         /* If we've already connected we will keep trying
454          * until we time out, or the user gives up.
455          *
456          * rfc1122 4.2.3.9 allows to consider as hard errors
457          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
458          * but it is obsoleted by pmtu discovery).
459          *
460          * Note, that in modern internet, where routing is unreliable
461          * and in each dark corner broken firewalls sit, sending random
462          * errors ordered by their masters even this two messages finally lose
463          * their original sense (even Linux sends invalid PORT_UNREACHs)
464          *
465          * Now we are in compliance with RFCs.
466          *                                                      --ANK (980905)
467          */
468
469         inet = inet_sk(sk);
470         if (!sock_owned_by_user(sk) && inet->recverr) {
471                 sk->sk_err = err;
472                 sk->sk_error_report(sk);
473         } else  { /* Only an error on timeout */
474                 sk->sk_err_soft = err;
475         }
476
477 out:
478         bh_unlock_sock(sk);
479         sock_put(sk);
480 }
481
482 /* This routine computes an IPv4 TCP checksum. */
483 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
484 {
485         struct inet_sock *inet = inet_sk(sk);
486         struct tcphdr *th = tcp_hdr(skb);
487
488         if (skb->ip_summed == CHECKSUM_PARTIAL) {
489                 th->check = ~tcp_v4_check(len, inet->saddr,
490                                           inet->daddr, 0);
491                 skb->csum_start = skb_transport_header(skb) - skb->head;
492                 skb->csum_offset = offsetof(struct tcphdr, check);
493         } else {
494                 th->check = tcp_v4_check(len, inet->saddr, inet->daddr,
495                                          csum_partial((char *)th,
496                                                       th->doff << 2,
497                                                       skb->csum));
498         }
499 }
500
501 int tcp_v4_gso_send_check(struct sk_buff *skb)
502 {
503         const struct iphdr *iph;
504         struct tcphdr *th;
505
506         if (!pskb_may_pull(skb, sizeof(*th)))
507                 return -EINVAL;
508
509         iph = ip_hdr(skb);
510         th = tcp_hdr(skb);
511
512         th->check = 0;
513         th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
514         skb->csum_start = skb_transport_header(skb) - skb->head;
515         skb->csum_offset = offsetof(struct tcphdr, check);
516         skb->ip_summed = CHECKSUM_PARTIAL;
517         return 0;
518 }
519
520 /*
521  *      This routine will send an RST to the other tcp.
522  *
523  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
524  *                    for reset.
525  *      Answer: if a packet caused RST, it is not for a socket
526  *              existing in our system, if it is matched to a socket,
527  *              it is just duplicate segment or bug in other side's TCP.
528  *              So that we build reply only basing on parameters
529  *              arrived with segment.
530  *      Exception: precedence violation. We do not implement it in any case.
531  */
532
533 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
534 {
535         struct tcphdr *th = tcp_hdr(skb);
536         struct {
537                 struct tcphdr th;
538 #ifdef CONFIG_TCP_MD5SIG
539                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
540 #endif
541         } rep;
542         struct ip_reply_arg arg;
543 #ifdef CONFIG_TCP_MD5SIG
544         struct tcp_md5sig_key *key;
545 #endif
546         struct net *net;
547
548         /* Never send a reset in response to a reset. */
549         if (th->rst)
550                 return;
551
552         if (skb->rtable->rt_type != RTN_LOCAL)
553                 return;
554
555         /* Swap the send and the receive. */
556         memset(&rep, 0, sizeof(rep));
557         rep.th.dest   = th->source;
558         rep.th.source = th->dest;
559         rep.th.doff   = sizeof(struct tcphdr) / 4;
560         rep.th.rst    = 1;
561
562         if (th->ack) {
563                 rep.th.seq = th->ack_seq;
564         } else {
565                 rep.th.ack = 1;
566                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
567                                        skb->len - (th->doff << 2));
568         }
569
570         memset(&arg, 0, sizeof(arg));
571         arg.iov[0].iov_base = (unsigned char *)&rep;
572         arg.iov[0].iov_len  = sizeof(rep.th);
573
574 #ifdef CONFIG_TCP_MD5SIG
575         key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
576         if (key) {
577                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
578                                    (TCPOPT_NOP << 16) |
579                                    (TCPOPT_MD5SIG << 8) |
580                                    TCPOLEN_MD5SIG);
581                 /* Update length and the length the header thinks exists */
582                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
583                 rep.th.doff = arg.iov[0].iov_len / 4;
584
585                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
586                                      key, ip_hdr(skb)->saddr,
587                                      ip_hdr(skb)->daddr, &rep.th);
588         }
589 #endif
590         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
591                                       ip_hdr(skb)->saddr, /* XXX */
592                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
593         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
594         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
595
596         net = dev_net(skb->dst->dev);
597         ip_send_reply(net->ipv4.tcp_sock, skb,
598                       &arg, arg.iov[0].iov_len);
599
600         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
601         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
602 }
603
604 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
605    outside socket context is ugly, certainly. What can I do?
606  */
607
608 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
609                             u32 win, u32 ts, int oif,
610                             struct tcp_md5sig_key *key,
611                             int reply_flags)
612 {
613         struct tcphdr *th = tcp_hdr(skb);
614         struct {
615                 struct tcphdr th;
616                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
617 #ifdef CONFIG_TCP_MD5SIG
618                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
619 #endif
620                         ];
621         } rep;
622         struct ip_reply_arg arg;
623         struct net *net = dev_net(skb->dst->dev);
624
625         memset(&rep.th, 0, sizeof(struct tcphdr));
626         memset(&arg, 0, sizeof(arg));
627
628         arg.iov[0].iov_base = (unsigned char *)&rep;
629         arg.iov[0].iov_len  = sizeof(rep.th);
630         if (ts) {
631                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
632                                    (TCPOPT_TIMESTAMP << 8) |
633                                    TCPOLEN_TIMESTAMP);
634                 rep.opt[1] = htonl(tcp_time_stamp);
635                 rep.opt[2] = htonl(ts);
636                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
637         }
638
639         /* Swap the send and the receive. */
640         rep.th.dest    = th->source;
641         rep.th.source  = th->dest;
642         rep.th.doff    = arg.iov[0].iov_len / 4;
643         rep.th.seq     = htonl(seq);
644         rep.th.ack_seq = htonl(ack);
645         rep.th.ack     = 1;
646         rep.th.window  = htons(win);
647
648 #ifdef CONFIG_TCP_MD5SIG
649         if (key) {
650                 int offset = (ts) ? 3 : 0;
651
652                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
653                                           (TCPOPT_NOP << 16) |
654                                           (TCPOPT_MD5SIG << 8) |
655                                           TCPOLEN_MD5SIG);
656                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
657                 rep.th.doff = arg.iov[0].iov_len/4;
658
659                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
660                                     key, ip_hdr(skb)->saddr,
661                                     ip_hdr(skb)->daddr, &rep.th);
662         }
663 #endif
664         arg.flags = reply_flags;
665         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
666                                       ip_hdr(skb)->saddr, /* XXX */
667                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
668         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
669         if (oif)
670                 arg.bound_dev_if = oif;
671
672         ip_send_reply(net->ipv4.tcp_sock, skb,
673                       &arg, arg.iov[0].iov_len);
674
675         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
676 }
677
678 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
679 {
680         struct inet_timewait_sock *tw = inet_twsk(sk);
681         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
682
683         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
684                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
685                         tcptw->tw_ts_recent,
686                         tw->tw_bound_dev_if,
687                         tcp_twsk_md5_key(tcptw),
688                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
689                         );
690
691         inet_twsk_put(tw);
692 }
693
694 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
695                                   struct request_sock *req)
696 {
697         tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
698                         tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
699                         req->ts_recent,
700                         0,
701                         tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
702                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
703 }
704
705 /*
706  *      Send a SYN-ACK after having received a SYN.
707  *      This still operates on a request_sock only, not on a big
708  *      socket.
709  */
710 static int __tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
711                                 struct dst_entry *dst)
712 {
713         const struct inet_request_sock *ireq = inet_rsk(req);
714         int err = -1;
715         struct sk_buff * skb;
716
717         /* First, grab a route. */
718         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
719                 return -1;
720
721         skb = tcp_make_synack(sk, dst, req);
722
723         if (skb) {
724                 struct tcphdr *th = tcp_hdr(skb);
725
726                 th->check = tcp_v4_check(skb->len,
727                                          ireq->loc_addr,
728                                          ireq->rmt_addr,
729                                          csum_partial((char *)th, skb->len,
730                                                       skb->csum));
731
732                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
733                                             ireq->rmt_addr,
734                                             ireq->opt);
735                 err = net_xmit_eval(err);
736         }
737
738         dst_release(dst);
739         return err;
740 }
741
742 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req)
743 {
744         return __tcp_v4_send_synack(sk, req, NULL);
745 }
746
747 /*
748  *      IPv4 request_sock destructor.
749  */
750 static void tcp_v4_reqsk_destructor(struct request_sock *req)
751 {
752         kfree(inet_rsk(req)->opt);
753 }
754
755 #ifdef CONFIG_SYN_COOKIES
756 static void syn_flood_warning(struct sk_buff *skb)
757 {
758         static unsigned long warntime;
759
760         if (time_after(jiffies, (warntime + HZ * 60))) {
761                 warntime = jiffies;
762                 printk(KERN_INFO
763                        "possible SYN flooding on port %d. Sending cookies.\n",
764                        ntohs(tcp_hdr(skb)->dest));
765         }
766 }
767 #endif
768
769 /*
770  * Save and compile IPv4 options into the request_sock if needed.
771  */
772 static struct ip_options *tcp_v4_save_options(struct sock *sk,
773                                               struct sk_buff *skb)
774 {
775         struct ip_options *opt = &(IPCB(skb)->opt);
776         struct ip_options *dopt = NULL;
777
778         if (opt && opt->optlen) {
779                 int opt_size = optlength(opt);
780                 dopt = kmalloc(opt_size, GFP_ATOMIC);
781                 if (dopt) {
782                         if (ip_options_echo(dopt, skb)) {
783                                 kfree(dopt);
784                                 dopt = NULL;
785                         }
786                 }
787         }
788         return dopt;
789 }
790
791 #ifdef CONFIG_TCP_MD5SIG
792 /*
793  * RFC2385 MD5 checksumming requires a mapping of
794  * IP address->MD5 Key.
795  * We need to maintain these in the sk structure.
796  */
797
798 /* Find the Key structure for an address.  */
799 static struct tcp_md5sig_key *
800                         tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
801 {
802         struct tcp_sock *tp = tcp_sk(sk);
803         int i;
804
805         if (!tp->md5sig_info || !tp->md5sig_info->entries4)
806                 return NULL;
807         for (i = 0; i < tp->md5sig_info->entries4; i++) {
808                 if (tp->md5sig_info->keys4[i].addr == addr)
809                         return &tp->md5sig_info->keys4[i].base;
810         }
811         return NULL;
812 }
813
814 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
815                                          struct sock *addr_sk)
816 {
817         return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr);
818 }
819
820 EXPORT_SYMBOL(tcp_v4_md5_lookup);
821
822 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
823                                                       struct request_sock *req)
824 {
825         return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
826 }
827
828 /* This can be called on a newly created socket, from other files */
829 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
830                       u8 *newkey, u8 newkeylen)
831 {
832         /* Add Key to the list */
833         struct tcp_md5sig_key *key;
834         struct tcp_sock *tp = tcp_sk(sk);
835         struct tcp4_md5sig_key *keys;
836
837         key = tcp_v4_md5_do_lookup(sk, addr);
838         if (key) {
839                 /* Pre-existing entry - just update that one. */
840                 kfree(key->key);
841                 key->key = newkey;
842                 key->keylen = newkeylen;
843         } else {
844                 struct tcp_md5sig_info *md5sig;
845
846                 if (!tp->md5sig_info) {
847                         tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
848                                                   GFP_ATOMIC);
849                         if (!tp->md5sig_info) {
850                                 kfree(newkey);
851                                 return -ENOMEM;
852                         }
853                         sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
854                 }
855                 if (tcp_alloc_md5sig_pool() == NULL) {
856                         kfree(newkey);
857                         return -ENOMEM;
858                 }
859                 md5sig = tp->md5sig_info;
860
861                 if (md5sig->alloced4 == md5sig->entries4) {
862                         keys = kmalloc((sizeof(*keys) *
863                                         (md5sig->entries4 + 1)), GFP_ATOMIC);
864                         if (!keys) {
865                                 kfree(newkey);
866                                 tcp_free_md5sig_pool();
867                                 return -ENOMEM;
868                         }
869
870                         if (md5sig->entries4)
871                                 memcpy(keys, md5sig->keys4,
872                                        sizeof(*keys) * md5sig->entries4);
873
874                         /* Free old key list, and reference new one */
875                         kfree(md5sig->keys4);
876                         md5sig->keys4 = keys;
877                         md5sig->alloced4++;
878                 }
879                 md5sig->entries4++;
880                 md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
881                 md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
882                 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
883         }
884         return 0;
885 }
886
887 EXPORT_SYMBOL(tcp_v4_md5_do_add);
888
889 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
890                                u8 *newkey, u8 newkeylen)
891 {
892         return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr,
893                                  newkey, newkeylen);
894 }
895
896 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
897 {
898         struct tcp_sock *tp = tcp_sk(sk);
899         int i;
900
901         for (i = 0; i < tp->md5sig_info->entries4; i++) {
902                 if (tp->md5sig_info->keys4[i].addr == addr) {
903                         /* Free the key */
904                         kfree(tp->md5sig_info->keys4[i].base.key);
905                         tp->md5sig_info->entries4--;
906
907                         if (tp->md5sig_info->entries4 == 0) {
908                                 kfree(tp->md5sig_info->keys4);
909                                 tp->md5sig_info->keys4 = NULL;
910                                 tp->md5sig_info->alloced4 = 0;
911                         } else if (tp->md5sig_info->entries4 != i) {
912                                 /* Need to do some manipulation */
913                                 memmove(&tp->md5sig_info->keys4[i],
914                                         &tp->md5sig_info->keys4[i+1],
915                                         (tp->md5sig_info->entries4 - i) *
916                                          sizeof(struct tcp4_md5sig_key));
917                         }
918                         tcp_free_md5sig_pool();
919                         return 0;
920                 }
921         }
922         return -ENOENT;
923 }
924
925 EXPORT_SYMBOL(tcp_v4_md5_do_del);
926
927 static void tcp_v4_clear_md5_list(struct sock *sk)
928 {
929         struct tcp_sock *tp = tcp_sk(sk);
930
931         /* Free each key, then the set of key keys,
932          * the crypto element, and then decrement our
933          * hold on the last resort crypto.
934          */
935         if (tp->md5sig_info->entries4) {
936                 int i;
937                 for (i = 0; i < tp->md5sig_info->entries4; i++)
938                         kfree(tp->md5sig_info->keys4[i].base.key);
939                 tp->md5sig_info->entries4 = 0;
940                 tcp_free_md5sig_pool();
941         }
942         if (tp->md5sig_info->keys4) {
943                 kfree(tp->md5sig_info->keys4);
944                 tp->md5sig_info->keys4 = NULL;
945                 tp->md5sig_info->alloced4  = 0;
946         }
947 }
948
949 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
950                                  int optlen)
951 {
952         struct tcp_md5sig cmd;
953         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
954         u8 *newkey;
955
956         if (optlen < sizeof(cmd))
957                 return -EINVAL;
958
959         if (copy_from_user(&cmd, optval, sizeof(cmd)))
960                 return -EFAULT;
961
962         if (sin->sin_family != AF_INET)
963                 return -EINVAL;
964
965         if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
966                 if (!tcp_sk(sk)->md5sig_info)
967                         return -ENOENT;
968                 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
969         }
970
971         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
972                 return -EINVAL;
973
974         if (!tcp_sk(sk)->md5sig_info) {
975                 struct tcp_sock *tp = tcp_sk(sk);
976                 struct tcp_md5sig_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
977
978                 if (!p)
979                         return -EINVAL;
980
981                 tp->md5sig_info = p;
982                 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
983         }
984
985         newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
986         if (!newkey)
987                 return -ENOMEM;
988         return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
989                                  newkey, cmd.tcpm_keylen);
990 }
991
992 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
993                                         __be32 daddr, __be32 saddr, int nbytes)
994 {
995         struct tcp4_pseudohdr *bp;
996         struct scatterlist sg;
997
998         bp = &hp->md5_blk.ip4;
999
1000         /*
1001          * 1. the TCP pseudo-header (in the order: source IP address,
1002          * destination IP address, zero-padded protocol number, and
1003          * segment length)
1004          */
1005         bp->saddr = saddr;
1006         bp->daddr = daddr;
1007         bp->pad = 0;
1008         bp->protocol = IPPROTO_TCP;
1009         bp->len = cpu_to_be16(nbytes);
1010
1011         sg_init_one(&sg, bp, sizeof(*bp));
1012         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1013 }
1014
1015 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1016                                __be32 daddr, __be32 saddr, struct tcphdr *th)
1017 {
1018         struct tcp_md5sig_pool *hp;
1019         struct hash_desc *desc;
1020
1021         hp = tcp_get_md5sig_pool();
1022         if (!hp)
1023                 goto clear_hash_noput;
1024         desc = &hp->md5_desc;
1025
1026         if (crypto_hash_init(desc))
1027                 goto clear_hash;
1028         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1029                 goto clear_hash;
1030         if (tcp_md5_hash_header(hp, th))
1031                 goto clear_hash;
1032         if (tcp_md5_hash_key(hp, key))
1033                 goto clear_hash;
1034         if (crypto_hash_final(desc, md5_hash))
1035                 goto clear_hash;
1036
1037         tcp_put_md5sig_pool();
1038         return 0;
1039
1040 clear_hash:
1041         tcp_put_md5sig_pool();
1042 clear_hash_noput:
1043         memset(md5_hash, 0, 16);
1044         return 1;
1045 }
1046
1047 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1048                         struct sock *sk, struct request_sock *req,
1049                         struct sk_buff *skb)
1050 {
1051         struct tcp_md5sig_pool *hp;
1052         struct hash_desc *desc;
1053         struct tcphdr *th = tcp_hdr(skb);
1054         __be32 saddr, daddr;
1055
1056         if (sk) {
1057                 saddr = inet_sk(sk)->saddr;
1058                 daddr = inet_sk(sk)->daddr;
1059         } else if (req) {
1060                 saddr = inet_rsk(req)->loc_addr;
1061                 daddr = inet_rsk(req)->rmt_addr;
1062         } else {
1063                 const struct iphdr *iph = ip_hdr(skb);
1064                 saddr = iph->saddr;
1065                 daddr = iph->daddr;
1066         }
1067
1068         hp = tcp_get_md5sig_pool();
1069         if (!hp)
1070                 goto clear_hash_noput;
1071         desc = &hp->md5_desc;
1072
1073         if (crypto_hash_init(desc))
1074                 goto clear_hash;
1075
1076         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1077                 goto clear_hash;
1078         if (tcp_md5_hash_header(hp, th))
1079                 goto clear_hash;
1080         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1081                 goto clear_hash;
1082         if (tcp_md5_hash_key(hp, key))
1083                 goto clear_hash;
1084         if (crypto_hash_final(desc, md5_hash))
1085                 goto clear_hash;
1086
1087         tcp_put_md5sig_pool();
1088         return 0;
1089
1090 clear_hash:
1091         tcp_put_md5sig_pool();
1092 clear_hash_noput:
1093         memset(md5_hash, 0, 16);
1094         return 1;
1095 }
1096
1097 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1098
1099 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1100 {
1101         /*
1102          * This gets called for each TCP segment that arrives
1103          * so we want to be efficient.
1104          * We have 3 drop cases:
1105          * o No MD5 hash and one expected.
1106          * o MD5 hash and we're not expecting one.
1107          * o MD5 hash and its wrong.
1108          */
1109         __u8 *hash_location = NULL;
1110         struct tcp_md5sig_key *hash_expected;
1111         const struct iphdr *iph = ip_hdr(skb);
1112         struct tcphdr *th = tcp_hdr(skb);
1113         int genhash;
1114         unsigned char newhash[16];
1115
1116         hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1117         hash_location = tcp_parse_md5sig_option(th);
1118
1119         /* We've parsed the options - do we have a hash? */
1120         if (!hash_expected && !hash_location)
1121                 return 0;
1122
1123         if (hash_expected && !hash_location) {
1124                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1125                 return 1;
1126         }
1127
1128         if (!hash_expected && hash_location) {
1129                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1130                 return 1;
1131         }
1132
1133         /* Okay, so this is hash_expected and hash_location -
1134          * so we need to calculate the checksum.
1135          */
1136         genhash = tcp_v4_md5_hash_skb(newhash,
1137                                       hash_expected,
1138                                       NULL, NULL, skb);
1139
1140         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1141                 if (net_ratelimit()) {
1142                         printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1143                                &iph->saddr, ntohs(th->source),
1144                                &iph->daddr, ntohs(th->dest),
1145                                genhash ? " tcp_v4_calc_md5_hash failed" : "");
1146                 }
1147                 return 1;
1148         }
1149         return 0;
1150 }
1151
1152 #endif
1153
1154 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1155         .family         =       PF_INET,
1156         .obj_size       =       sizeof(struct tcp_request_sock),
1157         .rtx_syn_ack    =       tcp_v4_send_synack,
1158         .send_ack       =       tcp_v4_reqsk_send_ack,
1159         .destructor     =       tcp_v4_reqsk_destructor,
1160         .send_reset     =       tcp_v4_send_reset,
1161 };
1162
1163 #ifdef CONFIG_TCP_MD5SIG
1164 static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1165         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1166 };
1167 #endif
1168
1169 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1170         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
1171         .twsk_unique    = tcp_twsk_unique,
1172         .twsk_destructor= tcp_twsk_destructor,
1173 };
1174
1175 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1176 {
1177         struct inet_request_sock *ireq;
1178         struct tcp_options_received tmp_opt;
1179         struct request_sock *req;
1180         __be32 saddr = ip_hdr(skb)->saddr;
1181         __be32 daddr = ip_hdr(skb)->daddr;
1182         __u32 isn = TCP_SKB_CB(skb)->when;
1183         struct dst_entry *dst = NULL;
1184 #ifdef CONFIG_SYN_COOKIES
1185         int want_cookie = 0;
1186 #else
1187 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1188 #endif
1189
1190         /* Never answer to SYNs send to broadcast or multicast */
1191         if (skb->rtable->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1192                 goto drop;
1193
1194         /* TW buckets are converted to open requests without
1195          * limitations, they conserve resources and peer is
1196          * evidently real one.
1197          */
1198         if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1199 #ifdef CONFIG_SYN_COOKIES
1200                 if (sysctl_tcp_syncookies) {
1201                         want_cookie = 1;
1202                 } else
1203 #endif
1204                 goto drop;
1205         }
1206
1207         /* Accept backlog is full. If we have already queued enough
1208          * of warm entries in syn queue, drop request. It is better than
1209          * clogging syn queue with openreqs with exponentially increasing
1210          * timeout.
1211          */
1212         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1213                 goto drop;
1214
1215         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1216         if (!req)
1217                 goto drop;
1218
1219 #ifdef CONFIG_TCP_MD5SIG
1220         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1221 #endif
1222
1223         tcp_clear_options(&tmp_opt);
1224         tmp_opt.mss_clamp = 536;
1225         tmp_opt.user_mss  = tcp_sk(sk)->rx_opt.user_mss;
1226
1227         tcp_parse_options(skb, &tmp_opt, 0);
1228
1229         if (want_cookie && !tmp_opt.saw_tstamp)
1230                 tcp_clear_options(&tmp_opt);
1231
1232         if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
1233                 /* Some OSes (unknown ones, but I see them on web server, which
1234                  * contains information interesting only for windows'
1235                  * users) do not send their stamp in SYN. It is easy case.
1236                  * We simply do not advertise TS support.
1237                  */
1238                 tmp_opt.saw_tstamp = 0;
1239                 tmp_opt.tstamp_ok  = 0;
1240         }
1241         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1242
1243         tcp_openreq_init(req, &tmp_opt, skb);
1244
1245         if (security_inet_conn_request(sk, skb, req))
1246                 goto drop_and_free;
1247
1248         ireq = inet_rsk(req);
1249         ireq->loc_addr = daddr;
1250         ireq->rmt_addr = saddr;
1251         ireq->no_srccheck = inet_sk(sk)->transparent;
1252         ireq->opt = tcp_v4_save_options(sk, skb);
1253         if (!want_cookie)
1254                 TCP_ECN_create_request(req, tcp_hdr(skb));
1255
1256         if (want_cookie) {
1257 #ifdef CONFIG_SYN_COOKIES
1258                 syn_flood_warning(skb);
1259                 req->cookie_ts = tmp_opt.tstamp_ok;
1260 #endif
1261                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1262         } else if (!isn) {
1263                 struct inet_peer *peer = NULL;
1264
1265                 /* VJ's idea. We save last timestamp seen
1266                  * from the destination in peer table, when entering
1267                  * state TIME-WAIT, and check against it before
1268                  * accepting new connection request.
1269                  *
1270                  * If "isn" is not zero, this request hit alive
1271                  * timewait bucket, so that all the necessary checks
1272                  * are made in the function processing timewait state.
1273                  */
1274                 if (tmp_opt.saw_tstamp &&
1275                     tcp_death_row.sysctl_tw_recycle &&
1276                     (dst = inet_csk_route_req(sk, req)) != NULL &&
1277                     (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1278                     peer->v4daddr == saddr) {
1279                         if (get_seconds() < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1280                             (s32)(peer->tcp_ts - req->ts_recent) >
1281                                                         TCP_PAWS_WINDOW) {
1282                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1283                                 goto drop_and_release;
1284                         }
1285                 }
1286                 /* Kill the following clause, if you dislike this way. */
1287                 else if (!sysctl_tcp_syncookies &&
1288                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1289                           (sysctl_max_syn_backlog >> 2)) &&
1290                          (!peer || !peer->tcp_ts_stamp) &&
1291                          (!dst || !dst_metric(dst, RTAX_RTT))) {
1292                         /* Without syncookies last quarter of
1293                          * backlog is filled with destinations,
1294                          * proven to be alive.
1295                          * It means that we continue to communicate
1296                          * to destinations, already remembered
1297                          * to the moment of synflood.
1298                          */
1299                         LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1300                                        &saddr, ntohs(tcp_hdr(skb)->source));
1301                         goto drop_and_release;
1302                 }
1303
1304                 isn = tcp_v4_init_sequence(skb);
1305         }
1306         tcp_rsk(req)->snt_isn = isn;
1307
1308         if (__tcp_v4_send_synack(sk, req, dst) || want_cookie)
1309                 goto drop_and_free;
1310
1311         inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1312         return 0;
1313
1314 drop_and_release:
1315         dst_release(dst);
1316 drop_and_free:
1317         reqsk_free(req);
1318 drop:
1319         return 0;
1320 }
1321
1322
1323 /*
1324  * The three way handshake has completed - we got a valid synack -
1325  * now create the new socket.
1326  */
1327 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1328                                   struct request_sock *req,
1329                                   struct dst_entry *dst)
1330 {
1331         struct inet_request_sock *ireq;
1332         struct inet_sock *newinet;
1333         struct tcp_sock *newtp;
1334         struct sock *newsk;
1335 #ifdef CONFIG_TCP_MD5SIG
1336         struct tcp_md5sig_key *key;
1337 #endif
1338
1339         if (sk_acceptq_is_full(sk))
1340                 goto exit_overflow;
1341
1342         if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1343                 goto exit;
1344
1345         newsk = tcp_create_openreq_child(sk, req, skb);
1346         if (!newsk)
1347                 goto exit;
1348
1349         newsk->sk_gso_type = SKB_GSO_TCPV4;
1350         sk_setup_caps(newsk, dst);
1351
1352         newtp                 = tcp_sk(newsk);
1353         newinet               = inet_sk(newsk);
1354         ireq                  = inet_rsk(req);
1355         newinet->daddr        = ireq->rmt_addr;
1356         newinet->rcv_saddr    = ireq->loc_addr;
1357         newinet->saddr        = ireq->loc_addr;
1358         newinet->opt          = ireq->opt;
1359         ireq->opt             = NULL;
1360         newinet->mc_index     = inet_iif(skb);
1361         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1362         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1363         if (newinet->opt)
1364                 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1365         newinet->id = newtp->write_seq ^ jiffies;
1366
1367         tcp_mtup_init(newsk);
1368         tcp_sync_mss(newsk, dst_mtu(dst));
1369         newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1370         if (tcp_sk(sk)->rx_opt.user_mss &&
1371             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1372                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1373
1374         tcp_initialize_rcv_mss(newsk);
1375
1376 #ifdef CONFIG_TCP_MD5SIG
1377         /* Copy over the MD5 key from the original socket */
1378         if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) {
1379                 /*
1380                  * We're using one, so create a matching key
1381                  * on the newsk structure. If we fail to get
1382                  * memory, then we end up not copying the key
1383                  * across. Shucks.
1384                  */
1385                 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1386                 if (newkey != NULL)
1387                         tcp_v4_md5_do_add(newsk, inet_sk(sk)->daddr,
1388                                           newkey, key->keylen);
1389                 newsk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1390         }
1391 #endif
1392
1393         __inet_hash_nolisten(newsk);
1394         __inet_inherit_port(sk, newsk);
1395
1396         return newsk;
1397
1398 exit_overflow:
1399         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1400 exit:
1401         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1402         dst_release(dst);
1403         return NULL;
1404 }
1405
1406 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1407 {
1408         struct tcphdr *th = tcp_hdr(skb);
1409         const struct iphdr *iph = ip_hdr(skb);
1410         struct sock *nsk;
1411         struct request_sock **prev;
1412         /* Find possible connection requests. */
1413         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1414                                                        iph->saddr, iph->daddr);
1415         if (req)
1416                 return tcp_check_req(sk, skb, req, prev);
1417
1418         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1419                         th->source, iph->daddr, th->dest, inet_iif(skb));
1420
1421         if (nsk) {
1422                 if (nsk->sk_state != TCP_TIME_WAIT) {
1423                         bh_lock_sock(nsk);
1424                         return nsk;
1425                 }
1426                 inet_twsk_put(inet_twsk(nsk));
1427                 return NULL;
1428         }
1429
1430 #ifdef CONFIG_SYN_COOKIES
1431         if (!th->rst && !th->syn && th->ack)
1432                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1433 #endif
1434         return sk;
1435 }
1436
1437 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1438 {
1439         const struct iphdr *iph = ip_hdr(skb);
1440
1441         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1442                 if (!tcp_v4_check(skb->len, iph->saddr,
1443                                   iph->daddr, skb->csum)) {
1444                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1445                         return 0;
1446                 }
1447         }
1448
1449         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1450                                        skb->len, IPPROTO_TCP, 0);
1451
1452         if (skb->len <= 76) {
1453                 return __skb_checksum_complete(skb);
1454         }
1455         return 0;
1456 }
1457
1458
1459 /* The socket must have it's spinlock held when we get
1460  * here.
1461  *
1462  * We have a potential double-lock case here, so even when
1463  * doing backlog processing we use the BH locking scheme.
1464  * This is because we cannot sleep with the original spinlock
1465  * held.
1466  */
1467 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1468 {
1469         struct sock *rsk;
1470 #ifdef CONFIG_TCP_MD5SIG
1471         /*
1472          * We really want to reject the packet as early as possible
1473          * if:
1474          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1475          *  o There is an MD5 option and we're not expecting one
1476          */
1477         if (tcp_v4_inbound_md5_hash(sk, skb))
1478                 goto discard;
1479 #endif
1480
1481         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1482                 TCP_CHECK_TIMER(sk);
1483                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1484                         rsk = sk;
1485                         goto reset;
1486                 }
1487                 TCP_CHECK_TIMER(sk);
1488                 return 0;
1489         }
1490
1491         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1492                 goto csum_err;
1493
1494         if (sk->sk_state == TCP_LISTEN) {
1495                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1496                 if (!nsk)
1497                         goto discard;
1498
1499                 if (nsk != sk) {
1500                         if (tcp_child_process(sk, nsk, skb)) {
1501                                 rsk = nsk;
1502                                 goto reset;
1503                         }
1504                         return 0;
1505                 }
1506         }
1507
1508         TCP_CHECK_TIMER(sk);
1509         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1510                 rsk = sk;
1511                 goto reset;
1512         }
1513         TCP_CHECK_TIMER(sk);
1514         return 0;
1515
1516 reset:
1517         tcp_v4_send_reset(rsk, skb);
1518 discard:
1519         kfree_skb(skb);
1520         /* Be careful here. If this function gets more complicated and
1521          * gcc suffers from register pressure on the x86, sk (in %ebx)
1522          * might be destroyed here. This current version compiles correctly,
1523          * but you have been warned.
1524          */
1525         return 0;
1526
1527 csum_err:
1528         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1529         goto discard;
1530 }
1531
1532 /*
1533  *      From tcp_input.c
1534  */
1535
1536 int tcp_v4_rcv(struct sk_buff *skb)
1537 {
1538         const struct iphdr *iph;
1539         struct tcphdr *th;
1540         struct sock *sk;
1541         int ret;
1542         struct net *net = dev_net(skb->dev);
1543
1544         if (skb->pkt_type != PACKET_HOST)
1545                 goto discard_it;
1546
1547         /* Count it even if it's bad */
1548         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1549
1550         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1551                 goto discard_it;
1552
1553         th = tcp_hdr(skb);
1554
1555         if (th->doff < sizeof(struct tcphdr) / 4)
1556                 goto bad_packet;
1557         if (!pskb_may_pull(skb, th->doff * 4))
1558                 goto discard_it;
1559
1560         /* An explanation is required here, I think.
1561          * Packet length and doff are validated by header prediction,
1562          * provided case of th->doff==0 is eliminated.
1563          * So, we defer the checks. */
1564         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1565                 goto bad_packet;
1566
1567         th = tcp_hdr(skb);
1568         iph = ip_hdr(skb);
1569         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1570         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1571                                     skb->len - th->doff * 4);
1572         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1573         TCP_SKB_CB(skb)->when    = 0;
1574         TCP_SKB_CB(skb)->flags   = iph->tos;
1575         TCP_SKB_CB(skb)->sacked  = 0;
1576
1577         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1578         if (!sk)
1579                 goto no_tcp_socket;
1580
1581 process:
1582         if (sk->sk_state == TCP_TIME_WAIT)
1583                 goto do_time_wait;
1584
1585         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1586                 goto discard_and_relse;
1587         nf_reset(skb);
1588
1589         if (sk_filter(sk, skb))
1590                 goto discard_and_relse;
1591
1592         skb->dev = NULL;
1593
1594         bh_lock_sock_nested(sk);
1595         ret = 0;
1596         if (!sock_owned_by_user(sk)) {
1597 #ifdef CONFIG_NET_DMA
1598                 struct tcp_sock *tp = tcp_sk(sk);
1599                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1600                         tp->ucopy.dma_chan = get_softnet_dma();
1601                 if (tp->ucopy.dma_chan)
1602                         ret = tcp_v4_do_rcv(sk, skb);
1603                 else
1604 #endif
1605                 {
1606                         if (!tcp_prequeue(sk, skb))
1607                         ret = tcp_v4_do_rcv(sk, skb);
1608                 }
1609         } else
1610                 sk_add_backlog(sk, skb);
1611         bh_unlock_sock(sk);
1612
1613         sock_put(sk);
1614
1615         return ret;
1616
1617 no_tcp_socket:
1618         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1619                 goto discard_it;
1620
1621         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1622 bad_packet:
1623                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1624         } else {
1625                 tcp_v4_send_reset(NULL, skb);
1626         }
1627
1628 discard_it:
1629         /* Discard frame. */
1630         kfree_skb(skb);
1631         return 0;
1632
1633 discard_and_relse:
1634         sock_put(sk);
1635         goto discard_it;
1636
1637 do_time_wait:
1638         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1639                 inet_twsk_put(inet_twsk(sk));
1640                 goto discard_it;
1641         }
1642
1643         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1644                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1645                 inet_twsk_put(inet_twsk(sk));
1646                 goto discard_it;
1647         }
1648         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1649         case TCP_TW_SYN: {
1650                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1651                                                         &tcp_hashinfo,
1652                                                         iph->daddr, th->dest,
1653                                                         inet_iif(skb));
1654                 if (sk2) {
1655                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1656                         inet_twsk_put(inet_twsk(sk));
1657                         sk = sk2;
1658                         goto process;
1659                 }
1660                 /* Fall through to ACK */
1661         }
1662         case TCP_TW_ACK:
1663                 tcp_v4_timewait_ack(sk, skb);
1664                 break;
1665         case TCP_TW_RST:
1666                 goto no_tcp_socket;
1667         case TCP_TW_SUCCESS:;
1668         }
1669         goto discard_it;
1670 }
1671
1672 /* VJ's idea. Save last timestamp seen from this destination
1673  * and hold it at least for normal timewait interval to use for duplicate
1674  * segment detection in subsequent connections, before they enter synchronized
1675  * state.
1676  */
1677
1678 int tcp_v4_remember_stamp(struct sock *sk)
1679 {
1680         struct inet_sock *inet = inet_sk(sk);
1681         struct tcp_sock *tp = tcp_sk(sk);
1682         struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1683         struct inet_peer *peer = NULL;
1684         int release_it = 0;
1685
1686         if (!rt || rt->rt_dst != inet->daddr) {
1687                 peer = inet_getpeer(inet->daddr, 1);
1688                 release_it = 1;
1689         } else {
1690                 if (!rt->peer)
1691                         rt_bind_peer(rt, 1);
1692                 peer = rt->peer;
1693         }
1694
1695         if (peer) {
1696                 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1697                     (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1698                      peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1699                         peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1700                         peer->tcp_ts = tp->rx_opt.ts_recent;
1701                 }
1702                 if (release_it)
1703                         inet_putpeer(peer);
1704                 return 1;
1705         }
1706
1707         return 0;
1708 }
1709
1710 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1711 {
1712         struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1713
1714         if (peer) {
1715                 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1716
1717                 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1718                     (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1719                      peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1720                         peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1721                         peer->tcp_ts       = tcptw->tw_ts_recent;
1722                 }
1723                 inet_putpeer(peer);
1724                 return 1;
1725         }
1726
1727         return 0;
1728 }
1729
1730 struct inet_connection_sock_af_ops ipv4_specific = {
1731         .queue_xmit        = ip_queue_xmit,
1732         .send_check        = tcp_v4_send_check,
1733         .rebuild_header    = inet_sk_rebuild_header,
1734         .conn_request      = tcp_v4_conn_request,
1735         .syn_recv_sock     = tcp_v4_syn_recv_sock,
1736         .remember_stamp    = tcp_v4_remember_stamp,
1737         .net_header_len    = sizeof(struct iphdr),
1738         .setsockopt        = ip_setsockopt,
1739         .getsockopt        = ip_getsockopt,
1740         .addr2sockaddr     = inet_csk_addr2sockaddr,
1741         .sockaddr_len      = sizeof(struct sockaddr_in),
1742         .bind_conflict     = inet_csk_bind_conflict,
1743 #ifdef CONFIG_COMPAT
1744         .compat_setsockopt = compat_ip_setsockopt,
1745         .compat_getsockopt = compat_ip_getsockopt,
1746 #endif
1747 };
1748
1749 #ifdef CONFIG_TCP_MD5SIG
1750 static struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1751         .md5_lookup             = tcp_v4_md5_lookup,
1752         .calc_md5_hash          = tcp_v4_md5_hash_skb,
1753         .md5_add                = tcp_v4_md5_add_func,
1754         .md5_parse              = tcp_v4_parse_md5_keys,
1755 };
1756 #endif
1757
1758 /* NOTE: A lot of things set to zero explicitly by call to
1759  *       sk_alloc() so need not be done here.
1760  */
1761 static int tcp_v4_init_sock(struct sock *sk)
1762 {
1763         struct inet_connection_sock *icsk = inet_csk(sk);
1764         struct tcp_sock *tp = tcp_sk(sk);
1765
1766         skb_queue_head_init(&tp->out_of_order_queue);
1767         tcp_init_xmit_timers(sk);
1768         tcp_prequeue_init(tp);
1769
1770         icsk->icsk_rto = TCP_TIMEOUT_INIT;
1771         tp->mdev = TCP_TIMEOUT_INIT;
1772
1773         /* So many TCP implementations out there (incorrectly) count the
1774          * initial SYN frame in their delayed-ACK and congestion control
1775          * algorithms that we must have the following bandaid to talk
1776          * efficiently to them.  -DaveM
1777          */
1778         tp->snd_cwnd = 2;
1779
1780         /* See draft-stevens-tcpca-spec-01 for discussion of the
1781          * initialization of these values.
1782          */
1783         tp->snd_ssthresh = 0x7fffffff;  /* Infinity */
1784         tp->snd_cwnd_clamp = ~0;
1785         tp->mss_cache = 536;
1786
1787         tp->reordering = sysctl_tcp_reordering;
1788         icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1789
1790         sk->sk_state = TCP_CLOSE;
1791
1792         sk->sk_write_space = sk_stream_write_space;
1793         sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1794
1795         icsk->icsk_af_ops = &ipv4_specific;
1796         icsk->icsk_sync_mss = tcp_sync_mss;
1797 #ifdef CONFIG_TCP_MD5SIG
1798         tp->af_specific = &tcp_sock_ipv4_specific;
1799 #endif
1800
1801         sk->sk_sndbuf = sysctl_tcp_wmem[1];
1802         sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1803
1804         atomic_inc(&tcp_sockets_allocated);
1805
1806         return 0;
1807 }
1808
1809 void tcp_v4_destroy_sock(struct sock *sk)
1810 {
1811         struct tcp_sock *tp = tcp_sk(sk);
1812
1813         tcp_clear_xmit_timers(sk);
1814
1815         tcp_cleanup_congestion_control(sk);
1816
1817         /* Cleanup up the write buffer. */
1818         tcp_write_queue_purge(sk);
1819
1820         /* Cleans up our, hopefully empty, out_of_order_queue. */
1821         __skb_queue_purge(&tp->out_of_order_queue);
1822
1823 #ifdef CONFIG_TCP_MD5SIG
1824         /* Clean up the MD5 key list, if any */
1825         if (tp->md5sig_info) {
1826                 tcp_v4_clear_md5_list(sk);
1827                 kfree(tp->md5sig_info);
1828                 tp->md5sig_info = NULL;
1829         }
1830 #endif
1831
1832 #ifdef CONFIG_NET_DMA
1833         /* Cleans up our sk_async_wait_queue */
1834         __skb_queue_purge(&sk->sk_async_wait_queue);
1835 #endif
1836
1837         /* Clean prequeue, it must be empty really */
1838         __skb_queue_purge(&tp->ucopy.prequeue);
1839
1840         /* Clean up a referenced TCP bind bucket. */
1841         if (inet_csk(sk)->icsk_bind_hash)
1842                 inet_put_port(sk);
1843
1844         /*
1845          * If sendmsg cached page exists, toss it.
1846          */
1847         if (sk->sk_sndmsg_page) {
1848                 __free_page(sk->sk_sndmsg_page);
1849                 sk->sk_sndmsg_page = NULL;
1850         }
1851
1852         atomic_dec(&tcp_sockets_allocated);
1853 }
1854
1855 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1856
1857 #ifdef CONFIG_PROC_FS
1858 /* Proc filesystem TCP sock list dumping. */
1859
1860 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1861 {
1862         return hlist_nulls_empty(head) ? NULL :
1863                 list_entry(head->first, struct inet_timewait_sock, tw_node);
1864 }
1865
1866 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1867 {
1868         return !is_a_nulls(tw->tw_node.next) ?
1869                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1870 }
1871
1872 static void *listening_get_next(struct seq_file *seq, void *cur)
1873 {
1874         struct inet_connection_sock *icsk;
1875         struct hlist_node *node;
1876         struct sock *sk = cur;
1877         struct tcp_iter_state *st = seq->private;
1878         struct net *net = seq_file_net(seq);
1879
1880         if (!sk) {
1881                 st->bucket = 0;
1882                 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1883                 goto get_sk;
1884         }
1885
1886         ++st->num;
1887
1888         if (st->state == TCP_SEQ_STATE_OPENREQ) {
1889                 struct request_sock *req = cur;
1890
1891                 icsk = inet_csk(st->syn_wait_sk);
1892                 req = req->dl_next;
1893                 while (1) {
1894                         while (req) {
1895                                 if (req->rsk_ops->family == st->family) {
1896                                         cur = req;
1897                                         goto out;
1898                                 }
1899                                 req = req->dl_next;
1900                         }
1901                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1902                                 break;
1903 get_req:
1904                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1905                 }
1906                 sk        = sk_next(st->syn_wait_sk);
1907                 st->state = TCP_SEQ_STATE_LISTENING;
1908                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1909         } else {
1910                 icsk = inet_csk(sk);
1911                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1912                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1913                         goto start_req;
1914                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1915                 sk = sk_next(sk);
1916         }
1917 get_sk:
1918         sk_for_each_from(sk, node) {
1919                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
1920                         cur = sk;
1921                         goto out;
1922                 }
1923                 icsk = inet_csk(sk);
1924                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1925                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1926 start_req:
1927                         st->uid         = sock_i_uid(sk);
1928                         st->syn_wait_sk = sk;
1929                         st->state       = TCP_SEQ_STATE_OPENREQ;
1930                         st->sbucket     = 0;
1931                         goto get_req;
1932                 }
1933                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1934         }
1935         if (++st->bucket < INET_LHTABLE_SIZE) {
1936                 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1937                 goto get_sk;
1938         }
1939         cur = NULL;
1940 out:
1941         return cur;
1942 }
1943
1944 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1945 {
1946         void *rc = listening_get_next(seq, NULL);
1947
1948         while (rc && *pos) {
1949                 rc = listening_get_next(seq, rc);
1950                 --*pos;
1951         }
1952         return rc;
1953 }
1954
1955 static inline int empty_bucket(struct tcp_iter_state *st)
1956 {
1957         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
1958                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
1959 }
1960
1961 static void *established_get_first(struct seq_file *seq)
1962 {
1963         struct tcp_iter_state *st = seq->private;
1964         struct net *net = seq_file_net(seq);
1965         void *rc = NULL;
1966
1967         for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1968                 struct sock *sk;
1969                 struct hlist_nulls_node *node;
1970                 struct inet_timewait_sock *tw;
1971                 rwlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1972
1973                 /* Lockless fast path for the common case of empty buckets */
1974                 if (empty_bucket(st))
1975                         continue;
1976
1977                 read_lock_bh(lock);
1978                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1979                         if (sk->sk_family != st->family ||
1980                             !net_eq(sock_net(sk), net)) {
1981                                 continue;
1982                         }
1983                         rc = sk;
1984                         goto out;
1985                 }
1986                 st->state = TCP_SEQ_STATE_TIME_WAIT;
1987                 inet_twsk_for_each(tw, node,
1988                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
1989                         if (tw->tw_family != st->family ||
1990                             !net_eq(twsk_net(tw), net)) {
1991                                 continue;
1992                         }
1993                         rc = tw;
1994                         goto out;
1995                 }
1996                 read_unlock_bh(lock);
1997                 st->state = TCP_SEQ_STATE_ESTABLISHED;
1998         }
1999 out:
2000         return rc;
2001 }
2002
2003 static void *established_get_next(struct seq_file *seq, void *cur)
2004 {
2005         struct sock *sk = cur;
2006         struct inet_timewait_sock *tw;
2007         struct hlist_nulls_node *node;
2008         struct tcp_iter_state *st = seq->private;
2009         struct net *net = seq_file_net(seq);
2010
2011         ++st->num;
2012
2013         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2014                 tw = cur;
2015                 tw = tw_next(tw);
2016 get_tw:
2017                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2018                         tw = tw_next(tw);
2019                 }
2020                 if (tw) {
2021                         cur = tw;
2022                         goto out;
2023                 }
2024                 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2025                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2026
2027                 /* Look for next non empty bucket */
2028                 while (++st->bucket < tcp_hashinfo.ehash_size &&
2029                                 empty_bucket(st))
2030                         ;
2031                 if (st->bucket >= tcp_hashinfo.ehash_size)
2032                         return NULL;
2033
2034                 read_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2035                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2036         } else
2037                 sk = sk_nulls_next(sk);
2038
2039         sk_nulls_for_each_from(sk, node) {
2040                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2041                         goto found;
2042         }
2043
2044         st->state = TCP_SEQ_STATE_TIME_WAIT;
2045         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2046         goto get_tw;
2047 found:
2048         cur = sk;
2049 out:
2050         return cur;
2051 }
2052
2053 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2054 {
2055         void *rc = established_get_first(seq);
2056
2057         while (rc && pos) {
2058                 rc = established_get_next(seq, rc);
2059                 --pos;
2060         }
2061         return rc;
2062 }
2063
2064 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2065 {
2066         void *rc;
2067         struct tcp_iter_state *st = seq->private;
2068
2069         inet_listen_lock(&tcp_hashinfo);
2070         st->state = TCP_SEQ_STATE_LISTENING;
2071         rc        = listening_get_idx(seq, &pos);
2072
2073         if (!rc) {
2074                 inet_listen_unlock(&tcp_hashinfo);
2075                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2076                 rc        = established_get_idx(seq, pos);
2077         }
2078
2079         return rc;
2080 }
2081
2082 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2083 {
2084         struct tcp_iter_state *st = seq->private;
2085         st->state = TCP_SEQ_STATE_LISTENING;
2086         st->num = 0;
2087         return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2088 }
2089
2090 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2091 {
2092         void *rc = NULL;
2093         struct tcp_iter_state *st;
2094
2095         if (v == SEQ_START_TOKEN) {
2096                 rc = tcp_get_idx(seq, 0);
2097                 goto out;
2098         }
2099         st = seq->private;
2100
2101         switch (st->state) {
2102         case TCP_SEQ_STATE_OPENREQ:
2103         case TCP_SEQ_STATE_LISTENING:
2104                 rc = listening_get_next(seq, v);
2105                 if (!rc) {
2106                         inet_listen_unlock(&tcp_hashinfo);
2107                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2108                         rc        = established_get_first(seq);
2109                 }
2110                 break;
2111         case TCP_SEQ_STATE_ESTABLISHED:
2112         case TCP_SEQ_STATE_TIME_WAIT:
2113                 rc = established_get_next(seq, v);
2114                 break;
2115         }
2116 out:
2117         ++*pos;
2118         return rc;
2119 }
2120
2121 static void tcp_seq_stop(struct seq_file *seq, void *v)
2122 {
2123         struct tcp_iter_state *st = seq->private;
2124
2125         switch (st->state) {
2126         case TCP_SEQ_STATE_OPENREQ:
2127                 if (v) {
2128                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2129                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2130                 }
2131         case TCP_SEQ_STATE_LISTENING:
2132                 if (v != SEQ_START_TOKEN)
2133                         inet_listen_unlock(&tcp_hashinfo);
2134                 break;
2135         case TCP_SEQ_STATE_TIME_WAIT:
2136         case TCP_SEQ_STATE_ESTABLISHED:
2137                 if (v)
2138                         read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2139                 break;
2140         }
2141 }
2142
2143 static int tcp_seq_open(struct inode *inode, struct file *file)
2144 {
2145         struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2146         struct tcp_iter_state *s;
2147         int err;
2148
2149         err = seq_open_net(inode, file, &afinfo->seq_ops,
2150                           sizeof(struct tcp_iter_state));
2151         if (err < 0)
2152                 return err;
2153
2154         s = ((struct seq_file *)file->private_data)->private;
2155         s->family               = afinfo->family;
2156         return 0;
2157 }
2158
2159 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2160 {
2161         int rc = 0;
2162         struct proc_dir_entry *p;
2163
2164         afinfo->seq_fops.open           = tcp_seq_open;
2165         afinfo->seq_fops.read           = seq_read;
2166         afinfo->seq_fops.llseek         = seq_lseek;
2167         afinfo->seq_fops.release        = seq_release_net;
2168
2169         afinfo->seq_ops.start           = tcp_seq_start;
2170         afinfo->seq_ops.next            = tcp_seq_next;
2171         afinfo->seq_ops.stop            = tcp_seq_stop;
2172
2173         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2174                              &afinfo->seq_fops, afinfo);
2175         if (!p)
2176                 rc = -ENOMEM;
2177         return rc;
2178 }
2179
2180 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2181 {
2182         proc_net_remove(net, afinfo->name);
2183 }
2184
2185 static void get_openreq4(struct sock *sk, struct request_sock *req,
2186                          struct seq_file *f, int i, int uid, int *len)
2187 {
2188         const struct inet_request_sock *ireq = inet_rsk(req);
2189         int ttd = req->expires - jiffies;
2190
2191         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2192                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2193                 i,
2194                 ireq->loc_addr,
2195                 ntohs(inet_sk(sk)->sport),
2196                 ireq->rmt_addr,
2197                 ntohs(ireq->rmt_port),
2198                 TCP_SYN_RECV,
2199                 0, 0, /* could print option size, but that is af dependent. */
2200                 1,    /* timers active (only the expire timer) */
2201                 jiffies_to_clock_t(ttd),
2202                 req->retrans,
2203                 uid,
2204                 0,  /* non standard timer */
2205                 0, /* open_requests have no inode */
2206                 atomic_read(&sk->sk_refcnt),
2207                 req,
2208                 len);
2209 }
2210
2211 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2212 {
2213         int timer_active;
2214         unsigned long timer_expires;
2215         struct tcp_sock *tp = tcp_sk(sk);
2216         const struct inet_connection_sock *icsk = inet_csk(sk);
2217         struct inet_sock *inet = inet_sk(sk);
2218         __be32 dest = inet->daddr;
2219         __be32 src = inet->rcv_saddr;
2220         __u16 destp = ntohs(inet->dport);
2221         __u16 srcp = ntohs(inet->sport);
2222
2223         if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2224                 timer_active    = 1;
2225                 timer_expires   = icsk->icsk_timeout;
2226         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2227                 timer_active    = 4;
2228                 timer_expires   = icsk->icsk_timeout;
2229         } else if (timer_pending(&sk->sk_timer)) {
2230                 timer_active    = 2;
2231                 timer_expires   = sk->sk_timer.expires;
2232         } else {
2233                 timer_active    = 0;
2234                 timer_expires = jiffies;
2235         }
2236
2237         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2238                         "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2239                 i, src, srcp, dest, destp, sk->sk_state,
2240                 tp->write_seq - tp->snd_una,
2241                 sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog :
2242                                              (tp->rcv_nxt - tp->copied_seq),
2243                 timer_active,
2244                 jiffies_to_clock_t(timer_expires - jiffies),
2245                 icsk->icsk_retransmits,
2246                 sock_i_uid(sk),
2247                 icsk->icsk_probes_out,
2248                 sock_i_ino(sk),
2249                 atomic_read(&sk->sk_refcnt), sk,
2250                 jiffies_to_clock_t(icsk->icsk_rto),
2251                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2252                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2253                 tp->snd_cwnd,
2254                 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh,
2255                 len);
2256 }
2257
2258 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2259                                struct seq_file *f, int i, int *len)
2260 {
2261         __be32 dest, src;
2262         __u16 destp, srcp;
2263         int ttd = tw->tw_ttd - jiffies;
2264
2265         if (ttd < 0)
2266                 ttd = 0;
2267
2268         dest  = tw->tw_daddr;
2269         src   = tw->tw_rcv_saddr;
2270         destp = ntohs(tw->tw_dport);
2271         srcp  = ntohs(tw->tw_sport);
2272
2273         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2274                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2275                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2276                 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2277                 atomic_read(&tw->tw_refcnt), tw, len);
2278 }
2279
2280 #define TMPSZ 150
2281
2282 static int tcp4_seq_show(struct seq_file *seq, void *v)
2283 {
2284         struct tcp_iter_state *st;
2285         int len;
2286
2287         if (v == SEQ_START_TOKEN) {
2288                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2289                            "  sl  local_address rem_address   st tx_queue "
2290                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2291                            "inode");
2292                 goto out;
2293         }
2294         st = seq->private;
2295
2296         switch (st->state) {
2297         case TCP_SEQ_STATE_LISTENING:
2298         case TCP_SEQ_STATE_ESTABLISHED:
2299                 get_tcp4_sock(v, seq, st->num, &len);
2300                 break;
2301         case TCP_SEQ_STATE_OPENREQ:
2302                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2303                 break;
2304         case TCP_SEQ_STATE_TIME_WAIT:
2305                 get_timewait4_sock(v, seq, st->num, &len);
2306                 break;
2307         }
2308         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2309 out:
2310         return 0;
2311 }
2312
2313 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2314         .name           = "tcp",
2315         .family         = AF_INET,
2316         .seq_fops       = {
2317                 .owner          = THIS_MODULE,
2318         },
2319         .seq_ops        = {
2320                 .show           = tcp4_seq_show,
2321         },
2322 };
2323
2324 static int tcp4_proc_init_net(struct net *net)
2325 {
2326         return tcp_proc_register(net, &tcp4_seq_afinfo);
2327 }
2328
2329 static void tcp4_proc_exit_net(struct net *net)
2330 {
2331         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2332 }
2333
2334 static struct pernet_operations tcp4_net_ops = {
2335         .init = tcp4_proc_init_net,
2336         .exit = tcp4_proc_exit_net,
2337 };
2338
2339 int __init tcp4_proc_init(void)
2340 {
2341         return register_pernet_subsys(&tcp4_net_ops);
2342 }
2343
2344 void tcp4_proc_exit(void)
2345 {
2346         unregister_pernet_subsys(&tcp4_net_ops);
2347 }
2348 #endif /* CONFIG_PROC_FS */
2349
2350 struct proto tcp_prot = {
2351         .name                   = "TCP",
2352         .owner                  = THIS_MODULE,
2353         .close                  = tcp_close,
2354         .connect                = tcp_v4_connect,
2355         .disconnect             = tcp_disconnect,
2356         .accept                 = inet_csk_accept,
2357         .ioctl                  = tcp_ioctl,
2358         .init                   = tcp_v4_init_sock,
2359         .destroy                = tcp_v4_destroy_sock,
2360         .shutdown               = tcp_shutdown,
2361         .setsockopt             = tcp_setsockopt,
2362         .getsockopt             = tcp_getsockopt,
2363         .recvmsg                = tcp_recvmsg,
2364         .backlog_rcv            = tcp_v4_do_rcv,
2365         .hash                   = inet_hash,
2366         .unhash                 = inet_unhash,
2367         .get_port               = inet_csk_get_port,
2368         .enter_memory_pressure  = tcp_enter_memory_pressure,
2369         .sockets_allocated      = &tcp_sockets_allocated,
2370         .orphan_count           = &tcp_orphan_count,
2371         .memory_allocated       = &tcp_memory_allocated,
2372         .memory_pressure        = &tcp_memory_pressure,
2373         .sysctl_mem             = sysctl_tcp_mem,
2374         .sysctl_wmem            = sysctl_tcp_wmem,
2375         .sysctl_rmem            = sysctl_tcp_rmem,
2376         .max_header             = MAX_TCP_HEADER,
2377         .obj_size               = sizeof(struct tcp_sock),
2378         .slab_flags             = SLAB_DESTROY_BY_RCU,
2379         .twsk_prot              = &tcp_timewait_sock_ops,
2380         .rsk_prot               = &tcp_request_sock_ops,
2381         .h.hashinfo             = &tcp_hashinfo,
2382 #ifdef CONFIG_COMPAT
2383         .compat_setsockopt      = compat_tcp_setsockopt,
2384         .compat_getsockopt      = compat_tcp_getsockopt,
2385 #endif
2386 };
2387
2388
2389 static int __net_init tcp_sk_init(struct net *net)
2390 {
2391         return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2392                                     PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2393 }
2394
2395 static void __net_exit tcp_sk_exit(struct net *net)
2396 {
2397         inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2398         inet_twsk_purge(net, &tcp_hashinfo, &tcp_death_row, AF_INET);
2399 }
2400
2401 static struct pernet_operations __net_initdata tcp_sk_ops = {
2402        .init = tcp_sk_init,
2403        .exit = tcp_sk_exit,
2404 };
2405
2406 void __init tcp_v4_init(void)
2407 {
2408         if (register_pernet_device(&tcp_sk_ops))
2409                 panic("Failed to create the TCP control socket.\n");
2410 }
2411
2412 EXPORT_SYMBOL(ipv4_specific);
2413 EXPORT_SYMBOL(tcp_hashinfo);
2414 EXPORT_SYMBOL(tcp_prot);
2415 EXPORT_SYMBOL(tcp_v4_conn_request);
2416 EXPORT_SYMBOL(tcp_v4_connect);
2417 EXPORT_SYMBOL(tcp_v4_do_rcv);
2418 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2419 EXPORT_SYMBOL(tcp_v4_send_check);
2420 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2421
2422 #ifdef CONFIG_PROC_FS
2423 EXPORT_SYMBOL(tcp_proc_register);
2424 EXPORT_SYMBOL(tcp_proc_unregister);
2425 #endif
2426 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2427