firewire: ohci: add MSI support
[linux-flexiantxendom0-natty.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
44
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
48
49 #include "core.h"
50 #include "ohci.h"
51
52 #define DESCRIPTOR_OUTPUT_MORE          0
53 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
56 #define DESCRIPTOR_STATUS               (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
58 #define DESCRIPTOR_PING                 (1 << 7)
59 #define DESCRIPTOR_YY                   (1 << 6)
60 #define DESCRIPTOR_NO_IRQ               (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
64 #define DESCRIPTOR_WAIT                 (3 << 0)
65
66 struct descriptor {
67         __le16 req_count;
68         __le16 control;
69         __le32 data_address;
70         __le32 branch_address;
71         __le16 res_count;
72         __le16 transfer_status;
73 } __attribute__((aligned(16)));
74
75 #define CONTROL_SET(regs)       (regs)
76 #define CONTROL_CLEAR(regs)     ((regs) + 4)
77 #define COMMAND_PTR(regs)       ((regs) + 12)
78 #define CONTEXT_MATCH(regs)     ((regs) + 16)
79
80 struct ar_buffer {
81         struct descriptor descriptor;
82         struct ar_buffer *next;
83         __le32 data[0];
84 };
85
86 struct ar_context {
87         struct fw_ohci *ohci;
88         struct ar_buffer *current_buffer;
89         struct ar_buffer *last_buffer;
90         void *pointer;
91         u32 regs;
92         struct tasklet_struct tasklet;
93 };
94
95 struct context;
96
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98                                      struct descriptor *d,
99                                      struct descriptor *last);
100
101 /*
102  * A buffer that contains a block of DMA-able coherent memory used for
103  * storing a portion of a DMA descriptor program.
104  */
105 struct descriptor_buffer {
106         struct list_head list;
107         dma_addr_t buffer_bus;
108         size_t buffer_size;
109         size_t used;
110         struct descriptor buffer[0];
111 };
112
113 struct context {
114         struct fw_ohci *ohci;
115         u32 regs;
116         int total_allocation;
117
118         /*
119          * List of page-sized buffers for storing DMA descriptors.
120          * Head of list contains buffers in use and tail of list contains
121          * free buffers.
122          */
123         struct list_head buffer_list;
124
125         /*
126          * Pointer to a buffer inside buffer_list that contains the tail
127          * end of the current DMA program.
128          */
129         struct descriptor_buffer *buffer_tail;
130
131         /*
132          * The descriptor containing the branch address of the first
133          * descriptor that has not yet been filled by the device.
134          */
135         struct descriptor *last;
136
137         /*
138          * The last descriptor in the DMA program.  It contains the branch
139          * address that must be updated upon appending a new descriptor.
140          */
141         struct descriptor *prev;
142
143         descriptor_callback_t callback;
144
145         struct tasklet_struct tasklet;
146 };
147
148 #define IT_HEADER_SY(v)          ((v) <<  0)
149 #define IT_HEADER_TCODE(v)       ((v) <<  4)
150 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
151 #define IT_HEADER_TAG(v)         ((v) << 14)
152 #define IT_HEADER_SPEED(v)       ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154
155 struct iso_context {
156         struct fw_iso_context base;
157         struct context context;
158         int excess_bytes;
159         void *header;
160         size_t header_length;
161 };
162
163 #define CONFIG_ROM_SIZE 1024
164
165 struct fw_ohci {
166         struct fw_card card;
167
168         __iomem char *registers;
169         int node_id;
170         int generation;
171         int request_generation; /* for timestamping incoming requests */
172         unsigned quirks;
173
174         /*
175          * Spinlock for accessing fw_ohci data.  Never call out of
176          * this driver with this lock held.
177          */
178         spinlock_t lock;
179
180         struct ar_context ar_request_ctx;
181         struct ar_context ar_response_ctx;
182         struct context at_request_ctx;
183         struct context at_response_ctx;
184
185         u32 it_context_mask;
186         struct iso_context *it_context_list;
187         u64 ir_context_channels;
188         u32 ir_context_mask;
189         struct iso_context *ir_context_list;
190
191         __be32    *config_rom;
192         dma_addr_t config_rom_bus;
193         __be32    *next_config_rom;
194         dma_addr_t next_config_rom_bus;
195         __be32     next_header;
196
197         __le32    *self_id_cpu;
198         dma_addr_t self_id_bus;
199         struct tasklet_struct bus_reset_tasklet;
200
201         u32 self_id_buffer[512];
202 };
203
204 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 {
206         return container_of(card, struct fw_ohci, card);
207 }
208
209 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
210 #define IR_CONTEXT_BUFFER_FILL          0x80000000
211 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
212 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
213 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
214 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
215
216 #define CONTEXT_RUN     0x8000
217 #define CONTEXT_WAKE    0x1000
218 #define CONTEXT_DEAD    0x0800
219 #define CONTEXT_ACTIVE  0x0400
220
221 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
222 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
223 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
224
225 #define OHCI1394_REGISTER_SIZE          0x800
226 #define OHCI_LOOP_COUNT                 500
227 #define OHCI1394_PCI_HCI_Control        0x40
228 #define SELF_ID_BUF_SIZE                0x800
229 #define OHCI_TCODE_PHY_PACKET           0x0e
230 #define OHCI_VERSION_1_1                0x010010
231
232 static char ohci_driver_name[] = KBUILD_MODNAME;
233
234 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
235 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
236
237 #define QUIRK_CYCLE_TIMER               1
238 #define QUIRK_RESET_PACKET              2
239 #define QUIRK_BE_HEADERS                4
240 #define QUIRK_NO_1394A                  8
241 #define QUIRK_NO_MSI                    16
242
243 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
244 static const struct {
245         unsigned short vendor, device, flags;
246 } ohci_quirks[] = {
247         {PCI_VENDOR_ID_TI,      PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
248                                                             QUIRK_RESET_PACKET |
249                                                             QUIRK_NO_1394A},
250         {PCI_VENDOR_ID_TI,      PCI_ANY_ID,     QUIRK_RESET_PACKET},
251         {PCI_VENDOR_ID_AL,      PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
252         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
253         {PCI_VENDOR_ID_NEC,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
254         {PCI_VENDOR_ID_VIA,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
255         {PCI_VENDOR_ID_APPLE,   PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
256 };
257
258 /* This overrides anything that was found in ohci_quirks[]. */
259 static int param_quirks;
260 module_param_named(quirks, param_quirks, int, 0644);
261 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
262         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
263         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
264         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
265         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
266         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
267         ")");
268
269 #define OHCI_PARAM_DEBUG_AT_AR          1
270 #define OHCI_PARAM_DEBUG_SELFIDS        2
271 #define OHCI_PARAM_DEBUG_IRQS           4
272 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
273
274 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
275
276 static int param_debug;
277 module_param_named(debug, param_debug, int, 0644);
278 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
279         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
280         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
281         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
282         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
283         ", or a combination, or all = -1)");
284
285 static void log_irqs(u32 evt)
286 {
287         if (likely(!(param_debug &
288                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
289                 return;
290
291         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
292             !(evt & OHCI1394_busReset))
293                 return;
294
295         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
296             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
297             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
298             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
299             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
300             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
301             evt & OHCI1394_isochRx              ? " IR"                 : "",
302             evt & OHCI1394_isochTx              ? " IT"                 : "",
303             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
304             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
305             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
306             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
307             evt & OHCI1394_busReset             ? " busReset"           : "",
308             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
309                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
310                     OHCI1394_respTxComplete | OHCI1394_isochRx |
311                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
312                     OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
313                     OHCI1394_regAccessFail | OHCI1394_busReset)
314                                                 ? " ?"                  : "");
315 }
316
317 static const char *speed[] = {
318         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
319 };
320 static const char *power[] = {
321         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
322         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
323 };
324 static const char port[] = { '.', '-', 'p', 'c', };
325
326 static char _p(u32 *s, int shift)
327 {
328         return port[*s >> shift & 3];
329 }
330
331 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
332 {
333         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
334                 return;
335
336         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
337                   self_id_count, generation, node_id);
338
339         for (; self_id_count--; ++s)
340                 if ((*s & 1 << 23) == 0)
341                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
342                             "%s gc=%d %s %s%s%s\n",
343                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
344                             speed[*s >> 14 & 3], *s >> 16 & 63,
345                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
346                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
347                 else
348                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
349                             *s, *s >> 24 & 63,
350                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
351                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
352 }
353
354 static const char *evts[] = {
355         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
356         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
357         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
358         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
359         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
360         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
361         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
362         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
363         [0x10] = "-reserved-",          [0x11] = "ack_complete",
364         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
365         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
366         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
367         [0x18] = "-reserved-",          [0x19] = "-reserved-",
368         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
369         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
370         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
371         [0x20] = "pending/cancelled",
372 };
373 static const char *tcodes[] = {
374         [0x0] = "QW req",               [0x1] = "BW req",
375         [0x2] = "W resp",               [0x3] = "-reserved-",
376         [0x4] = "QR req",               [0x5] = "BR req",
377         [0x6] = "QR resp",              [0x7] = "BR resp",
378         [0x8] = "cycle start",          [0x9] = "Lk req",
379         [0xa] = "async stream packet",  [0xb] = "Lk resp",
380         [0xc] = "-reserved-",           [0xd] = "-reserved-",
381         [0xe] = "link internal",        [0xf] = "-reserved-",
382 };
383 static const char *phys[] = {
384         [0x0] = "phy config packet",    [0x1] = "link-on packet",
385         [0x2] = "self-id packet",       [0x3] = "-reserved-",
386 };
387
388 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
389 {
390         int tcode = header[0] >> 4 & 0xf;
391         char specific[12];
392
393         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
394                 return;
395
396         if (unlikely(evt >= ARRAY_SIZE(evts)))
397                         evt = 0x1f;
398
399         if (evt == OHCI1394_evt_bus_reset) {
400                 fw_notify("A%c evt_bus_reset, generation %d\n",
401                     dir, (header[2] >> 16) & 0xff);
402                 return;
403         }
404
405         if (header[0] == ~header[1]) {
406                 fw_notify("A%c %s, %s, %08x\n",
407                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
408                 return;
409         }
410
411         switch (tcode) {
412         case 0x0: case 0x6: case 0x8:
413                 snprintf(specific, sizeof(specific), " = %08x",
414                          be32_to_cpu((__force __be32)header[3]));
415                 break;
416         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
417                 snprintf(specific, sizeof(specific), " %x,%x",
418                          header[3] >> 16, header[3] & 0xffff);
419                 break;
420         default:
421                 specific[0] = '\0';
422         }
423
424         switch (tcode) {
425         case 0xe: case 0xa:
426                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
427                 break;
428         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
429                 fw_notify("A%c spd %x tl %02x, "
430                     "%04x -> %04x, %s, "
431                     "%s, %04x%08x%s\n",
432                     dir, speed, header[0] >> 10 & 0x3f,
433                     header[1] >> 16, header[0] >> 16, evts[evt],
434                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
435                 break;
436         default:
437                 fw_notify("A%c spd %x tl %02x, "
438                     "%04x -> %04x, %s, "
439                     "%s%s\n",
440                     dir, speed, header[0] >> 10 & 0x3f,
441                     header[1] >> 16, header[0] >> 16, evts[evt],
442                     tcodes[tcode], specific);
443         }
444 }
445
446 #else
447
448 #define param_debug 0
449 static inline void log_irqs(u32 evt) {}
450 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
451 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
452
453 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
454
455 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
456 {
457         writel(data, ohci->registers + offset);
458 }
459
460 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
461 {
462         return readl(ohci->registers + offset);
463 }
464
465 static inline void flush_writes(const struct fw_ohci *ohci)
466 {
467         /* Do a dummy read to flush writes. */
468         reg_read(ohci, OHCI1394_Version);
469 }
470
471 static int read_phy_reg(struct fw_ohci *ohci, int addr)
472 {
473         u32 val;
474         int i;
475
476         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
477         for (i = 0; i < 10; i++) {
478                 val = reg_read(ohci, OHCI1394_PhyControl);
479                 if (val & OHCI1394_PhyControl_ReadDone)
480                         return OHCI1394_PhyControl_ReadData(val);
481
482                 msleep(1);
483         }
484         fw_error("failed to read phy reg\n");
485
486         return -EBUSY;
487 }
488
489 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
490 {
491         int i;
492
493         reg_write(ohci, OHCI1394_PhyControl,
494                   OHCI1394_PhyControl_Write(addr, val));
495         for (i = 0; i < 100; i++) {
496                 val = reg_read(ohci, OHCI1394_PhyControl);
497                 if (!(val & OHCI1394_PhyControl_WritePending))
498                         return 0;
499
500                 msleep(1);
501         }
502         fw_error("failed to write phy reg\n");
503
504         return -EBUSY;
505 }
506
507 static int ohci_update_phy_reg(struct fw_card *card, int addr,
508                                int clear_bits, int set_bits)
509 {
510         struct fw_ohci *ohci = fw_ohci(card);
511         int ret;
512
513         ret = read_phy_reg(ohci, addr);
514         if (ret < 0)
515                 return ret;
516
517         /*
518          * The interrupt status bits are cleared by writing a one bit.
519          * Avoid clearing them unless explicitly requested in set_bits.
520          */
521         if (addr == 5)
522                 clear_bits |= PHY_INT_STATUS_BITS;
523
524         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
525 }
526
527 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
528 {
529         int ret;
530
531         ret = ohci_update_phy_reg(&ohci->card, 7, PHY_PAGE_SELECT, page << 5);
532         if (ret < 0)
533                 return ret;
534
535         return read_phy_reg(ohci, addr);
536 }
537
538 static int ar_context_add_page(struct ar_context *ctx)
539 {
540         struct device *dev = ctx->ohci->card.device;
541         struct ar_buffer *ab;
542         dma_addr_t uninitialized_var(ab_bus);
543         size_t offset;
544
545         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
546         if (ab == NULL)
547                 return -ENOMEM;
548
549         ab->next = NULL;
550         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
551         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
552                                                     DESCRIPTOR_STATUS |
553                                                     DESCRIPTOR_BRANCH_ALWAYS);
554         offset = offsetof(struct ar_buffer, data);
555         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
556         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
557         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
558         ab->descriptor.branch_address = 0;
559
560         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
561         ctx->last_buffer->next = ab;
562         ctx->last_buffer = ab;
563
564         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
565         flush_writes(ctx->ohci);
566
567         return 0;
568 }
569
570 static void ar_context_release(struct ar_context *ctx)
571 {
572         struct ar_buffer *ab, *ab_next;
573         size_t offset;
574         dma_addr_t ab_bus;
575
576         for (ab = ctx->current_buffer; ab; ab = ab_next) {
577                 ab_next = ab->next;
578                 offset = offsetof(struct ar_buffer, data);
579                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
580                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
581                                   ab, ab_bus);
582         }
583 }
584
585 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
586 #define cond_le32_to_cpu(v) \
587         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
588 #else
589 #define cond_le32_to_cpu(v) le32_to_cpu(v)
590 #endif
591
592 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
593 {
594         struct fw_ohci *ohci = ctx->ohci;
595         struct fw_packet p;
596         u32 status, length, tcode;
597         int evt;
598
599         p.header[0] = cond_le32_to_cpu(buffer[0]);
600         p.header[1] = cond_le32_to_cpu(buffer[1]);
601         p.header[2] = cond_le32_to_cpu(buffer[2]);
602
603         tcode = (p.header[0] >> 4) & 0x0f;
604         switch (tcode) {
605         case TCODE_WRITE_QUADLET_REQUEST:
606         case TCODE_READ_QUADLET_RESPONSE:
607                 p.header[3] = (__force __u32) buffer[3];
608                 p.header_length = 16;
609                 p.payload_length = 0;
610                 break;
611
612         case TCODE_READ_BLOCK_REQUEST :
613                 p.header[3] = cond_le32_to_cpu(buffer[3]);
614                 p.header_length = 16;
615                 p.payload_length = 0;
616                 break;
617
618         case TCODE_WRITE_BLOCK_REQUEST:
619         case TCODE_READ_BLOCK_RESPONSE:
620         case TCODE_LOCK_REQUEST:
621         case TCODE_LOCK_RESPONSE:
622                 p.header[3] = cond_le32_to_cpu(buffer[3]);
623                 p.header_length = 16;
624                 p.payload_length = p.header[3] >> 16;
625                 break;
626
627         case TCODE_WRITE_RESPONSE:
628         case TCODE_READ_QUADLET_REQUEST:
629         case OHCI_TCODE_PHY_PACKET:
630                 p.header_length = 12;
631                 p.payload_length = 0;
632                 break;
633
634         default:
635                 /* FIXME: Stop context, discard everything, and restart? */
636                 p.header_length = 0;
637                 p.payload_length = 0;
638         }
639
640         p.payload = (void *) buffer + p.header_length;
641
642         /* FIXME: What to do about evt_* errors? */
643         length = (p.header_length + p.payload_length + 3) / 4;
644         status = cond_le32_to_cpu(buffer[length]);
645         evt    = (status >> 16) & 0x1f;
646
647         p.ack        = evt - 16;
648         p.speed      = (status >> 21) & 0x7;
649         p.timestamp  = status & 0xffff;
650         p.generation = ohci->request_generation;
651
652         log_ar_at_event('R', p.speed, p.header, evt);
653
654         /*
655          * The OHCI bus reset handler synthesizes a phy packet with
656          * the new generation number when a bus reset happens (see
657          * section 8.4.2.3).  This helps us determine when a request
658          * was received and make sure we send the response in the same
659          * generation.  We only need this for requests; for responses
660          * we use the unique tlabel for finding the matching
661          * request.
662          *
663          * Alas some chips sometimes emit bus reset packets with a
664          * wrong generation.  We set the correct generation for these
665          * at a slightly incorrect time (in bus_reset_tasklet).
666          */
667         if (evt == OHCI1394_evt_bus_reset) {
668                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
669                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
670         } else if (ctx == &ohci->ar_request_ctx) {
671                 fw_core_handle_request(&ohci->card, &p);
672         } else {
673                 fw_core_handle_response(&ohci->card, &p);
674         }
675
676         return buffer + length + 1;
677 }
678
679 static void ar_context_tasklet(unsigned long data)
680 {
681         struct ar_context *ctx = (struct ar_context *)data;
682         struct fw_ohci *ohci = ctx->ohci;
683         struct ar_buffer *ab;
684         struct descriptor *d;
685         void *buffer, *end;
686
687         ab = ctx->current_buffer;
688         d = &ab->descriptor;
689
690         if (d->res_count == 0) {
691                 size_t size, rest, offset;
692                 dma_addr_t start_bus;
693                 void *start;
694
695                 /*
696                  * This descriptor is finished and we may have a
697                  * packet split across this and the next buffer. We
698                  * reuse the page for reassembling the split packet.
699                  */
700
701                 offset = offsetof(struct ar_buffer, data);
702                 start = buffer = ab;
703                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
704
705                 ab = ab->next;
706                 d = &ab->descriptor;
707                 size = buffer + PAGE_SIZE - ctx->pointer;
708                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
709                 memmove(buffer, ctx->pointer, size);
710                 memcpy(buffer + size, ab->data, rest);
711                 ctx->current_buffer = ab;
712                 ctx->pointer = (void *) ab->data + rest;
713                 end = buffer + size + rest;
714
715                 while (buffer < end)
716                         buffer = handle_ar_packet(ctx, buffer);
717
718                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
719                                   start, start_bus);
720                 ar_context_add_page(ctx);
721         } else {
722                 buffer = ctx->pointer;
723                 ctx->pointer = end =
724                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
725
726                 while (buffer < end)
727                         buffer = handle_ar_packet(ctx, buffer);
728         }
729 }
730
731 static int ar_context_init(struct ar_context *ctx,
732                            struct fw_ohci *ohci, u32 regs)
733 {
734         struct ar_buffer ab;
735
736         ctx->regs        = regs;
737         ctx->ohci        = ohci;
738         ctx->last_buffer = &ab;
739         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
740
741         ar_context_add_page(ctx);
742         ar_context_add_page(ctx);
743         ctx->current_buffer = ab.next;
744         ctx->pointer = ctx->current_buffer->data;
745
746         return 0;
747 }
748
749 static void ar_context_run(struct ar_context *ctx)
750 {
751         struct ar_buffer *ab = ctx->current_buffer;
752         dma_addr_t ab_bus;
753         size_t offset;
754
755         offset = offsetof(struct ar_buffer, data);
756         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
757
758         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
759         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
760         flush_writes(ctx->ohci);
761 }
762
763 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
764 {
765         int b, key;
766
767         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
768         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
769
770         /* figure out which descriptor the branch address goes in */
771         if (z == 2 && (b == 3 || key == 2))
772                 return d;
773         else
774                 return d + z - 1;
775 }
776
777 static void context_tasklet(unsigned long data)
778 {
779         struct context *ctx = (struct context *) data;
780         struct descriptor *d, *last;
781         u32 address;
782         int z;
783         struct descriptor_buffer *desc;
784
785         desc = list_entry(ctx->buffer_list.next,
786                         struct descriptor_buffer, list);
787         last = ctx->last;
788         while (last->branch_address != 0) {
789                 struct descriptor_buffer *old_desc = desc;
790                 address = le32_to_cpu(last->branch_address);
791                 z = address & 0xf;
792                 address &= ~0xf;
793
794                 /* If the branch address points to a buffer outside of the
795                  * current buffer, advance to the next buffer. */
796                 if (address < desc->buffer_bus ||
797                                 address >= desc->buffer_bus + desc->used)
798                         desc = list_entry(desc->list.next,
799                                         struct descriptor_buffer, list);
800                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
801                 last = find_branch_descriptor(d, z);
802
803                 if (!ctx->callback(ctx, d, last))
804                         break;
805
806                 if (old_desc != desc) {
807                         /* If we've advanced to the next buffer, move the
808                          * previous buffer to the free list. */
809                         unsigned long flags;
810                         old_desc->used = 0;
811                         spin_lock_irqsave(&ctx->ohci->lock, flags);
812                         list_move_tail(&old_desc->list, &ctx->buffer_list);
813                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
814                 }
815                 ctx->last = last;
816         }
817 }
818
819 /*
820  * Allocate a new buffer and add it to the list of free buffers for this
821  * context.  Must be called with ohci->lock held.
822  */
823 static int context_add_buffer(struct context *ctx)
824 {
825         struct descriptor_buffer *desc;
826         dma_addr_t uninitialized_var(bus_addr);
827         int offset;
828
829         /*
830          * 16MB of descriptors should be far more than enough for any DMA
831          * program.  This will catch run-away userspace or DoS attacks.
832          */
833         if (ctx->total_allocation >= 16*1024*1024)
834                 return -ENOMEM;
835
836         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
837                         &bus_addr, GFP_ATOMIC);
838         if (!desc)
839                 return -ENOMEM;
840
841         offset = (void *)&desc->buffer - (void *)desc;
842         desc->buffer_size = PAGE_SIZE - offset;
843         desc->buffer_bus = bus_addr + offset;
844         desc->used = 0;
845
846         list_add_tail(&desc->list, &ctx->buffer_list);
847         ctx->total_allocation += PAGE_SIZE;
848
849         return 0;
850 }
851
852 static int context_init(struct context *ctx, struct fw_ohci *ohci,
853                         u32 regs, descriptor_callback_t callback)
854 {
855         ctx->ohci = ohci;
856         ctx->regs = regs;
857         ctx->total_allocation = 0;
858
859         INIT_LIST_HEAD(&ctx->buffer_list);
860         if (context_add_buffer(ctx) < 0)
861                 return -ENOMEM;
862
863         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
864                         struct descriptor_buffer, list);
865
866         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
867         ctx->callback = callback;
868
869         /*
870          * We put a dummy descriptor in the buffer that has a NULL
871          * branch address and looks like it's been sent.  That way we
872          * have a descriptor to append DMA programs to.
873          */
874         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
875         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
876         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
877         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
878         ctx->last = ctx->buffer_tail->buffer;
879         ctx->prev = ctx->buffer_tail->buffer;
880
881         return 0;
882 }
883
884 static void context_release(struct context *ctx)
885 {
886         struct fw_card *card = &ctx->ohci->card;
887         struct descriptor_buffer *desc, *tmp;
888
889         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
890                 dma_free_coherent(card->device, PAGE_SIZE, desc,
891                         desc->buffer_bus -
892                         ((void *)&desc->buffer - (void *)desc));
893 }
894
895 /* Must be called with ohci->lock held */
896 static struct descriptor *context_get_descriptors(struct context *ctx,
897                                                   int z, dma_addr_t *d_bus)
898 {
899         struct descriptor *d = NULL;
900         struct descriptor_buffer *desc = ctx->buffer_tail;
901
902         if (z * sizeof(*d) > desc->buffer_size)
903                 return NULL;
904
905         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
906                 /* No room for the descriptor in this buffer, so advance to the
907                  * next one. */
908
909                 if (desc->list.next == &ctx->buffer_list) {
910                         /* If there is no free buffer next in the list,
911                          * allocate one. */
912                         if (context_add_buffer(ctx) < 0)
913                                 return NULL;
914                 }
915                 desc = list_entry(desc->list.next,
916                                 struct descriptor_buffer, list);
917                 ctx->buffer_tail = desc;
918         }
919
920         d = desc->buffer + desc->used / sizeof(*d);
921         memset(d, 0, z * sizeof(*d));
922         *d_bus = desc->buffer_bus + desc->used;
923
924         return d;
925 }
926
927 static void context_run(struct context *ctx, u32 extra)
928 {
929         struct fw_ohci *ohci = ctx->ohci;
930
931         reg_write(ohci, COMMAND_PTR(ctx->regs),
932                   le32_to_cpu(ctx->last->branch_address));
933         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
934         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
935         flush_writes(ohci);
936 }
937
938 static void context_append(struct context *ctx,
939                            struct descriptor *d, int z, int extra)
940 {
941         dma_addr_t d_bus;
942         struct descriptor_buffer *desc = ctx->buffer_tail;
943
944         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
945
946         desc->used += (z + extra) * sizeof(*d);
947         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
948         ctx->prev = find_branch_descriptor(d, z);
949
950         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
951         flush_writes(ctx->ohci);
952 }
953
954 static void context_stop(struct context *ctx)
955 {
956         u32 reg;
957         int i;
958
959         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
960         flush_writes(ctx->ohci);
961
962         for (i = 0; i < 10; i++) {
963                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
964                 if ((reg & CONTEXT_ACTIVE) == 0)
965                         return;
966
967                 mdelay(1);
968         }
969         fw_error("Error: DMA context still active (0x%08x)\n", reg);
970 }
971
972 struct driver_data {
973         struct fw_packet *packet;
974 };
975
976 /*
977  * This function apppends a packet to the DMA queue for transmission.
978  * Must always be called with the ochi->lock held to ensure proper
979  * generation handling and locking around packet queue manipulation.
980  */
981 static int at_context_queue_packet(struct context *ctx,
982                                    struct fw_packet *packet)
983 {
984         struct fw_ohci *ohci = ctx->ohci;
985         dma_addr_t d_bus, uninitialized_var(payload_bus);
986         struct driver_data *driver_data;
987         struct descriptor *d, *last;
988         __le32 *header;
989         int z, tcode;
990         u32 reg;
991
992         d = context_get_descriptors(ctx, 4, &d_bus);
993         if (d == NULL) {
994                 packet->ack = RCODE_SEND_ERROR;
995                 return -1;
996         }
997
998         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
999         d[0].res_count = cpu_to_le16(packet->timestamp);
1000
1001         /*
1002          * The DMA format for asyncronous link packets is different
1003          * from the IEEE1394 layout, so shift the fields around
1004          * accordingly.  If header_length is 8, it's a PHY packet, to
1005          * which we need to prepend an extra quadlet.
1006          */
1007
1008         header = (__le32 *) &d[1];
1009         switch (packet->header_length) {
1010         case 16:
1011         case 12:
1012                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1013                                         (packet->speed << 16));
1014                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1015                                         (packet->header[0] & 0xffff0000));
1016                 header[2] = cpu_to_le32(packet->header[2]);
1017
1018                 tcode = (packet->header[0] >> 4) & 0x0f;
1019                 if (TCODE_IS_BLOCK_PACKET(tcode))
1020                         header[3] = cpu_to_le32(packet->header[3]);
1021                 else
1022                         header[3] = (__force __le32) packet->header[3];
1023
1024                 d[0].req_count = cpu_to_le16(packet->header_length);
1025                 break;
1026
1027         case 8:
1028                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1029                                         (packet->speed << 16));
1030                 header[1] = cpu_to_le32(packet->header[0]);
1031                 header[2] = cpu_to_le32(packet->header[1]);
1032                 d[0].req_count = cpu_to_le16(12);
1033                 break;
1034
1035         case 4:
1036                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1037                                         (packet->speed << 16));
1038                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1039                 d[0].req_count = cpu_to_le16(8);
1040                 break;
1041
1042         default:
1043                 /* BUG(); */
1044                 packet->ack = RCODE_SEND_ERROR;
1045                 return -1;
1046         }
1047
1048         driver_data = (struct driver_data *) &d[3];
1049         driver_data->packet = packet;
1050         packet->driver_data = driver_data;
1051
1052         if (packet->payload_length > 0) {
1053                 payload_bus =
1054                         dma_map_single(ohci->card.device, packet->payload,
1055                                        packet->payload_length, DMA_TO_DEVICE);
1056                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1057                         packet->ack = RCODE_SEND_ERROR;
1058                         return -1;
1059                 }
1060                 packet->payload_bus     = payload_bus;
1061                 packet->payload_mapped  = true;
1062
1063                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1064                 d[2].data_address = cpu_to_le32(payload_bus);
1065                 last = &d[2];
1066                 z = 3;
1067         } else {
1068                 last = &d[0];
1069                 z = 2;
1070         }
1071
1072         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1073                                      DESCRIPTOR_IRQ_ALWAYS |
1074                                      DESCRIPTOR_BRANCH_ALWAYS);
1075
1076         /*
1077          * If the controller and packet generations don't match, we need to
1078          * bail out and try again.  If IntEvent.busReset is set, the AT context
1079          * is halted, so appending to the context and trying to run it is
1080          * futile.  Most controllers do the right thing and just flush the AT
1081          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1082          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1083          * up stalling out.  So we just bail out in software and try again
1084          * later, and everyone is happy.
1085          * FIXME: Document how the locking works.
1086          */
1087         if (ohci->generation != packet->generation ||
1088             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1089                 if (packet->payload_mapped)
1090                         dma_unmap_single(ohci->card.device, payload_bus,
1091                                          packet->payload_length, DMA_TO_DEVICE);
1092                 packet->ack = RCODE_GENERATION;
1093                 return -1;
1094         }
1095
1096         context_append(ctx, d, z, 4 - z);
1097
1098         /* If the context isn't already running, start it up. */
1099         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1100         if ((reg & CONTEXT_RUN) == 0)
1101                 context_run(ctx, 0);
1102
1103         return 0;
1104 }
1105
1106 static int handle_at_packet(struct context *context,
1107                             struct descriptor *d,
1108                             struct descriptor *last)
1109 {
1110         struct driver_data *driver_data;
1111         struct fw_packet *packet;
1112         struct fw_ohci *ohci = context->ohci;
1113         int evt;
1114
1115         if (last->transfer_status == 0)
1116                 /* This descriptor isn't done yet, stop iteration. */
1117                 return 0;
1118
1119         driver_data = (struct driver_data *) &d[3];
1120         packet = driver_data->packet;
1121         if (packet == NULL)
1122                 /* This packet was cancelled, just continue. */
1123                 return 1;
1124
1125         if (packet->payload_mapped)
1126                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1127                                  packet->payload_length, DMA_TO_DEVICE);
1128
1129         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1130         packet->timestamp = le16_to_cpu(last->res_count);
1131
1132         log_ar_at_event('T', packet->speed, packet->header, evt);
1133
1134         switch (evt) {
1135         case OHCI1394_evt_timeout:
1136                 /* Async response transmit timed out. */
1137                 packet->ack = RCODE_CANCELLED;
1138                 break;
1139
1140         case OHCI1394_evt_flushed:
1141                 /*
1142                  * The packet was flushed should give same error as
1143                  * when we try to use a stale generation count.
1144                  */
1145                 packet->ack = RCODE_GENERATION;
1146                 break;
1147
1148         case OHCI1394_evt_missing_ack:
1149                 /*
1150                  * Using a valid (current) generation count, but the
1151                  * node is not on the bus or not sending acks.
1152                  */
1153                 packet->ack = RCODE_NO_ACK;
1154                 break;
1155
1156         case ACK_COMPLETE + 0x10:
1157         case ACK_PENDING + 0x10:
1158         case ACK_BUSY_X + 0x10:
1159         case ACK_BUSY_A + 0x10:
1160         case ACK_BUSY_B + 0x10:
1161         case ACK_DATA_ERROR + 0x10:
1162         case ACK_TYPE_ERROR + 0x10:
1163                 packet->ack = evt - 0x10;
1164                 break;
1165
1166         default:
1167                 packet->ack = RCODE_SEND_ERROR;
1168                 break;
1169         }
1170
1171         packet->callback(packet, &ohci->card, packet->ack);
1172
1173         return 1;
1174 }
1175
1176 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1177 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1178 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1179 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1180 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1181
1182 static void handle_local_rom(struct fw_ohci *ohci,
1183                              struct fw_packet *packet, u32 csr)
1184 {
1185         struct fw_packet response;
1186         int tcode, length, i;
1187
1188         tcode = HEADER_GET_TCODE(packet->header[0]);
1189         if (TCODE_IS_BLOCK_PACKET(tcode))
1190                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1191         else
1192                 length = 4;
1193
1194         i = csr - CSR_CONFIG_ROM;
1195         if (i + length > CONFIG_ROM_SIZE) {
1196                 fw_fill_response(&response, packet->header,
1197                                  RCODE_ADDRESS_ERROR, NULL, 0);
1198         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1199                 fw_fill_response(&response, packet->header,
1200                                  RCODE_TYPE_ERROR, NULL, 0);
1201         } else {
1202                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1203                                  (void *) ohci->config_rom + i, length);
1204         }
1205
1206         fw_core_handle_response(&ohci->card, &response);
1207 }
1208
1209 static void handle_local_lock(struct fw_ohci *ohci,
1210                               struct fw_packet *packet, u32 csr)
1211 {
1212         struct fw_packet response;
1213         int tcode, length, ext_tcode, sel;
1214         __be32 *payload, lock_old;
1215         u32 lock_arg, lock_data;
1216
1217         tcode = HEADER_GET_TCODE(packet->header[0]);
1218         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1219         payload = packet->payload;
1220         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1221
1222         if (tcode == TCODE_LOCK_REQUEST &&
1223             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1224                 lock_arg = be32_to_cpu(payload[0]);
1225                 lock_data = be32_to_cpu(payload[1]);
1226         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1227                 lock_arg = 0;
1228                 lock_data = 0;
1229         } else {
1230                 fw_fill_response(&response, packet->header,
1231                                  RCODE_TYPE_ERROR, NULL, 0);
1232                 goto out;
1233         }
1234
1235         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1236         reg_write(ohci, OHCI1394_CSRData, lock_data);
1237         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1238         reg_write(ohci, OHCI1394_CSRControl, sel);
1239
1240         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1241                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1242         else
1243                 fw_notify("swap not done yet\n");
1244
1245         fw_fill_response(&response, packet->header,
1246                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1247  out:
1248         fw_core_handle_response(&ohci->card, &response);
1249 }
1250
1251 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1252 {
1253         u64 offset;
1254         u32 csr;
1255
1256         if (ctx == &ctx->ohci->at_request_ctx) {
1257                 packet->ack = ACK_PENDING;
1258                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1259         }
1260
1261         offset =
1262                 ((unsigned long long)
1263                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1264                 packet->header[2];
1265         csr = offset - CSR_REGISTER_BASE;
1266
1267         /* Handle config rom reads. */
1268         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1269                 handle_local_rom(ctx->ohci, packet, csr);
1270         else switch (csr) {
1271         case CSR_BUS_MANAGER_ID:
1272         case CSR_BANDWIDTH_AVAILABLE:
1273         case CSR_CHANNELS_AVAILABLE_HI:
1274         case CSR_CHANNELS_AVAILABLE_LO:
1275                 handle_local_lock(ctx->ohci, packet, csr);
1276                 break;
1277         default:
1278                 if (ctx == &ctx->ohci->at_request_ctx)
1279                         fw_core_handle_request(&ctx->ohci->card, packet);
1280                 else
1281                         fw_core_handle_response(&ctx->ohci->card, packet);
1282                 break;
1283         }
1284
1285         if (ctx == &ctx->ohci->at_response_ctx) {
1286                 packet->ack = ACK_COMPLETE;
1287                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1288         }
1289 }
1290
1291 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1292 {
1293         unsigned long flags;
1294         int ret;
1295
1296         spin_lock_irqsave(&ctx->ohci->lock, flags);
1297
1298         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1299             ctx->ohci->generation == packet->generation) {
1300                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1301                 handle_local_request(ctx, packet);
1302                 return;
1303         }
1304
1305         ret = at_context_queue_packet(ctx, packet);
1306         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1307
1308         if (ret < 0)
1309                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1310
1311 }
1312
1313 static void bus_reset_tasklet(unsigned long data)
1314 {
1315         struct fw_ohci *ohci = (struct fw_ohci *)data;
1316         int self_id_count, i, j, reg;
1317         int generation, new_generation;
1318         unsigned long flags;
1319         void *free_rom = NULL;
1320         dma_addr_t free_rom_bus = 0;
1321
1322         reg = reg_read(ohci, OHCI1394_NodeID);
1323         if (!(reg & OHCI1394_NodeID_idValid)) {
1324                 fw_notify("node ID not valid, new bus reset in progress\n");
1325                 return;
1326         }
1327         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1328                 fw_notify("malconfigured bus\n");
1329                 return;
1330         }
1331         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1332                                OHCI1394_NodeID_nodeNumber);
1333
1334         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1335         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1336                 fw_notify("inconsistent self IDs\n");
1337                 return;
1338         }
1339         /*
1340          * The count in the SelfIDCount register is the number of
1341          * bytes in the self ID receive buffer.  Since we also receive
1342          * the inverted quadlets and a header quadlet, we shift one
1343          * bit extra to get the actual number of self IDs.
1344          */
1345         self_id_count = (reg >> 3) & 0xff;
1346         if (self_id_count == 0 || self_id_count > 252) {
1347                 fw_notify("inconsistent self IDs\n");
1348                 return;
1349         }
1350         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1351         rmb();
1352
1353         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1354                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1355                         fw_notify("inconsistent self IDs\n");
1356                         return;
1357                 }
1358                 ohci->self_id_buffer[j] =
1359                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1360         }
1361         rmb();
1362
1363         /*
1364          * Check the consistency of the self IDs we just read.  The
1365          * problem we face is that a new bus reset can start while we
1366          * read out the self IDs from the DMA buffer. If this happens,
1367          * the DMA buffer will be overwritten with new self IDs and we
1368          * will read out inconsistent data.  The OHCI specification
1369          * (section 11.2) recommends a technique similar to
1370          * linux/seqlock.h, where we remember the generation of the
1371          * self IDs in the buffer before reading them out and compare
1372          * it to the current generation after reading them out.  If
1373          * the two generations match we know we have a consistent set
1374          * of self IDs.
1375          */
1376
1377         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1378         if (new_generation != generation) {
1379                 fw_notify("recursive bus reset detected, "
1380                           "discarding self ids\n");
1381                 return;
1382         }
1383
1384         /* FIXME: Document how the locking works. */
1385         spin_lock_irqsave(&ohci->lock, flags);
1386
1387         ohci->generation = generation;
1388         context_stop(&ohci->at_request_ctx);
1389         context_stop(&ohci->at_response_ctx);
1390         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1391
1392         if (ohci->quirks & QUIRK_RESET_PACKET)
1393                 ohci->request_generation = generation;
1394
1395         /*
1396          * This next bit is unrelated to the AT context stuff but we
1397          * have to do it under the spinlock also.  If a new config rom
1398          * was set up before this reset, the old one is now no longer
1399          * in use and we can free it. Update the config rom pointers
1400          * to point to the current config rom and clear the
1401          * next_config_rom pointer so a new udpate can take place.
1402          */
1403
1404         if (ohci->next_config_rom != NULL) {
1405                 if (ohci->next_config_rom != ohci->config_rom) {
1406                         free_rom      = ohci->config_rom;
1407                         free_rom_bus  = ohci->config_rom_bus;
1408                 }
1409                 ohci->config_rom      = ohci->next_config_rom;
1410                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1411                 ohci->next_config_rom = NULL;
1412
1413                 /*
1414                  * Restore config_rom image and manually update
1415                  * config_rom registers.  Writing the header quadlet
1416                  * will indicate that the config rom is ready, so we
1417                  * do that last.
1418                  */
1419                 reg_write(ohci, OHCI1394_BusOptions,
1420                           be32_to_cpu(ohci->config_rom[2]));
1421                 ohci->config_rom[0] = ohci->next_header;
1422                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1423                           be32_to_cpu(ohci->next_header));
1424         }
1425
1426 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1427         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1428         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1429 #endif
1430
1431         spin_unlock_irqrestore(&ohci->lock, flags);
1432
1433         if (free_rom)
1434                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1435                                   free_rom, free_rom_bus);
1436
1437         log_selfids(ohci->node_id, generation,
1438                     self_id_count, ohci->self_id_buffer);
1439
1440         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1441                                  self_id_count, ohci->self_id_buffer);
1442 }
1443
1444 static irqreturn_t irq_handler(int irq, void *data)
1445 {
1446         struct fw_ohci *ohci = data;
1447         u32 event, iso_event;
1448         int i;
1449
1450         event = reg_read(ohci, OHCI1394_IntEventClear);
1451
1452         if (!event || !~event)
1453                 return IRQ_NONE;
1454
1455         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1456         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1457         log_irqs(event);
1458
1459         if (event & OHCI1394_selfIDComplete)
1460                 tasklet_schedule(&ohci->bus_reset_tasklet);
1461
1462         if (event & OHCI1394_RQPkt)
1463                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1464
1465         if (event & OHCI1394_RSPkt)
1466                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1467
1468         if (event & OHCI1394_reqTxComplete)
1469                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1470
1471         if (event & OHCI1394_respTxComplete)
1472                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1473
1474         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1475         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1476
1477         while (iso_event) {
1478                 i = ffs(iso_event) - 1;
1479                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1480                 iso_event &= ~(1 << i);
1481         }
1482
1483         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1484         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1485
1486         while (iso_event) {
1487                 i = ffs(iso_event) - 1;
1488                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1489                 iso_event &= ~(1 << i);
1490         }
1491
1492         if (unlikely(event & OHCI1394_regAccessFail))
1493                 fw_error("Register access failure - "
1494                          "please notify linux1394-devel@lists.sf.net\n");
1495
1496         if (unlikely(event & OHCI1394_postedWriteErr))
1497                 fw_error("PCI posted write error\n");
1498
1499         if (unlikely(event & OHCI1394_cycleTooLong)) {
1500                 if (printk_ratelimit())
1501                         fw_notify("isochronous cycle too long\n");
1502                 reg_write(ohci, OHCI1394_LinkControlSet,
1503                           OHCI1394_LinkControl_cycleMaster);
1504         }
1505
1506         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1507                 /*
1508                  * We need to clear this event bit in order to make
1509                  * cycleMatch isochronous I/O work.  In theory we should
1510                  * stop active cycleMatch iso contexts now and restart
1511                  * them at least two cycles later.  (FIXME?)
1512                  */
1513                 if (printk_ratelimit())
1514                         fw_notify("isochronous cycle inconsistent\n");
1515         }
1516
1517         return IRQ_HANDLED;
1518 }
1519
1520 static int software_reset(struct fw_ohci *ohci)
1521 {
1522         int i;
1523
1524         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1525
1526         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1527                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1528                      OHCI1394_HCControl_softReset) == 0)
1529                         return 0;
1530                 msleep(1);
1531         }
1532
1533         return -EBUSY;
1534 }
1535
1536 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1537 {
1538         size_t size = length * 4;
1539
1540         memcpy(dest, src, size);
1541         if (size < CONFIG_ROM_SIZE)
1542                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1543 }
1544
1545 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1546 {
1547         bool enable_1394a;
1548         int ret, clear, set, offset;
1549
1550         /* Check if the driver should configure link and PHY. */
1551         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1552               OHCI1394_HCControl_programPhyEnable))
1553                 return 0;
1554
1555         /* Paranoia: check whether the PHY supports 1394a, too. */
1556         enable_1394a = false;
1557         ret = read_phy_reg(ohci, 2);
1558         if (ret < 0)
1559                 return ret;
1560         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1561                 ret = read_paged_phy_reg(ohci, 1, 8);
1562                 if (ret < 0)
1563                         return ret;
1564                 if (ret >= 1)
1565                         enable_1394a = true;
1566         }
1567
1568         if (ohci->quirks & QUIRK_NO_1394A)
1569                 enable_1394a = false;
1570
1571         /* Configure PHY and link consistently. */
1572         if (enable_1394a) {
1573                 clear = 0;
1574                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1575         } else {
1576                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1577                 set = 0;
1578         }
1579         ret = ohci_update_phy_reg(&ohci->card, 5, clear, set);
1580         if (ret < 0)
1581                 return ret;
1582
1583         if (enable_1394a)
1584                 offset = OHCI1394_HCControlSet;
1585         else
1586                 offset = OHCI1394_HCControlClear;
1587         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1588
1589         /* Clean up: configuration has been taken care of. */
1590         reg_write(ohci, OHCI1394_HCControlClear,
1591                   OHCI1394_HCControl_programPhyEnable);
1592
1593         return 0;
1594 }
1595
1596 static int ohci_enable(struct fw_card *card,
1597                        const __be32 *config_rom, size_t length)
1598 {
1599         struct fw_ohci *ohci = fw_ohci(card);
1600         struct pci_dev *dev = to_pci_dev(card->device);
1601         u32 lps, irqs;
1602         int i, ret;
1603
1604         if (software_reset(ohci)) {
1605                 fw_error("Failed to reset ohci card.\n");
1606                 return -EBUSY;
1607         }
1608
1609         /*
1610          * Now enable LPS, which we need in order to start accessing
1611          * most of the registers.  In fact, on some cards (ALI M5251),
1612          * accessing registers in the SClk domain without LPS enabled
1613          * will lock up the machine.  Wait 50msec to make sure we have
1614          * full link enabled.  However, with some cards (well, at least
1615          * a JMicron PCIe card), we have to try again sometimes.
1616          */
1617         reg_write(ohci, OHCI1394_HCControlSet,
1618                   OHCI1394_HCControl_LPS |
1619                   OHCI1394_HCControl_postedWriteEnable);
1620         flush_writes(ohci);
1621
1622         for (lps = 0, i = 0; !lps && i < 3; i++) {
1623                 msleep(50);
1624                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1625                       OHCI1394_HCControl_LPS;
1626         }
1627
1628         if (!lps) {
1629                 fw_error("Failed to set Link Power Status\n");
1630                 return -EIO;
1631         }
1632
1633         reg_write(ohci, OHCI1394_HCControlClear,
1634                   OHCI1394_HCControl_noByteSwapData);
1635
1636         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1637         reg_write(ohci, OHCI1394_LinkControlClear,
1638                   OHCI1394_LinkControl_rcvPhyPkt);
1639         reg_write(ohci, OHCI1394_LinkControlSet,
1640                   OHCI1394_LinkControl_rcvSelfID |
1641                   OHCI1394_LinkControl_cycleTimerEnable |
1642                   OHCI1394_LinkControl_cycleMaster);
1643
1644         reg_write(ohci, OHCI1394_ATRetries,
1645                   OHCI1394_MAX_AT_REQ_RETRIES |
1646                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1647                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1648
1649         ar_context_run(&ohci->ar_request_ctx);
1650         ar_context_run(&ohci->ar_response_ctx);
1651
1652         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1653         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1654         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1655
1656         ret = configure_1394a_enhancements(ohci);
1657         if (ret < 0)
1658                 return ret;
1659
1660         /* Activate link_on bit and contender bit in our self ID packets.*/
1661         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1662         if (ret < 0)
1663                 return ret;
1664
1665         /*
1666          * When the link is not yet enabled, the atomic config rom
1667          * update mechanism described below in ohci_set_config_rom()
1668          * is not active.  We have to update ConfigRomHeader and
1669          * BusOptions manually, and the write to ConfigROMmap takes
1670          * effect immediately.  We tie this to the enabling of the
1671          * link, so we have a valid config rom before enabling - the
1672          * OHCI requires that ConfigROMhdr and BusOptions have valid
1673          * values before enabling.
1674          *
1675          * However, when the ConfigROMmap is written, some controllers
1676          * always read back quadlets 0 and 2 from the config rom to
1677          * the ConfigRomHeader and BusOptions registers on bus reset.
1678          * They shouldn't do that in this initial case where the link
1679          * isn't enabled.  This means we have to use the same
1680          * workaround here, setting the bus header to 0 and then write
1681          * the right values in the bus reset tasklet.
1682          */
1683
1684         if (config_rom) {
1685                 ohci->next_config_rom =
1686                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1687                                            &ohci->next_config_rom_bus,
1688                                            GFP_KERNEL);
1689                 if (ohci->next_config_rom == NULL)
1690                         return -ENOMEM;
1691
1692                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1693         } else {
1694                 /*
1695                  * In the suspend case, config_rom is NULL, which
1696                  * means that we just reuse the old config rom.
1697                  */
1698                 ohci->next_config_rom = ohci->config_rom;
1699                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1700         }
1701
1702         ohci->next_header = ohci->next_config_rom[0];
1703         ohci->next_config_rom[0] = 0;
1704         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1705         reg_write(ohci, OHCI1394_BusOptions,
1706                   be32_to_cpu(ohci->next_config_rom[2]));
1707         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1708
1709         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1710
1711         if (!(ohci->quirks & QUIRK_NO_MSI))
1712                 pci_enable_msi(dev);
1713         if (request_irq(dev->irq, irq_handler,
1714                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1715                         ohci_driver_name, ohci)) {
1716                 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1717                 pci_disable_msi(dev);
1718                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1719                                   ohci->config_rom, ohci->config_rom_bus);
1720                 return -EIO;
1721         }
1722
1723         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1724                 OHCI1394_RQPkt | OHCI1394_RSPkt |
1725                 OHCI1394_isochTx | OHCI1394_isochRx |
1726                 OHCI1394_postedWriteErr |
1727                 OHCI1394_selfIDComplete |
1728                 OHCI1394_regAccessFail |
1729                 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1730                 OHCI1394_masterIntEnable;
1731         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1732                 irqs |= OHCI1394_busReset;
1733         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1734
1735         reg_write(ohci, OHCI1394_HCControlSet,
1736                   OHCI1394_HCControl_linkEnable |
1737                   OHCI1394_HCControl_BIBimageValid);
1738         flush_writes(ohci);
1739
1740         /*
1741          * We are ready to go, initiate bus reset to finish the
1742          * initialization.
1743          */
1744
1745         fw_core_initiate_bus_reset(&ohci->card, 1);
1746
1747         return 0;
1748 }
1749
1750 static int ohci_set_config_rom(struct fw_card *card,
1751                                const __be32 *config_rom, size_t length)
1752 {
1753         struct fw_ohci *ohci;
1754         unsigned long flags;
1755         int ret = -EBUSY;
1756         __be32 *next_config_rom;
1757         dma_addr_t uninitialized_var(next_config_rom_bus);
1758
1759         ohci = fw_ohci(card);
1760
1761         /*
1762          * When the OHCI controller is enabled, the config rom update
1763          * mechanism is a bit tricky, but easy enough to use.  See
1764          * section 5.5.6 in the OHCI specification.
1765          *
1766          * The OHCI controller caches the new config rom address in a
1767          * shadow register (ConfigROMmapNext) and needs a bus reset
1768          * for the changes to take place.  When the bus reset is
1769          * detected, the controller loads the new values for the
1770          * ConfigRomHeader and BusOptions registers from the specified
1771          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1772          * shadow register. All automatically and atomically.
1773          *
1774          * Now, there's a twist to this story.  The automatic load of
1775          * ConfigRomHeader and BusOptions doesn't honor the
1776          * noByteSwapData bit, so with a be32 config rom, the
1777          * controller will load be32 values in to these registers
1778          * during the atomic update, even on litte endian
1779          * architectures.  The workaround we use is to put a 0 in the
1780          * header quadlet; 0 is endian agnostic and means that the
1781          * config rom isn't ready yet.  In the bus reset tasklet we
1782          * then set up the real values for the two registers.
1783          *
1784          * We use ohci->lock to avoid racing with the code that sets
1785          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1786          */
1787
1788         next_config_rom =
1789                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1790                                    &next_config_rom_bus, GFP_KERNEL);
1791         if (next_config_rom == NULL)
1792                 return -ENOMEM;
1793
1794         spin_lock_irqsave(&ohci->lock, flags);
1795
1796         if (ohci->next_config_rom == NULL) {
1797                 ohci->next_config_rom = next_config_rom;
1798                 ohci->next_config_rom_bus = next_config_rom_bus;
1799
1800                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1801
1802                 ohci->next_header = config_rom[0];
1803                 ohci->next_config_rom[0] = 0;
1804
1805                 reg_write(ohci, OHCI1394_ConfigROMmap,
1806                           ohci->next_config_rom_bus);
1807                 ret = 0;
1808         }
1809
1810         spin_unlock_irqrestore(&ohci->lock, flags);
1811
1812         /*
1813          * Now initiate a bus reset to have the changes take
1814          * effect. We clean up the old config rom memory and DMA
1815          * mappings in the bus reset tasklet, since the OHCI
1816          * controller could need to access it before the bus reset
1817          * takes effect.
1818          */
1819         if (ret == 0)
1820                 fw_core_initiate_bus_reset(&ohci->card, 1);
1821         else
1822                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1823                                   next_config_rom, next_config_rom_bus);
1824
1825         return ret;
1826 }
1827
1828 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1829 {
1830         struct fw_ohci *ohci = fw_ohci(card);
1831
1832         at_context_transmit(&ohci->at_request_ctx, packet);
1833 }
1834
1835 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1836 {
1837         struct fw_ohci *ohci = fw_ohci(card);
1838
1839         at_context_transmit(&ohci->at_response_ctx, packet);
1840 }
1841
1842 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1843 {
1844         struct fw_ohci *ohci = fw_ohci(card);
1845         struct context *ctx = &ohci->at_request_ctx;
1846         struct driver_data *driver_data = packet->driver_data;
1847         int ret = -ENOENT;
1848
1849         tasklet_disable(&ctx->tasklet);
1850
1851         if (packet->ack != 0)
1852                 goto out;
1853
1854         if (packet->payload_mapped)
1855                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1856                                  packet->payload_length, DMA_TO_DEVICE);
1857
1858         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1859         driver_data->packet = NULL;
1860         packet->ack = RCODE_CANCELLED;
1861         packet->callback(packet, &ohci->card, packet->ack);
1862         ret = 0;
1863  out:
1864         tasklet_enable(&ctx->tasklet);
1865
1866         return ret;
1867 }
1868
1869 static int ohci_enable_phys_dma(struct fw_card *card,
1870                                 int node_id, int generation)
1871 {
1872 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1873         return 0;
1874 #else
1875         struct fw_ohci *ohci = fw_ohci(card);
1876         unsigned long flags;
1877         int n, ret = 0;
1878
1879         /*
1880          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1881          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1882          */
1883
1884         spin_lock_irqsave(&ohci->lock, flags);
1885
1886         if (ohci->generation != generation) {
1887                 ret = -ESTALE;
1888                 goto out;
1889         }
1890
1891         /*
1892          * Note, if the node ID contains a non-local bus ID, physical DMA is
1893          * enabled for _all_ nodes on remote buses.
1894          */
1895
1896         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1897         if (n < 32)
1898                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1899         else
1900                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1901
1902         flush_writes(ohci);
1903  out:
1904         spin_unlock_irqrestore(&ohci->lock, flags);
1905
1906         return ret;
1907 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1908 }
1909
1910 static u32 cycle_timer_ticks(u32 cycle_timer)
1911 {
1912         u32 ticks;
1913
1914         ticks = cycle_timer & 0xfff;
1915         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1916         ticks += (3072 * 8000) * (cycle_timer >> 25);
1917
1918         return ticks;
1919 }
1920
1921 /*
1922  * Some controllers exhibit one or more of the following bugs when updating the
1923  * iso cycle timer register:
1924  *  - When the lowest six bits are wrapping around to zero, a read that happens
1925  *    at the same time will return garbage in the lowest ten bits.
1926  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1927  *    not incremented for about 60 ns.
1928  *  - Occasionally, the entire register reads zero.
1929  *
1930  * To catch these, we read the register three times and ensure that the
1931  * difference between each two consecutive reads is approximately the same, i.e.
1932  * less than twice the other.  Furthermore, any negative difference indicates an
1933  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1934  * execute, so we have enough precision to compute the ratio of the differences.)
1935  */
1936 static u32 ohci_get_cycle_time(struct fw_card *card)
1937 {
1938         struct fw_ohci *ohci = fw_ohci(card);
1939         u32 c0, c1, c2;
1940         u32 t0, t1, t2;
1941         s32 diff01, diff12;
1942         int i;
1943
1944         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1945
1946         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1947                 i = 0;
1948                 c1 = c2;
1949                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1950                 do {
1951                         c0 = c1;
1952                         c1 = c2;
1953                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1954                         t0 = cycle_timer_ticks(c0);
1955                         t1 = cycle_timer_ticks(c1);
1956                         t2 = cycle_timer_ticks(c2);
1957                         diff01 = t1 - t0;
1958                         diff12 = t2 - t1;
1959                 } while ((diff01 <= 0 || diff12 <= 0 ||
1960                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1961                          && i++ < 20);
1962         }
1963
1964         return c2;
1965 }
1966
1967 static void copy_iso_headers(struct iso_context *ctx, void *p)
1968 {
1969         int i = ctx->header_length;
1970
1971         if (i + ctx->base.header_size > PAGE_SIZE)
1972                 return;
1973
1974         /*
1975          * The iso header is byteswapped to little endian by
1976          * the controller, but the remaining header quadlets
1977          * are big endian.  We want to present all the headers
1978          * as big endian, so we have to swap the first quadlet.
1979          */
1980         if (ctx->base.header_size > 0)
1981                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1982         if (ctx->base.header_size > 4)
1983                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1984         if (ctx->base.header_size > 8)
1985                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1986         ctx->header_length += ctx->base.header_size;
1987 }
1988
1989 static int handle_ir_packet_per_buffer(struct context *context,
1990                                        struct descriptor *d,
1991                                        struct descriptor *last)
1992 {
1993         struct iso_context *ctx =
1994                 container_of(context, struct iso_context, context);
1995         struct descriptor *pd;
1996         __le32 *ir_header;
1997         void *p;
1998
1999         for (pd = d; pd <= last; pd++) {
2000                 if (pd->transfer_status)
2001                         break;
2002         }
2003         if (pd > last)
2004                 /* Descriptor(s) not done yet, stop iteration */
2005                 return 0;
2006
2007         p = last + 1;
2008         copy_iso_headers(ctx, p);
2009
2010         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2011                 ir_header = (__le32 *) p;
2012                 ctx->base.callback(&ctx->base,
2013                                    le32_to_cpu(ir_header[0]) & 0xffff,
2014                                    ctx->header_length, ctx->header,
2015                                    ctx->base.callback_data);
2016                 ctx->header_length = 0;
2017         }
2018
2019         return 1;
2020 }
2021
2022 static int handle_it_packet(struct context *context,
2023                             struct descriptor *d,
2024                             struct descriptor *last)
2025 {
2026         struct iso_context *ctx =
2027                 container_of(context, struct iso_context, context);
2028         int i;
2029         struct descriptor *pd;
2030
2031         for (pd = d; pd <= last; pd++)
2032                 if (pd->transfer_status)
2033                         break;
2034         if (pd > last)
2035                 /* Descriptor(s) not done yet, stop iteration */
2036                 return 0;
2037
2038         i = ctx->header_length;
2039         if (i + 4 < PAGE_SIZE) {
2040                 /* Present this value as big-endian to match the receive code */
2041                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2042                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2043                                 le16_to_cpu(pd->res_count));
2044                 ctx->header_length += 4;
2045         }
2046         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2047                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2048                                    ctx->header_length, ctx->header,
2049                                    ctx->base.callback_data);
2050                 ctx->header_length = 0;
2051         }
2052         return 1;
2053 }
2054
2055 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2056                                 int type, int channel, size_t header_size)
2057 {
2058         struct fw_ohci *ohci = fw_ohci(card);
2059         struct iso_context *ctx, *list;
2060         descriptor_callback_t callback;
2061         u64 *channels, dont_care = ~0ULL;
2062         u32 *mask, regs;
2063         unsigned long flags;
2064         int index, ret = -ENOMEM;
2065
2066         if (type == FW_ISO_CONTEXT_TRANSMIT) {
2067                 channels = &dont_care;
2068                 mask = &ohci->it_context_mask;
2069                 list = ohci->it_context_list;
2070                 callback = handle_it_packet;
2071         } else {
2072                 channels = &ohci->ir_context_channels;
2073                 mask = &ohci->ir_context_mask;
2074                 list = ohci->ir_context_list;
2075                 callback = handle_ir_packet_per_buffer;
2076         }
2077
2078         spin_lock_irqsave(&ohci->lock, flags);
2079         index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2080         if (index >= 0) {
2081                 *channels &= ~(1ULL << channel);
2082                 *mask &= ~(1 << index);
2083         }
2084         spin_unlock_irqrestore(&ohci->lock, flags);
2085
2086         if (index < 0)
2087                 return ERR_PTR(-EBUSY);
2088
2089         if (type == FW_ISO_CONTEXT_TRANSMIT)
2090                 regs = OHCI1394_IsoXmitContextBase(index);
2091         else
2092                 regs = OHCI1394_IsoRcvContextBase(index);
2093
2094         ctx = &list[index];
2095         memset(ctx, 0, sizeof(*ctx));
2096         ctx->header_length = 0;
2097         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2098         if (ctx->header == NULL)
2099                 goto out;
2100
2101         ret = context_init(&ctx->context, ohci, regs, callback);
2102         if (ret < 0)
2103                 goto out_with_header;
2104
2105         return &ctx->base;
2106
2107  out_with_header:
2108         free_page((unsigned long)ctx->header);
2109  out:
2110         spin_lock_irqsave(&ohci->lock, flags);
2111         *mask |= 1 << index;
2112         spin_unlock_irqrestore(&ohci->lock, flags);
2113
2114         return ERR_PTR(ret);
2115 }
2116
2117 static int ohci_start_iso(struct fw_iso_context *base,
2118                           s32 cycle, u32 sync, u32 tags)
2119 {
2120         struct iso_context *ctx = container_of(base, struct iso_context, base);
2121         struct fw_ohci *ohci = ctx->context.ohci;
2122         u32 control, match;
2123         int index;
2124
2125         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2126                 index = ctx - ohci->it_context_list;
2127                 match = 0;
2128                 if (cycle >= 0)
2129                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2130                                 (cycle & 0x7fff) << 16;
2131
2132                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2133                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2134                 context_run(&ctx->context, match);
2135         } else {
2136                 index = ctx - ohci->ir_context_list;
2137                 control = IR_CONTEXT_ISOCH_HEADER;
2138                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2139                 if (cycle >= 0) {
2140                         match |= (cycle & 0x07fff) << 12;
2141                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2142                 }
2143
2144                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2145                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2146                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2147                 context_run(&ctx->context, control);
2148         }
2149
2150         return 0;
2151 }
2152
2153 static int ohci_stop_iso(struct fw_iso_context *base)
2154 {
2155         struct fw_ohci *ohci = fw_ohci(base->card);
2156         struct iso_context *ctx = container_of(base, struct iso_context, base);
2157         int index;
2158
2159         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2160                 index = ctx - ohci->it_context_list;
2161                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2162         } else {
2163                 index = ctx - ohci->ir_context_list;
2164                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2165         }
2166         flush_writes(ohci);
2167         context_stop(&ctx->context);
2168
2169         return 0;
2170 }
2171
2172 static void ohci_free_iso_context(struct fw_iso_context *base)
2173 {
2174         struct fw_ohci *ohci = fw_ohci(base->card);
2175         struct iso_context *ctx = container_of(base, struct iso_context, base);
2176         unsigned long flags;
2177         int index;
2178
2179         ohci_stop_iso(base);
2180         context_release(&ctx->context);
2181         free_page((unsigned long)ctx->header);
2182
2183         spin_lock_irqsave(&ohci->lock, flags);
2184
2185         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2186                 index = ctx - ohci->it_context_list;
2187                 ohci->it_context_mask |= 1 << index;
2188         } else {
2189                 index = ctx - ohci->ir_context_list;
2190                 ohci->ir_context_mask |= 1 << index;
2191                 ohci->ir_context_channels |= 1ULL << base->channel;
2192         }
2193
2194         spin_unlock_irqrestore(&ohci->lock, flags);
2195 }
2196
2197 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2198                                    struct fw_iso_packet *packet,
2199                                    struct fw_iso_buffer *buffer,
2200                                    unsigned long payload)
2201 {
2202         struct iso_context *ctx = container_of(base, struct iso_context, base);
2203         struct descriptor *d, *last, *pd;
2204         struct fw_iso_packet *p;
2205         __le32 *header;
2206         dma_addr_t d_bus, page_bus;
2207         u32 z, header_z, payload_z, irq;
2208         u32 payload_index, payload_end_index, next_page_index;
2209         int page, end_page, i, length, offset;
2210
2211         p = packet;
2212         payload_index = payload;
2213
2214         if (p->skip)
2215                 z = 1;
2216         else
2217                 z = 2;
2218         if (p->header_length > 0)
2219                 z++;
2220
2221         /* Determine the first page the payload isn't contained in. */
2222         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2223         if (p->payload_length > 0)
2224                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2225         else
2226                 payload_z = 0;
2227
2228         z += payload_z;
2229
2230         /* Get header size in number of descriptors. */
2231         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2232
2233         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2234         if (d == NULL)
2235                 return -ENOMEM;
2236
2237         if (!p->skip) {
2238                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2239                 d[0].req_count = cpu_to_le16(8);
2240                 /*
2241                  * Link the skip address to this descriptor itself.  This causes
2242                  * a context to skip a cycle whenever lost cycles or FIFO
2243                  * overruns occur, without dropping the data.  The application
2244                  * should then decide whether this is an error condition or not.
2245                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2246                  */
2247                 d[0].branch_address = cpu_to_le32(d_bus | z);
2248
2249                 header = (__le32 *) &d[1];
2250                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2251                                         IT_HEADER_TAG(p->tag) |
2252                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2253                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2254                                         IT_HEADER_SPEED(ctx->base.speed));
2255                 header[1] =
2256                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2257                                                           p->payload_length));
2258         }
2259
2260         if (p->header_length > 0) {
2261                 d[2].req_count    = cpu_to_le16(p->header_length);
2262                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2263                 memcpy(&d[z], p->header, p->header_length);
2264         }
2265
2266         pd = d + z - payload_z;
2267         payload_end_index = payload_index + p->payload_length;
2268         for (i = 0; i < payload_z; i++) {
2269                 page               = payload_index >> PAGE_SHIFT;
2270                 offset             = payload_index & ~PAGE_MASK;
2271                 next_page_index    = (page + 1) << PAGE_SHIFT;
2272                 length             =
2273                         min(next_page_index, payload_end_index) - payload_index;
2274                 pd[i].req_count    = cpu_to_le16(length);
2275
2276                 page_bus = page_private(buffer->pages[page]);
2277                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2278
2279                 payload_index += length;
2280         }
2281
2282         if (p->interrupt)
2283                 irq = DESCRIPTOR_IRQ_ALWAYS;
2284         else
2285                 irq = DESCRIPTOR_NO_IRQ;
2286
2287         last = z == 2 ? d : d + z - 1;
2288         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2289                                      DESCRIPTOR_STATUS |
2290                                      DESCRIPTOR_BRANCH_ALWAYS |
2291                                      irq);
2292
2293         context_append(&ctx->context, d, z, header_z);
2294
2295         return 0;
2296 }
2297
2298 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2299                                         struct fw_iso_packet *packet,
2300                                         struct fw_iso_buffer *buffer,
2301                                         unsigned long payload)
2302 {
2303         struct iso_context *ctx = container_of(base, struct iso_context, base);
2304         struct descriptor *d, *pd;
2305         struct fw_iso_packet *p = packet;
2306         dma_addr_t d_bus, page_bus;
2307         u32 z, header_z, rest;
2308         int i, j, length;
2309         int page, offset, packet_count, header_size, payload_per_buffer;
2310
2311         /*
2312          * The OHCI controller puts the isochronous header and trailer in the
2313          * buffer, so we need at least 8 bytes.
2314          */
2315         packet_count = p->header_length / ctx->base.header_size;
2316         header_size  = max(ctx->base.header_size, (size_t)8);
2317
2318         /* Get header size in number of descriptors. */
2319         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2320         page     = payload >> PAGE_SHIFT;
2321         offset   = payload & ~PAGE_MASK;
2322         payload_per_buffer = p->payload_length / packet_count;
2323
2324         for (i = 0; i < packet_count; i++) {
2325                 /* d points to the header descriptor */
2326                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2327                 d = context_get_descriptors(&ctx->context,
2328                                 z + header_z, &d_bus);
2329                 if (d == NULL)
2330                         return -ENOMEM;
2331
2332                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2333                                               DESCRIPTOR_INPUT_MORE);
2334                 if (p->skip && i == 0)
2335                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2336                 d->req_count    = cpu_to_le16(header_size);
2337                 d->res_count    = d->req_count;
2338                 d->transfer_status = 0;
2339                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2340
2341                 rest = payload_per_buffer;
2342                 pd = d;
2343                 for (j = 1; j < z; j++) {
2344                         pd++;
2345                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2346                                                   DESCRIPTOR_INPUT_MORE);
2347
2348                         if (offset + rest < PAGE_SIZE)
2349                                 length = rest;
2350                         else
2351                                 length = PAGE_SIZE - offset;
2352                         pd->req_count = cpu_to_le16(length);
2353                         pd->res_count = pd->req_count;
2354                         pd->transfer_status = 0;
2355
2356                         page_bus = page_private(buffer->pages[page]);
2357                         pd->data_address = cpu_to_le32(page_bus + offset);
2358
2359                         offset = (offset + length) & ~PAGE_MASK;
2360                         rest -= length;
2361                         if (offset == 0)
2362                                 page++;
2363                 }
2364                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2365                                           DESCRIPTOR_INPUT_LAST |
2366                                           DESCRIPTOR_BRANCH_ALWAYS);
2367                 if (p->interrupt && i == packet_count - 1)
2368                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2369
2370                 context_append(&ctx->context, d, z, header_z);
2371         }
2372
2373         return 0;
2374 }
2375
2376 static int ohci_queue_iso(struct fw_iso_context *base,
2377                           struct fw_iso_packet *packet,
2378                           struct fw_iso_buffer *buffer,
2379                           unsigned long payload)
2380 {
2381         struct iso_context *ctx = container_of(base, struct iso_context, base);
2382         unsigned long flags;
2383         int ret;
2384
2385         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2386         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2387                 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2388         else
2389                 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2390                                                         buffer, payload);
2391         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2392
2393         return ret;
2394 }
2395
2396 static const struct fw_card_driver ohci_driver = {
2397         .enable                 = ohci_enable,
2398         .update_phy_reg         = ohci_update_phy_reg,
2399         .set_config_rom         = ohci_set_config_rom,
2400         .send_request           = ohci_send_request,
2401         .send_response          = ohci_send_response,
2402         .cancel_packet          = ohci_cancel_packet,
2403         .enable_phys_dma        = ohci_enable_phys_dma,
2404         .get_cycle_time         = ohci_get_cycle_time,
2405
2406         .allocate_iso_context   = ohci_allocate_iso_context,
2407         .free_iso_context       = ohci_free_iso_context,
2408         .queue_iso              = ohci_queue_iso,
2409         .start_iso              = ohci_start_iso,
2410         .stop_iso               = ohci_stop_iso,
2411 };
2412
2413 #ifdef CONFIG_PPC_PMAC
2414 static void pmac_ohci_on(struct pci_dev *dev)
2415 {
2416         if (machine_is(powermac)) {
2417                 struct device_node *ofn = pci_device_to_OF_node(dev);
2418
2419                 if (ofn) {
2420                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2421                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2422                 }
2423         }
2424 }
2425
2426 static void pmac_ohci_off(struct pci_dev *dev)
2427 {
2428         if (machine_is(powermac)) {
2429                 struct device_node *ofn = pci_device_to_OF_node(dev);
2430
2431                 if (ofn) {
2432                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2433                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2434                 }
2435         }
2436 }
2437 #else
2438 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2439 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2440 #endif /* CONFIG_PPC_PMAC */
2441
2442 static int __devinit pci_probe(struct pci_dev *dev,
2443                                const struct pci_device_id *ent)
2444 {
2445         struct fw_ohci *ohci;
2446         u32 bus_options, max_receive, link_speed, version, link_enh;
2447         u64 guid;
2448         int i, err, n_ir, n_it;
2449         size_t size;
2450
2451         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2452         if (ohci == NULL) {
2453                 err = -ENOMEM;
2454                 goto fail;
2455         }
2456
2457         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2458
2459         pmac_ohci_on(dev);
2460
2461         err = pci_enable_device(dev);
2462         if (err) {
2463                 fw_error("Failed to enable OHCI hardware\n");
2464                 goto fail_free;
2465         }
2466
2467         pci_set_master(dev);
2468         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2469         pci_set_drvdata(dev, ohci);
2470
2471         spin_lock_init(&ohci->lock);
2472
2473         tasklet_init(&ohci->bus_reset_tasklet,
2474                      bus_reset_tasklet, (unsigned long)ohci);
2475
2476         err = pci_request_region(dev, 0, ohci_driver_name);
2477         if (err) {
2478                 fw_error("MMIO resource unavailable\n");
2479                 goto fail_disable;
2480         }
2481
2482         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2483         if (ohci->registers == NULL) {
2484                 fw_error("Failed to remap registers\n");
2485                 err = -ENXIO;
2486                 goto fail_iomem;
2487         }
2488
2489         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2490                 if (ohci_quirks[i].vendor == dev->vendor &&
2491                     (ohci_quirks[i].device == dev->device ||
2492                      ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2493                         ohci->quirks = ohci_quirks[i].flags;
2494                         break;
2495                 }
2496         if (param_quirks)
2497                 ohci->quirks = param_quirks;
2498
2499         /* TI OHCI-Lynx and compatible: set recommended configuration bits. */
2500         if (dev->vendor == PCI_VENDOR_ID_TI) {
2501                 pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);
2502
2503                 /* adjust latency of ATx FIFO: use 1.7 KB threshold */
2504                 link_enh &= ~TI_LinkEnh_atx_thresh_mask;
2505                 link_enh |= TI_LinkEnh_atx_thresh_1_7K;
2506
2507                 /* use priority arbitration for asynchronous responses */
2508                 link_enh |= TI_LinkEnh_enab_unfair;
2509
2510                 /* required for aPhyEnhanceEnable to work */
2511                 link_enh |= TI_LinkEnh_enab_accel;
2512
2513                 pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
2514         }
2515
2516         ar_context_init(&ohci->ar_request_ctx, ohci,
2517                         OHCI1394_AsReqRcvContextControlSet);
2518
2519         ar_context_init(&ohci->ar_response_ctx, ohci,
2520                         OHCI1394_AsRspRcvContextControlSet);
2521
2522         context_init(&ohci->at_request_ctx, ohci,
2523                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2524
2525         context_init(&ohci->at_response_ctx, ohci,
2526                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2527
2528         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2529         ohci->ir_context_channels = ~0ULL;
2530         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2531         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2532         n_ir = hweight32(ohci->ir_context_mask);
2533         size = sizeof(struct iso_context) * n_ir;
2534         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2535
2536         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2537         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2538         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2539         n_it = hweight32(ohci->it_context_mask);
2540         size = sizeof(struct iso_context) * n_it;
2541         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2542
2543         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2544                 err = -ENOMEM;
2545                 goto fail_contexts;
2546         }
2547
2548         /* self-id dma buffer allocation */
2549         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2550                                                SELF_ID_BUF_SIZE,
2551                                                &ohci->self_id_bus,
2552                                                GFP_KERNEL);
2553         if (ohci->self_id_cpu == NULL) {
2554                 err = -ENOMEM;
2555                 goto fail_contexts;
2556         }
2557
2558         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2559         max_receive = (bus_options >> 12) & 0xf;
2560         link_speed = bus_options & 0x7;
2561         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2562                 reg_read(ohci, OHCI1394_GUIDLo);
2563
2564         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2565         if (err)
2566                 goto fail_self_id;
2567
2568         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2569         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2570                   "%d IR + %d IT contexts, quirks 0x%x\n",
2571                   dev_name(&dev->dev), version >> 16, version & 0xff,
2572                   n_ir, n_it, ohci->quirks);
2573
2574         return 0;
2575
2576  fail_self_id:
2577         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2578                           ohci->self_id_cpu, ohci->self_id_bus);
2579  fail_contexts:
2580         kfree(ohci->ir_context_list);
2581         kfree(ohci->it_context_list);
2582         context_release(&ohci->at_response_ctx);
2583         context_release(&ohci->at_request_ctx);
2584         ar_context_release(&ohci->ar_response_ctx);
2585         ar_context_release(&ohci->ar_request_ctx);
2586         pci_iounmap(dev, ohci->registers);
2587  fail_iomem:
2588         pci_release_region(dev, 0);
2589  fail_disable:
2590         pci_disable_device(dev);
2591  fail_free:
2592         kfree(&ohci->card);
2593         pmac_ohci_off(dev);
2594  fail:
2595         if (err == -ENOMEM)
2596                 fw_error("Out of memory\n");
2597
2598         return err;
2599 }
2600
2601 static void pci_remove(struct pci_dev *dev)
2602 {
2603         struct fw_ohci *ohci;
2604
2605         ohci = pci_get_drvdata(dev);
2606         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2607         flush_writes(ohci);
2608         fw_core_remove_card(&ohci->card);
2609
2610         /*
2611          * FIXME: Fail all pending packets here, now that the upper
2612          * layers can't queue any more.
2613          */
2614
2615         software_reset(ohci);
2616         free_irq(dev->irq, ohci);
2617
2618         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2619                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2620                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2621         if (ohci->config_rom)
2622                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2623                                   ohci->config_rom, ohci->config_rom_bus);
2624         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2625                           ohci->self_id_cpu, ohci->self_id_bus);
2626         ar_context_release(&ohci->ar_request_ctx);
2627         ar_context_release(&ohci->ar_response_ctx);
2628         context_release(&ohci->at_request_ctx);
2629         context_release(&ohci->at_response_ctx);
2630         kfree(ohci->it_context_list);
2631         kfree(ohci->ir_context_list);
2632         pci_disable_msi(dev);
2633         pci_iounmap(dev, ohci->registers);
2634         pci_release_region(dev, 0);
2635         pci_disable_device(dev);
2636         kfree(&ohci->card);
2637         pmac_ohci_off(dev);
2638
2639         fw_notify("Removed fw-ohci device.\n");
2640 }
2641
2642 #ifdef CONFIG_PM
2643 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2644 {
2645         struct fw_ohci *ohci = pci_get_drvdata(dev);
2646         int err;
2647
2648         software_reset(ohci);
2649         free_irq(dev->irq, ohci);
2650         pci_disable_msi(dev);
2651         err = pci_save_state(dev);
2652         if (err) {
2653                 fw_error("pci_save_state failed\n");
2654                 return err;
2655         }
2656         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2657         if (err)
2658                 fw_error("pci_set_power_state failed with %d\n", err);
2659         pmac_ohci_off(dev);
2660
2661         return 0;
2662 }
2663
2664 static int pci_resume(struct pci_dev *dev)
2665 {
2666         struct fw_ohci *ohci = pci_get_drvdata(dev);
2667         int err;
2668
2669         pmac_ohci_on(dev);
2670         pci_set_power_state(dev, PCI_D0);
2671         pci_restore_state(dev);
2672         err = pci_enable_device(dev);
2673         if (err) {
2674                 fw_error("pci_enable_device failed\n");
2675                 return err;
2676         }
2677
2678         return ohci_enable(&ohci->card, NULL, 0);
2679 }
2680 #endif
2681
2682 static const struct pci_device_id pci_table[] = {
2683         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2684         { }
2685 };
2686
2687 MODULE_DEVICE_TABLE(pci, pci_table);
2688
2689 static struct pci_driver fw_ohci_pci_driver = {
2690         .name           = ohci_driver_name,
2691         .id_table       = pci_table,
2692         .probe          = pci_probe,
2693         .remove         = pci_remove,
2694 #ifdef CONFIG_PM
2695         .resume         = pci_resume,
2696         .suspend        = pci_suspend,
2697 #endif
2698 };
2699
2700 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2701 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2702 MODULE_LICENSE("GPL");
2703
2704 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2705 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2706 MODULE_ALIAS("ohci1394");
2707 #endif
2708
2709 static int __init fw_ohci_init(void)
2710 {
2711         return pci_register_driver(&fw_ohci_pci_driver);
2712 }
2713
2714 static void __exit fw_ohci_cleanup(void)
2715 {
2716         pci_unregister_driver(&fw_ohci_pci_driver);
2717 }
2718
2719 module_init(fw_ohci_init);
2720 module_exit(fw_ohci_cleanup);